NASA Astrophysics Data System (ADS)
Marchandon, Mathilde; Vergnolle, Mathilde; Sudhaus, Henriette; Cavalié, Olivier
2018-02-01
In this study, we reestimate the source model of the 1997 Mw 7.2 Zirkuh earthquake (northeastern Iran) by jointly optimizing intermediate-field Interferometry Synthetic Aperture Radar data and near-field optical correlation data using a two-step fault modeling procedure. First, we estimate the geometry of the multisegmented Abiz fault using a genetic algorithm. Then, we discretize the fault segments into subfaults and invert the data to image the slip distribution on the fault. Our joint-data model, although similar to the Interferometry Synthetic Aperture Radar-based model to the first order, highlights differences in the fault dip and slip distribution. Our preferred model is ˜80° west dipping in the northern part of the fault, ˜75° east dipping in the southern part and shows three disconnected high slip zones separated by low slip zones. The low slip zones are located where the Abiz fault shows geometric complexities and where the aftershocks are located. We interpret this rough slip distribution as three asperities separated by geometrical barriers that impede the rupture propagation. Finally, no shallow slip deficit is found for the overall rupture except on the central segment where it could be due to off-fault deformation in quaternary deposits.
Tsunami Modeling to Validate Slip Models of the 2007 M w 8.0 Pisco Earthquake, Central Peru
NASA Astrophysics Data System (ADS)
Ioualalen, M.; Perfettini, H.; Condo, S. Yauri; Jimenez, C.; Tavera, H.
2013-03-01
Following the 2007, August 15th, M w 8.0, Pisco earthquake in central Peru, Sladen et al. (J Geophys Res 115: B02405, 2010) have derived several slip models of this event. They inverted teleseismic data together with geodetic (InSAR) measurements to look for the co-seismic slip distribution on the fault plane, considering those data sets separately or jointly. But how close to the real slip distribution are those inverted slip models? To answer this crucial question, the authors generated some tsunami records based on their slip models and compared them to DART buoys, tsunami records, and available runup data. Such an approach requires a robust and accurate tsunami model (non-linear, dispersive, accurate bathymetry and topography, etc.) otherwise the differences between the data and the model may be attributed to the slip models themselves, though they arise from an incomplete tsunami simulation. The accuracy of a numerical tsunami simulation strongly depends, among others, on two important constraints: (i) A fine computational grid (and thus the bathymetry and topography data sets used) which is not always available, unfortunately, and (ii) a realistic tsunami propagation model including dispersion. Here, we extend Sladen's work using newly available data, namely a tide gauge record at Callao (Lima harbor) and the Chilean DART buoy record, while considering a complete set of runup data along with a more realistic tsunami numerical that accounts for dispersion, and also considering a fine-resolution computational grid, which is essential. Through these accurate numerical simulations we infer that the InSAR-based model is in better agreement with the tsunami data, studying the case of the Pisco earthquake indicating that geodetic data seems essential to recover the final co-seismic slip distribution on the rupture plane. Slip models based on teleseismic data are unable to describe the observed tsunami, suggesting that a significant amount of co-seismic slip may have been aseismic. Finally, we compute the runup distribution along the central part of the Peruvian coast to better understand the wave amplification/attenuation processes of the tsunami generated by the Pisco earthquake.
Analytical and numerical study of electroosmotic slip flows of fractional second grade fluids
NASA Astrophysics Data System (ADS)
Wang, Xiaoping; Qi, Haitao; Yu, Bo; Xiong, Zhen; Xu, Huanying
2017-09-01
This work investigates the unsteady electroosmotic slip flow of viscoelastic fluid through a parallel plate micro-channel under combined influence of electroosmotic and pressure gradient forcings with asymmetric zeta potentials at the walls. The generalized second grade fluid with fractional derivative was used for the constitutive equation. The Navier slip model with different slip coefficients at both walls was also considered. By employing the Debye-Hückel linearization and the Laplace and sin-cos-Fourier transforms, the analytical solutions for the velocity distribution are derived. And the finite difference method for this problem was also given. Finally, the influence of pertinent parameters on the generation of flow is presented graphically.
NASA Astrophysics Data System (ADS)
Baglione, Enrico; Armigliato, Alberto; Pagnoni, Gianluca; Tinti, Stefano
2017-04-01
The fact that ruptures on the generating faults of large earthquakes are strongly heterogeneous has been demonstrated over the last few decades by a large number of studies. The effort to retrieve reliable finite-fault models (FFMs) for large earthquakes occurred worldwide, mainly by means of the inversion of different kinds of geophysical data, has been accompanied in the last years by the systematic collection and format homogenisation of the published/proposed FFMs for different earthquakes into specifically conceived databases, such as SRCMOD. The main aim of this study is to explore characteristic patterns of the slip distribution of large earthquakes, by using a subset of the FFMs contained in SRCMOD, covering events with moment magnitude equal or larger than 6 and occurred worldwide over the last 25 years. We focus on those FFMs that exhibit a single and clear region of high slip (i.e. a single asperity), which is found to represent the majority of the events. For these FFMs, it sounds reasonable to best-fit the slip model by means of a 2D Gaussian distributions. Two different methods are used (least-square and highest-similarity) and correspondingly two "best-fit" indexes are introduced. As a result, two distinct 2D Gaussian distributions for each FFM are obtained. To quantify how well these distributions are able to mimic the original slip heterogeneity, we calculate and compare the vertical displacements at the Earth surface in the near field induced by the original FFM slip, by an equivalent uniform-slip model, by a depth-dependent slip model, and by the two "best" Gaussian slip models. The coseismic vertical surface displacement is used as the metric for comparison. Results show that, on average, the best results are the ones obtained with 2D Gaussian distributions based on similarity index fitting. Finally, we restrict our attention to those single-asperity FFMs associated to earthquakes which generated tsunamis. We choose few events for which tsunami data (water level time series and/or run-up measurements) are available. Using the results mentioned above, for each chosen event the coseismic vertical displacement fields computed for different slip distributions are used as initial conditions for numerical tsunami simulations, performed by means of the shallow-water code UBO-TSUFD. The comparison of the numerical results for different initial conditions to the experimental data is presented and discussed. This study was funded in the frame of the EU Project called ASTARTE - "Assessment, STrategy And Risk Reduction for Tsunamis in Europe", Grant 603839, 7th FP (ENV.2013.6.4-3).
Haeussler, Peter J.; Schwartz, David P.; Dawson, Timothy E.; Stenner, Heidi D.; Lienkaemper, James J.; Sherrod, Brian; Cinti, Francesca R.; Montone, Paola; Craw, Patricia; Crone, Anthony J.; Personius, Stephen F.
2004-01-01
The 3 November 2002 Denali fault, Alaska, earthquake resulted in 341 km of surface rupture on the Susitna Glacier, Denali, and Totschunda faults. The rupture proceeded from west to east and began with a 48-km-long break on the previously unknown Susitna Glacier thrust fault. Slip on this thrust averaged about 4 m (Crone et al., 2004). Next came the principal surface break, along 226 km of the Denali fault, with average right-lateral offsets of 4.5–5.1 m and a maximum offset of 8.8 m near its eastern end. The Denali fault trace is commonly left stepping and north side up. About 99 km of the fault ruptured through glacier ice, where the trace orientation was commonly influenced by local ice fabric. Finally, slip transferred southeastward onto the Totschunda fault and continued for another 66 km where dextral offsets average 1.6–1.8 m. The transition from the Denali fault to the Totschunda fault occurs over a complex 25-km-long transfer zone of right-slip and normal fault traces. Three methods of calculating average surface slip all yield a moment magnitude of Mw 7.8, in very good agreement with the seismologically determined magnitude of M 7.9. A comparison of strong-motion inversions for moment release with our slip distribution shows they have a similar pattern. The locations of the two largest pulses of moment release correlate with the locations of increasing steps in the average values of observed slip. This suggests that slip-distribution data can be used to infer moment release along other active fault traces.
Linking interseismic deformation with coseismic slip using dynamic rupture simulations
NASA Astrophysics Data System (ADS)
Yang, H.; He, B.; Weng, H.
2017-12-01
The largest earthquakes on earth occur at subduction zones, sometimes accompanied by devastating tsunamis. Reducing losses from megathrust earthquakes and tsunami demands accurate estimate of rupture scenarios for future earthquakes. Interseismic locking distribution derived from geodetic observations is often used to qualitatively evaluate future earthquake potential. However, how to quantitatively estimate the coseismic slip from the locking distribution remains challenging. Here we derive the coseismic rupture process of the 2012 Mw 7.6 Nicoya, Costa Rica, earthquake from interseismic locking distribution using spontaneous rupture simulation. We construct a three-dimensional elastic medium with a curved fault, which is governed by the linear slip-weakening law. The initial stress on the fault is set based on the build-up stress inferred from locking and the dynamic friction coefficient from fast-speed sliding experiments. Our numerical results of coseismic slip distribution, moment rate function and final earthquake moment are well consistent with those derived from seismic and geodetic observations. Furthermore, we find that the epicentral locations affect rupture scenarios and may lead to various sizes of earthquakes given the heterogeneous stress distribution. In the Nicoya region, less than half of rupture initiation regions where the locking degree is greater than 0.6 can develop into large earthquakes (Mw > 7.2). The results of location-dependent earthquake magnitudes underscore the necessity of conducting a large number of simulations to quantitatively evaluate seismic hazard from the interseismic locking models.
Evolution of the Median Tectonic Line fault zone, SW Japan, during exhumation
NASA Astrophysics Data System (ADS)
Shigematsu, Norio; Kametaka, Masao; Inada, Noriyuki; Miyawaki, Masahiro; Miyakawa, Ayumu; Kameda, Jun; Togo, Tetsuhiro; Fujimoto, Koichiro
2017-01-01
Like many crustal-scale fault zones, the Median Tectonic Line (MTL) fault zone in Japan preserves fault rocks that formed across a broad range of physical conditions. We examined the architecture of the MTL at a large new outcrop in order to understand fault behaviours under different crustal levels. The MTL here strikes almost E-W, dips to the north, and juxtaposes the Sanbagawa metamorphic rocks to the south against the Izumi Group sediments to the north. The fault core consists mainly of Sanbagawa-derived fault gouges. The fault zone can be divided into several structural units, including two slip zones (upper and lower slip zones), where the lower slip zone is more conspicuous. Crosscutting relationships among structures and kinematics indicate that the fault zone records four stages of deformation. Microstructures and powder X-ray diffraction (XRD) analyses indicate that the four stages of deformation occurred under different temperature conditions. The oldest deformation (stage 1) was widely distributed, and had a top-to-the-east (dextral) sense of slip at deep levels of the seismogenic zone. Deformation with the same sense of slip, then became localised in the lower slip zone (stage 2). Subsequently, the slip direction in the lower slip zone changed to top-to-the-west (sinistral-normal) (stage 3). The final stage of deformation (stage 4) involved top-to-the-north normal faulting along the two slip zones within the shallow crust (near the surface). The widely distributed stage 1 damage zone characterises the deeper part of the seismogenic zone, while the sets of localised principal slip zones and branching faults of stage 4 characterise shallow depths. The fault zone architecture described in this paper leads us to suggest that fault zones display different behaviours at different crustal levels.
Surface slip associated with the 2004 Parkfield, California, earthquake measured on alinement arrays
Lienkaemper, J.J.; Baker, B.; McFarland, F.S.
2006-01-01
Although still continuing, surface slip from the 2004 Parkfield earth-quake as measured on alinement arrays appears to be approaching about 30-35 cm between Parkfield and Gold Hill. This includes slip along the main trace and the Southwest Fracture Zone (SWFZ). Slip here was higher in 1966 at about 40 cm. The distribution of 2004 slip appears to have a shape similar to that of the 1966 event, but final slip is expected to be lower in 2004 by about 3-15 cm, even when continuing slip is accounted for. Proportionately, this difference is most notable at the south end at Highway 46, where the 1966 event slip was 13 cm compared to the 2004 slip of 4 cm. Continuous Global Positioning System and creepmeters suggest that significant surface coseismic slip apparently occurred mainly on the SWFZ and perhaps on Middle Mountain (the latter possibly caused by shaking) (Langbein et al., 2005). Creepmeters indicate only minor (<0.2 cm) surface coseismic slip occurred on the main trace between Parkfield and Gold Hill. We infer that 3-6 cm slip accumulated across our arrays in the first 24 hr. At Highway 46, slip appears complete, whereas the remaining sites are expected to take 2-6 years to reach their background creep rates. Following the 1966 event, afterslip at one site persisted as much as 5-10 years. The much longer recurrence intervals between the past two Parkfield earthquakes and the decreasing slip per event may suggest that larger slip deficits are now growing along the Parkfield segment.
The 2009-2010 Guerrero Slow Slip Event Monitored by InSAR, Using Time Series Approach
NASA Astrophysics Data System (ADS)
Bacques, G.; Pathier, E.; Lasserre, C.; Cotton, F.; Radiguet, M.; Cycle Sismique et Déformations Transitoires
2011-12-01
The Guerrero seismic gap is located along the Pacific coast of Mexico in a subduction zone where Cocos plate subducts under the North American plate with a 5.5 cm per year convergence rate. Along this 100 km width band located between Acapulco (East side) and Zihuatanejo (West side), no major earthquake occurred since at least 1911. In contrast, the surrounding areas of the Guerrero gap has been the location of large seismic events during the last century like the 1985 one's (Mw 8), which affected Mexico City. Considering the plate convergence rate, a 5 meters slip deficit has been estimated at this gap location since the last major earthquake (Lowry et al. 1998), making a large earthquake possible at this spot. However, the Guerrero gap was the setting of four slow slip events (SSE) with an approximately four years periodicity (1998, 2002, 2006, 2009-2010) since it was instrumented by GPS permanent network in January 1997. Slow slip events and their associated ground displacements are commonly interpreted as aseismic slips on the deeper part of the subduction plane. One of the main issues concerning that phenomenon, deals with the way that strain accumulated on the deeper part is released on the upper part of the subduction plane, which corresponds to the seismogenic zone. As a consequence, the slip distribution upon the subduction plane associated to the Guerrero SSE represents relevant information concerning the local seismic hazard. To address this issue, geodetic measurements from GPS and/or space-borne SAR differential interferometry (DInSAR) can be used to retrieve the SSE slip distribution on the subduction plane from the ground deformation measurements as it has been done for the 2006 event previously studied. In this work, we focused on the 2009-2010 SSE on Guerrero by processing DInSAR data (C band Envisat data were processed using the small baseline approach method NSBAS based upon ROI-pac) as previously done for the 2006 event but improved by adding a Time Series approach. Time Series approach is useful for monitoring ground deformation evolution during the slow slip events and makes the slip propagation mapping upon the subduction plane a promising goal. Here we present our first results concerning the 2009-2010 slow slip events, particularly the distribution of the cumulative surface displacement in LOS (satellite Line Of Sight), the slip distribution associated on the fault plane and the ground deformation evolution obtained. Finally, we open the discussion with a first comparison between the 2009-2010 and the 2006 events that reveal some differences concerning the amplitude and the distribution of the ground deformation.
NASA Astrophysics Data System (ADS)
Nespoli, Massimo; Belardinelli, Maria E.; Anderlini, Letizia; Bonafede, Maurizio; Pezzo, Giuseppe; Todesco, Micol; Rinaldi, Antonio P.
2017-12-01
The 2012 Emilia Romagna (Italy) seismic sequence has been extensively studied given the occurrence of two mainshocks, both temporally and spatially close to each other. The recent literature accounts for several fault models, obtained with different inversion methods and different datasets. Several authors investigated the possibility that the second event was triggered by the first mainshock with elusive results. In this work, we consider all the available InSAR and GPS datasets and two planar fault geometries, which are based on both seismological and geological constraints. We account for a layered, elastic half-space hosting the dislocation and compare the slip distribution resulting from the inversion and the related changes in Coulomb Failure Function (CFF) obtained with both a homogeneous and layered half-space. Finally, we focus on the interaction between the two main events, discriminating the contributions of coseismic and early postseismic slip of the mainshock on the generation of the second event and discuss the spatio-temporal distribution of the seismic sequence. When accounting for both InSAR and GPS geodetic data we are able to reproduce a detailed coseismic slip distribution for the two mainshocks that is in accordance with the overall aftershock seismicity distribution. Furthermore, we see that an elastic medium with depth dependent rigidity better accounts for the lack of the shallow seismicity, amplifying, with respect to the homogeneous case, the mechanical interaction of the two mainshocks.
Slip complexity and frictional heterogeneities in dynamic fault models
NASA Astrophysics Data System (ADS)
Bizzarri, A.
2005-12-01
The numerical modeling of earthquake rupture requires the specification of the fault system geometry, the mechanical properties of the media surrounding the fault, the initial conditions and the constitutive law for fault friction. The latter accounts for the fault zone properties and allows for the description of processes of nucleation, propagation, healing and arrest of a spontaneous rupture. In this work I solve the fundamental elasto-dynamic equation for a planar fault, adopting different constitutive equations (slip-dependent and rate- and state-dependent friction laws). We show that the slip patterns may be complicated by different causes. The spatial heterogeneities of constitutive parameters are able to cause the healing of slip, like barrier-healing or slip pulses. Our numerical experiments show that the heterogeneities of the parameter L affect the dynamic rupture propagation and weakly modify the dynamic stress drop and the rupture velocity. The heterogeneity of a and b parameters affects the dynamic rupture propagation in a more complex way: a velocity strengthening area (a > b) can arrest a dynamic rupture, but can be driven to an instability if suddenly loaded by the dynamic rupture front. Our simulations provide a picture of the complex interactions between fault patches having different frictional properties. Moreover, the slip distribution on the fault plane is complicated considering the effects of the rake rotation during the propagation: depending on the position on the fault plane, the orientation of instantaneous total dynamic traction can change with time with respect to the imposed initial stress direction. These temporal rake rotations depend on the amplitude of the initial stress and on its distribution. They also depend on the curvature and direction of the rupture front with respect to the imposed initial stress direction: this explains why rake rotations are mostly located near the rupture front and within the cohesive zone, where the breakdown processes take places. Finally, the rupture behavior, the fault slip distribution and the traction evolution may be changed and complicated including additional physical phenomena, like thermal pressurization of pore fluid (due to frictional heating). Our results involve interesting implications for slip duration and fracture energy.
Predicting the probability of slip in gait: methodology and distribution study.
Gragg, Jared; Yang, James
2016-01-01
The likelihood of a slip is related to the available and required friction for a certain activity, here gait. Classical slip and fall analysis presumed that a walking surface was safe if the difference between the mean available and required friction coefficients exceeded a certain threshold. Previous research was dedicated to reformulating the classical slip and fall theory to include the stochastic variation of the available and required friction when predicting the probability of slip in gait. However, when predicting the probability of a slip, previous researchers have either ignored the variation in the required friction or assumed the available and required friction to be normally distributed. Also, there are no published results that actually give the probability of slip for various combinations of required and available frictions. This study proposes a modification to the equation for predicting the probability of slip, reducing the previous equation from a double-integral to a more convenient single-integral form. Also, a simple numerical integration technique is provided to predict the probability of slip in gait: the trapezoidal method. The effect of the random variable distributions on the probability of slip is also studied. It is shown that both the required and available friction distributions cannot automatically be assumed as being normally distributed. The proposed methods allow for any combination of distributions for the available and required friction, and numerical results are compared to analytical solutions for an error analysis. The trapezoidal method is shown to be highly accurate and efficient. The probability of slip is also shown to be sensitive to the input distributions of the required and available friction. Lastly, a critical value for the probability of slip is proposed based on the number of steps taken by an average person in a single day.
Murphy, S.; Scala, A.; Herrero, A.; Lorito, S.; Festa, G.; Trasatti, E.; Tonini, R.; Romano, F.; Molinari, I.; Nielsen, S.
2016-01-01
The 2011 Tohoku earthquake produced an unexpected large amount of shallow slip greatly contributing to the ensuing tsunami. How frequent are such events? How can they be efficiently modelled for tsunami hazard? Stochastic slip models, which can be computed rapidly, are used to explore the natural slip variability; however, they generally do not deal specifically with shallow slip features. We study the systematic depth-dependence of slip along a thrust fault with a number of 2D dynamic simulations using stochastic shear stress distributions and a geometry based on the cross section of the Tohoku fault. We obtain a probability density for the slip distribution, which varies both with depth, earthquake size and whether the rupture breaks the surface. We propose a method to modify stochastic slip distributions according to this dynamically-derived probability distribution. This method may be efficiently applied to produce large numbers of heterogeneous slip distributions for probabilistic tsunami hazard analysis. Using numerous M9 earthquake scenarios, we demonstrate that incorporating the dynamically-derived probability distribution does enhance the conditional probability of exceedance of maximum estimated tsunami wave heights along the Japanese coast. This technique for integrating dynamic features in stochastic models can be extended to any subduction zone and faulting style. PMID:27725733
NASA Astrophysics Data System (ADS)
Hirose, H.; Tanaka, T.
2017-12-01
Geodetic inversions have been performed by using GNSS data and/or tiltmeter data in order to estimate spatio-temporal fault slip distributions. They have been applied for slow slip events (SSEs), which are episodic fault slip lasting for days to years (e.g., Ozawa et al., 2001; Hirose et al., 2014). Although their slip distributions are important information in terms of inferring strain budget and frictional characteristics on a subduction plate interface, inhomogeneous station coverage generally yields spatially non-uniform slip resolution, and in a worse case, a slip distribution can not be recovered. It is known that an SSE which accompanies an earthquake swarm around the SSE slip area, such as the Boso Peninsula SSEs (e.g., Hirose et al., 2014). Some researchers hypothesize that these earthquakes are triggered by a stress change caused by the accompanying SSE (e.g., Segall et al., 2006). Based on this assumption, it is possible that a conventional geodetic inversion which impose a constraint on the stress change that promotes earthquake activities may improve the resolution of the slip distribution. Here we develop an inversion method based on the Network Inversion Filter technique (Segall and Matthews, 1997), incorporating a constraint on a positive change in Coulomb failure stress (Delta-CFS) at the accompanied earthquakes. In addition, we apply this new method to synthetic data in order to check the effectiveness of the method and the characteristics of the inverted slip distributions. The results show that there is a case in which the reproduction of a slip distribution is better with earthquake information than without it. That is, it is possible to improve the reproducibility of a slip distribution of an SSE with this new inversion method if an earthquake catalog for the accompanying earthquake activity can be used when available geodetic data are insufficient.
Factors controlling high-frequency radiation from extended ruptures
NASA Astrophysics Data System (ADS)
Beresnev, Igor A.
2017-09-01
Small-scale slip heterogeneity or variations in rupture velocity on the fault plane are often invoked to explain the high-frequency radiation from earthquakes. This view has no theoretical basis, which follows, for example, from the representation integral of elasticity, an exact solution for the radiated wave field. The Fourier transform, applied to the integral, shows that the seismic spectrum is fully controlled by that of the source time function, while the distribution of final slip and rupture acceleration/deceleration only contribute to directivity. This inference is corroborated by the precise numerical computation of the full radiated field from the representation integral. We compare calculated radiation from four finite-fault models: (1) uniform slip function with low slip velocity, (2) slip function spatially modulated by a sinusoidal function, (3) slip function spatially modulated by a sinusoidal function with random roughness added, and (4) uniform slip function with high slip velocity. The addition of "asperities," both regular and irregular, does not cause any systematic increase in the spectral level of high-frequency radiation, except for the creation of maxima due to constructive interference. On the other hand, an increase in the maximum rate of slip on the fault leads to highly amplified high frequencies, in accordance with the prediction on the basis of a simple point-source treatment of the fault. Hence, computations show that the temporal rate of slip, not the spatial heterogeneity on faults, is the predominant factor forming the high-frequency radiation and thus controlling the velocity and acceleration of the resulting ground motions.
Coseismic slip distribution of the 1923 Kanto earthquake, Japan
Pollitz, F.F.; Nyst, M.; Nishimura, T.; Thatcher, W.
2005-01-01
The slip distribution associated with the 1923 M = 7.9 Kanto, Japan, earthquake is reexamined in light of new data and modeling. We utilize a combination of first-order triangulation, second-order triangulation, and leveling data in order to constrain the coseismic deformation. The second-order triangulation data, which have not been utilized in previous studies of 1923 coseismic deformation, are associated with only slightly smaller errors than the first-order triangulation data and expand the available triangulation data set by about a factor of 10. Interpretation of these data in terms of uniform-slip models in a companion study by Nyst et al. shows that a model involving uniform coseismic slip on two distinct rupture planes explains the data very well and matches or exceeds the fit obtained by previous studies, even one which involved distributed slip. Using the geometry of the Nyst et al. two-plane slip model, we perform inversions of the same geodetic data set for distributed slip. Our preferred model of distributed slip on the Philippine Sea plate interface has a moment magnitude of 7.86. We find slip maxima of ???8-9 m beneath Odawara and ???7-8 m beneath the Miura peninsula, with a roughly 2:1 ratio of strike-slip to dip-slip motion, in agreement with a previous study. However, the Miura slip maximum is imaged as a more broadly extended feature in our study, with the high-slip region continuing from the Miura peninsula to the southern Boso peninsula region. The second-order triangulation data provide good evidence for ???3 m right-lateral strike slip on a 35-km-long splay structure occupying the volume between the upper surface of the descending Philippine Sea plate and the southern Boso peninsula. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
López-Comino, José Ángel; Stich, Daniel; Ferreira, Ana M. G.; Morales, Jose
2015-09-01
Inversions for the full slip distribution of earthquakes provide detailed models of earthquake sources, but stability and non-uniqueness of the inversions is a major concern. The problem is underdetermined in any realistic setting, and significantly different slip distributions may translate to fairly similar seismograms. In such circumstances, inverting for a single best model may become overly dependent on the details of the procedure. Instead, we propose to perform extended fault inversion trough falsification. We generate a representative set of heterogeneous slipmaps, compute their forward predictions, and falsify inappropriate trial models that do not reproduce the data within a reasonable level of mismodelling. The remainder of surviving trial models forms our set of coequal solutions. The solution set may contain only members with similar slip distributions, or else uncover some fundamental ambiguity such as, for example, different patterns of main slip patches. For a feasibility study, we use teleseismic body wave recordings from the 2012 September 5 Nicoya, Costa Rica earthquake, although the inversion strategy can be applied to any type of seismic, geodetic or tsunami data for which we can handle the forward problem. We generate 10 000 pseudo-random, heterogeneous slip distributions assuming a von Karman autocorrelation function, keeping the rake angle, rupture velocity and slip velocity function fixed. The slip distribution of the 2012 Nicoya earthquake turns out to be relatively well constrained from 50 teleseismic waveforms. Two hundred fifty-two slip models with normalized L1-fit within 5 per cent from the global minimum from our solution set. They consistently show a single dominant slip patch around the hypocentre. Uncertainties are related to the details of the slip maximum, including the amount of peak slip (2-3.5 m), as well as the characteristics of peripheral slip below 1 m. Synthetic tests suggest that slip patterns such as Nicoya may be a fortunate case, while it may be more difficult to unambiguously reconstruct more distributed slip from teleseismic data.
A Bayesian inversion for slip distribution of 1 Apr 2007 Mw8.1 Solomon Islands Earthquake
NASA Astrophysics Data System (ADS)
Chen, T.; Luo, H.
2013-12-01
On 1 Apr 2007 the megathrust Mw8.1 Solomon Islands earthquake occurred in the southeast pacific along the New Britain subduction zone. 102 vertical displacement measurements over the southeastern end of the rupture zone from two field surveys after this event provide a unique constraint for slip distribution inversion. In conventional inversion method (such as bounded variable least squares) the smoothing parameter that determines the relative weight placed on fitting the data versus smoothing the slip distribution is often subjectively selected at the bend of the trade-off curve. Here a fully probabilistic inversion method[Fukuda,2008] is applied to estimate distributed slip and smoothing parameter objectively. The joint posterior probability density function of distributed slip and the smoothing parameter is formulated under a Bayesian framework and sampled with Markov chain Monte Carlo method. We estimate the spatial distribution of dip slip associated with the 1 Apr 2007 Solomon Islands earthquake with this method. Early results show a shallower dip angle than previous study and highly variable dip slip both along-strike and down-dip.
Banerjee, P.; Pollitz, F.; Nagarajan, B.; Burgmann, R.
2007-01-01
Static offsets produced by the 26 December 2004 M ???9 Sumatra-Andaman earthquake as measured by Global Positioning System (GPS) reveal a large amount of slip along the entire ???1300 km-long rupture. Most seismic slip inversions place little slip on the Andaman segment. whereas both near-field and far-field GPS offsets demand large slip on the Andaman segment. We compile available datasets of the static offset to render a more detailed picture of the static-slip distribution. We construct geodetic offsets such that postearthquake positions of continuous GPS sites are reckoned to a time 1 day after the earthquake and campaign GPS sites are similarly corrected for postseismic motions. The newly revised slip distribution (Mw 9.22) reveals substantial segmentation of slip along the Andaman Islands, with the southern quarter slipping ???15 m in unison with the adjacent Nicobar and northern Sumatran segments of length ???700 km. We infer a small excess of geodetic moment relative to the seismic moment. A similar compilation of GPS offsets from the 28 March 2005 Nias earthquake is well explained with dip slip averaging several meters (Mw = 8.66) distributed primarily at depths greater than 20 km.
McHugh, Stuart
1976-01-01
The material in this report is concerned with the effects of a vertically oriented rectangular dislocation loop on the tilts observed at the free surface of an elastic half-space. Part I examines the effect of a spatially variable static strike-slip distribution across the slip surface. The tilt components as a function of distance parallel, or perpendicular, to the strike of the slip surface are displayed for different slip-versus-distance profiles. Part II examines the effect of spatially and temporally variable slip distributions across the dislocation loop on the quasi-static tilts at the free surface of an elastic half space. The model discussed in part II may be used to generate theoretical tilt versus time curves produced by creep events.
Enhanced dynamical stability with harmonic slip stacking
Eldred, Jeffrey; Zwaska, Robert
2016-10-26
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
Enhanced dynamical stability with harmonic slip stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Zwaska, Robert
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
NASA Astrophysics Data System (ADS)
Bie, Lidong; Ryder, Isabelle; Nippress, Stuart E. J.; Bürgmann, Roland
2014-02-01
The 2008 Mw 6.3 Damxung earthquake on the Tibetan Plateau is investigated to (i) derive a coseismic slip model in a layered elastic Earth; (ii) reveal the relationship between coseismic slip, afterslip and aftershocks and (iii) place a lower bound on mid/lower crustal viscosity. The fault parameters and coseismic slip model were derived by inversion of Envisat InSAR data. We developed an improved non-linear inversion scheme to find an optimal rupture geometry and slip distribution on a fault in a layered elastic crust. Although the InSAR data for this event cannot distinguish between homogeneous and layered crustal models, the maximum slip of the latter model is smaller and deeper, while the moment release calculated from both models are similar. A ˜1.6 yr post-seismic deformation time-series starting 20 d after the main shock reveals localized deformation at the southern part of the fault. Inversions for afterslip indicate three localized slip patches, and the cumulative afterslip moment after 615 d is at least ˜11 per cent of the coseismic moment. The afterslip patches are distributed at different depths along the fault, showing no obvious systematic depth-dependence. The deeper of the three patches, however, shows a slight tendency to migrate to greater depth over time. No linear correlation is found for the temporal evolution of afterslip and aftershocks. Finally, modelling of viscoelastic relaxation in a Maxwell half-space yields a lower bound of 1 × 1018 Pa s on the viscosity of the mid/lower crust. This is consistent with viscosity estimates in other studies of post-seismic deformation across the Tibetan Plateau.
A Model for Low-Frequency Earthquake Slip in Cascadia
NASA Astrophysics Data System (ADS)
Chestler, S.; Creager, K.
2017-12-01
Low-Frequency Earthquakes (LFEs) are commonly used to identify when and where slow slip occurred, especially for slow slip events that are too small to be observed geodetically. Yet, an understanding of how slip occurs within an LFE family patch, or patch on the plate interface where LFEs repeat, is limited. How much slip occurs per LFE and over what area? Do all LFEs within an LFE family rupture the exact same spot? To answer these questions, we implement a catalog of 39,966 LFEs, sorted into 45 LFE families, beneath the Olympic Peninsula, WA. LFEs were detected and located using data from approximately 100 3-component stations from the Array of Arrays experiment. We compare the LFE family patch area to the area within the LFE family patch that slips through LFEs during Cascadia Episodic Tremor and Slip (ETS) events. Patch area is calculated from relative LFE locations, solved for using the double difference method. Slip area is calculated from the characteristic moment (mean of the exponential moment-frequency distribution) and number LFEs for each family and geodetically measured ETS slip. We find that 0.5-5% of the area within an LFE family patch slips through LFEs. The rest must deform in some other manner (e.g., ductile deformation). We also explore LFE slip patterns throughout the entire slow slip zone. Is LFE slip uniform? Does LFE slip account for all geodetically observed slow slip? Double difference relocations reveal that LFE families are 2 km patches where LFE are clustered close together. Additionally, there are clusters of LFE families with diameters of 4-15 km. There are gaps with no observable, repeating LFEs between LFE families in clusters and between clusters of LFE families. Based on this observation, we present a model where LFE slip is heterogeneous on multiple spatial scales. Clusters of LFE families may represent patches with higher strength than the surrounding areas. Finally, we find that LFE slip only accounts for a small fraction ( 0.1%) of the slip that occurs during an ETS event.
Kyriakopoulos, Christos; Oglesby, David D.; Funning, Gareth J.; Ryan, Kenneth
2017-01-01
The 2010 Mw 7.2 El Mayor-Cucapah earthquake is the largest event recorded in the broader Southern California-Baja California region in the last 18 years. Here we try to analyze primary features of this type of event by using dynamic rupture simulations based on a multifault interface and later compare our results with space geodetic models. Our results show that starting from homogeneous prestress conditions, slip heterogeneity can be achieved as a result of variable dip angle along strike and the modulation imposed by step over segments. We also considered effects from a topographic free surface and find that although this does not produce significant first-order effects for this earthquake, even a low topographic dome such as the Cucapah range can affect the rupture front pattern and fault slip rate. Finally, we inverted available interferometric synthetic aperture radar data, using the same geometry as the dynamic rupture model, and retrieved the space geodetic slip distribution that serves to constrain the dynamic rupture models. The one to one comparison of the final fault slip pattern generated with dynamic rupture models and the space geodetic inversion show good agreement. Our results lead us to the following conclusion: in a possible multifault rupture scenario, and if we have first-order geometry constraints, dynamic rupture models can be very efficient in predicting large-scale slip heterogeneities that are important for the correct assessment of seismic hazard and the magnitude of future events. Our work contributes to understanding the complex nature of multifault systems.
Is the co-seismic slip distribution fractal?
NASA Astrophysics Data System (ADS)
Milliner, Christopher; Sammis, Charles; Allam, Amir; Dolan, James
2015-04-01
Co-seismic along-strike slip heterogeneity is widely observed for many surface-rupturing earthquakes as revealed by field and high-resolution geodetic methods. However, this co-seismic slip variability is currently a poorly understood phenomenon. Key unanswered questions include: What are the characteristics and underlying causes of along-strike slip variability? Do the properties of slip variability change from fault-to-fault, along-strike or at different scales? We cross-correlate optical, pre- and post-event air photos using the program COSI-Corr to measure the near-field, surface deformation pattern of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes in high-resolution. We produce the co-seismic slip profiles of both events from over 1,000 displacement measurements and observe consistent along-strike slip variability. Although the observed slip heterogeneity seems apparently complex and disordered, a spectral analysis reveals that the slip distributions are indeed self-affine fractal i.e., slip exhibits a consistent degree of irregularity at all observable length scales, with a 'short-memory' and is not random. We find a fractal dimension of 1.58 and 1.75 for the Landers and Hector Mine earthquakes, respectively, indicating that slip is more heterogeneous for the Hector Mine event. Fractal slip is consistent with both dynamic and quasi-static numerical simulations that use non-planar faults, which in turn causes heterogeneous along-strike stress, and we attribute the observed fractal slip to fault surfaces of fractal roughness. As fault surfaces are known to smooth over geologic time due to abrasional wear and fracturing, we also test whether the fractal properties of slip distributions alters between earthquakes from immature to mature fault systems. We will present results that test this hypothesis by using the optical image correlation technique to measure historic, co-seismic slip distributions of earthquakes from structurally mature, large cumulative displacement faults and compare these slip distributions to those from immature fault systems. Our results have fundamental implications for an understanding of slip heterogeneity and the behavior of the rupture process.
Bennington, Ninfa; Thurber, Clifford; Feigl, Kurt; ,
2011-01-01
Several studies of the 2004 Parkfield earthquake have linked the spatial distribution of the event’s aftershocks to the mainshock slip distribution on the fault. Using geodetic data, we find a model of coseismic slip for the 2004 Parkfield earthquake with the constraint that the edges of coseismic slip patches align with aftershocks. The constraint is applied by encouraging the curvature of coseismic slip in each model cell to be equal to the negative of the curvature of seismicity density. The large patch of peak slip about 15 km northwest of the 2004 hypocenter found in the curvature-constrained model is in good agreement in location and amplitude with previous geodetic studies and the majority of strong motion studies. The curvature-constrained solution shows slip primarily between aftershock “streaks” with the continuation of moderate levels of slip to the southeast. These observations are in good agreement with strong motion studies, but inconsistent with the majority of published geodetic slip models. Southeast of the 2004 hypocenter, a patch of peak slip observed in strong motion studies is absent from our curvature-constrained model, but the available GPS data do not resolve slip in this region. We conclude that the geodetic slip model constrained by the aftershock distribution fits the geodetic data quite well and that inconsistencies between models derived from seismic and geodetic data can be attributed largely to resolution issues.
Earthquake scaling laws for rupture geometry and slip heterogeneity
NASA Astrophysics Data System (ADS)
Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro
2016-04-01
We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip distributions. To further characterize the spatial correlations of slip heterogeneity, we analyze the power spectral decay of slip applying the 2-D von Karman auto-correlation function (parameterized by the Hurst exponent, H, and correlation lengths along strike and down-slip). The Hurst exponent is scale invariant, H = 0.83 (± 0.12), while the correlation lengths scale with source dimensions (seismic moment), thus implying characteristic physical scales of earthquake ruptures. Our self-consistent scaling relationships allow constraining the generation of slip-heterogeneity scenarios for physics-based ground-motion and tsunami simulations.
NASA Astrophysics Data System (ADS)
Urata, Yumi; Kuge, Keiko; Kase, Yuko
2008-11-01
To understand role of fluid on earthquake rupture processes, we investigated effects of thermal pressurization on spatial variation of dynamic rupture by computing spontaneous rupture propagation on a rectangular fault. We found thermal pressurization can cause heterogeneity of rupture even on a fault of uniform properties. On drained faults, tractions drop linearly with increasing slip in the same way everywhere. However, by changing the drained condition to an undrained one, the slip-weakening curves become non-linear and depend on locations on faults with small shear zone thickness w, and the dynamic frictional stresses vary spatially and temporally. Consequently, the super-shear transition fault length decreases for small w, and the final slip distribution can have some peaks regardless of w, especially on undrained faults. These effects should be taken into account of determining dynamic rupture parameters and modeling earthquake cycles when the presence of fluid is suggested in the source regions.
Statistical tests of simple earthquake cycle models
NASA Astrophysics Data System (ADS)
DeVries, Phoebe M. R.; Evans, Eileen L.
2016-12-01
A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long-term Maxwell viscosities ηM < 4.0 × 1019 Pa s and ηM > 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.
NASA Astrophysics Data System (ADS)
Yagi, Yuji; Kikuchi, Masayuki; Nishimura, Takuya
2003-11-01
We analyzed continuous GPS data to investigate the spatio-temporal distribution of co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake (Mw = 7.7). To get better resolution for co-seismic and post-seismic slip distribution, we imposed a weak constraint as a priori information of the co-seismic slip determined by seismic wave analyses. We found that the post-seismic slip during 100 days following the main-shock amount to as much moment release as the main-shock, and that the sites of co-seismic slip and post-seismic slip are partitioning on a plate boundary region in complimentary fashion. The major post-seismic slip was triggered by the mainshock in western side of the co-seismic slip, and the extent of the post-seismic slip is almost unchanged with time. It rapidly developed a shear stress concentration ahead of the slip area, and triggered the largest aftershock.
Sharp, R.V.
1989-01-01
The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors
A Composite Source Model With Fractal Subevent Size Distribution
NASA Astrophysics Data System (ADS)
Burjanek, J.; Zahradnik, J.
A composite source model, incorporating different sized subevents, provides a pos- sible description of complex rupture processes during earthquakes. The number of subevents with characteristic dimension greater than R is proportional to R-2. The subevents do not overlap with each other, and the sum of their areas equals to the area of the target event (e.g. mainshock) . The subevents are distributed randomly over the fault. Each subevent is modeled as a finite source, using kinematic approach (radial rupture propagation, constant rupture velocity, boxcar slip-velocity function, with constant rise time on the subevent). The final slip at each subevent is related to its characteristic dimension, using constant stress-drop scaling. Variation of rise time with subevent size is a free parameter of modeling. The nucleation point of each subevent is taken as the point closest to mainshock hypocentre. The synthetic Green's functions are calculated by the discrete-wavenumber method in a 1D horizontally lay- ered crustal model in a relatively coarse grid of points covering the fault plane. The Green's functions needed for the kinematic model in a fine grid are obtained by cu- bic spline interpolation. As different frequencies may be efficiently calculated with different sampling, the interpolation simplifies and speeds-up the procedure signifi- cantly. The composite source model described above allows interpretation in terms of a kinematic model with non-uniform final slip and rupture velocity spatial distribu- tions. The 1994 Northridge earthquake (Mw = 6.7) is used as a validation event. The strong-ground motion modeling of the 1999 Athens earthquake (Mw = 5.9) is also performed.
Evidence for a scale-limited low-frequency earthquake source process
NASA Astrophysics Data System (ADS)
Chestler, S. R.; Creager, K. C.
2017-04-01
We calculate the seismic moments for 34,264 low-frequency earthquakes (LFEs) beneath the Olympic Peninsula, Washington. LFE moments range from 1.4 × 1010 to 1.9 × 1012 N m (Mw = 0.7-2.1). While regular earthquakes follow a power law moment-frequency distribution with a b value near 1 (the number of events increases by a factor of 10 for each unit increase in Mw), we find that while for large LFEs the b value is 6, for small LFEs it is <1. The magnitude-frequency distribution for all LFEs is best fit by an exponential distribution with a mean seismic moment (characteristic moment) of 2.0 × 1011 N m. The moment-frequency distributions for each of the 43 LFE families, or spots on the plate interface where LFEs repeat, can also be fit by exponential distributions. An exponential moment-frequency distribution implies a scale-limited source process. We consider two end-member models where LFE moment is limited by (1) the amount of slip or (2) slip area. We favor the area-limited model. Based on the observed exponential distribution of LFE moment and geodetically observed total slip, we estimate that the total area that slips within an LFE family has a diameter of 300 m. Assuming an area-limited model, we estimate the slips, subpatch diameters, stress drops, and slip rates for LFEs during episodic tremor and slip events. We allow for LFEs to rupture smaller subpatches within the LFE family patch. Models with 1-10 subpatches produce slips of 0.1-1 mm, subpatch diameters of 80-275 m, and stress drops of 30-1000 kPa. While one subpatch is often assumed, we believe 3-10 subpatches are more likely.
Relation between boundary slip mechanisms and waterlike fluid behavior.
Ternes, Patricia; Salcedo, Evy; Barbosa, Marcia C
2018-03-01
The slip of a fluid layer in contact with a solid confining surface is investigated for different temperatures and densities using molecular dynamic simulations. We show that for an anomalous waterlike fluid the slip goes as follows: for low levels of shear, defect slip appears and is related to the particle exchange between the fluid layers; at high levels of shear, global slip occurs and is related to the homogeneous distribution of the fluid in the confining surfaces. The oscillations in the transition velocity from defect to global slip are shown to be associated with changes in the layering distribution in the anomalous fluid.
NASA Astrophysics Data System (ADS)
Scala, A.; Murphy, S.; Herrero, A.; Maesano, F. E.; Lorito, S.; Romano, F.; Tiberti, M. M.; Tonini, R.; Volpe, M.; Basili, R.
2017-12-01
Recent giant tsunamigenic earthquakes (Sumatra 2004, Chile 2010, Tohoku 2011) have confirmed that the complexity of seismic slip distributions may play a fundamental role in the generation and the amplitude of the tsunami waves. In particular, big patches of large slip on the shallower part of the subduction zones, as well as slow rupture propagation within low rigidity areas, can contribute to increase the tsunamigenic potential thus generating devastating coastal inundation. In the Mediterranean Sea, some subduction structures can be identified, such as the Hellenic Arc at the boundary between the African and Aegean plates, and the Calabrian Arc between the European and African plates. We have modelled these areas using discretized high-resolution 3D fault geometries with realistic variability of the strike and dip angles. In particular, the latter geometries have been constrained from the analysis of a dense network of seismic reflection profiles and the seismicity of the areas. To study the influence of different rigidity conditions, we compare the tsunami scenarios deriving from homogeneous slip to those obtained from depth-dependent slip distributions at different magnitudes. These depth-dependent slip distributions are obtained by imposing a variability with depth of both shear modulus and seismic rate, and the conservation of the dislocation over the whole subduction zone. Furthermore, we generate along the Hellenic and Calabrian arc subduction interfaces an ensemble of stochastic slip distributions using a composite source model technique. To mimic either single or multiple asperity source models, the distribution of sub-events whose sum produces the stochastic slip, are distributed based on a PDF, defined as the combination of either one or more Gaussian functions. Tsunami scenarios are then generated from this ensemble in order to address how the position of the main patch of slip can affect the tsunami amplitude along the coast.
NASA Astrophysics Data System (ADS)
Seo, Jongmin; Mani, Ali
2018-04-01
Superhydrophobic surfaces demonstrate promising potential for skin friction reduction in naval and hydrodynamic applications. Recent developments of superhydrophobic surfaces aiming for scalable applications use random distribution of roughness, such as spray coating and etched process. However, most previous analyses of the interaction between flows and superhydrophobic surfaces studied periodic geometries that are economically feasible only in laboratory-scale experiments. In order to assess the drag reduction effectiveness as well as interfacial robustness of superhydrophobic surfaces with randomly distributed textures, we conduct direct numerical simulations of turbulent flows over randomly patterned interfaces considering a range of texture widths w+≈4 -26 , and solid fractions ϕs=11 %-25 % . Slip and no-slip boundary conditions are implemented in a pattern, modeling the presence of gas-liquid interfaces and solid elements. Our results indicate that slip of randomly distributed textures under turbulent flows is about 30 % less than those of surfaces with aligned features of the same size. In the small texture size limit w+≈4 , the slip length of the randomly distributed textures in turbulent flows is well described by a previously introduced Stokes flow solution of randomly distributed shear-free holes. By comparing DNS results for patterned slip and no-slip boundary against the corresponding homogenized slip length boundary conditions, we show that turbulent flows over randomly distributed posts can be represented by an isotropic slip length in streamwise and spanwise direction. The average pressure fluctuation on a gas pocket is similar to that of the aligned features with the same texture size and gas fraction, but the maximum interface deformation at the leading edge of the roughness element is about twice as large when the textures are randomly distributed. The presented analyses provide insights on implications of texture randomness on drag reduction performance and robustness of superhydrophobic surfaces.
Statistical tests of simple earthquake cycle models
Devries, Phoebe M. R.; Evans, Eileen
2016-01-01
A central goal of observing and modeling the earthquake cycle is to forecast when a particular fault may generate an earthquake: a fault late in its earthquake cycle may be more likely to generate an earthquake than a fault early in its earthquake cycle. Models that can explain geodetic observations throughout the entire earthquake cycle may be required to gain a more complete understanding of relevant physics and phenomenology. Previous efforts to develop unified earthquake models for strike-slip faults have largely focused on explaining both preseismic and postseismic geodetic observations available across a few faults in California, Turkey, and Tibet. An alternative approach leverages the global distribution of geodetic and geologic slip rate estimates on strike-slip faults worldwide. Here we use the Kolmogorov-Smirnov test for similarity of distributions to infer, in a statistically rigorous manner, viscoelastic earthquake cycle models that are inconsistent with 15 sets of observations across major strike-slip faults. We reject a large subset of two-layer models incorporating Burgers rheologies at a significance level of α = 0.05 (those with long-term Maxwell viscosities ηM <~ 4.0 × 1019 Pa s and ηM >~ 4.6 × 1020 Pa s) but cannot reject models on the basis of transient Kelvin viscosity ηK. Finally, we examine the implications of these results for the predicted earthquake cycle timing of the 15 faults considered and compare these predictions to the geologic and historical record.
NASA Astrophysics Data System (ADS)
Klinger, Y.; Vallage, A.; Grandin, R.; Delorme, A.; Rosu, A. M.; Pierro-Deseilligny, M.
2014-12-01
The Mw7.7 2013 Balochistan earthquake ruptured 200 km of the Hoshab fault, the southern end of the Chaman fault. Azimuth of the fault changes by more than 30° along rupture, from a well-oriented strike-slip fault to a more thrust prone direction. We use the MicMac optical image software to correlate pairs of Landsat images taken before and after the earthquake to access to the horizontal displacement field associated with the earthquake. We combine the horizontal displacement with radar image correlation in range and radar interferometry to derive the co-seismic slip on the fault. The combination of these different datasets actually provides the 3D displacement field. We note that although the earthquake was mainly strike-slip all along the rupture length, some vertical motion patches exist, which locations seem to be controlled by kilometric-scale variations of the fault geometry. 5 pairs of SPOT images were also correlated to derive a 2.5m pixel-size horizontal displacement field, providing unique opportunity to look at deformation in the near field and to obtain high-resolution strike-slip and normal slip-distributions. We note a significant difference, especially in the normal component, between the slip localized at depth on the fault plane and the slip localized closer to the surface, with more apparent slip at the surface. A high-resolution map of ground rupture allows us to locate the distribution of the deformation over the whole rupture length. The rupture map also highlights multiple fault geometric complexities where we could quantify details of the slip distribution. At the rupture length-scale, the local azimuth variations between segments have a large impact on the expression of the localized slip at the surface. The combination of those datasets gives an overview of the large distribution of the deformation in the near field, corresponding to the co-seismic damage zone.
NASA Astrophysics Data System (ADS)
Benz, N.; Bartlow, N. M.
2017-12-01
The addition of borehole strainmeter (BSM) to cGPS time series inversions can yield more precise slip distributions at the subduction interface during episodic tremor and slip (ETS) events in the Cascadia subduction zone. Traditionally very noisy BSM data has not been easy to incorporate until recently, but developments in processing noise, re-orientation of strain components, removal of tidal, hydrologic, and atmospheric signals have made this additional source of data viable (Roeloffs, 2010). The major advantage with BSMs is their sensitivity to spatial derivatives in slip, which is valuable for investigating the ETS nucleation process and stress changes on the plate interface due to ETS. Taking advantage of this, we simultaneously invert PBO GPS and cleaned BSM time series with the Network Inversion Filter (Segall and Matthews, 1997) for slip distribution and slip rate during selected Cascadia ETS events. Stress distributions are also calculated for the plate interface using these inversion results to estimate the amount of stress change during an ETS event. These calculations are performed with and without the utilization of BSM time series, highlighting the role of BSM data in constraining slip and stress.
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Kadowaki, Shuntaro
2017-07-01
We study slowly pulling block-spring models in random media. Second-order phase transitions exist in a model pulled by a constant force in the case of velocity-strengthening friction. If external forces are slowly increased, nearly critical states are self-organized. Slips of various sizes occur, and the probability distributions of slip size roughly obey power laws. The exponent is close to that in the quenched Edwards-Wilkinson model. Furthermore, the slip-size distributions are investigated in cases of Coulomb friction, velocity-weakening friction, and two-dimensional block-spring models.
NASA Astrophysics Data System (ADS)
Urano, S.; Hiramatsu, Y.; Yamada, T.
2013-12-01
The 2007 Noto Hanto earthquake (MJMA 6.9; hereafter referred to the main shock) occurred at 0:41(UTC) on March 25, 2007 at a depth of 11km beneath the west coast of Noto Peninsula, central Japan. The dominant slip of the main shock was on a reverse fault with a right-lateral slip and the large slip area was distributed from hypocenter to the shallow part on the fault plane (Horikawa, 2008). The aftershocks are distributed not only in the small slip area but also in the large slip area (Hiramatsu et al., 2011). In this study, we estimate static stress drops of aftershocks on the fault plane of the main shock. We discuss the relationship between the static stress drops of the aftershocks and the large slip area of the main shock by investigating spatial pattern of the values of the static stress drops. We use the waveform data obtained by the group for the joint aftershock observations of the 2007 Noto Hanto Earthquake (Sakai et al., 2007). The sampling frequency of the waveform data is 100 Hz or 200 Hz. Focusing on similar aftershocks reported by Hiramatsu et al. (2011), we analyze static stress drops by using the method of empirical Green's function (EGF) (Hough, 1997) as follows. The smallest earthquake (MJMA≥2.0) of each group of similar earthquakes is set to the EGF earthquake, and the largest earthquake (MJMA≥2.5) is set to the target earthquake. We then deconvolve the waveform of an interested earthquake with that of the EGF earthquake at each station and obtain the spectral ratio of the sources that cancels the propagation effects (path and site effects). Following the procedure of Yamada et al. (2010), we finally estimate static stress drops for P- and S-waves from corner frequencies of the spectral ratio by using a model of Madariaga (1976). The estimated average value of static stress drop is 8.2×1.3 MPa (8.6×2.2 MPa for P-wave and 7.8×1.3 MPa for S-wave). These values are coincident approximately with the static stress drop of aftershocks of other inland earthquakes in Japan (Ito et al., 2005; Iio et al., 2006) and independent of the seismic moment. We then compare the values with the coseismic slip distribution of the main shock reported by Horikawa (2008). If we define large slip areas as areas with a slip exceeding 1 m, the average value of static stress drop is 12×2.3 (MPa) in the area. On the other hand, the average value is 5.7×0.9 (MPa) outside the large slip area. These results suggest that aftershocks in the large slip area likely have larger values of static stress drop, which would reflect the spatial heterogeneity of shear strength and dynamic stress level. Our results are coincident with the result of Yamada et al. (2010).
NASA Astrophysics Data System (ADS)
Lovely, P. J.; Mutlu, O.; Pollard, D. D.
2007-12-01
Cohesive end-zones (CEZs) are regions of increased frictional strength and/or cohesion near the peripheries of faults that cause slip distributions to taper toward the fault-tip. Laboratory results, field observations, and theoretical models suggest an important role for CEZs in small-scale fractures and faults; however, their role in crustal-scale faulting and associated large earthquakes is less thoroughly understood. We present a numerical study of the potential role of CEZs on slip distributions in large, multi-segmented, strike-slip earthquake ruptures including the 1992 Landers Earthquake (Mw 7.2) and 1999 Hector Mine Earthquake (Mw 7.1). Displacement discontinuity is calculated using a quasi-static, 2D plane-strain boundary element (BEM) code for a homogeneous, isotropic, linear-elastic material. Friction is implemented by enforcing principles of complementarity. Model results with and without CEZs are compared with slip distributions measured by combined inversion of geodetic, strong ground motion, and teleseismic data. Stepwise and linear distributions of increasing frictional strength within CEZs are considered. The incorporation of CEZs in our model enables an improved match to slip distributions measured by inversion, suggesting that CEZs play a role in governing slip in large, strike-slip earthquakes. Additionally, we present a parametric study highlighting the very great sensitivity of modeled slip magnitude to small variations of the coefficient of friction. This result suggests that, provided a sufficiently well-constrained stress tensor and elastic moduli for the surrounding rock, relatively simple models could provide precise estimates of the magnitude of frictional strength. These results are verified by comparison with geometrically comparable finite element (FEM) models using the commercial code ABAQUS. In FEM models, friction is implemented by use of both Lagrange multipliers and penalty methods.
NASA Astrophysics Data System (ADS)
Kitada, N.; Inoue, N.; Tonagi, M.
2016-12-01
The purpose of Probabilistic Fault Displacement Hazard Analysis (PFDHA) is estimate fault displacement values and its extent of the impact. There are two types of fault displacement related to the earthquake fault: principal fault displacement and distributed fault displacement. Distributed fault displacement should be evaluated in important facilities, such as Nuclear Installations. PFDHA estimates principal fault and distributed fault displacement. For estimation, PFDHA uses distance-displacement functions, which are constructed from field measurement data. We constructed slip distance relation of principal fault displacement based on Japanese strike and reverse slip earthquakes in order to apply to Japan area that of subduction field. However, observed displacement data are sparse, especially reverse faults. Takao et al. (2013) tried to estimate the relation using all type fault systems (reverse fault and strike slip fault). After Takao et al. (2013), several inland earthquakes were occurred in Japan, so in this time, we try to estimate distance-displacement functions each strike slip fault type and reverse fault type especially add new fault displacement data set. To normalized slip function data, several criteria were provided by several researchers. We normalized principal fault displacement data based on several methods and compared slip-distance functions. The normalized by total length of Japanese reverse fault data did not show particular trend slip distance relation. In the case of segmented data, the slip-distance relationship indicated similar trend as strike slip faults. We will also discuss the relation between principal fault displacement distributions with source fault character. According to slip distribution function (Petersen et al., 2011), strike slip fault type shows the ratio of normalized displacement are decreased toward to the edge of fault. However, the data set of Japanese strike slip fault data not so decrease in the end of the fault. This result indicates that the fault displacement is difficult to appear at the edge of the fault displacement in Japan. This research was part of the 2014-2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (NRA), Japan.
Shoe-Floor Interactions in Human Walking With Slips: Modeling and Experiments.
Trkov, Mitja; Yi, Jingang; Liu, Tao; Li, Kang
2018-03-01
Shoe-floor interactions play a crucial role in determining the possibility of potential slip and fall during human walking. Biomechanical and tribological parameters influence the friction characteristics between the shoe sole and the floor and the existing work mainly focus on experimental studies. In this paper, we present modeling, analysis, and experiments to understand slip and force distributions between the shoe sole and floor surface during human walking. We present results for both soft and hard sole material. The computational approaches for slip and friction force distributions are presented using a spring-beam networks model. The model predictions match the experimentally observed sole deformations with large soft sole deformation at the beginning and the end stages of the stance, which indicates the increased risk for slip. The experiments confirm that both the previously reported required coefficient of friction (RCOF) and the deformation measurements in this study can be used to predict slip occurrence. Moreover, the deformation and force distribution results reported in this study provide further understanding and knowledge of slip initiation and termination under various biomechanical conditions.
Sanjeevi, Sathish K P; Zarghami, Ahad; Padding, Johan T
2018-04-01
Various curved no-slip boundary conditions available in literature improve the accuracy of lattice Boltzmann simulations compared to the traditional staircase approximation of curved geometries. Usually, the required unknown distribution functions emerging from the solid nodes are computed based on the known distribution functions using interpolation or extrapolation schemes. On using such curved boundary schemes, there will be mass loss or gain at each time step during the simulations, especially apparent at high Reynolds numbers, which is called mass leakage. Such an issue becomes severe in periodic flows, where the mass leakage accumulation would affect the computed flow fields over time. In this paper, we examine mass leakage of the most well-known curved boundary treatments for high-Reynolds-number flows. Apart from the existing schemes, we also test different forced mass conservation schemes and a constant density scheme. The capability of each scheme is investigated and, finally, recommendations for choosing a proper boundary condition scheme are given for stable and accurate simulations.
NASA Astrophysics Data System (ADS)
Sanjeevi, Sathish K. P.; Zarghami, Ahad; Padding, Johan T.
2018-04-01
Various curved no-slip boundary conditions available in literature improve the accuracy of lattice Boltzmann simulations compared to the traditional staircase approximation of curved geometries. Usually, the required unknown distribution functions emerging from the solid nodes are computed based on the known distribution functions using interpolation or extrapolation schemes. On using such curved boundary schemes, there will be mass loss or gain at each time step during the simulations, especially apparent at high Reynolds numbers, which is called mass leakage. Such an issue becomes severe in periodic flows, where the mass leakage accumulation would affect the computed flow fields over time. In this paper, we examine mass leakage of the most well-known curved boundary treatments for high-Reynolds-number flows. Apart from the existing schemes, we also test different forced mass conservation schemes and a constant density scheme. The capability of each scheme is investigated and, finally, recommendations for choosing a proper boundary condition scheme are given for stable and accurate simulations.
Dependence of seismic energy on higher wavenumber components
NASA Astrophysics Data System (ADS)
Hirano, S.; Yagi, Y.
2014-12-01
Seismic Energy ESE_S gives a minimum of strain energy drop defined as an inner product of spacial distribution of coseismic slip and stress change on a fault surface (Andrews 1978 JGR). Traditionally, ESE_S has been obtained by multiplying mean stress drop and seismic moment divided by the rigidity by assuming the distribution of stress drop is constant in space, which yields an elliptic slip distribution. It has, however, been pointed out that slip distributions are approximated not as the elliptic distribution but as the kk-squared model (Herrero & Bernard 1994 BSSA), so that the product of mean stress drop and seismic moment does not give proper estimation of ESE_S. For the case of heterogeneous stress drop, the inner product requires shorter wavelength components of slip distribution (Andrews 1980 JGR). Mai & Beroza (2002 JGR) revealed that observed slip distributions in the wavenumber domain are well modeled with the von Karman power spectrum density parameterized by a corner wavenumber kck_c and the Hurst exponent HH, and quantified these two parameters for some inversion results. Although they discussed a condition of convergence of the inner product, they did not consider dependence of ESE_S on kck_c, HH, and a maximum wavenumber kmaxk_{max}. In this study, we analytically obtain the dependence and suggest how we should consider higher wavenumber components of slip distribution for estimation of ESE_S. We show that the relationship ES∝C(kmax/kc,H)μP2k3cE_S propto C(k_{max}/k_c, H) mu P^2 k_c^3 holds, where μmu is the rigidity, and PP is the seismic potency. An analytical solution of C(kmax/kc,H)C(k_{max}/k_c, H) tells us that even components of kmax/kc˜10k_{max}/k_c sim 10 or 100100 are not negligible for ESE_S under kk-squared model while such components do not contribute to ESE_S for the elliptic slip distribution. We discuss this feature quantitatively and show some examples of estimation of ESE_S based on results of slip inversions.
Self-healing slip pulses in dynamic rupture models due to velocity-dependent strength
Beeler, N.M.; Tullis, T.E.
1996-01-01
Seismological observations of short slip duration on faults (short rise time on seismograms) during earthquakes are not consistent with conventional crack models of dynamic rupture and fault slip. In these models, the leading edge of rupture stops only when a strong region is encountered, and slip at an interior point ceases only when waves from the stopped edge of slip propagate back to that point. In contrast, some seismological evidence suggests that the duration of slip is too short for waves to propagate from the nearest edge of the ruptured surface, perhaps even if the distance used is an asperity size instead of the entire rupture dimension. What controls slip duration, if not dimensions of the fault or of asperities? In this study, dynamic earthquake rupture and slip are represented by a propagating shear crack. For all propagating shear cracks, slip velocity is highest near the rupture front, and at a small distance behind the rupture front, the slip velocity decreases. As pointed out by Heaton (1990), if the crack obeys a negative slip-rate-dependent strength relation, the lower slip velocity behind the rupture front will lead to strengthening that further reduces the velocity, and under certain circumstances, healing of slip can occur. The boundary element method of Hamano (1974) is used in a program adapted from Andrews (1985) for numerical simulations of mode II rupture with two different velocity-dependent strength functions. For the first function, after a slip-weakening displacement, the crack follows an exponential velocity-weakening relation. The characteristic velocity V0 of the exponential determines the magnitude of the velocity-dependence at dynamic velocities. The velocity-dependence at high velocity is essentially zero when V0 is small and the resulting slip velocity distribution is similar to slip weakening. If V0 is larger, rupture propagation initially resembles slip-weakening, but spontaneous healing occurs behind the rupture front. The rise time and rupture propagation velocity depend on the choice of constitutive parameters. The second strength function is a natural log velocity-dependent form similar to constitutive laws that fit experimental rock friction data at lower velocities. Slip pulses also arise with this function. For a reasonable choice of constitutive parameters, slip pulses with this function do not propagate at speeds greater than the Raleighwave velocity. The calculated slip pulses are similar in many aspects to seismic observations of short rise time. In all cases of self-healing slip pulses, the residual stress increases with distance behind the trailing edge of the pulse so that the final stress drop is much less than the dynamic stress drop, in agreement with the model of Brune (1976) and some recent seismological observations of rupture.
Cascadia Slow Earthquakes: Strategies for Time Independent Inversion of Displacement Fields
NASA Astrophysics Data System (ADS)
Szeliga, W. M.; Melbourne, T. I.; Miller, M. M.; Santillan, V. M.
2004-12-01
Continuous observations using Global Positioning System geodesy (CGPS) have revealed periodic slow or silent earthquakes along the Cascadia subduction zone with a spectrum of timing and periodicity. These creep events perturb time series of GPS observations and yield coherent displacement fields that relate to the extent and magnitude of fault displacement. In this study, time independent inversions of the surface displacement fields that accompany eight slow earthquakes characterize slip distributions along the plate interface for each event. The inversions employed in this study utilize Okada's elastic dislocation model and a non- negative least squares approach. Methodologies for optimizing the slip distribution smoothing parameter for a particular station distribution have also been investigated, significantly reducing the number of possible slip distributions and the range of estimates for total moment release for each event. The discretized slip distribution calculated for multiple creep events identifies areas of the Cascadia plate interface where slip persistently recurs. The current hypothesis, that slow earthquakes are modulated by forced fluid flow, leads to the possibility that some regions of the Cascadia plate interface may display fault patches preferentially exploited by fluid flow. Thus, the identification of regions of the plate interface that repeatedly slip during slow events may yield important information regarding the identification of these fluid pathways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teplyakova, Ludmila, E-mail: lat168@mail.ru; Koneva, Nina, E-mail: koneva@mail.ru; Kunitsyna, Tatyana, E-mail: kma11061990@mail.ru
2016-01-15
The slip trace pattern of Ni{sub 3}Fe alloy single crystals with the short range order oriented for a single slip were investigated on replica at different stages of deformation using the transmission diffraction electron microscopy method. The connection of staging with the formation of slip trace pattern and the change of its parameters were established. The number of local areas where two or more slip systems work is increased with the change of stages. In these conditions the character of slip localization in the primary slip system is changed from the packets to the homogeneous distribution. The distributions of themore » distances between slip traces and the shear power in slip traces were plotted. The correlation between the average value of the shear power in the primary slip traces and the average distance between them was revealed in this work. It was established that the rates of the average value growth of the relative local shear and the shear power in the slip traces reach the largest values at the transition stage.« less
NASA Astrophysics Data System (ADS)
Fukahata, Y.; Fukushima, Y.
2009-05-01
On 14 June 2008, the Iwate-Miyagi Nairiku earthquake struck northeast Japan, where active seismicity has been observed under east-west compressional stress fields. The magnitude and hypocenter depth of the earthquake are reported as Mj 7.2 and 8 km, respectively. The earthquake is considered to have occurred on a west-dipping reverse fault with a roughly north-south strike. The earthquake caused significant surface displacements, which were detected by PALSAR, a Synthetic Aperture Radar (SAR) onboard the Japanese ALOS satellite. Several pairs of PALSAR images from six different paths are available to measure the coseismic displacements. Interferometric SAR (InSAR) is useful to obtain crustal displacements in the region where coseismic displacement is not so large (less than 1 m), whereas range and azimuth offsets provide displacement measurements up to a few meters on the whole processed area. We inverted the obtained displacement data to estimate slip distribution on the fault. Since the precise location and direction of the fault are not well known, the inverse problem is nonlinear. Following the method of Fukahata and Wright (2008), we resolved the weak non-linearity based on Akaike's Bayesian Information Criterion. We first estimated slip distribution by assuming a pure dip slip. The optimal fault geometry was estimated at dip 26 and strike 203 degrees. The maximum slip is more than 8 m and most slips concentrate at shallow depths (less than 4 km). The azimuth offset data suggest non-negligible right lateral slip components, so we next estimated slip distribution without fixing the rake angle. Again, a large slip area with the maximum slip of about 8 m in the shallow depth was obtained. Such slip models contradict with our existing common sense; our results indicate that the released strain is more than 10 to the power of -3. Range and azimuth offsets computed from SAR images obtained from both ascending and descending orbits appear to be more consistent with a conjugate fault slip, which contributes to lower the stress drop possibly to a level typical to this kind of earthquakes.
Recent Findings on the Nature of Episodic Tremor and Slip Along the Northern Cascadia Margin
NASA Astrophysics Data System (ADS)
Dragert, H.; Wang, K.; Kao, H.
2008-12-01
Episodic Tremor and Slip (ETS), as observed along the northern Cascadia margin, has been defined empirically as repeated, transient ground motions at a plate margin, roughly opposite to longer-term interseismic deformation, occurring synchronously with low-frequency, emergent seismic signals. Although the exact causal processes are still a matter of debate, recent improvements in the monitoring of these transient events provide clearer constraints for the location and the migration of both tremor and slip. In areal distribution, the tremors continue to occur in a band overlying the 25 to 55 km depth contours of the nominal subducting plate interface. The previously reported extended depth distribution of tremor is also observed for the most recent tremor episodes, as is the coincidence of peak tremor activity with a band of seismic reflectors that is commonly interpreted to be positioned above the plate interface. In these episodes, tremors migrate along strike of the subduction zone from the southeast to the northwest at speeds ranging from 5 to 13 km/day. Tremor data also show changes in migration speed during the course of a single episode. No systematic migration in depth has yet been resolved. Denser GPS monitoring and the introduction of borehole strainmeters have also led to a better definition of the ETS surface deformations patterns, including those derived from the vertical GPS component. Inversion of the GPS data, constrained by limiting slip to the currently accepted plate interface, results in an area of slip that parallels the strike of the subduction zone, overlapping with but narrower than the band of tremor distribution and displaced slightly seaward. Inversion constrained by a shallower occurrence of slip, on or near the reflector band, results in a broader distribution of slip with reduced magnitudes. This would be more commensurate with the wider distribution of tremor. The current GPS deformation data are unable to tell whether the slip could be distributed over a thick shear zone. However, the time series of borehole strain indicate that the along-strike propagating slip patch likely has a sharp propagating front, supporting the notion that slip occurs along a thin slip zone or a single decollement. Consequently, a working model for ETS is that the dominant slip occurs repeatedly along a well-defined weak zone but the synchronous tremor occurs not only within this zone but also in a surrounding volume whose material properties have been altered by an abundance of fluids and the presence of high pore pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Ke; Euser, Bryan J.; Rougier, Esteban
Sheared granular layers undergoing stick-slip behavior are broadly employed to study the physics and dynamics of earthquakes. In this paper, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly simulate a sheared granular fault system including both gouge and plate, and to investigate the influence of different normal loads on seismic moment, macroscopic friction coefficient, kinetic energy, gouge layer thickness, and recurrence time between slips. In the FDEM model, the deformation of plates and particles is simulated using the FEM formulation whilemore » particle-particle and particle-plate interactions are modeled using DEM-derived techniques. The simulated seismic moment distributions are generally consistent with those obtained from the laboratory experiments. In addition, the simulation results demonstrate that with increasing normal load, (i) the kinetic energy of the granular fault system increases; (ii) the gouge layer thickness shows a decreasing trend; and (iii) the macroscopic friction coefficient does not experience much change. Analyses of the slip events reveal that, as the normal load increases, more slip events with large kinetic energy release and longer recurrence time occur, and the magnitude of gouge layer thickness decrease also tends to be larger; while the macroscopic friction coefficient drop decreases. Finally, the simulations not only reveal the influence of normal loads on the dynamics of sheared granular fault gouge, but also demonstrate the capabilities of FDEM for studying stick-slip dynamic behavior of granular fault systems.« less
Gao, Ke; Euser, Bryan J.; Rougier, Esteban; ...
2018-06-20
Sheared granular layers undergoing stick-slip behavior are broadly employed to study the physics and dynamics of earthquakes. In this paper, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly simulate a sheared granular fault system including both gouge and plate, and to investigate the influence of different normal loads on seismic moment, macroscopic friction coefficient, kinetic energy, gouge layer thickness, and recurrence time between slips. In the FDEM model, the deformation of plates and particles is simulated using the FEM formulation whilemore » particle-particle and particle-plate interactions are modeled using DEM-derived techniques. The simulated seismic moment distributions are generally consistent with those obtained from the laboratory experiments. In addition, the simulation results demonstrate that with increasing normal load, (i) the kinetic energy of the granular fault system increases; (ii) the gouge layer thickness shows a decreasing trend; and (iii) the macroscopic friction coefficient does not experience much change. Analyses of the slip events reveal that, as the normal load increases, more slip events with large kinetic energy release and longer recurrence time occur, and the magnitude of gouge layer thickness decrease also tends to be larger; while the macroscopic friction coefficient drop decreases. Finally, the simulations not only reveal the influence of normal loads on the dynamics of sheared granular fault gouge, but also demonstrate the capabilities of FDEM for studying stick-slip dynamic behavior of granular fault systems.« less
NASA Astrophysics Data System (ADS)
Wang, Z.; Kato, T.; Wang, Y.
2015-12-01
The spatiotemporal fault slip history of the 2008 Iwate-Miyagi Nairiku earthquake, Japan, is obtained by the joint inversion of 1-Hz GPS waveforms and near-field strong motion records. 1-Hz GPS data from GEONET is processed by GAMIT/GLOBK and then a low-pass filter of 0.05 Hz is applied. The ground surface strong motion records from stations of K-NET and Kik-Net are band-pass filtered for the range of 0.05 ~ 0.3 Hz and integrated once to obtain velocity. The joint inversion exploits a broader frequency band for near-field ground motions, which provides excellent constraints for both the detailed slip history and slip distribution. A fully Bayesian inversion method is performed to simultaneously and objectively determine the rupture model, the unknown relative weighting of multiple data sets and the unknown smoothing hyperparameters. The preferred rupture model is stable for different choices of velocity structure model and station distribution, with maximum slip of ~ 8.0 m and seismic moment of 2.9 × 1019 Nm (Mw 6.9). By comparison with the single inversion of strong motion records, the cumulative slip distribution of joint inversion shows sparser slip distribution with two slip asperities. One common slip asperity extends from the hypocenter southeastward to the ground surface of breakage; another slip asperity, which is unique for joint inversion contributed by 1-Hz GPS waveforms, appears in the deep part of fault where very few aftershocks are occurring. The differential moment rate function of joint and single inversions obviously indicates that rich high frequency waves are radiated in the first three seconds but few low frequency waves.
NASA Astrophysics Data System (ADS)
Gold, Peter O.; Oskin, Michael E.; Elliott, Austin J.; Hinojosa-Corona, Alejandro; Taylor, Michael H.; Kreylos, Oliver; Cowgill, Eric
2013-03-01
We analyze high-resolution (>103 points/m2) terrestrial lidar surveys of the 4 April 2010 El Mayor-Cucapah earthquake rupture (Baja California, Mexico), collected at three sites 12-18 days after the event. Using point cloud-based tools in an immersive visualization environment, we quantify coseismic fault slip for hundreds of meters along strike and construct densely constrained along-strike slip distributions from measurements of offset landforms. Uncertainty bounds for each offset, determined empirically by repeatedly measuring offsets at each site sequentially, illuminate measurement uncertainties that are difficult to quantify in the field. These uncertainties are used to define length scales over which variability in slip distributions may be assumed to reflect either recognizable earthquake mechanisms or measurement noise. At two sites characterized by 2-3 m of concentrated right-oblique slip, repeat measurements yield 2σ uncertainties of ±11-12%. Each site encompasses ∼200 m along strike, and a smoothed linear slip gradient satisfies all measurement distributions, implying along-fault strains of ∼10-3. Conversely, the common practice of defining the slip curve by the local slip maxima distorts the curve, overestimates along-fault strain, and may overestimate actual fault slip by favoring measurements with large, positive, uncertainties. At a third site characterized by 1-2.5 m of diffuse normal slip, repeat measurements of fault throw summed along fault-perpendicular profiles yield 2σ uncertainties of ±17%. Here, a low order polynomial fit through the measurement averages best approximates surface slip. However independent measurements of off-fault strain accommodated by hanging wall flexure suggest that over the ∼200 m length of this site, a linear interpolation through the average values for the slip maxima at either end of this site most accurately represents subsurface displacement. In aggregate, these datasets show that given uncertainties of greater than ±11% (2σ), slip distributions over shorter scales are likely to be less uneven than those derived from a single set of field- or lidar-based measurements. This suggests that the relatively smooth slip curves we obtain over ∼102 m distances reflect real physical phenomena, whereas short wavelength variability over ∼100-101 m distances can be attributed to measurement uncertainty.
Bayesian explorations of fault slip evolution over the earthquake cycle
NASA Astrophysics Data System (ADS)
Duputel, Z.; Jolivet, R.; Benoit, A.; Gombert, B.
2017-12-01
The ever-increasing amount of geophysical data continuously opens new perspectives on fundamental aspects of the seismogenic behavior of active faults. In this context, the recent fleet of SAR satellites including Sentinel-1 and COSMO-SkyMED permits the use of InSAR for time-dependent slip modeling with unprecedented resolution in time and space. However, existing time-dependent slip models rely on spatial smoothing regularization schemes, which can produce unrealistically smooth slip distributions. In addition, these models usually do not include uncertainty estimates thereby reducing the utility of such estimates. Here, we develop an entirely new approach to derive probabilistic time-dependent slip models. This Markov-Chain Monte Carlo method involves a series of transitional steps to predict and update posterior Probability Density Functions (PDFs) of slip as a function of time. We assess the viability of our approach using various slow-slip event scenarios. Using a dense set of SAR images, we also use this method to quantify the spatial distribution and temporal evolution of slip along a creeping segment of the North Anatolian Fault. This allows us to track a shallow aseismic slip transient lasting for about a month with a maximum slip of about 2 cm.
NASA Astrophysics Data System (ADS)
Thingbijam, Kiran Kumar; Galis, Martin; Vyas, Jagdish; Mai, P. Martin
2017-04-01
We examine the spatial interdependence between kinematic parameters of earthquake rupture, which include slip, rise-time (total duration of slip), acceleration time (time-to-peak slip velocity), peak slip velocity, and rupture velocity. These parameters were inferred from dynamic rupture models obtained by simulating spontaneous rupture on faults with varying degree of surface-roughness. We observe that the correlations between these parameters are better described by non-linear correlations (that is, on logarithm-logarithm scale) than by linear correlations. Slip and rise-time are positively correlated while these two parameters do not correlate with acceleration time, peak slip velocity, and rupture velocity. On the other hand, peak slip velocity correlates positively with rupture velocity but negatively with acceleration time. Acceleration time correlates negatively with rupture velocity. However, the observed correlations could be due to weak heterogeneity of the slip distributions given by the dynamic models. Therefore, the observed correlations may apply only to those parts of rupture plane with weak slip heterogeneity if earthquake-rupture associate highly heterogeneous slip distributions. Our findings will help to improve pseudo-dynamic rupture generators for efficient broadband ground-motion simulations for seismic hazard studies.
Recent Progress on Modeling Slip Deformation in Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Sehitoglu, H.; Alkan, S.
2018-03-01
This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non- Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.
Wang, Pei-Ling; Engelhart, Simon E.; Wang, Kelin; Hawkes, Andrea D.; Horton, Benjamin P.; Nelson, Alan R.; Witter, Robert C.
2013-01-01
Past earthquake rupture models used to explain paleoseismic estimates of coastal subsidence during the great A.D. 1700 Cascadia earthquake have assumed a uniform slip distribution along the megathrust. Here we infer heterogeneous slip for the Cascadia margin in A.D. 1700 that is analogous to slip distributions during instrumentally recorded great subduction earthquakes worldwide. The assumption of uniform distribution in previous rupture models was due partly to the large uncertainties of then available paleoseismic data used to constrain the models. In this work, we use more precise estimates of subsidence in 1700 from detailed tidal microfossil studies. We develop a 3-D elastic dislocation model that allows the slip to vary both along strike and in the dip direction. Despite uncertainties in the updip and downdip slip extensions, the more precise subsidence estimates are best explained by a model with along-strike slip heterogeneity, with multiple patches of high-moment release separated by areas of low-moment release. For example, in A.D. 1700, there was very little slip near Alsea Bay, Oregon (~44.4°N), an area that coincides with a segment boundary previously suggested on the basis of gravity anomalies. A probable subducting seamount in this area may be responsible for impeding rupture during great earthquakes. Our results highlight the need for more precise, high-quality estimates of subsidence or uplift during prehistoric earthquakes from the coasts of southern British Columbia, northern Washington (north of 47°N), southernmost Oregon, and northern California (south of 43°N), where slip distributions of prehistoric earthquakes are poorly constrained.
NASA Astrophysics Data System (ADS)
Graham, Shannon E.
Using surface deformation measured by GPS stations within Mexico and Central America, I model coseismic slip, Coulomb stress changes, postseismic afterslip, and slow slip events in order to increase our knowledge of the earthquake deformation cycle in seismically hazardous regions. In Chapter 1, I use GPS data to estimate coseismic slip due to the May 28, 2009 Swan Islands fault earthquake off the coast of Honduras and then use the slip distribution to calculate Coulomb stress changes for the earthquake. Coulomb stress change calculations resolve stress transfer to the seismically hazardous Motagua fault and further show an unclamping of normal faults in northern Honduras. In Chapter 2, the focus shifts to southern Mexico, where continuous GPS measurements since the mid-1990s are revolutionizing our understanding of the flatly subducting Cocos plate. I perform a time-dependent inversion of continuous GPS observations of the 2011-2012 slow slip event (SSE) to estimate the location and magnitude of slow slip preceding the March 20, 2012 Ometepec earthquake. Coulomb stress changes as a result of slip during the SSE are consistent with the hypothesis that the SSE triggered the Ometepec earthquake. Chapter 3 describes inversions for slip both during and after the Ometepec earthquake. Time-dependent modeling of the first six months of postseismic deformation reveals that fault afterslip extended ˜250 km inland to depths of ˜50 km along the Cocos plate subduction. The postseismic afterslip and previous SSEs in southern Mexico occur at similar depths down-dip from the seismogenic zone, indicating that transitional areas of the subduction interface underlie much of southern Mexico. Finally, I perform the first time-dependent modeling of SSEs below Mexico and the first to exploit all available continuous GPS stations in southern and central Mexico. The results provide a more complete and consistent catalog of modeled SSE for the Mexico subduction zone (MSZ) than is currently available and add to our understanding of how SSEs on the subduction interface evolve in time, migrate in space, and possibly interact. I find that slow slip along the MSZ migrates across the gap between the Guerrero and Oaxaca regions, contrary to previous results.
An evaluation of the success of a surgical resident learning portfolio.
Webb, Travis P; Merkley, Taylor R
2012-01-01
Learning portfolios have gained modest acceptance in graduate medical education because of challenges related to user satisfaction, time and resource commitment, and quality assessment. In 2001, the Department of Surgery implemented the Surgical Learning and Instructional Portfolio (SLIP) to help residents develop a case-based portfolio demonstrating practice-based learning. In 2008, the format was changed to a Web-based platform with open viewing of portfolios for all learners. This study was performed to evaluate the SLIP program using resident and faculty perspectives in the domains of satisfaction, compliance, and educational value. Likert scale surveys were distributed to residents to assess satisfaction. Using a semistructured format with subsequent qualitative analysis of the meeting transcript, a focus group discussion was held with the SLIP director, SLIP facilitator, and program coordinator. An analysis of the program compliance was performed by review of SLIP entry dates. Finally, the quality of the SLIP entries (n = 420) was analyzed in a blinded manner using a locally developed standardized SLIP assessment tool. Data analysis was performed using Pearson's correlation and Cronbach's alpha. Residents were satisfied with the program and felt the Web-based format promoted self-reflection. They perceived that time spent was appropriate. Residents also believed they gained medical knowledge of their own specific entry topics but did not learn routinely from others' entries. Faculty asserted that the Web-based platform eased the administrative burden but did not necessarily alter the quality of the SLIP entries. Compliance with the assignment was 100%. SLIP entry analysis demonstrated the reflection and understanding of the topics chosen. However, the overall quality assessment of entries was hindered by suboptimal interrater reliability (inter-rater reliability (IR) = 0.636). The SLIP program allows residents to demonstrate practice-based learning and improvement of medical knowledge. The Web-based format provides transparency and ease of administration. Quality assessment of individual portfolio entries remains a challenge to the widespread adoption of portfolios. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Noda, H.; Lapusta, N.; Kanamori, H.
2010-12-01
Static stress drop is often estimated using the seismic moment and rupture area based on a model for uniform stress drop distribution; we denote this estimate by Δσ_M. Δσ_M is sometimes interpreted as the spatial average of stress change over the ruptured area, denoted here as Δσ_A, and used accordingly, for example, to discuss the relation between recurrence interval and the healing of the frictional surface in a system with one degree of freedom [e.g., Marone, 1998]. Δσ_M is also used to estimate available energy (defined as the strain energy change computed using the final stress state as the reference one) and radiation efficiency [e.g., Venkataraman and Kanamori, 2004]. In this work, we define a stress drop measure, Δσ_E, that would enter the exact computation of available energy and radiation efficiency. The three stress drop measures - Δσ_M that can be estimated from observations, Δσ_A, and Δσ_E - are equal if the static stress change is spatially uniform, and that motivates substituting Δσ_M for the other two quantities in applications. However, finite source inversions suggest that the stress change is heterogeneous in natural earthquakes [e.g., Bouchon, 1997]. Since Δσ_M is the average of stress change weighted by slip distribution due to a uniform stress drop [Madariaga, 1979], Δσ_E is the average of stress change weighted by actual slip distribution in the event (this work), and Δσ_A is the simple spatial average of stress change, the three measures should, in general, be different. Here, we investigate the effect of heterogeneity aiming to understand how to use the seismological estimates of stress drop appropriately. We create heterogeneous slip distributions for both circular and rectangular planar ruptures using the approach motivated by Liu-Zeng et al. [2005] and Lavalleé et al [2005]. We find that, indeed, the three stress drop measures differ in our scenarios. In particular, heterogeneity increases Δσ_E and thus the available energy when the seismic moment (and hence Δσ_M) is preserved. So using Δσ_M instead of Δσ_E would underestimate available energy and hence overestimate radiation efficiency. For a range of parameters, Δσ_E is well-approximated by the seismic estimate Δσ_M if the latter is computed using a modified (decreased) rupture area that excludes low-slipped regions; a qualitatively similar procedure is already being used in practice [Somerville et al, 1999].
NASA Astrophysics Data System (ADS)
Selander, J.; Oskin, M. E.; Cooke, M. L.; Grette, K.
2015-12-01
Understanding off-fault deformation and distribution of displacement rates associated with disconnected strike-slip faults requires a three-dimensional view of fault geometries. We address problems associated with distributed faulting by studying the Mojave segment of the East California Shear Zone (ECSZ), a region dominated by northwest-directed dextral shear along disconnected northwest- southeast striking faults. We use a combination of cross-sectional interpretations, 3D Boundary Element Method (BEM) models, and slip-rate measurements to test new hypothesized fault connections. We find that reverse faulting acts as an important means of slip transfer between strike-slip faults, and show that the impacts of these structural connections on shortening, uplift, strike-slip rates, and off-fault deformation, help to reconcile the overall strain budget across this portion of the ECSZ. In detail, we focus on the Calico and Blackwater faults, which are hypothesized to together represent the longest linked fault system in the Mojave ECSZ, connected by a restraining step at 35°N. Across this restraining step the system displays a pronounced displacement gradient, where dextral offset decreases from ~11.5 to <2 km from south to north. Cross-section interpretations show that ~40% of this displacement is transferred from the Calico fault to the Harper Lake and Blackwater faults via a set of north-dipping thrust ramps. Late Quaternary dextral slip rates follow a similar pattern, where 1.4 +0.8/-0.4 mm/yr of slip along the Calico fault south of 35°N is distributed to the Harper Lake, Blackwater, and Tin Can Alley faults. BEM model results using revised fault geometries for the Mojave ECSZ show areas of uplift consistent with contractional structures, and fault slip-rates that more closely match geologic data. Overall, revised fault connections and addition of off-fault deformation greatly reduces the discrepancy between geodetic and geologic slip rates.
Controls of earthquake faulting style on near field landslide triggering: The role of coseismic slip
NASA Astrophysics Data System (ADS)
Tatard, L.; Grasso, J. R.
2013-06-01
compare the spatial distributions of seven databases of landslides triggered by Mw=5.6-7.9 earthquakes, using distances normalized by the earthquake fault length. We show that the normalized landslide distance distributions collapse, i.e., the normalized distance distributions overlap whatever the size of the earthquake, separately for the events associated with dip-slip, buried-faulting earthquakes, and surface-faulting earthquakes. The dip-slip earthquakes triggered landslides at larger normalized distances than the oblique-slip event of Loma Prieta. We further identify that the surface-faulting earthquakes of Wenchuan, Chi-Chi, and Kashmir triggered landslides at normalized distances smaller than the ones expected from their Mw ≥ 7.6 magnitudes. These results support a control of the seismic slip (through amplitude, rake, and surface versus buried slip) on the distances at which landslides are triggered. In terms of coseismic landslide management in mountainous areas, our results allow us to propose distances at which 95 and 75% of landslides will be triggered as a function of the earthquake focal mechanism.
Implications of loading/unloading a subduction zone with a heterogeneously coupled interface
NASA Astrophysics Data System (ADS)
Herman, M. W.; Furlong, K. P.; Govers, R. M. A.
2017-12-01
Numerical models of subduction zones with appropriate physical properties may help understand deformation throughout great earthquake cycles, as well as associated observations such as the distribution of smaller magnitude megathrust earthquakes and surface displacements. Of particular interest are displacements near the trench, where tsunamis are generated. The patterns of co-seismic strain release in great megathrust earthquakes depend on the frictional coupling of the plate interface prior to the event. Geodetic observations during the inter-seismic stage suggest that the plates are fully locked at asperities surrounded by zones of apparent partial coupling. We simulate the accumulation (and release) of elastic strain in the subduction system using a finite element model with a relatively simple geometry and material properties. We demonstrate that inter-seismic apparent partial coupling can be dominantly explained by a distribution of completely locked asperities and zero friction elsewhere. In these models, the interface up-dip of the locked zone (< 15 km depth) accumulates large slip deficit even if its coefficient of friction is zero, as might be inferred from the scarcity of megathrust earthquakes shallower than 15 km in global earthquake catalogs. In addition, the upper plate above a low-friction shallow megathrust accumulates large displacements with little internal strain, potentially leading to large co-seismic block displacements (low displacement gradients) of the near-trench seafloor like those observed following the 2011 Mw 9.0 Tohoku earthquake. This is also consistent with anomalously low co-seismic frictional heating of the shallow megathrust indicated by borehole heat flow measurements after the Tohoku event. Our models also yield insights into slip partitioning throughout multiple earthquake cycles. In smaller ruptures, fault slip is inhibited by nearby locked zones; in subsequent multi-segment ruptures, the rest of this slip deficit may be released, producing significantly larger slip than might be expected based on historical earthquake magnitudes. Finally, because low-friction areas around asperities accumulate some slip deficit but may not rupture co-seismically, these regions may be the primary locations of afterslip following the rupture of the locked patch.
NASA Astrophysics Data System (ADS)
Haeussler, P. J.
2003-12-01
We revised the preliminary slip distribution (Science, 2003, v. 300, p. 1037ff) along the Denali and Totschunda faults after additional fieldwork this summer. Features of the surface trace had degraded in places due to melting of snow, permafrost, and soil. However, without snow cover, offset of fine-scale features was much clearer at many new localities. We were also able to add additional measurements on glaciers, where offset snow-filled crevasses could be observed. As a result, the revised slip distribution provides considerably more detail and a higher level of confidence than that inferred solely from measurements collected immediately after the earthquake. The primary features of the revised slip distribution are: 1) a broad plateau of roughly 5-m offsets extending from 70 to 170 km east of the epicenter along the central part of the Denali fault, 2) high-slip values of 6.5-8+ m between 170 and 212 km east of the epicenter, 3) the step up from the 5 m plateau to the higher is sharp, occurring over a lateral distance of one kilometer, 4) there are three new, and anomalously high, measurements of 7.2-8.2 m along a 7-km length of the fault within the plateau of 5-m slip values, 5) there was a maximum 3-m offset on the Totschunda fault, which is 0.9-m higher than previously measured; 6) A previously inferred region of high slip in the vicinity of the Trans Alaska Pipeline is less obvious or absent. However, slip in that area is higher than the region to the west of the Delta River, 7) In contrast to geodetic and seismologic slip models that infer low slip and moment release in a zone 100-160 km east of the epicenter, we find continuous surface offsets of about 5 m; 8) A drop to zero slip, previously inferred at the Totschunda-Denali junction appears to be a result of slip values obtained from transfer structures. The smallest robust measurements of lateral slip in the transition zone were about a meter. Denali Fault Earthquake Geology Working Group : T. Dawson, P. Haeussler, J. Lienkaemper, A. Matmon, D. Schwartz, H.Stenner, B. Sherrod (USGS), F. Cinti, P. Montone (INGV, Rome)
NASA Astrophysics Data System (ADS)
Jin, Honglin; Kato, Teruyuki; Hori, Muneo
2007-07-01
An inverse method based on the spectral decomposition of the Green's function was employed for estimating a slip distribution. We conducted numerical simulations along the Philippine Sea plate (PH) boundary in southwest Japan using this method to examine how to determine the essential parameters which are the number of deformation function modes and their coefficients. Japanese GPS Earth Observation Network (GEONET) Global Positioning System (GPS) data were used for three years covering 1997-1999 to estimate interseismic back slip distribution in this region. The estimated maximum back slip rate is about 7 cm/yr, which is consistent with the Philippine Sea plate convergence rate. Areas of strong coupling are confined between depths of 10 and 30 km and three areas of strong coupling were delineated. These results are consistent with other studies that have estimated locations of coupling distribution.
NASA Astrophysics Data System (ADS)
Zhou, B.; Liang, X.; Lin, G.; Tian, X.; Zhu, G.; Mechie, J.; Teng, J.
2017-12-01
A series of V-shaped conjugate strike-slip faults are the most spectacular geologic features in the central Tibetan plateau. A previous study suggested that this conjugate strike-slip fault system accommodates the east-west extension and coeval north-south contraction. Another previous study suggested that the continuous convergence between the Indian and Eurasian continents and the eastward asthenospheric flow generated lithospheric paired general-shear (PGS) deformation, which then caused the development of conjugate strike-slip faults in central Tibet. Local seismic tomography can image three dimensional upper-crustal velocity and attenuation structures in central Tibet, which will provide us with more information about the spatial distribution of physical properties and compositional variations around the conjugate strike-slip fault zone. Ultimately, this information could improve our understanding of the development mechanism of the conjugate strike-slip fault system. In this study, we collected 6,809 Pg and 2,929 Sg arrival times from 414 earthquakes recorded by the temporary SANDWICH and permanent CNSN networks from November 2013 to November 2015. We also included 300 P and 17 S arrival times from 12 shots recorded by the INDEPTH III project during the summer of 1998 in the velocity tomography. We inverted for preliminary Vp and Vp/Vs models using the SIMUL2000 tomography algorithm, and then relocated the earthquakes with these preliminary velocity models. After that, we inverted for the final velocity models with these improved source locations and origin times. After the velocity inversion, we performed local attenuation tomography using t* measurements from the same dataset with an already existing approach. There are correlated features in the velocity and attenuation structures. From the surface to 10 km depth, the study area is dominated by high Vp and Qp anomalies. However, from 10 km to 20 km depth, there is a low Vp and Qp zone distributed along the conjugate strike-slip fault zone, with high Vp and Qp zones located north and south of the low Vp and Qp region. The prominent low velocity and Qp features in the image might reflect depth variations of physical properties or compositional differences related to the development of the conjugate strike-slip fault zone.
NASA Astrophysics Data System (ADS)
Selvadurai, P. A.; Parker, J. M.; Glaser, S. D.
2017-12-01
A better understanding of how slip accumulates along faults and its relation to the breakdown of shear stress is beneficial to many engineering disciplines, such as, hydraulic fracture and understanding induced seismicity (among others). Asperities forming along a preexisting fault resist the relative motion of the two sides of the interface and occur due to the interaction of the surface topographies. Here, we employ a finite element model to simulate circular partial slip asperities along a nominally flat frictional interface. Shear behavior of our partial slip asperity model closely matched the theory described by Cattaneo. The asperity model was employed to simulate a small section of an experimental fault formed between two bodies of polymethyl methacrylate, which consisted of multiple asperities whose location and sizes were directly measured using a pressure sensitive film. The quasi-static shear behavior of the interface was modeled for cyclical loading conditions, and the frictional dissipation (hysteresis) was normal stress dependent. We further our understanding by synthetically modeling lognormal size distributions of asperities that were randomly distributed in space. Synthetic distributions conserved the real contact area and aspects of the size distributions from the experimental case, allowing us to compare the constitutive behaviors based solely on spacing effects. Traction-slip behavior of the experimental interface appears to be considerably affected by spatial clustering of asperities that was not present in the randomly spaced, synthetic asperity distributions. Estimates of bulk interfacial shear stiffness were determined from the constitutive traction-slip behavior and were comparable to the theoretical estimates of multi-contact interfaces with non-interacting asperities.
A bottom-driven mechanism for distributed faulting in the Gulf of California rift
NASA Astrophysics Data System (ADS)
Persaud, Patricia; Tan, Eh; Contreras, Juan; Lavier, Luc
2017-11-01
Observations of active faulting in the continent-ocean transition of the Northern Gulf of California show multiple oblique-slip faults distributed in a 200 × 70 km2 area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform Fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with the help of pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear abruptly increases in a step-function manner while oblique-slip on numerous faults dominates when basal shear is distributed. We further explore how the style of faulting varies with obliquity and demonstrate that the style of delocalized faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area.
NASA Astrophysics Data System (ADS)
Fukuda, J.; Johnson, K. M.
2009-12-01
Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress drop.
A 20-year catalog comparing smooth and sharp estimates of slow slip events in Cascadia
NASA Astrophysics Data System (ADS)
Molitors Bergman, E. G.; Evans, E. L.; Loveless, J. P.
2017-12-01
Slow slip events (SSEs) are a form of aseismic strain release at subduction zones resulting in a temporary reversal in interseismic upper plate motion over a period of weeks, frequently accompanied in time and space by seismic tremor at the Cascadia subduction zone. Locating SSEs spatially along the subduction zone interface is essential to understanding the relationship between SSEs, earthquakes, and tremor and assessing megathrust earthquake hazard. We apply an automated slope comparison-based detection algorithm to single continuously recording GPS stations to determine dates and surface displacement vectors of SSEs, then apply network-based filters to eliminate false detections. The main benefits of this algorithm are its ability to detect SSEs while they are occurring and track the spatial migration of each event. We invert geodetic displacement fields for slip distributions on the subduction zone interface for SSEs between 1997 and 2017 using two estimation techniques: spatial smoothing and total variation regularization (TVR). Smoothing has been frequently used in determining the location of interseismic coupling, earthquake rupture, and SSE slip and yields spatially coherent but inherently blurred solutions. TVR yields compact, sharply bordered slip estimates of similar magnitude and along-strike extent to previously presented studied events, while fitting the constraining geodetic data as well as corresponding smoothing-based solutions. Slip distributions estimated using TVR have up-dip limits that align well with down-dip limits of interseismic coupling on the plate interface and spatial extents that approximately correspond to the distribution of tremor concurrent with each event. TVR gives a unique view of slow slip distributions that can contribute to understanding of the physical properties that govern megathrust slip processes.
NASA Astrophysics Data System (ADS)
Itoh, Y.; Nishimura, T.; Ariyoshi, K.; Matsumoto, H.
2017-12-01
The 2003 Tokachi-oki earthquake (Mw 8.0) is an interplate earthquake along the Kurile trench. Its co- and post-seismic deformation has been observed by onland GNSS [e.g., Miyazaki et al. 2004] and modeled with afterslip and/or viscoelastic relaxation [e.g., Itoh and Nishimura 2016]. In the offshore region, two ocean bottom pressure gauges (OBPs) are operated by JAMSTEC since July 1999 [Hirata et al. 2002] and they have continuously observed the pre-, co- and post-seismic pressure change of the 2003 event [Baba et al. 2006]. The observed pressure change can be interpreted as vertical displacement, and the resolution of slip beneath the seafloor far from the land was improved by incorporating these pressure data into onland GNSS data [Baba et al. 2006]. However, no previous studies used postseismic pressure data for several years to estimate an interplate slip. Because, in this region, an M8 class event similar to the 2003 event has occurred in 1952, it is important to clarify a healing process of an interplate coupling which may lead to a next M8 class event in terms of the earthquake cycle. Itoh and Nishimura [2017, JpGU-AGU Joint Meeting] estimated it but used only onland GNSS data. In this study, we use both onland GNSS and OBP data. For OBP data analysis, we first removed the tidal component using BAYTAP08 [Tamura et al. 1991; Tamura and Agnew 2008]. Next, we corrected the temporal fluctuation of data correlating with temperature [Baba et al. 2006]. We estimated the linear trend before the 2003 event using the corrected time series from 2002 Jan. 1 to 2003 Sep. 1 and remove the estimated trend from the data after the 2003 event. Here, we assumed a non-linear drift could be ignored. Finally, we down-sampled the remained time series with an interval of 1 month. For the onland GNSS data, we used the same data set of Itoh and Nishimura [2017, JpGU-AGU Joint Meeting]. We constructed the model consisting of coseismic slip of the 2003 and M6-7 events in the postseismic period, spatiotemporal interplate slip following them and viscoelastic relaxation due to these slips. We estimated these slip distribution using 7.5 years long onland GNSS and OBP data. In the presentation, we'll discuss spatiotemporal evolution of interplate slip and the healing process of the megathrust fault, which is expected to vary with space, as the previous result suggested.
NASA Astrophysics Data System (ADS)
Shi, Xuhua; Wang, Yu; Sieh, Kerry; Weldon, Ray; Feng, Lujia; Chan, Chung-Han; Liu-Zeng, Jing
2018-03-01
Characterizing the 700 km wide system of active faults on the Shan Plateau, southeast of the eastern Himalayan syntaxis, is critical to understanding the geodynamics and seismic hazard of the large region that straddles neighboring China, Myanmar, Thailand, Laos, and Vietnam. Here we evaluate the fault styles and slip rates over multi-timescales, reanalyze previously published short-term Global Positioning System (GPS) velocities, and evaluate slip-rate gradients to interpret the regional kinematics and geodynamics that drive the crustal motion. Relative to the Sunda plate, GPS velocities across the Shan Plateau define a broad arcuate tongue-like crustal motion with a progressively northwestward increase in sinistral shear over a distance of 700 km followed by a decrease over the final 100 km to the syntaxis. The cumulative GPS slip rate across the entire sinistral-slip fault system on the Shan Plateau is 12 mm/year. Our observations of the fault geometry, slip rates, and arcuate southwesterly directed tongue-like patterns of GPS velocities across the region suggest that the fault kinematics is characterized by a regional southwestward distributed shear across the Shan Plateau, compared to more block-like rotation and indentation north of the Red River fault. The fault geometry, kinematics, and regional GPS velocities are difficult to reconcile with regional bookshelf faulting between the Red River and Sagaing faults or localized lower crustal channel flows beneath this region. The crustal motion and fault kinematics can be driven by a combination of basal traction of a clockwise, southwestward asthenospheric flow around the eastern Himalayan syntaxis and gravitation or shear-driven indentation from north of the Shan Plateau.
NASA Astrophysics Data System (ADS)
Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien
2014-05-01
To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.
Thøgersen, Kjetil; Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Malthe-Sørenssen, Anders; Scheibert, Julien
2014-05-01
To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.
NASA Astrophysics Data System (ADS)
Silva, Goncalo; Semiao, Viriato
2017-07-01
The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over distinct wall slippage conditions, namely, no-slip, first-order slip, and second-order slip. The modeling of channel walls is discussed at both lattice-aligned and non-mesh-aligned configurations: the first case illustrates the numerical slip due to the incorrect modeling of slippage coefficients, whereas the second case adds the effect of spurious boundary layers created by the deficient accommodation of bulk solution. Finally, the slip-flow solutions predicted by LBM schemes are further evaluated for the Knudsen's paradox problem. As conclusion, this work establishes the parabolic accuracy of slip velocity schemes as the necessary condition for the consistent LBM modeling of the slip-flow regime.
Silva, Goncalo; Semiao, Viriato
2017-07-01
The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over distinct wall slippage conditions, namely, no-slip, first-order slip, and second-order slip. The modeling of channel walls is discussed at both lattice-aligned and non-mesh-aligned configurations: the first case illustrates the numerical slip due to the incorrect modeling of slippage coefficients, whereas the second case adds the effect of spurious boundary layers created by the deficient accommodation of bulk solution. Finally, the slip-flow solutions predicted by LBM schemes are further evaluated for the Knudsen's paradox problem. As conclusion, this work establishes the parabolic accuracy of slip velocity schemes as the necessary condition for the consistent LBM modeling of the slip-flow regime.
Yue, Y.; Ritts, B.D.; Graham, S.A.; Wooden, J.L.; Gehrels, G.E.; Zhang, Z.
2004-01-01
Determination of long-term slip rate for the Altyn Tagh fault is essential for testing whether Asian tectonics is dominated by lateral extrusion or distributed crustal shortening. Previous slip-history studies focused on either Quaternary slip-rate measurements or pre-Early Miocene total-offset estimates and do not allow a clear distinction between rates based on the two. The magmatic and metamorphic history revealed by SHRIMP zircon dating of clasts from Miocene conglomerate in the Xorkol basin north of the Altyn Tagh fault strikingly matches that of basement in the southern Qilian Shan and northern Qaidam regions south of the fault. This match requires that the post-Early Miocene long-term slip rate along the Altyn Tagh fault cannot exceed 10 mm/year, supporting the hypothesis of distributed crustal thickening for post-Early Miocene times. This low long-term slip rate and recently documented large pre-Early Miocene cumulative offset across the fault support a two-stage evolution, wherein Asian tectonics was dominated by lateral extrusion before the end of Early Miocene, and since then has been dominated by distributed crustal thickening and rapid plateau uplift. ?? 2003 Elsevier B.V. All rights reserved.
The co-seismic slip distribution of the Landers earthquake
Freymueller, J.; King, N.E.; Segall, P.
1994-01-01
We derived a model for the co-seismic slip distribution on the faults which ruptured during the Landers earthquake sequence of 28 June 1992. The model is based on the inversion of surface geodetic measurements, primarily vector displacements measured using the Global Positioning System (GPS). The inversion procedure assumes that the slip distribution is to some extent smooth and purely right-lateral strike slip. For a given fault geometry, a family of solutions of varying smoothness can be generated.We choose the optimal model from this family based on cross-validation, which measures the predictive power of the data, and the trade-off of misfit and roughness. Solutions which give roughly equal weight to misfit and smoothness are preferred and have certain features in common: (1) there are two main patches of slip, on the Johnson Valley fault, and on the Homestead Valley, Emerson, and Camp Rock faults; (2) virtually all slip is in the upper 10 to 12 km; and (3) the model reproduces the general features of the geologically measured surface displacements, without prior constraints on the surface slip. In all models, regardless of smoothing, very little slip is required on the fault that represents the Big Bear event, and the total moment of the Landers event is 9 · 1019 N-m. The nearly simultaneous rupture of multiple distinct faults suggests that much of the crust in this region must have been close to failure prior to the earthquake.
Spatiotemporal stick-slip phenomena in a coupled continuum-granular system
NASA Astrophysics Data System (ADS)
Ecke, Robert
In sheared granular media, stick-slip behavior is ubiquitous, especially at very small shear rates and weak drive coupling. The resulting slips are characteristic of natural phenomena such as earthquakes and well as being a delicate probe of the collective dynamics of the granular system. In that spirit, we developed a laboratory experiment consisting of sheared elastic plates separated by a narrow gap filled with quasi-two-dimensional granular material (bi-dispersed nylon rods) . We directly determine the spatial and temporal distributions of strain displacements of the elastic continuum over 200 spatial points located adjacent to the gap. Slip events can be divided into large system-spanning events and spatially distributed smaller events. The small events have a probability distribution of event moment consistent with an M - 3 / 2 power law scaling and a Poisson distributed recurrence time distribution. Large events have a broad, log-normal moment distribution and a mean repetition time. As the applied normal force increases, there are fractionally more (less) large (small) events, and the large-event moment distribution broadens. The magnitude of the slip motion of the plates is well correlated with the root-mean-square displacements of the granular matter. Our results are consistent with mean field descriptions of statistical models of earthquakes and avalanches. We further explore the high-speed dynamics of system events and also discuss the effective granular friction of the sheared layer. We find that large events result from stored elastic energy in the plates in this coupled granular-continuum system.
Thermodynamic method for generating random stress distributions on an earthquake fault
Barall, Michael; Harris, Ruth A.
2012-01-01
This report presents a new method for generating random stress distributions on an earthquake fault, suitable for use as initial conditions in a dynamic rupture simulation. The method employs concepts from thermodynamics and statistical mechanics. A pattern of fault slip is considered to be analogous to a micro-state of a thermodynamic system. The energy of the micro-state is taken to be the elastic energy stored in the surrounding medium. Then, the Boltzmann distribution gives the probability of a given pattern of fault slip and stress. We show how to decompose the system into independent degrees of freedom, which makes it computationally feasible to select a random state. However, due to the equipartition theorem, straightforward application of the Boltzmann distribution leads to a divergence which predicts infinite stress. To avoid equipartition, we show that the finite strength of the fault acts to restrict the possible states of the system. By analyzing a set of earthquake scaling relations, we derive a new formula for the expected power spectral density of the stress distribution, which allows us to construct a computer algorithm free of infinities. We then present a new technique for controlling the extent of the rupture by generating a random stress distribution thousands of times larger than the fault surface, and selecting a portion which, by chance, has a positive stress perturbation of the desired size. Finally, we present a new two-stage nucleation method that combines a small zone of forced rupture with a larger zone of reduced fracture energy.
NASA Astrophysics Data System (ADS)
Radiguet, M.; Cotton, F.; Cavalié, O.; Pathier, E.; Kostoglodov, V.; Vergnolle, M.; Campillo, M.; Walpersdorf, A.; Cotte, N.; Santiago, J.; Franco, S.
2012-12-01
Continuous Global Positioning System (cGPS) time series in Guerrero, Mexico, reveal the widespread existence of large Slow Slip Events (SSEs) at the boundary between the Cocos and North American plates. The existence of these SSEs asks the question of how seismic and aseismic slips complement each other in subduction zones. We examined the last three SSEs that occurred in 2001/2002, 2006 and 2009/2010, and their impact on the strain accumulation along the Guerrero subduction margin. We use continuous cGPS time series and InSAR images to evaluate the surface displacement during SSEs and inter-SSE periods. The slip distributions on the plate interface associated with each SSE, as well as the inter-SSE (short-term) coupling rates are evaluated by inverting these surface displacements. Our results reveal that the three analyzed SSEs have equivalent moment magnitudes of around 7.5 and their lateral extension is variable.The slip distributions for the three SSEs show that in the Guerrero gap area, the slow slip occurs at shallower depth (updip limit around 15-20 km) than in surrounding regions. The InSAR data provide additional information for the 2006 SSE. The joint inversion of InSAR and cGPS data confirms the lateral variation of the slip distribution along the trench, with shallower slip in the Guerrero seismic gap, west of Acapulco, and deeper slip further east. Inversion of inter-SSE displacement rates reveal that during the inter-SSE time intervals, the interplate coupling is high in the area where the slow slip subsequently occurs. Over a 12 year period, corresponding to three cycles of SSEs, our results reveal that the accumulated slip deficit in the Guerrero gap area is only ¼ of the slip deficit accumulated on both sides of the gap. Moreover, the regions of large slip deficit coincide with the rupture areas of recent large earthquakes. We conclude that the SSEs account for a major portion of the overall moment release budget in the Guerrero gap. If large subduction thrust earthquakes occur in the Guerrero gap, their recurrence time is probably increased compared to adjacent regions.
Low-temperature slip along intergrain boundaries
NASA Astrophysics Data System (ADS)
Bakai, A. S.; Lazarev, P. N.
2017-10-01
Equations are derived for slip in a disordered atomic layer which describe diffusive creep as well as high-speed slip at low temperatures. An exact solution for the slip velocity is found in the form of a functional of the distribution function of the threshold shear stresses in the slip layer. The relationship between the microscopic parameters of the theory and the macroscopic properties of metallic glass is established in terms of the Mott intergrain slip model. The calculated rate of deformation of bulk metallic glass is compared with published experimental data.
NASA Astrophysics Data System (ADS)
Kobayashi, Tomokazu; Morishita, Yu; Yarai, Hiroshi
2018-05-01
By applying conventional cross-track synthetic aperture radar interferometry (InSAR) and multiple aperture InSAR techniques to ALOS-2 data acquired before and after the 2014 Northern Nagano, central Japan, earthquake, a three-dimensional ground displacement field has been successfully mapped. Crustal deformation is concentrated in and around the northern part of the Kamishiro Fault, which is the northernmost section of the Itoigawa-Shizuoka tectonic line. The full picture of the displacement field shows contraction in the northwest-southeast direction, but northeastward movement along the fault strike direction is prevalent in the northeast portion of the fault, which suggests that a strike-slip component is a significant part of the activity of this fault, in addition to a reverse faulting. Clear displacement discontinuities are recognized in the southern part of the source region, which falls just on the previously known Kamishiro Fault trace. We inverted the SAR and GNSS data to construct a slip distribution model; the preferred model of distributed slip on a two-plane fault surface shows a combination of reverse and left-lateral fault motions on a bending east-dipping fault surface with a dip of 30° in the shallow part and 50° in the deeper part. The hypocenter falls just on the estimated deeper fault plane where a left-lateral slip is inferred, whereas in the shallow part, a reverse slip is predominant, which causes surface ruptures on the ground. The slip partitioning may be accounted for by shear stress resulting from a reverse fault slip with left-lateral component at depth, for which a left-lateral slip is suppressed in the shallow part where the reverse slip is inferred. The slip distribution model with a bending fault surface, instead of a single fault plane, produces moment tensor solution with a non-double couple component, which is consistent with the seismically estimated mechanism.
Seismic slip on clay nano-foliation
NASA Astrophysics Data System (ADS)
Aretusini, S.; Pluemper, O.; Passelègue, F. X.; Spagnuolo, E.; Di Toro, G.
2017-12-01
Deformation processes active at seismic slip rates (ca. 1 m/s) on smectite-rich slipping zones are not well understood, although they likely control the mechanical behaviour of: i) subduction zone faults affected by tsunamigenic earthquakes (e.g. Japan Trench affected by Tohoku-Oki 2011 earthquake), ii) plate-boundary faults (e.g. San Andreas Fault), and iii) landslide decollements (e.g. 1963 Vajont landslide). Here we present a set of rotary experiments performed on water-dampened 2 mm thick clay-rich (70% wt. smectite and 30% wt. opal) gouge layers sheared at slip rates V ranging from 0.01 to 1.3 m/s, for 3 m of displacement under 5 MPa normal stress. Microstructural analyses were conducted on pre- and post-sheared gouges using focused ion beam scanning electron and transmission electron microscopy. All sheared gouges were slip weakening in the first 0.1 m of displacement, with friction coefficient decreasing from 0.3-0.45 to 0.5-0.15. Then, with progressive slip, gouges evolved to slip-strengthening (final friction coefficient of 0.35-0.48) at V ≤0.1 m/s and slip-neutral (final friction of 0.05) at V=1.3 m/s. Despite the large difference in the imposed slip rate and frictional behaviour, the slipping zone always consisted of a nano-foliation defined by sub-micrometric smectite crystals wrapping opal grains. The nano-foliated layer thickness decreased from 1.5 mm at V≤0.1 m/s to 0.15 mm at V=1.3 m/s. The presence of a similar nano-foliation in all the smectite-rich wet gouges suggests the activation of similar deformation processes, dominated by frictional slip on grain boundary and basal planes. The variation of deformed thickness with slip rate shows that dynamic weakening, occurring only at seismic slip rates, is controlled by strain localization.
NASA Astrophysics Data System (ADS)
Huang, Mong-Han; Fielding, Eric J.; Dickinson, Haylee; Sun, Jianbao; Gonzalez-Ortega, J. Alejandro; Freed, Andrew M.; Bürgmann, Roland
2017-01-01
The 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake in Baja, California, and Sonora, Mexico, had primarily right-lateral strike-slip motion and a minor normal-slip component. The surface rupture extended about 120 km in a NW-SE direction, west of the Cerro Prieto fault. Here we use geodetic measurements including near- to far-field GPS, interferometric synthetic aperture radar (InSAR), and subpixel offset measurements of radar and optical images to characterize the fault slip during the EMC event. We use dislocation inversion methods and determine an optimal nine-segment fault geometry, as well as a subfault slip distribution from the geodetic measurements. With systematic perturbation of the fault dip angles, randomly removing one geodetic data constraint, or different data combinations, we are able to explore the robustness of the inferred slip distribution along fault strike and depth. The model fitting residuals imply contributions of early postseismic deformation to the InSAR measurements as well as lateral heterogeneity in the crustal elastic structure between the Peninsular Ranges and the Salton Trough. We also find that with incorporation of near-field geodetic data and finer fault patch size, the shallow slip deficit is reduced in the EMC event by reductions in the level of smoothing. These results show that the outcomes of coseismic inversions can vary greatly depending on model parameterization and methodology.
Earthquake mechanism and predictability shown by a laboratory fault
King, C.-Y.
1994-01-01
Slip events generated in a laboratory fault model consisting of a circulinear chain of eight spring-connected blocks of approximately equal weight elastically driven to slide on a frictional surface are studied. It is found that most of the input strain energy is released by a relatively few large events, which are approximately time predictable. A large event tends to roughen stress distribution along the fault, whereas the subsequent smaller events tend to smooth the stress distribution and prepare a condition of simultaneous criticality for the occurrence of the next large event. The frequency-size distribution resembles the Gutenberg-Richter relation for earthquakes, except for a falloff for the largest events due to the finite energy-storage capacity of the fault system. Slip distributions, in different events are commonly dissimilar. Stress drop, slip velocity, and rupture velocity all tend to increase with event size. Rupture-initiation locations are usually not close to the maximum-slip locations. ?? 1994 Birkha??user Verlag.
Inversion Analysis of Postseismic Deformation in Poroelastic Material Using Finite Element Method
NASA Astrophysics Data System (ADS)
Kawamoto, S.; Ito, T.; Hirahara, K.
2005-12-01
Following a large earthquake, postseismic deformations in the focal source region have been observed by several geodetic measurements. To explain the postseismic deformations, researchers have proposed some physical mechanisms known as afterslip, viscoelastic relaxation and poroelastic rebound. There are a number of studies about postseismic deformations but for poroelastic rebound. So, we calculated the postseismic deformations caused by afterslip and poroelastic rebound using modified FEM code _eCAMBIOT3D_f originally developed by Geotech. Lab. Gunma University, Japan (2003). The postseismic deformations caused by both afterslip and poroelastic rebound are characteristically different from those caused only by afterslip. This suggests that the slip distributions on the fault estimated from geodetic measurements also change. Because of this, we developed the inversion method that accounts for both afterslip and poroelastic rebound using FEM to estimate the difference of slip distributions on the fault quantitatively. The inversion analysis takes following steps. First, we calculate the coseismic and postseismic response functions on each fault segment induced by the unit slip. Where postseismic response function indicate the poroelastic rebound. Next, we make the observation equations at each time step using the response functions and estimate the spatiotemporal distribution of slip on the fault. In solving this inverse problem, we assume the slip distributions on the fault are smooth in space and time except for rapid change (coseismic change). Because the hyperparameters that control the smoothness of spatial and temporal distributions of slip are needed, we determine the best hyperparameters using ABIC. In this presentation, we introduce the example of analysis results using this method.
Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data
Schmidt, D.A.; Burgmann, R.; Nadeau, R.M.; d'Alessio, M.
2005-01-01
We solve for the slip rate distribution on the Hayward fault by performing a least squares inversion,of geodetic and seismic data sets. Our analysis focuses on the northern 60 km of the fault. Interferometric synthetic aperture radar (InSAR) data from 13 independent ERS interferograms are stacked to obtain range change rates from 1992 to 2000. Horizontal surface displacement rates at 141 bench marks are measured using GPS from 1994 to 2003. Surface creep observations and estimates of deep slip rates determined from characteristic repeating earthquake sequences are also incorporated in the inversion. The fault is discretized into 283 triangular dislocation elements that approximate the nonplanar attributes of the fault surface. South of the city of Hayward, a steeply, east dipping fault geometry accommodates the divergence of the surface trace and the microseismicity at depth. The inferred slip rate distribution is consistent with a fault that creeps aseismically at a rate of ???5 mm/yr to a depth of 4-6 km. The interferometric synthetic aperture radar (InSAR) data require an aseismic slip rate that approaches the geologic slip rate on the northernmost fault segment beneath Point Pinole, although the InSAR data might be complicated by a small dip-slip component at this location. A low slip rate patch of <1 mm/yr is inferred beneath San Leandro consistent with the source location of the 1868 earthquake. We calculate that the entire fault is accumulating a slip rate deficit equivalent to a Mw = 6.77 ?? 0.05 per century. However, this estimate of potential coseismic moment represents an upper bound because we do not know how much of the accumulated strain will be released through aseismic processes such as afterslip. Copyright 2005 by the American Geophysical Union.
Global strike-slip fault distribution on Enceladus reveals mostly left-lateral faults
NASA Astrophysics Data System (ADS)
Martin, E. S.; Kattenhorn, S. A.
2013-12-01
Within the outer solar system, normal faults are a dominant tectonic feature; however, strike-slip faults have played a role in modifying the surfaces of many icy bodies, including Europa, Ganymede, and Enceladus. Large-scale tectonic deformation in icy shells develops in response to stresses caused by a range of mechanisms including polar wander, despinning, volume changes, orbital recession/decay, diurnal tides, and nonsynchronous rotation (NSR). Icy shells often preserve this record of tectonic deformation as patterns of fractures that can be used to identify the source of stress responsible for creating the patterns. Previously published work on Jupiter's moon Europa found that right-lateral strike-slip faults predominantly formed in the southern hemisphere and left-lateral strike-slip faults in the northern hemisphere. This pattern suggested they were formed in the past by stresses induced by diurnal tidal forcing, and were then rotated into their current longitudinal positions by NSR. We mapped the distribution of strike-slip faults on Enceladus and used kinematic indicators, including tailcracks and en echelon fractures, to determine their sense of slip. Tailcracks are secondary fractures that form as a result of concentrations of stress at the tips of slipping faults with geometric patterns dictated by the slip sense. A total of 31 strike-slip faults were identified, nine of which were right-lateral faults, all distributed in a seemingly random pattern across Enceladus's surface, in contrast to Europa. Additionally, there is a dearth of strike-slip faults within the tectonized terrains centered at 90°W and within the polar regions north and south of 60°N and 60°S, respectively. The lack of strike-slip faults in the north polar region may be explained, in part, by limited data coverage. The south polar terrain (SPT), characterized by the prominent tiger stripes and south polar dichotomy, yielded no discrete strike-slip faults. This does not suggest that the SPT is devoid of shear: previous work has indicated that the tiger stripes may be undergoing strike-slip motions and the surrounding regions may be experiencing shear. The fracture patterns and geologic activity within the SPT have been previously documented to be the result of stresses induced by both NSR and diurnal tidal deformation. As these same mechanisms are the main controls on strike-slip fault patterns on Europa, the lack of a match between strike-slip patterns on Europa and Enceladus is intriguing. The pattern of strike-slip faults on Enceladus suggests a different combination of stress mechanisms is required to produce the observed distributions. We will present models of global stress mechanisms to consider how the global-scale pattern of strike-slip faults on Enceladus may have been produced. This problem will be investigated further by measuring the angles at which tailcracks have formed on Enceladus. Tailcracks produced by simple shear form at 70.5° to the fault. Any deviation from this angle indicates some ratio of concomitant shear and dilation, which may provide insights into elucidating the stresses controlling strike-slip formation on Enceladus.
NASA Astrophysics Data System (ADS)
Konca, A.
2013-12-01
A kinematic model for the Mw7.1 2011 Van Earthquake was obtained using regional, teleseismic and GPS data. One issue regarding regional data is that 1D Green's functions may not be appropriate due to complications in the upper mantle and crust that affects the Pnl waveforms. In order to resolve whether the 1D Green's function is appropriate, an aftershock of the main event was also modeled, which is then used as a criterion in the selection of the regional stations. The GPS data itself is not sufficient to obtain a slip model, but helps constrain the slip distribution. The slip distribution is up-dip and bilateral with more slip toward west, where the maximum slip reaches 4 meters. The rupture velocity is about 1.5 km/s.
NASA Astrophysics Data System (ADS)
Riquelme, S.; Ruiz, S.; Yamazaki, Y.; Campos, J.
2012-04-01
The Mega-thrust zone of southern Peru and northern Chile is recognized as a tsunamigenic zone. In Southern Peru and Northern Chile, large earthquakes have not occurred in the last 130 years. The 1868 and 1877 were the last earthquakes with rupture larger than 400 km. The fault parameters and slip distribution of these earthquakes is not well understood, because only a few tide gauges recorded these events at far field distance. We studied simultaneously the near field effect, run-up, isoseismals, coseismic historical descriptions and far field tide gauges in the Pacific Ocean. We define several rupture scenerios which are numerically modeled using NEOWAVE program obtaining the tsunami propagation and coseismic deformation. New coupling models from are used to model scenarios. These results are compared with historical near field and far field observations, our preferred scenario fitted well these records and it agrees with the proposed isoseismals. For 1868 southern Peru earthquake our preferred scenario has a seismic rupture starting at the south part of 2001 Camaná Peru earthquake 16.8°S to 19.3°S through the Arica bending at 18°S, with a rupture of 350-400 km, maximum slip of 15 meters and seismic magnitude between M_w~8.7-8.9. For the 1877 earthquake our preferred scenario has a length of 400 kilometers from 23°S to 19.3°S, a maximum slip of 25 meters and seismic moderate magnitude of M_w~8.8. In both earthquakes the dip (10°-20°) is controlled by the geometry of subducting Nazca plate and larger slip distributions are located in the shallow part of the contact, from the trench to 30 km depth. Finally strong slip distribution in the shallow seismic contact for these historical mega-earthquakes could explain the apparent dual behavior between these mega-earthquakes Mw > 8.5 and moderate magnitude earthquakes Mw ~ 8.0 which apparently only have occurred in the depth zone of the contact i.e., the earthquakes of 1967 Mw 6.7 and 2007 Mw 7.7 in Tocopilla. However, more detailed studies are required to locate all historical Mw ~ 8.0 earthquakes in the deeper contact zone.
A Self-Consistent Fault Slip Model for the 2011 Tohoku Earthquake and Tsunami
NASA Astrophysics Data System (ADS)
Yamazaki, Yoshiki; Cheung, Kwok Fai; Lay, Thorne
2018-02-01
The unprecedented geophysical and hydrographic data sets from the 2011 Tohoku earthquake and tsunami have facilitated numerous modeling and inversion analyses for a wide range of dislocation models. Significant uncertainties remain in the slip distribution as well as the possible contribution of tsunami excitation from submarine slumping or anelastic wedge deformation. We seek a self-consistent model for the primary teleseismic and tsunami observations through an iterative approach that begins with downsampling of a finite fault model inverted from global seismic records. Direct adjustment of the fault displacement guided by high-resolution forward modeling of near-field tsunami waveform and runup measurements improves the features that are not satisfactorily accounted for by the seismic wave inversion. The results show acute sensitivity of the runup to impulsive tsunami waves generated by near-trench slip. The adjusted finite fault model is able to reproduce the DART records across the Pacific Ocean in forward modeling of the far-field tsunami as well as the global seismic records through a finer-scale subfault moment- and rake-constrained inversion, thereby validating its ability to account for the tsunami and teleseismic observations without requiring an exotic source. The upsampled final model gives reasonably good fits to onshore and offshore geodetic observations albeit early after-slip effects and wedge faulting that cannot be reliably accounted for. The large predicted slip of over 20 m at shallow depth extending northward to 39.7°N indicates extensive rerupture and reduced seismic hazard of the 1896 tsunami earthquake zone, as inferred to varying extents by several recent joint and tsunami-only inversions.
NASA Astrophysics Data System (ADS)
Noda, A.; Saito, T.; Fukuyama, E.
2017-12-01
In southwest Japan, great thrust earthquakes occurred on the plate interface along the Nankai trough with a recurrence time of about 100 yr. Most studies estimated slip deficits on the seismogenic zone from interseismic GNSS velocity data assuming elastic slip-response functions (e.g. Loveless and Meade, 2016; Yokota et al., 2016). The observed surface velocities, however, include effects of viscoelastic relaxation in the asthenosphere caused by slip history of seismic cycles on the plate interface. Following Noda et al. (2013, GJI), the interseismic surface velocities due to seismic cycle can be represented by the superposition of (1) completely relaxed viscoelastic response to steady slip rate over the whole plate interface, (2) completely relaxed viscoelastic response to steady slip deficit rate in the seismogenic zone, and (3) surface velocity due to viscoelastic stress relaxation after the last interplate earthquake. Subtracting calculated velocities due to steady slip (1) from velocity data observed after the postseismic stress relaxation (3) decays sufficiently, we can formulate an inverse problem of estimating slip deficit rates from the residual velocities using completely relaxed slip-response functions. In an elastic (lithosphere) - viscoelastic (asthenosphere) layered half-space, the completely relaxed responses do not depend on the viscosity of asthenosphere, but depend on the thickness of lithosphere. In this study, we investigate the effects of structure model on the estimation of slip deficit rate distribution. First, we analyze GNSS daily coordinate data (GEONET F3 Solution, GSI), and obtain surface velocity data for overlapped periods of 6 yr (1996-2002, 1999-2005, 2002-2008, 2005-2011). There is no significant temporal change in the velocity data, which suggests that postseismic stress relaxations after the 1944 Tonankai and the 1946 Nankai earthquakes decayed sufficiently. Next, we estimate slip deficit rate distribution from velocity data from 2005 to 2011 together with seafloor geodetic data (Yokota et al., 2016). There is a significant difference between the results using elastic and completely relaxed responses. While the result using elastic responses shows high slip-deficit rate zone in coastal regions, they are located trenchward if using completely relaxed responses.
Hirata, K.; Geist, E.; Satake, K.; Tanioka, Y.; Yamaki, S.
2003-01-01
We inverted 13 tsunami waveforms recorded in Japan to estimate the slip distribution of the 1952 Tokachi-Oki earthquake (M 8.1), which occurred southeast off Hokkaido along the southern Kuril subduction zone. The previously estimated source area determined from tsunami travel times [Hatori, 1973] did not coincide with the observed aftershock distribution. Our results show that a large amount of slip occurred in the aftershock area east of Hatori's tsunami source area, suggesting that a portion of the interplate thrust near the trench was ruptured by the main shock. We also found more than 5 m of slip along the deeper part of the seismogenic interface, just below the central part of Hatori's tsunami source area. This region, which also has the largest stress drop during the main shock, had few aftershocks. Large tsunami heights on the eastern Hokkaido coast are better explained by the heterogeneous slip model than previous uniform-slip fault models. The total seismic moment is estimated to be 1.87 ?? 1021 N m, giving a moment magnitude of Mw = 8.1. The revised tsunami source area is estimated to be 25.2 ?? 103 km2, ???3 times larger than the previous tsunami source area. Out of four large earthquakes with M ??? 7 that subsequently occurred in and around the rupture area of the 1952 event, three were at the edges of regions with relatively small amount of slip. We also found that a subducted seamount near the edge of the rupture area possibly impeded slip along the plate interface.
Earthquake Nucleation on Faults With Heterogeneous Frictional Properties, Normal Stress
NASA Astrophysics Data System (ADS)
Ray, Sohom; Viesca, Robert C.
2017-10-01
We examine the development of an instability of fault slip rate. We consider a slip rate and state dependence of fault frictional strength, in which frictional properties and normal stress are functions of position. We pose the problem for a slip rate distribution that diverges quasi-statically within finite time in a self-similar fashion. Scenarios of property variations are considered and the corresponding self-similar solutions found. We focus on variations of coefficients, a and b, respectively, controlling the magnitude of a direct effect on strength due to instantaneous changes in slip rate and of strength evolution due to changes in a state variable. These results readily extend to variations in fault-normal stress, σ, or the characteristic slip distance for state evolution, Dc. We find that heterogeneous properties lead to a finite number of self-similar solutions, located about critical points of the distributions: maxima, minima, and between them. We examine the stability of these solutions and find that only a subset is asymptotically stable, occurring at just one of the critical point types. Such stability implies that during instability development, slip rate and state evolution can be attracted to develop in the manner of the self-similar solution, which is also confirmed by solutions to initial value problems for slip rate and state. A quasi-static slip rate divergence is ultimately limited by inertia, leading to the nucleation of an outward expanding dynamic rupture: asymptotic stability of self-similar solutions then implies preferential sites for earthquake nucleation, which are determined by distribution of frictional properties.
Spine growth mechanisms: friction and seismicity at Mt. Unzen, Japan
NASA Astrophysics Data System (ADS)
Hornby, Adrian; Kendrick, Jackie; Hirose, Takehiro; Henton De Angelis, Sarah; De Angelis, Silvio; Umakoshi, Kodo; Miwa, Takahiro; Wadsworth, Fabian; Dingwell, Don; Lavallee, Yan
2014-05-01
The final episode of dome growth during the 1991-1995 eruption of Mt. Unzen was characterised by spine extrusion accompanied by repetitive seismicity. This type of cyclic activity has been observed at several dome-building volcanoes and recent work suggests a source mechanism of brittle failure of magma in the conduit. Spine growth may proceed by densification and closure of permeable pathways within the uppermost conduit magma, leading to sealing of the dome and inflation of the edifice. Amplified stresses on the wall rock and plug cause brittle failure near the conduit wall once static friction forces are overcome, and during spine growth these fractures may propagate to the dome surface. The preservation of these features is rare, and the conduit is typically inaccessible; therefore spines, the extruded manifestation of upper conduit material, provide the opportunity to study direct evidence of brittle processes in the conduit. At Mt. Unzen the spine retains evidence for brittle deformation and slip, however mechanical constraints on the formation of these features and their potential impact on eruption dynamics have not been well constrained. Here, we conduct an investigation into the process of episodic spine growth using high velocity friction apparatus at variable shear slip rate (0.4-1.5 m.s-1) and normal stress (0.4-3.5 MPa) on dome rock from Mt. Unzen, generating frictional melt at velocity >0.4 m.s-1 and normal stress >0.7 MPa. Our results show that the presence of frictional melt causes a deviation from Byerlee's frictional rule for rock friction. Melt generation is a disequilibrium process: initial amphibole breakdown leads to melt formation, followed by chemical homogenization of the melt layer. Ultimately, the experimentally generated frictional melts have a similar final chemistry, thickness and comminuted clast size distribution, thereby facilitating the extrapolation of a single viscoelastic model to describe melt-lubricated slip events at Mt. Unzen. To that end we apply state of the art 2-phase rheological models to estimate the dynamic apparent viscosities acting on the slip plane during a given slip event. Physical parameters of individual slip events in the conduit are constrained through calculation of seismic moments from earthquake swarms recorded during spine growth at Unzen. The combination of experimental data and viscosity modelling for frictional melt with seismic analysis provides a model for material response during slip in the upper conduit at Unzen. This model may have applicability to other eruption modes and volcanoes and further our understanding of cyclic eruptive activity during lava dome formation.
Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes.
Uhl, Jonathan T; Pathak, Shivesh; Schorlemmer, Danijel; Liu, Xin; Swindeman, Ryan; Brinkman, Braden A W; LeBlanc, Michael; Tsekenis, Georgios; Friedman, Nir; Behringer, Robert; Denisov, Dmitry; Schall, Peter; Gu, Xiaojun; Wright, Wendelin J; Hufnagel, Todd; Jennings, Andrew; Greer, Julia R; Liaw, P K; Becker, Thorsten; Dresen, Georg; Dahmen, Karin A
2015-11-17
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or "quakes". We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects "tuned critical" behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.
Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes
Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel; Liu, Xin; Swindeman, Ryan; Brinkman, Braden A. W.; LeBlanc, Michael; Tsekenis, Georgios; Friedman, Nir; Behringer, Robert; Denisov, Dmitry; Schall, Peter; Gu, Xiaojun; Wright, Wendelin J.; Hufnagel, Todd; Jennings, Andrew; Greer, Julia R.; Liaw, P. K.; Becker, Thorsten; Dresen, Georg; Dahmen, Karin A.
2015-01-01
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes. PMID:26572103
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simplemore » mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stressdependent cutoff function. In conclusion, the results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.« less
NASA Astrophysics Data System (ADS)
Ortega Culaciati, F. H.; Simons, M.; Minson, S. E.; Owen, S. E.; Moore, A. W.; Hetland, E. A.
2011-12-01
We aim to quantify the spatial distribution of after-slip following the Great 11 March 2011 Tohoku-Oki (Mw 9.0) earthquake and its implications for the occurrence of a future Great Earthquake, particularly in the Ibaraki region of Japan. We use a Bayesian approach (CATMIP algorithm), constrained by on-land Geonet GPS time series, to infer models of after-slip to date in the Japan megathrust. Unlike traditional inverse methods, in which a single optimum model is found, the Bayesian approach allows a complete characterization of the model parameter space by searching a-posteriori estimates of the range of plausible models. We use the Kullback-Liebler information divergence as a metric of the information gain on each subsurface slip patch, to quantify the extent to which land-based geodetic observations can constrain the upper parts of the megathrust, where the Great Tohoku-Oki earthquake took place. We aim to understand the relationships of spatial distribution of fault slip behavior in the different stages of the seismic cycle. We compare our post-seismic slip distributions to inter- and co-seismic slip distributions obtained through a Bayesian methodology as well as through traditional (optimization) inverse estimates in the published literature. We discuss implications of these analyses for the occurrence of a large earthquake in the Japan megathrust regions adjacent to the Great Tohoku-Oki earthquake.
Seven big strike-slip earthquakes
NASA Astrophysics Data System (ADS)
Lohman, R. B.; Simons, M.; Pritchard, M. E.
2003-12-01
We examine seven large (Mw > 7) strike-slip earthquakes that occurred since the beginning of ERS 1 and 2 missions. We invert GPS observations and InSAR interferograms and azimuth offsets for coseismic slip distributions. We explore two refinements to the traditional least-squares inversion technique with roughness constraints. First, we diverge from the usual definition of ``roughness'' as the average roughness over the entire fault plane, and allow ``variable smoothing'' constraints. Variable smoothing allows our inversion to select models that are more complex in regions that are well-resolved by the data, while still damping regions that are poorly resolved. Second, we choose our smoothing parameters using the jR_i criterion. The jR_i criterion draws on the theory behind cross-validation and the bootstrap method. We examine the theoretical basis behind such methods and use an analytical approximation technique for linear problems. We provide maps of model variance and spatial averaging scale over the fault plane, to explicitly show which features in our slip models are robust. We examine the 1992 Landers (CA), 1995 Sakhalin (Russia), 1995 Kobe (Japan), 1997 Ardekul (Iran), 1997 Manyi (Tibet), 1999 Hector Mine (CA), and 2001 Kunlun (Tibet) earthquakes. We compare features of the slip distributions such as the depth distribution of slip, the inferred magnitude and the degree of heterogeneity of slip over the fault plane, as resolved by the available InSAR and GPS data. We end with a brief description of the data coverage required for future earthquakes of similar size if we want to infer some of the above quantities to within a given confidence interval. We describe both the number of InSAR scenes and the distribution of GPS points that would be required, based on theoretical treatments of the fault plane/data point geometry using the jR_i method.
NASA Astrophysics Data System (ADS)
Fukahata, Y.; Wright, T. J.
2006-12-01
We developed a method of geodetic data inversion for slip distribution on a fault with an unknown dip angle. When fault geometry is unknown, the problem of geodetic data inversion is non-linear. A common strategy for obtaining slip distribution is to first determine the fault geometry by minimizing the square misfit under the assumption of a uniform slip on a rectangular fault, and then apply the usual linear inversion technique to estimate a slip distribution on the determined fault. It is not guaranteed, however, that the fault determined under the assumption of a uniform slip gives the best fault geometry for a spatially variable slip distribution. In addition, in obtaining a uniform slip fault model, we have to simultaneously determine the values of the nine mutually dependent parameters, which is a highly non-linear, complicated process. Although the inverse problem is non-linear for cases with unknown fault geometries, the non-linearity of the problems is actually weak, when we can assume the fault surface to be flat. In particular, when a clear fault trace is observed on the EarthOs surface after an earthquake, we can precisely estimate the strike and the location of the fault. In this case only the dip angle has large ambiguity. In geodetic data inversion we usually need to introduce smoothness constraints in order to compromise reciprocal requirements for model resolution and estimation errors in a natural way. Strictly speaking, the inverse problem with smoothness constraints is also non-linear, even if the fault geometry is known. The non-linearity has been dissolved by introducing AkaikeOs Bayesian Information Criterion (ABIC), with which the optimal value of the relative weight of observed data to smoothness constraints is objectively determined. In this study, using ABIC in determining the optimal dip angle, we dissolved the non-linearity of the inverse problem. We applied the method to the InSAR data of the 1995 Dinar, Turkey earthquake and obtained a much shallower dip angle than before.
NASA Astrophysics Data System (ADS)
Tanaka, Hidemi; Shimada, Koji; Toyoshima, Tsuyoshi; Obara, Tomohiro; Niizato, Tadafumi
2004-12-01
Lithological heterogeneity of low P/T metamorphic rocks in southern area of Hidaka metamorphic belt (HMB) was formed through historical development of HMB while these rocks had been laid in ductile lower crust. Many strain-localized mylonite zones (<100 m in thickness) are preferentially developed within S-type tonalite and pelitic gneiss, which are characterized by a large modal amount of phyllosilicates (biotite+muscovite+chlorite) and quartz, compared to other lithofacies in HMB. Mylonitic foliations are more conspicuous with close to the center of the shear zone associated with increase in amounts of phyllosilicate minerals, indicating fluidenhanced weakening mechanisms were operated in plastic shear zones. Pseudotachylyte veins are observed exclusively in these mylonite zones, which were generated during exhumation stage of HMB. We conclude the seismic slip zones in southern HMB had been initiated in the ductile lower crust by concentration of localized plastic shear zones within the phyllosilicate- and quartz-rich lithofacies, which were heterogeneously formed by old metamorphic and magmatic events. Then these zones were further weakened by fluid-enhanced plastic deformation, and finally seismic slips occurred at the bottom of seismogenic upper crust, during exhumation of HMB.
McGarr, A.; Fletcher, Joe B.
2001-01-01
McGarr and Fletcher (2000) introduced a technique for estimating apparent stress and seismic energy radiation associated with small patches of a larger fault plane and then applied this method to the slip model of the Northridge earthquake (Wald et al., 1996). These results must be revised because we did not take account of the difference between the seismic energy near the fault and that in the farfield. The fraction f(VR) of the near-field energy that propagates into the far-field is a monotonic function that ranges from 0.11 to 0.40 as rupture velocity VR increases from 0.6?? to 0.95??, where ?? is the shear wave speed. The revised equation for apparent stress for subfault ij is taij = f(VR) ????/ 2 Dij??? D(t)ij2dt, where ?? is density, D(t)ij is the time-dependent slip, and Dij is the final slip. The corresponding seismic energy is Eaij = ADijtaij, where A is the subfault area. Our corrected distributions of apparent stress and radiated energy over the Northridge earthquake fault zone are about 35% of those published before.
Zeng, Yuehua
2018-01-01
The Uniform California Earthquake Rupture Forecast v.3 (UCERF3) model (Field et al., 2014) considers epistemic uncertainty in fault‐slip rate via the inclusion of multiple rate models based on geologic and/or geodetic data. However, these slip rates are commonly clustered about their mean value and do not reflect the broader distribution of possible rates and associated probabilities. Here, we consider both a double‐truncated 2σ Gaussian and a boxcar distribution of slip rates and use a Monte Carlo simulation to sample the entire range of the distribution for California fault‐slip rates. We compute the seismic hazard following the methodology and logic‐tree branch weights applied to the 2014 national seismic hazard model (NSHM) for the western U.S. region (Petersen et al., 2014, 2015). By applying a new approach developed in this study to the probabilistic seismic hazard analysis (PSHA) using precomputed rates of exceedance from each fault as a Green’s function, we reduce the computer time by about 10^5‐fold and apply it to the mean PSHA estimates with 1000 Monte Carlo samples of fault‐slip rates to compare with results calculated using only the mean or preferred slip rates. The difference in the mean probabilistic peak ground motion corresponding to a 2% in 50‐yr probability of exceedance is less than 1% on average over all of California for both the Gaussian and boxcar probability distributions for slip‐rate uncertainty but reaches about 18% in areas near faults compared with that calculated using the mean or preferred slip rates. The average uncertainties in 1σ peak ground‐motion level are 5.5% and 7.3% of the mean with the relative maximum uncertainties of 53% and 63% for the Gaussian and boxcar probability density function (PDF), respectively.
NASA Astrophysics Data System (ADS)
Romano, F.; Trasatti, E.; Lorito, S.; Ito, Y.; Piatanesi, A.; Lanucara, P.; Hirata, K.; D'Agostino, N.; Cocco, M.
2012-12-01
The rupture process of the Great 2011 Tohoku-oki earthquake has been particularly well studied by using an unprecedented collection of geophysical data. There is a general agreement among the different source models obtained by modeling seismological, geodetic and tsunami data. A slip patch of nearly 40÷50 meters has been imaged and located around and up-dip from the hypocenter by most of published models, while some differences exist in the slip pattern retrieved at shallow depths near the trench, likely due to the different resolving power of distinct data sets and to the adopted fault geometry. It is well known that the modeling of great subduction earthquakes requires the use of 3-D structural models in order to properly account for the effects of topography, bathymetry and the geometrical variations of the plate interface as well as for the effects of elastic contrasts between the subducting plate and the continental lithosphere. In this study we build a 3-D Finite Element (FE) model of the Tohoku-oki area in order to infer the slip distribution of the 2011 earthquake by performing a joint inversion of geodetic (GPS and seafloor observations) and tsunami (ocean bottom pressure sensors, DART and GPS buoys) data. The FE model is used to compute the geodetic and tsunami Green's functions. In order to understand how geometrical and elastic heterogeneities control the inferred slip distribution of the Tohoku-oki earthquake, we compare the slip patterns obtained using both homogeneous and heterogeneous structural models. The goal of this study is to better constrain the slip distribution and the maximum slip amplitudes. In particular, we aim to focus on the rupture process in the shallower part of the fault plane and near the trench, which is crucial to model the tsunami data and to assess the tsunamigenic potential of earthquakes in this region.
Determining on-fault earthquake magnitude distributions from integer programming
NASA Astrophysics Data System (ADS)
Geist, Eric L.; Parsons, Tom
2018-02-01
Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.
NASA Astrophysics Data System (ADS)
Chestler, Shelley
This dissertation seeks to further understand the LFE source process, the role LFEs play in generating slow slip, and the utility of using LFEs to examine plate interface structure. The work involves the creation and investigation of a 2-year-long catalog of low-frequency earthquakes beneath the Olympic Peninsula, Washington. In the first chapter, we calculate the seismic moments for 34,264 low-frequency earthquakes (LFEs) beneath the Olympic Peninsula, WA. LFE moments range from 1.4x1010- 1.9x1012 N-m (M W=0.7-2.1). While regular earthquakes follow a power-law moment-frequency distribution with a b-value near 1 (the number of events increases by a factor of 10 for each unit increase in MW), we find that while for large LFEs the b-value is ˜6, for small LFEs it is <1. The magnitude-frequency distribution for all LFEs is best fit by an exponential distribution with a mean seismic moment (characteristic moment) of 2.0x1011 N-m. The moment-frequency distributions for each of the 43 LFE families, or spots on the plate interface where LFEs repeat, can also be fit by exponential distributions. An exponential moment-frequency distribution implies a scale-limited source process. We consider two end-member models where LFE moment is limited by (1) the amount of slip or (2) slip area. We favor the area-limited model. Based on the observed exponential distribution of LFE moment and geodetically observed total slip we estimate that the total area that slips within an LFE family has a diameter of 300 m. Assuming an area-limited model, we estimate the slips, sub-patch diameters, stress drops, and slip rates for LFEs during ETS events. We allow for LFEs to rupture smaller sub-patches within the LFE family patch. Models with 1-10 sub-patches produce slips of 0.1-1 mm, sub-patch diameters of 80-275 m, and stress drops of 30-1000 kPa. While one sub-patch is often assumed, we believe 3-10 sub-patches are more likely. In the second chapter, using high-resolution relative low-frequency earthquake (LFE) locations, we calculate the patch areas (Ap) of LFE families. During Episodic Tremor and Slip (ETS) events, we define AT as the area that slips during LFEs and ST as the total amount of summed LFE slip. Using observed and calculated values for AP, AT and ST we evaluate two end- member models for LFE slip within an LFE family patch (models 2 and 3 from chapter 1). In the ductile matrix model (model 3), LFEs produce 100% of the observed ETS slip (SETS) in distinct sub-patches (i.e., AT AP). In the connected patch model (model 2), AT =AP, but ST<< SETS. LFEs cluster into 45 LFE families. Spatial gaps (˜10-20 km) between LFE family clusters and smaller gaps within LFE family clusters serve as evidence that LFE slip is heterogeneous on multiple spatial scales. We find that LFE slip only accounts for ˜0.2% of the slip within the slow slip zone. There are downdip trends in the characteristic (mean) moment and in the number of LFEs during both ETS events (only) and the entire ETS cycle (Mc,ETS and NT,ETS and Mc,all and NT,all respectively). During ETS, Mc decreases with downdip distance but NT does not change. Over the entire ETS cycle, Mc decreases with downdip distance, but NT increases. These observations indicate that downdip LFE slip occurs through a larger number (800-1200) of small LFEs, while updip LFE slip occurs primarily during ETS events through a smaller number (200-600) of larger LFEs. This could indicate that the plate interface is stronger and has a higher stress threshold updip. In the third chapter, we use high-precision, relative low-frequency earthquake (LFE) locations for LFEs beneath the Olympic Peninsula, WA to constrain the depth, geometry, and thickness of the plate interface. LFE depths correspond most closely with the McCrory et al. (2012) plate model, but vary from that smooth model along strike. The latter observation indicates that the actual plate interface is notably rougher and more complex than smooth plate models. Our LFEs lie directly above low-velocity zone (LVZ) and approximately 5 km above intraslab earthquakes. This supports the proposal of Bostock (2013), that the LVZ comprises the upper oceanic crust and that fluids are responsible for the velocity contrast across the LVZ and likely play a large role in generating slow slip and LFEs. Within each of our LFE families, LFEs group into tight clusters around the family centroid. The width of these clusters in the depth direction, which is an indicator of the thickness of slow slip deformation on the plate interface, is 130 to 340 meters.
Bawden, G.W.
2001-01-01
Coseismic leveling and triangulation observations are used to determine the faulting geometry and slip distribution of the July 21, 1952, Mw 7.3 Kem County earthquake on the White Wolf fault. A singular value decomposition inversion is used to assess the ability of the geodetic network to resolve slip along a multisegment fault and shows that the network is sufficient to resolve slip along the surface rupture to a depth of 10 km. Below 10 km, the network can only resolve dip slip near the fault ends. The preferred source model is a two-segment right-stepping fault with a strike of 51?? and a dip of 75?? SW. The epicentral patch has deep (6-27 km) leftlateral oblique slip, while the northeastern patch has shallow (1-12.5 km) reverse slip. There is nearly uniform reverse slip (epicentral, 1.6 m; northeast, 1.9 m), with 3.6 m of left-lateral strike slip limited to the epicentral patch. The seismic moment is M0= 9.2 ?? 0.5 ?? 1019 N m (Mw= 7.2). The signal-to-noise ratio of the leveling and triangulation data is reduced by 96% and 49%, respectively. The slip distribution from the preferred model matches regional geomorphic features and may provide a driving mechanism for regional shortening across the Comanche thrust and structural continuity with the Scodie seismic lineament to the northeast.
NASA Astrophysics Data System (ADS)
Gusman, A. R.; Satake, K.; Mulia, I. E.
2017-12-01
An intraplate normal fault earthquake (Mw 8.2) occurred on 8 September 2017 in the Tehuantepec seismic gap of the Middle America Trench. The submarine earthquake generated a tsunami which was recorded by coastal tide gauges and offshore DART buoys. We used the tsunami waveforms recorded at 16 stations to estimate the fault slip distribution and an optimum sea surface displacement of the earthquake. A steep fault dipping to the northeast with strike of 315°, dip of 73°and rake of -96° based on the USGS W-phase moment tensor solution was assumed for the slip inversion. To independently estimate the sea surface displacement without assuming earthquake fault parameters, we used the B-spline function for the unit sources. The distribution of the unit sources was optimized by a Genetic Algorithm - Pattern Search (GA-PS) method. Tsunami waveform inversion resolves a spatially compact region of large slip (4-10 m) with a dimension of 100 km along the strike and 80 km along the dip in the depth range between 40 km and 110 km. The seismic moment calculated from the fault slip distribution with assumed rigidity of 6 × 1010 Nm-2 is 2.46 × 1021 Nm (Mw 8.2). The optimum displacement model suggests that the sea surface was uplifted up to 0.5 m and subsided down to -0.8 m. The deep location of large fault slip may be the cause of such small sea surface displacements. The simulated tsunami waveforms from the optimum sea surface displacement can reproduce the observations better than those from fault slip distribution; the normalized root mean square misfit for the sea surface displacement is 0.89, while that for the fault slip distribution is 1.04. We simulated the tsunami propagation using the optimum sea surface displacement model. Large tsunami amplitudes up to 2.5 m were predicted to occur inside and around a lagoon located between Salina Cruz and Puerto Chiapas. Figure 1. a) Sea surface displacement for the 2017 Tehuantepec earthquake estimated by tsunami waveforms. b) Map of simulated maximum tsunami amplitude and comparison between observed (blue circles) and simulated (red circles) tsunami maximum amplitude along the coast.
Shear forces in the contact patch of a braked-racing tyre
NASA Astrophysics Data System (ADS)
Gruber, Patrick; Sharp, Robin S.
2012-12-01
This article identifies tyre modelling features that are fundamental to the accurate simulation of the shear forces in the contact patch of a steady-rolling, slipping and cambered racing tyre. The features investigated include contact patch shape, contact pressure distribution, carcass flexibility, rolling radius (RR) variations and friction coefficient. Using a previously described physical tyre model of modular nature, validated for static conditions, the influence of each feature on the shear forces generated is examined under different running conditions, including normal loads of 1500, 3000 and 4500 N, camber angles of 0° and-3°, and longitudinal slip ratios from 0 to-20%. Special attention is paid to heavy braking, in which context the aligning moment is of great interest in terms of its connection with the limit-handling feel. The results of the simulations reveal that true representations of the contact patch shape, carcass flexibility and lateral RR variation are essential for an accurate prediction of the distribution and the magnitude of the shear forces generated at the tread-road interface of the cambered tyre. Independent of the camber angle, the contact pressure distribution primarily influences the shear force distribution and the slip characteristics around the peak longitudinal force. At low brake-slip ratios, the friction coefficient affects the shear forces in terms of their distribution, while, at medium to high-slip ratios, the force magnitude is significantly affected. On the one hand, these findings help in the creation of efficient yet accurate tyre models. On the other hand, the research results allow improved understanding of how individual tyre components affect the generation of shear forces in the contact patch of a rolling and slipping tyre.
NASA Astrophysics Data System (ADS)
Ángel López Comino, José; Stich, Daniel; Ferreira, Ana M. G.; Morales Soto, José
2015-04-01
The inversion of seismic data for extended fault slip distributions provides us detailed models of earthquake sources. The validity of the solutions depends on the fit between observed and synthetic seismograms generated with the source model. However, there may exist more than one model that fit the data in a similar way, leading to a multiplicity of solutions. This underdetermined problem has been analyzed and studied by several authors, who agree that inverting for a single best model may become overly dependent on the details of the procedure. We have addressed this resolution problem by using a global search that scans the solutions domain using random slipmaps, applying a Popperian inversion strategy that involves the generation of a representative set of slip distributions. The proposed technique solves the forward problem for a large set of models calculating their corresponding synthetic seismograms. Then, we propose to perform extended fault inversion through falsification, that is, falsify inappropriate trial models that do not reproduce the data within a reasonable level of mismodelling. The remainder of surviving trial models forms our set of coequal solutions. Thereby the ambiguities that might exist can be detected by taking a look at the solutions, allowing for an efficient assessment of the resolution. The solution set may contain only members with similar slip distributions, or else uncover some fundamental ambiguity like, for example, different patterns of main slip patches or different patterns of rupture propagation. For a feasibility study, the proposed resolution test has been evaluated using teleseismic body wave recordings from the September 5th 2012 Nicoya, Costa Rica earthquake. Note that the inversion strategy can be applied to any type of seismic, geodetic or tsunami data for which we can handle the forward problem. A 2D von Karman distribution is used to describe the spectrum of heterogeneity in slipmaps, and we generate possible models by spectral synthesis for random phase, keeping the rake angle, rupture velocity and slip velocity function fixed. The 2012 Nicoya earthquake turns out to be relatively well constrained from 50 teleseismic waveforms. The solution set contains 252 out of 10.000 trial models with normalized L1-fit within 5 percent from the global minimum. The set includes only similar solutions -a single centred slip patch- with minor differences. Uncertainties are related to the details of the slip maximum, including the amount of peak slip (2m to 3.5m), as well as the characteristics of peripheral slip below 1 m. Synthetic tests suggest that slip patterns like Nicoya may be a fortunate case, while it may be more difficult to unambiguously reconstruct more distributed slip from teleseismic data.
NASA Astrophysics Data System (ADS)
Harding, D. J.; Miuller, J. R.
2005-12-01
Modeling the kinematics of the 2004 Great Sumatra-Andaman earthquake is limited in the northern two-thirds of the rupture zone by a scarcity of near-rupture geodetic deformation measurements. Precisely repeated Ice, Cloud, and Land Elevation Satellite (ICESat) profiles across the Andaman and Nicobar Islands provide a means to more fully document the spatial pattern of surface vertical displacements and thus better constrain geomechanical modeling of the slip distribution. ICESat profiles that total ~45 km in length cross Car Nicobar, Kamorta, and Katchall in the Nicobar chain. Within the Andamans, the coverage includes ~350 km on North, Central, and South Andaman Islands along two NNE and NNW-trending profiles that provide elevations on both the east and west coasts of the island chain. Two profiles totaling ~80 km in length cross South Sentinel Island, and one profile ~10 km long crosses North Sentinel Island. With an average laser footprint spacing of 175 m, the total coverage provides over 2700 georeferenced surface elevations measurements for each operations period. Laser backscatter waveforms recorded for each footprint enable detection of forest canopy top and underlying ground elevations with decimeter vertical precision. Surface elevation change is determined from elevation profiles, acquired before and after the earthquake, that are repeated with a cross-track separation of less than 100 m by precision pointing of the ICESat spacecraft. Apparent elevation changes associated with cross-track offsets are corrected according to local slopes calculated from multiple post-earthquake repeated profiles. The surface deformation measurements recorded by ICESat are generally consistent with the spatial distribution of uplift predicted by a preliminary slip distribution model. To predict co-seismic surface deformation, we apply a slip distribution, derived from the released energy distribution computed by Ishii et al. (2005), as the displacement discontinuity boundary condition on the Sumatra-Andaman subduction interface fault. The direction of slip on the fault surface is derived from the slip directions computed by Tsai et al. (in review) for centroid moment tensor focal mechanisms spatially distributed along the rupture. The slip model will be refined to better correspond to the observed surface deformation as additional results from the ICESat profiles become available.
NASA Astrophysics Data System (ADS)
Gao, Haibo; Chen, Chao; Ding, Liang; Li, Weihua; Yu, Haitao; Xia, Kerui; Liu, Zhen
2017-11-01
Wheeled mobile robots (WMRs) often suffer from the longitudinal slipping when moving on the loose soil of the surface of the moon during exploration. Longitudinal slip is the main cause of WMRs' delay in trajectory tracking. In this paper, a nonlinear extended state observer (NESO) is introduced to estimate the longitudinal velocity in order to estimate the slip ratio and the derivative of the loss of velocity which are used in modelled disturbance compensation. Owing to the uncertainty and disturbance caused by estimation errors, a multi-objective controller using the mixed H2/H∞ method is employed to ensure the robust stability and performance of the WMR system. The final inputs of the trajectory tracking consist of the feedforward compensation, compensation for the modelled disturbances and designed multi-objective control inputs. Finally, the simulation results demonstrate the effectiveness of the controller, which exhibits a satisfactory tracking performance.
NASA Astrophysics Data System (ADS)
Hawthorne, J. C.; Bartlow, N. M.; Ghosh, A.
2017-12-01
We estimate the normalized moment rate spectrum of a slow slip event in Cascadia and then attempt to reproduce it. Our goal is to further assess whether a single physical mechanism could govern slow slip and tremor events, with durations that span 6 orders of magnitude, so we construct the spectrum by parameterizing a large slow slip event as the sum of a number of subevents with various durations. The spectrum estimate uses data from three sources: the GPS-based slip inversion of Bartlow et al (2011), PBO borehole strain measurements, and beamforming-based tremor moment estimates of Ghosh et al (2009). We find that at periods shorter than 1 day, the moment rate power spectrum decays as frequencyn, where n is between 0.7 and 1.4 when measured from strain and between 1.2 and 1.4 when inferred from tremor. The spectrum appears roughly flat at periods of 1 to 10 days, as both the 1-day-period strain and tremor data and the 6-day-period slip inversion data imply a moment rate power of 0.02 times the the total moment squared. We demonstrate one way to reproduce this spectrum: by constructing the large-scale slow slip event as the sum of a series of subevents. The shortest of these subevents could be interpreted as VLFEs or even LFEs, while longer subevents might represent the aseismic slip that drives rapid tremor reverals, streaks, or rapid tremor migrations. We pick the subevent magnitudes from a Gutenberg-Richter distribution and place the events randomly throughout a 30-day interval. Then we assign each subevent a duration that scales with its moment to a specified power. Finally, we create a moment rate function for each subevent and sum all of the moment rates. We compute the summed slow slip moment rate spectra with two approaches: a time-domain numerical computation and a frequency-domain analytical summation. Several sets of subevent parameters can allow the constructed slow slip event to match the observed spectrum. One allowable set of parameters is of particular interest: a b-value of 1 coupled with subevent durations that scale linearly with their moments, as suggested by previous observations of slow earthquakes (Ide et al, 2007). Our work thus lends further plausibility to the existence of a single family of slow earthquakes, possibly governed by a single physical mechanism.
Grain size and shape evolution of experimentally deformed sediments: the role of slip rate
NASA Astrophysics Data System (ADS)
Balsamo, Fabrizio; Storti, Fabrizio; De Paola, Nicola
2016-04-01
Sediment deformation within fault zones occurs with a broad spectrum of mechanisms which, in turn, depend on intrinsic material properties (porosity, grain size and shape, etc.) and external factors (burial depth, fluid pressure, stress configuration, etc.). Fieldworks and laboratory measurements conducted in the last years in sediments faulted at shallow depth showed that cataclasis and grain size reduction can occur very close to the Earth surface (<1-2 km), and that fault displacement is one of the parameters controlling the amount of grain size, shape, and microtextural modifications in fault cores. In this contribution, we present a new set of microstructural observations combined with grain size and shape distribution data obtained from quart-feldspatic loose sediments (mean grain diameter 0.2 mm) experimentally deformed at different slip rates from subseismic (0.01 mm/s, 0.1 mm/s, 1 mm/s, 1 cm/s, and 10 cm/s) to coseismic slip rates (1 m/s). The experiments were originally performed at sigma n=14 MPa, with the same amount of slip (1.3 m), to constrain the frictional properties of such sediments at shallow confining pressures (<1 km). After the experiments, the granular materials deformed in the 0.1-1 mm-thick slip zones were prepared for both grain size distribution analyses and microstructural and textural analyses in thin sections. Grain size distribution analyses were obtained with a Malvern Mastersizer 3000 particle size laser-diffraction analyser, whereas grain shape data (angularity) were obtained by using image analysis technique on selected SEM-photomicrographs. Microstructural observations were performed at different scales with a standard optical microscope and with a SEM. Results indicate that mean grain diameter progressively decreases with increasing slip rates up to ~20-30 m, and that granulometric curves systematically modify as well, shifting toward finer grain sizes. Obtained fractal dimensions (D) indicate that D increases from ~2.3 up to >3 moving from subseismic to coseismic slip rates. Grain angularity also changes with increasing slip rates, being particles more smoothed and rounded in sediments deformed at coseismic slip rates. As a whole, our results indicate that both grain size and shape distributions of experimentally deformed sediments progressively changes from subseismic to coseismic slip rate, thus helping to understand the deformation mechanisms in natural fault zones and to predict frictional and permeability properties of faults affecting shallow sediments.
NASA Astrophysics Data System (ADS)
Bi, Haiyun; Zheng, Wenjun; Ge, Weipeng; Zhang, Peizhen; Zeng, Jiangyuan; Yu, Jingxing
2018-03-01
Reconstruction of the along-fault slip distribution provides an insight into the long-term rupture patterns of a fault, thereby enabling more accurate assessment of its future behavior. The increasing wealth of high-resolution topographic data, such as Light Detection and Ranging and photogrammetric digital elevation models, allows us to better constrain the slip distribution, thus greatly improving our understanding of fault behavior. The South Heli Shan Fault is a major active fault on the northeastern margin of the Tibetan Plateau. In this study, we built a 2 m resolution digital elevation model of the South Heli Shan Fault based on high-resolution GeoEye-1 stereo satellite imagery and then measured 302 vertical displacements along the fault, which increased the measurement density of previous field surveys by a factor of nearly 5. The cumulative displacements show an asymmetric distribution along the fault, comprising three major segments. An increasing trend from west to east indicates that the fault has likely propagated westward over its lifetime. The topographic relief of Heli Shan shows an asymmetry similar to the measured cumulative slip distribution, suggesting that the uplift of Heli Shan may result mainly from the long-term activity of the South Heli Shan Fault. Furthermore, the cumulative displacements divide into discrete clusters along the fault, indicating that the fault has ruptured in several large earthquakes. By constraining the slip-length distribution of each rupture, we found that the events do not support a characteristic recurrence model for the fault.
Tsunami hazard assessments with consideration of uncertain earthquakes characteristics
NASA Astrophysics Data System (ADS)
Sepulveda, I.; Liu, P. L. F.; Grigoriu, M. D.; Pritchard, M. E.
2017-12-01
The uncertainty quantification of tsunami assessments due to uncertain earthquake characteristics faces important challenges. First, the generated earthquake samples must be consistent with the properties observed in past events. Second, it must adopt an uncertainty propagation method to determine tsunami uncertainties with a feasible computational cost. In this study we propose a new methodology, which improves the existing tsunami uncertainty assessment methods. The methodology considers two uncertain earthquake characteristics, the slip distribution and location. First, the methodology considers the generation of consistent earthquake slip samples by means of a Karhunen Loeve (K-L) expansion and a translation process (Grigoriu, 2012), applicable to any non-rectangular rupture area and marginal probability distribution. The K-L expansion was recently applied by Le Veque et al. (2016). We have extended the methodology by analyzing accuracy criteria in terms of the tsunami initial conditions. Furthermore, and unlike this reference, we preserve the original probability properties of the slip distribution, by avoiding post sampling treatments such as earthquake slip scaling. Our approach is analyzed and justified in the framework of the present study. Second, the methodology uses a Stochastic Reduced Order model (SROM) (Grigoriu, 2009) instead of a classic Monte Carlo simulation, which reduces the computational cost of the uncertainty propagation. The methodology is applied on a real case. We study tsunamis generated at the site of the 2014 Chilean earthquake. We generate earthquake samples with expected magnitude Mw 8. We first demonstrate that the stochastic approach of our study generates consistent earthquake samples with respect to the target probability laws. We also show that the results obtained from SROM are more accurate than classic Monte Carlo simulations. We finally validate the methodology by comparing the simulated tsunamis and the tsunami records for the 2014 Chilean earthquake. Results show that leading wave measurements fall within the tsunami sample space. At later times, however, there are mismatches between measured data and the simulated results, suggesting that other sources of uncertainty are as relevant as the uncertainty of the studied earthquake characteristics.
Rymer, M.J.; Boatwright, J.; Seekins, L.C.; Yule, J.D.; Liu, J.
2002-01-01
Surface fracturing occurred along the southern San Andreas, Superstition Hills, and Imperial faults in association with the 16 October 1999 (Mw 7.1) Hector Mine earthquake, making this at least the eighth time in the past 31 years that a regional earthquake has triggered slip along faults in the Salton Trough. Fractures associated with the event formed discontinuous breaks over a 39-km-long stretch of the San Andreas fault, from the Mecca Hills southeastward to Salt Creek and Durmid Hill, a distance from the epicenter of 107 to 139 km. Sense of slip was right lateral; only locally was there a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 13 mm. Maximum slip values in 1999 and earlier triggered slips are most common in the central Mecca Hills. Field evidence indicates a transient opening as the Hector Mine seismic waves passed the southern San Andreas fault. Comparison of nearby strong-motion records indicates several periods of relative opening with passage of the Hector Mine seismic wave-a similar process may have contributed to the field evidence of a transient opening. Slip on the Superstition Hills fault extended at least 9 km, at a distance from the Hector Mine epicenter of about 188 to 196 km. This length of slip is a minimum value, because we saw fresh surface breakage extending farther northwest than our measurement sites. Sense of slip was right lateral; locally there was a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 18 mm, with the largest amounts found distributed (or skewed) away from the Hector Mine earthquake source. Slip triggered on the Superstition Hills fault commonly is skewed away from the earthquake source, most notably in 1968, 1979, and 1999. Surface slip on the Imperial fault and within the Imperial Valley extended about 22 km, representing a distance from the Hector Mine epicenter of about 204 to 226 km. Sense of slip dominantly was right lateral; the right-lateral component of slip ranged from 1 to 19 mm. Locally there was a minor (~1-2 mm) vertical component of slip; larger proportions of vertical slip (up to 10 mm) occurred in Mesquite basin, where scarps indicate long-term oblique-slip motion for this part of the Imperial fault. Slip triggered on the Imperial fault appears randomly distributed relative to location along the fault and source direction. Multiple surface slips, both primary and triggered slip, indicate that slip repeatedly is small at locations of structural complexity.
Interplate coupling and seismic-aseismic slip patterns
NASA Astrophysics Data System (ADS)
Senatorski, Piotr
2017-04-01
Numerical simulations were carried out to explain the seismic and aseismic slip paradox. Recent observations of megathrust faults show that stable and unstable slip movements can occur at the same locations. This contradicts the previous view based on frictional sliding theories. In the present work, an asperity fault model with the slip-dependent friction and stress dependent healing is used to show that the character of slip can change, even if friction parameters, such as strength and slip-weakening distance, are fixed. The reason is that the slow versus fast slip interplay is more than just about the friction law problem. The character of slip depends both on the local friction and on the system stiffness. The stiffness is related to the slipping area size and distribution of slips, so it changes from one event to another. It is also shown that the high strength interplate patches, such as subducted seamounts, can both promote and restrain large earthquakes, depending on the slip-weakening distance lengths.
NASA Astrophysics Data System (ADS)
Cheloni, D.; Giuliani, R.; D'Agostino, N.; Mattone, M.; Bonano, M.; Fornaro, G.; Lanari, R.; Reale, D.
2015-12-01
The 2012 Emilia sequence (main shocks Mw 6.1 May 20 and Mw 5.9 May 29) ruptured two thrust segments of a ~E-W trending fault system of the buried Ferrara Arc, along a portion of the compressional system of the Apennines that had remained silent during past centuries. Here we use the rupture geometry constrained by the aftershocks and new geodetic data (levelling, InSAR and GPS measurements) to estimate an improved coseismic slip distribution of the two main events. In addition, we use post-seismic displacements, described and analyzed here for the first time, to infer a brand new post-seismic slip distribution of the May 29 event in terms of afterslip on the same coseismic plane. In particular, in this study we use a catalog of precisely relocated aftershocks to explore the different proposed geometries of the proposed thrust segments that have been published so far and estimate the coseismic and post-seismic slip distributions of the ruptured planes responsible for the two main seismic events from a joint inversion of the geodetic data.Joint inversion results revealed that the two earthquakes ruptured two distinct planar thrust faults, characterized by single main coseismic patches located around the centre of the rupture planes, in agreement with the seismological and geological information pointing out the Ferrara and the Mirandola thrust faults, as the causative structures of the May 20 and May 29 main shocks respectively.The preferred post-seismic slip distribution related to the 29 May event, yielded to a main patch of afterslip (equivalent to a Mw 5.6 event) located westward and up-dip of the main coseismic patch, suggesting that afterslip was triggered at the edges of the coseismic asperity. We then use these co- and post-seismic slip distribution models to calculate the stress changes on adjacent fault.
Real-time inversions for finite fault slip models and rupture geometry based on high-rate GPS data
Minson, Sarah E.; Murray, Jessica R.; Langbein, John O.; Gomberg, Joan S.
2015-01-01
We present an inversion strategy capable of using real-time high-rate GPS data to simultaneously solve for a distributed slip model and fault geometry in real time as a rupture unfolds. We employ Bayesian inference to find the optimal fault geometry and the distribution of possible slip models for that geometry using a simple analytical solution. By adopting an analytical Bayesian approach, we can solve this complex inversion problem (including calculating the uncertainties on our results) in real time. Furthermore, since the joint inversion for distributed slip and fault geometry can be computed in real time, the time required to obtain a source model of the earthquake does not depend on the computational cost. Instead, the time required is controlled by the duration of the rupture and the time required for information to propagate from the source to the receivers. We apply our modeling approach, called Bayesian Evidence-based Fault Orientation and Real-time Earthquake Slip, to the 2011 Tohoku-oki earthquake, 2003 Tokachi-oki earthquake, and a simulated Hayward fault earthquake. In all three cases, the inversion recovers the magnitude, spatial distribution of slip, and fault geometry in real time. Since our inversion relies on static offsets estimated from real-time high-rate GPS data, we also present performance tests of various approaches to estimating quasi-static offsets in real time. We find that the raw high-rate time series are the best data to use for determining the moment magnitude of the event, but slightly smoothing the raw time series helps stabilize the inversion for fault geometry.
Growth of Fault-Cored Anticlines by Flexural Slip Folding: Analysis by Boundary Element Modeling
NASA Astrophysics Data System (ADS)
Johnson, Kaj M.
2018-03-01
Fault-related folds develop due to a combination of slip on the associated fault and distributed deformation off the fault. Under conditions that are sufficient for sedimentary layering to act as a stack of mechanical layers with contact slip, buckling can dramatically amplify the folding process. We develop boundary element models of fault-related folding of viscoelastic layers embedded with a reverse fault to examine the influence of such layering on fold growth. The strength of bedding contacts, the thickness and stiffness of layering, and fault geometry all contribute significantly to the resulting fold form. Frictional contact strength between layers controls the degree of localization of slip within fold limbs; high contact friction in relatively thin bedding tends to localize bedding slip within narrow kink bands on fold limbs, and low contact friction tends to produce widespread bedding slip and concentric fold form. Straight ramp faults tend to produce symmetric folds, whereas listric faults tend to produce asymmetric folds with short forelimbs and longer backlimbs. Fault-related buckle folds grow exponentially with time under steady loading rates. At early stages of folding, fold growth is largely attributed to slip on the fault, but as the fold increases amplitude, a larger portion of the fold growth is attributed to distributed slip across bedding contacts on the limbs of the fold. An important implication for geologic and earthquake studies is that not all surface deformation associated with blind reverse faults may be attributed to slip on the fault during earthquakes.
NASA Astrophysics Data System (ADS)
Zhao, Dezheng; Qu, Chunyan; Shan, Xinjian; Gong, Wenyu; Zhang, Yingfeng; Zhang, Guohong
2018-02-01
On 8 August 2017, a Ms7.0 earthquake stroke the city of Jiuzhaigou, Sichuan, China. The Jiuzhaigou earthquake occurred on a buried fault in the vicinity of three well-known active faults and this event offers a unique opportunity to study tectonic structures in the epicentral region and stress transferring. Here we present coseismic displacement field maps for this earthquake using descending and ascending Sentinel-1A Interferometric Synthetic Aperture Radar (InSAR) data. Deformation covered an area of approximately 50 × 50 km, with a maximum line-of-sight (LOS) displacement of 22 cm in ascending and 14 cm in descending observations on the west side of the source fault. Based on InSAR and Global Positioning System (GPS) measurements, both separately and jointly, we constructed a one-segment model to invert the coseismic slip distribution and dip angle of this event. Our final fault slip model suggests that slip was concentrated at an upper depth of 15 km; there was a maximum slip of 1.3 m and the rupture was dominated by a left-lateral strike-slip motion. The inverted geodetic moment was approximately 6.75 × 1018 Nm, corresponding to a moment magnitude of Mw6.5, consistent with seismological results. The calculated static Coulomb stress changes indicate that most aftershocks occurred in stress increasing zones caused by the mainshock rupture; the Jiuzhaigou earthquake has brought the western part of the Tazang fault 0.1-0.4 MPa closer to failure, indicating an increasing seismic hazard in this region. The Coulomb stress changes caused by the 2008 Mw7.8 Wenchuan earthquake suggest that stress loading from this event acted as a trigger for the Jiuzhaigou earthquake.
Determining on-fault earthquake magnitude distributions from integer programming
Geist, Eric L.; Parsons, Thomas E.
2018-01-01
Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.
DeLong, Stephen B.; Donnellan, Andrea; Ponti, Daniel J.; Rubin, Ron S.; Lienkaemper, James J.; Prentice, Carol S.; Dawson, Timothy E.; Seitz, Gordon G.; Schwartz, David P.; Hudnut, Kenneth W.; Rosa, Carla M.; Pickering, Alexandra J; Parker, Jay W.
2016-01-01
The Mw 6.0 South Napa earthquake of 24 August 2014 caused slip on several active fault strands within the West Napa Fault Zone (WNFZ). Field mapping identified 12.5 km of surface rupture. These field observations, near-field geodesy and space geodesy, together provide evidence for more than ~30 km of surface deformation with a relatively complex distribution across a number of subparallel lineaments. Along a ~7 km section north of the epicenter, the surface rupture is confined to a single trace that cuts alluvial deposits, reoccupying a low-slope scarp. The rupture continued northward onto at least four other traces through subparallel ridges and valleys. Postseismic slip exceeded coseismic slip along much of the southern part of the main rupture trace with total slip 1 year postevent approaching 0.5 m at locations where only a few centimeters were measured the day of the earthquake. Analysis of airborne interferometric synthetic aperture radar data provides slip distributions along fault traces, indicates connectivity and extent of secondary traces, and confirms that postseismic slip only occurred on the main trace of the fault, perhaps indicating secondary structures ruptured as coseismic triggered slip. Previous mapping identified the WNFZ as a zone of distributed faulting, and this was generally borne out by the complex 2014 rupture pattern. Implications for hazard analysis in similar settings include the need to consider the possibility of complex surface rupture in areas of complex topography, especially where multiple potentially Quaternary-active fault strands can be mapped.
Mendoza, C.; Hartzell, S.H.
1988-01-01
We have inverted the teleseismic P waveforms recorded by stations of the Global Digital Seismograph Network for the 8 July 1986 North Palm Springs, California, the 28 October 1983 Borah Peak, Idaho, and the 19 September 1985 Michoacan, Mexico, earthquakes to recover the distribution of slip on each of the faults using a point-by-point inversion method with smoothing and positivity constraints. Results of the inversion indicate that the Global digital Seismograph Network data are useful for deriving fault dislocation models for moderate to large events. However, a wide range of frequencies is necessary to infer the distribution of slip on the earthquake fault. Although the long-period waveforms define the size (dimensions and seismic moment) of the earthquake, data at shorter period provide additional constraints on the variation of slip on the fault. Dislocation models obtained for all three earthquakes are consistent with a heterogeneous rupture process where failure is controlled largely by the size and location of high-strength asperity regions. -from Authors
Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes
Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel; ...
2015-11-17
Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simplemore » mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stressdependent cutoff function. In conclusion, the results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.« less
Reconsidering earthquake scaling
Gomberg, Joan S.; Wech, Aaron G.; Creager, Kenneth; Obara, K.; Agnew, Duncan
2016-01-01
The relationship (scaling) between scalar moment, M0, and duration, T, potentially provides key constraints on the physics governing fault slip. The prevailing interpretation of M0-T observations proposes different scaling for fast (earthquakes) and slow (mostly aseismic) slip populations and thus fundamentally different driving mechanisms. We show that a single model of slip events within bounded slip zones may explain nearly all fast and slow slip M0-T observations, and both slip populations have a change in scaling, where the slip area growth changes from 2-D when too small to sense the boundaries to 1-D when large enough to be bounded. We present new fast and slow slip M0-T observations that sample the change in scaling in each population, which are consistent with our interpretation. We suggest that a continuous but bimodal distribution of slip modes exists and M0-T observations alone may not imply a fundamental difference between fast and slow slip.
The phase slip factor of the electrostatic cryogenic storage ring CSR
NASA Astrophysics Data System (ADS)
Grieser, Manfred; von Hahn, Robert; Vogel, Stephen; Wolf, Andreas
2017-07-01
To determine the momentum spread of an ion beam from the measured revolution frequency distribution, the knowledge of the phase slip factor of the storage ring is necessary. The slip factor was measured for various working points of the cryogenic storage ring CSR at MPI for Nuclear Physics, Heidelberg and was compared with simulations. The predicted functional relationship of the slip factor and the horizontal tune depends on the different islands of stability, which has been experimentally verified. This behavior of the slip factor is in clear contrast to that of magnetic storage rings.
Seismic slip on clay nano-foliation
NASA Astrophysics Data System (ADS)
Aretusini, Stefano; Plümper, Oliver; Spagnuolo, Elena; Di Toro, Giulio
2017-04-01
Deformation processes active at seismic slip rates (ca. 1 m/s) on smectite-rich slipping zones are not well understood, although they likely control the mechanical behaviour of: i) subduction zone faults affected by tsunamigenic earthquakes and seismic surface rupturing, and ii) landslide decollements. Here we present a set of rotary experiments performed on water-dampened 2 mm thick clay-rich (70% wt. smectite and 30% wt. opal) gouge layers sheared at slip rates V ranging from 0.01 to 1.5 m/s, for 3 m of displacement under 5 MPa normal stress. Microstructural analyses were conducted on pre- and post-sheared gouges using focused ion beam scanning electron and transmission electron microscopy. All sheared gouges were slip weakening in the first 0.1 m of displacement, with friction coefficient decreasing from 0.4-0.3 to 0.1-0.05. Then, with progressive slip, gouges evolved to slip-strengthening (final friction coefficient of 0.47-0.35) at V ≤0.1 m/s and slip-neutral (final friction of 0.05) at V=1.5 m/s. Despite the large difference in the imposed slip rate and frictional behaviour, the slipping zone always consisted of a nano-foliation defined by sub-micrometric smectite crystals wrapping opal grains. The microstructural differences were (1) the thickness of the slipping zone which decreased from 1.5 mm at V≤0.1 m/s to 0.15 mm at V=1.5 m/s, and (2) the structure of the foliated fabric, which was S/C'-type at V≤0.1 m/s and anastomosing-type at V=1.5 m/s. The presence of a similar nano-foliation in all the smectite-rich wet gouges suggests the activation of similar frictional processes, most likely grain boundary and interlayer frictional sliding aided by water films, operating from sub-seismic to seismic strain rates ( 10-10000 1/s). Water films on crystal boundaries and interlayers possibly control the micro- and nano-mechanics of smectite deformation, therefore influencing the bulk frictional behaviour during seismic slip.
Pagan, Darren C.; Miller, Matthew P.
2016-09-01
A new experimental method to determine heterogeneity of shear strains associated with crystallographic slip in the bulk of ductile, crystalline materials is outlined. The method quantifies the time resolved evolution of misorientation within plastically deforming crystals using single crystal orientation pole figures (SCPFs) measured in-situ with X-ray diffraction. A multiplicative decomposition of the crystal kinematics is used to interpret the distributions of lattice plane orientation observed on the SCPFs in terms of heterogeneous slip activity (shear strains) on multiple slip systems. Here, to show the method’s utility, the evolution of heterogeneous slip is quantified in a silicon single crystal plasticallymore » deformed at high temperature at multiple load steps, with slip activity in sub-volumes of the crystal analyzed simultaneously.« less
Effects of Bounded Fault on Seismic Radiation and Rupture Propagation
NASA Astrophysics Data System (ADS)
Weng, H.; Yang, H.
2016-12-01
It has been suggested that narrow rectangle fault may emit stopping phases that can largely affect seismic radiation and thus rupture propagation, e.g., generation of short-duration pulse-like ruptures. Here we investigate the effects of narrow along-dip rectangle fault (analogously to 2015 Nepal earthquake with 200 km * 40 km) on seismic radiation and rupture propagation through numerical modeling in the framework of the linear slip-weakening friction law. First, we found the critical slip-weakening distance Dc may largely affect the seismic radiation and other source parameters, such as rupture speed, final slip and stress drop. Fixing all other uniform parameters, decreasing Dc could decrease the duration time of slip rate and increase the peak slip rate, thus increase the seismic radiation energy spectrum of slip acceleration. In addition, smaller Dc could lead to larger rupture speed (close to S wave velocity), but smaller stress drop and final slip. The results show that Dc may control the efficiency of far-field radiation. Furthermore, the duration time of slip rate at locations close to boundaries is 1.5 - 4 s less than that in the center of the fault. Such boundary effect is especially remarkable for smaller Dc due to the smaller average duration time of slip rate, which could increase the high-frequency radiation energy and impede low-frequency component near the boundaries from the analysis of energy spectrum of slip acceleration. These results show high frequency energy tends to be radiated near the fault boundaries as long as Dc is small enough. In addition, ruptures are fragile and easy to self-arrest if the width of the seismogenic zone is very narrow. In other words, the sizes of nucleation zone need to be larger to initiate runaway ruptures. Our results show the critical sizes of nucleation zones increase as the widths of seismogenic zones decrease.
Wetzler, Nadav; Lay, Thorne; Brodsky, Emily E.; Kanamori, Hiroo
2018-01-01
Fault slip during plate boundary earthquakes releases a portion of the shear stress accumulated due to frictional resistance to relative plate motions. Investigation of 101 large [moment magnitude (Mw) ≥ 7] subduction zone plate boundary mainshocks with consistently determined coseismic slip distributions establishes that 15 to 55% of all master event–relocated aftershocks with Mw ≥ 5.2 are located within the slip regions of the mainshock ruptures and few are located in peak slip regions, allowing for uncertainty in the slip models. For the preferred models, cumulative deficiency of aftershocks within the central three-quarters of the scaled slip regions ranges from 15 to 45%, increasing with the total number of observed aftershocks. The spatial gradients of the mainshock coseismic slip concentrate residual shear stress near the slip zone margins and increase stress outside the slip zone, driving both interplate and intraplate aftershock occurrence near the periphery of the mainshock slip. The shear stress reduction in large-slip regions during the mainshock is generally sufficient to preclude further significant rupture during the aftershock sequence, consistent with large-slip areas relocking and not rupturing again for a substantial time. PMID:29487902
Surface Rupture and Slip Distribution Resulting from the 2013 M7.7 Balochistan, Pakistan Earthquake
NASA Astrophysics Data System (ADS)
Reitman, N. G.; Gold, R. D.; Briggs, R. W.; Barnhart, W. D.; Hayes, G. P.
2014-12-01
The 24 September 2013 M7.7 earthquake in Balochistan, Pakistan, produced a ~200 km long left-lateral strike-slip surface rupture along a portion of the Hoshab fault, a moderately dipping (45-75º) structure in the Makran accretionary prism. The rupture is remarkably continuous and crosses only two (0.7 and 1.5 km wide) step-overs along its arcuate path through southern Pakistan. Displacements are dominantly strike-slip, with a minor component of reverse motion. We remotely mapped the surface rupture at 1:5,000 scale and measured displacements using high resolution (0.5 m) pre- and post-event satellite imagery. We mapped 295 laterally faulted stream channels, terrace margins, and roads to quantify near-field displacement proximal (±10 m) to the rupture trace. The maximum near-field left-lateral offset is 15±2 m (average of ~7 m). Additionally, we used pre-event imagery to digitize 254 unique landforms in the "medium-field" (~100-200 m from the rupture) and then measured their displacements compared to the post-event imagery. At this scale, maximum left-lateral offset approaches 17 m (average of ~8.5 m). The width (extent of observed surface faulting) of the rupture zone varies from ~1 m to 3.7 km. Near- and medium-field offsets show similar slip distributions that are inversely correlated with the width of the fault zone at the surface (larger offsets correspond to narrow fault zones). The medium-field offset is usually greater than the near-field offset. The along-strike surface slip distribution is highly variable, similar to the slip distributions documented for the 2002 Denali M7.9 earthquake and 2001 Kunlun M7.8 earthquake, although the Pakistan offsets are larger in magnitude. The 2013 Pakistan earthquake ranks among the largest documented continental strike-slip displacements, possibly second only to the 18+ m surface displacements attributed to the 1855 Wairarapa M~8.1 earthquake.
Large-scale displacement following the 2016 Kaikōura earthquake
NASA Astrophysics Data System (ADS)
Wang, T.; Peng, D.; Barbot, S.; Wei, S.; Shi, X.
2017-12-01
The 2016 Mw 7.9 Kaikōura earthquake occurred near the southern termination of the Hikurangi subduction system, where a transition from subduction to strike-slip motion dominates the pre-seismic strain accumulation. Dense spatial coverage of the GPS measurements and large amount of Interferometric Synthetic Aperture Radar (InSAR) images provide valuable constraints, from the near field to the far field, to study how the slip is distributed among the subduction interface and the overlying fault system before, during and after the earthquake. We extract time-series deformation from the New Zealand continuous GPS network, and SAR images acquired from Japanese ALOS-2 and European Sentinel-1A/B satellites to image the surface deformation related to the 2016 Kaikōura earthquake. Both GPS and InSAR data, which cover the entire New Zealand region, show that the co-seismic and post-seismic deformations are distributed in an extraordinary large area, as far as to the north tip of the North Island. Based on a coseismic slip model derived from seismic and geodetic observations, we calculate the stress perturbation incurred by the earthquake. We explore a range of possibilities of friction laws and rheology via a linear combination of strain rate in finite volumes and slip velocity on ruptured faults. We obtain the slip distribution that can best explain our geodetic measurements using outlier-insensitive hierarchical Bayesian model, to better understand different mechanisms behind the localized shallow after slip and distributed deformation. Our results indicate that complex interactions between the subduction interface and the overlying fault system play an important role in causing such large-scale deformation during and after the earthquake event.
NASA Astrophysics Data System (ADS)
Li, Shanshan; Freymueller, Jeffrey T.
2018-04-01
We resurveyed preexisting campaign Global Positioning System (GPS) sites and estimated a highly precise GPS velocity field for the Alaska Peninsula. We use the TDEFNODE software to model the slip deficit distribution using the new GPS velocities. We find systematic misfits to the vertical velocities from the optimal model that fits the horizontal velocities well, which cannot be explained by altering the slip distribution, so we use only the horizontal velocities in the study. Locations of three boundaries that mark significant along-strike change in the locking distribution are identified. The Kodiak segment is strongly locked, the Semidi segment is intermediate, the Shumagin segment is weakly locked, and the Sanak segment is dominantly creeping. We suggest that a change in preexisting plate fabric orientation on the downgoing plate has an important control on the along-strike variation in the megathrust locking distribution and subduction seismicity.
NASA Astrophysics Data System (ADS)
Cheng, Li-Wei; Lee, Jian-Cheng; Hu, Jyr-Ching; Chen, Horng-Yue
2009-03-01
The Chengkung earthquake with ML = 6.6 occurred in eastern Taiwan at 12:38 local time on December 10th 2003. Based on the main shock relocation and aftershock distribution, the Chengkung earthquake occurred along the previously recognized N20°E trending Chihshang fault. This event did not cause human loss, but significant cracks developed at the ground surface and damaged some buildings. After 1951 Taitung earthquake, there was no larger ML > 6 earthquake occurred in this region until the Chengkung earthquake. As a result, the Chengkung earthquake is a good opportunity to study the seismogenic structure of the Chihshang fault. The coseismic displacements recorded by GPS show a fan-shaped distribution with maximal displacement of about 30 cm near the epicenter. The aftershocks of the Chengkung earthquake revealing an apparent linear distribution helps us to construct the clear fault geometry of the Chihshang fault. In this study, we employ a half-space angular elastic dislocation model with GPS observations to figure out the slip distribution and seismological behavior of the Chengkung earthquake on the Chihshang fault. The elastic half-space dislocation model reveals that the Chengkung earthquake is a thrust event with minor left-lateral strike-slip component. The maximum coseismic slip is located around the depth of 20 km and up to 1.1 m. The slips are gradually decreased to less than 10 cm near the surface part of the Chihshang fault. The seismogenic fault plane, which is constructed by the delineation of the aftershocks, demonstrates that the Chihshang fault is a high-angle fault. However the fault plane changes to a flat plane at depth of 20 km. In addition, a significant part of the measured deformation across the surface fault zone for this earthquake can be attributed to postseismic creep. The postseismic elastic dislocation model shows that most afterslips are distributed to the upper level of the Chihshang fault. And most afterslips consist of both of dip- and left-lateral slip. The model results show that the Chihshang fault may be partially locked or damped near surface during coseismic slip. After the mainshock, the strain, which cumulated near the surface, was released by postseismic creep resulting in significant postseismic deformation.
NASA Astrophysics Data System (ADS)
Wang, Lingquan; Zeng, Zhong; Zhang, Liangqi; Qiao, Long; Zhang, Yi; Lu, Yiyu
2018-04-01
Navier-Stokes (NS) equations with no-slip boundary conditions fail to realistically describe micro-flows with considering nanoscale phenomena. Particularly, in kerogen pores, slip-flow and surface diffusion are important. In this study, we propose a new slip boundary scheme for the lattice Boltzmann (LB) method through the non-equilibrium extrapolation scheme to simulate the slip-flow considering surface diffusion effect. Meanwhile, the second-order slip velocity can be taken into account. The predicted characteristics in a two-dimensional micro-flow, including slip-velocity, velocity distribution along the flow direction with/without surface diffusion are present. The results in this study are compared with available analytical and reference results, and good agreements are achieved.
Self-similar slip distributions on irregular shaped faults
NASA Astrophysics Data System (ADS)
Herrero, A.; Murphy, S.
2018-06-01
We propose a strategy to place a self-similar slip distribution on a complex fault surface that is represented by an unstructured mesh. This is possible by applying a strategy based on the composite source model where a hierarchical set of asperities, each with its own slip function which is dependent on the distance from the asperity centre. Central to this technique is the efficient, accurate computation of distance between two points on the fault surface. This is known as the geodetic distance problem. We propose a method to compute the distance across complex non-planar surfaces based on a corollary of the Huygens' principle. The difference between this method compared to others sample-based algorithms which precede it is the use of a curved front at a local level to calculate the distance. This technique produces a highly accurate computation of the distance as the curvature of the front is linked to the distance from the source. Our local scheme is based on a sequence of two trilaterations, producing a robust algorithm which is highly precise. We test the strategy on a planar surface in order to assess its ability to keep the self-similarity properties of a slip distribution. We also present a synthetic self-similar slip distribution on a real slab topography for a M8.5 event. This method for computing distance may be extended to the estimation of first arrival times in both complex 3D surfaces or 3D volumes.
Effects of Roughness and Inertia on Precursors to Frictional Sliding
NASA Astrophysics Data System (ADS)
Robbins, Mark O.; Salerno, K. Michael
2012-02-01
Experiments show that when a PMMA block on a surface is normally loaded and driven by an external shear force, contact at the interface is modified in discrete precursor slips prior to steady state sliding.[1] Our simulations use an atomistic model of a rough two-dimensional block in contact with a flat surface to investigate the evolution of stress and displacement along the contact between surfaces. The talk will show how local and global stress conditions govern the initiation of interfacial cracks as well as the spatial extension of the cracked region. Inertia also plays an important role in determining the number and size of slips before sliding and influences the distribution of stresses at the interface. Finally, the geometry of surface asperities also influences the interfacial evolution and the total friction force. The relationship between the interfacial stress state and rupture velocity will also be discussed. [1] S.M. Rubinstein, G. Cohen and J. Fineberg, PRL 98, 226103 (2007)
A bottom-driven mechanism for distributed faulting: Insights from the Gulf of California Rift
NASA Astrophysics Data System (ADS)
Persaud, P.; Tan, E.; Choi, E.; Contreras, J.; Lavier, L. L.
2017-12-01
The Gulf of California is a young oblique rift that displays a variation in rifting style along strike. Despite the rapid localization of strain in the Gulf at 6 Ma, the northern rift segment has the characteristics of a wide rift, with broadly distributed extensional strain and small gradients in topography and crustal thinning. Observations of active faulting in the continent-ocean transition of the Northern Gulf show multiple oblique-slip faults distributed in a 200 x 70 km2area developed some time after a westward relocation of the plate boundary at 2 Ma. In contrast, north and south of this broad pull-apart structure, major transform faults accommodate Pacific-North America plate motion. Here we propose that the mechanism for distributed brittle deformation results from the boundary conditions present in the Northern Gulf, where basal shear is distributed between the Cerro Prieto strike-slip fault (southernmost fault of the San Andreas fault system) and the Ballenas Transform fault. We hypothesize that in oblique-extensional settings whether deformation is partitioned in a few dip-slip and strike-slip faults, or in numerous oblique-slip faults may depend on (1) bottom-driven, distributed extension and shear deformation of the lower crust or upper mantle, and (2) the rift obliquity. To test this idea, we explore the effects of bottom-driven shear on the deformation of a brittle elastic-plastic layer with pseudo-three dimensional numerical models that include side forces. Strain localization results when the basal shear is a step-function while oblique-slip on numerous faults dominates when basal shear is distributed. We further investigate how the style of faulting varies with obliquity and demonstrate that the style of faulting observed in the Northern Gulf of California is reproduced in models with an obliquity of 0.7 and distributed basal shear boundary conditions, consistent with the interpreted obliquity and boundary conditions of the study area. Our findings motivate a suite of 3D models of the early plate boundary evolution in the Gulf, and highlight the importance of local stress field perturbations as a mechanism for broadening the deformation zone in other regions such as the Basin and Range, Rio Grande Rift and Malawi Rift.
NASA Astrophysics Data System (ADS)
Matcharashvili, Teimuraz; Chelidze, Tamaz; Zhukova, Natalia; Mepharidze, Ekaterine; Sborshchikov, Alexander
2010-05-01
Many scientific works on dynamics of earthquake generation are devoted to qualitative and quantitative reproduction of behavior of seismic faults. Number of theoretical, numerical or physical models are already designed for this purpose. Main assumption of these works is that the correct model must be capable to reproduce power law type relation for event sizes with magnitudes greater than or equal to a some threshold value, similar to Gutenberg-Richter (GR) law for the size distribution of earthquakes. To model behavior of a seismic faults in laboratory conditions spring-block experimental systems are often used. They enable to generate stick-slip movement, intermittent behavior occurring when two solids in contact slide relative to each other driven at a constant velocity. Wide interest to such spring-block models is caused by the fact that stick-slip is recognized as a basic process underlying earthquakes generation along pre-existing faults. It is worth to mention, that in stick slip experiments reproduction of power law, in slip events size distribution, with b values close or equal to the one found for natural seismicity is possible. Stick-slip process observed in these experimental models is accompanied by a transient elastic waves propagation generated during the rapid release of stress energy in spring-block system. Oscillations of stress energy can be detected as a characteristic acoustic emission (AE). Accompanying stick slip AE is the subject of intense investigation, but many aspects of this process are still unclear. In the present research we aimed to investigate dynamics of stick slip AE in order to find whether its distributional properties obey power law. Experiments have been carried out on spring-block system consisting of fixed and sliding plates of roughly finished basalt samples. The sliding block was driven with a constant velocity. Experiments have been carried out for five different stiffness of pulling spring. Thus five different regimes of stick slip movement has been maintained. The AE accompanying the elementary slip events of stick-slip process were recorded on a PC sound card. The sensor for the AE was a lead circonate-titanate with a natural frequency of 100 KHz. In order to ensure standard conditions in each experiment, sliding surfaces were sanded up by sandpaper and cleaned of a dust. AE data analysis consisted of signal conditioning, filtering, and correct wave trains separation. Onset time of AE was determined at a minimun of Akaike Information Criterion. Afterwards time series of AE characteristics such as: recurrence times between consecutive AE bursts as well as time intervals between their maximums, duration of AE bursts, energy and power of AE, max by modulus of AE wave train amplitudes, etc. have been compiled. Cumulative probability distributions for all these data sets have been constructed and tested on the subject of GR type power law relation. It was found that characteristics of AE of stick slip process are strongly depending on the movement regime. Number of registered AE essentially increased for stiffer spring. At the same time recurrence times and emitted AE energy decreases. Power law type relation have not been observed for all AE characteristics and not for all considered regimes of movement. Power law relation, close to observed for real seismicity, was found for power of AE time series at stiffer springs. It is interesting that recurrence times between maximums of consecutive AE bursts and duration of AE bursts, reveal b in the range of 0.6-1.65. These results point that experimental conditions of stick slip process including movement regimes should be selected with care to ensure similarity between model and natural seismicity distributional characteristics.
NASA Astrophysics Data System (ADS)
Kurtz, R.; Klinger, Y.; Ferry, M.; Ritz, J.-F.
2018-06-01
The 1957, MW 8.1, Gobi-Altai earthquake, Southern Mongolia, produced a 360-km-long surface rupture along the Eastern Bogd fault. Cumulative offsets of geomorphic features suggest that the Eastern Bogd fault might produce characteristic slip over the last seismic cycles. Using orthophotographs derived from a dataset of historical aerial photographs acquired in 1958, we measured horizontal offsets along two thirds ( 170 km) of the 1957 left-lateral strike-slip surface rupture. We propose a new empirical methodology to extract the average slip for each past earthquake that could be recognized along successive fault segments, to determine the slip distribution associated with successive past earthquakes. Our results suggest that the horizontal slip distribution of the 1957 Gobi-Altai earthquake is fairly flat, with an average offset of 3.5 m ± 1.3 m. A combination of our lateral measurements with vertical displacements derived from the literature, allows us to re-assess the magnitude of the Gobi-Altai earthquake to be between MW 7.8 and MW 8.2, depending on the depth of the rupture, and related value of the shear modulus. When comparing this magnitude to magnitudes derived from seismic data, it suggests that the rupture may have extended deeper than the 15 km to 20 km usually considered for the seismogenic crust. We observe that some fault segments are more likely than others to record seismic deformation through several seismic cycles, depending on the local rupture complexity and geomorphology. Additionally, our results allow us to model the horizontal slip function for the 1957 Gobi-Altai earthquake and for three previous paleoseismic events along 70% of the studied area. Along about 50% of the fault sections where we could recognize three past earthquakes, our results suggest that the slip per event was similar for each earthquake.
Learning and Prediction of Slip from Visual Information
NASA Technical Reports Server (NTRS)
Angelova, Anelia; Matthies, Larry; Helmick, Daniel; Perona, Pietro
2007-01-01
This paper presents an approach for slip prediction from a distance for wheeled ground robots using visual information as input. Large amounts of slippage which can occur on certain surfaces, such as sandy slopes, will negatively affect rover mobility. Therefore, obtaining information about slip before entering such terrain can be very useful for better planning and avoiding these areas. To address this problem, terrain appearance and geometry information about map cells are correlated to the slip measured by the rover while traversing each cell. This relationship is learned from previous experience, so slip can be predicted remotely from visual information only. The proposed method consists of terrain type recognition and nonlinear regression modeling. The method has been implemented and tested offline on several off-road terrains including: soil, sand, gravel, and woodchips. The final slip prediction error is about 20%. The system is intended for improved navigation on steep slopes and rough terrain for Mars rovers.
Micromechanics of sea ice frictional slip from test basin scale experiments
NASA Astrophysics Data System (ADS)
Sammonds, Peter R.; Hatton, Daniel C.; Feltham, Daniel L.
2017-02-01
We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick-slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick-slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity-asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771-2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with ? (where τ is the shear stress and σn is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = ffractal Tmlws, where ffractal is the fractal asperity height distribution, Tml is the shear strength for frictional melting and lubrication and ws is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication. This article is part of the themed issue 'Microdynamics of ice'.
NASA Astrophysics Data System (ADS)
Barnhart, W. D.; Briggs, R.
2015-12-01
Geodetic imaging techniques enable researchers to "see" details of fault rupture that cannot be captured by complementary tools such as seismology and field studies, thus providing increasingly detailed information about surface strain, slip kinematics, and how an earthquake may be transcribed into the geological record. For example, the recent Haiti, Sierra El Mayor, and Nepal earthquakes illustrate the fundamental role of geodetic observations in recording blind ruptures where purely geological and seismological studies provided incomplete views of rupture kinematics. Traditional earthquake hazard analyses typically rely on sparse paleoseismic observations and incomplete mapping, simple assumptions of slip kinematics from Andersonian faulting, and earthquake analogs to characterize the probabilities of forthcoming ruptures and the severity of ground accelerations. Spatially dense geodetic observations in turn help to identify where these prevailing assumptions regarding fault behavior break down and highlight new and unexpected kinematic slip behavior. Here, we focus on three key contributions of space geodetic observations to the analysis of co-seismic deformation: identifying near-surface co-seismic slip where no easily recognized fault rupture exists; discerning non-Andersonian faulting styles; and quantifying distributed, off-fault deformation. The 2013 Balochistan strike slip earthquake in Pakistan illuminates how space geodesy precisely images non-Andersonian behavior and off-fault deformation. Through analysis of high-resolution optical imagery and DEMs, evidence emerges that a single fault map slip as both a strike slip and dip slip fault across multiple seismic cycles. These observations likewise enable us to quantify on-fault deformation, which account for ~72% of the displacements in this earthquake. Nonetheless, the spatial distribution of on- and off-fault deformation in this event is highly spatially variable- a complicating factor for comparisons of geologic and geodetic slip rates. As such, detailed studies such as this will play a continuing vital role in the accurate assessment of short- and long-term fault slip kinematics.
Dulal, Nabeen; Shanks, Robert; Gengenbach, Thomas; Gill, Harsharn; Chalmers, David; Adhikari, Benu; Pardo Martinez, Isaac
2017-11-01
The amount and distribution of slip agents, erucamide, and behenamide, on the surface of high-density polyethene, is determined by integral characteristics of slip agent structure and polymer morphology. A suite of surface analysis techniques was applied to correlate physicochemical properties with slip-additive migration behaviour and their surface morphology. The migration, surface morphology and physicochemical properties of the slip additives, crystallinity and orientation of polyethene spherulites and interaction between slip additives and high-density polyethene influence the surface characteristics. The high-density polyethene closures were produced with erucamide and behenamide separately and stored until they produced required torque. Surface composition was determined employing spectroscopy and gas chromatography. The distribution of additives was observed under optical, scanning electron and atomic force microscopes. The surface energy, crystallinity and application torque were measured using contact angle, differential scanning calorimeter and a torque force tester respectively. Each slip additive produced a characteristic amide peak at 1645cm -1 in infrared spectroscopy and peaks of oxygen and nitrogen in X-ray photoelectron spectroscopy, suggesting their presence on the surface. The erucamide produced placoid scale-like structures and behenamide formed denticulate structures. The surface erucamide and behenamide responsible for reducing the torque was found to be 15.7µg/cm 2 and 1.7µg/cm 2 . Copyright © 2017 Elsevier Inc. All rights reserved.
Slip Distribution of the 2008 Iwate-Miyagi Nairiku, Japan, Earthquake Inverted from PALSAR Data
NASA Astrophysics Data System (ADS)
Fukahata, Y.; Fukushima, Y.; Arimoto, M.
2008-12-01
On 14 June 2008, the Iwate-Miyagi Nairiku earthquake struck northeast Japan, where active seismicity has been observed under east-west compressional stress fields. According to the Japan Meteorological Agency, the magnitude and the hypocenter depth of the earthquake are 7.2 and 8 km, respectively. The earthquake is considered to have occurred on a west dipping reverse fault with a roughly north-south strike. The earthquake caused significant surface displacements, which were detected by PALSAR, a Synthetic Aperture Radar (SAR) onboard the Advanced Land Observing Satellite (ALOS) employed by the Japan Aerospace Exploration Agency (JAXA). Several pairs of PALSAR images are available to measure the coseismic displacements. InSAR data show up to 1 m of line-of-sight displacements both for ascending and descending paths. The pixel matching method was also used to obtain range and azimuth offset data around the epicentral region, where displacements were too large for the interferometric technique (see Fukushima (this meeting) in detail). We inverted the obtained SAR interferometric and pixel matching data to estimate slip distribution on the fault. Since the geometry of the fault are not well known, the inverse problem is non-linear. If the fault surface is assumed to be a flat plane, however, the non-linearity is weak. Following the method of Fukahata & Wright (2008), we resolved the weak non-linearity based on ABIC (Akaike"fs Bayesian Information Criterion). That is to say, the fault parameters (e.g. strike, dip and location) as well as the weight of smoothing parameter were objectively determined by minimizing ABIC. We first estimated slip distribution by assuming a pure dip slip for simplicity, since it has been reported that the dip slip component is dominant. Then, the optimal fault geometry was dip 26 and strike 203 degrees with the location passing through (140.90E, 38.97N). The maximum slip was more than 8 m and most slips concentrated at shallow depths (< 4 km). Without fixing the rake, a large slip area with the maximum slip of about 8 m concentrated in the shallow region was obtained again.
Frictional strength of wet- and dry- talc gouge in high-velocity shear experiments
NASA Astrophysics Data System (ADS)
Chen, X.; Reches, Z.; Elwood Madden, A. S.
2015-12-01
The strength of the creeping segment of the San Andres fault may be controlled by the distinct weakness and stability of talc (Moore & Rymer, 2007). We analyze talc frictional strength at high slip-velocity of 0.002 - 0.66 m/s, long slip-distances of 0.01 m to 33 m, and normal stresses up to 4.1 MPa. This analysis bridges the gap between nucleation stage of low velocity/distance, and the frictional behavior during large earthquakes. We tested wet and dry samples of pure talc gouge in a confined rotary cell, and continuously monitored the slip-velocity, stresses, dilation and temperature. We run 29 experiments of single and stepped velocities to obtain 243 values of quasi-static frictional coefficients. Dry talc gouge showed distinct slip-strengthening: friction coefficient of µ ~0.4 at short slip-distances of D < 0.1 m, and it increased systematically to µ ~0.8 at slip-distances of D = 0.1- 1 m; at D > 1 m, the frictional strength saturated at µ= 0.8 - 1 level. Wet talc gouge (16-20% water) displayed low frictional strength of µ= 0.1-0.3, in agreement with published triaxial tests. The stepped-velocity runs revealed a consistent velocity-strengthening trend. For a velocity jump from V1 to V2, we used VD = (µ2 -µ1)/ln (V2/V1), and found that on average VD = 0.06 and 0.03 for dry and wet talc, respectively, and for slip distances shorter than 1 m. Microstructural analysis of post-shearing wet talc gouge revealed extreme slip localization to a principal-slip-zone of a few microns, and significant shear compaction of 10-30%. In contrast, dry talc gouge exhibited distributed shear in a wide zone and systematic shear dilation (10-50%). We propose slip along weak interlayer talc plates and thermal-pressurization as the possible weakening mechanisms for wet talc. The development of distributed secondary fault network along with substantial grain crushing is responsible for slip-strengthening in dry condition. Fig. 1. Friction maps of talc gouge as function of slip-distance (left) and slip-velocity (right). Resuslts of both stepped-velocity and constant-velocity runs. Open symbols- wet talc; solid symbols- dry talc; symbol colors on right plotindicate slip-distance; data scatter in right plot may indicate slip at same velocity for different distances.
NASA Astrophysics Data System (ADS)
Pulido, N.; Tavera, H.; Aguilar, Z.; Chlieh, M.; Calderon, D.; Sekiguchi, T.; Nakai, S.; Yamazaki, F.
2012-12-01
We have developed a methodology for the estimation of slip scenarios for megathrust earthquakes based on a model of interseismic coupling (ISC) distribution in subduction margins obtained from geodetic data, as well as information of recurrence of historical earthquakes. This geodetic slip model (GSM) delineates the long wavelength asperities within the megathrust. For the simulation of strong ground motion it becomes necessary to introduce short wavelength heterogeneities to the source slip to be able to efficiently simulate high frequency ground motions. To achieve this purpose we elaborate "broadband" source models constructed by combining the GSM with several short wavelength slip distributions obtained from a Von Karman PSD function with random phases. Our application of the method to Central Andes in Peru, show that this region has presently the potential of generating an earthquake with moment magnitude of 8.9, with a peak slip of 17 m and a source area of approximately 500 km along strike and 165 km along dip. For the strong motion simulations we constructed 12 broadband slip models, and consider 9 possible hypocenter locations for each model. We performed strong motion simulations for the whole central Andes region (Peru), spanning an area from the Nazca ridge (16^o S) to the Mendana fracture (9^o S). For this purpose we use the hybrid strong motion simulation method of Pulido et al. (2004), improved to handle a general slip distribution. Our simulated PGA and PGV distributions indicate that a region of at least 500 km along the coast of central Andes is subjected to a MMI intensity of approximately 8, for the slip model that yielded the largest ground motions among the 12 slip models considered, averaged for all assumed hypocenter locations. This result is in agreement with the macroseismic intensity distribution estimated for the great 1746 earthquake (M~9) in central Andes (Dorbath et al. 1990). Our results indicate that the simulated PGA and PGV for all scenario slips for central Andes, and for an average soil condition, exhibit similar amplitudes and attenuation characteristics with distance as the PGA and PGV values observed during the 2010 Maule (Mw 8.8), and 2011 Tohoku-oki (Mw 9.0) earthquakes. Our results clearly indicate that the simulated ground motions for scenarios with deep rupture nucleations (~40 km) are consistently smaller than the ground motions obtained for shallower rupture nucleations. We also performed strong ground motion simulations in metropolitan Lima by using the aforementioned slip scenarios, and incorporating site amplifications obtained from several microtremors array surveys conducted at representative geotechnical zones in this city. Our simulated PGA and PGV in Lima reach values of 1000 cm/s^2 and 80 cm/s. Our results show that the largest values of PGA (at Puente Piedra district, Northern Lima) are related with short period site effects, whereas the largest values of PGV are related with large site amplifications for periods from 1s to 1.5s (at Callao, Villa el Salvador and La Molina districts). Our results also indicate that the simulated PGA and PGV in central Lima (Parque de la Reserva) are in average 2~3 times larger than the values recorded by a strong motion instrument installed at this location, during the 1974 (Mw8.0) and 1966 (Mw8.0) earthquakes off-shore Lima.
Earthquake Prediction in Large-scale Faulting Experiments
NASA Astrophysics Data System (ADS)
Junger, J.; Kilgore, B.; Beeler, N.; Dieterich, J.
2004-12-01
We study repeated earthquake slip of a 2 m long laboratory granite fault surface with approximately homogenous frictional properties. In this apparatus earthquakes follow a period of controlled, constant rate shear stress increase, analogous to tectonic loading. Slip initiates and accumulates within a limited area of the fault surface while the surrounding fault remains locked. Dynamic rupture propagation and slip of the entire fault surface is induced when slip in the nucleating zone becomes sufficiently large. We report on the event to event reproducibility of loading time (recurrence interval), failure stress, stress drop, and precursory activity. We tentatively interpret these variations as indications of the intrinsic variability of small earthquake occurrence and source physics in this controlled setting. We use the results to produce measures of earthquake predictability based on the probability density of repeating occurrence and the reproducibility of near-field precursory strain. At 4 MPa normal stress and a loading rate of 0.0001 MPa/s, the loading time is ˜25 min, with a coefficient of variation of around 10%. Static stress drop has a similar variability which results almost entirely from variability of the final (rather than initial) stress. Thus, the initial stress has low variability and event times are slip-predictable. The variability of loading time to failure is comparable to the lowest variability of recurrence time of small repeating earthquakes at Parkfield (Nadeau et al., 1998) and our result may be a good estimate of the intrinsic variability of recurrence. Distributions of loading time can be adequately represented by a log-normal or Weibel distribution but long term prediction of the next event time based on probabilistic representation of previous occurrence is not dramatically better than for field-observed small- or large-magnitude earthquake datasets. The gradually accelerating precursory aseismic slip observed in the region of nucleation in these experiments is consistent with observations and theory of Dieterich and Kilgore (1996). Precursory strains can be detected typically after 50% of the total loading time. The Dieterich and Kilgore approach implies an alternative method of earthquake prediction based on comparing real-time strain monitoring with previous precursory strain records or with physically-based models of accelerating slip. Near failure, time to failure t is approximately inversely proportional to precursory slip rate V. Based on a least squares fit to accelerating slip velocity from ten or more events, the standard deviation of the residual between predicted and observed log t is typically 0.14. Scaling these results to natural recurrence suggests that a year prior to an earthquake, failure time can be predicted from measured fault slip rate with a typical error of 140 days, and a day prior to the earthquake with a typical error of 9 hours. However, such predictions require detecting aseismic nucleating strains, which have not yet been found in the field, and on distinguishing earthquake precursors from other strain transients. There is some field evidence of precursory seismic strain for large earthquakes (Bufe and Varnes, 1993) which may be related to our observations. In instances where precursory activity is spatially variable during the interseismic period, as in our experiments, distinguishing precursory activity might be best accomplished with deep arrays of near fault instruments and pattern recognition algorithms such as principle component analysis (Rundle et al., 2000).
GPS source solution of the 2004 Parkfield earthquake.
Houlié, N; Dreger, D; Kim, A
2014-01-17
We compute a series of finite-source parameter inversions of the fault rupture of the 2004 Parkfield earthquake based on 1 Hz GPS records only. We confirm that some of the co-seismic slip at shallow depth (<5 km) constrained by InSAR data processing results from early post-seismic deformation. We also show 1) that if located very close to the rupture, a GPS receiver can saturate while it remains possible to estimate the ground velocity (~1.2 m/s) near the fault, 2) that GPS waveforms inversions constrain that the slip distribution at depth even when GPS monuments are not located directly above the ruptured areas and 3) the slip distribution at depth from our best models agree with that recovered from strong motion data. The 95(th) percentile of the slip amplitudes for rupture velocities ranging from 2 to 5 km/s is ~55 ± 6 cm.
GPS source solution of the 2004 Parkfield earthquake
Houlié, N.; Dreger, D.; Kim, A.
2014-01-01
We compute a series of finite-source parameter inversions of the fault rupture of the 2004 Parkfield earthquake based on 1 Hz GPS records only. We confirm that some of the co-seismic slip at shallow depth (<5 km) constrained by InSAR data processing results from early post-seismic deformation. We also show 1) that if located very close to the rupture, a GPS receiver can saturate while it remains possible to estimate the ground velocity (~1.2 m/s) near the fault, 2) that GPS waveforms inversions constrain that the slip distribution at depth even when GPS monuments are not located directly above the ruptured areas and 3) the slip distribution at depth from our best models agree with that recovered from strong motion data. The 95th percentile of the slip amplitudes for rupture velocities ranging from 2 to 5 km/s is ~55 ± 6 cm. PMID:24434939
Din, Ghiyas Ud; Chughtai, Imran Rafiq; Inayat, Mansoor Hameed; Khan, Iqbal Hussain
2008-12-01
Axial dispersion, holdup and slip velocity of dispersed phase have been investigated for a range of dispersed and continuous phase superficial velocities in a pulsed sieve plate extraction column using radiotracer residence time distribution (RTD) analysis. Axial dispersion model (ADM) was used to simulate the hydrodynamics of the system. It has been observed that increase in dispersed phase superficial velocity results in a decrease in its axial dispersion and increase in its slip velocity while its holdup increases till a maximum asymptotic value is achieved. An increase in superficial velocity of continuous phase increases the axial dispersion and holdup of dispersed phase until a maximum value is obtained, while slip velocity of dispersed phase is found to decrease in the beginning and then it increases with increase in superficial velocity of continuous phase.
Slip length measurement of gas flow.
Maali, Abdelhamid; Colin, Stéphane; Bhushan, Bharat
2016-09-16
In this paper, we present a review of the most important techniques used to measure the slip length of gas flow on isothermal surfaces. First, we present the famous Millikan experiment and then the rotating cylinder and spinning rotor gauge methods. Then, we describe the gas flow rate experiment, which is the most widely used technique to probe a confined gas and measure the slip. Finally, we present a promising technique using an atomic force microscope introduced recently to study the behavior of nanoscale confined gas.
The effect of crack blunting on the competition between dislocation nucleation and cleavage
NASA Astrophysics Data System (ADS)
Fischer, Lisa L.; Beltz, Glenn E.
2001-03-01
To better understand the ductile versus brittle fracture behavior of crystalline materials, attention should be directed towards physically realistic crack geometries. Currently, continuum models of ductile versus brittle behavior are typically based on the analysis of a pre-existing sharp crack in order to use analytical solutions for the stress fields around the crack tip. This paper examines the effects of crack blunting on the competition between dislocation nucleation and atomic decohesion using continuum methods. We accomplish this by assuming that the crack geometry is elliptical, which has the primary advantage that the stress fields are available in closed form. These stress field solutions are then used to calculate the thresholds for dislocation nucleation and atomic decohesion. A Peierls-type framework is used to obtain the thresholds for dislocation nucleation, in which the region of the slip plane ahead of the crack develops a distribution of slip discontinuity prior to nucleation. This slip distribution increases as the applied load is increased until an instability is reached and the governing integral equation can no longer be solved. These calculations are carried out for various crack tip geometries to ascertain the effects of crack tip blunting. The thresholds for atomic decohesion are calculated using a cohesive zone model, in which the region of the crack front develops a distribution of opening displacement prior to atomic decohesion. Again, loading of the elliptical crack tip eventually results in an instability, which marks the onset of crack advance. These calculations are carried out for various crack tip geometries. The results of these separate calculations are presented as the critical energy release rates versus the crack tip radius of curvature for a given crack length. The two threshold curves are compared simultaneously to determine which failure mode is energetically more likely at various crack tip curvatures. From these comparisons, four possible types of material fracture behavior are identified: intrinsically brittle, quasi-brittle, intrinsically ductile, and quasi-ductile. Finally, real material examples are discussed.
NASA Astrophysics Data System (ADS)
Doubre, Cécile; Peltzer, Gilles
2007-01-01
The deformation in the Asal Rift (Djibouti) is characterized by magmatic inflation, diking, distributed extension, fissure opening, and normal faulting. An 8 yr time line of surface displacement maps covering the rift, constructed using radar interferometry data acquired by the Canadian satellite Radarsat between 1997 and 2005, reveals the aseismic behavior of faults and its relation with bursts of microseismicity. The observed ground movements show the asymmetric subsidence of the inner floor of the rift with respect to the bordering shoulders accommodated by slip on three of the main active faults. Fault slip occurs both as steady creep and during sudden slip events accompanied by an increase in the seismicity rate around the slipping fault and the Fieale volcanic center. Slip distribution along fault strike shows triangular sections, a pattern not explained by simple elastic dislocation theory. These observations suggest that the Asal Rift faults are in a critical failure state and respond instantly to small pressure changes in fluid-filled fractures connected to the faults, reducing the effective normal stress on their locked section at depth.
NASA Astrophysics Data System (ADS)
Yohler, R. M.; Bartlow, N. M.; Wallace, L. M.; Williams, C. A.
2017-12-01
Investigation of slow slip events (SSEs) has become a useful tool for understanding plate boundary fault mechanics in subduction zones where the largest earthquakes occur. An area of specific importance is along the Hikurangi subduction zone in New Zealand, where repeating, known offshore and onshore slow slip patches have been identified since 2002 from the GeoNet cGPS array. Most models of offshore SSEs in New Zealand and elsewhere are solely constrained by these land-based cGPS arrays. This has led to models with poor resolution out near the trench of the subduction zone, where tsunami hazards are greatest. However, a year-long deployment of seafloor pressure sensors (titled "Hikurangi Ocean Bottom Investigation of Tremor and Slow Slip" (HOBITSS)) took place from mid-2014 to mid-2015 offshore of Gisborne, New Zealand and the northern Hikurangi subduction margin. In September 2014, a large SSE was recorded by the HOBITSS and onshore cGPS arrays which allowed for a slip model with better resolution near the trench [Wallace et al., Science, 2016]. Here we investigate the static and time-dependent slip distribution and propagation during the 2014 SSE by joint inversion of the HOBITSS ocean bottom pressure data and onshore cGPS data using the Network Inversion Filter (NIF). This inversion also incorporates more realistic elastic properties by generating Greens functions using the PyLith finite element code with material properties inferred from the New-Zealand wide seismic velocity model. The addition of the APG data and realistic elastic properties not only increased the slip amplitude during the SSE, but also suggests that the onset of the SSE is several days earlier than models predicted by only cGPS. Moreover, the addition of the APG data increased model resolution directly over the SSE by several cm. Additionally, we will also test ranges of possible slip distributions by using the moment bounding technique described in Johnson et al. 1994. While the NIF relies on smoothing parameters for a best fit model, this technique is free from smoothing constraints and will ultimately aid in understanding the range of SSE slip magnitudes that can be fit by the GPS and APG data.
Nicolsky, D. J.; Freymueller, J.T.; Witter, R.C.; Suleimani, E. N.; Koehler, R.D.
2016-01-01
We reassess the slip distribution of the 1957 Andreanof Islands earthquake in the eastern part of the aftershock zone where published slip models infer little or no slip. Eyewitness reports, tide gauge data, and geological evidence for 9–23 m tsunami runups imply seafloor deformation offshore Unalaska Island in 1957, in contrast with previous studies that labeled the area a seismic gap. Here, we simulate tsunami dynamics for a suite of deformation models that vary in depth and amount of megathrust slip. Tsunami simulations show that a shallow (5–15 km deep) rupture with ~20 m of slip most closely reproduces the 1957 Dutch Harbor marigram and nearby >18 m runup at Sedanka Island marked by stranded drift logs. Models that place slip >20 km predict waves that arrive too soon. Our results imply that shallow slip on the megathrust in 1957 extended east into an area that presently creeps.
Stochastic static fault slip inversion from geodetic data with non-negativity and bound constraints
NASA Astrophysics Data System (ADS)
Nocquet, J.-M.
2018-07-01
Despite surface displacements observed by geodesy are linear combinations of slip at faults in an elastic medium, determining the spatial distribution of fault slip remains a ill-posed inverse problem. A widely used approach to circumvent the illness of the inversion is to add regularization constraints in terms of smoothing and/or damping so that the linear system becomes invertible. However, the choice of regularization parameters is often arbitrary, and sometimes leads to significantly different results. Furthermore, the resolution analysis is usually empirical and cannot be made independently of the regularization. The stochastic approach of inverse problems provides a rigorous framework where the a priori information about the searched parameters is combined with the observations in order to derive posterior probabilities of the unkown parameters. Here, I investigate an approach where the prior probability density function (pdf) is a multivariate Gaussian function, with single truncation to impose positivity of slip or double truncation to impose positivity and upper bounds on slip for interseismic modelling. I show that the joint posterior pdf is similar to the linear untruncated Gaussian case and can be expressed as a truncated multivariate normal (TMVN) distribution. The TMVN form can then be used to obtain semi-analytical formulae for the single, 2-D or n-D marginal pdf. The semi-analytical formula involves the product of a Gaussian by an integral term that can be evaluated using recent developments in TMVN probabilities calculations. Posterior mean and covariance can also be efficiently derived. I show that the maximum posterior (MAP) can be obtained using a non-negative least-squares algorithm for the single truncated case or using the bounded-variable least-squares algorithm for the double truncated case. I show that the case of independent uniform priors can be approximated using TMVN. The numerical equivalence to Bayesian inversions using Monte Carlo Markov chain (MCMC) sampling is shown for a synthetic example and a real case for interseismic modelling in Central Peru. The TMVN method overcomes several limitations of the Bayesian approach using MCMC sampling. First, the need of computer power is largely reduced. Second, unlike Bayesian MCMC-based approach, marginal pdf, mean, variance or covariance are obtained independently one from each other. Third, the probability and cumulative density functions can be obtained with any density of points. Finally, determining the MAP is extremely fast.
Up-dip partitioning of displacement components on the oblique-slip Clarence Fault, New Zealand
NASA Astrophysics Data System (ADS)
Nicol, Andrew; Van Dissen, Russell
2002-09-01
Active strike-slip faults in New Zealand occur within an obliquely-convergent plate boundary zone. Although the traces of these faults commonly delineate the base of mountain ranges, they do not always accommodate significant shortening at the free surface. Along the active trace of Clarence Fault in northeastern South Island, New Zealand, displaced landforms and slickenside striations indicate predominantly horizontal displacements at the ground surface, and a right-lateral slip rate of ca. 3.5-5 mm/year during the Holocene. The Inland Kaikoura mountain range occupies the hanging wall of the fault and rises steeply from the active trace to altitudes of ca. 3 km. The geomorphology of the range indicates active uplift and mountain building, which is interpreted to result, in part, from a vertical component of fault slip at depth. These data are consistent with the fault accommodating oblique-slip at depth aligned parallel to the plate-motion vector and compatible with regional geodetic data and earthquake focal-mechanisms. Oblique-slip on the Clarence Fault at depth is partitioned at the free surface into: (1) right-lateral displacement on the fault, and (2) hanging wall uplift produced by distributed displacement on small-scale faults parallel to the main fault. Decoupling of slip components reflects an up-dip transfer of fault throw to an off-fault zone of distributed uplift. Such zones are common in the hanging walls of thrusts and reverse faults, and support the idea that the dip of the oblique-slip Clarence Fault steepens towards the free surface.
NASA Astrophysics Data System (ADS)
Selvadurai, Paul A.; Glaser, Steven D.; Parker, Jessica M.
2017-03-01
Spatial variations in frictional properties on natural faults are believed to be a factor influencing the presence of slow slip events (SSEs). This effect was tested on a laboratory frictional interface between two polymethyl methacrylate (PMMA) bodies. We studied the evolution of slip and slip rates that varied systematically based on the application of both high and low normal stress (σ0=0.8 or 0.4 MPa) and the far-field loading rate (VLP). A spontaneous, frictional rupture expanded from the central, weaker, and more compliant section of the fault that had fewer asperities. Slow rupture propagated at speeds Vslow˜0.8 to 26 mm s-1 with slip rates from 0.01 to 0.2 μm s-1, resulting in stress drops around 100 kPa. During certain nucleation sequences, the fault experienced a partial stress drop, referred to as precursor detachment fronts in tribology. Only at the higher level of normal stress did these fronts exist, and the slip and slip rates mimicked the moment and moment release rates during the 2013-2014 Boso SSE in Japan. The laboratory detachment fronts showed rupture propagation speeds Vslow/VR∈ (5 to 172) × 10-7 and stress drops ˜ 100 kPa, which both scaled to the aforementioned SSE. Distributions of asperities, measured using a pressure sensitive film, increased in complexity with additional normal stress—an increase in normal stress caused added complexity by increasing both the mean size and standard deviation of asperity distributions, and this appeared to control the presence of the detachment front.
Murray, J.; Langbein, J.
2006-01-01
Parkfield, California, which experienced M 6.0 earthquakes in 1934, 1966, and 2004, is one of the few locales for which geodetic observations span multiple earthquake cycles. We undertake a comprehensive study of deformation over the most recent earthquake cycle and explore the results in the context of geodetic data collected prior to the 1966 event. Through joint inversion of the variety of Parkfield geodetic measurements (trilateration, two-color laser, and Global Positioning System), including previously unpublished two-color data, we estimate the spatial distribution of slip and slip rate along the San Andreas using a fault geometry based on precisely relocated seismicity. Although the three most recent Parkfield earthquakes appear complementary in their along-strike distributions of slip, they do not produce uniform strain release along strike over multiple seismic cycles. Since the 1934 earthquake, more than 1 m of slip deficit has accumulated on portions of the fault that slipped in the 1966 and 2004 earthquakes, and an average of 2 m of slip deficit exists on the 33 km of the fault southeast of Gold Hill to be released in a future, perhaps larger, earthquake. It appears that the fault is capable of partially releasing stored strain in moderate earthquakes, maintaining a disequilibrium through multiple earthquake cycles. This complicates the application of simple earthquake recurrence models that assume only the strain accumulated since the most recent event is relevant to the size or timing of an upcoming earthquake. Our findings further emphasize that accumulated slip deficit is not sufficient for earthquake nucleation.
Geodetically resolved slip distribution of the 27 August 2012 Mw=7.3 El Salvador earthquake
NASA Astrophysics Data System (ADS)
Geirsson, H.; La Femina, P. C.; DeMets, C.; Hernandez, D. A.; Mattioli, G. S.; Rogers, R.; Rodriguez, M.
2013-12-01
On 27 August 2012 a Mw=7.3 earthquake occurred offshore of Central America causing a small tsunami in El Salvador and Nicaragua but little damage otherwise. This is the largest magnitude earthquake in this area since 2001. We use co-seismic displacements estimated from episodic and continuous GPS station time series to model the magnitude and spatial variability of slip for this event. The estimated surface displacements are small (<2 cm) due to the distance and low magnitude of the earthquake. We use TDEFNODE to model the displacements using two different modeling approaches. In the first model, we solve for homogeneous slip on free rectangular fault(s), and in the second model we solve for distributed slip on the main thrust, realized using different slab models. The results indicate that we can match the seismic moment release, with models indicating rupture of a large area, with a low magnitude of slip. The slip is at shallow-to-intermediate depths on the main thrust off the coast of El Salvador. Additionally, we observe a deeper region of slip to the east, that reaches towards the Gulf of Fonseca between El Salvador and Nicaragua. The observed tsunami additionally indicates near-trench rupture off the coast of El Salvador. The duration of the rupturing is estimated from seismic data to be 70 s, which indicates a slow rupture process. Since the geodetic moment we obtain agrees with the seismic moment, this indicates that the earthquake was not associated with aseismic slip.
The repetition of large-earthquake ruptures.
Sieh, K
1996-01-01
This survey of well-documented repeated fault rupture confirms that some faults have exhibited a "characteristic" behavior during repeated large earthquakes--that is, the magnitude, distribution, and style of slip on the fault has repeated during two or more consecutive events. In two cases faults exhibit slip functions that vary little from earthquake to earthquake. In one other well-documented case, however, fault lengths contrast markedly for two consecutive ruptures, but the amount of offset at individual sites was similar. Adjacent individual patches, 10 km or more in length, failed singly during one event and in tandem during the other. More complex cases of repetition may also represent the failure of several distinct patches. The faults of the 1992 Landers earthquake provide an instructive example of such complexity. Together, these examples suggest that large earthquakes commonly result from the failure of one or more patches, each characterized by a slip function that is roughly invariant through consecutive earthquake cycles. The persistence of these slip-patches through two or more large earthquakes indicates that some quasi-invariant physical property controls the pattern and magnitude of slip. These data seem incompatible with theoretical models that produce slip distributions that are highly variable in consecutive large events. Images Fig. 3 Fig. 7 Fig. 9 PMID:11607662
Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake
Shen, Z.-K.; Sun, Jielun; Zhang, P.; Wan, Y.; Wang, M.; Burgmann, R.; Zeng, Y.; Gan, Weijun; Liao, H.; Wang, Q.
2009-01-01
The disastrous 12 May 2008 Wenchuan earthquake in China took the local population as well as scientists by surprise. Although the Longmen Shan fault zonewhich includes the fault segments along which this earthquake nucleatedwas well known, geologic and geodetic data indicate relatively low (<3 mm yr -1) deformation rates. Here we invert Global Positioning System and Interferometric Synthetic Aperture Radar data to infer fault geometry and slip distribution associated with the earthquake. Our analysis shows that the geometry of the fault changes along its length: in the southwest, the fault plane dips moderately to the northwest but becomes nearly vertical in the northeast. Associated with this is a change in the motion along the fault from predominantly thrusting to strike-slip. Peak slip along the fault occurs at the intersections of fault segments located near the towns of Yingxiu, Beichuan and Nanba, where fatalities and damage were concentrated. We suggest that these locations represent barriers that failed in a single event, enabling the rupture to cascade through several fault segments and cause a major moment magnitude (Mw) 7.9 earthquake. Using coseismic slip distribution and geodetic and geological slip rates, we estimate that the failure of barriers and rupture along multiple segments takes place approximately once in 4,000 years. ?? 2009 Macmillan Publishers Limited. All rights reserved.
NASA Astrophysics Data System (ADS)
Matrau, Rémi; Klinger, Yann; Van der Woerd, Jérôme; Liu-Zeng, Jing; Li, Zhanfei; Xu, Xiwei
2017-04-01
Late Quaternary slip rate determination by CRN dating on the Haiyuan fault, China, and implication for complex geometry fault systems Matrau Rémi, Klinger Yann, Van der Woerd Jérôme, Liu-Zeng Jing, Li Zhanfei, Xu Xiwei The Haiyuan fault in Gansu Province, China, is a major left-lateral strike-slip fault forming the northeastern boundary of the Tibetan plateau and accommodating part of the deformation from the India-Asia collision. Geomorphic and geodetic studies of the Haiyuan fault show slip rates ranging from 4 mm/yr to 19 mm/yr from east to west along 500 km of the fault. Such discrepancy could be explained by the complex geometry of the fault system, leading to slip distribution on multiple branches. Combining displacement measurements of alluvial terraces from high-resolution Pléiades images and 10Be - 26Al cosmogenic radionuclides (CRN) dating, we bracket the late Quaternary slip rate along the Hasi Shan fault segment (37°00' N, 104°25' E). At our calibration site, terrace riser offsets for 5 terraces ranging from 6 m to 227 m and CRN ages ranging from 6.5±0.6 kyr to 41±4 kyr - yield geological left-lateral slip rates from 2.0 mm/yr to 4.4 mm/yr. We measured consistent terrace riser offset values along the entire 25 km-long segment, which suggests that some external forcing controls the regional river-terrace emplacement, regardless of each specific catchment. Hence, we extend our slip rate determination to the entire Hasi Shan fault segment to be 4.0±1.0 mm/yr since the last 40 kyr. This rate is consistent with other long-term rates of 4 mm/yr to 5 mm/yr east and west of Hasi Shan - as well as geodetic rates of 4 mm/yr to 6 mm/yr west of Hasi Shan. However, Holocene terraces and moraines offsets have suggested higher rates of 15 to 20 mm/yr further west. Such disparate rates may be explained by slip distribution on multiple branches. In particular, the Zhongwei fault splay in the central part of the Haiyuan fault, with a slip rate of 4-5 mm/yr could partly explain the faster rates on the western single stranded Haiyuan fault. In addition we constrained 0.55±0.1 mm/yr of uplift rate along the Hasi Shan, where the fault strike veers southward, indicating slip partitioning. Our slip rate along the Hasi Shan segment is consistent with most of the long-term and short-term slip rates ( 5 mm/yr) measured along the central and eastern parts of the Haiyuan fault. However the discrepancy with other studies to the west highlights the major implication of complex geometries on the slip distribution over large fault systems.
Li, Caoxiong; Shen, Yinghao; Ge, Hongkui; Zhang, Yanjun; Liu, Tao
2018-03-02
Shales have abundant micro-nano pores. Meanwhile, a considerable amount of fracturing liquid is imbibed spontaneously in the hydraulic fracturing process. The spontaneous imbibition in tortuous micro-nano pores is special to shale, and dynamic contact angle and slippage are two important characteristics. In this work, we mainly investigate spontaneous imbibition considering dynamic contact angle and slip effect in fractal tortuous capillaries. We introduce phase portrait analysis to analyse the dynamic state and stability of imbibition. Moreover, analytical solutions to the imbibition equation are derived under special situations, and the solutions are verified by published data. Finally, we discuss the influences of slip length, dynamic contact angle and gravity on spontaneous imbibition. The analysis shows that phase portrait is an ideal tool for analysing spontaneous imbibition because it can evaluate the process without solving the complex governing ordinary differential equations. Moreover, dynamic contact angle and slip effect play an important role in fluid imbibition in fractal tortuous capillaries. Neglecting slip effect in micro-nano pores apparently underestimates imbibition capability, and ignoring variations in contact angle causes inaccuracy in predicting imbibition speed at the initial stage of the process. Finally, gravity is one of the factors that control the stabilisation of the imbibition process.
NASA Astrophysics Data System (ADS)
Griffith, W. A.; Nielsen, S.; di Toro, G.; Pollard, D. D.; Pennacchioni, G.
2007-12-01
We estimate the coseismic static stress drop on small exhumed strike-slip faults in the Mt. Abbot quadrangle of the central Sierra Nevada (California). The sub-vertical strike-slip faults cut ~85 Ma granodiorite, were exhumed from 7-10 km depth, and were chosen because they are exposed along their entire lengths, ranging from 8 to 13 m. Net slip is estimated using offset aplite dikes and shallowly plunging slickenlines on the fault surfaces. The faults show a record of progressive strain localization: slip initially nucleated on joints and accumulated from ductile shearing (quartz-bearing mylonites) to brittle slipping (epidote-bearing cataclasites). Thin (< 1 mm) pseudotachylytes associated with the cataclasites have been identified along some faults, suggesting that brittle slip may have been seismic. The brittle contribution to slip may be distinguished from the ductile shearing because epidote-filled, rhombohedral dilational jogs opened at bends and step-overs during brittle slip, are distributed periodically along the length of the faults. We argue that brittle slip occurred along the measured fault lengths in single slip events based on several pieces of evidence. 1) Epidote crystals are randomly oriented and undeformed within dilational jogs, indicating they did not grow during aseismic slip and were not broken after initial opening and precipitation. 2) Opening-mode splay cracks are concentrated near fault tips rather than the fault center, suggesting that the reactivated faults ruptured all at once rather than in smaller slip patches. 3) The fact that the opening lengths of the dilational jogs vary systematically along the fault traces suggests that brittle reactivation occurred in a single slip event along the entire fault rather than in multiple slip events. This unique combination of factors distinguishes this study from previous attempts to estimate stress drop from exhumed faults because we can constrain the coseismic rupture length and slip. The static stress drop is calculated for a circular fault using the length of the mapped faults and their slip distributions as well as the shear modulus of the host granodiorite measured in the laboratory. Calculations yield stress drops on the order of 100-200 MPa, one to two orders of magnitude larger than typical seismological estimates. The studied seismic ruptures occurred along small, deep-seated faults (10 km depth), and, given the fault mineral filling (quartz-bearing mylonites) these were "strong" faults. Our estimates are consistent with static stress drops estimated by Nadeau and Johnson (1998) for small repeated earthquakes.
Repetition of large stress drop earthquakes on Wairarapa fault, New Zealand, revealed by LiDAR data
NASA Astrophysics Data System (ADS)
Delor, E.; Manighetti, I.; Garambois, S.; Beaupretre, S.; Vitard, C.
2013-12-01
We have acquired high-resolution LiDAR topographic data over most of the onland trace of the 120 km-long Wairarapa strike-slip fault, New Zealand. The Wairarapa fault broke in a large earthquake in 1855, and this historical earthquake is suggested to have produced up to 18 m of lateral slip at the ground surface. This would make this earthquake a remarkable event having produced a stress drop much higher than commonly observed on other earthquakes worldwide. The LiDAR data allowed us examining the ground surface morphology along the fault at < 50 cm resolution, including in the many places covered with vegetation. In doing so, we identified more than 900 alluvial features of various natures and sizes that are clearly laterally offset by the fault. We measured the about 670 clearest lateral offsets, along with their uncertainties. Most offsets are lower than 100 m. Each measurement was weighted by a quality factor that quantifies the confidence level in the correlation of the paired markers. Since the slips are expected to vary along the fault, we analyzed the measurements in short, 3-5 km-long fault segments. The PDF statistical analysis of the cumulative offsets per segment reveals that the alluvial morphology has well recorded, at every step along the fault, no more than a few (3-6), well distinct cumulative slips, all lower than 80 m. Plotted along the entire fault, the statistically defined cumulative slip values document four, fairly continuous slip profiles that we attribute to the four most recent large earthquakes on the Wairarapa fault. The four slip profiles have a roughly triangular and asymmetric envelope shape that is similar to the coseismic slip distributions described for most large earthquakes worldwide. The four slip profiles have their maximum slip at the same place, in the northeastern third of the fault trace. The maximum slips vary from one event to another in the range 7-15 m; the most recent 1855 earthquake produced a maximum coseismic slip of 15 × 2 m at the ground surface. Our results thus confirm that the Wairarapa fault breaks in remarkably large stress drop earthquakes. Those repeating large earthquakes share both similar (rupture length, slip-length distribution, location of maximum slip) and distinct (maximum slip amplitudes) characteristics. Furthermore, the seismic behavior of the Wairarapa fault is markedly different from that of nearby large strike-slip faults (Wellington, Hope). The reasons for those differences in rupture behavior might reside in the intrinsic properties of the broken faults, especially in their structural maturity.
Mechanical deformation model of the western United States instantaneous strain-rate field
Pollitz, F.F.; Vergnolle, M.
2006-01-01
We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M ??? 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific-North America plate boundary along ???1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF system is systematically underpredicted by models which account only for relaxation from known large earthquakes. This strongly suggests that in addition to viscoelastic-cycle effects, steady deep slip in the lower lithosphere is needed to explain the observed strain-rate field. ?? 2006 The Authors Journal compilation ?? 2006 RAS.
NASA Astrophysics Data System (ADS)
Bergh, Steffen; Sylvester, Arthur; Damte, Alula; Indrevær, Kjetil
2014-05-01
The San Andreas fault in southern California records only few large-magnitude earthquakes in historic time, and the recent activity is confined primarily on irregular and discontinuous strike-slip and thrust fault strands at shallow depths of ~5-20 km. Despite this fact, slip along the San Andreas fault is calculated to c. 35 mm/yr based on c.160 km total right lateral displacement for the southern segment of the fault in the last c. 8 Ma. Field observations also reveal complex fault strands and multiple events of deformation. The presently diffuse high-magnitude crustal movements may be explained by the deformation being largely distributed along more gently dipping reverse faults in fold-thrust belts, in contrast to regions to the north where deformation is less partitioned and localized to narrow strike-slip fault zones. In the Mecca Hills of the Salton trough transpressional deformation of an uplifted segment of the San Andreas fault in the last ca. 4.0 My is expressed by very complex fault-oblique and fault-parallel (en echelon) folding, and zones of uplift (fold-thrust belts), basement-involved reverse and strike-slip faults and accompanying multiple and pervasive cataclasis and conjugate fracturing of Miocene to Pleistocene sedimentary strata. Our structural analysis of the Mecca Hills addresses the kinematic nature of the San Andreas fault and mechanisms of uplift and strain-stress distribution along bent fault strands. The San Andreas fault and subsidiary faults define a wide spectrum of kinematic styles, from steep localized strike-slip faults, to moderate dipping faults related to oblique en echelon folds, and gently dipping faults distributed in fold-thrust belt domains. Therefore, the San Andreas fault is not a through-going, steep strike-slip crustal structure, which is commonly the basis for crustal modeling and earthquake rupture models. The fault trace was steep initially, but was later multiphase deformed/modified by oblique en echelon folding, renewed strike-slip movements and contractile fold-thrust belt structures. Notably, the strike-slip movements on the San Andreas fault were transformed outward into the surrounding rocks as oblique-reverse faults to link up with the subsidiary Skeleton Canyon fault in the Mecca Hills. Instead of a classic flower structure model for this transpressional uplift, the San Andreas fault strands were segmented into domains that record; (i) early strike-slip motion, (ii) later oblique shortening with distributed deformation (en echelon fold domains), followed by (iii) localized fault-parallel deformation (strike-slip) and (iv) superposed out-of-sequence faulting and fault-normal, partitioned deformation (fold-thrust belt domains). These results contribute well to the question if spatial and temporal fold-fault branching and migration patterns evolving along non-vertical strike-slip fault segments can play a role in the localization of earthquakes along the San Andreas fault.
Characteristics of strong ground motion generation areas by fully dynamic earthquake cycles
NASA Astrophysics Data System (ADS)
Galvez, P.; Somerville, P.; Ampuero, J. P.; Petukhin, A.; Yindi, L.
2016-12-01
During recent subduction zone earthquakes (2010 Mw 8.8 Maule and 2011 Mw 9.0 Tohoku), high frequency ground motion radiation has been detected in deep regions of seismogenic zones. By semblance analysis of wave packets, Kurahashi & Irikura (2013) found strong ground motion generation areas (SMGAs) located in the down dip region of the 2011 Tohoku rupture. To reproduce the rupture sequence of SMGA's and replicate their rupture time and ground motions, we extended previous work on dynamic rupture simulations with slip reactivation (Galvez et al, 2016). We adjusted stresses on the most southern SMGAs of Kurahashi & Irikura (2013) model to reproduce the observed peak ground velocity recorded at seismic stations along Japan for periods up to 5 seconds. To generate higher frequency ground motions we input the rupture time, final slip and slip velocity of the dynamic model into the stochastic ground motion generator of Graves & Pitarka (2010). Our results are in agreement with the ground motions recorded at the KiK-net and K-NET stations.While we reproduced the recorded ground motions of the 2011 Tohoku event, it is unknown whether the characteristics and location of SMGA's will persist in future large earthquakes in this region. Although the SMGA's have large peak slip velocities, the areas of largest final slip are located elsewhere. To elucidate whether this anti-correlation persists in time, we conducted earthquake cycle simulations and analysed the spatial correlation of peak slip velocities, stress drops and final slip of main events. We also investigated whether or not the SMGA's migrate to other regions of the seismic zone.To perform this study, we coupled the quasi-dynamic boundary element solver QDYN (Luo & Ampuero, 2015) and the dynamic spectral element solver SPECFEM3D (Galvez et al., 2014; 2016). The workflow alternates between inter-seismic periods solved with QDYN and coseismic periods solved with SPECFEM3D, with automated switch based on slip rate thersholds (Kaneko et al., 2011). We parallelized QDYN with MPI to enable the simulation of fully dynamic earthquake cycles of Mw 8-9 earthquakes in faults that also produce Mw 7 earthquakes.This study was based on the 2015 research project `Improvement for uncertainty of strong ground motion prediction' by the Nuclear Regulation Authority (NRA), Japan.
Coseismic slip distribution of the February 27, 2010 Mw 8.9 Maule, Chile earthquake
Pollitz, Fred F.; Brooks, Ben; Tong, Xiaopeng; Bevis, Michael G.; Foster, James H.; Burgmann, Roland
2011-01-01
[1] Static offsets produced by the February 27, 2010 Mw = 8.8 Maule, Chile earthquake as measured by GPS and InSAR constrain coseismic slip along a section of the Andean megathrust of dimensions 650 km (in length) × 180 km (in width). GPS data have been collected from both campaign and continuous sites sampling both the near-field and far field. ALOS/PALSAR data from several ascending and descending tracks constrain the near-field crustal deformation. Inversions of the geodetic data for distributed slip on the megathrust reveal a pronounced slip maximum of order 15 m at ∼15–25 km depth on the megathrust offshore Lloca, indicating that seismic slip was greatest north of the epicenter of the bilaterally propagating rupture. A secondary slip maximum appears at depth ∼25 km on the megathrust just west of Concepción. Coseismic slip is negligible below 35 km depth. Estimates of the seismic moment based on different datasets and modeling approaches vary from 1.8 to 2.6 × 1022 N m. Our study is the first to model the static displacement field using a layered spherical Earth model, allowing us to incorporate both near-field and far-field static displacements in a consistent manner. The obtained seismic moment of 1.97 × 1022 N m, corresponding to a moment magnitude of 8.8, is similar to that obtained by previous seismic and geodetic inversions.
NASA Astrophysics Data System (ADS)
Yin, A.; Pappalardo, R. T.
2013-12-01
Detailed photogeologic mapping of the tiger-stripe fractures in the South Polar Terrain (SPT) of Enceladus indicates that these structures are left-slip faults and terminate at hook-shaped fold-thrust zones and/or Y-shaped horsetail splay-fault zones. The semi-square-shaped tectonic domain that hosts the tiger-stripe faults is bounded by right-slip and left-slip faults on the north and south edges and fold-thrust and extensional zones on the western and eastern edges. We explain the above observations by a passive bookshelf-faulting model in which individual tiger-stripe faults are bounded by deformable wall rocks accommodating distributed deformation. Based on topographic data, we suggest that gravitational spreading had caused the SPT to spread unevenly from west to east. This process was accommodated by right-slip and left-slip faulting on the north and south sides and thrusting and extension along the eastern and southern margins of the tiger-stripe tectonic domain. The uneven spreading, expressed by a gradual northward increase in the number of extensional faults and thrusts/folds along the western and eastern margins, was accommodated by distributed right-slip simple shear across the whole tiger-stripe tectonic domain. This mode of deformation in turn resulted in the development of a passive bookshelf-fault system characterized by left-slip faulting on individual tiger-stripe fractures.
Influence of Microtexture on Early Plastic Slip Activity in Ti-6Al-4V Polycrystals
NASA Astrophysics Data System (ADS)
Hémery, Samuel; Dang, Van Truong; Signor, Loïc; Villechaise, Patrick
2018-06-01
Microtextured regions are known to influence the fatigue performance of titanium alloys. Previous studies revealed that crack initiation, accounting for most of the fatigue life, is triggered by slip activity. The influence of microtextured regions on the early plastic slip activity was presently investigated by means of an in situ tensile test performed inside a scanning electron microscope on a bimodal Ti-6Al-4V polycrystalline specimen. A slip trace analysis was carried out in several regions with different crystallographic textures to highlight potentially different deformation behaviors. Significant stress heterogeneities were revealed through an early slip activation in microtextured regions with a predominant [0001] orientation. This point was shown to be related to a locally increased resolved shear stress. Consequences on behavior under cyclic loadings are finally discussed.
Using Remote Sensing Data to Constrain Models of Fault Interactions and Plate Boundary Deformation
NASA Astrophysics Data System (ADS)
Glasscoe, M. T.; Donnellan, A.; Lyzenga, G. A.; Parker, J. W.; Milliner, C. W. D.
2016-12-01
Determining the distribution of slip and behavior of fault interactions at plate boundaries is a complex problem. Field and remotely sensed data often lack the necessary coverage to fully resolve fault behavior. However, realistic physical models may be used to more accurately characterize the complex behavior of faults constrained with observed data, such as GPS, InSAR, and SfM. These results will improve the utility of using combined models and data to estimate earthquake potential and characterize plate boundary behavior. Plate boundary faults exhibit complex behavior, with partitioned slip and distributed deformation. To investigate what fraction of slip becomes distributed deformation off major faults, we examine a model fault embedded within a damage zone of reduced elastic rigidity that narrows with depth and forward model the slip and resulting surface deformation. The fault segments and slip distributions are modeled using the JPL GeoFEST software. GeoFEST (Geophysical Finite Element Simulation Tool) is a two- and three-dimensional finite element software package for modeling solid stress and strain in geophysical and other continuum domain applications [Lyzenga, et al., 2000; Glasscoe, et al., 2004; Parker, et al., 2008, 2010]. New methods to advance geohazards research using computer simulations and remotely sensed observations for model validation are required to understand fault slip, the complex nature of fault interaction and plate boundary deformation. These models help enhance our understanding of the underlying processes, such as transient deformation and fault creep, and can aid in developing observation strategies for sUAV, airborne, and upcoming satellite missions seeking to determine how faults behave and interact and assess their associated hazard. Models will also help to characterize this behavior, which will enable improvements in hazard estimation. Validating the model results against remotely sensed observations will allow us to better constrain fault zone rheology and physical properties, having implications for the overall understanding of earthquake physics, fault interactions, plate boundary deformation and earthquake hazard, preparedness and risk reduction.
NASA Astrophysics Data System (ADS)
Won, Hong-In; Chung, Jintai
2018-04-01
This paper presents a numerical analysis for the stick-slip vibration of a transversely moving beam, considering both stick-slip transition and friction force discontinuity. The dynamic state of the beam was separated into the stick state and the slip state, and boundary conditions were defined for both. By applying the finite element method, two matrix-vector equations were derived: one for stick state and the other for slip state. However, the equations have different degrees of freedom depending on whether the end of a beam sticks or slips, so we encountered difficulties in time integration. To overcome the difficulties, we proposed a new numerical technique to alternatively use the matrix-vector equations with different matrix sizes. In addition, to eliminate spurious high-frequency responses, we applied the generalized-α time integration method with appropriate value of high-frequency numerical dissipation. Finally, the dynamic responses of stick-slip vibration were analyzed in time and frequency domains: the dynamic behavior of the beam was explained to facilitate understanding of the stick-slip motion, and frequency characteristics of the stick-slip vibration were investigated in relation to the natural frequencies of the beam. The effects of the axial load and the moving speed upon the dynamic response were also examined.
Complex earthquake rupture and local tsunamis
Geist, E.L.
2002-01-01
In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occuring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. A wide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a factor of 3 or more. These results indicate that there is substantially more variation in the local tsunami wave field derived from the inherent complexity subduction zone earthquakes than predicted by a simple elastic dislocation model. Probabilistic methods that take into account variability in earthquake rupture processes are likely to yield more accurate assessments of tsunami hazards.
NASA Astrophysics Data System (ADS)
Arbelaez Jaramillo, Cesar Augusto
Prestressed concrete technique through the use of prestressed reinforcement is extended in the precast concrete industry. This technique consists on casting a concrete element over a previously prestressed reinforcement, proceeding to release once the concrete has reached a determined strength so the prestressed stress introduced to the reinforcement be transmitted, by bond, to concrete. The bond behaviour of prestressed reinforcement includes two phenomena: prestress transmission from the reinforcement to concrete and anchorage of the reinforcement. This bond behaviour is characterized by mean of two lengths: transmission length and anchorage length. The good design of these lengths is a basic and fundamental aspect in the project of precast prestressed concrete elements to guaranty the appropriate transmission of prestress and to allow the anchorage of the reinforcement along the structural element service life. The influence of the parameters related to the concrete dosage on the transmission and anchorage lengths of prestressing strands have been analyzed. The ECADA test method has been applied. With this method the operations of transmission of prestress and anchorage of the reinforcement are sequentially done. The transmission and anchorage lengths are determined from the force control supported by the reinforcement testing series of specimens with different embedment lengths. The differentiation of the concepts of anchorage length without slips and with slips has been proposed. The relationship of the parameters of dosage with the bond stress and the registered slips during the processes of transmission and anchorage has been studied. Expressions to value the slips distribution of the reinforcement in the transmission zone and in the anchorage zone have been proposed. A study on the determination of the transmission length from the free reinforcement slip end has been done and the viability to experimentally determine the transmission length from the slips sequence in the pull-out end as a function of the embedment length has been verified. The experimental results have been compared with results and predictions from other authors and standards, and an expression to calculate the transmission length have been proposed. Finally, the bond behaviour of self-compacting concretes has been compared with the bond behaviour of traditional concretes.
Liu, Yang; Xu, Caijun; Wen, Yangmao; Fok, Hok Sum
2015-01-01
On 28 August 2009, the northern margin of the Qaidam basin in the Tibet Plateau was ruptured by an Mw 6.3 earthquake. This study utilizes the Envisat ASAR images from descending Track 319 and ascending Track 455 for capturing the coseismic deformation resulting from this event, indicating that the earthquake fault rupture does not reach to the earth’s surface. We then propose a four-segmented fault model to investigate the coseismic deformation by determining the fault parameters, followed by inverting slip distribution. The preferred fault model shows that the rupture depths for all four fault planes mainly range from 2.0 km to 7.5 km, comparatively shallower than previous results up to ~13 km, and that the slip distribution on the fault plane is complex, exhibiting three slip peaks with a maximum of 2.44 m at a depth between 4.1 km and 4.9 km. The inverted geodetic moment is 3.85 × 1018 Nm (Mw 6.36). The 2009 event may rupture from the northwest to the southeast unilaterally, reaching the maximum at the central segment. PMID:26184210
Liu, Yang; Xu, Caijun; Wen, Yangmao; Fok, Hok Sum
2015-07-10
On 28 August 2009, the northern margin of the Qaidam basin in the Tibet Plateau was ruptured by an Mw 6.3 earthquake. This study utilizes the Envisat ASAR images from descending Track 319 and ascending Track 455 for capturing the coseismic deformation resulting from this event, indicating that the earthquake fault rupture does not reach to the earth's surface. We then propose a four-segmented fault model to investigate the coseismic deformation by determining the fault parameters, followed by inverting slip distribution. The preferred fault model shows that the rupture depths for all four fault planes mainly range from 2.0 km to 7.5 km, comparatively shallower than previous results up to ~13 km, and that the slip distribution on the fault plane is complex, exhibiting three slip peaks with a maximum of 2.44 m at a depth between 4.1 km and 4.9 km. The inverted geodetic moment is 3.85 × 10(18) Nm (Mw 6.36). The 2009 event may rupture from the northwest to the southeast unilaterally, reaching the maximum at the central segment.
Pre-slip and Localized Strain Band - A Study Based on Large Sample Experiment and DIC
NASA Astrophysics Data System (ADS)
Ji, Y.; Zhuo, Y. Q.; Liu, L.; Ma, J.
2017-12-01
Meta-instability stage (MIS) is the stage occurs between a fault reaching the peak differential stress and the onset of the final stress drop. It is the crucial stage during which a fault transits from "stick" to "slip". Therefore, if one can quantitatively analyze the spatial and temporal characteristics of the deformation field of a fault at MIS, it will be of great significance both to fault mechanics and earthquake prediction study. In order to do so, a series of stick-slip experiments were conducted using a biaxial servo-controlled pressure machine. Digital images of the sample surfaces were captured by a high speed camera and processed using a digital image correlation method (DIC). If images of a rock sample are acquired before and after deformation, then DIC can be used to infer the displacement and strain fields. In our study, sample images were captured at the rate of 1000 frame per second and the resolution is 2048 by 2048 in pixel. The displacement filed, strain filed and fault displacement were calculated from the captured images. Our data shows that (1) pre-sliding can be a three-stage process, including a relative long and slow first stage at slipping rate of 7.9nm/s, a relatively short and fast second one at rate of 3µm/s and the last stage only last for 0.2s but the slipping rate reached as high as 220µm/s. (2) Localized strain bands were observed nearly perpendicular to the fault. A possible mechanism is that the pre-sliding is distributed heterogeneously along the fault, which means there are relatively adequately sliding segments and the less sliding ones, they become the constrain condition of deformation of the adjacent subregion. The localized deformation band tends to radiate from the discontinuity point of sliding. While the adequately sliding segments are competing with the less sliding ones, the strain bands are evolving accordingly.
NASA Astrophysics Data System (ADS)
Vajedian, Sanaz; Motagh, Mahdi; Wetzel, Hans-Ulrich; Teshebaeva, Kanayim
2017-04-01
The active deformation in Kyrgyzstan results from the collision between Indian and Asia tectonic plates at a rate of 29 ± 1 mm/yr. This collision is accommodated by deformation on prominent faults, which can be ruptured coseismically and trigger other hazards like landslides. Many earthquake and earthquake-induced landslides in Kyrgyzstan occur in mountainous areas, where limited accessibility makes ground-based measurements for the assessment of their impact a challenging task. In this context, remote sensing measurements are extraordinary useful as they improve our knowledge about coseismic rupture process and provide information on other types of hazards that are triggered during and/or after the earthquakes. This investigation aims to use L-band ALOS/PALSAR, C-band Sentinel-1, Sentinel-2 data to evaluate fault slip model and coseismic-induced landslides related to 26 June 2016 Sary-Tash earthquake, southwest Kyrgyzstan. First we implement three methods to measure coseismic surface motion using radar data including Interferometric SAR (InSAR) analysis, SAR tracking technique and multiple aperture InSAR (MAI), followed by using Genetic Algorithm (GA) to invert the final displacement field to infer combination of orientation, location and slip on rectangular uniform slip fault plane. Slip distribution analysis is done by applying Tikhonov regularization to solve the constrained least-square method with Laplacian smoothing approach. The estimated coseismic slip model suggests a nearly W-E thrusting fault ruptured during the earthquake event in which the main rupture occurred at a depth between 11 and 14 km. Second, the local phase shifts related to landslides are inferred by detailed analysis pre-seismic, coseismic and postseismic C-band and L-band interferograms and the results are compared with the interpretations derived from Sentinel-2 data acquired before and after the earthquake.
Advances in Geophysical Methods at Parkfield, California
NASA Astrophysics Data System (ADS)
Bennington, Ninfa
The Parkfield segment of the San Andreas fault (SAF) is one of the most highly monitored fault sites in the world. I carry out two studies, taking advantage of the dense set of geophysical observations obtained for this segment of the fault. In the first study, I use geodetic data to had a model of coseismic slip for the 2004 Parkfield earthquake with the constraint that the edges of coseismic slip patches preferentially align with aftershocks. Application of the aftershock distribution constraint on coseismic slip yields a model that agrees in location and amplitude with features observed in previous geodetic studies and the majority of strong motion studies. The curvature-constrained solution shows slip primarily between aftershock "streaks" with the continuation of moderate levels of slip towards the 2004 Parkfield earthquake hypocenter. The observed continuation of coseismic slip towards the hypocenter is in good agreement with strong motion studies but is not observed in the majority of published geodetic slip models, which I attribute to resolution limitations. In the second study, I develop tomoDDMT, a joint inversion code that simultaneously inverts for resistivity and seismic velocity models under the cross- gradient constraint. This constraint uses a weighted penalty function to encourage areas where the two models are changing to be structurally similar. I present jointly inverted models of P-wave velocity (Vp) and resistivity for a cross-section centered on the San Andreas Fault Observatory at Depth (SAFOD). The joint inversion scheme achieves structurally similar Vp and resistivity images that adequately fit the seismic and MT data without forcing model similarity where none exists. Using tomoDDMT, I obtain models or resistivity and Vp that yield increased insight into the geologic structure at Parkfield. I address key issues including: the location of the Franciscan formation at depth, the spatial extent of the Upper Great Valley sequence, the validity of the eastern wall as a fluid pathway, the distribution of the eastern conductor, and the distribution of the Salinian block at depth.
NASA Technical Reports Server (NTRS)
Bennett, Richard A.; Reilinger, Robert E.; Rodi, William; Li, Yingping; Toksoz, M. Nafi; Hudnut, Ken
1995-01-01
Coseismic surface deformation associated with the M(sub w) 6.1, April 23, 1992, Joshua Tree earthquake is well represented by estimates of geodetic monument displacements at 20 locations independently derived from Global Positioning System and trilateration measurements. The rms signal to noise ratio for these inferred displacements is 1.8 with near-fault displacement estimates exceeding 40 mm. In order to determine the long-wavelength distribution of slip over the plane of rupture, a Tikhonov regularization operator is applied to these estimates which minimizes stress variability subject to purely right-lateral slip and zero surface slip constraints. The resulting slip distribution yields a geodetic moment estimate of 1.7 x 10(exp 18) N m with corresponding maximum slip around 0.8 m and compares well with independent and complementary information including seismic moment and source time function estimates and main shock and aftershock locations. From empirical Green's functions analyses, a rupture duration of 5 s is obtained which implies a rupture radius of 6-8 km. Most of the inferred slip lies to the north of the hypocenter, consistent with northward rupture propagation. Stress drop estimates are in the range of 2-4 MPa. In addition, predicted Coulomb stress increases correlate remarkably well with the distribution of aftershock hypocenters; most of the aftershocks occur in areas for which the mainshock rupture produced stress increases larger than about 0.1 MPa. In contrast, predicted stress changes are near zero at the hypocenter of the M(sub w) 7.3, June 28, 1992, Landers earthquake which nucleated about 20 km beyond the northernmost edge of the Joshua Tree rupture. Based on aftershock migrations and the predicted static stress field, we speculate that redistribution of Joshua Tree-induced stress perturbations played a role in the spatio-temporal development of the earth sequence culminating in the Landers event.
Torque blending and wheel slip control in EVs with in-wheel motors
NASA Astrophysics Data System (ADS)
de Castro, Ricardo; Araújo, Rui E.; Tanelli, Mara; Savaresi, Sergio M.; Freitas, Diamantino
2012-01-01
Among the many opportunities offered by electric vehicles (EVs), the design of power trains based on in-wheel electric motors represents, from the vehicle dynamics point of view, a very attractive prospect, mainly due to the torque-vectoring capabilities. However, this distributed propulsion also poses some practical challenges, owing to the constraints arising from motor installation in a confined space, to the increased unsprung mass weight and to the integration of the electric motor with the friction brakes. This last issue is the main theme of this work, which, in particular, focuses on the design of the anti-lock braking system (ABS). The proposed structure for the ABS is composed of a tyre slip controller, a wheel torque allocator and a braking supervisor. To address the slip regulation problem, an adaptive controller is devised, offering robustness to uncertainties in the tyre-road friction and featuring a gain-scheduling mechanism based on the vehicle velocity. Further, an optimisation framework is employed in the torque allocator to determine the optimal split between electric and friction brake torque based on energy performance metrics, actuator constraints and different actuators bandwidth. Finally, based on the EV working condition, the priorities of this allocation scheme are adapted by the braking supervisor unit. Simulation results obtained with the CarSim vehicle model, demonstrate the effectiveness of the overall approach.
NASA Astrophysics Data System (ADS)
Eberhart-Phillips, Donna; Bannister, Stephen; Reyners, Martin
2017-11-01
We use local earthquake velocity spectra to solve for the 3-D distribution of P- and S-wave attenuation in the shallow Hikurangi subduction zone in the North Island of New Zealand to gain insight into how fluids control both the distribution of slip rate deficit and slow-slip events at the shallow plate interface. Qs/Qp gives us information on the 3-D distribution of fluid saturation, which we can compare with the previously determined 3-D distribution of Vp/Vs, which gives information on pore fluid pressure. The Hikurangi margin is unusual, in that a large igneous province (the Hikurangi Plateau) is being subducted. This plateau has had two episodes of subduction-first at 105-100 Ma during north-south convergence with Gondwana, and currently during east-west convergence between the Pacific and Australian plates. We find that in the southern part of the subduction zone, where there is a large deficit in slip rate at the plate interface, the plate interface region is only moderately fluid-rich because the underlying plateau had already had an episode of dehydration during Gondwana subduction. But fluid pressure is relatively high, due to an impermeable terrane in the upper plate trapping fluids below the plate interface. The central part of the margin, where the slip rate deficit is very low, is the most fluid-rich part of the shallow subduction zone. We attribute this to an excess of fluid from the subducted plateau. Our results suggest this part of the plateau has unusually high fracture permeability, on account of it having had two episodes of bending-first at the Gondwana trench and now at the Hikurangi Trough. Qs/Qp is consistent with fluids migrating across the plate interface in this region, leaving it drained and producing high fluid pressure in the overlying plate. The northern part of the margin is a region of heterogeneous deficit in slip rate. Here the Hikurangi Plateau is subducting for the first time, so there is less fluid available from its dehydration than in the central region. Fluid pressure in the overlying plate is high, but Qs/Qp indicates that it is not uniformly fluid-rich. This heterogeneity is consistent with the rough topography of the plateau, including seamounts which entrain fluid-rich sediments. Deep slow-slip events in the southern part of the margin occur where the Moho of the overlying plate meets the plate interface, as typically seen in other deep slow-slip events worldwide. But in the central and northern parts of the margin, the locations of shallow slow-slip events appear to be controlled by a shallow brittle-viscous transition within the fluid-rich upper plate. There is also evidence that a major fault zone in the overlying plate might bleed off some of the high fluid pressure promoting slow-slip events.
NASA Astrophysics Data System (ADS)
Zhou, Y.
2016-12-01
On 21 January 2016, an Ms6.4 earthquake stroke Menyuan country, Qinghai Province, China. The epicenter of the main shock and locations of its aftershocks indicate that the Menyuan earthquake occurred near the left-lateral Lenglongling fault. However, the focal mechanism suggests that the earthquake should take place on a thrust fault. In addition, field investigation indicates that the earthquake did not rupture the ground surface. Therefore, the rupture geometry is unclear as well as coseismic slip distribution. We processed two pairs of InSAR images acquired by the ESA Sentinel-1A satellite with the ISCE software, and both ascending and descending orbits were included. After subsampling the coseismic InSAR images into about 800 pixels, coseismic displacement data along LOS direction are inverted for earthquake source parameters. We employ an improved mixed linear-nonlinear Bayesian inversion method to infer fault geometric parameters, slip distribution, and the Laplacian smoothing factor simultaneously. This method incorporates a hybrid differential evolution algorithm, which is an efficient global optimization algorithm. The inversion results show that the Menyuan earthquake ruptured a blind thrust fault with a strike of 124°and a dip angle of 41°. This blind fault was never investigated before and intersects with the left-lateral Lenglongling fault, but the strikes of them are nearly parallel. The slip sense is almost pure thrusting, and there is no significant slip within 4km depth. The max slip value is up to 0.3m, and the estimated moment magnitude is Mw5.93, in agreement with the seismic inversion result. The standard error of residuals between InSAR data and model prediction is as small as 0.5cm, verifying the correctness of the inversion results.
Rupture geometry and slip distribution of the 2016 January 21st Ms6.4 Menyuan, China earthquake
NASA Astrophysics Data System (ADS)
Zhou, Y.
2017-12-01
On 21 January 2016, an Ms6.4 earthquake stroke Menyuan country, Qinghai Province, China. The epicenter of the main shock and locations of its aftershocks indicate that the Menyuan earthquake occurred near the left-lateral Lenglongling fault. However, the focal mechanism suggests that the earthquake should take place on a thrust fault. In addition, field investigation indicates that the earthquake did not rupture the ground surface. Therefore, the rupture geometry is unclear as well as coseismic slip distribution. We processed two pairs of InSAR images acquired by the ESA Sentinel-1A satellite with the ISCE software, and both ascending and descending orbits were included. After subsampling the coseismic InSAR images into about 800 pixels, coseismic displacement data along LOS direction are inverted for earthquake source parameters. We employ an improved mixed linear-nonlinear Bayesian inversion method to infer fault geometric parameters, slip distribution, and the Laplacian smoothing factor simultaneously. This method incorporates a hybrid differential evolution algorithm, which is an efficient global optimization algorithm. The inversion results show that the Menyuan earthquake ruptured a blind thrust fault with a strike of 124°and a dip angle of 41°. This blind fault was never investigated before and intersects with the left-lateral Lenglongling fault, but the strikes of them are nearly parallel. The slip sense is almost pure thrusting, and there is no significant slip within 4km depth. The max slip value is up to 0.3m, and the estimated moment magnitude is Mw5.93, in agreement with the seismic inversion result. The standard error of residuals between InSAR data and model prediction is as small as 0.5cm, verifying the correctness of the inversion results.
Seismic and Aseismic Slip Surrounding the 2014 Mw 8.2 Pisagua (Chile) rupture
NASA Astrophysics Data System (ADS)
Shrivastava, M. N.; Gonzalez, G.; Salazar, P.; Moreno, M.; Baez, J. C.
2017-12-01
On April 1 2014, the Mw 8.2 Pisagua earthquake occurred in a part of standing seismic gap northern Chile. We inverted the cGPS time series for coseismic slip of mainshock and big aftershock Mw 7.6 on April 3, 2014 individually. The big aftershock Mw 7.6 occurred in south of the coseismic slip region of main shock. The coseismic slip model suggest that it has an asperity of single patch has slipped during the Pisagua earthquake and confined in the inter-seismically highly locked region. It seems that Iquique ridge fragmented northern Chile seismic gap region. It could provide small asperity, which has broken partial discretely. The spatial distribution of afterslip from the inversion of cGPS time series is consistent and appears in two patches to cover north and south of the mainshock coseismic slip patch. The afterslip patches suggest that the maximum cumulative afterslip 50cm is located at ˜19.0°S to the north of the mainshock rupture zone and down dip 38km. The estimated postseismic moment released in the first 60-days of afterslip is equivalent to an earthquake of Mw 7.43. The 60-days 306 aftershocks (Mw>3.0) has confined in the mainshock slip and southern afterslip region. With the afterslip model 60-days, it concludes that aftershocks distribution not only depends on Coulomb stress changes but also the locking degree of region/heterogeneity of the plate interface. Seismic slip is restricted in the southern locked region, but aseismic slip in the northern low locking region. It means the southern portion of the northern Chile is still non-ruptured. It can break with great megathrust earthquake in future. Therefore, it is essential to scrutinize the slip deficit by using a space geodetic technique to assess earthquake potential. The northern patch of the afterslip is purely aseismic as stable sliding confined in the low locking region, however the southern patch afterslip seismically as unstable stick-slip dominating. It suggests that afterslip illuminates the velocity strengthening in the northern patch and velocity weakening in the southern patch.
Micromechanics of sea ice frictional slip from test basin scale experiments
Hatton, Daniel C.; Feltham, Daniel L.
2017-01-01
We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick–slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick–slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity–asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771–2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with (where τ is the shear stress and σn is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = ffractal Tmlws, where ffractal is the fractal asperity height distribution, Tml is the shear strength for frictional melting and lubrication and ws is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025302
NASA Astrophysics Data System (ADS)
Zuza, Andrew V.; Yin, An
2016-05-01
Collision-induced continental deformation commonly involves complex interactions between strike-slip faulting and off-fault deformation, yet this relationship has rarely been quantified. In northern Tibet, Cenozoic deformation is expressed by the development of the > 1000-km-long east-striking left-slip Kunlun, Qinling, and Haiyuan faults. Each have a maximum slip in the central fault segment exceeding 10s to ~ 100 km but a much smaller slip magnitude (~< 10% of the maximum slip) at their terminations. The along-strike variation of fault offsets and pervasive off-fault deformation create a strain pattern that departs from the expectations of the classic plate-like rigid-body motion and flow-like distributed deformation end-member models for continental tectonics. Here we propose a non-rigid bookshelf-fault model for the Cenozoic tectonic development of northern Tibet. Our model, quantitatively relating discrete left-slip faulting to distributed off-fault deformation during regional clockwise rotation, explains several puzzling features, including the: (1) clockwise rotation of east-striking left-slip faults against the northeast-striking left-slip Altyn Tagh fault along the northwestern margin of the Tibetan Plateau, (2) alternating fault-parallel extension and shortening in the off-fault regions, and (3) eastward-tapering map-view geometries of the Qimen Tagh, Qaidam, and Qilian Shan thrust belts that link with the three major left-slip faults in northern Tibet. We refer to this specific non-rigid bookshelf-fault system as a passive bookshelf-fault system because the rotating bookshelf panels are detached from the rigid bounding domains. As a consequence, the wallrock of the strike-slip faults deforms to accommodate both the clockwise rotation of the left-slip faults and off-fault strain that arises at the fault ends. An important implication of our model is that the style and magnitude of Cenozoic deformation in northern Tibet vary considerably in the east-west direction. Thus, any single north-south cross section and its kinematic reconstruction through the region do not properly quantify the complex deformational processes of plateau formation.
Micromechanics of sea ice frictional slip from test basin scale experiments.
Sammonds, Peter R; Hatton, Daniel C; Feltham, Daniel L
2017-02-13
We have conducted a series of high-resolution friction experiments on large floating saline ice floes in an environmental test basin. In these experiments, a central ice floe was pushed between two other floes, sliding along two interfacial faults. The frictional motion was predominantly stick-slip. Shear stresses, normal stresses, local strains and slip displacement were measured along the sliding faults, and acoustic emissions were monitored. High-resolution measurements during a single stick-slip cycle at several positions along the fault allowed us to identify two phases of frictional slip: a nucleation phase, where a nucleation zone begins to slip before the rest of the fault, and a propagation phase when the entire fault is slipping. This is slip-weakening behaviour. We have therefore characterized what we consider to be a key deformation mechanism in Arctic Ocean dynamics. In order to understand the micromechanics of sea ice friction, we have employed a theoretical constitutive relation (i.e. an equation for shear stress in terms of temperature, normal load, acceleration, velocity and slip displacement) derived from the physics of asperity-asperity contact and sliding (Hatton et al. 2009 Phil. Mag. 89, 2771-2799 (doi:10.1080/14786430903113769)). We find that our experimental data conform reasonably with this frictional law once slip weakening is introduced. We find that the constitutive relation follows Archard's law rather than Amontons' law, with [Formula: see text] (where τ is the shear stress and σ n is the normal stress) and n = 26/27, with a fractal asperity distribution, where the frictional shear stress, τ = f fractal T ml w s , where f fractal is the fractal asperity height distribution, T ml is the shear strength for frictional melting and lubrication and w s is the slip weakening. We can therefore deduce that the interfacial faults failed in shear for these experimental conditions through processes of brittle failure of asperities in shear, and, at higher velocities, through frictional heating, localized surface melting and hydrodynamic lubrication.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Zinke, Robert; Hollingsworth, James; Dolan, James F.
2014-12-01
Comparison of 398 fault offsets measured by visual analysis of WorldView high-resolution satellite imagery with deformation maps produced by COSI-Corr subpixel image correlation of Landsat-8 and SPOT5 imagery reveals significant complexity and distributed deformation along the 2013 Mw 7.7 Balochistan, Pakistan earthquake. Average slip along the main trace of the fault was 4.2 m, with local maximum offsets up to 11.4 m. Comparison of slip measured from offset geomorphic features, which record localized slip along the main strand of the fault, to the total displacement across the entire width of the surface deformation zone from COSI-Corr reveals ˜45% off-fault deformation. While previous studies have shown that the structural maturity of the fault exerts a primary control on the total percentage of off-fault surface deformation, large along-strike variations in the percentage of strain localization observed in the 2013 rupture imply the influence of important secondary controls. One such possible secondary control is the type of near-surface material through which the rupture propagated. We therefore compared the percentage off-fault deformation to the type of material (bedrock, old alluvium, and young alluvium) at the surface and the distance of the fault to the nearest bedrock outcrop (a proxy for sediment thickness along this hybrid strike slip/reverse slip fault). We find significantly more off-fault deformation in younger and/or thicker sediments. Accounting for and predicting such off-fault deformation patterns has important implications for the interpretation of geologic slip rates, especially for their use in probabilistic seismic hazard assessments, the behavior of near-surface materials during coseismic deformation, and the future development of microzonation protocols for the built environment.
Aftershock patterns and main shock faulting
Mendoza, C.; Hartzell, S.H.
1988-01-01
We have compared aftershock patterns following several moderate to large earthquakes with the corresponding distributions of coseismic slip obtained from previous analyses of the recorded strong ground motion and teleseismic waveforms. Our results are consistent with a hypothesis of aftershock occurrence that requires a secondary redistribution of stress following primary failure on the earthquake fault. Aftershocks followng earthquakes examined in this study occur mostly outside of or near the edges of the source areas indicated by the patterns of main shock slip. The spatial distribution of aftershocks reflects either a continuation of slip in the outer regions of the areas of maximum coseismic displacement or the activation of subsidiary faults within the volume surrounding the boundaries of main shock rupture. -from Authors
Observations that Constrain the Scaling of Apparent Stress
NASA Astrophysics Data System (ADS)
McGarr, A.; Fletcher, J. B.
2002-12-01
Slip models developed for major earthquakes are composed of distributions of fault slip, rupture time, and slip velocity time function over the rupture surface, as divided into many smaller subfaults. Using a recently-developed technique, the seismic energy radiated from each subfault can be estimated from the time history of slip there and the average rupture velocity. Total seismic energies, calculated by summing contributions from all of the subfaults, agree reasonably well with independent estimates based on seismic energy flux in the far-field at regional or teleseismic distances. Two recent examples are the 1999 Izmit, Turkey and the 1999 Hector Mine, California earthquakes for which the NEIS teleseismic measurements of radiated energy agree fairly closely with seismic energy estimates from several different slip models, developed by others, for each of these events. Similar remarks apply to the 1989 Loma Prieta, 1992 Landers, and 1995 Kobe earthquakes. Apparent stresses calculated from these energy and moment results do not indicate any moment or magnitude dependence. The distributions of both fault slip and seismic energy radiation over the rupture surfaces of earthquakes are highly inhomogeneous. These results from slip models, combined with underground and seismic observations of slip for much smaller mining-induced earthquakes, can provide stronger constraint on the possible scaling of apparent stress with moment magnitude M or seismic moment. Slip models for major earthquakes in the range M6.2 to M7.4 show maximum slips ranging from 1.6 to 8 m. Mining-induced earthquakes at depths near 2000 m in South Africa are associated with peak slips of 0.2 to 0.37 m for events of M4.4 to M4.6. These maximum slips, whether derived from a slip model or directly observed underground in a deep gold mine, scale quite definitively as the cube root of the seismic moment. In contrast, peak slip rates (maximum subfault slip/rise time) appear to be scale invariant. A 1.25 m/s slip rate for one of the mining-induced earthquakes was estimated by dividing the corresponding slip observed at depth by the duration of the seismically-recorded slip pulse. Peak slip rates determined from the slip models for the major earthquakes are similar, ranging from about 0.8 to 4.8 m/s. Thus, for earthquakes in the moment magnitude range 4.4 to 7.4, the peak slip rate shows no dependence on M. Whatever variation there is in slip rate is probably due to factors related to the strength of the seismogenic rock mass such as depth. These observations support the idea that apparent stress does not vary systematically with seismic moment inasmuch as the apparent stress is determined by slip rate. Indeed, our finding that fault behavior of M4.4 earthquakes can be scaled readily to events of M greater than 7 with slips up to about 8 m suggests, quite persuasively, that the source physics for crustal earthquakes is much the same over this magnitude range. Interestingly, the mining-induced earthquakes involved brittle failure across very old pre-existing faults for which the cohesive strength is high and the pore pressure is zero, due to mining operations.
NASA Astrophysics Data System (ADS)
Merryman Boncori, John Peter; Papoutsis, Ioannis; Pezzo, Giuseppe; Tolomei, Cristiano; Atzori, Simone; Ganas, Athanassios; Karastathis, Vassilios; Salvi, Stefano; Kontoes, Charalampos; Antonioli, Andrea
2015-04-01
On Jan. 26, 2014 at 13:55 UTC an Mw 6.0 earthquake struck the island of Cephalonia, Greece, followed five hours later by an Mw 5.3 aftershock, and by an Mw 5.9 event on Feb. 3, 2014 (National Observatory of Athens, Institute of Geodynamics), causing extensive structural damages and inducing widespread environmental effects. We measured the 3D coseismic deformation field of the Feb. 3, 2014 event, by applying Differential Synthetic Aperture Radar Interferometry (DInSAR), Intensity cross-correlation and Spectral Diversity (also known as Multi Aperture Interferometry) to descending passes of the Italian Space Agency (ASI) COSMO-SkyMed satellites and ascending passes of the German Space Agency (DLR) TanDEM-X satellite. These techniques allowed the observation of four independent displacement components (descending and ascending radar line-of-sight and azimuth), each of which was measured with two different techniques, resulting in an increased spatial coverage, robustness and sensitivity to all Cartesian displacement components. Our SAR measurements were found to be in very good agreement with those from available continuous Global Positioning System (cGPS) stations. We modeled the seismic source of the Feb. 3, 2014 earthquake with a joint inversion of the eight SAR displacement maps, using the analytical solutions for dislocation in an elastic half-space. Firstly, we considered a model based on a single-fault plane and carried out a non-linear inversion to estimate its geometric and kinematic source parameters, assuming a uniform slip. Subsequently, we performed a linear inversion to retrieve the slip distribution, adopting a damped and Non-Negative Least Squares approach. Slip values were computed on a variable-size mesh, which maximizes the model resolution matrix. We find the majority of the observed surface deformation to be explained by a 20 km long ~N-S oriented and west-dipping fault running parallel to the east coast of the Paliki peninsula, with a main right-lateral strike-slip mechanism and a lesser reverse component (rake=147°). The slip on this structure is mostly confined to depths shallower than 5 km. However a comparison of observed and modelled displacements, suggests a non-negligible slip to occur also along a second structure, ~10 km in length, located in the south of Paliki and striking NE-SW. We therefore performed a second inversion of the SAR displacement maps, finding a dominant right-lateral strike-slip mechanism (rake=164°) and a high dip angle (76°) for the NE-SW striking fault. Most of the slip on this latter structure is found to occur at depths between 2 km and 5 km, although our model is poorly constrained at greater depths. Inclusion of the NE-SW fault in the source model is found to significantly improve the fit to all observed displacements in the south-east of the Paliki peninsula. Finally, we compare the full moment-tensor derived from our models to those obtained by several global and regional seismic networks. We also compare the slip distributions resulting from our inversions to hypocenter relocations based on a 2D velocity model, which accounts for a non-horizontal Moho structure. A remarkable agreement is found, which also allows several considerations to be made on the rupture mechanism.
NASA Astrophysics Data System (ADS)
Causse, Mathieu; Cultrera, Giovanna; Herrero, André; Courboulex, Françoise; Schiappapietra, Erika; Moreau, Ludovic
2017-04-01
On May 29, 2012 occurred a Mw 5.9 earthquake in the Emilia-Romagna region (Po Plain) on a thrust fault system. This shock, as well as hundreds of aftershocks, were recorded by 10 strong motion stations located less than 10 km away from the rupture plane, with 4 stations located within the surface rupture projection. The Po Plain is a very large EW trending syntectonic alluvial basin, delimited by the Alps and Apennines chains to the North and South. The Plio-Quaternary sedimentary sequence filling the Po Plain is characterized by an uneven thickness, ranging from several thousands of meters to a few tens of meters. This particular context results especially in a resonance basin below 1 Hz and strong surface waves, which makes it particularly difficult to model wave propagation and hence to obtain robust images of the rupture propagation. This study proposes to take advantage of the large set of recorded aftershocks, considered as point sources, to model wave propagation. Due to the heterogeneous distribution of the aftershocks on the fault plane, an interpolation technique is proposed to compute an approximation of the Green's function between each fault point and each strong motion station in the frequency range [0.2-1Hz]. We then use a Bayesian inversion technique (Monte Carlo Markov Chain algorithm) to obtain images of the rupture propagation from the strong motion data. We propose to retrieve the slip distribution by inverting the final slip value at some control points, which are allowed to move on the fault plane, and by interpolating the slip value between these points. We show that the use of 5 control points to describe the slip, coupled with the hypothesis of spatially constant rupture velocity and rise-time (that is 18 free source parameters), results in a good level of fit with the data. This indicates that despite their complexity, the strong motion data can be properly modeled up to 1 Hz using a relatively simple rupture. The inversion results also reveal that the rupture propagated slowly, at a speed of about 45% of the shear wave velocity.
Developing a Near Real-time System for Earthquake Slip Distribution Inversion
NASA Astrophysics Data System (ADS)
Zhao, Li; Hsieh, Ming-Che; Luo, Yan; Ji, Chen
2016-04-01
Advances in observational and computational seismology in the past two decades have enabled completely automatic and real-time determinations of the focal mechanisms of earthquake point sources. However, seismic radiations from moderate and large earthquakes often exhibit strong finite-source directivity effect, which is critically important for accurate ground motion estimations and earthquake damage assessments. Therefore, an effective procedure to determine earthquake rupture processes in near real-time is in high demand for hazard mitigation and risk assessment purposes. In this study, we develop an efficient waveform inversion approach for the purpose of solving for finite-fault models in 3D structure. Full slip distribution inversions are carried out based on the identified fault planes in the point-source solutions. To ensure efficiency in calculating 3D synthetics during slip distribution inversions, a database of strain Green tensors (SGT) is established for 3D structural model with realistic surface topography. The SGT database enables rapid calculations of accurate synthetic seismograms for waveform inversion on a regular desktop or even a laptop PC. We demonstrate our source inversion approach using two moderate earthquakes (Mw~6.0) in Taiwan and in mainland China. Our results show that 3D velocity model provides better waveform fitting with more spatially concentrated slip distributions. Our source inversion technique based on the SGT database is effective for semi-automatic, near real-time determinations of finite-source solutions for seismic hazard mitigation purposes.
Numerical Investigations of Slip Phenomena in Centrifugal Compressor Impellers
NASA Astrophysics Data System (ADS)
Huang, Jeng-Min; Luo, Kai-Wei; Chen, Ching-Fu; Chiang, Chung-Ping; Wu, Teng-Yuan; Chen, Chun-Han
2013-03-01
This study systematically investigates the slip phenomena in the centrifugal air compressor impellers by CFD. Eight impeller blades for different specific speeds, wrap angles and exit blade angles are designed by compressor design software to analyze their flow fields. Except for the above three variables, flow rate and number of blades are the other two. Results show that the deviation angle decreases as the flow rate increases. The specific speed is not an important parameter regarding deviation angle or slip factor for general centrifugal compressor impellers. The slip onset position is closely related to the position of the peak value in the blade loading factor distribution. When no recirculation flow is present at the shroud, the variations of slip factor under various flow rates are mainly determined by difference between maximum blade angle and exit blade angle, Δβmax-2. The solidity should be of little importance to slip factor correlations in centrifugal compressor impellers.
Equivalent strike-slip earthquake cycles in half-space and lithosphere-asthenosphere earth models
Savage, J.C.
1990-01-01
By virtue of the images used in the dislocation solution, the deformation at the free surface produced throughout the earthquake cycle by slippage on a long strike-slip fault in an Earth model consisting of an elastic plate (lithosphere) overlying a viscoelastic half-space (asthenosphere) can be duplicated by prescribed slip on a vertical fault embedded in an elastic half-space. Inversion of 1973-1988 geodetic measurements of deformation across the segment of the San Andreas fault in the Transverse Ranges north of Los Angeles for the half-space equivalent slip distribution suggests no significant slip on the fault above 30 km and a uniform slip rate of 36 mm/yr below 30 km. One equivalent lithosphere-asthenosphere model would have a 30-km thick lithosphere and an asthenosphere relaxation time greater than 33 years, but other models are possible. -from Author
Wald, D.J.; Graves, R.W.
2001-01-01
Using numerical tests for a prescribed heterogeneous earthquake slip distribution, we examine the importance of accurate Green's functions (GF) for finite fault source inversions which rely on coseismic GPS displacements and leveling line uplift alone and in combination with near-source strong ground motions. The static displacements, while sensitive to the three-dimensional (3-D) structure, are less so than seismic waveforms and thus are an important contribution, particularly when used in conjunction with waveform inversions. For numerical tests of an earthquake source and data distribution modeled after the 1994 Northridge earthquake, a joint geodetic and seismic inversion allows for reasonable recovery of the heterogeneous slip distribution on the fault. In contrast, inaccurate 3-D GFs or multiple 1-D GFs allow only partial recovery of the slip distribution given strong motion data alone. Likewise, using just the GPS and leveling line data requires significant smoothing for inversion stability, and hence, only a blurred vision of the prescribed slip is recovered. Although the half-space approximation for computing the surface static deformation field is no longer justifiable based on the high level of accuracy for current GPS data acquisition and the computed differences between 3-D and half-space surface displacements, a layered 1-D approximation to 3-D Earth structure provides adequate representation of the surface displacement field. However, even with the half-space approximation, geodetic data can provide additional slip resolution in the joint seismic and geodetic inversion provided a priori fault location and geometry are correct. Nevertheless, the sensitivity of the static displacements to the Earth structure begs caution for interpretation of surface displacements, particularly those recorded at monuments located in or near basin environments. Copyright 2001 by the American Geophysical Union.
Multi-asperity models of slow slip and tremor
NASA Astrophysics Data System (ADS)
Ampuero, Jean Paul; Luo, Yingdi; Lengline, Olivier; Inbal, Asaf
2016-04-01
Field observations of exhumed faults indicate that fault zones can comprise mixtures of materials with different dominant deformation mechanisms, including contrasts in strength, frictional stability and hydrothermal transport properties. Computational modeling helps quantify the potential effects of fault zone heterogeneity on fault slip styles from seismic to aseismic slip, including slow slip and tremor phenomena, foreshocks sequences and swarms, high- and low-frequency radiation during large earthquakes. We will summarize results of ongoing modeling studies of slow slip and tremor in which fault zone structure comprises a collection of frictionally unstable patches capable of seismic slip (tremorgenic asperities) embedded in a frictionally stable matrix hosting aseismic transient slips. Such models are consistent with the current view that tremors result from repeated shear failure of multiple asperities as Low Frequency Earthquakes (LFEs). The collective behavior of asperities embedded in creeping faults generate a rich spectrum of tremor migration patterns, as observed in natural faults, whose seismicity rate, recurrence time and migration speed can be mechanically related to the underlying transient slow slip rate. Tremor activity and slow slip also responds to periodic loadings induced by tides or surface waves, and models relate tremor tidal sensitivity to frictional properties, fluid pressure and creep rate. The overall behavior of a heterogeneous fault is affected by structural parameters, such as the ratio of stable to unstable materials, but also by time-dependent variables, such as pore pressure and loading rate. Some behaviors are well predicted by homogenization theory based on spatially-averaged frictional properties, but others are somewhat unexpected, such as seismic slip behavior found in asperities that are much smaller than their nucleation size. Two end-member regimes are obtained in rate-and-state models with velocity-weakening asperities embedded in a matrix with either (A) velocity-strengthening friction or (B) a transition from velocity-weakening to velocity-strengthening at increasing slip velocity. The most conventional regime is tremor driven by slow slip. However, if the interaction between asperities mediated by intervening transient creep is strong enough, a regime of slow slip driven by tremors emerges. These two regimes lead to different statistics of inter-event times of LFE sequences, which we confront to observations from LFE catalogs in Mexico, Cascadia and Parkfield. These models also suggest that the depth dependence of tremor and slow slip behavior, for instance their shorter recurrence time and weaker amplitude with increasing depth, are not necessarily related to depth dependent size distribution of asperities, but could be due to depth-dependence of the properties of the intervening creep materials. Simplified fracture mechanics models illustrate how the resistance of the fault zone matrix can control the effective distance of interaction between asperities, and lead to transitions between Gutenberg-Richter to size-bounded (exponential) frequency-magnitude distributions. Structural fault zone properties such as the thickness of the damage zone can also introduce characteristic length scales that may affect the size distribution of tremors. Earthquake cycle simulations on heterogeneous faults also provide insight into the conditions that allow asperities to generate foreshock activity and high-frequency radiation during large earthquakes.
Tire-road friction estimation and traction control strategy for motorized electric vehicle.
Jin, Li-Qiang; Ling, Mingze; Yue, Weiqiang
2017-01-01
In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS).
NASA Astrophysics Data System (ADS)
Hamiel, Yariv; Piatibratova, Oksana; Mizrahi, Yaakov; Nahmias, Yoav; Sagy, Amir
2018-04-01
Detailed field and geodetic observations of crustal deformation across the Jericho Fault section of the Dead Sea Fault are presented. New field observations reveal several slip episodes that rupture the surface, consist with strike slip and extensional deformation along a fault zone width of about 200 m. Using dense Global Positioning System measurements, we obtain the velocities of new stations across the fault. We find that this section is locked for strike-slip motion with a locking depth of 16.6 ± 7.8 km and a slip rate of 4.8 ± 0.7 mm/year. The Global Positioning System measurements also indicate asymmetrical extension at shallow depths of the Jericho Fault section, between 0.3 and 3 km. Finally, our results suggest the vast majority of the sinistral slip along the Dead Sea Fault in southern Jorden Valley is accommodated by the Jericho Fault section.
Tire-road friction estimation and traction control strategy for motorized electric vehicle
Jin, Li-Qiang; Yue, Weiqiang
2017-01-01
In this paper, an optimal longitudinal slip ratio system for real-time identification of electric vehicle (EV) with motored wheels is proposed based on the adhesion between tire and road surface. First and foremost, the optimal longitudinal slip rate torque control can be identified in real time by calculating the derivative and slip rate of the adhesion coefficient. Secondly, the vehicle speed estimation method is also brought. Thirdly, an ideal vehicle simulation model is proposed to verify the algorithm with simulation, and we find that the slip ratio corresponds to the detection of the adhesion limit in real time. Finally, the proposed strategy is applied to traction control system (TCS). The results showed that the method can effectively identify the state of wheel and calculate the optimal slip ratio without wheel speed sensor; in the meantime, it can improve the accelerated stability of electric vehicle with traction control system (TCS). PMID:28662053
Geometric and thermal controls on normal fault seismicity from rate-and-state friction models
NASA Astrophysics Data System (ADS)
Mark, H. F.; Behn, M. D.; Olive, J. A. L.; Liu, Y.
2017-12-01
Seismic and geodetic observations from the last two decades have led to a growing realization that a significant amount of fault slip at plate boundaries occurs aseismically, and that the amount of aseismic displacement varies across settings. Here we investigate controls on the seismogenic behavior of crustal-scale normal faults that accommodate extensional strain at mid-ocean ridges and continental rifts. Seismic moment release rates measured along the fast-spreading East Pacific Rise suggest that the majority of fault growth occurs aseismically with almost no seismic slip. In contrast, at the slow-spreading Mid-Atlantic Ridge seismic slip may represent up to 60% of the total fault displacement. Potential explanations for these variations include heterogeneous distributions of frictional properties on fault surfaces, effects of variable magma supply associated with seafloor spreading, and/or differences in fault geometry and thermal structure. In this study, we use rate-and-state friction models to study the seismic coupling coefficient (the fraction of total fault slip that occurs seismically) for normal faults at divergent plate boundaries, and investigate controls on fault behavior that might produce the variations in the coupling coefficient observed in natural systems. We find that the seismic coupling coefficient scales with W/h*, where W is the downdip width of the seismogenic area of the fault and h* is the critical earthquake nucleation size. At mid-ocean ridges, W is expected to increase with decreasing spreading rate. Thus, the observed relationship between seismic coupling and W/h* explains to first order variations in seismic coupling coefficient as a function of spreading rate. Finally, we use catalog data from the Gulf of Corinth to show that this scaling relationship can be extended into the thicker lithosphere of continental rift systems.
Rupture preparation process controlled by surface roughness on meter-scale laboratory fault
NASA Astrophysics Data System (ADS)
Yamashita, Futoshi; Fukuyama, Eiichi; Xu, Shiqing; Mizoguchi, Kazuo; Kawakata, Hironori; Takizawa, Shigeru
2018-05-01
We investigate the effect of fault surface roughness on rupture preparation characteristics using meter-scale metagabbro specimens. We repeatedly conducted the experiments with the same pair of rock specimens to make the fault surface rough. We obtained three experimental results under the same experimental conditions (6.7 MPa of normal stress and 0.01 mm/s of loading rate) but at different roughness conditions (smooth, moderately roughened, and heavily roughened). During each experiment, we observed many stick-slip events preceded by precursory slow slip. We investigated when and where slow slip initiated by using the strain gauge data processed by the Kalman filter algorithm. The observed rupture preparation processes on the smooth fault (i.e. the first experiment among the three) showed high repeatability of the spatiotemporal distributions of slow slip initiation. Local stress measurements revealed that slow slip initiated around the region where the ratio of shear to normal stress (τ/σ) was the highest as expected from finite element method (FEM) modeling. However, the exact location of slow slip initiation was where τ/σ became locally minimum, probably due to the frictional heterogeneity. In the experiment on the moderately roughened fault, some irregular events were observed, though the basic characteristics of other regular events were similar to those on the smooth fault. Local stress data revealed that the spatiotemporal characteristics of slow slip initiation and the resulting τ/σ drop for irregular events were different from those for regular ones even under similar stress conditions. On the heavily roughened fault, the location of slow slip initiation was not consistent with τ/σ anymore because of the highly heterogeneous static friction on the fault, which also decreased the repeatability of spatiotemporal distributions of slow slip initiation. These results suggest that fault surface roughness strongly controls the rupture preparation process, and generally increases its complexity with the degree of roughness.
Recognising Paleoseismic Events and Slip Styles in Vein Microstructures - is Incrementality Enough?
NASA Astrophysics Data System (ADS)
Fagereng, A.; Sibson, R. H.
2008-12-01
'Subduction channels', containing highly sheared, fluid-saturated, trench-fill sediments, are commonly present along subduction thrust interfaces. These shear zones accommodate fast plate boundary slip rates (1~-~10~cm/yr) and exhibit high levels of seismicity, accomplishing slip in a broad range of styles including standard earthquakes, slow slip, non-volcanic tremor and aseismic creep. Exhumed subduction channel fault rocks provide a time-integrated record of these varied slip modes though the degree of overprinting may be considerable. The Chrystalls Beach accretionary mélange, within the Otago Schist accretion-collision assemblage, New Zealand, is analogous to an active subduction channel assemblage. It contains asymmetric lenses of sandstone, chert and minor basalt enclosed within a relatively incompetent, cleaved pelitic matrix. This assemblage has been intensely sheared in a mixed continuous/discontinuous style within a flat-lying, <~4~km thick, shear zone. Ductile structures such as folds, S/C-like structures, and asymmetric boudins and clasts formed by soft sediment deformation and pressure solution creep. An extensive anastomosing vein system can be divided into mutually cross-cutting extension fractures (V1) and slickenfibre shear veins (V2). V1 commonly cut competent lenses within the mélange, while V2 mostly follow lithological contacts. Both vein sets are predominantly elongate-blocky with 'crack-seal' extension and shear increments of 10~- ~100~μm. Little sign of wall rock alteration or heating is present adjacent to V1 veins, which likely formed by incremental hydrofracture with episodic fluid influx. Post-fracture drop in Pf promoted solute precipitation from advecting fluids. This process may reflect fracture and fluid flow in a distributed fault-fracture mesh, an often inferred mechanism of non-volcanic tremor. In contrast, wall rock alteration and pressure solution seams are common adjacent to V2 veins. Slickenfibres on these shear surfaces likely formed by relatively slow dissolution and precipitation of wall rock material, which may translate to a slip mode of rise-time intermediate between earthquakes (seconds - minutes) and aseismic creep (years - infinite). Fibres are typically ≤ 10 cm long, similar to slip observed in slow slip events (rise-time weeks - months). We propose that these veins are possible records of slow slip along weak, fluid-saturated and highly overpressured planes. No definite record of large, fast earthquakes is observed in the complex, either because the rocks never experienced such events, or because significant shear heating was inhibited by thermal pressurisation. The only record of fast events would be discrete planes of cataclasite, easily overprinted by slow interseismic material diffusion. The mélange is a record of episodic, distributed deformation over a range of time- and length-scales, which may reflect distributed seismic activity accommodated by a range of slip modes including episodic tremor and slow slip.
NASA Astrophysics Data System (ADS)
Liu, Y.; Dedontney, N. L.; Rice, J. R.
2007-12-01
Rate and state friction, as applied to modeling subduction earthquake sequences, routinely predicts postseismic slip. It also predicts spontaneous aseismic slip transients, at least when pore pressure p is highly elevated near and downdip from the stability transition [Liu and Rice, 2007]. Here we address how to make such postseismic and transient predictions more fully compatible with geophysical observations. For example, lab observations can determine the a, b parameters and state evolution slip L of rate and state friction as functions of lithology and temperature and, with aid of a structural and thermal model of the subduction zone, as functions of downdip distance. Geodetic observations constrain interseismic, postseismic and aseismic transient deformations, which are controlled in the modeling by the distributions of a \\barσ and b \\barσ (parameters which also partly control the seismic rupture phase), where \\barσ = σ - p. Elevated p, controlled by tectonic compression and dehydration, may be constrained by petrologic and seismic observations. The amount of deformation and downdip extent of the slipping zone associated with the spontaneous quasi- periodic transients, as thus far modeled [Liu and Rice, 2007], is generally smaller than that observed during episodes of slow slip events in northern Cascadia and SW Japan subduction zones. However, the modeling was based on lab data for granite gouge under hydrothermal conditions because data is most complete for that case. We here report modeling based on lab data on dry granite gouge [Stesky, 1975; Lockner et al., 1986], involving no or lessened chemical interaction with water and hence being a possibly closer analog to dehydrated oceanic crust, and limited data on gabbro gouge [He et al., 2007], an expected lithology. Both data sets show a much less rapid increase of a-b with temperature above the stability transition (~ 350 °C) than does wet granite gouge; a-b increases to ~ 0.08 for wet granite at 600 °C, but to only ~ 0.01 in the dry granite and gabbro cases. We find that the lessened high-T a - b does, for the same \\barσ, modestly extend the transient slip episodes further downdip, although a majority of slip is still contributed near and in the updip rate-weakening region. However, postseismic slip, for the same \\barσ, propagates much further downdip into the rate-strengthening region. To better constrain the downdip distribution of (a - b) \\barσ, and possibly a \\barσ and L, we focus on the geodetically constrained [Hutton et al., 2001] space-time distribution of postseismic slip for the 1995 Mw = 8.0 Colima-Jalisco earthquake. This is a similarly shallow dipping subduction zone with a thermal profile [Currie et al., 2001] comparable to those that have thus far been shown to exhibit aseismic transients and non-volcanic tremor [Peacock et al., 2002]. We extrapolate the modeled 2-D postseismic slip, following a thrust earthquake with a coseismic slip similar to the 1995 event, to a spatial-temporal 3-D distribution. Surface deformation due to such slips on the thrust fault in an elastic half space is calculated and compared to that observed at western Mexico GPS stations, to constrain the above depth-variable model parameters.
Earthquake fracture energy inferred from kinematic rupture models on extended faults
Tinti, E.; Spudich, P.; Cocco, M.
2005-01-01
We estimate fracture energy on extended faults for several recent earthquakes by retrieving dynamic traction evolution at each point on the fault plane from slip history imaged by inverting ground motion waveforms. We define the breakdown work (Wb) as the excess of work over some minimum traction level achieved during slip. Wb is equivalent to "seismological" fracture energy (G) in previous investigations. Our numerical approach uses slip velocity as a boundary condition on the fault. We employ a three-dimensional finite difference algorithm to compute the dynamic traction evolution in the time domain during the earthquake rupture. We estimate Wb by calculating the scalar product between dynamic traction and slip velocity vectors. This approach does not require specifying a constitutive law and assuming dynamic traction to be collinear with slip velocity. If these vectors are not collinear, the inferred breakdown work depends on the initial traction level. We show that breakdown work depends on the square of slip. The spatial distribution of breakdown work in a single earthquake is strongly correlated with the slip distribution. Breakdown work density and its integral over the fault, breakdown energy, scale with seismic moment according to a power law (with exponent 0.59 and 1.18, respectively). Our estimates of breakdown work range between 4 ?? 105 and 2 ?? 107 J/m2 for earthquakes having moment magnitudes between 5.6 and 7.2. We also compare our inferred values with geologic surface energies. This comparison might suggest that breakdown work for large earthquakes goes primarily into heat production. Copyright 2005 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Rhode, A.; Lay, T.
2017-12-01
Determining the up-dip rupture extent of large megathrust ruptures is important for understanding their tsunami excitation, frictional properties of the shallow megathrust, and potential for separate tsunami earthquake occurrence. On land geodetic data have almost no resolution of the up-dip extent of faulting and teleseismic observations have limited resolution that is strongly influenced by typically poorly known shallow seismic velocity structure near the toe of the accretionary prism. The increase in ocean depth as slip on the megathrust approaches the trench has significant influence on the strength and azimuthal distribution of water reverberations in the far-field P wave coda. For broadband P waves from large earthquakes with dominant signal periods of about 10 s, water reverberations generated by shallow fault slip under deep water may persist for over a minute after the direct P phases have passed, giving a clear signal of slip near the trench. As the coda waves can be quickly evaluated following the P signal, recognition of slip extending to the trench and associated enhanced tsunamigenic potential could be achieved within a few minutes after the P arrival, potentially contributing to rapid tsunami hazard assessment. We examine the broadband P wave coda at distances from 80 to 120° for a large number of recent major and great earthquakes with independently determined slip distributions and known tsunami excitation to evaluate the prospect for rapidly constraining up-dip rupture extent of large megathrust earthquakes. Events known to have significant shallow slip, at least locally extending to the trench (e.g., 2016 Illapel, Chile; 2010 Maule, 2010 Mentawai) do have relatively enhanced coda levels at all azimuths, whereas events that do not rupture the shallow megathrust (e.g., 2007 Sumatra, 2014 Iquique, 2003 Hokkaido) do not. Some events with slip models lacking shallow slip show strong coda generation, raising questions about the up-dip resolution of slip of their finite-fault models, and others show strong azimuthal patterns in coda strength that suggest propagation from the slip zone to the deep near-trench environments is involved rather than slip near the trench. The various behaviors will be integrated into an assessment of this approach.
NASA Astrophysics Data System (ADS)
Buforn, E.; Pro, C.; del Fresno, C.; Cantavella, J.; Sanz de Galdeano, C.; Udias, A.
2016-12-01
We have studied the rupture process of the 25 January 2016 earthquake (Mw =6.4) occurred in South Spain in the Alboran Sea. Main shock, foreshock and largest aftershocks (Mw =4.5) have been relocated using the NonLinLoc algorithm. Results obtained show a NE-SW distribution of foci at shallow depth (less than 15 km). For main shock, focal mechanism has been obtained from slip inversion over the rupture plane of teleseismic data, corresponding to left-lateral strike-slip motion. The rupture starts at 7 km depth and it propagates upward with a complex source time function. In order to obtain a more detailed source time function and to validate the results obtained from teleseismic data, we have used the Empirical Green Functions method (EGF) at regional distances. Finally, results of the directivity effect from teleseismic Rayleigh waves and the EGF method, are consistent with a rupture propagation to the NE. These results are interpreted in terms of the main geological features in the region.
Slow slip rate and excitation efficiency of deep low-frequency tremors beneath southwest Japan
NASA Astrophysics Data System (ADS)
Daiku, Kumiko; Hiramatsu, Yoshihiro; Matsuzawa, Takanori; Mizukami, Tomoyuki
2018-01-01
We estimated the long-term average slip rate on the plate interface across the Nankai subduction zone during 2002-2013 using deep low-frequency tremors as a proxy for short-term slow slip events based on empirical relations between the seismic moment of short-term slow slip events and tremor activities. The slip rate in each region is likely to compensate for differences between the convergence rate and the slip deficit rate of the subducting Philippine Sea plate estimated geodetically, although the uncertainty is large. This implies that the strain because of the subduction of the plate is partially stored as the slip deficit and partially released by slow slip events during the interseismic period. The excitation efficiency of the tremors for the slow slip events differs among regions: it is high in the northern Kii region. Some events in the western Shikoku region show a somewhat large value. Antigorite serpentinite of two types exists in the mantle wedge beneath southwest Japan. Slips with more effective excitation of tremors presumably occur in high-temperature conditions in the antigorite + olivine stability field. Other slip events with low excitation efficiency are distributed in the antigorite + brucite stability field. Considering the formation reactions of these minerals and their characteristic structures, events with high excitation efficiency can be correlated with a high pore fluid pressure condition. This result suggests that variation in pore fluid pressure on the plate interface affects the magnitude of tremors excited by slow slip events.
Advanced Mobility Testbed for Dynamic Semi-Autonomous Unmanned Ground Vehicles
2015-04-24
constraint, effectively hiding them from the dynamics solver. Thus the resulting system topology is once again a tree with only inter-body hinges and...the geometry of wheel sinkage (left) and stress distribution under the wheel (right) from reference [24]. With τmax(θ) = c+σ(θ) tan (φ). the shear...sliding). The transversal deflection α or lateral slip angle and the lateral slip coefficient Sα are Sα = tan (α) = −vy vx (12) The comprehensive slip ratio
Preslip and cascade processes initiating laboratory stick slip
McLaskey, Gregory C.; Lockner, David A.
2014-01-01
Recent modeling studies have explored whether earthquakes begin with a large aseismic nucleation process or initiate dynamically from the rapid growth of a smaller instability in a “cascade-up” process. To explore such a case in the laboratory, we study the initiation of dynamic rupture (stick slip) of a smooth saw-cut fault in a 76mm diameter cylindrical granite laboratory sample at 40–120MPa confining pressure. We use a high dynamic range recording system to directly compare the seismic waves radiated during the stick-slip event to those radiated from tiny (M _6) discrete seismic events, commonly known as acoustic emissions (AEs), that occur in the seconds prior to each large stick slip. The seismic moments, focal mechanisms, locations, and timing of the AEs all contribute to our understanding of their mechanics and provide us with information about the stick-slip nucleation process. In a sequence of 10 stick slips, the first few microseconds of the signals recorded from stick-slip instabilities are nearly indistinguishable from those of premonitory AEs. In this sense, it appears that each stick slip begins as an AE event that rapidly (~20 μs) grows about 2 orders of magnitude in linear dimension and ruptures the entire 150mm length of the simulated fault. We also measure accelerating fault slip in the final seconds before stick slip. We estimate that this slip is at least 98% aseismic and that it both weakens the fault and produces AEs that will eventually cascade-up to initiate the larger dynamic rupture.
Modeling slip system strength evolution in Ti-7Al informed by in-situ grain stress measurements
Pagan, Darren C.; Shade, Paul A; Barton, Nathan R.; ...
2017-02-17
Far-field high-energy X-ray diffraction microscopy is used to asses the evolution of slip system strengths in hexagonal close-packed (HCP) Ti-7A1 during tensile deformation in-situ. The following HCP slip system families are considered: basal < a >, prismatic < a >, pyramidal < a >, and first-order pyramidal < c + a >. A 1 mm length of the specimen's gauge section, marked with fiducials and comprised of an aggregate of over 500 grains, is tracked during continuous deformation. The response of each slip system family is quantified using 'slip system strength curves' that are calculated from the average stress tensorsmore » of each grain over the applied deformation history. These curves, which plot the average resolved shear stress for each slip system family versus macroscopic strain, represent a mesoscopic characterization of the aggregate response. A short time-scale transient softening is observed in the basal < a >, prismatic < a >, and pyramidal < a > slip systems, while a long time-scale transient hardening is observed in the pyramidal < c + a > slip systems. These results are used to develop a slip system strength model as part of an elasto-viscoplastic constitutive model for the single crystal behavior. A suite of finite element simulations is performed on a virtual polycrystal to demonstrate the relative effects of the different parameters in the slip system strength model. Finally, the model is shown to accurately capture the macroscopic stress-strain response using parameters that are chosen to capture the mesoscopic slip system responses.« less
Gomberg, Joan
2010-01-01
This paper introduces the special section on the "phenomenology, underlying processes, and hazard implications of aseismic slip and nonvolcanic tremor" by highlighting key results of the studies published in it. Many of the results indicate that seismic and aseismic manifestations of slow slip reflect transient shear displacements on the plate interface, with the outstanding exception of northern Cascadia where tremor sources have been located on and above the plate interface (differing models of the plate interface there also need to be reconciled). Slow slip phenomena appear to result from propagating deformation that may develop with persistent gaps and segment boundaries. Results add to evidence that when tectonic deformation is relaxed via slow slip, most relaxation occurs aseismically but with seismic signals providing higher-resolution proxies for the aseismic slip. Instead of two distinct slip modes as suggested previously, lines between "fast" and "slow" slip more appropriately may be described as blurry zones. Results reported also show that slow slip sources do not coincide with a specific temperature or metamorphic reaction. Their associations with zones of high conductivity and low shear to compressional wave velocity ratios corroborate source models involving pore fluid pressure buildup and release. These models and spatial anticorrelations between earthquake and tremor activity also corroborate a linkage between slow slip and frictional properties transitional between steady state and stick-slip. Finally, this special section highlights the benefits of global and multidisciplinary studies, which demonstrate that slow phenomena are not confined to beneath the locked zone but exist in many settings.
NASA Astrophysics Data System (ADS)
Witter, Robert C.; Zhang, Yinglong; Wang, Kelin; Goldfinger, Chris; Priest, George R.; Allan, Jonathan C.
2012-10-01
We test hypothetical tsunami scenarios against a 4,600-year record of sandy deposits in a southern Oregon coastal lake that offer minimum inundation limits for prehistoric Cascadia tsunamis. Tsunami simulations constrain coseismic slip estimates for the southern Cascadia megathrust and contrast with slip deficits implied by earthquake recurrence intervals from turbidite paleoseismology. We model the tsunamigenic seafloor deformation using a three-dimensional elastic dislocation model and test three Cascadia earthquake rupture scenarios: slip partitioned to a splay fault; slip distributed symmetrically on the megathrust; and slip skewed seaward. Numerical tsunami simulations use the hydrodynamic finite element model, SELFE, that solves nonlinear shallow-water wave equations on unstructured grids. Our simulations of the 1700 Cascadia tsunami require >12-13 m of peak slip on the southern Cascadia megathrust offshore southern Oregon. The simulations account for tidal and shoreline variability and must crest the ˜6-m-high lake outlet to satisfy geological evidence of inundation. Accumulating this slip deficit requires ≥360-400 years at the plate convergence rate, exceeding the 330-year span of two earthquake cycles preceding 1700. Predecessors of the 1700 earthquake likely involved >8-9 m of coseismic slip accrued over >260 years. Simple slip budgets constrained by tsunami simulations allow an average of 5.2 m of slip per event for 11 additional earthquakes inferred from the southern Cascadia turbidite record. By comparison, slip deficits inferred from time intervals separating earthquake-triggered turbidites are poor predictors of coseismic slip because they meet geological constraints for only 4 out of 12 (˜33%) Cascadia tsunamis.
NASA Astrophysics Data System (ADS)
T, Morimoto; F, Yoshida; A, Yanagida; J, Yanagimoto
2015-04-01
First, hardening model in f.c.c. metals was formulated with collinear interactions slips, Hirth slips and Lomer-Cottrell slips. Using the Taylor and the Sachs rolling texture prediction model, the residual dislocation densities of cold-rolled commercial pure aluminum were estimated. Then, coincidence site lattice grains were investigated from observed cold rolling texture. Finally, on the basis of oriented nucleation theory and coincidence site lattice theory, the recrystallization texture of commercial pure aluminum after low-temperature annealing was predicted.
Distribution of stress drop, stiffness, and fracture energy over earthquake rupture zones
Fletcher, Joe B.; McGarr, A.
2006-01-01
Using information provided by slip models and the methodology of McGarr and Fletcher (2002), we map static stress drop, stiffness (k = ????/u, where ???? is static stress drop and u is slip), and fracture energy over the slip surface to investigate the earthquake rupture process and energy budget. For the 1994 M6.7 Northridge, 1992 M7.3 Landers, and 1995 M6.9 Kobe earthquakes, the distributions of static stress drop show strong heterogeneity, emphasizing the importance of asperities in the rupture process. Average values of static stress drop are 17, 11, and 4 Mpa for Northridge, Landers, and Kobe, respectively. These values are substantially higher than estimates based on simple crack models, suggesting that the failure process involves the rupture of asperities within the larger fault zone. Stress drop as a function of depth for the Northridge and Landers earthquakes suggests that stress drops are limited by crustal strength. For these two earthquakes, regions of high slip are surrounded by high values of stiffness. Particularly for the Northridge earthquake, the prominent patch of high slip in the central part of the fault is bordered by a ring of high stiffness and is consistent with expectations based on the failure of an asperity loaded at its edge due to exterior slip. Stiffness within an asperity is inversely related to its dimensions. Estimates of fracture energy, based on static stress drop, slip, and rupture speed, were used to investigate the nature of slip weakening at four locations near the hypocenter of the Kobe earthquake for comparison with independent results based on a dynamic model of this earthquake. One subfault updip and to the NE of the hypocenter has a fracture energy of 1.1 MJ/m2 and a slip-weakening distance, Dc, of 0.66 m. Right triangles, whose base and height are Dc and the dynamic stress drop, respectively, approximately overlie the slip-dependent stress given by Ide and Takeo (1997) for the same locations near the hypocenter. The total fracture energy for the Kobe earthquake, 3.7 ?? 1014 J, is about the same as the seismic energy (Ea = 3.2 ?? 1014 J.
NASA Astrophysics Data System (ADS)
Ellis, Andria P.
Northern Central America is a tectonically complicated region prone to hazardous earthquakes due to the confluence of the Motagua-Polochic fault zone with the Middle America trench and strike-slip faults in the Central America volcanic arc. These three major fault zones converge at the western end of the Caribbean plate where the Cocos plate subducts under the North America and Caribbean plates. Literature from the 1970s and 1980s focused on whether a discrete North America-Caribbean-Cocos plate triple junction existed, and how the relative motions of the upper North America and Caribbean plates were accommodated. The discovery of a fourth major crustal block, the Central America forearc sliver, from seismic and geodetic observations made a three-plate triple junction geometrically impossible and introduced a new set of questions related to how deformation of the upper plate accommodates relative movements between the Caribbean plate, North America plate, and Central America forearc sliver where they intersect in the upper plate. My dissertation uses GPS and numerical modeling to measure and quantify earthquake transients and crustal deformation related to fault interactions in northern Central America and consists of three related chapters. The first chapter of my dissertation is a geodetic study of a M w = 7.4 subduction zone earthquake that occurred in 2012 offshore from our Guatemala GPS (Global Positioning System) network. For this study, I inverted coseismic site offsets and postseismic amplitudes to determine best-fitting coseismic and afterslip rupture distributions on the Middle America trench. I also determined the maximum likely viscoelastic deformation for the earthquake to test whether the transient postseismic deformation was dominated by fault afterslip or viscoelastic flow. This work was published in Geophysical Journal International in January 2015. The second chapter of my dissertation derives a new 200+ site GPS velocity field for northern Central America. Doing so was complicated by the occurrence of four M > 7 earthquakes since 2009, which perturbed the velocities of many of the GPS sites. To extract the interseismic velocity field from position time-series, we use TDEFNODE software to simultaneously model source parameters for coseismic rupture and transient afterslip from the 2012 El Salvador (M w = 7.3), 2012 Guatemala (Mw = 7.4), and 2009 Swan Islands (Mw = 7.3) earthquakes. The resulting, corrected best-fitting GPS site velocities are used in my third and final chapter. Finally, I address a variety of questions regarding several major faults that are the root of natural hazard studies in northern Central America. The 200+ site GPS velocity field derived in Chapter 2 far exceeds any previous velocity field for this region and represents a new standard for studying the tectonics of northern Central America. An inversion of the new velocity field using an eight-block elastic model gives the following unique or improved results with respect to previous work: 1) First evidence for a nearly rigid Chortis block south of the Motagua fault; 2) Evidence for southward transfer of slip from the western Motagua fault into the Guatemala City graben and other nearby normal faults; 3) A well-bounded estimate on partitioning of plate boundary slip on the Motagua and Polochic faults; 4) A first plate tectonic estimate of Cocos plate subduction below the Central America forearc sliver; 5) The first geodetic estimate of slip rate variations along the Central America volcanic arc, including the first slip rate estimate for the poorly-understood Jalpatagua fault in southern Guatemala; 6) The first geodetic estimate of distributed deformation in the Chiapas Tectonic Province; 7) Evidence for stronger locking offshore southern Mexico and even weaker shallow locking offshore Guatemala and El Salvador than previously estimated; 8) A refined estimate of how extension is distributed across the grabens of western Honduras and southern Guatemala; 9) Strain-rate tensors consistent with no significant deformation of the elongate Central America forearc sliver, but extension within the Gulf of Fonseca step-over in the Central America volcanic arc; 10) Evidence for slower slip along the Motagua fault than any previous estimate and a well-determined geodetic estimate for the long-term slip rate of the Polochic fault.
Dawson, Paul R.; Boyce, Donald E.; Park, Jun-Sang; ...
2017-10-15
A robust methodology is presented to extract slip system strengths from lattice strain distributions for polycrystalline samples obtained from high-energy x-ray diffraction (HEXD) experiments with in situ loading. The methodology consists of matching the evolution of coefficients of a harmonic expansion of the distributions from simulation to the coefficients derived from measurements. Simulation results are generated via finite element simulations of virtual polycrystals that are subjected to the loading history applied in the HEXD experiments. Advantages of the methodology include: (1) its ability to utilize extensive data sets generated by HEXD experiments; (2) its ability to capture trends in distributionsmore » that may be noisy (both measured and simulated); and (3) its sensitivity to the ratios of the family strengths. The approach is used to evaluate the slip system strengths of Ti-6Al-4V using samples having relatively equiaxed grains. These strength estimates are compared to values in the literature.« less
Some methodological aspects of tectonic stress reconstruction based on geological indicators
NASA Astrophysics Data System (ADS)
Sim, Lidiya A.
2012-03-01
The impact of the initial heterogeneity in rocks on the distribution of slickensides (slip planes), which are used to reconstruct local stress-state, is discussed. The stress-state was reconstructed by a graphic variant of the cinematic method. A new type of stress-state - Variation of Stress-State Type (VSST) - is introduced. The VSST is characterized by dislocation vectors originated both by uniaxial compression and uniaxial tension in the same rock volume, i.e. coefficient μσ = 1-2R varies from +1 to -1. The reasons for differences between slip planes from those predicted by the model are discussed. The distribution of slip planes depends on the stress-state type (μσ coefficient) and on the initial heterogeneity of the rocks. A criterion for the identification of tectonic stress rank is suggested. It is based on the models of tectonic stress distribution in the fracture vicinities. Examples of results of tectonic stress studies are given. Studies of tectonic stresses based on geological indicators are of methodological and practical importance.
Inferring Fault Frictional and Reservoir Hydraulic Properties From Injection-Induced Seismicity
NASA Astrophysics Data System (ADS)
Jagalur-Mohan, Jayanth; Jha, Birendra; Wang, Zheng; Juanes, Ruben; Marzouk, Youssef
2018-02-01
Characterizing the rheological properties of faults and the evolution of fault friction during seismic slip are fundamental problems in geology and seismology. Recent increases in the frequency of induced earthquakes have intensified the need for robust methods to estimate fault properties. Here we present a novel approach for estimation of aquifer and fault properties, which combines coupled multiphysics simulation of injection-induced seismicity with adaptive surrogate-based Bayesian inversion. In a synthetic 2-D model, we use aquifer pressure, ground displacements, and fault slip measurements during fluid injection to estimate the dynamic fault friction, the critical slip distance, and the aquifer permeability. Our forward model allows us to observe nonmonotonic evolutions of shear traction and slip on the fault resulting from the interplay of several physical mechanisms, including injection-induced aquifer expansion, stress transfer along the fault, and slip-induced stress relaxation. This interplay provides the basis for a successful joint inversion of induced seismicity, yielding well-informed Bayesian posterior distributions of dynamic friction and critical slip. We uncover an inverse relationship between dynamic friction and critical slip distance, which is in agreement with the small dynamic friction and large critical slip reported during seismicity on mature faults.
Analyzing shear band formation with high resolution X-ray diffraction
Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang; ...
2018-01-10
Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of ‘signatures’ of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientationmore » within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation.« less
NASA Astrophysics Data System (ADS)
Mendoza, Carlos
1993-05-01
The distributions and depths of coseismic slip are derived for the October 25, 1981 Playa Azul and September 21, 1985 Zihuatanejo earthquakes in western Mexico by inverting the recorded teleseismic body waves. Rupture during the Playa Azul earthquake appears to have occurred in two separate zones both updip and downdip of the point of initial nucleation, with most of the slip concentrated in a circular region of 15-km radius downdip from the hypocenter. Coseismic slip occurred entirely within the area of reduced slip between the two primary shallow sources of the Michoacan earthquake that occurred on September 19, 1985, almost 4 years later. The slip of the Zihuatanejo earthquake was concentrated in an area adjacent to one of the main sources of the Michoacan earthquake and appears to be the southeastern continuation of rupture along the Cocos-North America plate boundary. The zones of maximum slip for the Playa Azul, Zihuatanejo, and Michoacan earthquakes may be considered asperity regions that control the occurrence of large earthquakes along the Michoacan segment of the plate boundary.
Dynamic rupture modeling with laboratory-derived constitutive relations
Okubo, P.G.
1989-01-01
A laboratory-derived state variable friction constitutive relation is used in the numerical simulation of the dynamic growth of an in-plane or mode II shear crack. According to this formulation, originally presented by J.H. Dieterich, frictional resistance varies with the logarithm of the slip rate and with the logarithm of the frictional state variable as identified by A.L. Ruina. Under conditions of steady sliding, the state variable is proportional to (slip rate)-1. Following suddenly introduced increases in slip rate, the rate and state dependencies combine to produce behavior which resembles slip weakening. When rupture nucleation is artificially forced at fixed rupture velocity, rupture models calculated with the state variable friction in a uniformly distributed initial stress field closely resemble earlier rupture models calculated with a slip weakening fault constitutive relation. Model calculations suggest that dynamic rupture following a state variable friction relation is similar to that following a simpler fault slip weakening law. However, when modeling the full cycle of fault motions, rate-dependent frictional responses included in the state variable formulation are important at low slip rates associated with rupture nucleation. -from Author
NASA Astrophysics Data System (ADS)
Li, S.; Freymueller, J. T.
2017-12-01
The Alaska Peninsula, including the Shumagin and Semidi segments in the Alaska-Aleutian subduction zone, is one of the best places in the world to study along-strike variations in the seismogenic zone. Understanding the cause of along-strike variations on the plate interface and seismic potential is significant for better understanding of the dynamic mechanical properties of faults and the rheology of the lower crust and lithospheric mantle in subduction zones. GPS measurements can be used to study these properties and estimate the slip deficit distribution on the plate interface. We re-surveyed pre-existing (1992-2001) campaign GPS sites in 2016 and estimated a new dense and highly precise GPS velocity field for the Alaska Peninsula. We find evidence for only minimal time variations in the slip distribution in the region. We used the TDEFNODE software package to invert for the slip deficit distribution from the new velocities. There are long-wavelength systematic misfits to the vertical velocities from the optimal model that fits the horizontal velocities well, which cannot be explained by altering the slip distribution on the subduction plate interface. Possible explanations for the systematic misfit are still under investigation since the plate geometry, GIA effect and reference frame errors do not explain the misfits. In this study, we use only the horizontal velocities. We divided the overall Alaska Peninsula area into three sub-areas, which have strong differences in the pattern of the observed deformation, and explored optimal models for each sub-area. The width of the locked region decreases step-wise from NE to SW along strike. Then we compared each of these models to all of the data to identify the locations of the along-strike boundaries that mark the transition from strongly to weakly coupled segments of the margin. We identified three sharp boundaries separating segments with different fault slip deficit rate distributions. Significant change in fault coupling from strong to weak are spatially correlated with the change in pre-existing plate fabric caused by cessation of the Kula-Pacific spreading and reorientation of the northern section of Farallon-Pacific spreading, which also correlate with changes in the degree of outer rise normal faulting and hydration of the downgoing plate.
NASA Astrophysics Data System (ADS)
Rashidi, Amin; Shomali, Zaher Hossein; Keshavarz Farajkhah, Nasser
2018-03-01
The western segment of Makran subduction zone is characterized with almost no major seismicity and no large earthquake for several centuries. A possible episode for this behavior is that this segment is currently locked accumulating energy to generate possible great future earthquakes. Taking into account this assumption, a hypothetical rupture area is considered in the western Makran to set different tsunamigenic scenarios. Slip distribution models of four recent tsunamigenic earthquakes, i.e. 2015 Chile M w 8.3, 2011 Tohoku-Oki M w 9.0 (using two different scenarios) and 2006 Kuril Islands M w 8.3, are scaled into the rupture area in the western Makran zone. The numerical modeling is performed to evaluate near-field and far-field tsunami hazards. Heterogeneity in slip distribution results in higher tsunami amplitudes. However, its effect reduces from local tsunamis to regional and distant tsunamis. Among all considered scenarios for the western Makran, only a similar tsunamigenic earthquake to the 2011 Tohoku-Oki event can re-produce a significant far-field tsunami and is considered as the worst case scenario. The potential of a tsunamigenic source is dominated by the degree of slip heterogeneity and the location of greatest slip on the rupture area. For the scenarios with similar slip patterns, the mean slip controls their relative power. Our conclusions also indicate that along the entire Makran coasts, the southeastern coast of Iran is the most vulnerable area subjected to tsunami hazard.
NASA Astrophysics Data System (ADS)
Rashidi, Amin; Shomali, Zaher Hossein; Keshavarz Farajkhah, Nasser
2018-04-01
The western segment of Makran subduction zone is characterized with almost no major seismicity and no large earthquake for several centuries. A possible episode for this behavior is that this segment is currently locked accumulating energy to generate possible great future earthquakes. Taking into account this assumption, a hypothetical rupture area is considered in the western Makran to set different tsunamigenic scenarios. Slip distribution models of four recent tsunamigenic earthquakes, i.e. 2015 Chile M w 8.3, 2011 Tohoku-Oki M w 9.0 (using two different scenarios) and 2006 Kuril Islands M w 8.3, are scaled into the rupture area in the western Makran zone. The numerical modeling is performed to evaluate near-field and far-field tsunami hazards. Heterogeneity in slip distribution results in higher tsunami amplitudes. However, its effect reduces from local tsunamis to regional and distant tsunamis. Among all considered scenarios for the western Makran, only a similar tsunamigenic earthquake to the 2011 Tohoku-Oki event can re-produce a significant far-field tsunami and is considered as the worst case scenario. The potential of a tsunamigenic source is dominated by the degree of slip heterogeneity and the location of greatest slip on the rupture area. For the scenarios with similar slip patterns, the mean slip controls their relative power. Our conclusions also indicate that along the entire Makran coasts, the southeastern coast of Iran is the most vulnerable area subjected to tsunami hazard.
Avallone, Antonio; Cirella, Antonella; Cheloni, Daniele; Tolomei, Cristiano; Theodoulidis, Nikos; Piatanesi, Alessio; Briole, Pierre; Ganas, Athanassios
2017-09-04
The 2015/11/17 Lefkada (Greece) earthquake ruptured a segment of the Cephalonia Transform Fault (CTF) where probably the penultimate major event was in 1948. Using near-source strong motion and high sampling rate GPS data and Sentinel-1A SAR images on two tracks, we performed the inversion for the geometry, slip distribution and rupture history of the causative fault with a three-step self-consistent procedure, in which every step provided input parameters for the next one. Our preferred model results in a ~70° ESE-dipping and ~13° N-striking fault plane, with a strike-slip mechanism (rake ~169°) in agreement with the CTF tectonic regime. This model shows a bilateral propagation spanning ~9 s with the activation of three main slip patches, characterized by rise time and peak slip velocity in the ranges 2.5-3.5 s and 1.4-2.4 m/s, respectively, corresponding to 1.2-1.8 m of slip which is mainly concentrated in the shallower (<10 km) southern half of the causative fault. The inferred slip distribution and the resulting seismic moment (M 0 = 1.05 × 10 19 N m) suggest a magnitude of M w 6.6. Our best solution suggests that the occurrence of large (M w > 6) earthquakes to the northern and to the southern boundaries of the 2015 causative fault cannot be excluded.
NASA Astrophysics Data System (ADS)
González-Carrasco, J. F.; Gonzalez, G.; Aránguiz, R.; Catalan, P. A.; Cienfuegos, R.; Urrutia, A.; Shrivastava, M. N.; Yagi, Y.; Moreno, M.
2015-12-01
Tsunami inundation maps are a powerful tool to design evacuation plans of coastal communities, additionally can be used as a guide to territorial planning and assessment of structural damages in port facilities and critical infrastructure (Borrero et al., 2003; Barberopoulou et al., 2011; Power et al., 2012; Mueller et al., 2015). The accuracy of inundation estimation is highly correlated with tsunami initial conditions, e.g. seafloor vertical deformation, displaced water volume and potential energy (Bolshakova et al., 2011). Usually, the initial conditions are estimated using homogeneous rupture models based in historical worst-case scenario. However tsunamigenic events occurred in central Chilean continental margin showed a heterogeneous slip distribution of source with patches of high slip, correlated with fully-coupled interseismic zones (Moreno et al., 2012). The main objective of this work is to evaluate the predictive capacity of interseismic coupling models based on geodetic data comparing them with homogeneous fault slip model constructed using scaling laws (Blaser et al., 2010) to estimate inundation and runup in coastal areas. To test our hypothesis we select a seismic gap of Maule, where occurred the last large tsunamigenic earthquake in the chilean subduction zone, using the interseismic coupling models (ISC) proposed by Moreno et al., 2011 and Métois et al., 2013. We generate a slip deficit distribution to build a tsunami source supported by geological information such as slab depth (Hayes et al., 2012), strike, rake and dip (Dziewonski et al., 1981; Ekström et al., 2012) to model tsunami generation, propagation and shoreline impact using Neowave 2D (Yamazaki et al., 2009). We compare the tsunami scenario of Mw 8.8, Maule based in coseismic slip distribution proposed by Moreno et al., 2012 with homogeneous and heterogeneous models to identify the accuracy of our results with sea level time series and regional runup data (Figure 1). The estimation of tsunami source using ISC model can be useful to improve the analysis of tsunami threat, based in more realistic slip distribution.
NASA Astrophysics Data System (ADS)
Zheng, Qingyu; Zhang, Guoqiang; Che, Kai; Shao, Shikuan; Li, Yanfei
2017-08-01
Taking 660 MW generator unit denitration system as a study object, an optimization and adjustment method shall be designed to control ammonia slip, i.e. adjust ammonia injection system based on NO concentration distribution at inlet/outlet of the denitration system to make the injected ammonia distribute evenly. The results shows that, this method can effectively improve NO concentration distribution at outlet of the denitration system and decrease ammonia injection amount and ammonia slip concentration. Reduce adverse impact of SCR denitration process on the air preheater to realize safe production by guaranteeing that NO discharge shall reach the standard.
NASA Astrophysics Data System (ADS)
Adriano, Bruno; Fujii, Yushiro; Koshimura, Shunichi; Mas, Erick; Ruiz-Angulo, Angel; Estrada, Miguel
2018-01-01
On September 8, 2017 (UTC), a normal-fault earthquake occurred 87 km off the southeast coast of Mexico. This earthquake generated a tsunami that was recorded at coastal tide gauge and offshore buoy stations. First, we conducted a numerical tsunami simulation using a single-fault model to understand the tsunami characteristics near the rupture area, focusing on the nearby tide gauge stations. Second, the tsunami source of this event was estimated from inversion of tsunami waveforms recorded at six coastal stations and three buoys located in the deep ocean. Using the aftershock distribution within 1 day following the main shock, the fault plane orientation had a northeast dip direction (strike = 320°, dip = 77°, and rake =-92°). The results of the tsunami waveform inversion revealed that the fault area was 240 km × 90 km in size with most of the largest slip occurring on the middle and deepest segments of the fault. The maximum slip was 6.03 m from a 30 × 30 km2 segment that was 64.82 km deep at the center of the fault area. The estimated slip distribution showed that the main asperity was at the center of the fault area. The second asperity with an average slip of 5.5 m was found on the northwest-most segments. The estimated slip distribution yielded a seismic moment of 2.9 × 10^{21} Nm (Mw = 8.24), which was calculated assuming an average rigidity of 7× 10^{10} N/m2.
Barnhart, William D.; Murray, Jessica R.; Briggs, Richard W.; Gomez, Francisco; Miles, Charles P. J.; Svarc, Jerry L.; Riquelme, Sebástian; Stressler, Bryan J.
2016-01-01
Great subduction earthquakes are thought to rupture portions of the megathrust, where interseismic coupling is high and velocity-weakening frictional behavior is dominant, releasing elastic deformation accrued over a seismic cycle. Conversely, postseismic afterslip is assumed to occur primarily in regions of velocity-strengthening frictional characteristics that may correlate with lower interseismic coupling. However, it remains unclear if fixed frictional properties of the subduction interface, coseismic or aftershock-induced stress redistribution, or other factors control the spatial distribution of afterslip. Here we use interferometric synthetic aperture radar and Global Position System observations to map the distribution of coseismic slip of the 2015 Mw 8.3 Illapel, Chile, earthquake and afterslip within the first 38 days following the earthquake. We find that afterslip overlaps the coseismic slip area and propagates along-strike into regions of both high and moderate interseismic coupling. The significance of these observations, however, is tempered by the limited resolution of geodetic inversions for both slip and coupling. Additional afterslip imaged deeper on the fault surface bounds a discrete region of deep coseismic slip, and both contribute to net uplift of the Chilean Coastal Cordillera. A simple partitioning of the subduction interface into regions of fixed frictional properties cannot reconcile our geodetic observations. Instead, stress heterogeneities, either preexisting or induced by the earthquake, likely provide the primary control on the afterslip distribution for this subduction zone earthquake. We also explore the occurrence of coseismic and postseismic coastal uplift in this sequence and its implications for recent hypotheses concerning the source of permanent coastal uplift along subduction zones.
Seismological mechanism analysis of 2015 Luanxian swarm, Hebei province,China
NASA Astrophysics Data System (ADS)
Tan, Yipei; Liao, Xu; Ma, Hongsheng; Zhou, Longquan; Wang, Xingzhou
2017-04-01
The seismological mechanism of an earthquake swarm, a kind of seismic burst activity, means the physical and dynamic process in earthquakes triggering in the swarm. Here we focus on the seismological mechanism of 2015 Luanxian swarm in Hebei province, China. The process of digital seismic waveform data processing is divided into four steps. (1) Choose the three components waveform of earthquakes in the catalog as templates, and detect missing earthquakes by scanning the continues waveforms with matched filter technique. (2) Recalibrate P and S-wave phase arrival time using waveform cross-correlation phase detection technique to eliminate the artificial error in phase picking in the observation report made by Hebei seismic network, and then we obtain a more complete catalog and a more precise seismic phase report. (3) Relocate the earthquakes in the swarm using hypoDD based on phase arrival time we recalibrated, and analyze the characteristics of swarm epicenter migration based on the earthquake relocation result. (4) Detect whether there are repeating earthquakes activity using both waveform cross-correlation standard and whether rupture areas can overlapped. We finally detect 106 missing earthquakes in the swarm, 66 of them have the magnitude greater than ML0.0, include 2 greater than ML1.0. Relocation result shows that the epicenters of earthquakes in the swarm have a strip distribution in NE-SW direction, which indicates the seismogenic structure may be a NE-SW trending fault. The spatial-temporal distribution variation of epicenters in the swarm shows a kind of two stages linear migration characteristics, in which the first stage has appeared with a higher migration velocity as 1.2 km per day, and the velocity of the second step is 0.0024 km per day. According to the three basic models to explain the seismological mechanism of earthquake swarms: cascade model, slow slip model and fluid diffusion model, repeating earthquakes activity is difficult to explain by previous earthquakes stress triggering, however, it can be explained by continuing stress loading at the same asperity from fault slow slip. The phenomena of linear migration is more fitting slow slip model than the migration characteristics of fluid diffusion which satisfied diffusion equation. Comparing the phenomena we observed and the seismological mechanism models, we find that the Luanxian earthquake swarm may be associated with fault slow slip. Fault slow slip may play a role in Luanxian earthquake swarm triggering and sustained activity.
Stochastic static fault slip inversion from geodetic data with non-negativity and bounds constraints
NASA Astrophysics Data System (ADS)
Nocquet, J.-M.
2018-04-01
Despite surface displacements observed by geodesy are linear combinations of slip at faults in an elastic medium, determining the spatial distribution of fault slip remains a ill-posed inverse problem. A widely used approach to circumvent the illness of the inversion is to add regularization constraints in terms of smoothing and/or damping so that the linear system becomes invertible. However, the choice of regularization parameters is often arbitrary, and sometimes leads to significantly different results. Furthermore, the resolution analysis is usually empirical and cannot be made independently of the regularization. The stochastic approach of inverse problems (Tarantola & Valette 1982; Tarantola 2005) provides a rigorous framework where the a priori information about the searched parameters is combined with the observations in order to derive posterior probabilities of the unkown parameters. Here, I investigate an approach where the prior probability density function (pdf) is a multivariate Gaussian function, with single truncation to impose positivity of slip or double truncation to impose positivity and upper bounds on slip for interseismic modeling. I show that the joint posterior pdf is similar to the linear untruncated Gaussian case and can be expressed as a Truncated Multi-Variate Normal (TMVN) distribution. The TMVN form can then be used to obtain semi-analytical formulas for the single, two-dimensional or n-dimensional marginal pdf. The semi-analytical formula involves the product of a Gaussian by an integral term that can be evaluated using recent developments in TMVN probabilities calculations (e.g. Genz & Bretz 2009). Posterior mean and covariance can also be efficiently derived. I show that the Maximum Posterior (MAP) can be obtained using a Non-Negative Least-Squares algorithm (Lawson & Hanson 1974) for the single truncated case or using the Bounded-Variable Least-Squares algorithm (Stark & Parker 1995) for the double truncated case. I show that the case of independent uniform priors can be approximated using TMVN. The numerical equivalence to Bayesian inversions using Monte Carlo Markov Chain (MCMC) sampling is shown for a synthetic example and a real case for interseismic modeling in Central Peru. The TMVN method overcomes several limitations of the Bayesian approach using MCMC sampling. First, the need of computer power is largely reduced. Second, unlike Bayesian MCMC based approach, marginal pdf, mean, variance or covariance are obtained independently one from each other. Third, the probability and cumulative density functions can be obtained with any density of points. Finally, determining the Maximum Posterior (MAP) is extremely fast.
Hanson, Kathryn L.; Lettis, William R.; McLaren, Marcia; Savage, William U.; Hall, N. Timothy; Keller, Mararget A.
2004-01-01
The Hosgri Fault Zone is the southernmost component of a complex system of right-slip faults in south-central coastal California that includes the San Gregorio, Sur, and San Simeon Faults. We have characterized the contemporary style of faulting along the zone on the basis of an integrated analysis of a broad spectrum of data, including shallow high-resolution and deep penetration seismic reflection data; geologic and geomorphic data along the Hosgri and San Simeon Fault Zones and the intervening San Simeon/Hosgri pull-apart basin; the distribution and nature of near-coast seismicity; regional tectonic kinematics; and comparison of the Hosgri Fault Zone with worldwide strike-slip, oblique-slip, and reverse-slip fault zones. These data show that the modern Hosgri Fault Zone is a convergent right-slip (transpressional) fault having a late Quaternary slip rate of 1 to 3 mm/yr. Evidence supporting predominantly strike-slip deformation includes (1) a long, narrow, linear zone of faulting and associated deformation; (2) the presence of asymmetric flower structures; (3) kinematically consistent localized extensional and compressional deformation at releasing and restraining bends or steps, respectively, in the fault zone; (4) changes in the sense and magnitude of vertical separation both along trend of the fault zone and vertically within the fault zone; (5) strike-slip focal mechanisms along the fault trace; (6) a distribution of seismicity that delineates a high-angle fault extending through the seismogenic crust; (7) high ratios of lateral to vertical slip along the fault zone; and (8) the separation by the fault of two tectonic domains (offshore Santa Maria Basin, onshore Los Osos domain) that are undergoing contrasting styles of deformation and orientations of crustal shortening. The convergent component of slip is evidenced by the deformation of the early-late Pliocene unconformity. In characterizing the style of faulting along the Hosgri Fault Zone, we assessed alternative tectonic models by evaluating (1) the cumulative effects of multiple deformational episodes that can produce complex, difficult-to-interpret fault geometries, patterns, and senses of displacement; (2) the difficult imaging of high-angle fault planes and horizontal fault separations on seismic reflection data; and (3) the effects of strain partitioning that yield coeval strike-slip faults and associated fold and thrust belts.
Stick-slip behavior in a continuum-granular experiment.
Geller, Drew A; Ecke, Robert E; Dahmen, Karin A; Backhaus, Scott
2015-12-01
We report moment distribution results from a laboratory experiment, similar in character to an isolated strike-slip earthquake fault, consisting of sheared elastic plates separated by a narrow gap filled with a two-dimensional granular medium. Local measurement of strain displacements of the plates at 203 spatial points located adjacent to the gap allows direct determination of the event moments and their spatial and temporal distributions. We show that events consist of spatially coherent, larger motions and spatially extended (noncoherent), smaller events. The noncoherent events have a probability distribution of event moment consistent with an M(-3/2) power law scaling with Poisson-distributed recurrence times. Coherent events have a log-normal moment distribution and mean temporal recurrence. As the applied normal pressure increases, there are more coherent events and their log-normal distribution broadens and shifts to larger average moment.
NASA Astrophysics Data System (ADS)
Wan, Yongge; Shen, Zheng-Kang; Bürgmann, Roland; Sun, Jianbao; Wang, Min
2017-02-01
We revisit the problem of coseismic rupture of the 2008 Mw7.9 Wenchuan earthquake. Precise determination of the fault structure and slip distribution provides critical information about the mechanical behaviour of the fault system and earthquake rupture. We use all the geodetic data available, craft a more realistic Earth structure and fault model compared to previous studies, and employ a nonlinear inversion scheme to optimally solve for the fault geometry and slip distribution. Compared to a homogeneous elastic half-space model and laterally uniform layered models, adopting separate layered elastic structure models on both sides of the Beichuan fault significantly improved data fitting. Our results reveal that: (1) The Beichuan fault is listric in shape, with near surface fault dip angles increasing from ˜36° at the southwest end to ˜83° at the northeast end of the rupture. (2) The fault rupture style changes from predominantly thrust at the southwest end to dextral at the northeast end of the fault rupture. (3) Fault slip peaks near the surface for most parts of the fault, with ˜8.4 m thrust and ˜5 m dextral slip near Hongkou and ˜6 m thrust and ˜8.4 m dextral slip near Beichuan, respectively. (4) The peak slips are located around fault geometric complexities, suggesting that earthquake style and rupture propagation were determined by fault zone geometric barriers. Such barriers exist primarily along restraining left stepping discontinuities of the dextral-compressional fault system. (5) The seismic moment released on the fault above 20 km depth is 8.2×1021 N m, corresponding to an Mw7.9 event. The seismic moments released on the local slip concentrations are equivalent to events of Mw7.5 at Yingxiu-Hongkou, Mw7.3 at Beichuan-Pingtong, Mw7.2 near Qingping, Mw7.1 near Qingchuan, and Mw6.7 near Nanba, respectively. (6) The fault geometry and kinematics are consistent with a model in which crustal deformation at the eastern margin of the Tibetan plateau is decoupled by differential motion across a decollement in the mid crust, above which deformation is dominated by brittle reverse faulting and below which deformation occurs by viscous horizontal shortening and vertical thickening.
Earthquake Clustering on Normal Faults: Insight from Rate-and-State Friction Models
NASA Astrophysics Data System (ADS)
Biemiller, J.; Lavier, L. L.; Wallace, L.
2016-12-01
Temporal variations in slip rate on normal faults have been recognized in Hawaii and the Basin and Range. The recurrence intervals of these slip transients range from 2 years on the flanks of Kilauea, Hawaii to 10 kyr timescale earthquake clustering on the Wasatch Fault in the eastern Basin and Range. In addition to these longer recurrence transients in the Basin and Range, recent GPS results there also suggest elevated deformation rate events with recurrence intervals of 2-4 years. These observations suggest that some active normal fault systems are dominated by slip behaviors that fall between the end-members of steady aseismic creep and periodic, purely elastic, seismic-cycle deformation. Recent studies propose that 200 year to 50 kyr timescale supercycles may control the magnitude, timing, and frequency of seismic-cycle earthquakes in subduction zones, where aseismic slip transients are known to play an important role in total deformation. Seismic cycle deformation of normal faults may be similarly influenced by its timing within long-period supercycles. We present numerical models (based on rate-and-state friction) of normal faults such as the Wasatch Fault showing that realistic rate-and-state parameter distributions along an extensional fault zone can give rise to earthquake clusters separated by 500 yr - 5 kyr periods of aseismic slip transients on some portions of the fault. The recurrence intervals of events within each earthquake cluster range from 200 to 400 years. Our results support the importance of stress and strain history as controls on a normal fault's present and future slip behavior and on the characteristics of its current seismic cycle. These models suggest that long- to medium-term fault slip history may influence the temporal distribution, recurrence interval, and earthquake magnitudes for a given normal fault segment.
NASA Astrophysics Data System (ADS)
Ritz, E.; Pollard, D. D.
2011-12-01
Geological and geophysical investigations demonstrate that faults are geometrically complex structures, and that the nature and intensity of off-fault damage is spatially correlated with geometric irregularities of the slip surfaces. Geologic observations of exhumed meter-scale strike-slip faults in the Bear Creek drainage, central Sierra Nevada, CA, provide insight into the relationship between non-planar fault geometry and frictional slip at depth. We investigate natural fault geometries in an otherwise homogeneous and isotropic elastic material with a two-dimensional displacement discontinuity method (DDM). Although the DDM is a powerful tool, frictional contact problems are beyond the scope of the elementary implementation because it allows interpenetration of the crack surfaces. By incorporating a complementarity algorithm, we are able to enforce appropriate contact boundary conditions along the model faults and include variable friction and frictional strength. This tool allows us to model quasi-static slip on non-planar faults and the resulting deformation of the surrounding rock. Both field observations and numerical investigations indicate that sliding along geometrically discontinuous or irregular faults may lead to opening of the fault and the formation of new fractures, affecting permeability in the nearby rock mass and consequently impacting pore fluid pressure. Numerical simulations of natural fault geometries provide local stress fields that are correlated to the style and spatial distribution of off-fault damage. We also show how varying the friction and frictional strength along the model faults affects slip surface behavior and consequently influences the stress distributions in the adjacent material.
Hartzell, Stephen; Mendoza, Carlos; Ramírez-Guzmán, Leonardo; Zeng, Yuesha; Mooney, Walter
2013-01-01
An extensive data set of teleseismic and strong-motion waveforms and geodetic offsets is used to study the rupture history of the 2008 Wenchuan, China, earthquake. A linear multiple-time-window approach is used to parameterize the rupture. Because of the complexity of the Wenchuan faulting, three separate planes are used to represent the rupturing surfaces. This earthquake clearly demonstrates the strengths and limitations of geodetic, teleseismic, and strong-motion data sets. Geodetic data (static offsets) are valuable for determining the distribution of shallower slip but are insensitive to deeper faulting and reveal nothing about the timing of slip. Teleseismic data in the distance range 30°–90° generally involve no modeling difficulties because of simple ray paths and can distinguish shallow from deep slip. Teleseismic data, however, cannot distinguish between different slip scenarios when multiple fault planes are involved because steep takeoff angles lead to ambiguity in timing. Local strong-motion data, on the other hand, are ideal for determining the direction of rupture from directivity but can easily be over modeled with inaccurate Green’s functions, leading to misinterpretation of the slip distribution. We show that all three data sets are required to give an accurate description of the Wenchuan rupture. The moment is estimated to be approximately 1.0 × 1021 N · m with the slip characterized by multiple large patches with slips up to 10 m. Rupture initiates on the southern end of the Pengguan fault and proceeds unilaterally to the northeast. Upon reaching the cross-cutting Xiaoyudong fault, rupture of the adjacent Beichuan fault starts at this juncture and proceeds bilaterally to the northeast and southwest.
NASA Technical Reports Server (NTRS)
Peltzer, G.; Crampe, F.
1998-01-01
ERS2 radar data acquired before and after the Mw7.6, Manyi (Tibet) earthquake of November 8, 1997, provide geodetic information about the surface displacement produced by the earthquake in two ways. (1) The sub-pixel geometric adjustment of the before and after images provides a two dimensional offset field with a resolution of approx, 1m in both the range (radar line of sight) and azimuth (satellite track) directions. Comparison of offsets in azimuth and range indicates that the displacement along the fault is essentially strike-slip and in a left-lateral sense. The offset map reveals a relatively smooth and straight, N78E surface rupture that exceeds 150 km in length, consistent with the EW plane of the Harvard CMT solution. The rupture follows the trace of a quaternary fault visible on satellite imagery (Tapponnier and Molnar, 1978; Wan Der Woerd, pers. comm.). (2) Interferometric processing of the SAR data provides a range displacement map with a precision of a few millimeters. The slip distribution along the rupture reconstructed from the range change map is a bell-shaped curve in the 100-km long central section of the fault with smaller, local maxima near both ends. The curve shows that the fault slip exceeds 2.2 m in range, or 6.2 in strike-slip, along a 30-km long section of the fault and remains above 1 m in range, approx. 3 m strike-slip, along most of its length. Preliminary forward modeling of the central section of the rupture, assuming a uniform slip distribution with depth, indicates that the slip occur-red essentially between 0 and the depth of 10 km, consistent with a relatively shallow event (Velasco et al., 1998).
Surface fault slip associated with the 2004 Parkfield, California, earthquake
Rymer, M.J.; Tinsley, J. C.; Treiman, J.A.; Arrowsmith, J.R.; Ciahan, K.B.; Rosinski, A.M.; Bryant, W.A.; Snyder, H.A.; Fuis, G.S.; Toke, N.A.; Bawden, G.W.
2006-01-01
Surface fracturing occurred along the San Andreas fault, the subparallel Southwest Fracture Zone, and six secondary faults in association with the 28 September 2004 (M 6.0) Parkfield earthquake. Fractures formed discontinuous breaks along a 32-km-long stretch of the San Andreas fault. Sense of slip was right lateral; only locally was there a minor (1-11 mm) vertical component of slip. Right-lateral slip in the first few weeks after the event, early in its afterslip period, ranged from 1 to 44 mm. Our observations in the weeks following the earthquake indicated that the highest slip values are in the Middle Mountain area, northwest of the mainshock epicenter (creepmeter measurements indicate a similar distribution of slip). Surface slip along the San Andreas fault developed soon after the mainshock; field checks in the area near Parkfield and about 5 km to the southeast indicated that surface slip developed more than 1 hr but generally less than 1 day after the event. Slip along the Southwest Fracture Zone developed coseismically and extended about 8 km. Sense of slip was right lateral; locally there was a minor to moderate (1-29 mm) vertical component of slip. Right-lateral slip ranged from 1 to 41 mm. Surface slip along secondary faults was right lateral; the right-lateral component of slip ranged from 3 to 5 mm. Surface slip in the 1966 and 2004 events occurred along both the San Andreas fault and the Southwest Fracture Zone. In 1966 the length of ground breakage along the San Andreas fault extended 5 km longer than that mapped in 2004. In contrast, the length of ground breakage along the Southwest Fracture Zone was the same in both events, yet the surface fractures were more continuous in 2004. Surface slip on secondary faults in 2004 indicated previously unmapped structural connections between the San Andreas fault and the Southwest Fracture Zone, further revealing aspects of the structural setting and fault interactions in the Parkfield area.
Timescale dependent deformation of orogenic belts?
NASA Astrophysics Data System (ADS)
Hoth, S.; Friedrich, A. M.; Vietor, T.; Hoffmann-Rothe, A.; Kukowski, N.; Oncken, O.
2004-12-01
The principle aim to link geodetic, paleoseismologic and geologic estimates of fault slip is to extrapolate the respective rates from one timescale to the other to finally predict the recurrence interval of large earthquakes, which threat human habitats. This approach however, is based on two often implicitly made assumptions: a uniform slip distribution through time and space and no changes of the boundary conditions during the time interval of interest. Both assumptions are often hard to verify. A recent study, which analysed an exceptionally complete record of seismic slip for the Wasatch and related faults (Basin and Range province), ranging from 10 yr to 10 Myr suggests that such a link between geodetic and geologic rates might not exist, i.e., that our records of fault displacement may depend on the timescale over which they were measured. This view derives support from results of scaled 2D sandbox experiments, as well as numerical simulations with distinct elements, both of which investigated the effect of boundary conditions such as flexure, mechanic stratigraphy and erosion on the spatio-temporal distribution of deformation within bivergent wedges. We identified three types of processes based on their distinct spatio-temporal distribution of deformation. First, incremental strain and local strain rates are very short-lived are broadly distributed within the bivergent wedge and no temporal pattern could be established. Second, footwall shortcuts and the re-activation of either internal thrusts or of the retro shear-zone are irregularly distributed in time and are thus not predictable either, but last for a longer time interval. Third, the stepwise initiation and propagation of the deformation front is very regular in time, since it depends on the thickness of the incoming layer and on its internal and basal material properties. We consider the propagation of the deformation front as an internal clock of a thrust belt, which is therefore predictable. A deformation front advance cycle requires the longest timescale. Thus, despite known and constant boundary conditions during the simulations, we found only one regular temporal pattern of deformation in a steady active bivergent-wedge. We therefore propose that the structural inventory of an orogenic belt is hierarchically ordered with respect to accumulated slip, in analogy to the discharge pattern in a drainage network. The deformation front would have the highest, a branching splay the lowest order. Since kinematic boundary conditions control deformation front advance, its timing and the related maximum magnitude of finite strain, i.e. throw on the frontal thrust are predictable. However, the number of controlling factors, such as the degree of strain softening, the orientation of faults or fluid flow and resulting cementation of faults, responsible for the reactivation of faults increases with increasing distance from the deformation front. Since it is rarely possible to determine the complete network of forces within a wedge, the reactivation of lower order structures is not predictable in time and space. Two implications for field studies may emerge: A change of the propagation of deformation can only be determined, if at least two accretion cycles are sampled. The link between geodetic, paleoseismologic and geologic fault slip estimates can only be successfully derived if the position of the investigated fault within the hierarchical order has not changed over the time interval of interest.
Wang, Kai; Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao
2017-10-30
A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1-2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area.
Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao
2017-01-01
A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1–2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area. PMID:29084157
NASA Astrophysics Data System (ADS)
Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi
2016-11-01
Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes.
Iinuma, Takeshi; Hino, Ryota; Uchida, Naoki; Nakamura, Wataru; Kido, Motoyuki; Osada, Yukihito; Miura, Satoshi
2016-01-01
Large interplate earthquakes are often followed by postseismic slip that is considered to occur in areas surrounding the coseismic ruptures. Such spatial separation is expected from the difference in frictional and material properties in and around the faults. However, even though the 2011 Tohoku Earthquake ruptured a vast area on the plate interface, the estimation of high-resolution slip is usually difficult because of the lack of seafloor geodetic data. Here using the seafloor and terrestrial geodetic data, we investigated the postseismic slip to examine whether it was spatially separated with the coseismic slip by applying a comprehensive finite-element method model to subtract the viscoelastic components from the observed postseismic displacements. The high-resolution co- and postseismic slip distributions clarified the spatial separation, which also agreed with the activities of interplate and repeating earthquakes. These findings suggest that the conventional frictional property model is valid for the source region of gigantic earthquakes. PMID:27853138
Using a pseudo-dynamic source inversion approach to improve earthquake source imaging
NASA Astrophysics Data System (ADS)
Zhang, Y.; Song, S. G.; Dalguer, L. A.; Clinton, J. F.
2014-12-01
Imaging a high-resolution spatio-temporal slip distribution of an earthquake rupture is a core research goal in seismology. In general we expect to obtain a higher quality source image by improving the observational input data (e.g. using more higher quality near-source stations). However, recent studies show that increasing the surface station density alone does not significantly improve source inversion results (Custodio et al. 2005; Zhang et al. 2014). We introduce correlation structures between the kinematic source parameters: slip, rupture velocity, and peak slip velocity (Song et al. 2009; Song and Dalguer 2013) in the non-linear source inversion. The correlation structures are physical constraints derived from rupture dynamics that effectively regularize the model space and may improve source imaging. We name this approach pseudo-dynamic source inversion. We investigate the effectiveness of this pseudo-dynamic source inversion method by inverting low frequency velocity waveforms from a synthetic dynamic rupture model of a buried vertical strike-slip event (Mw 6.5) in a homogeneous half space. In the inversion, we use a genetic algorithm in a Bayesian framework (Moneli et al. 2008), and a dynamically consistent regularized Yoffe function (Tinti, et al. 2005) was used for a single-window slip velocity function. We search for local rupture velocity directly in the inversion, and calculate the rupture time using a ray-tracing technique. We implement both auto- and cross-correlation of slip, rupture velocity, and peak slip velocity in the prior distribution. Our results suggest that kinematic source model estimates capture the major features of the target dynamic model. The estimated rupture velocity closely matches the target distribution from the dynamic rupture model, and the derived rupture time is smoother than the one we searched directly. By implementing both auto- and cross-correlation of kinematic source parameters, in comparison to traditional smoothing constraints, we are in effect regularizing the model space in a more physics-based manner without loosing resolution of the source image. Further investigation is needed to tune the related parameters of pseudo-dynamic source inversion and relative weighting between the prior and the likelihood function in the Bayesian inversion.
Dual megathrust slip behaviors of the 2014 Iquique earthquake sequence
NASA Astrophysics Data System (ADS)
Meng, Lingsen; Huang, Hui; Bürgmann, Roland; Ampuero, Jean Paul; Strader, Anne
2015-02-01
The transition between seismic rupture and aseismic creep is of central interest to better understand the mechanics of subduction processes. A Mw 8.2 earthquake occurred on April 1st, 2014 in the Iquique seismic gap of northern Chile. This event was preceded by a long foreshock sequence including a 2-week-long migration of seismicity initiated by a Mw 6.7 earthquake. Repeating earthquakes were found among the foreshock sequence that migrated towards the mainshock hypocenter, suggesting a large-scale slow-slip event on the megathrust preceding the mainshock. The variations of the recurrence times of the repeating earthquakes highlight the diverse seismic and aseismic slip behaviors on different megathrust segments. The repeaters that were active only before the mainshock recurred more often and were distributed in areas of substantial coseismic slip, while repeaters that occurred both before and after the mainshock were in the area complementary to the mainshock rupture. The spatiotemporal distribution of the repeating earthquakes illustrates the essential role of propagating aseismic slip leading up to the mainshock and illuminates the distribution of postseismic afterslip. Various finite fault models indicate that the largest coseismic slip generally occurred down-dip from the foreshock activity and the mainshock hypocenter. Source imaging by teleseismic back-projection indicates an initial down-dip propagation stage followed by a rupture-expansion stage. In the first stage, the finite fault models show an emergent onset of moment rate at low frequency (< 0.1 Hz), while back-projection shows a steady increase of high frequency power (> 0.5 Hz). This indicates frequency-dependent manifestations of seismic radiation in the low-stress foreshock region. In the second stage, the rupture expands in rich bursts along the rim of a semi-elliptical region with episodes of re-ruptures, suggesting delayed failure of asperities. The high-frequency rupture remains within an area of local high trench-parallel gravity anomaly (TPGA), suggesting the presence of subducting seamounts that promote high-frequency generation. Our results highlight the complexity of the interactions between large-scale aseismic slow-slip and dynamic ruptures of megathrust earthquakes.
Mechanics of shear rupture applied to earthquake zones
NASA Technical Reports Server (NTRS)
Li, Victor C.
1986-01-01
The mechanics of shear slippage and rupture in rock masses are reviewed. The essential ideas in fracture mechanics are summarized emphasizing the interpretation and relation among the fracture parameters in shear cracks. The slip-weakening model is described. The general formulation of the problem of nonuniform slip distribution in a continuum is covered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.
The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less
Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; ...
2017-05-01
The presence of fault gouge has considerable influence on slip properties of tectonic faults and the physics of earthquake rupture. The presence of fluids within faults also plays a significant role in faulting and earthquake processes. In this study, we present 3-D discrete element simulations of dry and fluid-saturated granular fault gouge and analyze the effect of fluids on stick-slip behavior. Fluid flow is modeled using computational fluid dynamics based on the Navier-Stokes equations for an incompressible fluid and modified to take into account the presence of particles. Analysis of a long time train of slip events shows that themore » (1) drop in shear stress, (2) compaction of granular layer, and (3) the kinetic energy release during slip all increase in magnitude in the presence of an incompressible fluid, compared to dry conditions. We also observe that on average, the recurrence interval between slip events is longer for fluid-saturated granular fault gouge compared to the dry case. This observation is consistent with the occurrence of larger events in the presence of fluid. It is found that the increase in kinetic energy during slip events for saturated conditions can be attributed to the increased fluid flow during slip. Finally, our observations emphasize the important role that fluid flow and fluid-particle interactions play in tectonic fault zones and show in particular how discrete element method (DEM) models can help understand the hydromechanical processes that dictate fault slip.« less
Slip accumulation and lateral propagation of active normal faults in Afar
NASA Astrophysics Data System (ADS)
Manighetti, I.; King, G. C. P.; Gaudemer, Y.; Scholz, C. H.; Doubre, C.
2001-01-01
We investigate fault growth in Afar, where normal fault systems are known to be currently growing fast and most are propagating to the northwest. Using digital elevation models, we have examined the cumulative slip distribution along 255 faults with lengths ranging from 0.3 to 60 km. Faults exhibiting the elliptical or "bell-shaped" slip profiles predicted by simple linear elastic fracture mechanics or elastic-plastic theories are rare. Most slip profiles are roughly linear for more than half of their length, with overall slopes always <0.035. For the dominant population of NW striking faults and fault systems longer than 2 km, the slip profiles are asymmetric, with slip being maximum near the eastern ends of the profiles where it drops abruptly to zero, whereas slip decreases roughly linearly and tapers in the direction of overall Aden rift propagation. At a more detailed level, most faults appear to be composed of distinct, shorter subfaults or segments, whose slip profiles, while different from one to the next, combine to produce the roughly linear overall slip decrease along the entire fault. On a larger scale, faults cluster into kinematically coupled systems, along which the slip on any scale individual fault or fault system complements that of its neighbors, so that the total slip of the whole system is roughly linearly related to its length, with an average slope again <0.035. We discuss the origin of these quasilinear, asymmetric profiles in terms of "initiation points" where slip starts, and "barriers" where fault propagation is arrested. In the absence of a barrier, slip apparently extends with a roughly linear profile, tapered in the direction of fault propagation.
The Origin of High-angle Dip-slip Earthquakes at Geothermal Fields in California
NASA Astrophysics Data System (ADS)
Barbour, A. J.; Schoenball, M.; Martínez-Garzón, P.; Kwiatek, G.
2016-12-01
We examine the source mechanisms of earthquakes occurring in three California geothermal fields: The Geysers, Salton Sea, and Coso. We find source mechanisms ranging from strike slip faulting, consistent with the tectonic settings, to dip slip with unusually steep dip angles which are inconsistent with local structures. For example, we identify a fault zone in the Salton Sea Geothermal Field imaged using precisely-relocated hypocenters with a dip angle of 60° yet double-couple focal mechanisms indicate higher-angle dip-slip on ≥75° dipping planes. We observe considerable temporal variability in the distribution of source mechanisms. For example, at the Salton Sea we find that the number of high angle dip-slip events increased after 1989, when net-extraction rates were highest. There is a concurrent decline in strike-slip and strike-slip-normal faulting, the mechanisms expected from regional tectonics. These unusual focal mechanisms and their spatio-temporal patterns are enigmatic in terms of our understanding of faulting in geothermal regions. While near-vertical fault planes are expected to slip in a strike-slip sense, and dip slip is expected to occur on moderately dipping faults, we observe dip slip on near-vertical fault planes. However, for plausible stress states and accounting for geothermal production, the resolved fault planes should be stable. We systematically analyze the source mechanisms of these earthquakes using full moment tensor inversion to understand the constraints imposed by assuming a double-couple source. Applied to The Geysers field, we find a significant reduction in the number of high-angle dip-slip mechanisms using the full moment tensor. The remaining mechanisms displaying high-angle dip-slip could be consistent with faults accommodating subsidence and compaction associated with volumetric strain changes in the geothermal reservoir.
NASA Astrophysics Data System (ADS)
Izotov, A. I.; Fominykh, A. A.; Nikulin, S. V.; Prokoshev, D. K.; Legoti, A. B.; Timina, N. V.
2018-01-01
A way of reducing irregular current distribution in multi-brush systems of sliding current transfer with its wear reduction due to installing lubricating molybdenum disulphide brushes on slip rings to ensure a greasing nano-sized cover on the slip ring surface is proposed. The authors give the results of industrial tests estimated on the performance effectiveness of lubricating brushes on slip rings of the TBB-320-2UZ-type turbine generator. The results showed that the lubricating brushes reduce a) the wear of 6110 OM+M and EG2AF+M brushes by 1.2 and 2.1 times respectively, b) current distribution irregularity in parallel operating brushes due to stabilizing the contact arc, and c) the temperature of the electrical brush-contact device due to the friction reduction in brushes.
Wright, Tim J.; Lu, Z.; Wicks, Charles
2004-01-01
The Mw 7.9, Denali fault earthquake (DFE) is the largest continental strike-slip earthquake to occur since the development of Interferometric Synthetic Aperture Radar (InSAR). We use five interferograms, constructed using radar images from the Canadian Radarsat-1 satellite, to map the surface deformation at the western end of the fault rupture. Additional geodetic data are provided by displacements observed at 40 campaign and continuous Global Positioning System (GPS) sites. We use the data to determine the geometry of the Susitna Glacier fault, thrusting on which initiated the DFE, and to determine a slip model for the entire event that is consistent with both the InSAR and GPS data. We find there was an average of 7.3 ± 0.4 m slip on the Susitna Glacier fault, between 1 and 9.5 km depth on a 29 km long fault that dips north at 41 ± 0.7° and has a surface projection close to the mapped rupture. On the Denali fault, a simple model with large slip patches finds a maximum of 8.7 ± 0.7 m of slip between the surface and 14.3 ± 0.2 km depth. A more complex distributed slip model finds a peak of 12.5 ± 0.8 m in the upper 4 km, significantly higher than the observed surface slip. We estimate a geodetic moment of 670 ± 10 × 1018 N m (Mw 7.9), consistent with seismic estimates. Lack of preseismic data resulted in an absence of InSAR coverage for the eastern half of the DFE rupture. A dedicated geodetic InSAR mission could obviate coverage problems in the future.
Aseismic Slip Throughout the Earthquake Cycle in Nicoya Peninsula, Costa Rica
NASA Astrophysics Data System (ADS)
Voss, N. K.; Liu, Z.; Hobbs, T. E.; Schwartz, S. Y.; Malservisi, R.; Dixon, T. H.; Protti, M.
2017-12-01
Geodetically resolved Slow Slip Events (SSE), a large M7.6 earthquake, and afterslip have all been documented in the last 16 years of observation in Nicoya, Costa Rica. We present a synthesis of the observations of observed aseismic slip behavior. SSEs in Nicoya are observed both during the late inter-seismic period and the post-seismic period, despite ongoing post-seismic phenomena. While recurrence rates appear unchanged by position within earthquake cycle, SSE behavior does vary before and after the event. We discuss how afterslip may be responsible for this change in behavior. We also present observations of a pre-earthquake transient observed starting 6 months prior to the M7.6 megathrust earthquake. This earthquake takes place within an asperity that is surrounded by regions which previously underwent slow slip behavior. We compare how this pre-earthquake transient, modeled as aseismic slip, differs from observations of typical Nicoya SSEs. Finally, we attempt to explain the segmentation of behaviors in Costa Rica with a simple frictional model.
Haeussler, Peter J.; Schwartz, D.P.; Dawson, T.E.; Stenner, Heidi D.; Lienkaemper, J.J.; Cinti, F.; Montone, Paola; Sherrod, B.; Craw, P.
2004-01-01
On 3 November 2002, an M7.9 earthquake produced 340 km of surface rupture on the Denali and two related faults in Alaska. The rupture proceeded from west to east and began with a 40-km-long break on a previously unknown thrust fault. Estimates of surface slip on this thrust are 3-6 m. Next came the principal surface break along ???218 km of the Denali fault. Right-lateral offsets averaged around 5 m and increased eastward to a maximum of nearly 9 m. The fault also ruptured beneath the trans-Alaska oil pipeline, which withstood almost 6 m of lateral offset. Finally, slip turned southeastward onto the Totschunda fault. Right-lateral offsets are up to 3 m, and the surface rupture is about 76 km long. This three-part rupture ranks among the longest strike-slip events of the past two centuries. The earthquake is typical when compared to other large earthquakes on major intracontinental strike-slip faults. ?? 2004, Earthquake Engineering Research Institute.
NASA Astrophysics Data System (ADS)
Yamashita, F.; Fukuyama, E.; Xu, S.; Kawakata, H.; Mizoguchi, K.; Takizawa, S.
2017-12-01
We report two types of foreshock activities observed on meter-scale laboratory experiments: slow-slip-driven type and cascade-up type. We used two rectangular metagabbro blocks as experimental specimens, whose nominal contacting area was 1.5 m long and 0.1 m wide. To monitor stress changes and seismic activities on the fault, we installed dense arrays of 32 triaxial rosette strain gauges and 64 PZT seismic sensors along the fault. We repeatedly conducted experiments with the same pair of rock specimens, causing the evolution of damage on the fault. We focus on two experiments successively conducted under the same loading condition (normal stress of 6.7 MPa and loading rate of 0.01 mm/s) but different initial fault surface conditions; the first experiment preserved the gouge generated from the previous experiment while the second experiment started with all gouge removed. Note that the distribution of gouge was heterogeneous, because we did not make the gouge layer uniform. We observed many foreshocks in both experiments, but found that the b-value of foreshocks was smaller in the first experiment with pre-existing gouge (PEG). In the second experiment without PEG, we observed premonitory slow slip associated with nucleation process preceding most main events by the strain measurements. We also found that foreshocks were triggered by the slow slip at the end of the nucleation process. In the experiment with PEG, on the contrary, no clear premonitory slow slips were found. Instead, foreshock activity accelerated towards the main event, as confirmed by a decreasing b-value. Spatiotemporal distribution of foreshock hypocenters suggests that foreshocks migrated and cascaded up to the main event. We infer that heterogeneous gouge distribution caused stress-concentrated and unstable patches, which impeded stable slow slip but promoted foreshocks on the fault. Further, our results suggest that b-value is a useful parameter for characterizing these observations.
NASA Astrophysics Data System (ADS)
Kobayashi, Tomokazu
2017-01-01
By applying conventional cross-track InSAR and multiple-aperture InSAR (MAI) techniques with ALOS-2 SAR data to foreshocks of the 2016 Kumamoto earthquake, ground displacement fields in range (line-of-sight) and azimuth components have been successfully mapped. The most concentrated crustal deformation with ground displacement exceeding 15 cm is located on the western side of the Hinagu fault zone. A locally distributed displacement which appears along the strike of the Futagawa fault can be identified in and around Mashiki town, suggesting that a different local fault slip also contributed toward foreshocks. Inverting InSAR, MAI, and GNSS data, distributed slip models are obtained that show almost pure right-lateral fault motion on a plane dipping west by 80° for the Hinagu fault and almost pure normal fault motion on a plane dipping south by 70° for the local fault beneath Mashiki town. The slip on the Hinagu fault reaches around the junction of the Hinagu and Futagawa faults. The slip in the north significantly extends down to around 10 km depth, while in the south the slip is concentrated near the ground surface, perhaps corresponding to the M j 6.5 and the M j 6.4 events, respectively. The focal mechanism of the distributed slip model for the Hinagu fault alone shows pure right-lateral motion, which is inconsistent with the seismically estimated mechanism that includes a significant non-double couple component. On the other hand, when taking the contribution of normal fault motion into account, the focal mechanism appears similar to that of the seismic analysis. This result may suggest that local fault motion occurred just beneath Mashiki town, simultaneously with the M j 6.5 event, thereby increasing the degree of damage to the town.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi
2015-04-01
Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an asymmetric anticline. Thus, analogue modeling has validated observation in seismic data and onshore geology whereby Mount Lebanon and adjacent folds exhibit similar compartmentalization and geometric dissimilarities along the Levant Fracture System. We suggest that the presence of inherited structures will affect to a certain extent the geometry of restraining bends and control the evolution of large strike-slip faults passing through.
NASA Astrophysics Data System (ADS)
Inoue, N.; Kitada, N.; Tonagi, M.
2016-12-01
Distributed fault displacements in Probabilistic Fault Displace- ment Analysis (PFDHA) have an important rule in evaluation of important facilities such as Nuclear Installations. In Japan, the Nu- clear Installations should be constructed where there is no possibility that the displacement by the earthquake on the active faults occurs. Youngs et al. (2003) defined the distributed fault as displacement on other faults or shears, or fractures in the vicinity of the principal rup- ture in response to the principal faulting. Other researchers treated the data of distribution fault around principal fault and modeled according to their definitions (e.g. Petersen et al., 2011; Takao et al., 2013 ). We organized Japanese fault displacements data and constructed the slip-distance relationship depending on fault types. In the case of reverse fault, slip-distance relationship on the foot-wall indicated difference trend compared with that on hanging-wall. The process zone or damaged zone have been studied as weak structure around principal faults. The density or number is rapidly decrease away from the principal faults. We contrasted the trend of these zones with that of distributed slip-distance distributions. The subsurface FEM simulation have been carried out to inves- tigate the distribution of stress around principal faults. The results indicated similar trend compared with the distribution of field obser- vations. This research was part of the 2014-2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (S/NRA), Japan.
NASA Astrophysics Data System (ADS)
Wang, P.; Wang, K.; Hawkes, A.; Horton, B. P.; Engelhart, S. E.; Nelson, A. R.; Witter, R. C.
2011-12-01
Abrupt coastal subsidence induced by the great AD 1700 Cascadia earthquake has been estimated from paleoseismic evidence of buried soils and overlying mud and associated tsunamis deposits. These records have been modeled using a rather uniform rupture model, a mirror image of the uniform interseismic fault locking based on modern GPS observations. However, as seen in other megathrust earthquakes such as at Sumatra, Chile, and Alaska, the rupture must have had multiple patches of concentrated slip. Variable moment release is also seen in the 2011 Tohoku-Oki earthquake in Japan, although there is only one patch. The use of a uniform rupture scenario for Cascadia is due mainly to the poor resolving power of the previous paleoseismic data. In this work, we invoke recently obtained more precise data from detailed microfossil studies to better constrain the slip distribution. Our 3-D elastic dislocation model allows the fault slip to vary along strike. Along any profile in the dip direction, we assume a bell-shaped slip distribution with the peak value scaling with local rupture width, consistent with rupture mechanics. We found that the coseismic slip is large in central Cascadia, and areas of high moment release are separated by areas of low moment release. The amount of slip in northern and southern Cascadia is poorly constrained. Although data uncertainties are large, the coastal variable subsidence can be explained with multiple slip patches. For example, there is an area near Alsea Bay, Oregon (about 44.5°N) that, in accordance with the minimum coseismic subsidence estimated by the microfossil data, had very little slip in the 1700 event. This area approximately coincides with a segment boundary previously defined on the basis of gravity anomalies. There is also reported evidence for the presence of a subducting seamount in this area, and the seamount might be responsible for impeding rupture during large earthquakes. The nature of this rupture barrier and whether it is a persistent feature are important topics of future research. Our results indicate that there is not always a one-to-one correlation between areas of more complete interseismic locking and larger coseismic slip.
NASA Astrophysics Data System (ADS)
Koketsu, Kazuki; Miyake, Hiroe; Guo, Yujia; Kobayashi, Hiroaki; Masuda, Tetsu; Davuluri, Srinagesh; Bhattarai, Mukunda; Adhikari, Lok Bijaya; Sapkota, Soma Nath
2016-06-01
The ground motion and damage caused by the 2015 Gorkha, Nepal earthquake can be characterized by their widespread distributions to the east. Evidence from strong ground motions, regional acceleration duration, and teleseismic waveforms indicate that rupture directivity contributed significantly to these distributions. This phenomenon has been thought to occur only if a strike-slip or dip-slip rupture propagates to a site in the along-strike or updip direction, respectively. However, even though the earthquake was a dip-slip faulting event and its source fault strike was nearly eastward, evidence for rupture directivity is found in the eastward direction. Here, we explore the reasons for this apparent inconsistency by performing a joint source inversion of seismic and geodetic datasets, and conducting ground motion simulations. The results indicate that the earthquake occurred on the underthrusting Indian lithosphere, with a low dip angle, and that the fault rupture propagated in the along-strike direction at a velocity just slightly below the S-wave velocity. This low dip angle and fast rupture velocity produced rupture directivity in the along-strike direction, which caused widespread ground motion distribution and significant damage extending far eastwards, from central Nepal to Mount Everest.
Analyzing shear band formation with high resolution X-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pagan, Darren C.; Obstalecki, Mark; Park, Jun-Sang
Localization of crystallographic slip into shear bands during uniaxial compression of a copper single crystal is studied using very far-field high-energy diffraction microscopy (vff-HEDM). Diffracted intensity was collected in-situ as the crystal deformed using a unique mobile detector stage that provided access to multiple diffraction peaks with high-angular resolution. From the diffraction data, single crystal orientation pole figures (SCPFs) were generated and are used to track the evolution of the distribution of lattice orientation that develops as slip localizes. To aid the identification of 'signatures' of shear band formation and analyze the SCPF data, a model of slip-driven lattice reorientationmore » within shear bands is introduced. Confidence is built in conclusions drawn from the SCPF data about the character of internal slip localization through comparisons with strain fields on the sample surface measured simultaneously using digital image correlation. From the diffraction data, we find that the active slip direction and slip plane are not directly aligned with the orientation of the shear bands that formed. In fact, by extracting the underlying slip system activity from the SCPF data, we show that intersecting shear bands measured on the surface of the sample arise from slip primarily on the same underlying single slip system. These new vff-HEDM results raise significant questions on the use of surface measurements for slip system activity estimation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
Demonstration of improved seismic source inversion method of tele-seismic body wave
NASA Astrophysics Data System (ADS)
Yagi, Y.; Okuwaki, R.
2017-12-01
Seismic rupture inversion of tele-seismic body wave has been widely applied to studies of large earthquakes. In general, tele-seismic body wave contains information of overall rupture process of large earthquake, while the tele-seismic body wave is inappropriate for analyzing a detailed rupture process of M6 7 class earthquake. Recently, the quality and quantity of tele-seismic data and the inversion method has been greatly improved. Improved data and method enable us to study a detailed rupture process of M6 7 class earthquake even if we use only tele-seismic body wave. In this study, we demonstrate the ability of the improved data and method through analyses of the 2016 Rieti, Italy earthquake (Mw 6.2) and the 2016 Kumamoto, Japan earthquake (Mw 7.0) that have been well investigated by using the InSAR data set and the field observations. We assumed the rupture occurring on a single fault plane model inferred from the moment tensor solutions and the aftershock distribution. We constructed spatiotemporal discretized slip-rate functions with patches arranged as closely as possible. We performed inversions using several fault models and found that the spatiotemporal location of large slip-rate area was robust. In the 2016 Kumamoto, Japan earthquake, the slip-rate distribution shows that the rupture propagated to southwest during the first 5 s. At 5 s after the origin time, the main rupture started to propagate toward northeast. First episode and second episode correspond to rupture propagation along the Hinagu fault and the Futagawa fault, respectively. In the 2016 Rieti, Italy earthquake, the slip-rate distribution shows that the rupture propagated to up-dip direction during the first 2 s, and then rupture propagated toward northwest. From both analyses, we propose that the spatiotemporal slip-rate distribution estimated by improved inversion method of tele-seismic body wave has enough information to study a detailed rupture process of M6 7 class earthquake.
Spatial and temporal evolution of stress and slip rate during the 2000 Tokai slow earthquake
NASA Astrophysics Data System (ADS)
Miyazaki, Shin'ichi; Segall, Paul; McGuire, Jeffery J.; Kato, Teruyuki; Hatanaka, Yuki
2006-03-01
We investigate an ongoing silent thrust event in the Tokai seismic gap along the Suruga-Nankai Trough, central Japan. Prior to the event, continuous GPS data from April 1996 to the end of 1999 show that this region displaced ˜2 cm/yr to the northwest relative to the landward plate. The GPS time series show an abrupt change in rate in mid-June 2000 that continues as of mid-2005. We model this transient deformation, which we refer to as the Tokai slow thrust slip event, as caused by slip on the interface between the Philippine Sea and Amurian plates. The spatial and temporal distribution of slip rate is estimated with Kalman filter based inversion methods. Our inversions reveal two slow subevents. The first initiated in late June 2000 slightly before the Miyake-jima eruption. The locus of slip then propagated southeast in the second half of 2000, with maximum slip rates of about 15 cm/yr through 2001. A second locus of slip initiated to the northeast in early 2001. The depth of the slip zone is about 25 km, which may correspond to the transition zone from a seismogenic to a freely sliding zone. The cumulative moment magnitude of the slow slip event up to November 2002 is Mw ˜ 6.8. We calculate shear stress changes on the plate interface from the slip histories. Stress change as a function of slip rate shows trajectories similar to that inferred for high-speed ruptures; however, the maximum velocity is 8 orders of magnitude less than in normal earthquakes.
Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan
NASA Astrophysics Data System (ADS)
Shelly, David R.; Beroza, Gregory C.; Ide, Satoshi
2007-10-01
Transient slip events, which occur more slowly than traditional earthquakes, are increasingly being recognized as important components of strain release on faults and may substantially impact the earthquake cycle. Surface-based geodetic instruments provide estimates of the overall slip distribution in larger transients but are unable to capture the detailed evolution of such slip, either in time or in space. Accompanying some of these slip transients is a relatively weak, extended duration seismic signal, known as nonvolcanic tremor, which has recently been shown to be generated by a sequence of shear failures occurring as part of the slip event. By precisely locating the tremor, we can track some features of slip evolution with unprecedented resolution. Here, we analyze two weeklong episodes of tremor and slow slip in western Shikoku, Japan. We find that these slip transients do not evolve in a smooth and steady fashion but contain numerous subevents of smaller size and shorter duration. In addition to along-strike migration rates of ˜10 km/d observed previously, much faster migration also occurs, usually in the slab dip direction, at rates of 25-150 km/h over distances of up to ˜20 km. We observe such migration episodes in both the updip and downdip directions. These episodes may be most common on certain portions of the plate boundary that generate strong tremor in intermittent bursts. The surrounding regions of the fault may slip more continuously, driving these stronger patches to repeated failures. Tremor activity has a strong tidal periodicity, possibly reflecting the modulation of slow slip velocity by tidal stresses.
NASA Astrophysics Data System (ADS)
Shelly, D. R.; Beroza, G. C.; Ide, S.
2007-12-01
Transient slow slip events are increasingly being recognized as important components of strain release on faults and may substantially impact the earthquake cycle. Surface-based geodetic instruments provide estimates of the overall slip distribution in larger transients but are unable to capture the detailed evolution of such slip, either in time or space. Accompanying some of these slip transients is a relatively weak, extended duration seismic signal, known as non-volcanic tremor, which has recently been shown to be generated by a sequence of shear failures occurring as part of the slip event. By precisely locating the tremor, we can track some features of slip evolution with unprecedented resolution. Here, we analyze two weeklong episodes of tremor and slow slip in western Shikoku, Japan. We find that these slip transients do not evolve in a smooth and steady fashion but contain numerous sub-events of smaller size and shorter duration. In addition to along-strike migration rates of about 10 km/day observed previously, much faster migration also occurs, usually in the slab dip direction, at rates of 25-150 km/hour over distances of up to 20 km. We observe such migration episodes in both the up-dip and down-dip directions. These episodes may be most common on certain portions of the plate boundary that generate strong tremor in intermittent bursts. The surrounding regions of the fault may slip more continuously, driving these stronger patches to repeated failures. Tremor activity has a strong tidal periodicity, possibly reflecting the modulation of slow slip velocity by tidal stresses.
Analytical and numerical study of the electro-osmotic annular flow of viscoelastic fluids.
Ferrás, L L; Afonso, A M; Alves, M A; Nóbrega, J M; Pinho, F T
2014-04-15
In this work we present semi-analytical solutions for the electro-osmotic annular flow of viscoelastic fluids modeled by the Linear and Exponential PTT models. The viscoelastic fluid flows in the axial direction between two concentric cylinders under the combined influences of electrokinetic and pressure forcings. The analysis invokes the Debye-Hückel approximation and includes the limit case of pure electro-osmotic flow. The solution is valid for both no slip and slip velocity at the walls and the chosen slip boundary condition is the linear Navier slip velocity model. The combined effects of fluid rheology, electro-osmotic and pressure gradient forcings on the fluid velocity distribution are also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.
Dynamic rupture simulations of the 2016 Mw7.8 Kaikōura earthquake: a cascading multi-fault event
NASA Astrophysics Data System (ADS)
Ulrich, T.; Gabriel, A. A.; Ampuero, J. P.; Xu, W.; Feng, G.
2017-12-01
The Mw7.8 Kaikōura earthquake struck the Northern part of New Zealand's South Island roughly one year ago. It ruptured multiple segments of the contractional North Canterbury fault zone and of the Marlborough fault system. Field observations combined with satellite data suggest a rupture path involving partly unmapped faults separated by large stepover distances larger than 5 km, the maximum distance usually considered by the latest seismic hazard assessment methods. This might imply distant rupture transfer mechanisms generally not considered in seismic hazard assessment. We present high-resolution 3D dynamic rupture simulations of the Kaikōura earthquake under physically self-consistent initial stress and strength conditions. Our simulations are based on recent finite-fault slip inversions that constrain fault system geometry and final slip distribution from remote sensing, surface rupture and geodetic data (Xu et al., 2017). We assume a uniform background stress field, without lateral fault stress or strength heterogeneity. We use the open-source software SeisSol (www.seissol.org) which is based on an arbitrary high-order accurate DERivative Discontinuous Galerkin method (ADER-DG). Our method can account for complex fault geometries, high resolution topography and bathymetry, 3D subsurface structure, off-fault plasticity and modern friction laws. It enables the simulation of seismic wave propagation with high-order accuracy in space and time in complex media. We show that a cascading rupture driven by dynamic triggering can break all fault segments that were involved in this earthquake without mechanically requiring an underlying thrust fault. Our prefered fault geometry connects most fault segments: it does not features stepover larger than 2 km. The best scenario matches the main macroscopic characteristics of the earthquake, including its apparently slow rupture propagation caused by zigzag cascading, the moment magnitude and the overall inferred slip distribution. We observe a high sensitivity of cascading dynamics on fault-step over distance and off-fault energy dissipation.
Lu, Liqiang; Liu, Xiaowen; Li, Tingwen; ...
2017-08-12
For this study, gas–solids flow in a three-dimension periodic domain was numerically investigated by direct numerical simulation (DNS), computational fluid dynamic-discrete element method (CFD-DEM) and two-fluid model (TFM). DNS data obtained by finely resolving the flow around every particle are used as a benchmark to assess the validity of coarser DEM and TFM approaches. The CFD-DEM predicts the correct cluster size distribution and under-predicts the macro-scale slip velocity even with a grid size as small as twice the particle diameter. The TFM approach predicts larger cluster size and lower slip velocity with a homogeneous drag correlation. Although the slip velocitymore » can be matched by a simple modification to the drag model, the predicted voidage distribution is still different from DNS: Both CFD-DEM and TFM over-predict the fraction of particles in dense regions and under-predict the fraction of particles in regions of intermediate void fractions. Also, the cluster aspect ratio of DNS is smaller than CFD-DEM and TFM. Since a simple correction to the drag model can predict a correct slip velocity, it is hopeful that drag corrections based on more elaborate theories that consider voidage gradient and particle fluctuations may be able to improve the current predictions of cluster distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Liqiang; Liu, Xiaowen; Li, Tingwen
For this study, gas–solids flow in a three-dimension periodic domain was numerically investigated by direct numerical simulation (DNS), computational fluid dynamic-discrete element method (CFD-DEM) and two-fluid model (TFM). DNS data obtained by finely resolving the flow around every particle are used as a benchmark to assess the validity of coarser DEM and TFM approaches. The CFD-DEM predicts the correct cluster size distribution and under-predicts the macro-scale slip velocity even with a grid size as small as twice the particle diameter. The TFM approach predicts larger cluster size and lower slip velocity with a homogeneous drag correlation. Although the slip velocitymore » can be matched by a simple modification to the drag model, the predicted voidage distribution is still different from DNS: Both CFD-DEM and TFM over-predict the fraction of particles in dense regions and under-predict the fraction of particles in regions of intermediate void fractions. Also, the cluster aspect ratio of DNS is smaller than CFD-DEM and TFM. Since a simple correction to the drag model can predict a correct slip velocity, it is hopeful that drag corrections based on more elaborate theories that consider voidage gradient and particle fluctuations may be able to improve the current predictions of cluster distribution.« less
Constraining earthquake source inversions with GPS data: 1. Resolution-based removal of artifacts
Page, M.T.; Custodio, S.; Archuleta, R.J.; Carlson, J.M.
2009-01-01
We present a resolution analysis of an inversion of GPS data from the 2004 Mw 6.0 Parkfield earthquake. This earthquake was recorded at thirteen 1-Hz GPS receivers, which provides for a truly coseismic data set that can be used to infer the static slip field. We find that the resolution of our inverted slip model is poor at depth and near the edges of the modeled fault plane that are far from GPS receivers. The spatial heterogeneity of the model resolution in the static field inversion leads to artifacts in poorly resolved areas of the fault plane. These artifacts look qualitatively similar to asperities commonly seen in the final slip models of earthquake source inversions, but in this inversion they are caused by a surplus of free parameters. The location of the artifacts depends on the station geometry and the assumed velocity structure. We demonstrate that a nonuniform gridding of model parameters on the fault can remove these artifacts from the inversion. We generate a nonuniform grid with a grid spacing that matches the local resolution length on the fault and show that it outperforms uniform grids, which either generate spurious structure in poorly resolved regions or lose recoverable information in well-resolved areas of the fault. In a synthetic test, the nonuniform grid correctly averages slip in poorly resolved areas of the fault while recovering small-scale structure near the surface. Finally, we present an inversion of the Parkfield GPS data set on the nonuniform grid and analyze the errors in the final model. Copyright 2009 by the American Geophysical Union.
Kida, Kazunobu; Tadokoro, Nobuaki; Kumon, Masashi; Ikeuchi, Masahiko; Kawazoe, Tateo; Tani, Toshikazu
2014-03-01
To determine if cantilever transforaminal lumbar interbody fusion (C-TLIF) using the crescent-shaped titanium interbody spacer (IBS) favors acquisition of segmental and lumbar lordosis even for degenerative spondylolisthesis (DS) on a long-term basis. We analyzed 23 consecutive patients who underwent C-TLIF with pedicle screw instrumentations fixed with compression for a single-level DS. Measurements on the lateral radiographs taken preoperatively, 2 weeks postoperatively and at final follow-up included disc angle (DA), segmental angle (SA), lumbar lordosis (LL), disc height (%DH) and slip rate (%slip). There was a good functional recovery with 100 % fusion rate at the mean follow-up of 62 months. Segmental lordosis (DA and SA) and %DH initially increased, but subsequently decreased with the subsidence of the interbody spacer, resulting in a significant increase (p = 0.046) only in SA from 13.2° ± 5.5° preoperatively to 14.7° ± 6.4° at the final follow-up. Changes of LL and %slip were more consistent without correction loss finally showing an increase of LL by 3.6° (p = 0.005) and a slip reduction by 6.7 % (p < 0.001). Despite the inherent limitation of placing the IBS against the anterior endplate of the upper vertebra in the presence of DS, the C-TLIF helped significantly restore segmental as well as lumbar lordosis on a long-term basis, which would be of benefit in preventing hypolordosis-induced back pain and the adjacent level disc disease.
Geist, E.L.; Bilek, S.L.; Arcas, D.; Titov, V.V.
2006-01-01
Source parameters affecting tsunami generation and propagation for the Mw > 9.0 December 26, 2004 and the Mw = 8.6 March 28, 2005 earthquakes are examined to explain the dramatic difference in tsunami observations. We evaluate both scalar measures (seismic moment, maximum slip, potential energy) and finite-source repre-sentations (distributed slip and far-field beaming from finite source dimensions) of tsunami generation potential. There exists significant variability in local tsunami runup with respect to the most readily available measure, seismic moment. The local tsunami intensity for the December 2004 earthquake is similar to other tsunamigenic earthquakes of comparable magnitude. In contrast, the March 2005 local tsunami was deficient relative to its earthquake magnitude. Tsunami potential energy calculations more accurately reflect the difference in tsunami severity, although these calculations are dependent on knowledge of the slip distribution and therefore difficult to implement in a real-time system. A significant factor affecting tsunami generation unaccounted for in these scalar measures is the location of regions of seafloor displacement relative to the overlying water depth. The deficiency of the March 2005 tsunami seems to be related to concentration of slip in the down-dip part of the rupture zone and the fact that a substantial portion of the vertical displacement field occurred in shallow water or on land. The comparison of the December 2004 and March 2005 Sumatra earthquakes presented in this study is analogous to previous studies comparing the 1952 and 2003 Tokachi-Oki earthquakes and tsunamis, in terms of the effect slip distribution has on local tsunamis. Results from these studies indicate the difficulty in rapidly assessing local tsunami runup from magnitude and epicentral location information alone.
NASA Astrophysics Data System (ADS)
Iturrieta, Pablo Cristián; Hurtado, Daniel E.; Cembrano, José; Stanton-Yonge, Ashley
2017-09-01
Orogenic belts at oblique convergent subduction margins accommodate deformation in several trench-parallel domains, one of which is the magmatic arc, commonly regarded as taking up the margin-parallel, strike-slip component. However, the stress state and kinematics of volcanic arcs is more complex than usually recognized, involving first- and second-order faults with distinctive slip senses and mutual interaction. These are usually organized into regional scale strike-slip duplexes, associated with both long-term and short-term heterogeneous deformation and magmatic activity. This is the case of the 1100 km-long Liquiñe-Ofqui Fault System in the Southern Andes, made up of two overlapping margin-parallel master faults joined by several NE-striking second-order faults. We present a finite element model addressing the nature and spatial distribution of stress across and along the volcanic arc in the Southern Andes to understand slip partitioning and the connection between tectonics and magmatism, particularly during the interseismic phase of the subduction earthquake cycle. We correlate the dynamics of the strike-slip duplex with geological, seismic and magma transport evidence documented by previous work, showing consistency between the model and the inferred fault system behavior. Our results show that maximum principal stress orientations are heterogeneously distributed within the continental margin, ranging from 15° to 25° counter-clockwise (with respect to the convergence vector) in the master faults and 10-19° clockwise in the forearc and backarc domains. We calculate the stress tensor ellipticity, indicating simple shearing in the eastern master fault and transpressional stress in the western master fault. Subsidiary faults undergo transtensional-to-extensional stress states. The eastern master fault displays slip rates of 5 to 10 mm/yr, whereas the western and subsidiary faults show slips rates of 1 to 5 mm/yr. Our results endorse that favorably oriented subsidiary faults serve as magma pathways, particularly where they are close to the intersection with a master fault. Also, the slip of a fault segment is enhanced when an adjacent fault kinematics is superimposed on the regional tectonic loading. Hence, finite element models help to understand coupled tectonics and volcanic processes, demonstrating that geological and geophysical observations can be accounted for by a small number of key first order boundary conditions.
Some comparisons between mining-induced and laboratory earthquakes
McGarr, A.
1994-01-01
Although laboratory stick-slip friction experiments have long been regarded as analogs to natural crustal earthquakes, the potential use of laboratory results for understanding the earthquake source mechanism has not been fully exploited because of essential difficulties in relating seismographic data to measurements made in the controlled laboratory environment. Mining-induced earthquakes, however, provide a means of calibrating the seismic data in terms of laboratory results because, in contrast to natural earthquakes, the causative forces as well as the hypocentral conditions are known. A comparison of stick-slip friction events in a large granite sample with mining-induced earthquakes in South Africa and Canada indicates both similarities and differences between the two phenomena. The physics of unstable fault slip appears to be largely the same for both types of events. For example, both laboratory and mining-induced earthquakes have very low seismic efficiencies {Mathematical expression} where ??a is the apparent stress and {Mathematical expression} is the average stress acting on the fault plane to cause slip; nearly all of the energy released by faulting is consumed in overcoming friction. In more detail, the mining-induced earthquakes differ from the laboratory events in the behavior of ?? as a function of seismic moment M0. Whereas for the laboratory events ?????0.06 independent of M0, ?? depends quite strongly on M0 for each set of induced earthquakes, with 0.06 serving, apparently, as an upper bound. It seems most likely that this observed scaling difference is due to variations in slip distribution over the fault plane. In the laboratory, a stick-slip event entails homogeneous slip over a fault of fixed area. For each set of induced earthquakes, the fault area appears to be approximately fixed but the slip is inhomogeneous due presumably to barriers (zones of no slip) distributed over the fault plane; at constant {Mathematical expression}, larger events correspond to larger??a as a consequence of fewer barriers to slip. If the inequality ??a/ {Mathematical expression} ??? 0.06 has general validity, then measurements of ??a=??Ea/M0, where ?? is the modulus of rigidity and Ea is the seismically-radiated energy, can be used to infer the absolute level of deviatoric stress at the hypocenter. ?? 1994 Birkha??user Verlag.
Pollitz, Fred; Wicks, Charles W.; Schoenball, Martin; Ellsworth, William L.; Murray, Mark
2017-01-01
The 3 September 2016 Mw 5.8 Pawnee earthquake in northern Oklahoma is the largest earthquake ever recorded in Oklahoma. The coseismic deformation was measured with both Interferometric Synthetic Aperture Radar and Global Positioning System (GPS), with measureable signals of order 1 cm and 1 mm, respectively. We derive a coseismic slip model from Sentinel‐1A and Radarsat 2 interferograms and GPS static offsets, dominated by distributed left‐lateral strike slip on a primary west‐northwest–east‐southeast‐trending subvertical plane, whereas strike slip is concentrated near the hypocenter (5.6 km depth), with maximum slip of ∼1 m located slightly east and down‐dip of the hypocenter. Based on systematic misfits of observed interferogram line‐of‐sight (LoS) displacements, with LoS based on shear‐dislocation models, a few decimeters of fault‐zone collapse are inferred in the hypocentral region where coseismic slip was the largest. This may represent the postseismic migration of large volumes of fluid away from the high‐slip areas, made possible by the creation of a temporary high‐permeability damage zone around the fault.
NASA Astrophysics Data System (ADS)
Cheloni, D.; D'Agostino, N.; D'Anastasio, E.; Selvaggi, G.
2012-08-01
In this study, we revisit the mechanism of the 1976 Friuli (NE Italy) earthquake sequence (main shocks Mw 6.4, 5.9 and 6.0). We present a new source model that simultaneously fits all the available geodetic measurements of the observed deformation. We integrate triangulation measurements, which have never been previously used in the source modelling of this sequence, with high-precision levelling that covers the epicentral area. We adopt a mixed linear/non-linear optimization scheme, in which we iteratively search for the best-fitting solution by performing several linear slip inversions while varying fault location using a grid search method. Our preferred solution consists of a shallow north-dipping fault plane with assumed azimuth of 282° and accommodating a reverse dextral slip of about 1 m. The estimated geodetic moment is 6.6 × 1018 Nm (Mw 6.5), in agreement with seismological estimates. Yet, our preferred model shows that the geodetic solution is consistent with the activation of a single fault system during the entire sequence, the surface expression of which could be associated with the Buia blind thrust, supporting the hypothesis that the main activity of the Eastern Alps occurs close to the relief margin, as observed in other mountain belts. The retrieved slip pattern consists of a main coseismic patch located 3-5 km depth, in good agreement with the distribution of the main shocks. Additional slip is required in the shallower portions of the fault to reproduce the local uplift observed in the region characterized by Quaternary active folding. We tentatively interpret this patch as postseismic deformation (afterslip) occurring at the edge of the main coseismic patch. Finally, our rupture plane spatially correlates with the area of the locked fault determined from interseismic measurements, supporting the hypothesis that interseismic slip on the creeping dislocation causes strain to accumulate on the shallow (above ˜10 km depth) locked section. Assuming that all the long-term accommodation between Adria and Eurasia is seismically released, a time span of 500-700 years of strain-accumulating plate motion would result in a 1976-like earthquake.
NASA Astrophysics Data System (ADS)
Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.
2017-05-01
Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.
Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.
2017-01-01
Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.
Research on motor braking-based DYC strategy for distributed electric vehicle
NASA Astrophysics Data System (ADS)
Zhang, Jingming; Liao, Weijie; Chen, Lei; Cui, Shumei
2017-08-01
In order to bring into full play the advantages of motor braking and enhance the handling stability of distributed electric vehicle, a motor braking-based direct yaw moment control (DYC) strategy was proposed. This strategy could identify whether a vehicle has under-steered or overs-steered, to calculate the direct yaw moment required for vehicle steering correction by taking the corrected yaw velocity deviation and slip-angle deviation as control variables, and exert motor braking moment on the target wheels to perform correction in the manner of differential braking. For validation of the results, a combined simulation platform was set up finally to simulate the motor braking control strategy proposed. As shown by the results, the motor braking-based DYC strategy timely adjusted the motor braking moment and hydraulic braking moment on the target wheels, and corrected the steering deviation and sideslip of the vehicle in unstable state, improving the handling stability.
Stress distribution characteristics in the vicinity of coal seam floor
NASA Astrophysics Data System (ADS)
Cui, Zimo; Chanda, Emmanuel; Zhao, Jingli; Wang, Zhihe
2018-01-01
Although longwall top-coal caving (LTCC) has been a popular, more productive and cost-effective method in recent years, roadway floor heave and rock bursts frequently appear when exploiting such coal seams with large dip angle. This paper proposes addressing this problem by adopting three-dimensional roadway layout of stagger arrangement (3-D RLSA). In this study, the first step was to analyse the stress distribution characteristics in the vicinity of coal seam floor based on the stress slip line field theory. In the second step, numerical calculation using FLAC3D was conducted. Finally, an evaluation of the 3-D RLSA for solving this particular issue was given. Results indicate that for this particular mine the proposed 3-D RLSA results in 24% increase in the coal recovery ratio and a modest reduction in excavation and maintenance costs compared to the conventional LTCC method.
Macroscopic Asymmetry of Dynamic Rupture on a Bimaterial Interface With Velocity- Weakening Friction
NASA Astrophysics Data System (ADS)
Ampuero, J.; Ben-Zion, Y.
2006-12-01
Large faults typically separate rocks of different elastic properties. In-plane ruptures on bimaterial interfaces have remarkable dynamic properties that may be relevant to many issues of basic and applied science (e.g., Ben-Zion, 2001). In contrast to slip between similar media, slip along a bimaterial interface generates dynamic changes of normal stress that modify the local fault strength (e.g., Weertman, 1980). One important issue is whether rupture on a bimaterial interface evolves toward a unilateral wrinkle-like pulse in the direction of motion of the compliant medium (the "preferred" direction), or whether it propagates as a symmetric bilateral crack. Some field data suggest that bimaterial interfaces in natural fault zones produce macroscopic rupture asymmetry (Dor et al., 2006; Lewis et al., 2005, 2006); however, this is a subject of ongoing debate. Rubin and Ampuero (2006) performed numerical simulations of bimaterial ruptures under pure slip-weakening friction. They found bilateral crack-like ruptures without significant asymmetry of slip. For ruptures that stopped in low stress areas, there was asymmetry in the final stress distribution, induced by a small scale pulse that detaches from the crack when it stops. This may provide a mechanism for the observed asymmetry of microearthquakes on segments of the San Andreas fault (Rubin and Gillard, 2000). In addition, the results included very prominent asymmetry of slip velocities at the opposite rupture fronts. In calculations with slip-weakening friction the strong asymmetry of slip velocities can not manifest itself into macroscopic rupture asymmetry. However, incorporating in the simulations rate-dependent friction may produce larger stress drop in the preferred direction, leading to macroscopically asymmetric rupture (Ben-Zion, 2006). In this work we study the effect of velocity-weakening friction on rupture along a bimaterial interface, using 2D in-plane simulations with a spectral boundary integral method and a rate-and-state dependent friction law with strong velocity dependence. The law contains slip-weakening or velocity-weakening as limit cases, depending on the length scale in the state evolution law. The steady-state friction coefficient is inversely proportional to slip-rate, mimicking the weakening mechanisms thought to operate on natural faults at high velocities. We examine the behavior of ruptures triggered by a slightly overstressed nucleation zone of size larger than a critical size derived by linear stability analysis. We characterize the range of friction parameters and initial stress values for which ruptures behave as cracks or pulses, decaying or sustained, with subshear or super-shear speeds. All sustained ruptures are initially bilateral. In the range where sub-shear pulse-like rupture is observed, the ruptures develop strong macroscopic asymmetry with continuing propagation along the bimaterial interface. This is manifested by significantly larger seismic potency and propagation distance in the preferred direction, similar to what was found by Shi and Ben-Zion (2006) with strong nucleation phases and slip-weakening friction. The stress asymmetry mechanism described by Rubin and Ampuero (2006) remains in our velocity-weakening simulations as a super-imposed small-scale feature.
NASA Astrophysics Data System (ADS)
Delescluse, M.; Chamot-Rooke, N.; Cattin, R.
2009-05-01
The present-day intraplate deformation between India and Australia started 9 Myrs ago. In the Central Indian Basin (CIB), this deformation is recorded in the thick sediments of the Bengal fan. The equatorial, dense E-W thrust fault network in this region is the result of a massive reverse reactivation of normal faults at the onset of deformation. The Wharton Basin (WB), separated from the CIB by the NinetyEast Ridge (NyR), shows a contrasting style of deformation with mainly left-lateral strike-slip seismicity. The WB finite deformation and seismicity also involve pre-existing faults, in this case the N-S paleo-transforms of the fossile Wharton spreading-ridge system. The oceanic plate seismicity after the December 2004 Aceh subduction earthquake shows strike-slip events with a clear intraplate P-axis. No thrust faults are detected. This indicates short-term reactivation of the transform faults near the trench. Spatial and temporal distribution of intraplate erthquakes, as well as their anomalous moment release suggests triggering by the Aceh megathrust earthquake, which appears to have acted as an "accelerator" for the oceanic intraplate deformation. In this study, we use Coulomb stress static variations to confirm our seismicity observations. We first assume that the reactivated transform and the neoformed thrust fault plane families are present in the oceanic lithosphere. We then compute the coseismic stresses in the vicinity of the trench from the Aceh and Nias earthquakes slip distributions. Finally, we derive the normal and shear stresses on the fault planes. The results show that the strike-slip events are all favored by the subduction earthquakes coseismic stresses. They also show that the normal fault earthquakes at oceanic bulges are supported by the modeled coseismic stresses, except offshore Myanmar. The particularly interesting result is that all the possible neoformed thrust faults perpendicular to the intraplate P-axis are inhibited by the same coseismic stresses. This suggests that the style of intraplate deformation favored near the Sumatra Trench in the short-term by subduction earthquakes is the same than the long-term style. Under the effect of northward slab pull forces, Australia tries to detach from its Indian "brake" along the WB's N-S transform faults.
Source rupture process of the 12 January 2010 Port-au-Prince (Haiti, Mw7.0) earthquake
NASA Astrophysics Data System (ADS)
Borges, José; Caldeira, Bento; Bezzeghoud, Mourad; Santos, Rúben
2010-05-01
The Haiti earthquake occurred on tuesday, January 12, 2010 at 21:53:10 UTC. Its epicenter was at 18.46 degrees North, 72.53 degrees West, about 25 km WSW of Haiti's capital, Port-au-Prince. The earthquake was relatively shallow (H=13 km, U.S. Geological Survey) and thus had greater intensity and destructiveness. The earthquake occurred along the tectonic boundary between Caribbean and North America plate. This plate boundary is dominated by left-lateral strike slip motion and compression with 2 cm/year of slip velocity eastward with respect to the North America plate. The moment magnitude was measured to be 7.0 (U.S. Geological Survey) and 7.1 (Harvard Centroid-Moment-Tensor (CMT). More than 10 aftershocks ranging from 5.0 to 5.9 in magnitude (none of magnitude larger than 6.0) struck the area in hours following the main shock. Most of these aftershocks have occurred to the West of the mainshock in the Mirogoane Lakes region and its distribution suggests that the length of the rupture was around 70 km. The Harvard Centroid Moment Tensor (CMT) mechanism solution indicates lefth-lateral strike slip movement with a fault plane trending toward (strike = 251o ; dip = 70o; rake = 28o). In order to obtain the spatiotemporal slip distribution of a finite rupture model we have used teleseismic body wave and the Kikuchi and Kanamori's method [1]. Rupture velocity was constrained by using the directivity effect determined from a set of waveforms well recorded at regional and teleseismic distances [2]. Finally, we compared a map of aftershocks with the Coulomb stress changes caused by the event in the region [3]. [1]- Kikuchi, M., and Kanamori, H., 1982, Inversion of complex body waves: Bull. Seismol. Soc. Am., v. 72, p. 491-506. [2] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity approach to determining the seismic rupture velocity vector. J Seismology, DOI 10.1007/s10950-009-9183-x (http://www.springerlink.com/content/xp524g2225628773/) [3] -King, G. C. P., Stein, R. S. y Lin, J, 1994, Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 84,935-953.
A Kinematic Model of Slow Slip Constrained by Tremor-Derived Slip Histories in Cascadia
NASA Astrophysics Data System (ADS)
Schmidt, D. A.; Houston, H.
2016-12-01
We explore new ways to constrain the kinematic slip distributions for large slow slip events using constraints from tremor. Our goal is to prescribe one or more slip pulses that propagate across the fault and scale appropriately to satisfy the observations. Recent work (Houston, 2015) inferred a crude representative stress time history at an average point using the tidal stress history, the static stress drop, and the timing of the evolution of tidal sensitivity of tremor over several days of slip. To convert a stress time history into a slip time history, we use simulations to explore the stressing history of a small locked patch due to an approaching rupture front. We assume that the locked patch releases strain through a series of tremor bursts whose activity rate is related to the stressing history. To test whether the functional form of a slip pulse is reasonable, we assume a hypothetical slip time history (Ohnaka pulse) timed with the occurrence of tremor to create a rupture front that propagates along the fault. The duration of the rupture front for a fault patch is constrained by the observed tremor catalog for the 2010 ETS event. The slip amplitude is scaled appropriately to match the observed surface displacements from GPS. Through a forward simulation, we evaluate the ability of the tremor-derived slip history to accurately predict the pattern of surface displacements observed by GPS. We find that the temporal progression of surface displacements are well modeled by a 2-4 day slip pulse, suggesting that some of the longer duration of slip typically found in time-dependent GPS inversions is biased by the temporal smoothing. However, at some locations on the fault, the tremor lingers beyond the passage of the slip pulse. A small percentage (5-10%) of the tremor appears to be activated ahead of the approaching slip pulse, and tremor asperities experience a driving stress on the order of 10 kPa/day. Tremor amplitude, rather than just tremor counts, is needed to better refine the pattern of slip across the fault.
Lin, J.; Stein, R.S.
2004-01-01
We argue that key features of thrust earthquake triggering, inhibition, and clustering can be explained by Coulomb stress changes, which we illustrate by a suite of representative models and by detailed examples. Whereas slip on surface-cutting thrust faults drops the stress in most of the adjacent crust, slip on blind thrust faults increases the stress on some nearby zones, particularly above the source fault. Blind thrusts can thus trigger slip on secondary faults at shallow depth and typically produce broadly distributed aftershocks. Short thrust ruptures are particularly efficient at triggering earthquakes of similar size on adjacent thrust faults. We calculate that during a progressive thrust sequence in central California the 1983 Mw = 6.7 Coalinga earthquake brought the subsequent 1983 Mw = 6.0 Nunez and 1985 Mw = 6.0 Kettleman Hills ruptures 10 bars and 1 bar closer to Coulomb failure. The idealized stress change calculations also reconcile the distribution of seismicity accompanying large subduction events, in agreement with findings of prior investigations. Subduction zone ruptures are calculated to promote normal faulting events in the outer rise and to promote thrust-faulting events on the periphery of the seismic rupture and its downdip extension. These features are evident in aftershocks of the 1957 Mw = 9.1 Aleutian and other large subduction earthquakes. We further examine stress changes on the rupture surface imparted by the 1960 Mw = 9.5 and 1995 Mw = 8.1 Chile earthquakes, for which detailed slip models are available. Calculated Coulomb stress increases of 2-20 bars correspond closely to sites of aftershocks and postseismic slip, whereas aftershocks are absent where the stress drops by more than 10 bars. We also argue that slip on major strike-slip systems modulates the stress acting on nearby thrust and strike-slip faults. We calculate that the 1857 Mw = 7.9 Fort Tejon earthquake on the San Andreas fault and subsequent interseismic slip brought the Coalinga fault ???1 bar closer to failure but inhibited failure elsewhere on the Coast Ranges thrust faults. The 1857 earthquake also promoted failure on the White Wolf reverse fault by 8 bars, which ruptured in the 1952 Mw = 7.3 Kern County shock but inhibited slip on the left-lateral Garlock fault, which has not ruptured since 1857. We thus contend that stress transfer exerts a control on the seismicity of thrust faults across a broad spectrum of spatial and temporal scales. Copyright 2004 by the American Geophysical Union.
A stochastic fault model. 2. Time-dependent case.
Andrews, D.J.
1981-01-01
A random model of fault motion in an earthquake is formulated by assuming that the slip velocity is a random function of position and time truncated at zero, so that it does not have negative values. This random function is chosen to be self-affine; that is, on change of length scale, the function is multiplied by a scale factor but is otherwise unchanged statistically. A snapshot of slip velocity at a given time resembles a cluster of islands with rough topography; the final slip function is a smoother island or cluster of islands. In the Fourier transform domain, shear traction on the fault equals the slip velocity times an impedance function. The fact that this impedance function has a pole at zero frequency implies that traction and slip velocity cannot have the same spectral dependence in space and time. To describe stress fluctuations of the order of 100 bars when smoothed over a length of kilometers and of the order of kilobars at the grain size, shear traction must have a one-dimensional power spectrum is space proportional to the reciprocal wave number. Then the one-dimensional power spectrum for the slip velocity is proportional to the reciprocal wave number squared and for slip to its cube. If slip velocity has the same power law spectrum in time as in space, then the spectrum of ground acceleration with be flat (white noise) both on the fault and in the far field.-Author
Rupture characteristics of the three M ∼ 4.7 (1992-1994) Parkfield earthquakes
Fletcher, Jon Peter B.; Spudich, Paul A.
1998-01-01
Slip on the San Andreas fault was determined for three M ∼ 4.7 earthquakes using a tomographic inverse system [Beroza and Spudich, 1988] to invert seismic source time functions (STFs) from S waves. STFs were obtained by deconvolving mainshock accelerograms by those from collocated smaller earthquakes. Accelerograms were from the U.S. Geological Survey Parkfield Small Aperture Array (UPSAR) and from a distributed array of digital accelerometer stations at Parkfield. Eight or nine STFs are used in each of the three inversions. STFs are typically symmetrical pulses with a duration of about 0.3–0.5 s. In the inversion, mainshock rise time was set to 0.05 s, and we allowed the rupture time to vary slightly from a constant rupture velocity of approximately 0.85β. Rupture for all three events, which are located in or close to the Middle Mountain preparation zone or box (MMB), quickly reaches a local maximum in slip and then propagates outward to peaks, ridges, or plateaus in the slip distribution. Slip for the October 20, 1992, event (located just inside the southern edge of the MMB) propagates from an initial spike north and updip along a curving ridge for about 2 km. The initial spike continued to grow in the November 14, 1993, event (located north of the October 20, 1992, event just beneath the hypocenter of the 1966 Parkfield earthquake), which shows little directivity, although there is a smaller patch of slip updip and to the south. In contrast, rupture for the December 20, 1994, event (located just south of the October 20, 1992, event) propagated north and slightly updip, creating a rough plateau in slip a few kilometers wide on a side. Directivity for this event also is to the north. Directivity for all three events points in the approximate direction of the 1966 hypocenter. Small pulses, which comprise a coda, are found on the STFs for several seconds after the initial impulsive event. Several tests based on the assumption that the average of all STFs from UPSAR for each event is an estimate of the true slip at the source suggest that the codas in the STFs are S waves from a long-duration source rather than uncorrected site response. An initiation phase is found on the array average for the November 14, 1993, and December 20, 1994, events. These precursory phases are the result of a spike in slip at the hypocenter. A value of 2.4–4 mm is obtained for Dc, the slip-weakening distance, by interpreting the initial spike as a critical patch. The few aftershocks for the October 20, 1992, event are distributed to the north and updip of the mainshock, but the November 14, 1993, event had a strong burst of aftershock activity that propagated to the north of its hypocenter at roughly the same depth. Aftershocks of the December 20, 1994, event are mostly updip. The November 14, 1993, event had the simplest slip distribution, appeared to be the most impulsive, and had the most active aftershock sequence and the greatest depth. If the eventual Parkfield earthquake initiates near the 1966 hypocenter, then the directivity of the three events studied here will have pointed to it. However, it is certainly possible that both the initiation of characteristic Parkfield shocks and the directivity of smaller events are controlled by fault properties on a larger scale such as by fault bends or jogs.
Liu, Yue; Li, Nan; Mariyappan, Arul Kumar; ...
2017-06-07
Basal slip and {01more » $$\\bar{1}$$2} twinning are two major plastic deformation mechanisms in hexagonal closed-packed magnesium. Here in this paper, we quantify the critical stresses associated with basal slip and twinning in single-crystal and bi-crystal magnesium samples by performing in situ compression of micropillars with different diameters in a scanning electron microscope. The micropillars are designed to favor either slip or twinning under uniaxial compression. Compression tests imply a negligible size effect related to basal slip and twinning as pillar diameter is greater than 10 μm. The critical resolved shear stresses are deduced to be 29 MPa for twinning and 6 MPa for basal slip from a series of micropillar compression tests. Employing full-field elasto-visco-plastic simulations, we further interpret the experimental observations in terms of the local stress distribution associated with multiple twinning, twin nucleation, and twin growth. Our simulation results suggest that the twinning features being studied should not be close to the top surface of the micropillar because of local stress perturbations induced by the hard indenter.« less
LCP method for a planar passive dynamic walker based on an event-driven scheme
NASA Astrophysics Data System (ADS)
Zheng, Xu-Dong; Wang, Qi
2018-06-01
The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange's equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb's law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.
LCP method for a planar passive dynamic walker based on an event-driven scheme
NASA Astrophysics Data System (ADS)
Zheng, Xu-Dong; Wang, Qi
2018-02-01
The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange's equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb's law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.
On the Boundary Condition for Water at a Hydrophobic, Dense Surface
NASA Technical Reports Server (NTRS)
Walther, J. H.; Jaffe, R. L.; Werder, T.; Halicioglu, T.; Koumoutsakos, P.
2002-01-01
We study the no-slip boundary conditions for water at a hydrophobic (graphite) surface using non-equilibrium molecular-dynamics simulations. For the planar Couette flow, we find a slip length of 64 nm at 1 bar and 300 K, decreasing with increasing system pressure to a value of 31 nm at 1000 bar. Changing the properties of the interface to from hydrophobic to strongly hydrophilic reduces the slip to 14 nm. Finally, we study the flow of water past an array of carbon nanotubes mounted in an inline configuration with a spacing of 16.4 x 16.4 nm. For tube diameters of 1.25 and 2.50 nm we find drag coefficients in good agreement with the macroscopic, Navier-Stokes values. For carbon nanotubes, the no-slip condition is valid to within the definition of the position of the interface.
Simulating stick-slip failure in a sheared granular layer using a physics-based constitutive model
Lieou, Charles K. C.; Daub, Eric G.; Guyer, Robert A.; ...
2017-01-14
In this paper, we model laboratory earthquakes in a biaxial shear apparatus using the Shear-Transformation-Zone (STZ) theory of dense granular flow. The theory is based on the observation that slip events in a granular layer are attributed to grain rearrangement at soft spots called STZs, which can be characterized according to principles of statistical physics. We model lab data on granular shear using STZ theory and document direct connections between the STZ approach and rate-and-state friction. We discuss the stability transition from stable shear to stick-slip failure and show that stick slip is predicted by STZ when the applied shearmore » load exceeds a threshold value that is modulated by elastic stiffness and frictional rheology. Finally, we also show that STZ theory mimics fault zone dilation during the stick phase, consistent with lab observations.« less
Imbricated slip rate processes during slow slip transients imaged by low-frequency earthquakes
NASA Astrophysics Data System (ADS)
Lengliné, O.; Frank, W.; Marsan, D.; Ampuero, J. P.
2017-12-01
Low Frequency Earthquakes (LFEs) often occur in conjunction with transient strain episodes, or Slow Slip Events (SSEs), in subduction zones. Their focal mechanism and location consistent with shear failure on the plate interface argue for a model where LFEs are discrete dynamic ruptures in an otherwise slowly slipping interface. SSEs are mostly observed by surface geodetic instruments with limited resolution and it is likely that only the largest ones are detected. The time synchronization of LFEs and SSEs suggests that we could use the recorded LFEs to constrain the evolution of SSEs, and notably of the geodetically-undetected small ones. However, inferring slow slip rate from the temporal evolution of LFE activity is complicated by the strong temporal clustering of LFEs. Here we apply dedicated statistical tools to retrieve the temporal evolution of SSE slip rates from the time history of LFE occurrences in two subduction zones, Mexico and Cascadia, and in the deep portion of the San Andreas fault at Parkfield. We find temporal characteristics of LFEs that are similar across these three different regions. The longer term episodic slip transients present in these datasets show a slip rate decay with time after the passage of the SSE front possibly as t-1/4. They are composed of multiple short term transients with steeper slip rate decay as t-α with α between 1.4 and 2. We also find that the maximum slip rate of SSEs has a continuous distribution. Our results indicate that creeping faults host intermittent deformation at various scales resulting from the imbricated occurrence of numerous slow slip events of various amplitudes.
Imbricated slip rate processes during slow slip transients imaged by low-frequency earthquakes
NASA Astrophysics Data System (ADS)
Lengliné, O.; Frank, W. B.; Marsan, D.; Ampuero, J.-P.
2017-10-01
Low Frequency Earthquakes (LFEs) often occur in conjunction with transient strain episodes, or Slow Slip Events (SSEs), in subduction zones. Their focal mechanism and location consistent with shear failure on the plate interface argue for a model where LFEs are discrete dynamic ruptures in an otherwise slowly slipping interface. SSEs are mostly observed by surface geodetic instruments with limited resolution and it is likely that only the largest ones are detected. The time synchronization of LFEs and SSEs suggests that we could use the recorded LFEs to constrain the evolution of SSEs, and notably of the geodetically-undetected small ones. However, inferring slow slip rate from the temporal evolution of LFE activity is complicated by the strong temporal clustering of LFEs. Here we apply dedicated statistical tools to retrieve the temporal evolution of SSE slip rates from the time history of LFE occurrences in two subduction zones, Mexico and Cascadia, and in the deep portion of the San Andreas fault at Parkfield. We find temporal characteristics of LFEs that are similar across these three different regions. The longer term episodic slip transients present in these datasets show a slip rate decay with time after the passage of the SSE front possibly as t - 1 / 4. They are composed of multiple short term transients with steeper slip rate decay as t-α with α between 1.4 and 2. We also find that the maximum slip rate of SSEs has a continuous distribution. Our results indicate that creeping faults host intermittent deformation at various scales resulting from the imbricated occurrence of numerous slow slip events of various amplitudes.
Earthquakes triggered by silent slip events on Kīlauea volcano, Hawaii
Segall, Paul; Desmarais, Emily K.; Shelly, David; Miklius, Asta; Cervelli, Peter F.
2006-01-01
Slow-slip events, or ‘silent earthquakes’, have recently been discovered in a number of subduction zones including the Nankai trough1, 2, 3 in Japan, Cascadia4, 5, and Guerrero6 in Mexico, but the depths of these events have been difficult to determine from surface deformation measurements. Although it is assumed that these silent earthquakes are located along the plate megathrust, this has not been proved. Slow slip in some subduction zones is associated with non-volcanic tremor7, 8, but tremor is difficult to locate and may be distributed over a broad depth range9. Except for some events on the San Andreas fault10, slow-slip events have not yet been associated with high-frequency earthquakes, which are easily located. Here we report on swarms of high-frequency earthquakes that accompany otherwise silent slips on Kīlauea volcano, Hawaii. For the most energetic event, in January 2005, the slow slip began before the increase in seismicity. The temporal evolution of earthquakes is well explained by increased stressing caused by slow slip, implying that the earthquakes are triggered. The earthquakes, located at depths of 7–8 km, constrain the slow slip to be at comparable depths, because they must fall in zones of positive Coulomb stress change. Triggered earthquakes accompanying slow-slip events elsewhere might go undetected if background seismicity rates are low. Detection of such events would help constrain the depth of slow slip, and could lead to a method for quantifying the increased hazard during slow-slip events, because triggered events have the potential to grow into destructive earthquakes.
Smith, E.F.; Gomberg, J.
2009-01-01
We test the hypothesis that, as in subduction zones, slow slip facilitates triggered and ambient tremor in the transform boundary setting of California. Our study builds on the study of Peng et al. (2009) of triggered and ambient tremor near Parkfield, California during time intervals surrounding 31, potentially triggering, M ≥ 7.5 teleseismic earthquakes; waves from 10 of these triggered tremor and 29 occurred in periods of ambient tremor activity. We look for transient slow slip during 3-month windows that include 11 of these triggering and nontriggering teleseisms, using continuous strain data recorded on two borehole Gladwin tensor strainmeters (GTSM) located within the distribution of tremor epicenters. We model the GTSM data assuming only tidal and “drift” signals are present and find no detectable slow slip, either ongoing when the teleseismic waves passed or triggered by them. We infer a conservative detection threshold of about 5 nanostrain for abrupt changes and about twice this for slowly evolving signals. This could be lowered slightly by adding analyses of other data types, modeled slow slip signals, and GTSM data calibration. Detection of slow slip also depends on the slipping fault's location and size, which we describe in terms of equivalent earthquake moment magnitude, M. In the best case of the GTSM above a very shallow slipping fault, detectable slip events must exceed M~2, and if the slow slip is beneath the seismogenic zone (below ~15 km depth), even M~5 events are likely to remain hidden.
NASA Astrophysics Data System (ADS)
Anjum, A.; Mir, N. A.; Farooq, M.; Khan, M. Ijaz; Hayat, T.
2018-06-01
This article addresses thermally stratified stagnation point flow of viscous fluid induced by a non-linear variable thicked Riga plate. Velocity and thermal slip effects are incorporated to disclose the flow analysis. Solar thermal radiation phenomenon is implemented to address the characteristics of heat transfer. Variations of different physical parameters on the horizontal velocity and temperature distributions are described through graphs. Graphical interpretations of skin friction coefficient (drag force at the surface) and Nusselt number (rate of heat transfer) are also addressed. Modified Hartman number and thermal stratification parameter result in reduction of temperature distribution.
NASA Astrophysics Data System (ADS)
Cesca, S.; Zhang, Y.; Mouslopoulou, V.; Wang, R.; Saul, J.; Savage, M.; Heimann, S.; Kufner, S.-K.; Oncken, O.; Dahm, T.
2017-11-01
The M7.8 Kaikoura Earthquake that struck the northeastern South Island, New Zealand, on November 14, 2016 (local time), is one of the largest ever instrumentally recorded earthquakes in New Zealand. It occurred at the southern termination of the Hikurangi subduction margin, where the subducting Pacific Plate transitions into the dextral Alpine transform fault. The earthquake produced significant distributed uplift along the north-eastern part of the South Island, reaching a peak amplitude of ∼8 m, which was accompanied by large (≥10 m) horizontal coseismic displacements at the ground surface along discrete active faults. The seismic waveforms' expression of the main shock indicate a complex rupture process. Early automated centroid moment tensor solutions indicated a strong non-double-couple term, which supports a complex rupture involving multiple faults. The hypocentral distribution of aftershocks, which appears diffuse over a broad region, clusters spatially along lineaments with different orientations. A key question of global interest is to shed light on the mechanism with which such a complex rupture occurred, and whether the underlying plate-interface was involved in the rupture. The consequences for seismic hazard of such a distributed, shallow faulting is important to be assessed. We perform a broad seismological analysis, combining regional and teleseismic seismograms, GPS and InSAR, to determine the rupture process of the main shock and moment tensors of 118 aftershocks down to Mw 4.2. The joint interpretation of the main rupture and aftershock sequence allow reconstruction of the geometry, and suggests sequential activation and slip distribution on at least three major active fault domains. We find that the rupture nucleated as a weak strike-slip event along the Humps Fault, which progressively propagated northward onto a shallow reverse fault, where most of the seismic moment was released, before it triggered slip on a second set of strike-slip faults at the northern end of the rupture. The northern and southern strike-slip fault domains have the same orientation but are spatially separated by >15 km. In our model, the low angle splay thrust fault is located above the slab and connects the strike-slip faults kinematically. During the aftershock phase, the entire fault system remained active.
Mechanics of distributed fault and block rotation
NASA Technical Reports Server (NTRS)
Nur, A.; Scotti, O.; Ron, H.
1989-01-01
Paleomagnetic data, structural geology, and rock mechanics are used to explore the validity and significance of the block rotation concept. The analysis is based on data from Northern Israel, where fault slip and spacing are used to predict block rotation; the Mojave Desert, with well documented strike-slip sets; the Lake Mead, Nevada fault system with well-defined sets of strike-slip faults; and the San Gabriel Mountains domain with a multiple set of strike-slip faults. The results of the analysis indicate that block rotations can have a profound influence on the interpretation of geodetic measurments and the inversion of geodetic data. Furthermore, the block rotations and domain boundaries may be involved in creating the heterogeneities along active fault systems which may be responsible for the initiation and termination of earthquake rupture.
Various Slip Behaviors in the Frictionally Heterogeneous Fault Model
NASA Astrophysics Data System (ADS)
Yabe, S.; Ide, S.
2017-12-01
Diverse slip behaviors have been observed on the fault, including regular earthquakes followed by afterslip, and slow earthquakes. In Southwest Japan and Cascadia, hypocenters of slow earthquakes seem to be separated from the locked region of megathrust earthquakes (e.g., Liu et al., 2010). In contrary, M7 earthquakes and their afterslips and repeating occurrences of slow slip events were reported in the coseismic slip area of 2011 M9 earthquake in Tohoku region (Ohta et al., 2012; Ito et al., 2013). Understanding the physical mechanism of diverse slip behavior is important to understand the strain accumulation and release cycle in a whole subduction zone. Among various candidates to explain the slip diversity, including dynamic weakening (e.g., Noda and Lapusta, 2013), fluid-slip interactions (e.g., Segall, 2010), and along-dip variation of frictional property (e.g., Tse and Rice, 1986), we consider in this study frictional heterogeneity on the fault (e.g., Ando et al., 2010, 2012; Nakata et al., 2011; Skarbek et al., 2012; Dublanchet et al., 2013; Yabe and Ide, 2017). We have considered the finite linear fault governed by rate and state friction law on which velocity-weakening zone and velocity-strengthening zone are alternately distributed. The fault outside the model space slips stably, which loads stress to the model space. Such frictionally heterogeneous fault shows diverse slip behavior which cannot be observed in the frictionally homogeneous fault. In some parameter space, the entire faults including velocity-strengthening zones slips seismically (Skarbek et al., 2012; Dublanchet et al., 2013; Yabe and Ide, 2017). We have sometimes observed foreshocks and aftershocks within the mainshock slip area. We have also sometimes observed repeating slow slip events during the inter-seismic period around the rupture initiation point of the mainshock. We will report parameter studies to clarify the relation between diverse slip behavior and frictional heterogeneity.
NASA Astrophysics Data System (ADS)
Aretusini, S.; Mittempergher, S.; Spagnuolo, E.; Di Toro, G.; Gualtieri, A.; Plümper, O.
2015-12-01
Slipping zones in shallow sections of megathrusts and large landslides are often made of smectite and quartz gouge mixtures. Experiments aimed at investigating the frictional processes operating at high slip rates (>1 m/s) may unravel the mechanics of these natural phenomena. Here we present a new dataset obtained with two rotary shear apparatus (ROSA, Padua University; SHIVA, INGV-Rome). Experiments were performed at room humidity and temperature on four mixtures of smectite (Ca-Montmorillonite) and quartz with 68, 50, 25, 0 wt% of smectite. The gouges were slid for 3 m at normal stress of 5 MPa and slip rate V from 300 µm/s to 1.5 m/s. Temperature during the experiments was monitored with four thermocouples and modeled with COMSOL Multiphysics. In smectite-rich mixtures, the friction coefficient µ evolved with slip according to three slip rate regimes: in regime 1 (V<0.1 m/s) initial slip-weakening was followed by slip-strengthening; in regime 2 (0.1
Spatio-temporal Evolution of On-going Tokai Slow Thrust Slip Event, Central Japan
NASA Astrophysics Data System (ADS)
Miyazaki, S.; Segall, P.; Kato, T.; McGuire, J.; Hatanaka, Y.
2003-12-01
We investigate an on-going slow thrust slip event that occurred at a subduction zone along the Nankai Trough off central Japan. The area we investimate, referred as the Tokai seismic gap, is located to the east of the 1944 Tonankai earthquake, which did not slip in the 1944 event. Continuous GPS data from April 1996 to the end of 1999 shows that the stations in this region have secular velocities of ˜ 2 cm/yr to the northwest relative to the landward plate. The GPS time series show an abrupt increase in rate in late June, 2000. The accelerated rate is currently on-going. We model this non-secular deformation, which we refer to the 2000 Tokai slow slip event, by transient slip at the plate interface and estimate their distribution with Kalman Filter based inversion methods. This event initiated around (137.3oE, 34.9oN) almost at the same time of the onset of volcanic activity on Miyake-jima in late June, 2000. This suggests that the 2000 Tokai slow slip event is triggered by the volcanic activity on Miyake-jima. Then the locus of the slip propagated to (137.5oE, 34.75oN) in second half of 2000, and kept slipping at the maximum rate of ˜ 15cm/yr through 2001. The peak slip-rate propagated to around (137.75oE, 34.9oN) in early 2002. The depth of slip zone is ˜ 25km, which may correspond to the lower edge of the seismogenic zone for the anticipated Tokai earthquake defined from seismicity. The cumulative moment magnitude of the slow slip event to date is MW ˜ 6.8. The duration of this event is longer than previously studied slow slip events using GPS data, including the 1996 Bungo slow slip event (about 1 year) and the 1996 and the 2000 Boso slow events (a few weeks).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... (Mar. 16, 1998) (Final Results). Following the publication of the final results, Heveafil Sdn. Bhd.\\2\\ and Filmax Sdn. Bhd. (collectively, ``Heveafil'') filed a lawsuit with the United States Court of...\\ \\2\\ Heveafil Sdn. Bhd. is also known as Heveafil Sdn. \\3\\ See Heveafil et al. v. United States, Slip...
NASA Technical Reports Server (NTRS)
Lerch, B. A.
1982-01-01
Longitudinal specimens of Waspaloy containing either coarse grains with small gamma or fine grains with large gamma were tested in air at a frequency of 0.33 Hz or 0.50 Hz. The coarse grained structures exhibited planar slip on (III) planes and precipitate shearing at all temperatures. Cracks initiated by a Stage 1 mechanism and propagated by a striation forming mechanism. At 700 C and 800 C, cleavage and intergranular cracking were observed. Testing at 500 C, 700 C, and 800 C caused precipitation of grain boundary carbides. At 700 C, carbides precipitated on slip bands. The fine grained structures exhibited planar slip on (111) planes. Dislocations looped the large gamma precipitates. This structure led to stress saturation and propagation was observed. Increasing temperatures resulted in increased specimen oxidation for both heat treatments. Slip band and grain boundary oxidation were observed. At 800 C, oxidized grain boundaries were cracked by intersecting slip bands which resulted in intergranular failure. The fine specimens had crack initiation later in the fatigue life, but with more rapid propagation crack propagation.
Lateral traction of laminar flow between sliding pair with heterogeneous slip/no-slip surface
NASA Astrophysics Data System (ADS)
Wu, Zhenpeng; Zeng, Liangcai; Chen, Xiaolan; Chen, Keying; Ding, Xianzhong
2017-11-01
The problem of shaft axial motion which significantly affects the lubrication performance has been a common phenomenon in journal bearing systems. The existing work involved in the solution of shaft axial motion is also very rare. In this study, we choose to examine the flow between sliding pair in which regard we present a unique heterogeneous surface consisting of a slip zone and a no-slip zone. The results reveal the following points: 1) By appropriately arranging the slip zone to change the angle between the borderline and the moving direction of the upper plate, it is possible to control the direction of the lateral traction in which the liquid film acts on the upper plate. 2) Exponent of the power function of the borderline and aspect ratio of the computational domain are large or small are not conducive to increasing the effect of lateral traction. For the object of this study, the final results of the optimization are shown that the lateral traction can account for 20% of the resistance.
The Earth isn't flat: The (large) influence of topography on geodetic fault slip imaging.
NASA Astrophysics Data System (ADS)
Thompson, T. B.; Meade, B. J.
2017-12-01
While earthquakes both occur near and generate steep topography, most geodetic slip inversions assume that the Earth's surface is flat. We have developed a new boundary element tool, Tectosaur, with the capability to study fault and earthquake problems including complex fault system geometries, topography, material property contrasts, and millions of elements. Using Tectosaur, we study the model error induced by neglecting topography in both idealized synthetic fault models and for the cases of the MW=7.3 Landers and MW=8.0 Wenchuan earthquakes. Near the steepest topography, we find the use of flat Earth dislocation models may induce errors of more than 100% in the inferred slip magnitude and rake. In particular, neglecting topographic effects leads to an inferred shallow slip deficit. Thus, we propose that the shallow slip deficit observed in several earthquakes may be an artefact resulting from the systematic use of elastic dislocation models assuming a flat Earth. Finally, using this study as an example, we emphasize the dangerous potential for forward model errors to be amplified by an order of magnitude in inverse problems.
Rupture dynamics with energy loss outside the slip zone
Andrews, D.J.
2005-01-01
Energy loss in a fault damage zone, outside the slip zone, contributes to the fracture energy that determines rupture velocity of an earthquake. A nonelastic two-dimensional dynamic calculation is done in which the slip zone is modeled as a fault plane and material off the fault is subject to a Coulomb yield condition. In a mode 2 crack-like solution in which an abrupt uniform drop of shear traction on the fault spreads from a point, Coulomb yielding occurs on the extensional side of the fault. Plastic strain is distributed with uniform magnitude along the fault, and it has a thickness normal to the fault proportional to propagation distance. Energy loss off the fault is also proportional to propagation distance, and it can become much larger than energy loss on the fault specified by the fault constitutive relation. The slip velocity function could be produced in an equivalent elastic problem by a slip-weakening friction law with breakdown slip Dc increasing with distance. Fracture energy G and equivalent Dc will be different in ruptures with different initiation points and stress drops, so they are not constitutive properties; they are determined by the dynamic solution that arrives at a particular point. Peak slip velocity is, however, a property of a fault location. Nonelastic response can be mimicked by imposing a limit on slip velocity on a fault in an elastic medium.
Development of a dynamic coupled hydro-geomechanical code and its application to induced seismicity
NASA Astrophysics Data System (ADS)
Miah, Md Mamun
This research describes the importance of a hydro-geomechanical coupling in the geologic sub-surface environment from fluid injection at geothermal plants, large-scale geological CO2 sequestration for climate mitigation, enhanced oil recovery, and hydraulic fracturing during wells construction in the oil and gas industries. A sequential computational code is developed to capture the multiphysics interaction behavior by linking a flow simulation code TOUGH2 and a geomechanics modeling code PyLith. Numerical formulation of each code is discussed to demonstrate their modeling capabilities. The computational framework involves sequential coupling, and solution of two sub-problems- fluid flow through fractured and porous media and reservoir geomechanics. For each time step of flow calculation, pressure field is passed to the geomechanics code to compute effective stress field and fault slips. A simplified permeability model is implemented in the code that accounts for the permeability of porous and saturated rocks subject to confining stresses. The accuracy of the TOUGH-PyLith coupled simulator is tested by simulating Terzaghi's 1D consolidation problem. The modeling capability of coupled poroelasticity is validated by benchmarking it against Mandel's problem. The code is used to simulate both quasi-static and dynamic earthquake nucleation and slip distribution on a fault from the combined effect of far field tectonic loading and fluid injection by using an appropriate fault constitutive friction model. Results from the quasi-static induced earthquake simulations show a delayed response in earthquake nucleation. This is attributed to the increased total stress in the domain and not accounting for pressure on the fault. However, this issue is resolved in the final chapter in simulating a single event earthquake dynamic rupture. Simulation results show that fluid pressure has a positive effect on slip nucleation and subsequent crack propagation. This is confirmed by running a sensitivity analysis that shows an increase in injection well distance results in delayed slip nucleation and rupture propagation on the fault.
Cenozoic tectonic events at the border of the Paraná Basin, São Paulo, Brazil
NASA Astrophysics Data System (ADS)
Fernandes, A. J.; Amaral, G.
2002-03-01
In the last decade, even in areas that had been considered tectonically stable, a great amount of Cenozoic, including the Quaternary period, structural data have been collected throughout Brazil. The main goal of this study is to describe the Cenozoic structures and tectonic evolution of an area that is located at the border of the Paraná Basin in the state of São Paulo. The research methods consisted of the analysis of: (1) brittle structure data, mainly conjugate fractures and fault slip data; (2) lineaments traced on air photos and TM Landsat and radar images; and (3) a second-order base surface map. The study area, during the Cenozoic, has been affected by five strike-slip tectonic events, which generated mainly strike-slip faults, and secondarily normal and reverse ones. The events were named, from the oldest to the youngest, E1-NE, E2-EW, E3-NW, E4-NS, and E5-NNE; and the maximum principal stresses σ1 strike approximately NE-SW, E-W, NW-SE, N-S, and NNE-SSW, respectively. Event E2-EW seems to have been contemporaneous with the deposition of the Rio Claro Formation, the most important Cenozoic deposit of probable Neogenic age, and also to have controlled the distribution of its deposits. Event E3-NW was the strongest one in the area, as is pointed out by structural data, and the maximum principal stress σ1 of event E5-NNE is partially concordant with the orientation of σH-max of well break-out data in the Paraná Basin, suggesting a Neotectonic activity for this event. Finally, discontinuities parallel and correlated to the directions of strike-slip faults of the Cenozoic events seem to have actively controlled the sculpturing of the relief in the study area.
Dual Megathrust Slip Behaviors of the 2014 Iquique Earthquake Sequence
NASA Astrophysics Data System (ADS)
Meng, L.; Huang, H.; Burgmann, R.; Ampuero, J. P.; Strader, A. E.
2014-12-01
The transition between seismic rupture and aseismic creep is of central interest to better understand the mechanics of subduction processes. A M 8.2 earthquake occurred on April 1st, 2014 in the Iquique seismic gap of Northern Chile. This event was preceded by a 2-week-long foreshock sequence including a M 6.7 earthquake. Repeating earthquakes are found among the foreshock sequence that migrated towards the mainshock area, suggesting a large scale slow-slip event on the megathrust preceding the mainshock. The variations of the recurrence time of repeating earthquakes highlights the diverse seismic and aseismic slip behaviors on different megathrust segments. The repeaters that were active only before the mainshock recurred more often and were distributed in areas of substantial coseismic slip, while other repeaters occurred both before and after the mainshock in the area complementary to the mainshock rupture. The spatial and temporal distribution of the repeating earthquakes illustrate the essential role of propagating aseismic slip in leading up to the mainshock and aftershock activities. Various finite fault models indicate that the coseismic slip generally occurred down-dip from the foreshock activity and the mainshock hypocenter. Source imaging by teleseismic back-projection indicates an initial down-dip propagation stage followed by a rupture-expansion stage. In the first stage, the finite fault models show slow initiation with low amplitude moment rate at low frequency (< 0.1 Hz), while back-projection shows a steady initiation at high frequency (> 0.5 Hz). This indicates frequency-dependent manifestations of seismic radiation in the low-stress foreshock region. In the second stage, the high-frequency rupture remains within an area of low gravity anomaly, suggesting possible upper-crustal structures that promote high-frequency generation. Back-projection also shows an episode of reverse rupture propagation which suggests a delayed failure of asperities in the foreshock area. Our results highlight the complexity of the interactions between large-scale aseismic slow-slip and dynamic ruptures of megathrust earthquakes.
Distributing Earthquakes Among California's Faults: A Binary Integer Programming Approach
NASA Astrophysics Data System (ADS)
Geist, E. L.; Parsons, T.
2016-12-01
Statement of the problem is simple: given regional seismicity specified by a Gutenber-Richter (G-R) relation, how are earthquakes distributed to match observed fault-slip rates? The objective is to determine the magnitude-frequency relation on individual faults. The California statewide G-R b-value and a-value are estimated from historical seismicity, with the a-value accounting for off-fault seismicity. UCERF3 consensus slip rates are used, based on geologic and geodetic data and include estimates of coupling coefficients. The binary integer programming (BIP) problem is set up such that each earthquake from a synthetic catalog spanning millennia can occur at any location along any fault. The decision vector, therefore, consists of binary variables, with values equal to one indicating the location of each earthquake that results in an optimal match of slip rates, in an L1-norm sense. Rupture area and slip associated with each earthquake are determined from a magnitude-area scaling relation. Uncertainty bounds on the UCERF3 slip rates provide explicit minimum and maximum constraints to the BIP model, with the former more important to feasibility of the problem. There is a maximum magnitude limit associated with each fault, based on fault length, providing an implicit constraint. Solution of integer programming problems with a large number of variables (>105 in this study) has been possible only since the late 1990s. In addition to the classic branch-and-bound technique used for these problems, several other algorithms have been recently developed, including pre-solving, sifting, cutting planes, heuristics, and parallelization. An optimal solution is obtained using a state-of-the-art BIP solver for M≥6 earthquakes and California's faults with slip-rates > 1 mm/yr. Preliminary results indicate a surprising diversity of on-fault magnitude-frequency relations throughout the state.
NASA Astrophysics Data System (ADS)
Meade, Brendan J.; DeVries, Phoebe M. R.; Faller, Jeremy; Viegas, Fernanda; Wattenberg, Martin
2017-11-01
Aftershocks may be triggered by the stresses generated by preceding mainshocks. The temporal frequency and maximum size of aftershocks are well described by the empirical Omori and Bath laws, but spatial patterns are more difficult to forecast. Coulomb failure stress is perhaps the most common criterion invoked to explain spatial distributions of aftershocks. Here we consider the spatial relationship between patterns of aftershocks and a comprehensive list of 38 static elastic scalar metrics of stress (including stress tensor invariants, maximum shear stress, and Coulomb failure stress) from 213 coseismic slip distributions worldwide. The rates of true-positive and false-positive classification of regions with and without aftershocks are assessed with receiver operating characteristic analysis. We infer that the stress metrics that are most consistent with observed aftershock locations are maximum shear stress and the magnitude of the second and third invariants of the stress tensor. These metrics are significantly better than random assignment at a significance level of 0.005 in over 80% of the slip distributions. In contrast, the widely used Coulomb failure stress criterion is distinguishable from random assignment in only 51-64% of the slip distributions. These results suggest that a number of alternative scalar metrics are better predictors of aftershock locations than classic Coulomb failure stress change.
NASA Astrophysics Data System (ADS)
Harkins, Nathan W.
A mechanical description of the interplay between ongoing crustal deformation and topographic evolution within the Tibetan Plateau remains outstanding, and thus our ability to describe the mechanisms responsible for the creation of this and other continental plateaus is limited. In this work, we employ a multidisciplinary approach to investigate the Quaternary record of active tectonism and coeval topographic evolution in the northeastern Tibetan Plateau. Fluvial channel topographic data paired with geochronologically calibrated measures of erosion rate reveal a headward migrating wave of dramatically accelerated incision rates in the headwaters of the Yellow River, which drains a large portion of northeastern Tibet. This transient increase in incision is likely driven by downstream base-level changes along the plateau margin and is superimposed onto a broad region of higher erosion rates confined to the plateau itself, within the Anyemaqen Shan (mountains). The Kunlun fault, one of the major active strike-slip faults of Tibet, trends through the Anyemaqen Shan. Using a careful approach towards quantifying millennial slip-rates along this fault zone based on the age of offset landforms, we constrain the Pleistocene kinematics of the eastern portion of the Kunlun fault and link this deformation to tectonically-driven erosion in the Anyemaqen Shan. Consideration of the age and morphology of fluvial terraces offset by the fault both highlights uncertainties associated with slip-rate determinations and allow more confident quantification of the allowable range of slip-rates at sites that take advantage of these features. Several new slip-rate determinations from this study at select locations corroborate a small number of previous determinations to identify an eastward decreasing slip-rate gradient and termination of the Kunlun fault within the Anyemaqen Shan. Existing geodetic data reveals a similar pattern of eastward-decreasing distributed shear across the fault zone. The spatial coincidence of tectonically driven erosion in the Anyemaqen Shan with the slip-rate gradient and termination the Kunlun fault implies that the crust of the northeastern plateau has the ability to accumulate regionally distributed permanent strain. Therefore, traditional 'rigid-body' rotation type descriptions of Tibetan Plateau kinematics fail to describe deformation on the northeastern plateau.
Teran, Orlando; Fletcher, John L.; Oskin, Michael; Rockwell, Thomas; Hudnut, Kenneth W.; Spelz, Ronald; Akciz, Sinan; Hernandez-Flores, Ana Paula; Morelan, Alexander
2015-01-01
We systematically mapped (scales >1:500) the surface rupture of the 4 April 2010 Mw (moment magnitude) 7.2 El Mayor-Cucapah earthquake through the Sierra Cucapah (Baja California, northwestern Mexico) to understand how faults with similar structural and lithologic characteristics control rupture zone fabric, which is here defined by the thickness, distribution, and internal configuration of shearing in a rupture zone. Fault zone thickness and master fault dip are strongly correlated with many parameters of rupture zone fabric. Wider fault zones produce progressively wider rupture zones and both of these parameters increase systematically with decreasing dip of master faults, which varies from 20° to 90° in our dataset. Principal scarps that accommodate more than 90% of the total coseismic slip in a given transect are only observed in fault sections with narrow rupture zones (<25 m). As rupture zone thickness increases, the number of scarps in a given transect increases, and the scarp with the greatest relative amount of coseismic slip decreases. Rupture zones in previously undeformed alluvium become wider and have more complex arrangements of secondary fractures with oblique slip compared to those with pure normal dip-slip or pure strike-slip. Field relations and lidar (light detection and ranging) difference models show that as magnitude of coseismic slip increases from 0 to 60 cm, the links between kinematically distinct fracture sets increase systematically to the point of forming a throughgoing principal scarp. Our data indicate that secondary faults and penetrative off-fault strain continue to accommodate the oblique kinematics of coseismic slip after the formation of a thoroughgoing principal scarp. Among the widest rupture zones in the Sierra Cucapah are those developed above buried low angle faults due to the transfer of slip to widely distributed steeper faults, which are mechanically more favorably oriented. The results from this study show that the measureable parameters that define rupture zone fabric allow for testing hypotheses concerning the mechanics and propagation of earthquake ruptures, as well as for siting and designing facilities to be constructed in regions near active faults.
Seafloor Deformation and Localized Source Mechanisms of the 2011 M9 Tohoku Earthquake and Tsunami.
NASA Astrophysics Data System (ADS)
Masterlark, T.; Grilli, S. T.; Tappin, D. R.; Kirby, J. T.
2012-12-01
The 2011 M9 Tohoku Earthquake (TE) ruptured the interface separating the Pacific and Okhotsk Plates. This rupture was about hundred kilometers in the along-strike direction and 200 kilometers in the down-dip direction. The TE was primarily thrust having substantial slip along the up-dip portion of the rupture, near the Japan Trench. The regional-scale seafloor deformation from the TE triggered a tsunami with run-ups of a few tens of meters that caused extensive damage along the east coast of Tohoku, Japan. We construct finite element models (FEMs) to simulate the deformation caused by a distribution of coseismic slip along the curved rupture surface of the TE. The FEMs include a distribution of material properties that accounts for the subduction zone structure -a weak forearc, volcanic arc, and backarc basin of the overriding Okhotsk Plate overriding the relatively strong subducting slab that is capped by basaltic oceanic crust. The coseismic rupture is simulated as a distribution of elastic dislocations along the interface separating the forearc of the overriding plate and the oceanic crust of the subducting slab. The slip distribution is calibrated to both onshore and offshore geodetic data, using linear least-squares inverse methods with FEM-generated Greens Functions and second order regularization. The regularization is imposed with a conductance matrix, constructed using Galerkin's Method to account for the curvilinear relationships among the dislocating node pairs. The estimated slip distribution is generally characterized as a few tens of meters of slip over the entire rupture, with greater slip magnitudes (>50 meters) concentrated up-dip and near the Japan Trench. The offshore geodetic data provide critical constraints for the location of the polarity reversal of predicted seafloor vertical deformation. Wave models excited by the predicted regional-scale seafloor deformation generally well predict observed tsunami run-ups and the vertical displacement magnitudes of low frequency waves of coastal GPS buoys. However, coastal areas near Sanriku, Japan experienced anomalously high run-ups of 40 meters and local offshore GPS buoys indicate high frequency waveforms that are incompatible with the coseismic seafloor deformation of the TE. These observations require a localized deformation source near the Japan Trench and just to the north of the TE rupture zone, which models solely based on tsunami waveform inversion predict. Others suggest that a submarine mass failure at this location, presumably triggered by the TE, can excite such waveforms. In this study, we investigate an alternative hypothesis that localized splay faulting, also presumably triggered by the TE, can excite the anomalous waveforms. To do so, we will estimate plausible suites of splay fault and slip parameters that can account for the anomalously high magnitude and high frequency tsunami waves sourced from a localized area near the Japan Trench and north of the TE rupture.
NASA Astrophysics Data System (ADS)
Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří
2018-06-01
The effect of slurry velocity and mean concentration of heterogeneous particle-water mixture on flow behaviour and structure in the turbulent regime was studied in horizontal and inclined pipe sections of inner diameter D = 100 mm. The stratified flow pattern of heterogeneous particle-water mixture in the inclined pipe sections was revealed. The particles moved mostly near to the pipe invert. Concentration distribution in ascending and descending vertical pipe sections confirmed the effect of fall velocity on particle-carrier liquid slip velocity and increase of in situ concentration in the ascending pipe section. Slip velocity in two-phase flow, which is defined as the velocity difference between the solid and liquid phase, is one of mechanism of particle movement in two-phase flow. Due to the slip velocity, there is difference between transport and in situ concentrations, and the slip velocity can be determined from comparison of the in situ and transport concentration. For heterogeneous particle-water mixture flow the slip velocity depends on the flow structure.
NASA Astrophysics Data System (ADS)
Parameswaran, Revathy M.; Rajendran, Kusala
2017-04-01
The Great Himalayan earthquakes are believed to originate on the Main Himalayan Thrust, and their ruptures lead to deformation along the Main Frontal Thrust (MFT). The rupture of the April 25, 2015 (Mw 7.8), earthquake was east-directed, with no part relayed to the MFT. The aftershock distribution, coseismic elevation change of 1 m inferred from the InSAR image, and the spatial correspondence of the subtle surface deformations with PT2, a previously mapped out-of-sequence thrust, lead us to explore the role of structural heterogeneities in constraining the rupture progression. We used teleseismic moment inversion of P- and SH-waves, and Coulomb static stress changes to map the slip distribution, and growth of aftershock area, to understand their relation to the thrust systems. Most of the aftershocks were sourced outside the stress shadows (slip >1.65 m) of the April 25 earthquake. The May 12 (Mw 7.3) earthquake that sourced on a contiguous patch coincides with regions of increased stress change and therefore is the first known post-instrumentation example of a late, distant, and large triggered aftershock associated with any large earthquake in the Nepal Himalaya. The present study relates the slip, aftershock productivity, and triggering of unbroken stress barriers, to potential out-of-sequence thrusts, and suggests the role of stress transfer in generating large/great earthquakes.
Liu, Xuan; Bhatt, Tanvi; Pai, Yi-Chung (Clive)
2015-01-01
Very little is known how training intensity interacts with the generalization from treadmill-slip to overground slip. The purposes of this study were to determine whether treadmill-slip training improved center-of-mass stability, more so in the reactive than in the proactive control of stability, with high intensity (HI with a trial-to-trial-consistent acceleration of 12 m/s2) better than low intensity training (LO with a consistent acceleration of 6 m/s2), and progressively-increasing intensity (INCR with a block-to-block acceleration varied from 6 to 12 m/s2) better than progressively-decreasing intensity training (DECR with an acceleration varied from 12 to 6 m/s2) in such generalization. Thirty-six young subjects evenly assigned to one of four (HI, LO, INCR, DECR) groups underwent 24 treadmill-slips before their generalization test trial with a novel slip during overground walking. The controls (CTRL, n=9) from existing data only experienced the same novel overground slip without treadmill training but under otherwise identical condition. The results showed that treadmill-slip training did improved balance control on overground slip with a greater impact on subjects’ reactive (44.3%) than proactive control of stability (27.1%) in comparison to the CTRL. HI yielded stronger generalization than LO, while INCR was only marginally better than DECR. Finally, the group means of these four displayed a clear ascending order from CTRL, LO, DECR, INCR, to HI. The results suggested that higher training intensity on treadmill led to a better generalization, while a progressively-increase in intensity had advantage over the progressively-decrease or the low training strategy. (243 words) PMID:26159058
NASA Astrophysics Data System (ADS)
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-09-01
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-09-19
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.
Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu
2016-01-01
Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors. PMID:27641908
Chang, Wen-Ruey; Matz, Simon; Chang, Chien-Chi
2014-05-01
The maximum coefficient of friction that can be supported at the shoe and floor interface without a slip is usually called the available coefficient of friction (ACOF) for human locomotion. The probability of a slip could be estimated using a statistical model by comparing the ACOF with the required coefficient of friction (RCOF), assuming that both coefficients have stochastic distributions. An investigation of the stochastic distributions of the ACOF of five different floor surfaces under dry, water and glycerol conditions is presented in this paper. One hundred friction measurements were performed on each floor surface under each surface condition. The Kolmogorov-Smirnov goodness-of-fit test was used to determine if the distribution of the ACOF was a good fit with the normal, log-normal and Weibull distributions. The results indicated that the ACOF distributions had a slightly better match with the normal and log-normal distributions than with the Weibull in only three out of 15 cases with a statistical significance. The results are far more complex than what had heretofore been published and different scenarios could emerge. Since the ACOF is compared with the RCOF for the estimate of slip probability, the distribution of the ACOF in seven cases could be considered a constant for this purpose when the ACOF is much lower or higher than the RCOF. A few cases could be represented by a normal distribution for practical reasons based on their skewness and kurtosis values without a statistical significance. No representation could be found in three cases out of 15. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Armigliato, A.; Tinti, S.; Pagnoni, G.; Zaniboni, F.
2012-04-01
The central Mediterranean, and in particular the coasts of southern Italy, is one of the areas with the highest tsunami hazard in Europe. Limiting our attention to earthquake-generated tsunamis, the sources of historical events hitting this region, as well as the largest part of the potential tsunamigenic seismic sources mapped there, are found at very short distances from the closest shorelines, reducing the time needed for the tsunami to attack the coasts themselves to few minutes. This represents by itself an issue from the Tsunami Early Warning (TEW) perspective. To make the overall problem even more intriguing and challenging, it is known that large tsunamigenic earthquakes are generally characterized by highly heterogeneous distributions of the slip on the fault. This feature has been recognized clearly, for instance, in the giant Sumatra 2004, Chile 2010, and Japan 2011 earthquakes (magnitude 9.3, 8.8 and 9.0, respectively), but it was a property also of smaller magnitude events occurred in the region considered in this study, like the 28 December 1908 Messina Straits tsunamigenic earthquake (M=7.2). In terms of tsunami impact, the parent fault slip heterogeneity usually determines a high variability of run-up and inundation on the near-field coasts, which further complicates the TEW problem. The information on the details of the seismic source rupture coming from the seismic (and possibly geodetic) networks, though of primary importance, is typically available after a time that is comparable or larger than the time comprised between the generation and the impact of the tsunami. In the framework of the EU-FP7 TRIDEC Project, we investigate how a proper marine sensors coverage both along the coasts and offshore can help posing constraints on the characteristics of the source in near-real time. Our approach consists in discussing numerical tsunami scenarios in the central Mediterranean involving different slip distributions on the parent fault; the tsunamigenic region we take into consideration is the Hyblaean-Malta escarpment located offshore eastern Sicily, where several large historical tsunamigenic earthquakes took place (e.g. 11 January 1693). Starting from different slip configurations on a chosen fault, we compare the time series of wave elevation simulated for tide gauges placed along the coast and for virtual deep sea sensors placed at different distances from the source area. The final goal is to understand whether a properly designed marine sensor network can help determining in real-time the slip characteristics along the parent fault and hence forecasting the pattern of impact of the tsunami especially along the closest coasts.
NASA Astrophysics Data System (ADS)
Wang, S.; Xu, C.; Jiang, G.
2016-12-01
Evidences from geologic, geophysical and geomorphic prove that 2015 Mw 7.8 Gorkha(Nepal) earthquake happened on the two ramp-flats fault structure of Main Himalayan Thrust(MHT). We approximated this more realistic fault model by a smooth curved fault surface, which was derived by the method of hybrid iterative inversion algorithm(HIIA) with additional constraints from coseismic geodetic data. Then the coseismic slip distribution of 2015 Gorkha earthquake was imaged based on this curved variably triangular sized fault model. The inverted maximum thrust and right-lateral slip components are 6 and 1.5 m, respectively, with the maximum slip magnitude 6.2 m located at a depth of 15 km. The released seismic moment derived from our best slip model is 8.58×1020 Nm, equivalent to a moment magnitude of Mw 7.89. We find two interesting tongue-shape slip areas, the maximum slip is about 1.5 m, along the up-dip of fault plane, which tappers off at the depth of 7 km, the up-dip propagation of ruptures may be impeded by the complicated geometry structures on the MHT interface. Coulomb Failure Stress(CFS), triggered by our optimal slip model, indicating a potential shallower rupture in the future. Considering historical earthquakes distribution and the calculated strain and strain gradient before this earthquake, earthquakes are expected to occur in the northwest areas of the epicenter. The spatio-temporal afterslip model over the first 180 days following the Mw 7.8 main shock was infered from the post-seismic GPS time series. One significant afterslip region can be observed in the downdip of the regions that ruptured by coseismic slip. Another afterslip region arresting our attention, is located around 40 km depth, with about 180 mm slip amplitude, but tappers off at the depth of 50 km. What's more, afterslip mainly occurs within 100 days after the 2015 Gorkha earthquake. Under the assumption of rigidity modulus u = 30 GPa, the released seismic moment by afterslip corresponding to 8.0×1019 Nm, equivalent moment magnitude is Mw 7.23. Our coseismic and afterslip models are in line with previous studies, but with a more accurate geometric fault model.
Dislocation pileup as a representation of strain accumulation on a strike-slip fault
Savage, J.C.
2006-01-01
The conventional model of strain accumulation on a vertical transform fault is a discrete screw dislocation in an elastic half-space with the Burgers vector of the dislocation increasing at the rate of relative plate motion. It would be more realistic to replace that discrete dislocation by a dislocation distribution, presumably a pileup in which the individual dislocations are in equilibrium. The length of the pileup depends upon the applied stress and the amount of slip that has occurred at depth. I argue here that the dislocation pileup (the transition on the fault from no slip to slip at the full plate rate) occupies a substantial portion of the lithosphere thickness. A discrete dislocation at an adjustable depth can reproduce the surface deformation profile predicted by a pileup so closely that it will be difficult to distinguish between the two models. The locking depth (dislocation depth) of that discrete dislocation approximation is substantially (???30%) larger than that (depth to top of the pileup) in the pileup model. Thus, in inverting surface deformation data using the discrete dislocation model, the locking depth in the model should not be interpreted as the true locking depth. Although dislocation pileup models should provide a good explanation of the surface deformation near the fault trace, that explanation may not be adequate at greater distances from the fault trace because approximating the expected horizontally distributed deformation at subcrustal depths by uniform slip concentrated on the fault is not justified.
Time dependent deformation of Kilauea Volcano, Hawaii
NASA Astrophysics Data System (ADS)
Montgomery-Brown, Emily Kvietka Desmarais
In 1997 the continuous Global Positioning System (GPS) network was completed on Kilauea, providing the first network of daily position measurements during eruptions and earthquakes on Kilauea. Kilauea has been studied for many decades with continuous seismic and tilt instruments. Other geodetic data (e.g., campaign GPS, leveling, electronic distance measurements) are also available although they contain only sparse data. Data analysis methods used here include inverting multiple data sets for optimal source parameters and the spatio-temporal distribution of magma volume and fault slip, and combining GPS and seismic observations to understand flank tectonics. The field area for this study, Kilauea Volcano, was chosen because of its frequent activity and potential hazards. The 1997 East Rift Zone eruption (Episode 54) was the first major event to occur after the completion of the continuous GPS network. The event lasted 2 days, but transient deformation continued for six months. This long-duration transient allowed the first spatio-temporal study of transient dike deformation on Kilauea from daily GPS positions. Slow-slip events were discovered on Kilauea during which the southern flank of the volcano would accelerate seaward for approximately 2 days. The discovery was made possible because of the continuously operating GPS network. These slip events were also observed to correlate with small swarms of microearthquakes found to follow temporal pattern consistent with them being co- and aftershocks of the slow-slip event (Segall, 2006). Half-space models of geodetic data favor a shallow fault plane (˜ 5 km), which is much too shallow to have increased the Coulomb stress at the depths of the co- and aftershocks. However, optimizations for the slow-slip source parameters including a layered elastic structure and a topographic correction favor deeper models within the range of the co- and aftershocks. Additionally, the spatial distribution of seaward fault slip, fixed to a decollement structure 8 km under the south flank, and the locations of the microearthquakes suggest that both occur on the same structure. In 2007, Episode 56 of the Pu'u 'O'o-Kupianaha eruption occurred. This episode was exciting both because it was the largest intrusion in the last decade, and because it occurred concurrently with a flank slow-slip event. The intrusion started on Father's day (June 17th), 2007 with increased seismicity and abrupt tilts at the summit and rift zones. Quasi-static models of the total deformation determined from GPS, tilt, and InSAR indicate that the intrusion occurred on two en echelon dike segments in the upper East Rift Zone along with deformation consistent with slow-slip in the same areas of previous events. The ˜ 2 m maximum opening occurred on the eastern segment near Makaopui crater. Unlike previous intrusions in 1997, 1999, and 2000, the dike model was not sufficient to explain deformation on the western flank. Additionally, a coastal tiltmeter installed in anticipation of a slow-slip event recorded tilts consistent with those observed during the 2005 slow-slip event. These observations led to the conclusion that a concurrent slow-slip event occurred. Geodetic models indicate a similar amount of decollement slip occurred as in previous slow-slip events. Sub-daily GPS positions were used to study the spatio-temporal distribution of the dike intrusion. The time-dependent intrusion model shows that the intrusion began on the western en echelon segment before jumping to the eastern segment, which accumulated the majority of the 2 m of opening. Sub-daily GPS positions limit the number of stations available since there are very few continuous stations north of the East Rift Zone, where coverage is critical for separating the intrusion from the slow-slip. However, an ENVISAT interferogram at 08:22 on June 18, 2007 provides additional spatial coverage of deformation up to that point. Combining this image with the GPS and tilt data up to that point, we perform a quasi-static inversion for the intrusion source. The residual deformation indicates that slow-slip had not significantly progressed by the ENVISAT image. The slow-slip event occurred therefore at least 20 hours after the initiation of the dike intrusion. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
González-Carrasco, J. F.; Gonzalez, G.; Aránguiz, R.; Yanez, G. A.; Melgar, D.; Salazar, P.; Shrivastava, M. N.; Das, R.; Catalan, P. A.; Cienfuegos, R.
2017-12-01
Plausible worst-case tsunamigenic scenarios definition plays a relevant role in tsunami hazard assessment focused in emergency preparedness and evacuation planning for coastal communities. During the last decade, the occurrence of major and moderate tsunamigenic earthquakes along worldwide subduction zones has given clues about critical parameters involved in near-field tsunami inundation processes, i.e. slip spatial distribution, shelf resonance of edge waves and local geomorphology effects. To analyze the effects of these seismic and hydrodynamic variables over the epistemic uncertainty of coastal inundation, we implement a combined methodology using deterministic and probabilistic approaches to construct 420 tsunamigenic scenarios in a mature seismic gap of southern Peru and northern Chile, extended from 17ºS to 24ºS. The deterministic scenarios are calculated using a regional distribution of trench-parallel gravity anomaly (TPGA) and trench-parallel topography anomaly (TPTA), three-dimensional Slab 1.0 worldwide subduction zones geometry model and published interseismic coupling (ISC) distributions. As result, we find four higher slip deficit zones interpreted as major seismic asperities of the gap, used in a hierarchical tree scheme to generate ten tsunamigenic scenarios with seismic magnitudes fluctuates between Mw 8.4 to Mw 8.9. Additionally, we construct ten homogeneous slip scenarios as inundation baseline. For the probabilistic approach, we implement a Karhunen - Loève expansion to generate 400 stochastic tsunamigenic scenarios over the maximum extension of the gap, with the same magnitude range of the deterministic sources. All the scenarios are simulated through a non-hydrostatic tsunami model Neowave 2D, using a classical nesting scheme, for five coastal major cities in northern Chile (Arica, Iquique, Tocopilla, Mejillones and Antofagasta) obtaining high resolution data of inundation depth, runup, coastal currents and sea level elevation. The probabilistic kinematic tsunamigenic scenarios give a more realistic slip patterns, similar to maximum slip amount of major past earthquakes. For all studied sites, the peak of slip location and shelf resonance is a first order control for the observed coastal inundation depths results.
NASA Astrophysics Data System (ADS)
Morgan, J. K.
2014-12-01
Particle-based numerical simulations allow detailed investigations of small-scale processes and mechanisms associated with fault initiation and slip, which emerge naturally in such models. This study investigates the evolving mechanical conditions and associated micro-mechanisms during transient slip on a weak decollement propagating beneath a growing contractional wedge (e.g., accretionary prism, fold and thrust belt). The models serve as analogs of the seismic cycle, although lacking full earthquake dynamics. Nonetheless, the mechanical evolution of both decollement and upper plate can be monitored, and correlated with the particle-scale physical and contact properties, providing insights into changes that accompany such stick-slip behavior. In this study, particle assemblages consolidated under gravity and bonded to impart cohesion, are pushed at a constant velocity above a weak, unbonded decollement surface. Forward propagation of decollement slip occurs in discrete pulses, modulated by heterogeneous stress conditions (e.g., roughness, contact bridging) along the fault. Passage of decollement slip resets the stress along this horizon, producing distinct patterns: shear stress is enhanced in front of the slipped decollement due to local contact bridging and fault locking; shear stress minima occur immediately above the tip, denoting local stress release and contact reorganization following slip; more mature portions of the fault exhibit intermediate shear stress, reflecting more stable contact force distributions and magnitudes. This pattern of shear stress pre-conditions the decollement for future slip events, which must overcome the high stresses at the fault tip. Long-term slip along the basal decollement induces upper plate contraction. When upper plate stresses reach critical strength conditions, new thrust faults break through the upper plate, relieving stresses and accommodating horizontal shortening. Decollement activity retreats back to the newly formed thrust fault. The cessation of upper plate fault slip causes gradual increases in upper plate stresses, rebuilding shear stresses along the decollement and enabling renewed pulses of decollement slip. Thus, upper plate deformation occurs out of phase with decollement propagation.
NASA Astrophysics Data System (ADS)
Ohta, Y.; Hino, R.; Inazu, D.; Ohzono, M.; Mishina, M.; Nakajima, J.; Ito, Y.; Sato, T.; Tamura, Y.; Fujimoto, H.; Tachibana, K.; Demachi, T.; Osada, Y.; Shinohara, M.; Miura, S.
2012-04-01
A large foreshock with M7.3 occurred on March 9, 2011 at the subducting Pacific plate interface followed by the M9.0 Tohoku earthquake 51 hours later. We propose a slip distribution of the foreshock deduced from dense inland GPS sites and Ocean Bottom Pressure gauge (OBP) sites. The multiple OBP gauges were installed before the M7.3 foreshock in and around the focal area. We succeed to collect the OBP gauge data in 9 sites, which included two cabled OBPs in off Kamaishi (TM1, TM2). The inland GPS horizontal coseismic displacements are estimated based on baseline analyses to show the broad area of displacement field up to ~30mm directing to the focal area. In contrast, there is no coherent signal in the vertical components. The several OBP sites, for example, P2 and P6 sites located the westward from the epicenter of the foreshock clearly detected the coseismic displacement. The estimated coseismic displacement reached more than 100mm in P6 sites. Intriguingly, GJT3 sites, which the most nearly OBP sites from the epicenter, did not show the significant displacement. Based on the inland GPS sites and OBPs data, we estimated a coseismic slip distribution in the subducting plate interface. The estimated slip distribution can explain observations including the vertical displacement obtained at the OBP sites. The amount of moment release is equivalent to Mw 7.2. The spatio-temporal aftershock distribution of the foreshock shows a southward migration from our estimated fault model. We suggest that aseismic slip occurred after the M7.3 earthquake. The onshore GPS data also supports the occurrence of the afterslip in the southwestward area of the coseismic fault. We estimated the sub-daily coordinates every three hours at the several coastal GPS sites to reveal the time evolutional sequences suggesting the postseismic deformation, especially in the horizontal components. We also examine volumetric strain data at Kinka-san Island, which is situated at the closest distance from the hypocenter. The time series also clearly show the postseismic signal after the M7.3 earthquake. The both of strain meter and GPS time series did not show any acceleration expected as a nucleation process of the M9.0 event; rather, both time series show deceleration of the postseismic deformation before the M9.0 event, even for only two days after the M7.3 earthquake. The OBPs data also indicated the postseismic deformation after the foreshock until the M9 mainshock. Based on the GPS and OBPs data, we estimated the afterslip distribution. The estimated slip distribution is located the southeastern part of the foreshock coseismic distribution. We suggest that aftershocks of the March 9 event may have been caused by stress concentrations along the edge of the afterslip. One of these aftershocks may trigger the huge M 9.0 Tohoku earthquake, although more investigations are required to confirm this scenario.
Active Flexural-Slip Faulting: Controls Exerted by Stratigraphy, Geometry, and Fold Kinematics
NASA Astrophysics Data System (ADS)
Li, Tao; Chen, Jie; Thompson Jobe, Jessica A.; Burbank, Douglas W.
2017-10-01
Flexural slip plays an important role in accommodating fold growth, and its topographic expression, flexural-slip fault (FSF) scarps, may be one of the most commonly occurring secondary structures in areas dominated by active thrusts and folds. Where FSF scarps are present and what factors control their occurrence, however, are typically poorly known. Through an investigation of clearly expressed FSF scarps, well-preserved fluvial terraces, and well-exposed bedrock at eight sites in the Pamir-Tian Shan convergent zone and Kuche fold belt, NW China, we summarize the most favorable conditions for active flexural-slip faulting. Our study yields six key results. First, flexural slip operates commonly in well-layered beds, although uncommonly can occur in massive, poorly layered beds as well. Second, in well-layered beds, the slip surface is commonly located either (a) close to the contact of competent and incompetent beds or (b) within thin incompetent beds. Third, FSF scarps are always found overlying steep beds with dips of 30-100°. Fourth, slip surfaces are typically spaced between 10 and 440 m but can reach up to 600 m. Fifth, FSF scarps at most sites can be observed far away from the hinge-migrated fold scarps, suggesting that compared to hinge migration, limb rotation is generally required to accumulate flexural slip and produce associated topographic scarps. Finally, a higher regional convergent rate seems to facilitate the creation of FSF scarps more often than lower rates, whereas well-preserved, old terraces capped by thin deposits are more likely to record FSF scarps than unevenly preserved, young terraces with thick sedimentary caps.
Geotribology - Friction, wear, and lubrication of faults
NASA Astrophysics Data System (ADS)
Boneh, Yuval; Reches, Ze'ev
2018-05-01
We introduce here the concept of Geotribology as an approach to study friction, wear, and lubrication of geological systems. Methods of geotribology are applied here to characterize the friction and wear associated with slip along experimental faults composed of brittle rocks. The wear in these faults is dominated by brittle fracturing, plucking, scratching and fragmentation at asperities of all scales, including 'effective asperities' that develop and evolve during the slip. We derived a theoretical model for the rate of wear based on the observation that the dynamic strength of brittle materials is proportional to the product of load stress and loading period. In a slipping fault, the loading period of an asperity is inversely proportional to the slip velocity, and our derivations indicate that the wear-rate is proportional to the ratio of [shear-stress/slip-velocity]. By incorporating the rock hardness data into the model, we demonstrate that a single, universal function fits wear data of hundreds of experiments with granitic, carbonate and sandstone faults. In the next step, we demonstrate that the dynamic frictional strength of experimental faults is well explained in terms of the tribological parameter PV factor (= normal-stress · slip-velocity). This factor successfully delineates weakening and strengthening regimes of carbonate and granitic faults. Finally, our analysis revealed a puzzling observation that wear-rate and frictional strength have strikingly different dependencies on the loading conditions of normal-stress and slip-velocity; we discuss sources for this difference. We found that utilization of tribological tools in fault slip analyses leads to effective and insightful results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudík, Jaroslav; Karlický, Marian; Dzifčáková, Elena
2016-05-20
We investigate the occurrence of slipping magnetic reconnection, chromospheric evaporation, and coronal loop dynamics in the 2014 September 10 X-class flare. Slipping reconnection is found to be present throughout the flare from its early phase. Flare loops are seen to slip in opposite directions toward both ends of the ribbons. Velocities of 20–40 km s{sup −1} are found within time windows where the slipping is well resolved. The warm coronal loops exhibit expanding and contracting motions that are interpreted as displacements due to the growing flux rope that subsequently erupts. This flux rope existed and erupted before the onset ofmore » apparent coronal implosion. This indicates that the energy release proceeds by slipping reconnection and not via coronal implosion. The slipping reconnection leads to changes in the geometry of the observed structures at the Interface Region Imaging Spectrograph slit position, from flare loop top to the footpoints in the ribbons. This results in variations of the observed velocities of chromospheric evaporation in the early flare phase. Finally, it is found that the precursor signatures, including localized EUV brightenings as well as nonthermal X-ray emission, are signatures of the flare itself, progressing from the early phase toward the impulsive phase, with the tether-cutting being provided by the slipping reconnection. The dynamics of both the flare and outlying coronal loops is found to be consistent with the predictions of the standard solar flare model in three dimensions.« less
Rockwell, Thomas K.; Lindvall, Scott; Dawson, Tim; Langridge, Rob; Lettis, William; Klinger, Yann
2002-01-01
Surveys of multiple tree lines within groves of poplar trees, planted in straight lines across the fault prior to the earthquake, show surprisingly large lateral variations. In one grove, slip increases by nearly 1.8 m, or 35% of the maximum measured value, over a lateral distance of nearly 100 m. This and other observations along the 1999 ruptures suggest that the lateral variability of slip observed from displaced geomorphic features in many earthquakes of the past may represent a combination of (1) actual differences in slip at the surface and (2) the difficulty in recognizing distributed nonbrittle deformation.
ten Brink, Uri S.; Lin, J.
2004-01-01
Strike-slip faults in the forearc region of a subduction zone often present significant seismic hazard because of their proximity to population centers. We explore the interaction between thrust events on the subduction interface and strike-slip faults within the forearc region using three-dimensional models of static Coulomb stress change. Model results reveal that subduction earthquakes with slip vectors subparallel to the trench axis enhance the Coulomb stress on strike-slip faults adjacent to the trench but reduce the stress on faults farther back in the forearc region. In contrast, subduction events with slip vectors perpendicular to the trench axis enhance the Coulomb stress on strike-slip faults farther back in the forearc, while reducing the stress adjacent to the trench. A significant contribution to Coulomb stress increase on strike-slip faults in the back region of the forearc comes from "unclamping" of the fault, i.e., reduction in normal stress due to thrust motion on the subduction interface. We argue that although Coulomb stress changes from individual subduction earthquakes are ephemeral, their cumulative effects on the pattern of lithosphere deformation in the forearc region are significant. We use the Coulomb stress models to explain the contrasting deformation pattern between two adjacent segments of the Caribbean subduction zone. Subduction earthquakes with slip vectors nearly perpendicular to the Caribbean trench axis is dominant in the Hispaniola segment, where the strike-slip faults are more than 60 km inland from the trench. In contrast, subduction slip motion is nearly parallel to the Caribbean trench axis along the Puerto Rico segment, where the strike-slip fault is less than 15 km from the trench. This observed jump from a strike-slip fault close to the trench axis in the Puerto Rico segment to the inland faults in Hispaniola is explained by different distributions of Coulomb stress in the forearc region of the two segments, as a result of the change from the nearly trench parallel slip on the Puerto Rico subduction interface to the more perpendicular subduction slip beneath Hispaniola. The observations and modeling suggest that subduction-induced strike-slip seismic hazard to Puerto Rico may be smaller than previously assumed but the hazard to Hispaniola remains high. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Huang, M. H.; Dickinson, H.; Fielding, E. J.; Sun, J.; Freed, A. M.; Burgmann, R.
2015-12-01
The 4th of April 2010 Mw 7.2 El Mayor-Cucapah (EMC) earthquake in Baja California and Sonora, Mexico has primarily right-lateral strike-slip motion and a minor normal slip component. The surface rupture extends about 120 km west of the boundary between the Pacific and the North American plates. The EMC event initiated near the center and ruptured bilaterally into an east-dipping strike-slip fault zone to the north and a west-dipping strike-slip zone to the south. Here we use geodetic measurements including GPS, InSAR (SAR interferometry), and sub-pixel offset measurements to characterize the fault slip during the EMC event. We use dislocation inversion methods to determine fault geometry as well as sub-fault slip distribution based on geodetic measurements. We find that assuming layered earth elastic structure increased the inferred deep slip (10-15 km depth) by up to 1.6 m (60%) compared to assuming a homogeneous elastic structure. Inferred slip was also strongly (up to 2 m) influenced by the choice of observational constraints used in the inversion. The choice of constraints also influenced the inverted seismic moment from Mw 7.20 to 7.26, and the difference is equivalent to a Mw 6.5 event. Our results show that the outcomes of coseismic inversions can vary greatly depending on the methodology, something that needs to be considered both for characterizing an earthquake and when using such results in subsequent studies of postseismic deformation.
Integrated geophysical characteristics of the 2015 Illapel, Chile, earthquake
Herman, Matthew W.; Nealy, Jennifer; Yeck, William; Barnhart, William; Hayes, Gavin; Furlong, Kevin P.; Benz, Harley M.
2017-01-01
On 16 September 2015, a Mw 8.3 earthquake ruptured the subduction zone offshore of Illapel, Chile, generating an aftershock sequence with 14 Mw 6.0–7.0 events. A double source W phase moment tensor inversion consists of a Mw 7.2 subevent and the main Mw 8.2 phase. We determine two slip models for the mainshock, one using teleseismic broadband waveforms and the other using static GPS and InSAR surface displacements, which indicate high slip north of the epicenter and west-northwest of the epicenter near the oceanic trench. These models and slip distributions published in other studies suggest spatial slip uncertainties of ~25 km and have peak slip values that vary by a factor of 2. We relocate aftershock hypocenters using a Bayesian multiple-event relocation algorithm, revealing a cluster of aftershocks under the Chilean coast associated with deep (20–45 km depth) mainshock slip. Less vigorous aftershock activity also occurred near the trench and along strike of the main aftershock region. Most aftershocks are thrust-faulting events, except for normal-faulting events near the trench. Coulomb failure stress change amplitudes and signs are uncertain for aftershocks collocated with deeper mainshock slip; other aftershocks are more clearly associated with loading from the mainshock. These observations reveal a frictionally heterogeneous interface that ruptured in patches at seismogenic depths (associated with many aftershocks) and with homogeneous slip (and few aftershocks) up to the trench. This event likely triggered seismicity separate from the main slip region, including along-strike events on the megathrust and intraplate extensional events.
Harada, Shingo; Kanao, Kenichiro; Yamamoto, Yuki; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu
2014-12-23
A three-axis tactile force sensor that determines the touch and slip/friction force may advance artificial skin and robotic applications by fully imitating human skin. The ability to detect slip/friction and tactile forces simultaneously allows unknown objects to be held in robotic applications. However, the functionalities of flexible devices have been limited to a tactile force in one direction due to difficulties fabricating devices on flexible substrates. Here we demonstrate a fully printed fingerprint-like three-axis tactile force and temperature sensor for artificial skin applications. To achieve economic macroscale devices, these sensors are fabricated and integrated using only printing methods. Strain engineering enables the strain distribution to be detected upon applying a slip/friction force. By reading the strain difference at four integrated force sensors for a pixel, both the tactile and slip/friction forces can be analyzed simultaneously. As a proof of concept, the high sensitivity and selectivity for both force and temperature are demonstrated using a 3×3 array artificial skin that senses tactile, slip/friction, and temperature. Multifunctional sensing components for a flexible device are important advances for both practical applications and basic research in flexible electronics.
NASA Astrophysics Data System (ADS)
Agurto-Detzel, H.; Font, Y.; Charvis, P.; Ambrois, D.; Cheze, J.; Courboulex, F.; De Barros, L.; Deschamps, A.; Galve, A.; Godano, M.; Laigle, M.; Maron, C.; Martin, X.; Monfret, T.; Oregioni, D.; Peix, F., Sr.; Regnier, M. M.; Yates, B.; Mercerat, D.; Leon Rios, S.; Rietbrock, A.; Acero, W.; Alvarado, A. P.; Gabriela, P.; Ramos, C.; Ruiz, M. C.; Singaucho, J. C.; Vasconez, F.; Viracucha, C.; Beck, S. L.; Lynner, C.; Hoskins, M.; Meltzer, A.; Soto-Cordero, L.; Stachnik, J.
2017-12-01
0n April 2016, a Mw 7.8 megathrust earthquake struck the coast of Ecuador causing vast human and material losses. The earthquake ruptured a 100 km-long segment of the subduction interface between Nazca and South America, spatially coinciding with the 1942 M 7.8 earthquake rupture area. Shortly after the mainshock, an international effort made by institutions from Ecuador, France, UK and USA, deployed a temporary network of +60 land and ocean-bottom seismometers to capture the aftershock sequence for the subsequent year. These stations came to join the local Ecuadorian national network already monitoring in place. Here we benefit from this dataset to produce a suite of automatic locations and a subset of regional moment tensors for high quality events. Over 2900 events were detected for the first month of postseismic activity alone, and a subset of 600 events were manually re-picked and located. Similarly, thousands of aftershocks were detected using the temporary deployment over the following months, with magnitudes ranging between 1 to 7. As expected, moment tensors show mostly thrust faulting at the interface, but we also observe sparse normal and strike-slip faulting at shallow depths in the forearc. The spatial distribution of seismicity delineates the coseismic rupture area, but extends well beyond it over a 300 km long segment. Main features include three seismicity alignments perpendicular to the trench, at the north, center and south of the mainshock rupture. Preliminary results comparing quantitatively the distribution of aftershocks to the distribution of the coseismic rupture show that the bulk of the aftershock seismicity occurs at intermediate levels of coseismic slip, while areas of maximum coseismic slip are mostly devoid of events M>3. Our results shed light on the interface processes occurring mainly during the early post-seismic period of large megathrust earthquakes, and implications on the earthquake cycle.
Rizza, M.; Ritz, J.-F.; Braucher, R.; Vassallo, R.; Prentice, C.; Mahan, S.; McGill, S.; Chauvet, A.; Marco, S.; Todbileg, M.; Demberel, S.; Bourles, D.
2011-01-01
We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans-particularly well preserved in the arid environment of the Gobi region-allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is ~1 mm yr-1 along the WIB and EIB segments and ~0.5 mm yr-1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78-7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of ~2500-5200 yr for past earthquakes along the different segments of the western Bogd Fault. This suggests that the three western segments of the Bogd Fault and the Gurvan Bulag thrust fault (a reverse fault bounding the southern side of the Ih Bogd range that ruptured during the 1957 earthquake) have similar average recurrence times, and therefore may have ruptured together in previous earthquakes as they did in 1957. These results suggest that the western part of the Bogd Fault system, including the Gurvan Bulag thrust fault, usually behaves in a 'characteristic earthquake' mode. ?? 2011 The Authors Geophysical Journal International ?? 2011 RAS.
Prentice, Carol S.; Rizza, M.; Ritz, J.F.; Baucher, R.; Vassallo, R.; Mahan, S.
2011-01-01
We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans—particularly well preserved in the arid environment of the Gobi region—allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is∼1 mm yr–1 along the WIB and EIB segments and∼0.5 mm yr–1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78–7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of∼2500–5200 yr for past earthquakes along the different segments of the western Bogd Fault. This suggests that the three western segments of the Bogd Fault and the Gurvan Bulag thrust fault (a reverse fault bounding the southern side of the Ih Bogd range that ruptured during the 1957 earthquake) have similar average recurrence times, and therefore may have ruptured together in previous earthquakes as they did in 1957. These results suggest that the western part of the Bogd Fault system, including the Gurvan Bulag thrust fault, usually behaves in a ‘characteristic earthquake’ mode.
Coseismic stresses indicated by pseudotachylytes in the Outer Hebrides Fault Zone, UK.
NASA Astrophysics Data System (ADS)
Campbell, Lucy; Lloyd, Geoffrey; Phillips, Richard; Holdsworth, Robert; Walcott, Rachel
2015-04-01
During the few seconds of earthquake slip, dynamic behaviour is predicted for stress, slip velocity, friction and temperature, amongst other properties. Fault-derived pseudotachylyte is a coseismic frictional melt and provides a unique snapshot of the rupture environment. Exhumation of ancient fault zones to seismogenic depths can reveal the structure and distribution of seismic slip as pseudotachylyte bearing fault planes. An example lies in NW Scotland along the Outer Hebrides Fault Zone (OHFZ) - this long-lived fault zone displays a suite of fault rocks developed under evolving kinematic regimes, including widespread pseudotachylyte veining which is distributed both on and away from the major faults. This study adds data derived from the OHFZ pseudotachylytes to published datasets from well-constrained fault zones, in order to explore the use of existing methodologies on more complex faults and to compare the calculated results. Temperature, stress and pressure are calculated from individual fault veins and added to existing datasets. The results pose questions on the physical meaning of the derived trends, the distribution of seismic energy release across scattered cm-scale faults and the range of earthquake magnitudes calculated from faults across any given fault zone.
NASA Astrophysics Data System (ADS)
Lorito, S.; Romano, F.; Piatanesi, A.
2007-12-01
The aim of this work is to infer the slip distribution and mean rupture velocity along the rupture zone of the 12 September 2007 Southern Sumatra, Indonesia from available tide-gauge records of the tsunami. We select waveforms from 12 stations, distributed along the west coast of Sumatra and in the whole Indian Ocean (11 GLOSS stations and 1 DART buoy). We assume the fault plane and the slip direction to be consistent with both the geometry of the subducting plate and the early focal mechanism solutions. Then we subdivide the fault plane into several subfaults (both along strike and down dip) and compute the corresponding Green's functions by numerical solution of the shallow water equations through a finite difference method. The slip distribution and rupture velocity are determined simultaneously by means of a simulated annealing technique. We compare the recorded and synthetic waveforms in the time domain, using a cost function that is a trade-off between the L1 and L2 norms. Preliminary synthetic checkerboard tests, using the station coverage and the sampling interval of the available data, indicate that the main features of the rupture process may be robustly inverted.
NASA Astrophysics Data System (ADS)
Liu, Wei; He, Hongwen; Sun, Fengchun; Lv, Jiangyi
2017-05-01
This paper describes an integrated chassis control framework for a novel three-axle electric bus with active rear steering (ARS) axle and four motors at the middle and rear wheels. The proposed integrated framework consists of four parts: (1) an active speed limiting controller is designed for anti-body slip control and rollover prevention; (2) an ARS controller is designed for coordinating the tyre wear between the driving wheels; (3) an inter-axle torque distribution controller is designed for optimal torque distribution between the axles, considering anti-wheel slip and battery power limitations and (4) a data acquisition and estimation module for collecting the measured and estimated vehicle states. To verify the performances, a simulation platform is established in Trucksim software combined with Simulink. Three test cases are particularly designed to show the performances. The proposed algorithm is compared with a simple even control algorithm. The test results show satisfactory lateral stability and rollover prevention performances under severe steering conditions. The desired tyre wear coordinating performance is also realised, and the wheel slip ratios are restricted within stable region during intensive driving and emergency braking with complicated road conditions.
The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review
Pan, Yunlu; Zhao, Xuezeng
2014-01-01
Summary The drag of fluid flow at the solid–liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water on a hydrophobic polystyrene (PS) surface were measured with applied direct current (DC) and alternating current (AC) voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found. PMID:25161839
The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review.
Pan, Yunlu; Bhushan, Bharat; Zhao, Xuezeng
2014-01-01
The drag of fluid flow at the solid-liquid interface in the micro/nanoscale is an important issue in micro/nanofluidic systems. Drag depends on the surface wetting, nanobubbles, surface charge and boundary slip. Some researchers have focused on the relationship between these interface properties. In this review, the influence of an applied voltage on the surface wettability, nanobubbles, surface charge density and slip length are discussed. The contact angle (CA) and contact angle hysteresis (CAH) of a droplet of deionized (DI) water on a hydrophobic polystyrene (PS) surface were measured with applied direct current (DC) and alternating current (AC) voltages. The nanobubbles in DI water and three kinds of saline solution on a PS surface were imaged when a voltage was applied. The influence of the surface charge density on the nanobubbles was analyzed. Then the slip length and the electrostatic force on the probe were measured on an octadecyltrichlorosilane (OTS) surface with applied voltage. The influence of the surface charge on the boundary slip and drag of fluid flow has been discussed. Finally, the influence of the applied voltage on the surface wetting, nanobubbles, surface charge, boundary slip and the drag of liquid flow are summarized. With a smaller surface charge density which could be achieved by applying a voltage on the surface, larger and fewer nanobubbles, a larger slip length and a smaller drag of liquid flow could be found.
NASA Astrophysics Data System (ADS)
Koulali, A.; McClusky, S.; Wallace, L.; Allgeyer, S.; Tregoning, P.; D'Anastasio, E.; Benavente, R.
2017-08-01
Following a sequence of three Slow Slip Events (SSEs) on the northern Hikurangi Margin, between June 2015 and August 2016, a Mw 7.1 earthquake struck 30 km offshore of the East Cape region in the North Island of New Zealand on the 2 September 2016 (NZ local time). The earthquake was also followed by a transient deformation event (SSE or afterslip) northeast of the North Island, closer to the earthquake source area. We use data from New Zealand's continuous Global Positioning System networks to invert for the SSE slip distribution and evolution on the Hikurangi subduction interface. Our slip inversion results show an increasing amplitude of the slow slip toward the Te Araroa earthquake foreshock and main shock area, suggesting a possible triggering of the Mw 7.1 earthquake by the later stage of the slow slip sequence. We also show that the transient deformation following the Te Araroa earthquake ruptured a portion of the Hikurangi Trench northeast of the North Island, farther north than any previously observed Hikurangi margin SSEs. Our slip inversion and the coulomb stress calculation suggest that this transient may have been induced as a response to the increase in the static coulomb stress change downdip of the rupture plane on the megathrust. These observations show the importance of considering the interaction between slow slip events, seismic, and aseismic events, not only on the same megathrust interface but also on faults within the surrounding crust.
NASA Astrophysics Data System (ADS)
Li, Jie; Liu, Gang; Qiao, Xuejun; Xiong, Wei; Wang, Xiaoqiang; Liu, Daiqin; Sun, Jianing; Yushan, Ailixiati; Yusan, Sulitan; Fang, Wei; Wang, Qi
2018-02-01
The 25 November 2016 Aketao, Xinjiang earthquake occurred on the northeastern margin of the Pamir plateau, rupturing the Muji fault on the northern segment of the Kongur Extensional System. We collected coseismic offsets at 7 GPS sites, which show that the fault experienced significate dextral slip with a near-field geodetic displacement of up to 12 cm along the strike. The joint inversion of GPS data and teleseismic P waveforms suggests a complex rupture pattern characterized by the unilateral propagation slip from the epicenter to the southeast for 60 km with a total seismic moment of 1.3 × 1019 Nm, corresponding to a magnitude of M w 6.7 earthquake. Our model of slip distribution shows two major slip patches with a slip amplitude up to 0.6 m, one located at shallow depths of 0-8 km close to the hypocenter with apparent surface breaks and the other, 40 km to the southeast, buried at a greater depth of 12 km. The rupture is dominated by a right-lateral strike slip with significant normal-slip components. The near-field GPS data enhances the spatial resolution of source model. Based on the preferred slip model, the static Coulomb Failure Stress change caused by 2016 Aketao earthquake suggests that the unzipped western and eastern ends of Muji fault and the northern segment of Kungai Fault are significantly promoted.
Resolving the Detailed Spatiotemporal Slip Evolution of Deep Tremor in Western Japan
NASA Astrophysics Data System (ADS)
Ohta, Kazuaki; Ide, Satoshi
2017-12-01
We study the detailed spatiotemporal behavior of deep tremor in western Japan through the development and application of a new slip inversion method. Although many studies now recognize tremor as shear slip along the plate interface manifested in low-frequency earthquake (LFE) swarms, a conventional slip inversion analysis is not available for tremor due to insufficient knowledge of source locations and Green's functions. Here we introduce synthetic template waveforms, which are typical tremor waveforms obtained by stacking LFE seismograms at arranged points along the plate interface. Using these synthetic template waveforms as substitutes for Green's functions, we invert the continuous tremor waveforms using an iterative deconvolution approach with Bayesian constraints. We apply this method to two tremor burst episodes in western and central Shikoku, Japan. The estimated slip distribution from a 12 day tremor burst episode in western Shikoku is heterogeneous, with several patchy areas of slip along the plate interface where rapid moment releases with durations of <100 s regularly occur. We attribute these heterogeneous spatiotemporal slip patterns to heterogeneous material properties along the plate interface. For central Shikoku, where we focus on a tremor burst episode that occurred coincidentally with a very low frequency earthquake (VLF), we observe that the source size of the VLF is much larger than that estimated from tremor activity in western Shikoku. These differences in the size of the slip region may dictate the visibility of VLF signals in observed seismograms, which has implications for the mechanics of slow earthquakes and subduction zone processes.
Links between clay transformation and earthquakes along the Costa Rican subduction margin
NASA Astrophysics Data System (ADS)
Lauer, Rachel M.; Saffer, Demian M.; Harris, Robert N.
2017-08-01
We investigate the depth distribution of smectite clay transformation and its along-strike variability at the Middle America Trench offshore Costa Rica. We take advantage of recent well-constrained thermal models that refine our understanding of the margin's thermal structure and which capture significant along-strike variability. Using these thermal models, together with sediment compositions defined by drilling, we compute the distribution of smectite transformation and associated fluid production. We show that the hypocenters of large (
Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol’tsman, Gregory; Bezryadin, Alexey
2015-01-01
We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced. PMID:25988591
NASA Astrophysics Data System (ADS)
Ohta, Yusaku; Hino, Ryota; Inazu, Daisuke; Ohzono, Mako; Ito, Yoshihiro; Mishina, Masaaki; Iinuma, Takeshi; Nakajima, Junichi; Osada, Yukihito; Suzuki, Kensuke; Fujimoto, Hiromi; Tachibana, Kenji; Demachi, Tomotsugu; Miura, Satoshi
2012-08-01
A magnitude 7.3 foreshock occurred at the subducting Pacific plate interface on March 9, 2011, 51 h before the magnitude 9.0 Tohoku earthquake off the Pacific coast of Japan. We propose a coseismic and postseismic afterslip model of the magnitude 7.3 event based on a global positioning system network and ocean bottom pressure gauge sites. The estimated coseismic slip and afterslip areas show complementary spatial distributions; the afterslip distribution is located up-dip of the coseismic slip for the foreshock and northward of hypocenter of the Tohoku earthquake. The slip amount for the afterslip is roughly consistent with that determined by repeating earthquake analysis carried out in a previous study. The estimated moment release for the afterslip reached magnitude 6.8, even within a short time period of 51h. A volumetric strainmeter time series also suggests that this event advanced with a rapid decay time constant compared with other typical large earthquakes.
NASA Astrophysics Data System (ADS)
Ramzan, M.; Gul, Hina; Dong Chung, Jae
2017-11-01
A mathematical model is designed to deliberate the flow of an MHD Jeffery nanofluid past a vertically inclined stretched cylinder near a stagnation point. The flow analysis is performed in attendance of thermal radiation, mixed convection and chemical reaction. Influence of thermal and solutal stratification with slip boundary condition is also considered. Apposite transformations are engaged to convert the nonlinear partial differential equations to differential equations with high nonlinearity. Convergent series solutions of the problem are established via the renowned Homotopy Analysis Method (HAM). Graphical illustrations are plotted to depict the effects of prominent arising parameters against all involved distributions. Numerically erected tables of important physical parameters like Skin friction, Nusselt and Sherwood numbers are also give. Comparative studies (with a previously examined work) are also included to endorse our results. It is noticed that the thermal stratification parameter has diminishing effect on temperature distribution. Moreover, the velocity field is a snowballing and declining function of curvature and slip parameters respectively.
NASA Astrophysics Data System (ADS)
Gusman, Aditya Riadi; Mulia, Iyan E.; Satake, Kenji
2018-01-01
The 2017 Tehuantepec earthquake (
A renormalization group model for the stick-slip behavior of faults
NASA Technical Reports Server (NTRS)
Smalley, R. F., Jr.; Turcotte, D. L.; Solla, S. A.
1983-01-01
A fault which is treated as an array of asperities with a prescribed statistical distribution of strengths is described. For a linear array the stress is transferred to a single adjacent asperity and for a two dimensional array to three ajacent asperities. It is shown that the solutions bifurcate at a critical applied stress. At stresses less than the critical stress virtually no asperities fail on a large scale and the fault is locked. At the critical stress the solution bifurcates and asperity failure cascades away from the nucleus of failure. It is found that the stick slip behavior of most faults can be attributed to the distribution of asperities on the fault. The observation of stick slip behavior on faults rather than stable sliding, why the observed level of seismicity on a locked fault is very small, and why the stress on a fault is less than that predicted by a standard value of the coefficient of friction are outlined.
Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol'tsman, Gregory; Bezryadin, Alexey
2015-05-19
We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced.
NASA Astrophysics Data System (ADS)
Gallovic, Frantisek; Cirella, Antonella; Plicka, Vladimir; Piatanesi, Alessio
2013-04-01
On 14 June 2008, UTC 23:43, the border of Iwate and Miyagi prefectures was hit by an Mw7 reverse-fault type crustal earthquake. The event is known to have the largest ground acceleration observed to date (~4g), which was recorded at station IWTH25. We analyze observed strong motion data with the objective to image the event rupture process and the associated uncertainties. Two different slip inversion approaches are used, the difference between the two methods being only in the parameterization of the source model. To minimize mismodeling of the propagation effects we use crustal model obtained by full waveform inversion of aftershock records in the frequency range between 0.05-0.3 Hz. In the first method, based on linear formulation, the parameters are represented by samples of slip velocity functions along the (finely discretized) fault in a time window spanning the whole rupture duration. Such a source description is very general with no prior constraint on the nucleation point, rupture velocity, shape of the velocity function. Thus the inversion could resolve very general (unexpected) features of the rupture evolution, such as multiple rupturing, rupture-propagation reversals, etc. On the other hand, due to the relatively large number of model parameters, the inversion result is highly non-unique, with possibility of obtaining a biased solution. The second method is a non-linear global inversion technique, where each point on the fault can slip only once, following a prescribed functional form of the source time function. We invert simultaneously for peak slip velocity, slip angle, rise time and rupture time by allowing a given range of variability for each kinematic model parameter. For this reason, unlike to the linear inversion approach, the rupture process needs a smaller number of parameters to be retrieved, and is more constrained with a proper control on the allowed range of parameter values. In order to test the resolution and reliability of the retrieved models, we present a thorough analysis of the performance of the two inversion approaches. In fact, depending on the inversion strategy and the intrinsic 'non-uniqueness' of the inverse problem, the final slip maps and distribution of rupture onset times are generally different, sometimes even incompatible with each other. Great emphasis is devoted to the uncertainty estimate of both techniques. Thus we do not compare only the best fitting models, but their 'compatibility' in terms of the uncertainty limits.
NASA Astrophysics Data System (ADS)
Lee, J.; Stockli, D.; Gosse, J.
2007-12-01
Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain fault zone (0.3-0.8 mm/yr) and the eastern sinistral Coaldale fault (0.4 mm/yr) suggest that transfer of dextral slip from the narrow White Mountains fault zone is explained best by a simple shear couple whereby slip is partitioned into three different components: horizontal extension along the Queen Valley fault, dominantly dextral slip along the Coyote Springs fault, and dominantly sinistral slip along the Coaldale fault. A velocity vector diagram illustrating fault slip partitioning predicts contraction rates of <0.1 to 0.5 mm/yr across the Coyote Springs and western Coaldale faults. The predicted long-term contraction across the Mina deflection is consistent with present-day GPS data.
DeVoria, Adam C.
2017-01-01
This paper studies low-aspect-ratio () rectangular wings at high incidence and in side-slip. The main objective is to incorporate the effects of high angle of attack and side-slip into a simplified vortex model for the forces and moments. Experiments are also performed and are used to validate assumptions made in the model. The model asymptotes to the potential flow result of classical aerodynamics for an infinite aspect ratio. The → 0 limit of a rectangular wing is considered with slender body theory, where the side-edge vortices merge into a vortex doublet. Hence, the velocity fields transition from being dominated by a spanwise vorticity monopole ( ≫ 1) to a streamwise vorticity dipole ( ∼ 1). We theoretically derive a spanwise loading distribution that is parabolic instead of elliptic, and this physically represents the additional circulation around the wing that is associated with reattached flow. This is a fundamental feature of wings with a broad-facing leading edge. The experimental measurements of the spanwise circulation closely approximate a parabolic distribution. The vortex model yields very agreeable comparison with direct measurement of the lift and drag, and the roll moment prediction is acceptable for ≤ 1 prior to the roll stall angle and up to side-slip angles of 20°. PMID:28293139
NASA Astrophysics Data System (ADS)
Sarma, Rajkumar; Deka, Nabajit; Sarma, Kuldeep; Mondal, Pranab Kumar
2018-06-01
We present a mathematical model to study the electroosmotic flow of a viscoelastic fluid in a parallel plate microchannel with a high zeta potential, taking hydrodynamic slippage at the walls into account in the underlying analysis. We use the simplified Phan-Thien-Tanner (s-PTT) constitutive relationships to describe the rheological behavior of the viscoelastic fluid, while Navier's slip law is employed to model the interfacial hydrodynamic slip. Here, we derive analytical solutions for the potential distribution, flow velocity, and volumetric flow rate based on the complete Poisson-Boltzmann equation (without considering the frequently used Debye-Hückel linear approximation). For the underlying electrokinetic transport, this investigation primarily reveals the influence of fluid rheology, wall zeta potential as modulated by the interfacial electrochemistry and interfacial slip on the velocity distribution, volumetric flow rate, and fluid stress, as well as the apparent viscosity. We show that combined with the viscoelasticity of the fluid, a higher wall zeta potential and slip coefficient lead to a phenomenal enhancement in the volumetric flow rate. We believe that this analysis, besides providing a deep theoretical insight to interpret the transport process, will also serve as a fundamental design tool for microfluidic devices/systems under electrokinetic influence.
The 2016 Kaikōura earthquake: Simultaneous rupture of the subduction interface and overlying faults
NASA Astrophysics Data System (ADS)
Wang, Teng; Wei, Shengji; Shi, Xuhua; Qiu, Qiang; Li, Linlin; Peng, Dongju; Weldon, Ray J.; Barbot, Sylvain
2018-01-01
The distribution of slip during an earthquake and how it propagates among faults in the subduction system play a major role in seismic and tsunami hazards, yet they are poorly understood because offshore observations are often lacking. Here we derive the slip distribution and rupture evolution during the 2016 Mw 7.9 Kaikōura (New Zealand) earthquake that reconcile the surface rupture, space geodetic measurements, seismological and tsunami waveform records. We use twelve fault segments, with eleven in the crust and one on the megathrust interface, to model the geodetic data and match the major features of the complex surface ruptures. Our modeling result indicates that a large portion of the moment is distributed on the subduction interface, making a significant contribution to the far field surface deformation and teleseismic body waves. The inclusion of local strong motion and teleseismic waveform data in the joint inversion reveals a unilateral rupture towards northeast with a relatively low averaged rupture speed of ∼1.5 km/s. The first 30 s of the rupture took place on the crustal faults with oblique slip motion and jumped between fault segments that have large differences in strike and dip. The peak moment release occurred at ∼65 s, corresponding to simultaneous rupture of both plate interface and the overlying splay faults with rake angle changes progressively from thrust to strike-slip. The slip on the Papatea fault produced more than 2 m of offshore uplift, making a major contribution to the tsunami at the Kaikōura station, while the northeastern end of the rupture can explain the main features at the Wellington station. Our inversions and simulations illuminate complex up-dip rupture behavior that should be taken into consideration in both seismic and tsunami hazard assessment. The extreme complex rupture behavior also brings new challenges to the earthquake dynamic simulations and understanding the physics of earthquakes.
Simulating spontaneous aseismic and seismic slip events on evolving faults
NASA Astrophysics Data System (ADS)
Herrendörfer, Robert; van Dinther, Ylona; Pranger, Casper; Gerya, Taras
2017-04-01
Plate motion along tectonic boundaries is accommodated by different slip modes: steady creep, seismic slip and slow slip transients. Due to mainly indirect observations and difficulties to scale results from laboratory experiments to nature, it remains enigmatic which fault conditions favour certain slip modes. Therefore, we are developing a numerical modelling approach that is capable of simulating different slip modes together with the long-term fault evolution in a large-scale tectonic setting. We extend the 2D, continuum mechanics-based, visco-elasto-plastic thermo-mechanical model that was designed to simulate slip transients in large-scale geodynamic simulations (van Dinther et al., JGR, 2013). We improve the numerical approach to accurately treat the non-linear problem of plasticity (see also EGU 2017 abstract by Pranger et al.). To resolve a wide slip rate spectrum on evolving faults, we develop an invariant reformulation of the conventional rate-and-state dependent friction (RSF) and adapt the time step (Lapusta et al., JGR, 2000). A crucial part of this development is a conceptual ductile fault zone model that relates slip rates along discrete planes to the effective macroscopic plastic strain rates in the continuum. We test our implementation first in a simple 2D setup with a single fault zone that has a predefined initial thickness. Results show that deformation localizes in case of steady creep and for very slow slip transients to a bell-shaped strain rate profile across the fault zone, which suggests that a length scale across the fault zone may exist. This continuum length scale would overcome the common mesh-dependency in plasticity simulations and question the conventional treatment of aseismic slip on infinitely thin fault zones. We test the introduction of a diffusion term (similar to the damage description in Lyakhovsky et al., JMPS, 2011) into the state evolution equation and its effect on (de-)localization during faster slip events. We compare the slip spectrum in our simulations to conventional RSF simulations (Liu and Rice, JGR, 2007). We further demonstrate the capability of simulating the evolution of a fault zone and simultaneous occurrence of slip transients. From small random initial distributions of the state variable in an otherwise homogeneous medium, deformation localizes and forms curved zones of reduced states. These spontaneously formed fault zones host slip transients, which in turn contribute to the growth of the fault zone.
The 2015 Illapel earthquake, central Chile: A type case for a characteristic earthquake?
NASA Astrophysics Data System (ADS)
Tilmann, F.; Zhang, Y.; Moreno, M.; Saul, J.; Eckelmann, F.; Palo, M.; Deng, Z.; Babeyko, A.; Chen, K.; Baez, J. C.; Schurr, B.; Wang, R.; Dahm, T.
2016-01-01
On 16 September 2015, the MW = 8.2 Illapel megathrust earthquake ruptured the Central Chilean margin. Combining inversions of displacement measurements and seismic waveforms with high frequency (HF) teleseismic backprojection, we derive a comprehensive description of the rupture, which also predicts deep ocean tsunami wave heights. We further determine moment tensors and obtain accurate depth estimates for the aftershock sequence. The earthquake nucleated near the coast but then propagated to the north and updip, attaining a peak slip of 5-6 m. In contrast, HF seismic radiation is mostly emitted downdip of the region of intense slip and arrests earlier than the long period rupture, indicating smooth slip along the shallow plate interface in the final phase. A superficially similar earthquake in 1943 with a similar aftershock zone had a much shorter source time function, which matches the duration of HF seismic radiation in the recent event, indicating that the 1943 event lacked the shallow slip.
NASA Astrophysics Data System (ADS)
Goodarzi, Avesta; Mohammadi, Masoud
2014-04-01
In this paper, vehicle stability control and fuel economy for a 4-wheel-drive hybrid vehicle are investigated. The integrated controller is designed within three layers. The first layer determines the total yaw moment and total lateral force made by using an optimal controller method to follow the desired dynamic behaviour of a vehicle. The second layer determines optimum tyre force distribution in order to optimise tyre usage and find out how the tyres should share longitudinal and lateral forces to achieve a target vehicle response under the assumption that all four wheels can be independently steered, driven, and braked. In the third layer, the active steering, wheel slip, and electrical motor torque controllers are designed. In the front axle, internal combustion engine (ICE) is coupled to an electric motor (EM). The control strategy has to determine the power distribution between ICE and EM to minimise fuel consumption and allowing the vehicle to be charge sustaining. Finally, simulations performed in MATLAB/SIMULINK environment show that the proposed structure could enhance the vehicle stability and fuel economy in different manoeuvres.
NASA Astrophysics Data System (ADS)
Burkhard, L. M.; Cameron, M. E.; Smith-Konter, B. R.; Seifert, F.; Pappalardo, R. T.; Collins, G. C.
2015-12-01
Ganymede's fractured surface reveals many large-scale, morphologically distinct regions of inferred distributed shear and strike-slip faulting that may be important to the structural development of its surface and in the transition from dark to light (grooved) materials. To better understand the role of strike-slip tectonism in shaping Ganymede's complex icy surface, we perform a detailed mapping of key examples of strike-slip morphologies (i.e., en echelon structures, strike-slip duplexes, laterally offset pre-existing features, and possible strained craters) from Galileo and Voyager images. We focus on complex structures associated with grooved terrain (e.g. Nun Sulcus, Dardanus Sulcus, Tiamat Sulcus, and Arbela Sulcus) and terrains transitional from dark to light terrain (e.g. the boundary between Nippur Sulcus and Marius Regio, including Byblus Sulcus and Philus Sulcus). Detailed structural interpretations suggest strong evidence of strike-slip faulting in some regions (i.e., Nun and Dardanus Sulcus); however, further investigation of additional strike-slip structures is required of less convincing regions (i.e., Byblus Sulcus). Where applicable, these results are synthesized into a global database representing an inferred sense of shear for many of Ganymede's fractures. Moreover, when combined with existing observations of extensional features, these results help to narrow down the range of possible principal stress directions that could have acted at the regional or global scale to produce grooved terrain on Ganymede.
Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects.
Hayat, Tanzila; Nadeem, S; Khan, A U
2018-06-14
The main object of the present paper is to examine and compare the improvement of flow and heat transfer characteristics between a rotating nanofluid and a newly discovered hybrid nanofluid in the presence of velocity slip and thermal slip. The influence of thermal radiation is also included in the present study. The system after applying the similarity transformations is solved numerically by using the bvp-4c scheme. Additionally, numerical calculations for the coefficient of skin friction and local Nusselt number are introduced and perused for germane parameters. The comparison between water, nanofluid and hybrid nanofluid on velocity and temperature is also visualized. It is observed that the velocity and temperature distributions are decreasing functions of the slip parameter. Temperature is boosted by thermal radiation and rotation. It is found that the heat transfer rate of the hybrid nanofluid is higher as compared to the traditional nanofluid.
Surface-slip equations for multicomponent nonequilibrium air flow
NASA Technical Reports Server (NTRS)
Gupta, R. N.; Scott, C. D.; Moss, J. N.
1985-01-01
Equations are presented for the surface-slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds number, high-altitude flight regime of a space vehicle. The equations are obtained from closed form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities were obtained in a form which can be employed in flowfield computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate, species-concentration boundary condition for a multicomponent mixture in absence of slip.
Surface-slip equations for multicomponent, nonequilibrium air flow
NASA Technical Reports Server (NTRS)
Gupta, Roop N.; Scott, Carl D.; Moss, James N.; Goglia, Gene
1985-01-01
Equations are presented for the surface slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds-number, high-altitude flight regime of a space vehicle. These are obtained from closed-form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities have been obtained in a form which can readily be employed in flow-field computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate species-concentration boundary condition for a multicomponent mixture in absence of slip.
NASA Astrophysics Data System (ADS)
Pinel-Puysségur, B.; Grandin, R.; Bollinger, L.; Baudry, C.
2014-07-01
On 28-29 October 2008, within 12 h, two similar Mw = 6.4 strike-slip earthquakes struck Baluchistan (Pakistan), as part of a complex seismic sequence. Interferometric Synthetic Aperture Radar (InSAR) data reveal that the peak of surface displacement is near the Ziarat anticline, a large active fold affected by Quaternary strike-slip faulting. All coseismic interferograms integrate the deformation due to both earthquakes. As their causative faults ruptured close to each other, the individual signals cannot be separated. According to their focal mechanisms, each earthquake may have activated a NE-SW sinistral or a NW-SE dextral fault segment, which leads to four possible scenarios of fault orientations. A nonlinear inversion of the InSAR data set allows rejecting two scenarios. The best slip distributions on the two fault segments for the two remaining scenarios are determined by linear inversion. Stress-change modeling favors a scenario involving two abutting conjugate strike-slip faults. Two other fault segments accommodated left-lateral strike slip during the seismic sequence. The activated fault system includes multiple fault segments with different orientations and little surface expression. This may highlight, at a smaller scale, the distributed, possibly transient character of deformation within a broader right-lateral shear zone. It suggests that the activated faults delineate a small tectonic block extruding and subtly rotating within the shear zone. It occurs in the vicinity of the local tectonic syntaxis where orogenic structures sharply turn around a vertical axis. These mechanisms could participate in the long-term migration of active tectonic structures within this kinematically unstable tectonic syntaxis.
Rupture history of the 1997 Cariaco, Venezuela, earthquake from teleseismic P waves
Mendoza, C.
2000-01-01
A two-step finite-fault waveform inversion scheme is applied to the broadband teleseismic P waves recorded for the strike-slip, Cariaco, Venezuela, earthquake of 9 July 1997 to recover the distribution of mainshock slip. The earthquake is first analyzed using a long narrow fault with a maximum rise time of 20 sec. This line-source analysis indicates that slip propagated to the west with a constant rupture velocity and a relatively short rise time. The results are then used to constrain a second inversion of the P waveforms using a 60-km by 20-km two-dimensional fault. The rupture shows a zone of large slip (1.3-m peak) near the hypocenter and a second, broader source extending updip and to the west at depths shallower than 5 km. The second source has a peak slip of 2.1 meters and accounts for most of the moment of 1.1 × 1026 dyne-cm (6.6 Mww) estimated from the P waves. The inferred rupture pattern is consistent with macroseismic effects observed in the epicentral area.
NASA Astrophysics Data System (ADS)
Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang
2018-03-01
Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.
Focal Mechanisms of Recent Earthquakes in the Southern Korean Peninsula
NASA Astrophysics Data System (ADS)
Park, J.; Kim, W.; Chung, T.; Baag, C.; Ree, J.
2005-12-01
There has been a lack of seismic data in the Korean Peninsula mainly because it is in a seismically stable area within the Eurasian plate (or Amurian microplate) and because a network of seismic stations has been poor until recently. Consequently, first motion studies on the peninsula showed a large uncertainty or covered only local areas. Also, a tectonic province map constructed based on pre-Cenozoic tectonic events in Korea has been used for a seismic zonation. To solve these problems, we made focal mechanism solutions for 71 earthquakes (ML = 1.9 to 5.2) occurred in and around the peninsula from 1999 to 2004 and collected by a new dense seismic network established since 1995. For this, we relocated the hypocenters and obtained fault plane solutions with errors of fault parameter less than 15° from the data set of 1,270 clear P-wave polarities and from 46 SH/P amplitude ratios. The focal mechanism solutions show that subhorizontal ENE P- and subhorizontal NNW T-axes are predominant, representing the common direction of P- and T-axes within the Amurian plate. The faulting mechanisms are mostly strike-slip faulting or strike-slip-dominant-oblique-slip faulting with a reverse-slip component, although normal-slip-dominant-oblique-slip faultings occur locally probably due to a local reorientation of stress. These results incorporated with those from the kinematic studies of the Quaternary faults imply that NNE-striking faults (dextral strike-slip or oblique-slip with a reverse-slip component) are highly likely to generate earthquakes in South Korea. The spatial distribution of the maximum horizontal stress direction and faulting types does not correlate with the preexisting tectonic province map of Korea, and a new construction of seismic zonation map is required for a better seismic evaluation.
Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy
Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.
2016-01-01
We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.
Laboratory-based maximum slip rates in earthquake rupture zones and radiated energy
McGarr, A.; Fletcher, Joe B.; Boettcher, M.; Beeler, N.; Boatwright, J.
2010-01-01
Laboratory stick-slip friction experiments indicate that peak slip rates increase with the stresses loading the fault to cause rupture. If this applies also to earthquake fault zones, then the analysis of rupture processes is simplified inasmuch as the slip rates depend only on the local yield stress and are independent of factors specific to a particular event, including the distribution of slip in space and time. We test this hypothesis by first using it to develop an expression for radiated energy that depends primarily on the seismic moment and the maximum slip rate. From laboratory results, the maximum slip rate for any crustal earthquake, as well as various stress parameters including the yield stress, can be determined based on its seismic moment and the maximum slip within its rupture zone. After finding that our new equation for radiated energy works well for laboratory stick-slip friction experiments, we used it to estimate radiated energies for five earthquakes with magnitudes near 2 that were induced in a deep gold mine, an M 2.1 repeating earthquake near the San Andreas Fault Observatory at Depth (SAFOD) site and seven major earthquakes in California and found good agreement with energies estimated independently from spectra of local and regional ground-motion data. Estimates of yield stress for the earthquakes in our study range from 12 MPa to 122 MPa with a median of 64 MPa. The lowest value was estimated for the 2004 M 6 Parkfield, California, earthquake whereas the nearby M 2.1 repeating earthquake, as recorded in the SAFOD pilot hole, showed a more typical yield stress of 64 MPa.
NASA Astrophysics Data System (ADS)
Gottschaemmer, E.; Harrington, R. M.; Cochran, E. S.; Bohlen, T.
2011-12-01
Recent observations of both triggered and ambient tremor suggest that tremor results from simple shear-failure. Tremor episodes on the San Andreas fault near Parkfield are thought to be comprised of clusters of individual events with frequencies between 2-8 Hz. Such low frequency earthquakes (LFEs) occur at depths where the frictional properties of the fault surface are primarily slip-strengthening with imbedded patches of slip weakening material that slip seismically when the surrounding fault creeps in a slow-slip event. Here we show new tremor waveforms from a temporary deployment of 13 broadband seismometers spaced at a maximum on the order of 30 km near Cholame, California are consistent with a series of small seismically slipping patches surrounded by an aseismic region along a fault surface. We model individual seismic events kinematically as small shear failures (M ~ 1) at depths exceeding 15 km. We use stress drop values of 1 MPa, based on a slip to fault area ratio. We simulate tremor recorded at the surface by our temporary array centered near Cholame, for frequencies up to 8 Hz using a staggered-grid finite-difference scheme to solve the elastic equations of motion, and the 3D velocity and density model from Thurber et al. (2006). Our simulations indicate that multiple seismically slipping patches in an aseismic region successfully recreate tremor characteristics observed in multiple studies, including individual tremor bursts, individual events, and episodic behavior. The kinematic model presented here will help to constrain the distribution and amplitude of the seismically slipping patches at depth, which will then be used in a dynamic model with variable frictional properties.
Murray, Jessica R.; Minson, Sarah E.; Svarc, Jerry L.
2014-01-01
Fault creep, depending on its rate and spatial extent, is thought to reduce earthquake hazard by releasing tectonic strain aseismically. We use Bayesian inversion and a newly expanded GPS data set to infer the deep slip rates below assigned locking depths on the San Andreas, Maacama, and Bartlett Springs Faults of Northern California and, for the latter two, the spatially variable interseismic creep rate above the locking depth. We estimate deep slip rates of 21.5 ± 0.5, 13.1 ± 0.8, and 7.5 ± 0.7 mm/yr below 16 km, 9 km, and 13 km on the San Andreas, Maacama, and Bartlett Springs Faults, respectively. We infer that on average the Bartlett Springs fault creeps from the Earth's surface to 13 km depth, and below 5 km the creep rate approaches the deep slip rate. This implies that microseismicity may extend below the locking depth; however, we cannot rule out the presence of locked patches in the seismogenic zone that could generate moderate earthquakes. Our estimated Maacama creep rate, while comparable to the inferred deep slip rate at the Earth's surface, decreases with depth, implying a slip deficit exists. The Maacama deep slip rate estimate, 13.1 mm/yr, exceeds long-term geologic slip rate estimates, perhaps due to distributed off-fault strain or the presence of multiple active fault strands. While our creep rate estimates are relatively insensitive to choice of model locking depth, insufficient independent information regarding locking depths is a source of epistemic uncertainty that impacts deep slip rate estimates.
NASA Astrophysics Data System (ADS)
Pramudijanto, Josaphat; Ashfahani, Andri; Lukito, Rian
2018-03-01
Anti-lock braking system (ABS) is used on vehicles to keep the wheels unlocked in sudden break (inside braking) and minimalize the stop distance of the vehicle. The problem of it when sudden break is the wheels locked so the vehicle steering couldn’t be controlled. The designed ABS system will be applied on ABS simulator using the electromagnetic braking. In normal condition or in condition without braking, longitudinal velocity of the vehicle will be equal with the velocity of wheel rotation, so the slip ratio will be 0 (0%) and if the velocity of wheel rotation is 0 (in locked condition) then the wheels will be slip 1 (100%). ABS system will keep the value of slip ratio so it will be 0.2 (20%). In this final assignment, the method that is used is Neuro-Fuzzy method to control the slip value on the wheels. The input is the expectable slip and the output is slip from plant. The learning algorithm which is used is Backpropagation that will work by feedforward to get actual output and work by feedback to get error value with target output. The network that was made based on fuzzy mechanism which are fuzzification, inference and defuzzification, Neuro-fuzzy controller can reduce overshoot plant respond to 43.2% compared to plant respond without controller by open loop.
The 2008 Mw 7.2 North Pagai earthquake sequence: Partial rupture of a fully locked Mentawai patch
NASA Astrophysics Data System (ADS)
Salman, R.; Hill, E.; Feng, L.; Wei, S.; Barbot, S.; Lindsey, E.; WANG, X.; Chen, W.; Bannerjee, P.; Hermawan, I.; Natawidjaja, D. H.
2016-12-01
The Mentawai patch is a seismic gap along the Sumatra subduction zone that has not ruptured completely over the last decade. This is worrying because coral colonies of the Mentawai islands show that over the last 700 years the Mentawai patch ruptured in a sequence of great earthquake (Mw > 8.5) about every two centuries. In September 2007, the Mw 8.4 Bengkulu earthquake ruptured the southern section of the Mentawai patch. The event was then followed by two Mw >= 7 aftershocks. Five months later, the 2008 Mw 7.2 earthquake ruptured a small asperity a little further north. The event ruptured a small area in the middle portion of the Mentawai patch, where the megathrust had been estimated as highly coupled. The mainshock was preceded by a foreshock of Mw 6.5 one day before and two M 6 aftershocks that occurred on the same day as the mainshock event. However, the whole earthquake sequence ruptured only a confined area on the megathrust and failed to wake up the sleeping giant. We have yet to explain why the 2008 event did not break more asperities and develop into one gargantuan earthquake. In this study, we use geodetic and seismic data to investigate the 2008 earthquake, its following afterslip, and its fore- and after-shocks. First, we jointly invert static and high-rate cGPS, InSAR and teleseismic data in a joint inversion for a co-seismic slip distribution of the mainshock. Second, we invert teleseismic data alone to develop slip models for the foreshock, mainshock and aftershock events. Third, we use the Cut-And-Paste (CAP) technique to estimate a more accurate depths for the 2008 earthquake sequence. Finally, we use six years of cGPS data, from 2008 to 2013, to develop a model for afterslip. Our preliminary results show 2 meters of peak coseismic slip for the mainshock. In addition, 1 meter of peak afterslip overlap with the coseismic slip model. The total estimated slip is far smaller than expected from the accumulated strain that has been stored in the Mentawai patch since the last earthquake in 1833. Thus, the likelihood that the Mentawai patch will generate another great earthquake in the near future remains high. But the possibility of releasing the accumulated strain piecemeal in smaller earthquakes cannot be ruled out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieou, Charles K. C.; Daub, Eric G.; Guyer, Robert A.
In this paper, we model laboratory earthquakes in a biaxial shear apparatus using the Shear-Transformation-Zone (STZ) theory of dense granular flow. The theory is based on the observation that slip events in a granular layer are attributed to grain rearrangement at soft spots called STZs, which can be characterized according to principles of statistical physics. We model lab data on granular shear using STZ theory and document direct connections between the STZ approach and rate-and-state friction. We discuss the stability transition from stable shear to stick-slip failure and show that stick slip is predicted by STZ when the applied shearmore » load exceeds a threshold value that is modulated by elastic stiffness and frictional rheology. Finally, we also show that STZ theory mimics fault zone dilation during the stick phase, consistent with lab observations.« less
Plastic deformation of silicon dendritic web ribbons during the growth
NASA Technical Reports Server (NTRS)
Cheng, L. J.; Dumas, K. A.; Su, B. M.; Leipold, M. H.
1984-01-01
The distribution of slip dislocations in silicon dendritic web ribbons due to plastic deformation during the cooling phase of the growth was studied. The results show the existence of two distinguishable stress regions across the ribbon formed during the plastic deformation stage, namely, shear stress at the ribbon edges and tensile stress at the middle. In addition, slip dislocations caused by shear stress near the edges appear to originate at the twin plane.
NASA Astrophysics Data System (ADS)
Astafurova, E. G.; Tukeev, M. S.; Chumlyakov, Yu. I.
2007-10-01
The role of aluminum alloying on strength properties and deformation mechanisms (slip, twinning) of <123> single crystals of Hadfield steel under tensile loading at T = 300 K is demonstrated. It is found out that aluminum alloying suppresses twinning deformation in the <123> single crystals and, during slip, results in a dislocation structure change from a uniform dislocation distribution to a planar dislocation structure.
NASA Astrophysics Data System (ADS)
Tetreault, Joya Liana
The two geologic questions I address in this research are: do fault-related folds accommodate oblique-slip shortening, and how is oblique-slip deformation absorbed within the folded strata? If the strata is deforming as a strike-slip shear zone, then we should be able to observe material rotations produced by strike-slip shear by measuring paleomagnetic vertical-axis rotations. I have approached these problems by applying paleomagnetic vertical-axis rotations, minor fault analyses, and focal mechanism strain inversions to identify evidence of strike-slip shear and to quantify oblique-slip deformation within fault-related folds in the Rocky Mountain Foreland, Colorado Plateau, and the central Coast Ranges. Clockwise paleomagnetic vertical-axis rotations and compressive paleostress rotations of 15-40º in the forelimb of the Grayback Monocline, northeastern Front Range Colorado, indicate that this Laramide fold is absorbing right-lateral shear from a N90E regional shortening direction. This work shows that paleomagnetic vertical-axis rotations in folded strata can be used to identify strike-slip motion on an underlying fault, and that oblique-slip deformation is localized in the forelimb of the fold. I applied the same paleomagnetic methods to identify oblique-slip on the underlying faults of the Nacimiento, East Kaibab, San Rafael, and Grand Hogback monoclines of the Colorado Plateau. The absence of paleomagnetic rotations and structural evidence for small displacements at the Nacimiento and East Kaibab monoclines indicate minor (<1km) right-lateral slip is being accommodated in these folds. Paleomagnetic vertical-axis rotations are found in the forelimbs of the San Rafael and Grand Hogback monoclines, yielding strike-slip displacements of ˜5km within these two folds. These results are consistent with a northeast Laramide compressive stress direction. In the Coalinga anticline, central Coast Ranges, California, clockwise paleomagnetic rotations and an 8º counterclockwise deflection of the maximum shortening direction (derived from focal mechanisms strain inversions of the upper 7km) are compatible with right-lateral shear. The maximum shortening direction in the area of the mainshock rupture is fold-normal, indicating that strike-slip displacement is confined to the main fault plane and not distributed to the hanging wall. The San Andreas Fault is therefore partitioning a small amount of strike-slip to the Coalinga anticline.
NASA Astrophysics Data System (ADS)
Gans, P. B.; Wong, M.
2014-12-01
The juxtaposition of mylonitic mid-crustal rocks and faulted supracrustal rocks in metamorphic core complexes (MMCs) is usually portrayed in 2 dimensions and attributed to a single event of large-scale slip ± isostatic doming along a low-angle "detachment fault"/ shear zone. This paradigm does not explain dramatic along strike (3-D) variations in slip magnitude, footwall architecture, and burial / exhumation histories of most MMCs. A fundamental question posed by MMCs is how did their earlier thickening and exhumation histories influence the geometric evolution and 3-D slip distribution on the subsequent detachment faults? New geologic mapping and 40Ar/39Ar thermochronology from the Snake Range-Kern Mts-Deep Creek Mts (SKDC) complex in eastern Nevada offer important insights into this question. Crustal shortening and thickening by large-scale non-cylindrical recumbent folds and associated thrust faults during the late Cretaceous (90-80 Ma) resulted in deep burial (650°C, 20-25 km) of the central part of the footwall, but metamorphic grade decreases dramatically to the N and S in concert with decreasing amplitude on the shortening structures. Subsequent Paleogene extensional exhumation by normal faulting and ESE-directed mylonitic shearing is greatest in areas of maximum earlier thickening and brought highest grade rocks back to depths of~10-12 km. After ≥15 Ma of quiescence, rapid E-directed slip initiated along the brittle Miocene Snake Range detachment at 20 Ma and reactivated the Eocene shear zone. The ≥200°C gradient across the footwall at this time implies that the Miocene slip surface originated as a moderately E-dipping normal fault. This Miocene slip surface can be tracked for more than 100 km along strike, but the greatest amount of Miocene slip also coincides with parts of the footwall that were most deeply buried in the Cretaceous. These relations indicate that not only is the SKDC MMC a composite feature, but that the crustal welt created by early thickening played a fundamental role in controlling the slip distribution on subsequent extensional structures and is still evident in the high modern surface elevations of the portions of the footwall what were most deeply buried.
EXPERIMENTS ON SLIP DAMPING AT ROUNDED CONTACTS
SLIDING CONTACTS, *STAINLESS STEEL, DAMPING, ELASTIC PROPERTIES, FRICTION, LABORATORY EQUIPMENT, LOAD DISTRIBUTION , MANAGEMENT ENGINEERING, MEASUREMENT, OSCILLOSCOPES, SHEAR STRESSES, SPHERES, SURFACES, THEORY
NASA Astrophysics Data System (ADS)
Gregory, L. C.; Phillips, R. J.; Roberts, G.; Cowie, P. A.; Shanks, R. P.; McCaffrey, K. J. W.; Wedmore, L. N. J.; Zijerveld, L.
2015-12-01
In zones of distributed continental faulting, it is critical to understand how slip is partitioned onto brittle structures over both long-term millennial time scales and shorter-term individual earthquake cycles. The comparison of slip distributions on different timescales is challenging due to earthquake repeat-times being longer or similar to historical earthquake records, and a paucity of data on fault activity covering millennial to Quaternary scales in detail. Cosmogenic isotope analyses from bedrock fault scarps have the potential to bridge the gap, as these datasets track the exposure of fault planes due to earthquakes with better-than-millennial resolution. In this presentation, we will use an extensive 36Cl dataset to characterise late Holocene activity across a complicated network of normal faults in Abruzzo, Italy, comparing the most recent fault behaviour with the historical earthquake record in the region. Extensional faulting in Abruzzo has produced scarps of exposed bedrock limestone fault planes that have been preserved since the last glacial maximum (LGM). 36Cl accumulates in bedrock fault scarps as the plane is progressively exhumed by earthquakes and thus the concentration of 36Cl measured up the fault plane reflects the rate and patterns of slip. In this presentation, we will focus on the most recent record, revealed at the base of the fault. Utilising new Bayesian modelling techniques on new and previously collected data, we compare evidence for this most recent period of slip (over the last several thousands of years) across 5-6 fault zones located across strike from each other. Each sampling site is carefully characterised using LiDAR and GPR. We demonstrate that the rate of slip on individual fault strands varies significantly, between having periods of accelerated slip to relative quiescence. Where data is compared between across-strike fault zones and with the historical catalogue, it appears that slip is partitioned such that one fault zone takes up a significant portion of strain across the region for hundreds to thousands of years.
Fethiye-Burdur Fault Zone (SW Turkey): a myth?
NASA Astrophysics Data System (ADS)
Kaymakci, Nuretdin; Langereis, Cornelis; Özkaptan, Murat; Özacar, Arda A.; Gülyüz, Erhan; Uzel, Bora; Sözbilir, Hasan
2017-04-01
Fethiye Burdur Fault Zone (FBFZ) is first proposed by Dumont et al. (1979) as a sinistral strike-slip fault zone as the NE continuation of Pliny-Strabo trench in to the Anatolian Block. The fault zone supposed to accommodate at least 100 km sinistral displacement between the Menderes Massif and the Beydaǧları platform during the exhumation of the Menderes Massif, mainly during the late Miocene. Based on GPS velocities Barka and Reilinger (1997) proposed that the fault zone is still active and accommodates sinistral displacement. In order to test the presence and to unravel its kinematics we have conducted a rigorous paleomagnetic study containing more than 3000 paleomagnetic samples collected from 88 locations and 11700 fault slip data collected from 198 locations distributed evenly all over SW Anatolia spanning from Middle Miocene to Late Pliocene. The obtained rotation senses and amounts indicate slight (around 20°) counter-clockwise rotations distributed uniformly almost whole SW Anatolia and there is no change in the rotation senses and amounts on either side of the FBFZ implying no differential rotation within the zone. Additionally, the slickenside pitches and constructed paleostress configurations, along the so called FBFZ and also within the 300 km diameter of the proposed fault zone, indicated that almost all the faults, oriented parallel to subparallel to the zone, are normal in character. The fault slip measurements are also consistent with earthquake focal mechanisms suggesting active extension in the region. We have not encountered any significant strike-slip motion in the region to support presence and transcurrent nature of the FBFZ. On the contrary, the region is dominated by extensional deformation and strike-slip components are observed only on the NW-SE striking faults which are transfer faults that accommodated extension and normal motion. Therefore, we claim that the sinistral Fethiye Burdur Fault (Zone) is a myth and there is no tangible evidence to support the existence of such a strike-slip fault zone. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Fethiye Burdu Fault Zone, Paleomagnetism, paleostress inversion, normal fault, Strike-slip fault, SW Turkey
Global Search of Triggered Tectonic Tremor
NASA Astrophysics Data System (ADS)
Peng, Z.; Aiken, C.; Chao, K.; Gonzalez-Huizar, H.; Wang, B.; Ojha, L.; Yang, H.
2013-05-01
Deep tectonic tremor has been observed at major plate-boundary faults around the Pacific Rim. While regular or ambient tremor occurs spontaneously or accompanies slow-slip events, tremor could be also triggered by large distant earthquakes and solid earth tides. Because triggered tremor occurs on the same fault patches as ambient tremor and is relatively easy to identify, a systematic global search of triggered tremor could help to identify the physical mechanisms and necessary conditions for tremor generation. Here we conduct a global search of tremor triggered by large teleseismic earthquakes. We mainly focus on major faults with significant strain accumulations where no tremor has been reported before. These includes subduction zones in Central and South America, strike-slip faults around the Caribbean plate, the Queen Charlotte-Fairweather fault system and the Denali fault in the western Canada and Alaska, the Sumatra-Java subduction zone, the Himalaya frontal thrust faults, as well as major strike-slip faults around Tibet. In each region, we first compute the predicted dynamic stresses σd from global earthquakes with magnitude>=5.0 in the past 20 years, and select events with σd > 1 kPa. Next, we download seismic data recorded by stations from local or global seismic networks, and identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. In cases where station distributions are dense enough, we also locate tremor based on the standard envelope cross-correlation techniques. Finally, we calculate the triggering potential for the Love and Rayleigh waves with the local fault orientation and surface-wave incident angles. So far we have found several new places that are capable of generating triggered tremor. We will summarize these observations and discuss their implications on physical mechanisms of tremor and remote triggering.
Within-Event and Between-Events Ground Motion Variability from Earthquake Rupture Scenarios
NASA Astrophysics Data System (ADS)
Crempien, Jorge G. F.; Archuleta, Ralph J.
2017-09-01
Measurement of ground motion variability is essential to estimate seismic hazard. Over-estimation of variability can lead to extremely high annual hazard estimates of ground motion exceedance. We explore different parameters that affect the variability of ground motion such as the spatial correlations of kinematic rupture parameters on a finite fault and the corner frequency of the moment-rate spectra. To quantify the variability of ground motion, we simulate kinematic rupture scenarios on several vertical strike-slip faults and compute ground motion using the representation theorem. In particular, for the entire suite of rupture scenarios, we quantify the within-event and the between-events ground motion variability of peak ground acceleration (PGA) and response spectra at several periods, at 40 stations—all approximately at an equal distance of 20 and 50 km from the fault. Both within-event and between-events ground motion variability increase when the slip correlation length on the fault increases. The probability density functions of ground motion tend to truncate at a finite value when the correlation length of slip decreases on the fault, therefore, we do not observe any long-tail distribution of peak ground acceleration when performing several rupture simulations for small correlation lengths. Finally, for a correlation length of 6 km, the within-event and between-events PGA log-normal standard deviations are 0.58 and 0.19, respectively, values slightly smaller than those reported by Boore et al. (Earthq Spectra, 30(3):1057-1085, 2014). The between-events standard deviation is consistently smaller than the within-event for all correlations lengths, a feature that agrees with recent ground motion prediction equations.
NASA Astrophysics Data System (ADS)
Choi, Jin-Hyuck; Klinger, Yann; Ferry, Matthieu; Ritz, Jean-François; Kurtz, Robin; Rizza, Magali; Bollinger, Laurent; Davaasambuu, Battogtokh; Tsend-Ayush, Nyambayar; Demberel, Sodnomsambuu
2018-02-01
In 1905, 14 days apart, two M 8 continental strike-slip earthquakes, the Tsetserleg and Bulnay earthquakes, occurred on the Bulnay fault system, in Mongolia. Together, they ruptured four individual faults, with a total length of 676 km. Using submetric optical satellite images "Pleiades" with ground resolution of 0.5 m, complemented by field observation, we mapped in detail the entire surface rupture associated with this earthquake sequence. Surface rupture along the main Bulnay fault is 388 km in length, striking nearly E-W. The rupture is formed by a series of fault segments that are 29 km long on average, separated by geometric discontinuities. Although there is a difference of about 2 m in the average slip between the western and eastern parts of the Bulnay rupture, along-fault slip variations are overall limited, resulting in a smooth slip distribution, except for local slip deficit at segment boundaries. We show that damage, including short branches and secondary faulting, associated with the rupture propagation, occurred significantly more often along the western part of the Bulnay rupture, while the eastern part of the rupture appears more localized and thus possibly structurally simpler. Eventually, the difference of slip between the western and eastern parts of the rupture is attributed to this difference of rupture localization, associated at first order with a lateral change in the local geology. Damage associated to rupture branching appears to be located asymmetrically along the extensional side of the strike-slip rupture and shows a strong dependence on structural geologic inheritance.
Frankel, Arthur
2017-01-01
Strong‐motion recordings of the Mw 8.8 Maule earthquake were modeled using a compound rupture model consisting of (1) a background slip distribution with large correlation lengths, relatively low slip velocity, and long peak rise time of slip of about 10 s and (2) high stress‐drop subevents (asperities) on the deeper portion of the rupture with moment magnitudes 7.9–8.2, high slip velocity, and rise times of slip of about 2 s. In this model, the high‐frequency energy is not produced in the same location as the peak coseismic slip, but is generated in the deeper part of the rupture zone. Using synthetic seismograms generated for a plane‐layered velocity model, I find that the high stress‐drop subevents explain the observed Fourier spectral amplitude from about 0.1 to 1.0 Hz. Broadband synthetics (0–10 Hz) were calculated by combining deterministic synthetics derived from the background slip and asperities (≤1 Hz) with stochastic synthetics generated only at the asperities (≥1 Hz). The broadband synthetics produced response spectral accelerations with low bias compared to the data, for periods of 0.1–10 s. A subevent stress drop of 200–350 bars for the high‐frequency stochastic synthetics was found to bracket the observed spectral accelerations at frequencies greater than 1 Hz. For most of the stations, the synthetics had durations of the Arias intensity similar to the observed records.
Viscoelastic-cycle model of interseismic deformation in the northwestern United States
Pollitz, F.F.; McCrory, Patricia; Wilson, Doug; Svarc, Jerry; Puskas, Christine; Smith, Robert B.
2010-01-01
We apply a viscoelastic cycle model to a compilation of GPS velocity fields in order to address the kinematics of deformation in the northwestern United States. A viscoelastic cycle model accounts for time-dependent deformation following large crustal earthquakes and is an alternative to block models for explaining the interseismic crustal velocity field. Building on the approach taken in Pollitz et al., we construct a deformation model for the entire western United States-based on combined fault slip and distributed deformation-and focus on the implications for the Mendocino triple junction (MTJ), Cascadia megathrust, and western Washington. We find significant partitioning between strike-slip and dip-slip motion near the MTJ as the tectonic environment shifts from northwest-directed shear along the San Andreas fault system to east-west convergence along the Juan de Fuca Plate. By better accounting for the budget of aseismic and seismic slip along the Cascadia subduction interface in conjunction with an assumed rheology, we revise a previous model of slip for the M~ 9 1700 Cascadia earthquake. In western Washington, we infer slip rates on a number of strike-slip and dip-slip faults that accommodate northward convergence of the Oregon Coast block and northwestward convergence of the Juan de Fuca Plate. Lateral variations in first order mechanical properties (e.g. mantle viscosity, vertically averaged rigidity) explain, to a large extent, crustal strain that cannot be rationalized with cyclic deformation on a laterally homogeneous viscoelastic structure. Our analysis also shows that present crustal deformation measurements, particularly with the addition of the Plate Boundary Observatory, can constrain such lateral variations.
NASA Astrophysics Data System (ADS)
Feng, Wanpeng; Lindsey, Eric; Barbot, Sylvain; Samsonov, Sergey; Dai, Keren; Li, Peng; Li, Zhenhong; Almeida, Rafael; Chen, Jiajun; Xu, Xiaohua
2017-08-01
On April 25, 2015, a destructive MW 7.8 earthquake struck the capital of Nepal, Kathmandu, killing more than 8800 people and destroying numerous historical structures. We analyze six coseismic interferograms from several satellites (ALOS-2, Sentinel-1 A, and RADARSAT-2), as well as three-dimensional displacements at six GPS stations to investigate fault structure and slip distribution of the Gorkha earthquake. Using a layered crustal structure, the best-fit slip model shows that the preferred dip angle of the mainshock fault is 6 ± 3.5° and the major slip is concentrated within depths of 8-15 km. The maximum slip of 6.0 m occurs at a depth of 11 km, 70 km south east of the epicenter. The coseismic rupture extends 150 km eastward of the epicentre with a cumulative geodetic moment of 7.8 × 1020 Nm, equivalent to an earthquake of MW 7.84. We also investigate the MW 7.2 aftershock on 12 May 2015 using another three postseismic interferograms from ALOS2, RADARSAT-2, and Sentinel-1 A. The InSAR-based best-fit slip model of the largest aftershock implies that its major slip is next to the eastern lower end of the mainshock rupture with a similar maximum slip of 6 m at a depth of 13 km. This study generates various coseismic geodetic measurements to determine the source parameters of the MW 7.8 Gorkha earthquake and 12 May MW 7.2 afershock, providing an additional chance to understand the local fault structure and slip extent.
Co- and post-seismic deformation for the 2014 Napa Valley Earthquake from Sentinel-1A interferometry
NASA Astrophysics Data System (ADS)
Elliott, J. R.; Wright, T. J.; Elliott, A. J.; González, P. J.; Hooper, A. J.; Larsen, Y.; Marinkovic, P.; Plain, M.; Walters, R. J.
2014-12-01
Here we present analysis of co- and post-seismic deformation for the 24 August 2014 Napa Valley Earthquake derived from Sentinel-1A interferometry. We use these to derive the co-seismic slip distribution and map the evolution of post-seismic afterslip. The 24 August 2014 Napa Valley earthquake was the first earthquake for which surface deformation was measured by Sentinel-1A, a new radar satellite launched by the European Space Agency on 3 April 2014, and operated by the European Commission's Copernicus program. Sentinel-1A reached its final operational orbit on 7 August, and fortuitously acquired a pre-earthquake image of the San Francisco Bay area on that day in StripMap mode. By comparing it with an image acquired on 31 August, we formed a co-seismic interferogram, which reveals the surface deformation that occurred during the earthquake and the first 7 days of the post-seismic period. We use this to constrain a simple elastic model of the co-seismic slip distribution; preliminary inversion results show that the slip at depth reached a peak of >1.5 m at a depth of ~4 km. Following the earthquake, Sentinel-1A has acquired further acquisitions in both StripMap and Interferometric Wide Swath modes. The first 12-day post-seismic StripMap interferogram shows a sharp discontinuity along the entire fault rupture, consistent with field observations of rapid afterslip. We will use the full time series from August to December to measure the spatio-temporal behaviour of the afterslip, and discuss the implications for the frictional properties of the fault. The results from Napa point to an exciting and impactful future for the Sentinel-1 radar constellation. By mid-2014, Sentinel-1A will be acquiring data systematically over all the seismic belts, and the launch of Sentinel-1B in 2016 will increase the temporal frequency of acquisitions. The data will be available free of charge and will transform our ability to conduct tectonic geodesy, particularly in remote areas of the planet or developing countries unable to afford dense ground-based GNSS networks.
Romano, F.; Trasatti, E.; Lorito, S.; Piromallo, C.; Piatanesi, A.; Ito, Y.; Zhao, D.; Hirata, K.; Lanucara, P.; Cocco, M.
2014-01-01
The 2011 Tohoku earthquake (Mw = 9.1) highlighted previously unobserved features for megathrust events, such as the large slip in a relatively limited area and the shallow rupture propagation. We use a Finite Element Model (FEM), taking into account the 3D geometrical and structural complexities up to the trench zone, and perform a joint inversion of tsunami and geodetic data to retrieve the earthquake slip distribution. We obtain a close spatial correlation between the main deep slip patch and the local seismic velocity anomalies, and large shallow slip extending also to the North coherently with a seismically observed low-frequency radiation. These observations suggest that the friction controlled the rupture, initially confining the deeper rupture and then driving its propagation up to the trench, where it spreads laterally. These findings are relevant to earthquake and tsunami hazard assessment because they may help to detect regions likely prone to rupture along the megathrust, and to constrain the probability of high slip near the trench. Our estimate of ~40 m slip value around the JFAST (Japan Trench Fast Drilling Project) drilling zone contributes to constrain the dynamic shear stress and friction coefficient of the fault obtained by temperature measurements to ~0.68 MPa and ~0.10, respectively. PMID:25005351
Broadband ground-motion simulation using a hybrid approach
Graves, R.W.; Pitarka, A.
2010-01-01
This paper describes refinements to the hybrid broadband ground-motion simulation methodology of Graves and Pitarka (2004), which combines a deterministic approach at low frequencies (f 1 Hz). In our approach, fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed, and rise time. The prescribed slip distribution is constrained to follow an inverse wavenumber-squared fall-off and the average rupture speed is set at 80% of the local shear-wave velocity, which is then adjusted such that the rupture propagates faster in regions of high slip and slower in regions of low slip. We use a Kostrov-like slip-rate function having a rise time proportional to the square root of slip, with the average rise time across the entire fault constrained empirically. Recent observations from large surface rupturing earthquakes indicate a reduction of rupture propagation speed and lengthening of rise time in the near surface, which we model by applying a 70% reduction of the rupture speed and increasing the rise time by a factor of 2 in a zone extending from the surface to a depth of 5 km. We demonstrate the fidelity of the technique by modeling the strong-motion recordings from the Imperial Valley, Loma Prieta, Landers, and Northridge earthquakes.
Romano, F; Trasatti, E; Lorito, S; Piromallo, C; Piatanesi, A; Ito, Y; Zhao, D; Hirata, K; Lanucara, P; Cocco, M
2014-07-09
The 2011 Tohoku earthquake (Mw = 9.1) highlighted previously unobserved features for megathrust events, such as the large slip in a relatively limited area and the shallow rupture propagation. We use a Finite Element Model (FEM), taking into account the 3D geometrical and structural complexities up to the trench zone, and perform a joint inversion of tsunami and geodetic data to retrieve the earthquake slip distribution. We obtain a close spatial correlation between the main deep slip patch and the local seismic velocity anomalies, and large shallow slip extending also to the North coherently with a seismically observed low-frequency radiation. These observations suggest that the friction controlled the rupture, initially confining the deeper rupture and then driving its propagation up to the trench, where it spreads laterally. These findings are relevant to earthquake and tsunami hazard assessment because they may help to detect regions likely prone to rupture along the megathrust, and to constrain the probability of high slip near the trench. Our estimate of ~40 m slip value around the JFAST (Japan Trench Fast Drilling Project) drilling zone contributes to constrain the dynamic shear stress and friction coefficient of the fault obtained by temperature measurements to ~0.68 MPa and ~0.10, respectively.
Using Low-Frequency Earthquake Families on the San Andreas Fault as Deep Creepmeters
NASA Astrophysics Data System (ADS)
Thomas, A. M.; Beeler, N. M.; Bletery, Q.; Burgmann, R.; Shelly, D. R.
2018-01-01
The central section of the San Andreas Fault hosts tectonic tremor and low-frequency earthquakes (LFEs) similar to subduction zone environments. LFEs are often interpreted as persistent regions that repeatedly fail during the aseismic shear of the surrounding fault allowing them to be used as creepmeters. We test this idea by using the recurrence intervals of individual LFEs within LFE families to estimate the timing, duration, recurrence interval, slip, and slip rate associated with inferred slow slip events. We formalize the definition of a creepmeter and determine whether this definition is consistent with our observations. We find that episodic families reflect surrounding creep over the interevent time, while the continuous families and the short time scale bursts that occur as part of the episodic families do not. However, when these families are evaluated on time scales longer than the interevent time these events can also be used to meter slip. A straightforward interpretation of episodic families is that they define sections of the fault where slip is distinctly episodic in well-defined slow slip events that slip 16 times the long-term rate. In contrast, the frequent short-term bursts of the continuous and short time scale episodic families likely do not represent individual creep events but rather are persistent asperities that are driven to failure by quasi-continuous creep on the surrounding fault. Finally, we find that the moment-duration scaling of our inferred creep events are inconsistent with the proposed linear moment-duration scaling. However, caution must be exercised when attempting to determine scaling with incomplete knowledge of scale.
Slip-deficit on the Levant fault estimated by paleoseismological investigations
NASA Astrophysics Data System (ADS)
Lefevre, Marthe; Klinger, Yann; Al-Qaryouti, Mahmoud; Le Béon, Maryline; Moumani, Khaled; Thomas, Marion; Baize, Stephane
2016-04-01
The Levant fault is a major tectonic structure located east of the Mediterranean Sea. It is a 1200 km-long left-lateral strike-slip fault, which accommodates the northward movement of the Arabic plate relatively to the Sinai micro-plate, with a ˜ 5mm/year slip-rate. This slip-rate has been estimated over a large range of time scales, from a few years (gps) to several hundred thousands of years (geomorphology). The geometry of the southern part of the Levant fault, the Wadi Araba fault, is linear with only a few bends and steps. The Middle-East is a region where there is an important and complete historical record of past earthquakes. Nevertheless, due to the arid and unpopulated nature of the Wadi Araba, to constrain location and lateral extent of those past earthquake with accuracy remains challenging. We excavated a trench ˜ 100 km north of Aqaba in the wadi Musa alluvial fan, next to the largest compressional jog of the Wadi Araba. The stratigraphy contains three main units. Two units are coarse and channelized, and sandy flat layers form the third unit. In the trench the deformation is distributed over 15m, and is more pronounced in the eastern part. We can identify at least 12 earthquakes, based on upward terminations of ground ruptures. 14C dating of 28 charcoals distributed over the three documented trench walls, shows a 7000 year-long record and it allows us to match some events with historical earthquakes in AD1458, AD1293, AD748, AD114, BC31. For other dated events, matching with historical events remains more speculative considering the limited testimonies in old ages. As the last earthquake in the Wadi Araba occurred in AD1458, with an average slip rate of 5 mm/yr, about 2.7 m of slip-deficit have already accumulated, suggesting that this area might be ripe for a large earthquake. Some of the events recognized in our trench are attested north of the Dead Sea as well, such as the AD749 earthquake, suggesting that long sections of the Levant Fault might also rupture together, or in a short period, during earthquake series. Combining our results with previous paleaoseismological studies in the region, we estimated lateral extent of earthquakes and we built regional rupture scenarios. The lateral extent of earthquake ruptures was also used to estimate the average co-seismic slip, using classical scaling laws, thus to assess the cumulated slip related to each rupture scenarios. Eventually, we tried to balance long-term tectonic loading with the computed cumulated slip to estimate the accumulated slip deficit for the Levant fault, from Aqaba to the south of Lebanon, over the documented period. The seismic-moment budget shows that levels of slip deficit, both north and south of the Dead Sea basin, are similarly high, which could suggest that a seismic crisis could happen over the entire region in a near future.
NASA Astrophysics Data System (ADS)
Murphy, Shane; Spagnuolo, Elena; Lorito, Stefano; Di Toro, Giulio; Scala, Antonio; Festa, Gaetano; Nielsen, Stefan; Piatanesi, Alessio; Romano, Fabrizio; Aretusini, Stefano
2016-04-01
Seismological, tsunami and geodetic observations have shown that subduction zones are complex systems where the properties of earthquake rupture vary with depth. For example nucleation and high frequency radiation generally occur at depth but low frequency radiation and large tsunami-genic slip appear to occur in the shallow crustal depth. Numerical simulations used to describe these features predominantly use standardised theoretical equations or experimental observations often assuming that their validity extends to all slip-rates, lithologies and tectonic environments. However recent rotary-shear experiments performed on a range of diverse materials and experimental conditions highlighted the large variability of the evolution of friction during slipping pointing to a more complex relationship between material type, slip rate and normal stress. Simulating dynamic rupture using a 2D spectral element methodology on a Tohoku like fault, we apply experimentally derived friction laws (i.e. thermal slip distance friction law, Di Toro et al. 2011) Choice of parameters for the friction law are based on expected material type (e.g. cohesive and non-cohesive clay rich material representative of an accretionary wedge), the normal stress which is controlled by the interaction between the regional stress field and the fault geometry. The shear stress distribution on the fault plane is fractal with the yield stress dependent on the static coefficient of friction and the normal stress, parameters that are dependent on the material type and geometry. We use metrics such as the slip distribution, ground motion and fracture energy to explore the effect of frictional behaviour, fault geometry and stress perturbations and its potential role in tsunami generation. Preliminary results will be presented. This research is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe) and by the ERC CoG NOFEAR project 614705
Revisiting the 2004 Sumatra-Andaman earthquake in a Bayesian framework
NASA Astrophysics Data System (ADS)
Bletery, Q.; Sladen, A.; Jiang, J.; Simons, M.
2015-12-01
The 2004 Mw 9.25 Sumatra-Andaman earthquake is the largest seismic event of the modern instrumental era. Despite considerable effort to analyze the characteristics of its rupture, the different available observations have proven difficult to simultaneously integrate jointly into a finite-fault slip model. In particular, the critical near-field geodetic records contain variable and significant post-seismic signal (between 2 weeks and 2 months) while the satellite altimetry records of the associated tsunami are affected by various sources of uncertainties (e.g. source rupture velocity, meso-scale oceanic currents). In this study, we investigate the quasi-static slip distribution of the Sumatra-Andaman earthquake by carefully accounting for the different sources of uncertainties in the joint inversion of an extended set of geodetic and tsunami data. To do so, we use non-diagonal covariance matrices reflecting both data and model uncertainties in a fully Bayesian inversion framework. As model errors are particularly large for mega-earthquakes, we also rely on advanced simulation codes (normal mode theory on a layered spherical Earth for the static displacement field and non-hydrostatic equations for the tsunami) and account for the 3D curvature of the megathrust interface to reduce the associated epistemic uncertainties. The fully Bayesian inversion framework then enables us to derive the families of possible models compatible with the unevenly distributed and sometimes ambiguous measurements. We find two regions of high slip at latitudes 3°-4°N and 7°-8°N with amplitudes that probably reached values as large as 40 m and possibly larger. Such amounts of slip were not proposed by previous studies, which might have been biased by smoothing regularizations. We also find significant slip (around 20 m) offshore Andaman islands absent in earlier studies. Furthermore, we find that the rupture very likely involved shallow slip, with the possibility of reaching the trench.
Importance of weak minerals on earthquake mechanics
NASA Astrophysics Data System (ADS)
Kaneki, S.; Hirono, T.
2017-12-01
The role of weak minerals such as smectite and talc on earthquake mechanics is one of the important issues, and has been debated for recent several decades. Traditionally weak minerals in fault have been reported to weaken fault strength causing from its low frictional resistance. Furthermore, velocity-strengthening behavior of such weak mineral (talc) is considered to responsible for fault creep (aseismic slip) in the San Andreas fault. In contrast, recent studies reported that large amount of weak smectite in the Japan Trench could facilitate gigantic seismic slip during the 2011 Tohoku-oki earthquake. To investigate the role of weak minerals on rupture propagation process and magnitude of slip, we focus on the frictional properties of carbonaceous materials (CMs), which is the representative weak materials widely distributed in and around the convergent boundaries. Field observation and geochemical analyses revealed that graphitized CMs-layer is distributed along the slip surface of a fossil plate-subduction fault. Laboratory friction experiments demonstrated that pure quartz, bulk mixtures with bituminous coal (1 wt.%), and quartz with layered coal samples exhibited almost similar frictional properties (initial, yield, and dynamic friction). However, mixtures of quartz (99 wt.%) and layered graphite (1 wt.%) showed significantly lower initial and yield friction coefficient (0.31 and 0.50, respectively). Furthermore, the stress ratio S, defined as (yield stress-initial stress)/(initial stress-dynamic stress), increased in layered graphite samples (1.97) compared to quartz samples (0.14). Similar trend was observed in smectite-rich fault gouge. By referring the reported results of dynamic rupture propagation simulation using S ratio of 1.4 (typical value for the Japan Trench) and 2.0 (this study), we confirmed that higher S ratio results in smaller slip distance by approximately 20 %. On the basis of these results, we could conclude that weak minerals have lower initial/yield strength and higher S ratio, and thus restrain magnitude of slip during earthquake.
Mendoza, C.; Fukuyama, E.
1996-01-01
We employ a finite fault inversion scheme to infer the distribution of coseismic slip for the July 12, 1993, Hokkaido-Nansei-Oki earthquake using strong ground motions recorded by the Japan Meteorological Agency within 400 km of the epicenter and vertical P waveforms recorded by the Global Digital Seismograph Network at teleseismic distances. The assumed fault geometry is based on the location of the aftershock zone and comprises two fault segments with different orientations: a northern segment striking at N20??E with a 30?? dip to the west and a southern segment with a N20??W strike. For the southern segment we use both westerly and easterly dip directions to test thrust orientations previously proposed for this portion of the fault. The variance reduction is greater using a shallow west dipping segment, suggesting that the direction of dip did not change as the rupture propagated south from the hypocenter. This indicates that the earthquake resulted from the shallow underthrusting of Hokkaido beneath the Sea of Japan. Static vertical movements predicted by the corresponding distribution of fault slip are consistent with the general pattern of surface deformation observed following the earthquake. Fault rupture in the northern segment accounts for about 60% of the total P wave seismic moment of 3.4 ?? 1020 N m and includes a large circular slip zone (4-m peak) near the earthquake hypocenter at depths between 10 and 25 km. Slip in the southern segment is also predominantly shallower than 25 km, but the maximum coseismic displacements (2.0-2.5 m) are observed at a depth of about 5 km. This significant shallow slip in the southern portion of the rupture zone may have been responsible for the large tsunami that devastated the small offshore island of Okushiri. Localized shallow faulting near the island, however, may require a steep westerly dip to reconcile the measured values of ground subsidence.
NASA Astrophysics Data System (ADS)
Jolivet, R.; Duputel, Z.; Simons, M.; Jiang, J.; Riel, B. V.; Moore, A. W.; Owen, S. E.
2017-12-01
Mapping subsurface fault slip during the different phases of the seismic cycle provides a probe of the mechanical properties and the state of stress along these faults. We focus on the northern Chile megathrust where first order estimates of interseismic fault locking suggests little to no overlap between regions slipping seismically versus those that are dominantly aseismic. However, published distributions of slip, be they during seismic or aseismic phases, rely on unphysical regularization of the inverse problem, thereby cluttering attempts to quantify the degree of overlap between seismic and aseismic slip. Considering all the implications of aseismic slip on our understanding of the nucleation, propagation and arrest of seismic ruptures, it is of utmost importance to quantify our confidence in the current description of fault coupling. Here, we take advantage of 20 years of InSAR observations and more than a decade of GPS measurements to derive probabilistic maps of inter-seismic coupling, as well as co-seismic and post-seismic slip along the northern Chile subduction megathrust. A wide InSAR velocity map is derived using a novel multi-pixel time series analysis method accounting for orbital errors, atmospheric noise and ground deformation. We use AlTar, a massively parallel Monte Carlo Markov Chain algorithm exploiting the acceleration capabilities of Graphic Processing Units, to derive the probability density functions (PDF) of slip. In northern Chile, we find high probabilities for a complete release of the elastic strain accumulated since the 1877 earthquake by the 2014, Iquique earthquake and for the presence of a large, independent, locked asperity left untapped by recent events, north of the Mejillones peninsula. We evaluate the probability of overlap between the co-, inter- and post-seismic slip and consider the potential occurrence of slow, aseismic slip events along this portion of the subduction zone.
Rapid Source Characterization of the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake
Hayes, Gavin P.
2011-01-01
On March 11th, 2011, a moment magnitude 9.0 earthquake struck off the coast of northeast Honshu, Japan, generating what may well turn out to be the most costly natural disaster ever. In the hours following the event, the U.S. Geological Survey National Earthquake Information Center led a rapid response to characterize the earthquake in terms of its location, size, faulting source, shaking and slip distributions, and population exposure, in order to place the disaster in a framework necessary for timely humanitarian response. As part of this effort, fast finite-fault inversions using globally distributed body- and surface-wave data were used to estimate the slip distribution of the earthquake rupture. Models generated within 7 hours of the earthquake origin time indicated that the event ruptured a fault up to 300 km long, roughly centered on the earthquake hypocenter, and involved peak slips of 20 m or more. Updates since this preliminary solution improve the details of this inversion solution and thus our understanding of the rupture process. However, significant observations such as the up-dip nature of rupture propagation and the along-strike length of faulting did not significantly change, demonstrating the usefulness of rapid source characterization for understanding the first order characteristics of major earthquakes.
NASA Astrophysics Data System (ADS)
Ruhl, C. J.; Smith, K. D.
2012-12-01
The Mina Deflection (MD) region of the central Walker Lane of eastern California and western Nevada, is a complex zone of northeast-trending normal, and primarily left-lateral strike-slip to oblique-slip faulting that separates the Southern Walker Lane (SWL) from a series of east-tilted normal fault blocks in the Central Walker Lane (CWL) (Faulds and Henry, 2008; Surpless, 2008). The MD accommodates the transfer of right-lateral strike-slip motion from northwest-striking faults in the SWL to a series of left-stepping northwest-striking right-lateral strike-slip faults in the CWL, east of the Wassuk Range near Hawthorne, NV. The ~50 km wide ~80 km long right-step is a distinct transition in regional physiography that has been attributed to strain accommodation through pre-Cenozoic lithospheric structures. Several slip transfer mechanisms have been proposed within the MD, from clockwise rotation of high-angle fault blocks (Wesnousky, 2005), to low-angle displacement within the Silver Peak-Lone Mountain complex (Oldow et al., 2001), and curved fault arrays associated with localized basins and tectonic depressions (Ferranti et al., 2009). The region has been a regular source of M4+ events, the most recent being an extended sequence that included twenty-seven M 3.5+ earthquakes (largest event M 4.6) south of Hawthorne in 2011. These earthquakes (< 5 km depth) define shallow W-dipping (dip ~56°) and NW-dipping (dip ~70°) normal faulting constrained by moment tensor (MT) solutions and earthquake relocations. Temporary stations deployed in the source area provide good control. A distributed sequence in 2004, between Queen Valley and Mono Lake, primarily associated with the Huntoon Valley fault, included three M 5+ left-lateral strike-slip faulting events. A 1997 sequence in northern Fish Lake Valley (east of the White Mountains), with mainshock Mw 5.3 (Ichinose et al., 2003), also showed high-angle northeast-striking left-lateral strike-slip motion. Historical events include the 1934 M 6.5 Excelsior Mountains event south of Mina, NV, and the 1932 M 7.1 Cedar Mountains earthquake east of the Pilot Mountains. Another persistent feature in the seismicity is an ~40 km long arcuate distribution of activity extending from approximately Queen Valley, north of the White Mountains, to Mono Lake that appears to reflect a southwestern boundary to northeast-striking structures in the MD. Here we develop high-precision relocations of instrumental seismicity in the MD from 1984 through 2012, including relocations of the 2004 sequence, and account for the historical seismic record. MT solutions from published reports and computed from recent M 3.5+ earthquakes as well as available and developed short-period focal mechanisms are compiled to evaluate the stress field to assess mechanisms of slip accommodation. Based on the complex distribution of fault orientations, the stress field varies locally northward from the SWL throughout the MD; however, in many cases, fault plane alignments can be isolated from high-precision locations, providing better constraints on stress and slip orientations.
Probabilistic Mesomechanical Fatigue Model
NASA Technical Reports Server (NTRS)
Tryon, Robert G.
1997-01-01
A probabilistic mesomechanical fatigue life model is proposed to link the microstructural material heterogeneities to the statistical scatter in the macrostructural response. The macrostructure is modeled as an ensemble of microelements. Cracks nucleation within the microelements and grow from the microelements to final fracture. Variations of the microelement properties are defined using statistical parameters. A micromechanical slip band decohesion model is used to determine the crack nucleation life and size. A crack tip opening displacement model is used to determine the small crack growth life and size. Paris law is used to determine the long crack growth life. The models are combined in a Monte Carlo simulation to determine the statistical distribution of total fatigue life for the macrostructure. The modeled response is compared to trends in experimental observations from the literature.
Self-patterning Gd nano-fibers in Mg-Gd alloys
Li, Yangxin; Wang, Jian; Chen, Kaiguo; ...
2016-12-07
Manipulating the shape and distribution of strengthening units, e.g. particles, fibers, and precipitates, in a bulk metal, has been a widely applied strategy of tailoring their mechanical properties. Here, we report self-assembled patterns of Gd nano-fibers in Mg-Gd alloys for the purpose of improving their strength and deformability. 1-nm Gd nano-fibers, with amore » $$\\langle$$c$$\\rangle$$ -rod shape, are formed and hexagonally patterned in association with Gd segregations along dislocations that nucleated during hot extrusion. Such Gd-fiber patterns are able to regulate the relative activities of slips and twinning, as a result, overcome the inherent limitations in strength and ductility of Mg alloys. Finally, this nano-fiber patterning approach could be an effective method to engineer hexagonal metals.« less
Self-patterning Gd nano-fibers in Mg-Gd alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yangxin; Wang, Jian; Chen, Kaiguo
Manipulating the shape and distribution of strengthening units, e.g. particles, fibers, and precipitates, in a bulk metal, has been a widely applied strategy of tailoring their mechanical properties. Here, we report self-assembled patterns of Gd nano-fibers in Mg-Gd alloys for the purpose of improving their strength and deformability. 1-nm Gd nano-fibers, with amore » $$\\langle$$c$$\\rangle$$ -rod shape, are formed and hexagonally patterned in association with Gd segregations along dislocations that nucleated during hot extrusion. Such Gd-fiber patterns are able to regulate the relative activities of slips and twinning, as a result, overcome the inherent limitations in strength and ductility of Mg alloys. Finally, this nano-fiber patterning approach could be an effective method to engineer hexagonal metals.« less
Slow slip events in the early part of the earthquake cycle
NASA Astrophysics Data System (ADS)
Voss, Nicholas K.; Malservisi, Rocco; Dixon, Timothy H.; Protti, Marino
2017-08-01
In February 2014 a
Near-field tsunami edge waves and complex earthquake rupture
Geist, Eric L.
2013-01-01
The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the M w = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. Ruptures located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.
Chapter A. The Loma Prieta, California, Earthquake of October 17, 1989 - Main Shock Characteristics
Spudich, Paul
1996-01-01
The October 17, 1989, Loma Prieta, Calif., earthquake (0004:15.2 G.m.t. October 18; lat 37.036? N., long 121.883? W.; 19-km depth) had a local magnitude (ML) of about 6.7, a surface-wave magnitude (MS) of 7.1, a seismic moment of 2.2x1019 N-m to 3.5x1019 N-m, a source duration of 6 to 15 s, and an average stress drop of at least 50 bars. Slip occurred on a dipping fault surface about 35 km long and was largely confined to a depth of about 7 to 20 km. The slip vector had a large vertical component, and slip was distributed in two main regions situated northwest and southeast of the hypocenter. This slip distribution caused about half of the earthquake's energy to be focused toward the urbanized San Francisco Bay region, while the other half was focused toward the southeast. Had the rupture initiated at the southeast end of the aftershock zone, shaking in the bay region would have been both longer and stronger. These source parameters suggest that the earthquake was not a typical shallow San Andreas-type event but a deeper event on a different fault with a recurrence interval of many hundreds of years. Therefore, the potential for a damaging shallow event on the San Andreas fault in the Santa Cruz Mountains may still exist.
Three dimensional surface slip partitioning of the Sichuan earthquake from Synthetic Aperture Radar
NASA Astrophysics Data System (ADS)
de Michele, M.; Raucoules, D.; de Sigoyer, J.; Pubellier, M.; Lasserre, C.; Pathier, E.; Klinger, Y.; van der Woerd, J.
2009-12-01
The Sichuan earthquake, Mw 7.9, struck the Longmen Shan range front, in the western Sichuan province, China, on 12 May 2008. It severely affected an area where little historical seismicity and little or no significant active shortening were reported before the earthquake (e.g. Gu et al., 1989; Chen et al., 1994; Gan et al., 2007). The Longmen Shan thrust system bounds the eastern margin of the Tibetan plateau and is considered as a transpressive zone since Triassic time that was reactivated during the India-Asia collision (e.g., Tapponnier and Molnar, 1977, Chen and Wilson 1996; Arne et al., 1997, Godard et al., 2009). However, contrasting geological evidences of sparse thrusting and marked dextral strike-slip faulting during the Quaternary along with high topography (Burchfiel et al., 1995; Densmore et al., 2007) have led to models of dynamically driven and sustained topography (Royden et al., 1997) limiting the role of earthquakes in relief building and leaving the mechanism of long term strain distribution in this area as an open question. Here we combine C and L band Synthetic Aperture Radar (SAR) offsets data from ascending and descending paths to retrieve the three dimensional surface slips distribution all along the earthquake ruptures of the Sichuan earthquake. We show a quantitative assessment of the amount of co-seismic slip and its partitioning at the surface.
Shen, Feng; Du, Wenbin; Kreutz, Jason E; Fok, Alice; Ismagilov, Rustem F
2010-10-21
This paper describes a SlipChip to perform digital PCR in a very simple and inexpensive format. The fluidic path for introducing the sample combined with the PCR mixture was formed using elongated wells in the two plates of the SlipChip designed to overlap during sample loading. This fluidic path was broken up by simple slipping of the two plates that removed the overlap among wells and brought each well in contact with a reservoir preloaded with oil to generate 1280 reaction compartments (2.6 nL each) simultaneously. After thermal cycling, end-point fluorescence intensity was used to detect the presence of nucleic acid. Digital PCR on the SlipChip was tested quantitatively by using Staphylococcus aureus genomic DNA. As the concentration of the template DNA in the reaction mixture was diluted, the fraction of positive wells decreased as expected from the statistical analysis. No cross-contamination was observed during the experiments. At the extremes of the dynamic range of digital PCR the standard confidence interval determined using a normal approximation of the binomial distribution is not satisfactory. Therefore, statistical analysis based on the score method was used to establish these confidence intervals. The SlipChip provides a simple strategy to count nucleic acids by using PCR. It may find applications in research applications such as single cell analysis, prenatal diagnostics, and point-of-care diagnostics. SlipChip would become valuable for diagnostics, including applications in resource-limited areas after integration with isothermal nucleic acid amplification technologies and visual readout.
Active strike-slip faulting in El Salvador, Central America
NASA Astrophysics Data System (ADS)
Corti, Giacomo; Carminati, Eugenio; Mazzarini, Francesco; Oziel Garcia, Marvyn
2005-12-01
Several major earthquakes have affected El Salvador, Central America, during the Past 100 yr as a consequence of oblique subduction of the Cocos plate under the Caribbean plate, which is partitioned between trench-orthogonal compression and strike-slip deformation parallel to the volcanic arc. Focal mechanisms and the distribution of the most destructive earthquakes, together with geomorphologic evidence, suggest that this transcurrent component of motion may be accommodated by a major strike-slip fault (El Salvador fault zone). We present field geological, structural, and geomorphological data collected in central El Salvador that allow the constraint of the kinematics and the Quaternary activity of this major seismogenic strike-slip fault system. Data suggest that the El Salvador fault zone consists of at least two main ˜E-W fault segments (San Vicente and Berlin segments), with associated secondary synthetic (WNW-ESE) and antithetic (NNW-SSE) Riedel shears and NW-SE tensional structures. The two main fault segments overlap in a dextral en echelon style with the formation of an intervening pull-apart basin. Our original geological and geomorphologic data suggest a late Pleistocene Holocene slip rate of ˜11 mm/yr along the Berlin segment, in contrast with low historical seismicity. The kinematics and rates of deformation suggested by our new data are consistent with models involving slip partitioning during oblique subduction, and support the notion that a trench-parallel component of motion between the Caribbean and Cocos plates is concentrated along E-W dextral strike-slip faults parallel to the volcanic arc.
Paleogeodesy of the Southern Santa Cruz Mountains Frontal Thrusts, Silicon Valley, CA
NASA Astrophysics Data System (ADS)
Aron, F.; Johnstone, S. A.; Mavrommatis, A. P.; Sare, R.; Hilley, G. E.
2015-12-01
We present a method to infer long-term fault slip rate distributions using topography by coupling a three-dimensional elastic boundary element model with a geomorphic incision rule. In particular, we used a 10-m-resolution digital elevation model (DEM) to calculate channel steepness (ksn) throughout the actively deforming southern Santa Cruz Mountains in Central California. We then used these values with a power-law incision rule and the Poly3D code to estimate slip rates over seismogenic, kilometer-scale thrust faults accommodating differential uplift of the relief throughout geologic time. Implicit in such an analysis is the assumption that the topographic surface remains unchanged over time as rock is uplifted by slip on the underlying structures. The fault geometries within the area are defined based on surface mapping, as well as active and passive geophysical imaging. Fault elements are assumed to be traction-free in shear (i.e., frictionless), while opening along them is prohibited. The free parameters in the inversion include the components of the remote strain-rate tensor (ɛij) and the bedrock resistance to channel incision (K), which is allowed to vary according to the mapped distribution of geologic units exposed at the surface. The nonlinear components of the geomorphic model required the use of a Markov chain Monte Carlo method, which simulated the posterior density of the components of the remote strain-rate tensor and values of K for the different mapped geologic units. Interestingly, posterior probability distributions of ɛij and K fall well within the broad range of reported values, suggesting that the joint use of elastic boundary element and geomorphic models may have utility in estimating long-term fault slip-rate distributions. Given an adequate DEM, geologic mapping, and fault models, the proposed paleogeodetic method could be applied to other crustal faults with geological and morphological expressions of long-term uplift.
On boundary-element models of elastic fault interaction
NASA Astrophysics Data System (ADS)
Becker, T. W.; Schott, B.
2002-12-01
We present the freely available, modular, and UNIX command-line based boundary-element program interact. It is yet another implementation of Crouch and Starfield's (1983) 2-D and Okada's (1992) half-space solutions for constant slip on planar fault segments in an elastic medium. Using unconstrained or non-negative, standard-package matrix routines, the code can solve for slip distributions on faults given stress boundary conditions, or vice versa, both in a local or global reference frame. Based on examples of complex fault geometries from structural geology, we discuss the effects of different stress boundary conditions on the predicted slip distributions of interacting fault systems. Such one-step calculations can be useful to estimate the moment-release efficiency of alternative fault geometries, and so to evaluate the likelihood which system may be realized in nature. A further application of the program is the simulation of cyclic fault rupture based on simple static-kinetic friction laws. We comment on two issues: First, that of the appropriate rupture algorithm. Cellular models of seismicity often employ an exhaustive rupture scheme: fault cells fail if some critical stress is reached, then cells slip once-only by a given amount, and subsequently the redistributed stress is used to check for triggered activations on other cells. We show that this procedure can lead to artificial complexity in seismicity if time-to-failure is not calculated carefully because of numerical noise. Second, we address the question if foreshocks can be viewed as direct expressions of a simple statistical distribution of frictional strength on individual faults. Repetitive failure models based on a random distribution of frictional coefficients initially show irregular seismicity. By repeatedly selecting weaker patches, the fault then evolves into a quasi-periodic cycle. Each time, the pre-mainshock events build up the cumulative moment release in a non-linear fashion. These temporal seismicity patterns roughly resemble the accelerated moment-release features which are sometimes observed in nature.
Rapid Estimates of Rupture Extent for Large Earthquakes Using Aftershocks
NASA Astrophysics Data System (ADS)
Polet, J.; Thio, H. K.; Kremer, M.
2009-12-01
The spatial distribution of aftershocks is closely linked to the rupture extent of the mainshock that preceded them and a rapid analysis of aftershock patterns therefore has potential for use in near real-time estimates of earthquake impact. The correlation between aftershocks and slip distribution has frequently been used to estimate the fault dimensions of large historic earthquakes for which no, or insufficient, waveform data is available. With the advent of earthquake inversions that use seismic waveforms and geodetic data to constrain the slip distribution, the study of aftershocks has recently been largely focused on enhancing our understanding of the underlying mechanisms in a broader earthquake mechanics/dynamics framework. However, in a near real-time earthquake monitoring environment, in which aftershocks of large earthquakes are routinely detected and located, these data may also be effective in determining a fast estimate of the mainshock rupture area, which would aid in the rapid assessment of the impact of the earthquake. We have analyzed a considerable number of large recent earthquakes and their aftershock sequences and have developed an effective algorithm that determines the rupture extent of a mainshock from its aftershock distribution, in a fully automatic manner. The algorithm automatically removes outliers by spatial binning, and subsequently determines the best fitting “strike” of the rupture and its length by projecting the aftershock epicenters onto a set of lines that cross the mainshock epicenter with incremental azimuths. For strike-slip or large dip-slip events, for which the surface projection of the rupture is recti-linear, the calculated strike correlates well with the strike of the fault and the corresponding length, determined from the distribution of aftershocks projected onto the line, agrees well with the rupture length. In the case of a smaller dip-slip rupture with an aspect ratio closer to 1, the procedure gives a measure of the rupture extent and dimensions, but not necessarily the strike. We found that using standard earthquake catalogs, such as the National Earthquake Information Center catalog, we can constrain the rupture extent, rupture direction, and in many cases the type of faulting, of the mainshock with the aftershocks that occur within the first hour after the mainshock. However, this data may not be currently available in near real-time. Since our results show that these early aftershock locations may be used to estimate first order rupture parameters for large global earthquakes, the near real-time availability of these data would be useful for fast earthquake damage assessment.
Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule, Chile earthquake sequence
Hayes, Gavin P.; Bergman, Eric; Johnson, Kendra J.; Benz, Harley M.; Brown, Lucy; Meltzer, Anne S.
2013-01-01
After the 2010 Mw 8.8 Maule earthquake, an international collaboration involving teams and instruments from Chile, the US, the UK, France and Germany established the International Maule Aftershock Deployment temporary network over the source region of the event to facilitate detailed, open-access studies of the aftershock sequence. Using data from the first 9-months of this deployment, we have analyzed the detailed spatial distribution of over 2500 well-recorded aftershocks. All earthquakes have been relocated using a hypocentral decomposition algorithm to study the details of and uncertainties in both their relative and absolute locations. We have computed regional moment tensor solutions for the largest of these events to produce a catalogue of 465 mechanisms, and have used all of these data to study the spatial distribution of the aftershock sequence with respect to the Chilean megathrust. We refine models of co-seismic slip distribution of the Maule earthquake, and show how small changes in fault geometries assumed in teleseismic finite fault modelling significantly improve fits to regional GPS data, implying that the accuracy of rapid teleseismic fault models can be substantially improved by consideration of existing fault geometry model databases. We interpret all of these data in an integrated seismotectonic framework for the Maule earthquake rupture and its aftershock sequence, and discuss the relationships between co-seismic rupture and aftershock distributions. While the majority of aftershocks are interplate thrust events located away from regions of maximum co-seismic slip, interesting clusters of aftershocks are identified in the lower plate at both ends of the main shock rupture, implying internal deformation of the slab in response to large slip on the plate boundary interface. We also perform Coulomb stress transfer calculations to compare aftershock locations and mechanisms to static stress changes following the Maule rupture. Without the incorporation of uncertainties in earthquake locations, just 55 per cent of aftershock nodal planes align with faults promoted towards failure by co-seismic slip. When epicentral uncertainties are considered (on the order of just ±2–3 km), 90 per cent of aftershocks are consistent with occurring along faults demonstrating positive stress transfer. These results imply large sensitivities of Coulomb stress transfer calculations to uncertainties in both earthquake locations and models of slip distributions, particularly when applied to aftershocks close to a heterogeneous fault rupture; such uncertainties should therefore be considered in similar studies used to argue for or against models of static stress triggering.
NASA Astrophysics Data System (ADS)
Levy, D. A.; Haproff, P. J.; Yin, A.
2016-12-01
Crustal-scale transtensional deformation is common in intracontinental extensional settings. However, along-strike variations in the geometry, kinematics, and linkages between rift-related faults, along with controls on local magmatic plumbing, remain inadequately examined. In this study, we conducted geologic mapping of active structures within central and northern Owens Valley of eastern California. C. Owens Valley features right-slip oblique deformation accommodated by three discrete north-south-trending faults: (1) the right-slip Owens Valley fault (OVF) and rift-bounding (2) Sierra Nevada Frontal fault (SNFF) and (3) the White-Inyo Mountains fault (WIMF). The OVF also serves as a lithospheric-scale, vertical conduit for asthenospheric-derived magma to migrate upwards and erupt at Big Pine Volcanic Field. Right-slip shear within C. Owens Valley is transferred to the SNFF of N. Owens Valley via the Poverty Hills restraining bend. In contrast to C. Owens Valley, the northern segment is dominated by distributed E-W to NE-SW-oriented extension, evidenced by normal fault scarps throughout Volcanic Tablelands and basin floor. Furthermore, the White Mountain fault which bounds N. Owens Valley to the east consists of a master west-dipping detachment fault that thinned the lithosphere, allowing for asthenospheric upwelling into the crust beneath the western rift shoulder. Subvertical, right-slip faults of the SNFF provide a conduit for magma to erupt on the surface throughout the Long Valley Caldera, Mono-Inyo Craters, and Mono Basin region. Our mapping demonstrates complex strain partitioning of discrete and distributed deformation within an alternating pure and simple shear, transtensional rift zone. Lastly, we present previously unknown relationships in Owens Valley between lithospheric-scale fault systems, seismic potential, and rift magmatism.
NASA Astrophysics Data System (ADS)
Muksin, Umar; Haberland, Christian; Nukman, Mochamad; Bauer, Klaus; Weber, Michael
2014-12-01
The Tarutung Basin is located at a right step-over in the northern central segment of the dextral strike-slip Sumatran Fault System (SFS). Details of the fault structure along the Tarutung Basin are derived from the relocations of seismicity as well as from focal mechanism and structural geology. The seismicity distribution derived by a 3D inversion for hypocenter relocation is clustered according to a fault-like seismicity distribution. The seismicity is relocated with a double-difference technique (HYPODD) involving the waveform cross-correlations. We used 46,904 and 3191 arrival differences obtained from catalogue data and cross-correlation analysis, respectively. Focal mechanisms of events were analyzed by applying a grid search method (HASH code). Although there is no significant shift of the hypocenters (10.8 m in average) and centroids (167 m in average), the application of the double difference relocation sharpens the earthquake distribution. The earthquake lineation reflects the fault system, the extensional duplex fault system, and the negative flower structure within the Tarutung Basin. The focal mechanisms of events at the edge of the basin are dominantly of strike-slip type representing the dextral strike-slip Sumatran Fault System. The almost north-south striking normal fault events along extensional zones beneath the basin correlate with the maximum principal stress direction which is the direction of the Indo-Australian plate motion. The extensional zones form an en-echelon pattern indicated by the presence of strike-slip faults striking NE-SW to NW-SE events. The detailed characteristics of the fault system derived from the seismological study are also corroborated by structural geology at the surface.
NASA Astrophysics Data System (ADS)
Kubota, T.; Hino, R.; Inazu, D.; Saito, T.; Iinuma, T.; Suzuki, S.; Ito, Y.; Ohta, Y.; Suzuki, K.
2012-12-01
We estimated source models of small amplitude tsunami associated with M-7 class earthquakes in the rupture area of the 2011 Tohoku-Oki Earthquake using near-field records of tsunami recorded by ocean bottom pressure gauges (OBPs). The largest (Mw=7.3) foreshock of the Tohoku-Oki earthquake, occurred on 9 Mar., two days before the mainshock. Tsunami associated with the foreshock was clearly recorded by seven OBPs, as well as coseismic vertical deformation of the seafloor. Assuming a planer fault along the plate boundary as a source, the OBP records were inverted for slip distribution. As a result, the most of the coseismic slip was found to be concentrated in the area of about 40 x 40 km in size and located to the north-west of the epicenter, suggesting downdip rupture propagation. Seismic moment of our tsunami waveform inversion is 1.4 x 10^20 Nm, equivalent to Mw 7.3. On 2011 July 10th, an earthquake of Mw 7.0 occurred near the hypocenter of the mainshock. Its relatively deep focus and strike-slip focal mechanism indicate that this earthquake was an intraslab earthquake. The earthquake was associated with small amplitude tsunami. By using the OBP records, we estimated a model of the initial sea-surface height distribution. Our tsunami inversion showed that a pair of uplift/subsiding eyeballs was required to explain the observed tsunami waveform. The spatial pattern of the seafloor deformation is consistent with the oblique strike-slip solution obtained by the seismic data analyses. The location and strike of the hinge line separating the uplift and subsidence zones correspond well to the linear distribution of the aftershock determined by using local OBS data (Obana et al., 2012).
Slip distribution, strain accumulation and aseismic slip on the Chaman Fault system
NASA Astrophysics Data System (ADS)
Amelug, F.
2015-12-01
The Chaman fault system is a transcurrent fault system developed due to the oblique convergence of the India and Eurasia plates in the western boundary of the India plate. To evaluate the contemporary rates of strain accumulation along and across the Chaman Fault system, we use 2003-2011 Envisat SAR imagery and InSAR time-series methods to obtain a ground velocity field in radar line-of-sight (LOS) direction. We correct the InSAR data for different sources of systematic biases including the phase unwrapping errors, local oscillator drift, topographic residuals and stratified tropospheric delay and evaluate the uncertainty due to the residual delay using time-series of MODIS observations of precipitable water vapor. The InSAR velocity field and modeling demonstrates the distribution of deformation across the Chaman fault system. In the central Chaman fault system, the InSAR velocity shows clear strain localization on the Chaman and Ghazaband faults and modeling suggests a total slip rate of ~24 mm/yr distributed on the two faults with rates of 8 and 16 mm/yr, respectively corresponding to the 80% of the total ~3 cm/yr plate motion between India and Eurasia at these latitudes and consistent with the kinematic models which have predicted a slip rate of ~17-24 mm/yr for the Chaman Fault. In the northern Chaman fault system (north of 30.5N), ~6 mm/yr of the relative plate motion is accommodated across Chaman fault. North of 30.5 N where the topographic expression of the Ghazaband fault vanishes, its slip does not transfer to the Chaman fault but rather distributes among different faults in the Kirthar range and Sulaiman lobe. Observed surface creep on the southern Chaman fault between Nushki and north of City of Chaman, indicates that the fault is partially locked, consistent with the recorded M<7 earthquakes in last century on this segment. The Chaman fault between north of the City of Chaman to North of Kabul, does not show an increase in the rate of strain accumulation. However, lack of seismicity on this segment, presents a significant hazard on Kabul. The high rate of strain accumulation on the Ghazaband fault and lack of evidence for the rupture of the fault during the 1935 Quetta earthquake, present a growing earthquake hazard to the Balochistan and the populated areas such as the city of Quetta.
NASA Astrophysics Data System (ADS)
Tracy, Saoirse R.; Daly, Keith R.; Sturrock, Craig J.; Crout, Neil M. J.; Mooney, Sacha J.; Roose, Tiina
2016-07-01
In response to the comment raised by Zhang et al. (2016, doi: 10.1002/2015WR018432) we explore the differences in average velocity computed using slip and no-slip boundary conditions at the air water interface. We consider a porous medium in which the air phase acts to impede the movement of water rather than to lubricate it, a case closer to the observed distribution of water in our CT images. We find that, whilst the slip boundary condition may be a more accurate approximation, in cases where the air phase is seen to impede water movement the differences between the two approaches are negligible.
Earthquakes and aseismic creep associated with growing fault-related folds
NASA Astrophysics Data System (ADS)
Burke, C. C.; Johnson, K. M.
2017-12-01
Blind thrust faults overlain by growing anticlinal folds pose a seismic risk to many urban centers in the world. A large body of research has focused on using fold and growth strata geometry to infer the rate of slip on the causative fault and the distribution of off-fault deformation. However, because we have had few recorded large earthquakes on blind faults underlying folds, it remains unclear how much of the folding occurs during large earthquakes or during the interseismic period accommodated by aseismic creep. Numerous kinematic and mechanical models as well as field observations demonstrate that flexural slip between sedimentary layering is an important mechanism of fault-related folding. In this study, we run boundary element models of flexural-slip fault-related folding to examine the extent to which energy is released seismically or aseismically throughout the evolution of the fold and fault. We assume a fault imbedded in viscoelastic mechanical layering under frictional contact. We assign depth-dependent frictional properties and adopt a rate-state friction formulation to simulate slip over time. We find that in many cases, a large percentage (greater than 50%) of fold growth is accomplished by aseismic creep at bedding and fault contacts. The largest earthquakes tend to occur on the fault, but a significant portion of the seismicity is distributed across bedding contacts through the fold. We are currently working to quantify these results using a large number of simulations with various fold and fault geometries. Result outputs include location, duration, and magnitude of events. As more simulations are completed, these results from different fold and fault geometries will provide insight into how much folding occurs from these slip events. Generalizations from these simulations can be compared with observations of active fault-related folds and used in the future to inform seismic hazard studies.
Surface slip during large Owens Valley earthquakes
NASA Astrophysics Data System (ADS)
Haddon, E. K.; Amos, C. B.; Zielke, O.; Jayko, A. S.; Bürgmann, R.
2016-06-01
The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from ˜1.0 to 6.0 m and average 3.3 ± 1.1 m (2σ). Vertical offsets are predominantly east-down between ˜0.1 and 2.4 m, with a mean of 0.8 ± 0.5 m. The average lateral-to-vertical ratio compiled at specific sites is ˜6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.4 ± 1.5 m, corresponding to a geologic Mw ˜7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.1 ± 2.0 m, 12.8 ± 1.5 m, and 16.6 ± 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between ˜0.6 and 1.6 mm/yr (1σ) over the late Quaternary.
Gold, Ryan D.; Briggs, Richard; Personius, Stephen; Crone, Anthony J.; Mahan, Shannon; Angster, Stephen
2014-01-01
The dextral-slip Mohawk Valley fault zone (MVFZ) strikes northwestward along the eastern margin of the Sierra Nevada in the northern Walker Lane. Geodetic block modeling indicates that the MVFZ may accommodate ~3 mm/yr of regional dextral strain, implying that it is the highest slip-rate strike-slip fault in the region; however, only limited geologic data are available to constrain the system’s slip rate and earthquake history. We mapped the MVFZ using airborne lidar data and field observations and identified a site near Sulphur Creek for paleoseismic investigation. At this site, oblique dextral-normal faulting on the steep valley margin has created a closed depression that floods annually during spring snowmelt to form an ephemeral pond. We excavated three fault-perpendicular trenches at the site and exposed pond sediment that interfingers with multiple colluvial packages eroded from the scarp that bounds the eastern side of the pond. We documented evidence for four surface-rupturing earthquakes on this strand of the MVFZ. OxCal modeling of radiocarbon and luminescence ages indicates that these earthquakes occurred at 14.0 ka, 12.8 ka, 5.7 ka, and 1.9 ka. The mean ~4 kyr recurrence interval is inconsistent with slip rates of ~3 mm/yr; these rates imply surface ruptures of more than 10 m per event, which is geologically implausible for the subdued geomorphic expression and 60 km length of the MVFZ. We propose that unidentified structures not yet incorporated into geodetic models may accommodate significant dextral shear across the northern Walker Lane, highlighting the role of distributed deformation in this region.
NASA Astrophysics Data System (ADS)
Carlsson, Kristoffer; Runesson, Kenneth; Larsson, Fredrik; Ekh, Magnus
2017-10-01
In this paper we discuss issues related to the theoretical as well as the computational format of gradient-extended crystal viscoplasticity. The so-called primal format uses the displacements, the slip of each slip system and the dissipative stresses as the primary unknown fields. An alternative format is coined the semi-dual format, which in addition includes energetic microstresses among the primary unknown fields. We compare the primal and semi-dual variational formats in terms of advantages and disadvantages from modeling as well as numerical viewpoints. Finally, we perform a series of representative numerical tests to investigate the rate of convergence with finite element mesh refinement. In particular, it is shown that the commonly adopted microhard boundary condition poses a challenge in the special case that the slip direction is parallel to a grain boundary.
NASA Technical Reports Server (NTRS)
Mackay, R. A.; Maier, R. D.
1982-01-01
Constant load creep rupture tests were performed on MAR-M247 single crystals at 724 MPa and 774 C where the effect of anisotropy is prominent. The initial orientations of the specimens as well as the final orientations of selected crystals after stress rupture testing were determined by the Laue back-reflection X-ray technique. The stress rupture lives of the MAR-M247 single crystals were found to be largely determined by the lattice rotations required to produce intersecting slip, because second-stage creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited the shortest stress rupture lives, whereas crystals requiring little or no rotations exhibited the lowest minimum creep rates, and consequently, the longest stress rupture lives.
Combining Real-Time Seismic and GPS Data for Earthquake Early Warning (Invited)
NASA Astrophysics Data System (ADS)
Boese, M.; Heaton, T. H.; Hudnut, K. W.
2013-12-01
Scientists at Caltech, UC Berkeley, the Univ. of SoCal, the Univ. of Washington, the US Geological Survey, and ETH Zurich have developed an earthquake early warning (EEW) demonstration system for California and the Pacific Northwest. To quickly determine the earthquake magnitude and location, 'ShakeAlert' currently processes and interprets real-time data-streams from ~400 seismic broadband and strong-motion stations within the California Integrated Seismic Network (CISN). Based on these parameters, the 'UserDisplay' software predicts and displays the arrival and intensity of shaking at a given user site. Real-time ShakeAlert feeds are currently shared with around 160 individuals, companies, and emergency response organizations to educate potential users about EEW and to identify needs and applications of EEW in a future operational warning system. Recently, scientists at the contributing institutions have started to develop algorithms for ShakeAlert that make use of high-rate real-time GPS data to improve the magnitude estimates for large earthquakes (M>6.5) and to determine slip distributions. Knowing the fault slip in (near) real-time is crucial for users relying on or operating distributed systems, such as for power, water or transportation, especially if these networks run close to or across large faults. As shown in an earlier study, slip information is also useful to predict (in a probabilistic sense) how far a fault rupture will propagate, thus enabling more robust probabilistic ground-motion predictions at distant locations. Finally, fault slip information is needed for tsunami warning, such as in the Cascadia subduction-zone. To handle extended fault-ruptures of large earthquakes in real-time, Caltech and USGS Pasadena are currently developing and testing a two-step procedure that combines seismic and geodetic data; in the first step, high-frequency strong-motion amplitudes are used to rapidly classify near-and far-source stations. Then, the location and extent of the 2D fault rupture is determined from comparison with pre-calculated generic and fault-specific templates ('FinDer' algorithm, Finite Fault Rupture Detector). In the second step, long-period dynamic displacement amplitudes from the GPS sites are back-projected onto this rupture line/plane to estimate the slip amplitudes ('GPSlip' algorithm). The corresponding back-projection relations were empirically derived from a suite of 3D waveform simulations. We are currently testing our approach in southern California (both real-time and offline), although not yet included in the current distribution of ShakeAlert. RTK/PPP(AR) solutions from the RTNet software at USGS Pasadena currently provide 1 Hz real-time position times series at ~100 GPS sensor locations. Output is in openly available in JSON format. We and UNAVCO have tested onsite (in-receiver) PPP(AR) processing using Trimble NetR9 receivers with RTX & GLONASS options enabled, of which Caltech has recently purchased 41 new units. These special GPS receivers will provide 5 Hz position and velocity streams. We will deliver the GPS RTX output (in GSOF format) into the EEW system (in Earthworm tracebuf2 format). The new receivers are to be installed at 'zipper array' stations of the SCSN in upcoming months. In addition, we have developed a framework for end-to-end offline testing with archived and simulated waveform data.
Suppression of slip and rupture velocity increased by thermal pressurization: Effect of dilatancy
NASA Astrophysics Data System (ADS)
Urata, Yumi; Kuge, Keiko; Kase, Yuko
2013-11-01
investigated the effect of dilatancy on dynamic rupture propagation on a fault where thermal pressurization (TP) is in effect, taking into account permeability varying with porosity; the study is based on three-dimensional (3-D) numerical simulations of spontaneous ruptures obeying a slip-weakening friction law and Coulomb failure criterion. The effects of dilatancy on dynamic ruptures interacting with TP have been often investigated in one- or two-dimensional numerical simulations. The sole 3-D numerical simulation gave attention only to the behavior at a single point on a fault. Moreover, with the sole exception based on a single-degree-freedom spring-slider model, the previous simulations including dilatancy and TP have not considered changes in hydraulic diffusivity. However, the hydraulic diffusivity, which strongly affects TP, can vary as a power of porosity. In this study, we apply a power law relationship between permeability and porosity. We consider both reversible and irreversible changes in porosity, assuming that the irreversible change is proportional to the slip rate and dilatancy coefficient ɛ. Our numerical simulations suggest that the effects of dilatancy can suppress slip and rupture velocity increased by TP. The results reveal that the amount of slip on the fault decreases with increasing ɛ or exponent of the power law, and the rupture velocity is predominantly suppressed by ɛ. This was observed regardless of whether the applied stresses were high or low. The deficit of the final slip in relation to ɛ can be smaller as the fault size is larger.
How fast does water flow in carbon nanotubes?
Kannam, Sridhar Kumar; Todd, B D; Hansen, J S; Daivis, Peter J
2013-03-07
The purpose of this paper is threefold. First, we review the existing literature on flow rates of water in carbon nanotubes. Data for the slip length which characterizes the flow rate are scattered over 5 orders of magnitude for nanotubes of diameter 0.81-10 nm. Second, we precisely compute the slip length using equilibrium molecular dynamics (EMD) simulations, from which the interfacial friction between water and carbon nanotubes can be found, and also via external field driven non-equilibrium molecular dynamics simulations (NEMD). We discuss some of the issues in simulation studies which may be reasons for the large disagreements reported. By using the EMD method friction coefficient to determine the slip length, we overcome the limitations of NEMD simulations. In NEMD simulations, for each tube we apply a range of external fields to check the linear response of the fluid to the field and reliably extrapolate the results for the slip length to values of the field corresponding to experimentally accessible pressure gradients. Finally, we comment on several issues concerning water flow rates in carbon nanotubes which may lead to some future research directions in this area.
Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong
2018-01-01
In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material’s fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11−20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11−20} tensile twins. PMID:29597278
Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong
2018-03-28
In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.
Huang, Ke-Jung; Huang, Chun-Kai; Lin, Pei-Chun
2014-10-07
We report on the development of a robot's dynamic locomotion based on a template which fits the robot's natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order model of the RHex-style robot with compliant circular legs, the R-SLIP model also acts as the template for general dynamic running. The model has a torsional spring and a large circular arc as the distributed foot, so during locomotion it rolls on the ground with varied equivalent linear stiffness. This differs from the well-known spring loaded inverted pendulum (SLIP) model with fixed stiffness and ground contact points. Through dimensionless steps-to-fall and return map analysis, within a wide range of parameter spaces, the R-SLIP model is revealed to have self-stable gaits and a larger stability region than that of the SLIP model. The R-SLIP model is then embedded as the reduced-order 'template' in a more complex 'anchor', the RHex-style robot, via various mapping definitions between the template and the anchor. Experimental validation confirms that by merely deploying the stable running gaits of the R-SLIP model on the empirical robot with simple open-loop control strategy, the robot can easily initiate its dynamic running behaviors with a flight phase and can move with similar body state profiles to those of the model, in all five testing speeds. The robot, embedded with the SLIP model but performing walking locomotion, further confirms the importance of finding an adequate template of the robot for dynamic locomotion.
Witter, Robert C.; Zhang, Yinglong J.; Wang, Kelin; Priest, George R.; Goldfinger, Chris; Stimely, Laura; English, John T.; Ferro, Paul A.
2013-01-01
Characterizations of tsunami hazards along the Cascadia subduction zone hinge on uncertainties in megathrust rupture models used for simulating tsunami inundation. To explore these uncertainties, we constructed 15 megathrust earthquake scenarios using rupture models that supply the initial conditions for tsunami simulations at Bandon, Oregon. Tsunami inundation varies with the amount and distribution of fault slip assigned to rupture models, including models where slip is partitioned to a splay fault in the accretionary wedge and models that vary the updip limit of slip on a buried fault. Constraints on fault slip come from onshore and offshore paleoseismological evidence. We rank each rupture model using a logic tree that evaluates a model’s consistency with geological and geophysical data. The scenarios provide inputs to a hydrodynamic model, SELFE, used to simulate tsunami generation, propagation, and inundation on unstructured grids with <5–15 m resolution in coastal areas. Tsunami simulations delineate the likelihood that Cascadia tsunamis will exceed mapped inundation lines. Maximum wave elevations at the shoreline varied from ∼4 m to 25 m for earthquakes with 9–44 m slip and Mw 8.7–9.2. Simulated tsunami inundation agrees with sparse deposits left by the A.D. 1700 and older tsunamis. Tsunami simulations for large (22–30 m slip) and medium (14–19 m slip) splay fault scenarios encompass 80%–95% of all inundation scenarios and provide reasonable guidelines for land-use planning and coastal development. The maximum tsunami inundation simulated for the greatest splay fault scenario (36–44 m slip) can help to guide development of local tsunami evacuation zones.
The frictional strength of talc gouge in high-velocity shear experiments
NASA Astrophysics Data System (ADS)
Chen, Xiaofeng; Elwood Madden, Andrew S.; Reches, Ze'ev
2017-05-01
Talc is present in several large-scale fault zones worldwide and is mineralogically stable at temperature of the upper crust. It is therefore necessary to gain a better understanding of the frictional behavior of talc under a wide range of slip velocity conditions occurring during the seismic cycle. We analyzed the frictional and structural characteristics of room-dry and water-saturated talc gouge by shear experiments on a confined gouge layer at slip velocity range of 0.002-0.66 m/s and normal stress up to 4.1 MPa. Room-dry talc showed a distinct slip-strengthening with the initial friction coefficient of μ 0.4 increased systematically to μ 1 at slip distance D > 1 m. Room-dry talc also displayed velocity-strengthening at slip distances shorter than 1 m. The water-saturated talc gouge displayed systematic low frictional strength of μ = 0.1-0.3 for the entire experimental range, with clear velocity-strengthening behavior with positive (a-b) values (rate dependence parameter of rate and state friction) of 0.01-0.04. The microstructural analyses revealed distributed shear and systematic dilation (up to 50%) for the room-dry talc, in contrast to the extreme slip localization and strong shear compaction for water-saturated talc. We propose that talc frictional strength is controlled by lubrication along cleavage surfaces that is facilitated by adsorbed water (room-dry) and surplus water (water-saturated). This mechanism can explain our experimental observations of slip-strengthening and velocity-strengthening for both types of talc gouge, as well as other clay minerals. It is thus expected that talc presence in fault zones would enhance creep and inhibit unstable slip.
NASA Astrophysics Data System (ADS)
Kiratzi, Anastasia
2018-01-01
On 12 June 2017 (UTC 12:28:38.26) a magnitude Mw 6.3 earthquake occurred offshore Lesvos Island in SE Aegean Sea, which was widely felt, caused 1 fatality, and partially ruined the village of Vrisa on the south-eastern coast of the island. I invert broad band and strong motion waveforms from regional stations to obtain the source model and the distribution of slip onto the fault plane. The hypocentre is located at a depth of 7 km in the upper crust. The mainshock ruptured a WNW-ESE striking, SW dipping, normal fault, projecting offshore and bounding the Lesvos Basin. The strongest and most aftershocks clustered away from the hypocentre, at the eastern edge of the activated area. This cluster indicates the activation of a different fault segment, exhibiting sinistral strike-slip motions, along a plane striking WNW-ESE. The slip of the mainshock is confined in a single large asperity, WNW from the hypocentre, with dimensions 20 km × 10 km along fault strike and dip, respectively. The average slip of the asperity is 50 cm and the peak slip is 1 m. The rupture propagated unilaterally towards WNW to the coastline of Lesvos island at a relatively high speed ( 3.1 km/s). The imaged slip model and forward modelling was used to calculate peak ground velocities (PGVs) in the near-field. The damage pattern produced by this earthquake, especially in the village of Vrisa is compatible with the combined effect of rupture directivity, proximity to the slip patch and the fault edge, spectral content of motions, and local site conditions.
Murray-Moraleda, J. R.; Simpson, R.W.
2009-01-01
On 31 October 2007 the M 5.4 Alum Rock earthquake occurred near the junction between the Hayward and Calaveras faults in the San Francisco Bay Area, producing coseismic and postseismic displacements recorded by 10 continuously operating Global Positioning System (GPS) instruments. The cumulative postseismic displacements over the four months following the earthquake are linearly related to the cumulative number of aftershocks and are comparable in magnitude to the coseis mic displacements. The postseismic signal suggests that, in addition to afterslip at seismogenic depths, localized right-lateral/reverse slip occurred on dipping shallow fault surfaces southwest of the Calaveras. The spatial distribution of slip inferred by inverting the GPS data is compatible with a model in which moderate Calaveras fault earthquakes rupture locked patches surrounded by areas of creep, afterslip, and microseismicity (Oppenheimer et al., 1990). If this model and existing Calaveras fault slip rate estimates are correct, a slip deficit remains on the 2007 Alum Rock rupture patch that may be made up by aseismic slip or slip in larger earthquakes. Recent studies (e.g., Manaker et al., 2005) suggest that at depth the Hayward and central Calaveras faults connect via a simple continuous surface illuminated by the Mission Seismic Trend (MST), implying that a damaging earthquake rupture could involve both faults (Graymer et al., 2008). If this geometry is correct, the combined coseismic and postseismic slip we infer for the 2007 Alum Rock event predicts static Coulomb stress increases of ???0:6 bar on the MST surface and on the northern Calaveras fault ???5 km northwest of the Alum Rock hypocenter.
Resolving the detailed spatiotemporal slip evolution of deep tremor in western Japan
NASA Astrophysics Data System (ADS)
Ohta, K.; Ide, S.
2017-12-01
A quantitative evaluation of the slip evolution of tremor is essential to understand the generation mechanism of slow earthquakes. The recent studies have revealed the most part of tremor signals can be expressed as the superposition of low frequency earthquakes (LFE). However, it is still challenging to explain the entire waveforms of tremor, because a conventional slip inversion analysis is not available for tremor due to insufficient knowledge of source locations and Green's functions. Here we investigate the detailed spatiotemporal behavior of deep tremor in western Japan through the development and application of a new slip inversion method. We introduce synthetic template waveforms, which are typical tremor waveforms obtained by stacking LFE seismograms at arranged points along the plate interface. Using these synthetic template waveforms as substitutes for Green's functions, we invert the continuous tremor waveforms using an iterative deconvolution approach with Bayesian constraints. We apply this method to two tremor burst episodes in western and central Shikoku, Japan. The estimated slip distribution from a 12-day tremor burst episode in western Shikoku is heterogeneous, with several patchy areas of slip along the plate interface where rapid moment releases with durations of <100 s regularly occur. We attribute these heterogeneous spatiotemporal slip patterns to heterogeneous material properties along the plate interface. For central Shikoku, where we focus on a tremor burst episode that occurred coincidentally with a very low frequency earthquake (VLF), we observe that the source size of the VLF is much larger than that estimated from tremor activity in western Shikoku. These differences in the size of the slip region may dictate the visibility of VLF signals in observed seismograms, which has implications for the mechanics of slow earthquakes and subduction zone processes.
Interseismic Coupling-Based Earthquake and Tsunami Scenarios for the Nankai Trough
NASA Astrophysics Data System (ADS)
Baranes, H.; Woodruff, J. D.; Loveless, J. P.; Hyodo, M.
2018-04-01
Theoretical modeling and investigations of recent subduction zone earthquakes show that geodetic estimates of interseismic coupling and the spatial distribution of coseismic rupture are correlated. However, the utility of contemporary coupling in guiding construction of rupture scenarios has not been evaluated on the world's most hazardous faults. Here we demonstrate methods for scaling coupling to slip to create rupture models for southwestern Japan's Nankai Trough. Results show that coupling-based models produce distributions of ground surface deformation and tsunami inundation that are similar to historical and geologic records of the largest known Nankai earthquake in CE 1707 and to an independent, quasi-dynamic rupture model. Notably, these models and records all support focused subsidence around western Shikoku that makes the region particularly vulnerable to flooding. Results imply that contemporary coupling mirrors the slip distribution of a full-margin, 1707-type rupture, and Global Positioning System measurements of surface motion are connected with the trough's physical characteristics.
NASA Astrophysics Data System (ADS)
Miyagi, Yousuke; Ozawa, Taku; Shimada, Masanobu
2009-10-01
On April 1, 2007 (UTC), a large Mw 8.1 interplate earthquake struck the Solomon Islands subduction zone where complicated tectonics result from the subduction of four plates. Extensive ground movements and a large tsunami occurred in the epicentral area causing severe damage over a wide area. Using ALOS/PALSAR data and the DInSAR technique, we detected crustal deformation exceeding 2 m in islands close to the epicenter. A slip distribution of the inferred seismic fault was estimated using geodetic information derived from DInSAR processing and field investigations. The result indicates large slip areas around the hypocenter and the centroid. It is possible that the largest slip area is related to subduction of the plate boundary between the Woodlark and Australian plates. A small slip area between those large slip areas may indicate weak coupling due to thermal activity related to volcanic activity on Simbo Island. The 2007 earthquake struck an area where large earthquake has not occurred since 1970. Most of this seismic gap was filled by the 2007 events, however a small seismic gap still remains in the southeastern region of the 2007 earthquake.
NASA Astrophysics Data System (ADS)
Yin, An; Pappalardo, Robert T.
2015-11-01
Despite a decade of intense research the mechanical origin of the tiger-stripe fractures (TSF) and their geologic relationship to the hosting South Polar Terrain (SPT) of Enceladus remain poorly understood. Here we show via systematic photo-geological mapping that the semi-squared SPT is bounded by right-slip, left-slip, extensional, and contractional zones on its four edges. Discrete deformation along the edges in turn accommodates translation of the SPT as a single sheet with its transport direction parallel to the regional topographic gradient. This parallel relationship implies that the gradient of gravitational potential energy drove the SPT motion. In map view, internal deformation of the SPT is expressed by distributed right-slip shear parallel to the SPT transport direction. The broad right-slip shear across the whole SPT was facilitated by left-slip bookshelf faulting along the parallel TSF. We suggest that the flow-like tectonics, to the first approximation across the SPT on Enceladus, is best explained by the occurrence of a transient thermal event, which allowed the release of gravitational potential energy via lateral viscous flow within the thermally weakened ice shell.
NASA Astrophysics Data System (ADS)
Inn, Yong Woo; Sukhadia, Ashish M.
2017-05-01
In the extrusion blow molding process of high density polyethylene (HDPE) for making of large size drums, string-like defects, which are referred to as worm melt fracture in the industry, are often observed on the extrudate surface. Such string-like defects in various shapes and sizes are observed in capillary extrusion at very high shear rates after the slip-stick transition. The HDPE resin with broader molecular weight distribution (MWD) exhibits a greater degree of worm melt fracture while the narrow MWD PE resin, which has higher slip velocity and a uniform slip layer, shows a lesser degree of worm melt fracture. It is hypothesized that the worm melt fracture is related to fast die build-up and cohesive slip layer, a failure within the polymer melts at an internal surface. If the cohesive slip layer at an internal surface emerges out from the die, it can be attached on the surface of extrudate as string-like defects, the worm melt fracture. The resin having more small chains and lower plateau modulus can be easier to have such an internal failure and consequently exhibit more "worm" defects.
Liu, Yanjie; Han, Haijun; Liu, Tao; Yi, Jingang; Li, Qingguo; Inoue, Yoshio
2016-01-01
Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems. PMID:27023545
Hydrodynamics beyond Navier-Stokes: the slip flow model.
Yudistiawan, Wahyu P; Ansumali, Santosh; Karlin, Iliya V
2008-07-01
Recently, analytical solutions for the nonlinear Couette flow demonstrated the relevance of the lattice Boltzmann (LB) models to hydrodynamics beyond the continuum limit [S. Ansumali, Phys. Rev. Lett. 98, 124502 (2007)]. In this paper, we present a systematic study of the simplest LB kinetic equation-the nine-bit model in two dimensions--in order to quantify it as a slip flow approximation. Details of the aforementioned analytical solution are presented, and results are extended to include a general shear- and force-driven unidirectional flow in confined geometry. Exact solutions for the velocity, as well as for pertinent higher-order moments of the distribution functions, are obtained in both Couette and Poiseuille steady-state flows for all values of rarefaction parameter (Knudsen number). Results are compared with the slip flow solution by Cercignani, and a good quantitative agreement is found for both flow situations. Thus, the standard nine-bit LB model is characterized as a valid and self-consistent slip flow model for simulations beyond the Navier-Stokes approximation.
Ji, C.; Larson, K.M.; Tan, Y.; Hudnut, K.W.; Choi, K.
2004-01-01
The slip history of the 2003 San Simeon earthquake is constrained by combining strong motion and teleseismic data, along with GPS static offsets and 1-Hz GPS observations. Comparisons of a 1-Hz GPS time series and a co-located strong motion data are in very good agreement, demonstrating a new application of GPS. The inversion results for this event indicate that the rupture initiated at a depth of 8.5 km and propagated southeastwards with a speed ???3.0 km/sec, with rake vectors forming a fan structure around the hypocenter. We obtained a peak slip of 2.8 m and total seismic moment of 6.2 ?? 1018 Nm. We interpret the slip distribution as indicating that the hanging wall rotates relative to the footwall around the hypocenter, in a sense that appears consistent with the shape of the mapped fault trace. Copyright 2004 by the American Geophysical Union.
Fialko, Yuri; Sandwell, David; Simons, Mark; Rosen, Paul
2005-05-19
Our understanding of the earthquake process requires detailed insights into how the tectonic stresses are accumulated and released on seismogenic faults. We derive the full vector displacement field due to the Bam, Iran, earthquake of moment magnitude 6.5 using radar data from the Envisat satellite of the European Space Agency. Analysis of surface deformation indicates that most of the seismic moment release along the 20-km-long strike-slip rupture occurred at a shallow depth of 4-5 km, yet the rupture did not break the surface. The Bam event may therefore represent an end-member case of the 'shallow slip deficit' model, which postulates that coseismic slip in the uppermost crust is systematically less than that at seismogenic depths (4-10 km). The InSAR-derived surface displacement data from the Bam and other large shallow earthquakes suggest that the uppermost section of the seismogenic crust around young and developing faults may undergo a distributed failure in the interseismic period, thereby accumulating little elastic strain.
NASA Astrophysics Data System (ADS)
Azevedo, Marco C.; Alves, Tiago M.; Fonseca, Paulo E.; Moore, Gregory F.
2018-01-01
Previous studies have suggested predominant extensional tectonics acting, at present, on the Nankai Accretionary Prism (NAP), and following a parallel direction to the convergence vector between the Philippine Sea and Amur Plates. However, a complex set of thrusts, pop-up structures, thrust anticlines and strike-slip faults is observed on seismic data in the outer wedge of the NAP, hinting at a complex strain distribution across SE Japan. Three-dimensional (3D) seismic data reveal three main families of faults: (1) NE-trending thrusts and back-thrusts; (2) NNW- to N-trending left-lateral strike-slip faults; and (3) WNW-trending to E-W right-lateral strike-slip faults. Such a fault pattern suggests that lateral slip, together with thrusting, are the two major styles of deformation operating in the outer wedge of the NAP. Both styles of deformation reflect a transpressional tectonic regime in which the maximum horizontal stress is geometrically close to the convergence vector. This work is relevant because it shows a progressive change from faults trending perpendicularly to the convergence vector, to a broader partitioning of strain in the form of thrusts and conjugate strike-slip faults. We suggest that similar families of faults exist within the inner wedge of the NAP, below the Kumano Basin, and control stress accumulation and strain accommodation in this latter region.
Hodgkinson, K.M.; Stein, R.S.; Marshall, G.
1996-01-01
In 1954, four earthquakes greater than Ms=6.0 occurred within a 30-km radius and in a period of 6 months. Elevation and angle changes calculated from repeated leveling and triangulation surveys which span the coseismic period provide constraints on the fault geometries and coseismic slip of the faults which were activated. The quality of the coseismic geodetic data is assessed. Corrections are applied to the leveling data for subsidence due to groundwater withdrawal in the Fallon area, and a rod miscalibration error of 150??30 ppm is isolated in leveling surveys made in 1967. The leveling and triangulation observations are then simultaneously inverted using the single value decomposition (SVD) inversion method to determine fault geometries and coseismic slip. Using SVD, it is possible to determine on which faults slip is resolvable given the data distribution. The faults are found to dip between 50?? and 80?? and extend to depths of 5 to 14 km. The geodetically derived slip values are generally equal to, or greater than, the maximum observed displacement along the surface scarps. Where slip is resolvable the geodetic data indicates the 1954 sequence contained a significant component of right-lateral slip. This is consistent with the N15??W trending shear zone which geodetic surveys have detected in western Nevada. Copyright 1996 by the American Geophysical Union.
Mechanics of advancing pin-loaded contacts with friction
NASA Astrophysics Data System (ADS)
Sundaram, Narayan; Farris, T. N.
2010-11-01
This paper considers finite friction contact problems involving an elastic pin and an infinite elastic plate with a circular hole. Using a suitable class of Green's functions, the singular integral equations governing a very general class of conforming contact problems are formulated. In particular, remote plate stresses, pin loads, moments and distributed loading of the pin by conservative body forces are considered. Numerical solutions are presented for different partial slip load cases. In monotonic loading, the dependence of the tractions on the coefficient of friction is strongest when the contact is highly conforming. For less conforming contacts, the tractions are insensitive to an increase in the value of the friction coefficient above a certain threshold. The contact size and peak pressure in monotonic loading are only weakly dependent on the pin load distribution, with center loads leading to slightly higher peak pressure and lower peak shear than distributed loads. In contrast to half-plane cylinder fretting contacts, fretting behavior is quite different depending on whether or not the pin is allowed to rotate freely. If pin rotation is disallowed, the fretting tractions resemble half-plane fretting tractions in the weakly conforming regime but the contact resists sliding in the strongly conforming regime. If pin rotation is allowed, the shear traction behavior resembles planar rolling contacts in that one slip zone is dominant and the peak shear occurs at its edge. In this case, the effects of material dissimilarity in the strongly conforming regime are only secondary and the contact never goes into sliding. Fretting tractions in the forward and reversed load states show shape asymmetry, which persists with continued load cycling. Finally, the governing integro-differential equation for full sliding is derived; in the limiting case of no friction, the same equation governs contacts with center loading and uniform body force loading, resulting in identical pressures when their resultants are equal.
3-D Spontaneous Rupture Simulations of the 2016 Kumamoto, Japan, Earthquake
NASA Astrophysics Data System (ADS)
Urata, Yumi; Yoshida, Keisuke; Fukuyama, Eiichi
2017-04-01
We investigated the M7.3 Kumamoto, Japan, earthquake to illuminate why and how the rupture of the main shock propagated successfully by 3-D dynamic rupture simulations, assuming a complicated fault geometry estimated based on the distributions of aftershocks. The M7.3 main shock occurred along the Futagawa and Hinagu faults. A few days before, three M6-class foreshocks occurred. Their hypocenters were located along by the Hinagu and Futagawa faults and their focal mechanisms were similar to those of the main shock; therefore, an extensive stress shadow can have been generated on the fault plane of the main shock. First, we estimated the geometry of the fault planes of the three foreshocks as well as that of the main shock based on the temporal evolution of relocated aftershock hypocenters. Then, we evaluated static stress changes on the main shock fault plane due to the occurrence of the three foreshocks assuming elliptical cracks with constant stress drops on the estimated fault planes. The obtained static stress change distribution indicated that the hypocenter of the main shock is located on the region with positive Coulomb failure stress change (ΔCFS) while ΔCFS in the shallow region above the hypocenter was negative. Therefore, these foreshocks could encourage the initiation of the main shock rupture and could hinder the rupture propagating toward the shallow region. Finally, we conducted 3-D dynamic rupture simulations of the main shock using the initial stress distribution, which was the sum of the static stress changes by these foreshocks and the regional stress field. Assuming a slip-weakening law with uniform friction parameters, we conducted 3-D dynamic rupture simulations by varying the friction parameters and the values of the principal stresses. We obtained feasible parameter ranges to reproduce the rupture propagation of the main shock consistent with those revealed by seismic waveform analyses. We also demonstrated that the free surface encouraged the slip evolution of the main shock.
Multi-scale Slip Inversion Based on Simultaneous Spatial and Temporal Domain Wavelet Transform
NASA Astrophysics Data System (ADS)
Liu, W.; Yao, H.; Yang, H. Y.
2017-12-01
Finite fault inversion is a widely used method to study earthquake rupture processes. Some previous studies have proposed different methods to implement finite fault inversion, including time-domain, frequency-domain, and wavelet-domain methods. Many previous studies have found that different frequency bands show different characteristics of the seismic rupture (e.g., Wang and Mori, 2011; Yao et al., 2011, 2013; Uchide et al., 2013; Yin et al., 2017). Generally, lower frequency waveforms correspond to larger-scale rupture characteristics while higher frequency data are representative of smaller-scale ones. Therefore, multi-scale analysis can help us understand the earthquake rupture process thoroughly from larger scale to smaller scale. By the use of wavelet transform, the wavelet-domain methods can analyze both the time and frequency information of signals in different scales. Traditional wavelet-domain methods (e.g., Ji et al., 2002) implement finite fault inversion with both lower and higher frequency signals together to recover larger-scale and smaller-scale characteristics of the rupture process simultaneously. Here we propose an alternative strategy with a two-step procedure, i.e., firstly constraining the larger-scale characteristics with lower frequency signals, and then resolving the smaller-scale ones with higher frequency signals. We have designed some synthetic tests to testify our strategy and compare it with the traditional one. We also have applied our strategy to study the 2015 Gorkha Nepal earthquake using tele-seismic waveforms. Both the traditional method and our two-step strategy only analyze the data in different temporal scales (i.e., different frequency bands), while the spatial distribution of model parameters also shows multi-scale characteristics. A more sophisticated strategy is to transfer the slip model into different spatial scales, and then analyze the smooth slip distribution (larger scales) with lower frequency data firstly and more detailed slip distribution (smaller scales) with higher frequency data subsequently. We are now implementing the slip inversion using both spatial and temporal domain wavelets. This multi-scale analysis can help us better understand frequency-dependent rupture characteristics of large earthquakes.
NASA Astrophysics Data System (ADS)
Dimitrova, L. L.; Wallace, L. M.; Haines, A. J.; Bartlow, N. M.
2015-12-01
Slow slip events (SSEs) in Cascadia occur at ~30-50 km depth, every 10-19 months, and typically involve slip of a few cm, producing surface displacements on the order of a few mm up to ~1cm. Are there smaller SSE signals that are currently not recognized geodetically? What is the spatial, temporal and size distribution of SSEs, and how are SSE related to tremor? We address these questions with a catalogue of all detectable SSEs spanning the last 6.5 years using a new methodology based on Vertical Derivatives of Horizontal Stress (VDoHS) rates obtained from cGPS times series. VDoHS rates, calculated by solving the force balance equations at the Earth's surface, represent the most inclusive and spatially compact surface expressions of subsurface deformation sources: VDoHS rate vectors are tightly localized above the sources and point in the direction of push or pull. We compare our results with those from the Network Inversion Filter (NIF) for selected events. We identify and characterize a spectrum of SSEs, including events with moment release at least two orders of magnitudes smaller than has been previously identified with GPS data. We catalogue events timing, interface slip distribution and moment release, and compare our results with existing tremor catalogues. VDoHS rates also reveal the boundaries between the locked and unlocked portions of the megathrust, and we can track how this varies throughout the SSE cycle. Above the locked interface, the pull of the subducted plate generates shear tractions in the overlying plate in the direction of subduction, while above the creeping section shear tractions are in the opposite direction, which is reflected in the VDoHS rates. We show that sections of the Cascadia megathrust unlock prior to some SSEs and lock thereafter, with the locked zone propagating downdip and eastward after the SSEs over weeks to months. The catalogue and movies of events will be available at http://www.ig.utexas.edu/people/staff/lada/SSEs.
NASA Astrophysics Data System (ADS)
Wei, S.; Wang, T.; Jonsson, S.; Avouac, J. P.; Helmberger, D. V.
2014-12-01
Aftershocks of the 2013 Balochistan earthquake are mainly concentrated along the northeastern end of the mainshock rupture despite of much larger coseismic slip to the southwest. The largest event among them is an Mw6.8 earthquake which occurred three days after the mainshock. A kinematic slip model of the mainshock was obtained by joint inversion of the teleseismic body-waves and horizontal static deformation field derived from remote sensing optical and SAR data, which is composed of seven fault segments with gradually changing strikes and dips [Avouac et al., 2014]. The remote sensing data provide well constraints on the fault geometry and spatial distribution of slip but no timing information. Meanwhile, the initiation of the teleseismic waveform is very sensitive to fault geometry of the epicenter segment (strike and dip) and spatial slip distribution but much less sensitive to the absolute location of the epicenter. The combination of the two data sets allows a much better determination of the absolute epicenter location, which is about 25km to the southwest of the NEIC epicenter location. The well located mainshock epicenter is used to establish path calibrations for teleseismic P-waves, which are essential for relocating the Mw6.8 aftershock. Our grid search shows that the refined epicenter is located right at the northeastern end of the mainshock rupture. This is confirmed by the SAR offsets calculated from images acquired after the mainshock. The azimuth and range offsets display a discontinuity across the rupture trace of the mainshock. Teleseismic only and static only, as well as joint inversions all indicate that the aftershock ruptured an asperity with 25km along strike and range from 8km to 20km in depth. The earthquake was originated in a positive Coulomb stress change regime due to the mainshock and has complementary slip distribution to the mainshock rupture at the northeastern end, suggesting that the entire seismic generic zone in the crust was ruptured during the earthquake sequence.
NASA Astrophysics Data System (ADS)
Wu, C.; Zhang, P.; Zheng, W.; Wang, H.; Zhang, Z.; Ren, Z.; Zheng, D.; Yu, J.; Wu, G.
2017-12-01
The deformation pattern and strain distribution of the Tian Shan is a hot issue.Previous studies mainly focus on the thrust-fold systems on both sides of Tian Shan, the strike-slip faults within the mountains are rarely reported. The understanding about the deformation characteristics of Tian Shan is not complete for lacking information of these strike-slip faults.Our studies show the NEE trending structures of Maidan fault and Nalati fault in the southwestern Tian Shan are all active during the Holence. These faults are characterized by sinistral strike-slip and thrust movement. The minimum average sinistral strike-slip rate of the Maidan fault is 1.07 ± 0.13 mm/yr. During the late Quaternary, the average shortening rate and sinistral strike-slip rate of the Nalati fault are 2.1 ±0.4 mm/yr and 2.56 ±0.25 mm/yr, respectively . In the interior of the Tian Shan area, two groups of strike-slip faults were developed. The NEE trending faults with sinistral strike-slipmovement, and the NWW trending faults with dextral strike-slip movement show the shape of "X"in geometrical structure. The piedmont thrust faults and the thrust strike-slip faults in the interior mountain constitute the tectonic framework of Tian Shan. Threegroups of active fault systems are the main seismogenic and geological structures, which control the current tectonic deformation pattern of Tian Shan (Figure 1). GPS observation data also showthe similar deformation characteristics with the geological results (Figures 2, 3). In addition to the crustal shortening, there is a certain strike-slip shear movement in the interior of the Tian Shan.The strike-slip rate defined by the geological and GPS data is approximately consistent with each other near the same longitude. We suggest the two groups of strike-slip faults in the interior of mountains is a set of conjugate structures. The whole Tian Shan forms a large flower-structure in a profile view. The complete tectonic deformation of the Tian Shan mountains consists ofthe shortening deformationof the N-S direction and the lateral extrusion of the E-W direction (Figure 2). The late Cenozoic deformation of the Tian Shan mountains is due to the northward subduction of Tarim Block. Although the activedeformation of the Tian Shan decrease eastward, the geological sturcutrein eastern Tian Shan is similar.
NASA Astrophysics Data System (ADS)
Wedmore, L. N. J.; Gregory, L. C.; McCaffrey, K. J. W.; Wilkinson, M.; Walters, R. J.
2017-12-01
Coseismic fault slip in the shallow crust is poorly constrained by many of the conventional tools used to record deformation during earthquakes. GNSS stations are often distributed too far from faults and radar images tend to decorrelate across earthquake surface ruptures. As a result, our understanding of near-field fault slip, shallow slip deficits, and off-fault deformation is limited. We present evidence from the 2016 central Italy earthquake sequence, during which we captured shallow coseismic and post-seismic slip using a combination of terrestrial laser scanning (TLS), structure-from-motion (SfM), and near-field low-cost GNSS recording at 1Hz. Three Mw>6 earthquakes on the 24th August, 26th and 30th October all involved slip on the Mt Vettore-Mt Bove fault system. We collected TLS and SfM point clouds across three separate segments of this system. Each segment experienced a different record of slip during the earthquake sequence; all three ruptured in the largest event (Mw 6.6. on October 30th) but two segments also ruptured during either the 24th August or the 26th October earthquakes. Following the Mw 6.6 earthquake, the faults were repeatedly surveyed using TLS, with the first scan collected c. 5 hours following the earthquake. This represents the first known instance where shallow co-seismic slip has been recorded by pre- and post-event terrestrial laser scanning. Displacement continuously measured across GNSS pairs at 1 Hz demonstrates that permanent near field displacement developed across the fault in the immediate seconds following the initiation of the rupture. However, a discrepancy between on-fault field measurements of surface displacement and the GNSS recorded displacement over 1km long baselines hints at a more complex rupture processes and the possibility of high slip gradients in the shallow subsurface. Displacement measured by differential TLS confirms the presence of these shallow slip deficits but suggests that shallow slip gradient may be controlled by the pattern and timing of slip in the preceding earthquakes. Postseismic afterslip captured by repeated TLS surveys hints at more complicated temporal evolution of nearfield afterslip than is currently predicted by logarithmic models for this process.
NASA Astrophysics Data System (ADS)
Lin, A.; Rao, G.; Jia, D.; Wu, X.; Yan, B.; Ren, Z.
2010-12-01
The magnitude (Mw) 6.9 (Ms 7.1) Yushu earthquake occurred on 14 April 2010 in the Yushu area, central Tibetan Plateau, killing approximately 3000 people (including 270 missing) and causing widespread damage in the high mountain regions of the central Tibetan Plateau. The Yushu earthquake is comparable with the 1997 Mw 7.6 Manyi earthquake, the 2001 Mw 7.8 Kunlun earthquake, and the 2008 Mw 7.9 Wenchuan earthquake, which all occurred in the northern and eastern Tibetan Plateau, in terms of their magnitude and seismotectonic environment, related to the eastward extrusion of the Tibetan Plateau in response to continental collision between the Indian and Eurasian plates. Although some prompt reports related to ground deformation and the focal mechanism were published in the Chinese literature soon after the Yushu earthquake, there are scarce data related to the nature of co-seismic strike-slip rupturing structures and displacement distributions because the co-seismic surface ruptures were produced mainly in remote, high mountain regions of the Tibetan Plateau (average elevation >4000 m) and roads to the epicentral area were damaged, which made it difficult to gain access to the area and to undertake fieldwork immediately after the earthquake. Field investigations reveal that the earthquake produced a 33-km-long surface rupture zone, with dominantly left-lateral strike-slip along the Yushu Fault of the pre-existing strike-slip Ganzi-Yushu Fault Zone. The co-seismic surface ruptures are characterized by discontinuous shear faults, right-stepping en echelon tensional cracks, and left-stepping mole track structures that indicate a left-lateral strike-slip shear sense for the seismic fault. Field measurements indicate co-seismic left-lateral strike-slip displacements of approximately 0.3-3.2 m (typically 1-2 m), accompanied by a minor vertical component of <0.6 m. The present results show that (i) the Yushu earthquake occurred upon the pre-existing active Ganzi-Yushu Fault Zone, which controlled the spatial distribution of co-seismic surface ruptures and displacements; (ii) the left-lateral strike-slip motion indicates that the Ganzi-Yushu Fault Zone partitions deformation into eastward extrusion and northeastward shortening of the central Tibetan Plateau to accommodate the continuing penetration of the Indian plate into the Eurasian plate. Our findings confirm that present-day strain energy related to continental deformation in the central Tibetan Plateau, generated by collision between the Indian and Eurasian plates, is mainly released by strike-slip faulting along active strike-slip faults, and that the Ganzi-Yushu Fault Zone plays an important role in this crustal deformation, generating strong earthquakes that help to release the accumulated strain energy.
An experimental overview of the seismic cycle
NASA Astrophysics Data System (ADS)
Spagnuolo, E.; Violay, M.; Passelegue, F. X.; Nielsen, S. B.; Di Toro, G.
2017-12-01
Earthquake nucleation is the last stage of the inter-seismic cycle where the fault surface evolves through the interplay of friction, healing, stress perturbations and strain events. Slip stability under rate-and state friction has been extensively discussed in terms of loading point velocity and equivalent fault stiffness, but fault evolution towards seismic runaway under complex loading histories (e.g. slow variations of tectonic stress, stress transfer from impulsive nearby seismic events) is not yet fully investigated. Nevertheless, the short term earthquake forecasting is based precisely on a relation between seismic productivity and loading history which remains up to date still largely unresolved. To this end we propose a novel experimental approach which avails of a closed loop control of the shear stress, a nominally infinite equivalent slip and transducers for continuous monitoring of acoustic emissions. This experimental simulation allows us to study the stress dependency and temporal evolution of spontaneous slip events occurring on a pre-existing fault subjected to different loading histories. The experimental fault has an initial roughness which mimic a population of randomly distributed asperities, which here are used as a proxy for patches which are either far or close to failure on an extended fault. Our observations suggest that the increase of shear stress may trigger either spontaneous slow slip (creep) or short-lived stick-slip bursts, eventually leading to a fast slip instability (seismic runaway) when slip rates are larger than a few cm/s. The event type and the slip rate are regulated at first order by the background shear stress whereas the ultimate strength of the entire fault is dominated by the number of asperities close to failure under a stress step. The extrapolation of these results to natural conditions might explain the plethora of events that often characterize seismic sequences. Nonetheless this experimental approach helps the definition of a scaling relation between the loading rate and cumulated slip which is relevant to the definition of a recurrence model for the seismic cycle.
Major and micro seismo-volcanic crises in the Asal Rift, Djibouti
NASA Astrophysics Data System (ADS)
Peltzer, G.; Doubre, C.; Tomic, J.
2009-05-01
The Asal-Ghoubbet Rift is located on the eastern branch of the Afar triple junction between the Arabia, Somalia, and Nubia tectonic plates. The last major seismo-volcanic crisis on this segment occurred in November 1978, involving two earthquakes of mb=5+, a basaltic fissure eruption, the development of many open fissures across the rift and up to 80 cm of vertical slip on the bordering faults. Geodetic leveling revealed ~2 m of horizontal opening of the rift accompanied by ~70 cm of subsidence of the inner-floor, consistent with models of the elastic deformation produced by the injection of magma in a system of two dykes. InSAR data acquired at 24-day intervals during the last 12 years by the Canadian Radarsat satellite over the Asal Rift show that the two main faults activated in 1978 continue to slip with periods of steady creep at rates of 0.3-1.3 mm/yr, interrupted by sudden slip events of a few millimeters, in 2000 and 2003. Slip events are coincident with bursts of micro earthquakes distributed around and over the Fieale volcanic center in the eastern part of the Asal Rift. In both cases (the 1978 crisis and micro-slip events), the observed geodetic moment released by fault slip exceeds by a few orders of magnitude the total seismic moment released by earthquakes over the same period. Aseismic fault slip is likely to be the faults response to a changing stress field associated with a volcanic process and not due to dry friction on faults. Sustained injection of magma (1978 crisis) and/or crustal fluids (micro-slip events) in dykes and fissures is a plausible mechanism to control fluid pressure in the basal parts of faults and trigger aseismic slip. In this respect, the micro-events observed by InSAR during a 12-year period of low activity in the rift and the 1978 seismo-volcanic episode are of same nature.
A plastic flow model for the Acquara - Vadoncello landslide in Senerchia, Southern Italy
Savage, W.; Wasowski, J.
2006-01-01
A previously developed model for stress and velocity fields in two-dimensional Coulomb plastic materials under self-weight and pore pressure predicts that long, shallow landslides develop slip surfaces that manifest themselves as normal faults and normal fault scarps at the surface in areas of extending flow and as thrust faults and thrust fault scarps at the surface in areas of compressive flow. We have applied this model to describe the geometry of slip surfaces and ground stresses developed during the 1995 reactivation of the Acquara - Vadoncello landslide in Senerchia, southern Italy. This landslide is a long and shallow slide in which regions of compressive and extending flow are clearly identified. Slip surfaces in the main scarp region of the landslide have been reconstructed using surface surveys and subsurface borehole logging and inclinometer observations made during retrogression of the main scarp. Two of the four inferred main scarp slip surfaces are best constrained by field data. Slip surfaces in the toe region are reconstructed in the same way and three of the five inferred slip surfaces are similarly constrained. The location of the basal shear surface of the landslide is inferred from borehole logging and borehole inclinometry. Extensive data on material properties, landslide geometries, and pore pressures collected for the Acquara - Vadoncello landslide give values for cohesion, friction angle, and unit weight, plus average basal shear-surface slopes, and pore-pressures required for modelling slip surfaces and stress fields. Results obtained from the landslide-flow model and the field data show that predicted slip surface shapes are consistent with inferred slip surface shapes in both the extending flow main scarp region and in the compressive flow toe region of the Acquara - Vadoncello landslide. Also predicted stress distributions are found to explain deformation features seen in the toe and main scarp regions of the landslide. ?? 2005 Elsevier B.V. All rights reserved.
Re-evaluating Gondwana breakup: Magmatism, movement and microplates
NASA Astrophysics Data System (ADS)
Ferraccioli, F.; Jordan, T. A.
2017-12-01
Gondwana breakup is thought to have initiated in the Early- to Mid-Jurassic between South Africa and East Antarctica. The critical stages of continental extension and magmatism which preceded breakup remain controversial. It is agreed that extensive magmatism struck this region 180 Ma, and that significant extension occurred in the Weddell Sea Rift System (WSRS) and around the Falkland Plateau. However, the timing and volume of magmatism, extent and mechanism of continental extension, and the links with the wider plate circuit are poorly constrained. Jordan et al (Gondwana Research 2017) recently proposed a two-stage model for the formation of the WSRS: initial extension and movement of the Ellsworth Whitmore Mountains microplate along the margin of the East Antarctic continent on a sinistral strike slip fault zone, followed by transtensional extension closer to the continental margin. Here we identify some key questions raised by the two-stage model, and identify regions where these can be tested. Firstly, is the magmatism inferred to have facilitated extension in the WSRS directly linked to the onshore Dufek Intrusion? This question relates to both the uncertainty in the volume of magmatism and potentially the timing of extension, and requires improved resolution of aeromagnetic data in the eastern WSRS. Secondly, did extension in the WSRS terminate against a single strike slip fault zone or into a distributed fault system? By integrating new and existing aeromagnetic data along the margin of East Antarctica we evaluate the possibility of a distributed shear zone penetrating the East Antarctic continent, and identify critical remaining data gaps. Finally we question how extension within the WSRS could fit into the wider plate circuit. By integrating the two-stage model into Gplates reconstructions we identify regions of overlap and areas where tracers of past plate motion could be identified.
Reports on block rotations, fault domains and crustal deformation
NASA Technical Reports Server (NTRS)
Nur, Amos
1990-01-01
Studies of block rotations, fault domains and crustal deformation in the western United States, Israel, and China are discussed. Topics include a three-dimensional model of crustal fracture by distributed fault sets, distributed deformation and block rotation in 3D, stress field rotation, and multiple strike slip fault sets.
Role of the Kazerun fault system in active deformation of the Zagros fold-and-thrust belt (Iran)
NASA Astrophysics Data System (ADS)
Authemayou, Christine; Bellier, Olivier; Chardon, Dominique; Malekzade, Zaman; Abassi, Mohammad
2005-04-01
Field structural and SPOT image analyses document the kinematic framework enhancing transfer of strike-slip partitioned motion from along the backstop to the interior of the Zagros fold-and-thrust belt in a context of plate convergence slight obliquity. Transfer occurs by slip on the north-trending right-lateral Kazerun Fault System (KFS) that connects to the Main Recent Fault, a major northwest-trending dextral fault partitioning oblique convergence at the rear of the belt. The KFS formed by three fault zones ended by bent orogen-parallel thrusts allows slip from along the Main Recent Fault to become distributed by transfer to longitudinal thrusts and folds. To cite this article: C. Authemayou et al., C. R. Geoscience 337 (2005).
Telesca, Luciano; Lovallo, Michele; Ramirez-Rojas, Alejandro; Flores-Marquez, Leticia
2014-01-01
By using the method of the visibility graph (VG) the synthetic seismicity generated by a simple stick-slip system with asperities is analysed. The stick-slip system mimics the interaction between tectonic plates, whose asperities are given by sandpapers of different granularity degrees. The VG properties of the seismic sequences have been put in relationship with the typical seismological parameter, the b-value of the Gutenberg-Richter law. Between the b-value of the synthetic seismicity and the slope of the least square line fitting the k-M plot (relationship between the magnitude M of each synthetic event and its connectivity degree k) a close linear relationship is found, also verified by real seismicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tianyi; Tan, Lizhen; Lu, Zizhe
Instrumented nanoindentation was used in this paper to investigate the hardness, elastic modulus, and creep behavior of an austenitic Fe-20Cr-25Ni model alloy at room temperature, with the indented grain orientation being the variant. The samples indented close to the {111} surfaces exhibited the highest hardness and modulus. However, nanoindentation creep tests showed the greatest tendency for creep in the {111} indented samples, compared with the samples indented close to the {001} and {101} surfaces. Scanning electron microscopy and cross-sectional transmission electron microscopy revealed slip bands and dislocations in all samples. The slip band patterns on the indented surfaces were influencedmore » by the grain orientations. Deformation twinning was observed only under the {001} indented surfaces. Finally, microstructural analysis and molecular dynamics modeling correlated the anisotropic nanoindentation-creep behavior with the different dislocation substructures formed during indentation, which resulted from the dislocation reactions of certain active slip systems that are determined by the indented grain orientations.« less
An integrated approach towards identifying age-related mechanisms of slip initiated falls
Lockhart, Thurmon E.
2008-01-01
The causes of slip and fall accidents, both in terms of extrinsic and intrinsic factors and their associations are not yet fully understood. Successful intervention solutions for reducing slip and fall accidents require a more complete understanding of the mechanisms involved. Before effective fall prevention strategies can be put into practice, it is central to examine the chain of events in an accident, comprising the exposure to hazards, initiation of events and the final outcome leading to injury and disability. These events can be effectively identified and analyzed by applying epidemiological, psychophysical, biomechanical and tribological research principles and methodologies. In this manuscript, various methods available to examine fall accidents and their underlying mechanisms are presented to provide a comprehensive array of information to help pinpoint the needs and requirements of new interventions aimed at reducing the risk of falls among the growing elderly population. PMID:17768070
NASA Technical Reports Server (NTRS)
Barr, F. A.; Page, R. J.
1986-01-01
The feasibility of fabricating small rhenium parts with metal oxide additives by means of slip casting and extrusion techniques is described. The metal oxides, ZrO2 and HfO2 were stabilized into the cubic phase with Y2O3. Additions of metal oxide to the rhenium of up to 15 weight percent were used. Tubes of 17 mm diameter with 0.5 mm walls were slip cast by adapting current ceramic oxide techniques. A complete cast double conical nozzle demonstrated the ability to meet shapes and tolerances. Extrusion of meter long tubing lengths of 3.9 mm o.d. x 2.3 mm i.d. final dimension is documented. Sintering schedules are presented to produce better than 95% of theoretical density parts. Finished machining was found possible were requried by electric discharge machining and diamond grinding.
NASA Astrophysics Data System (ADS)
Gregory, Laura; Roberts, Gerald; Cowie, Patience; Wedmore, Luke; McCaffrey, Ken; Shanks, Richard; Zijerveld, Leo; Phillips, Richard
2017-04-01
In zones of distributed continental faulting, it is critical to understand how slip is partitioned onto brittle structures over both long-term millennial time scales and shorter-term individual earthquake cycles. Measuring earthquake slip histories on different timescales is challenging due to earthquake repeat-times being longer or similar to historical earthquake records, and a paucity of data on fault activity covering millennial to Quaternary scales in detail. Cosmogenic isotope analyses from bedrock fault scarps have the potential to bridge the gap, as these datasets track the exposure of fault planes due to earthquakes with millennial resolution. In this presentation, we present new 36Cl data combined with historical earthquake records to document orogen-wide changes in the distribution of seismicity on millennial timescales in Abruzzo, central Italy. Seismic activity due to extensional faulting was concentrated on the northwest side of the mountain range during the historical period, or since approximately the 14th century. Seismicity is more limited on the southwest side of Abruzzo during historical times. This pattern has led some to suggest that faults on the southwest side of Abruzzo are not active, however clear fault scarps cutting Holocene-aged slopes are well preserved across the whole of the orogen. These scarps preserve an excellent record of Late Pleistocene to Holocene earthquake activity, which can be quantified using cosmogenic isotopes that track the exposure of the bedrock fault scarps. 36Cl accumulates in the fault scarps as the plane is progressively exhumed by earthquakes and the concentration of 36Cl measured up the fault plane reflects the rate and patterns of slip. We utilise Bayesian modelling techniques to estimate slip histories based on the cosmogenic data. Each sampling site is carefully characterised using LiDAR and GPR to ensure that fault plane exposure is due to slip during earthquakes and not sediment transport processes. In this presentation we will focus on new data from faults located across-strike in Abruzzo. Many faults in Abruzzo demonstrate slip rate variability on millennial timescales, with relatively fast slip interspersed between quiescent periods. We show that heightened activity is co-located and spatially migrates across Abruzzo over time. We highlight the importance of understanding this dynamic fault behaviour of migrating seismic activity, and in particular how our research is relevant to the 2016 Amatrice-Vettore seismic sequence in central Italy.
Mapping apparent stress and energy radiation over fault zones of major earthquakes
McGarr, A.; Fletcher, Joe B.
2002-01-01
Using published slip models for five major earthquakes, 1979 Imperial Valley, 1989 Loma Prieta, 1992 Landers, 1994 Northridge, and 1995 Kobe, we produce maps of apparent stress and radiated seismic energy over their fault surfaces. The slip models, obtained by inverting seismic and geodetic data, entail the division of the fault surfaces into many subfaults for which the time histories of seismic slip are determined. To estimate the seismic energy radiated by each subfault, we measure the near-fault seismic-energy flux from the time-dependent slip there and then multiply by a function of rupture velocity to obtain the corresponding energy that propagates into the far-field. This function, the ratio of far-field to near-fault energy, is typically less than 1/3, inasmuch as most of the near-fault energy remains near the fault and is associated with permanent earthquake deformation. Adding the energy contributions from all of the subfaults yields an estimate of the total seismic energy, which can be compared with independent energy estimates based on seismic-energy flux measured in the far-field, often at teleseismic distances. Estimates of seismic energy based on slip models are robust, in that different models, for a given earthquake, yield energy estimates that are in close agreement. Moreover, the slip-model estimates of energy are generally in good accord with independent estimates by others, based on regional or teleseismic data. Apparent stress is estimated for each subfault by dividing the corresponding seismic moment into the radiated energy. Distributions of apparent stress over an earthquake fault zone show considerable heterogeneity, with peak values that are typically about double the whole-earthquake values (based on the ratio of seismic energy to seismic moment). The range of apparent stresses estimated for subfaults of the events studied here is similar to the range of apparent stresses for earthquakes in continental settings, with peak values of about 8 MPa in each case. For earthquakes in compressional tectonic settings, peak apparent stresses at a given depth are substantially greater than corresponding peak values from events in extensional settings; this suggests that crustal strength, inferred from laboratory measurements, may be a limiting factor. Lower bounds on shear stresses inferred from the apparent stress distribution of the 1995 Kobe earthquake are consistent with tectonic-stress estimates reported by Spudich et al. (1998), based partly on slip-vector rake changes.
NASA Astrophysics Data System (ADS)
Stünitz, Holger; Keulen, Nynke; Hirose, Takehiro; Heilbronner, Renée
2010-01-01
Microstructures and grain size distribution from high velocity friction experiments are compared with those of slow deformation experiments of Keulen et al. (2007, 2008) for the same material (Verzasca granitoid). The mechanical behavior of granitoid gouge in fast velocity friction experiments at slip rates of 0.65 and 1.28 m/s and normal stresses of 0.4-0.9 MPa is characterized by slip weakening in a typical exponential friction coefficient vs displacement relationship. The grain size distributions yield similar D-values (slope of frequency versus grain size curve = 2.2-2.3) as those of slow deformation experiments (D = 2.0-2.3) for grain sizes larger than 1 μm. These values are independent of the total displacement above a shear strain of about γ = 20. The D-values are also independent of the displacement rates in the range of ˜1 μm/s to ˜1.3 m/s and do not vary in the normal stress range between 0.5 MPa and 500 MPa. With increasing displacement, grain shapes evolve towards more rounded and less serrated grains. While the grain size distribution remains constant, the progressive grain shape evolution suggests that grain comminution takes place by attrition at clast boundaries. Attrition produces a range of very small grain sizes by crushing with a D <-value = 1. The results of the study demonstrate that most cataclastic and gouge fault zones may have resulted from seismic deformation but the distinction of seismic and aseismic deformation cannot be made on the basis of grain size distribution.
Distributed Seismic Moment Fault Model, Spectral Characteristics and Radiation Patterns
NASA Astrophysics Data System (ADS)
Shani-Kadmiel, Shahar; Tsesarsky, Michael; Gvirtzman, Zohar
2014-05-01
We implement a Distributed Seismic Moment (DSM) fault model, a physics-based representation of an earthquake source based on a skewed-Gaussian slip distribution over an elliptical rupture patch, for the purpose of forward modeling of seismic-wave propagation in 3-D heterogeneous medium. The elliptical rupture patch is described by 13 parameters: location (3), dimensions of the patch (2), patch orientation (1), focal mechanism (3), nucleation point (2), peak slip (1), rupture velocity (1). A node based second order finite difference approach is used to solve the seismic-wave equations in displacement formulation (WPP, Nilsson et al., 2007). Results of our DSM fault model are compared with three commonly used fault models: Point Source Model (PSM), Haskell's fault Model (HM), and HM with Radial (HMR) rupture propagation. Spectral features of the waveforms and radiation patterns from these four models are investigated. The DSM fault model best incorporates the simplicity and symmetry of the PSM with the directivity effects of the HMR while satisfying the physical requirements, i.e., smooth transition from peak slip at the nucleation point to zero at the rupture patch border. The implementation of the DSM in seismic-wave propagation forward models comes at negligible computational cost. Reference: Nilsson, S., Petersson, N. A., Sjogreen, B., and Kreiss, H.-O. (2007). Stable Difference Approximations for the Elastic Wave Equation in Second Order Formulation. SIAM Journal on Numerical Analysis, 45(5), 1902-1936.
Earthquake signatures from fast slip and dynamic fracture propagation: state of the art
NASA Astrophysics Data System (ADS)
Griffith, W. A.; Rowe, C. D.
2014-12-01
Earthquakes are dynamic slip events that propagate along fault surfaces, radiating seismic waves. The majority of energy released is expended in heating and breaking of rocks along the fault. The fracture damage is linked to transient stress conditions at the rupture tip which only exist during dynamic slip, while the frictional heating depends on high velocity slip behind the rupture tip to generate heat energy faster than it can be dissipated, causing transient local temperature rise. One might think that extensive damage and alteration would result, creating an unambiguous geological fingerprint, but in fact, there are few unequivocal indicators for past seismic slip. In 1999, the rare fault rock pseudotachylyte (melt formed when frictional heating exceeds the solidus) was the only accepted evidence (Cowan, 1999). Recently, more indicators of fossilized earthquakes have been proposed. We define "evidence of past earthquakes" as evidence of either fast fault slip (at rates that only occur during earthquakes) or evidence of the propagation of dynamic rupture. We first summarize advances made in identifying evidence in the rock record of fast slip. Much of the work during the past 15 years has focused on integrating carefully controlled laboratory friction experiments, and constraints from numerical modeling, with field observations in an attempt to re-create structures observed in fault rocks and then relate these to the specific boundary conditions required to form them in the laboratory. This approach has yielded a number of advances in identifying textures and geochemical signatures diagnostic of fast slip via temperature rises which may not reach the bulk melting temperature of the fault rocks. Next, we focus on damage near the tip of shear ruptures propagating at velocities characteristic of earthquakes, an approach which has received less attention in the geological literature than fast slip but is equally diagnostic. Finally, we try to frame some of the remaining challenges in this field. These challenges include future work on diagnostic features of earthquake deformation along faults, but also a more philosophical discussion of what an earthquake actually is.
NASA Astrophysics Data System (ADS)
Jiang, Su-Rong; Liu, Zhong-Qiang; Amos Yinnon, Tamar; Kong, Xiang-Mu
2017-05-01
A new approach for exploring effects of interfaces on polar liquids is presented. Their impact on the polar liquid film motor (PLFM) - a novel micro-fluidic device - is studied. We account for the interface’s impact by modeling slip boundary effects on the PLFM’s electro-hydro-dynamical rotations. Our analytical results show as k={l}s/R increases (with {l}s denoting the slip length resulting from the interface’s impact on the film’s properties, k > -1 and R denoting the film’s radius): (a) PLFMs subsequently exhibit rotation characteristics under “negative-”, “no-”, “partial-” and “perfect-” slip boundary conditions; (b) The maximum value of the linear velocity of the steady rotating film increases linearly and its location approaches the film’s border; (c) The decay of the angular velocities’ dependency on the distance from the center of the film slows down, resulting in a macroscopic flow near the boundary. With our calculated rotation speed distributions consistent with the existing experimental ones, research aiming at fitting computed to measured distributions promises identifying the factors affecting {l}s, e.g., solid-fluid potential interactions and surface roughness. The consistency also is advantageous for optimizing PLFM’s applications as micro-washers, centrifuges, mixers in the lab-on-a-chip. Supported by National Natural Science Foundation of China under Grant Nos. 11302118, 11275112, and Natural Science Foundation of Shandong Province under Grant No. ZR2013AQ015
Rietbrock, A.; Ryder, I.; Hayes, G.; Haberland, C.; Comte, D.; Roecker, S.
2012-01-01
The 27 February 2010 Maule, Chile (Mw=8.8) earthquake is one of the best instrumentally observed subduction zone megathrust events. Here we present locations, magnitudes and cumulative equivalent moment of the first -2 months of aftershocks, recorded on a temporary network deployed within 2 weeks of the occurrence of the mainshock. Using automatically-determined onset times and a back projection approach for event association, we are able to detect over 30,000 events in the time period analyzed. To further increase the location accuracy, we systematically searched for potential S-wave arrivals and events were located in a regional 2D velocity model. Additionally, we calculated regional moment tensors to gain insight into the deformation history of the aftershock sequence. We find that the aftershock seismicity is concentrated between 40 and 140 km distance from the trench over a depth range of 10 to 35 km. Focal mechanisms indicate a predominance of thrust faulting, with occasional normal faulting events. Increased activity is seen in the outer-rise region of the Nazca plate, predominantly in the northern part of the rupture area. Further down-dip, a second band of clustered seismicity, showing mainly thrust motion, is located at depths of 40–45 km. By comparing recent published mainshock source inversions with our aftershock distribution, we discriminate slip models based on the assumption that aftershocks occur in areas of rapid transition between high and low slip, surrounding high-slip regions of the mainshock.
NASA Astrophysics Data System (ADS)
Amini, A.; Eberhardt, E.
2016-12-01
Producing oil and gas from shale reservoirs requires permeability enhancement treatments. This is achieved by injecting fluid under pressure to either propagate cracks through the rock (hydraulic fracture) or to stimulate slip across pre-existing fractures (hydroshear), which allows gas or oil to flow more readily into the well bore. After treatment is performed, the fluid is disposed of by injecting it back into the ground. The injection of these fluids, whether related to permeability enhancement or waste water disposal , into deep formations serves to create localized increases in pore pressures and reductions in the effective normal stresses acting on critically stressed faults, resulting in induced earthquakes. There have been numerous reports of anomalous seismic events with high magnitudes felt on surface that have given rise to public concerns. However, it must be recognized that different producing fields in Canada and the U.S. are situated in different tectonic regimes that favour different fault slip mechanisms. This study will explore the importance of stress regime, comparing the generation of induced seismicity under thrust versus strike slip conditions, with focus on their respective magnitudes distributions. To do so, we will first study empirical data pertaining to recorded seismicity related to hydraulic fracture operations with respect to source mechanisms and magnitude distributions. These will be analyzed in parallel with a series of advanced 3-dimensional numerical models using the distinct element code 3DEC to simulate fault slip under different stress regimes.
NASA Astrophysics Data System (ADS)
Ohta, Y.; Hino, R.; Ariyoshi, K.; Matsuzawa, T.; Mishina, M.; Sato, T.; Inazu, D.; Ito, Y.; Tachibana, K.; Demachi, T.; Miura, S.
2013-12-01
On March 9, 2011 at 2:45 (UTC), an M7.3 interplate earthquake (hereafter foreshock) occurred ~45 km northeast of the epicenter of the M9.0 2011 Tohoku earthquake. This foreshock preceded the 2011 Tohoku earthquake by 51 hours. Ohta et al., (2012, GRL) estimated co- and postseismic afterslip distribution based on a dense GPS network and ocean bottom pressure gauge sites. They found the afterslip distribution was mainly concentrated in the up-dip extension of the coseismic slip. The coseismic slip and afterslip distribution of the foreshock were also located in the slip deficit region (between 20-40m slip) of the coiseismic slip of the M9.0 mainshock. The slip amount for the afterslip is roughly consistent with that determined by repeating earthquake analysis carried out in a previous study (Kato et al., 2012, Science). The estimated moment release for the afterslip reached magnitude 6.8, even within a short time period of 51 hours. They also pointed out that a volumetric strainmeter time series suggests that this event advanced with a rapid decay time constant (4.8 h) compared with other typical large earthquakes. The decay time constant of the afterslip may reflect the frictional property of the plate interface, especially effective normal stress controlled by fluid. For verification of the short decay time constant of the foreshock, we investigated the postseismic deformation characteristic following the 1989 and 1992 Sanriku-Oki earthquakes (M7.1 and M6.9), 2003 and 2005 Miyagi-Oki earthquakes (M6.8 and M7.2), and 2008 Fukushima-Oki earthquake (M6.9). We used four components extensometer at Miyako (39.59N, 141.98E) on the Sanriku coast for 1989 and 1992 event. For 2003, 2005 and 2008 events, we used volumetric strainmeter at Kinka-zan (38.27N, 141.58E) and Enoshima (38.27N, 141.60E). To extract the characteristics of the postseismic deformation, we fitted the logarithmic function. The estimated decay time constants for each earthquake had almost similar range (1-15 h) with the foreshock of the 2011 Tohoku earthquake (4.8h), but relatively small compared with the typical interplate earthquakes. The comparison of decay time constant with other typical large interplate earthquakes is very difficult because of difference in the observation sensors such as GPS and strainmeter. In any case, decay time constant of postseismic deformation for the foreshock of the 2011 Tohoku earthquake is not anomalous compared with other events in this region.
LIMITS OF RECOVERY AGAINST SLIP-INDUCED FALLS WHILE WALKING
Yang, Feng; Bhatt, Tanvi; Pai, Yi-Chung
2012-01-01
Slip-induced falls in gait often have devastating consequences. The purposes of this study were 1) to select the determinants that can best discriminate the outcomes (recoveries or falls) of an unannounced slip induced in gait (and to find their corresponding threshold, i.e., the limits of recovery, that can clearly separate these two outcomes), and 2) to verify these results in a subset of repeated slip trials. Based on the data collected from 69 young subjects during a slip induced in gait, nine different ways of combining the center of mass (COM) stability, the hip height, and its vertical velocity were investigated with the aid of logistic regression. The results revealed that the COM stability (s) and limb support (represented by the quotient of hip vertical velocity and hip height, Ship) recorded at the instant immediately prior to the recovery step touchdown were sufficiently sensitive to account for all (100%) variance in falls, and specific enough to account for nearly all (98.3%) variability in recoveries. This boundary (Ship = -0.22s -0.25), which quantifies the risk of falls in the stability-limb support quotient (s-Ship) domain, was fully verified using 76 second- and third-slip trials with classification of falls at 100% and recoveries at 98.6%. The severity of an actual fall is likely to be greater further below the boundary, while the likelihood of a fall diminishes above it. Finally, the slope of the boundary also indicates the tradeoff between the stability and limb support, whereby high stability can compensate for the insufficiency in limb support, or vice versa. PMID:21899844
NASA Astrophysics Data System (ADS)
Riller, U.; Clark, M. D.; Daxberger, H.; Doman, D.; Lenauer, I.; Plath, S.; Santimano, T.
2017-08-01
Heterogeneous deformation is intrinsic in natural deformation, but often underestimated in the analysis and interpretation of mesoscopic brittle shear faults. Based on the analysis of 11,222 faults from two distinct tectonic settings, the Central Andes in Argentina and the Sudbury area in Canada, interpolation of principal strain directions and scaled analogue modelling, we revisit controversial issues of fault-slip inversions, collectively adhering to heterogeneous deformation. These issues include the significance of inversion solutions in terms of (1) strain or paleo-stress; (2) displacement, notably plate convergence; (3) local versus far-field deformation; (4) strain perturbations and (5) spacing between stations of fault-slip data acquisition. Furthermore, we highlight the value of inversions for identifying the kinematics of master fault zones in the absence of displaced geological markers. A key result of our assessment is that fault-slip inversions relate to local strain, not paleo-stress, and thus can aid in inferring, the kinematics of master faults. Moreover, strain perturbations caused by mechanical anomalies of the deforming upper crust significantly influence local principal strain directions. Thus, differently oriented principal strain axes inferred from fault-slip inversions in a given region may not point to regional deformation caused by successive and distinct deformation regimes. This outcome calls into question the common practice of separating heterogeneous fault-slip data sets into apparently homogeneous subsets. Finally, the fact that displacement vectors and principal strains are rarely co-linear defies the use of brittle fault data as proxy for estimating directions of plate-scale motions.
Dynamic Parameters of the 2015 Nepal Gorkha Mw7.8 Earthquake Constrained by Multi-observations
NASA Astrophysics Data System (ADS)
Weng, H.; Yang, H.
2017-12-01
Dynamic rupture model can provide much detailed insights into rupture physics that is capable of assessing future seismic risk. Many studies have attempted to constrain the slip-weakening distance, an important parameter controlling friction behavior of rock, for several earthquakes based on dynamic models, kinematic models, and direct estimations from near-field ground motion. However, large uncertainties of the values of the slip-weakening distance still remain, mostly because of the intrinsic trade-offs between the slip-weakening distance and fault strength. Here we use a spontaneously dynamic rupture model to constrain the frictional parameters of the 25 April 2015 Mw7.8 Nepal earthquake, by combining with multiple seismic observations such as high-rate cGPS data, strong motion data, and kinematic source models. With numerous tests we find the trade-off patterns of final slip, rupture speed, static GPS ground displacements, and dynamic ground waveforms are quite different. Combining all the seismic constraints we can conclude a robust solution without a substantial trade-off of average slip-weakening distance, 0.6 m, in contrast to previous kinematical estimation of 5 m. To our best knowledge, this is the first time to robustly determine the slip-weakening distance on seismogenic fault from seismic observations. The well-constrained frictional parameters may be used for future dynamic models to assess seismic hazard, such as estimating the peak ground acceleration (PGA) etc. Similar approach could also be conducted for other great earthquakes, enabling broad estimations of the dynamic parameters in global perspectives that can better reveal the intrinsic physics of earthquakes.
Cui, Shuqi; Hong, Ning; Shi, Baochang; Chai, Zhenhua
2016-04-01
In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back (HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where three different discrete velocity models are considered. We first present a theoretical analysis on the discrete effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary, which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis can be extended to other boundary conditions of lattice Boltzmann models for CDEs.
NASA Technical Reports Server (NTRS)
Cotton, James Dean
1992-01-01
Major obstacles to the use of NiAl-based alloys and composites are low ductility and toughness. These shortcomings result in part from a lack of sufficient slip systems to accommodate plastic deformation of polycrystalline material (von Mises Criterion). It has been reported that minor additions of chromium to polycrystalline NiAl cause the predominant slip system to shift from the usual. If true, then a major step toward increasing ductility in this compound may be realized. The purpose of the present study was to verify this phenomenon, characterize it with respect to chromium level and Ni to Al ratio, and correlate any change in slip system with microstructure and mechanical properties. Compression and tensile specimens were prepared from alloys containing 0 to 5 percent chromium and 45 to 55 percent aluminum. Following about one percent strain, transmission electron microscopy foils were produced and the slip systems determined using the g x b = 0 invisibility criterion. Contrary to previous results, chromium was found to have no effect on the preferred slip system of any of the alloys studied. Possible reasons for the inconsistency of the current results with previous work are considered. Composition-structure-property relationships are discerned for the alloys, and good correlation are demonstrated in terms of conventional strengthening models for metallic systems.
2.1 meter (82 inch) Slip Ring By-Pass Project
NASA Astrophysics Data System (ADS)
Bryan, Corby B.
2006-12-01
2.1 meter (82 inch) Slip Ring By-Pass Project I will describe a project to bypass the old method of getting control communications above the rotation point of the McDonald Observatory 2.1 meter dome. The old method used slip rings that were implemented in the late 1930s. The new system uses wireless serial commands which allow the control lines to be taken off the slip rings, leaving only power and ground. I will describe how the concept was devised so the slip rings could be by-passed, what micro-controller system that was decided on and used, how the wireless units were set up and finally how the system was tested and put in place with only limited tasks to control. (I.E. the opening and closing of the shutters) We describe the advantages to making this upgrade and how it could benefit any telescope interested in upgrading its communication systems. This project was designed and tested in ten weeks during the McDonald Observatory REU and was supported under NSF AST-0243745. The system was designed so that it could be installed while running side by side with the current method of getting control to the above rotation point. The method is still in place being tested on the 2.1 meter telescope and will soon be fully implemented by the University of Texas McDonald Observatory OS staff.
NASA Astrophysics Data System (ADS)
Holmes, J. J.; Driscoll, N. W.; Kent, G. M.
2017-12-01
The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) Fault is a dextral strike-slip system that is primarily offshore for approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC Fault Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC Fault is the San Onofre Trend (SOT) along the continental slope. Previous work concluded that this is part of a strike-slip system that eventually merges with the NIRC Fault. Others have interpreted this system as deformation associated with the Oceanside Blind Thrust Fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D Parallel Cable (P-Cable) seismic surveys of the NIRC and SOT faults as part of the Southern California Regional Fault Mapping project. Analysis of stratigraphy and 3D mapping of this new data has yielded a new kinematic fault model of the area that provides new insight on deformation caused by interactions in both compressional and extensional regimes. For the first time, we can reconstruct fault interaction and investigate how strain is distributed through time along a typical strike-slip margin using 3D constraints on fault architecture.
NASA Astrophysics Data System (ADS)
Liu, Yunhua; Zhang, Guohong; Zhang, Yingfeng; Shan, Xinjian
2018-06-01
On January 21st, 2016, a Ms 6.4 earthquake hit Menyuan County, Qinghai province, China. The nearest known fault is the Leng Long Ling (LLL) fault which is located approximately 7 km north of the epicenter. This fault has mainly shown sinistral strike-slip movement since the late Quaternary Period. However, the focal mechanism indicates that it is a thrust earthquake, which is different from the well-known strike-slip feature of the LLL fault. In this study, we determined the focal mechanism and primary nodal plane through multi-step inversions in the frequency and time domain by using the broadband regional seismic waveforms recorded by the China Digital Seismic Network (CDSN). Our results show that the rupture duration was short, within 0-2 s after the earthquake, and the rupture expanded upwards along the fault plane. Based on these fault parameters, we then solve for variable slip distribution on the fault plane using the InSAR data. We applied a three-segment fault model to simulate the arc-shaped structure of the northern LLL fault, and obtained a detailed slip distribution on the fault plane. The inversion results show that the maximum slip is 0.43 m, and the average slip angle is 78.8°, with a magnitude of Mw 6.0 and a focal depth of 9.38 km. With the geological structure and the inversion results taken into consideration, it can be suggested that this earthquake was caused by the arc-shaped secondary fault located at the north side of the LLL fault. The secondary fault, together with the LLL fault, forms a normal flower structure. The main LLL fault extends almost vertically into the base rock and the rocks between the two faults form a bulging fault block. Therefore, we infer that this earthquake is the manifestation of a neotectonics movement, in which the bulging fault block is lifted further up under the compresso-shear action caused by the Tibetan Plateau pushing towards the northwest direction.
Tremor, remote triggering and earthquake cycle
NASA Astrophysics Data System (ADS)
Peng, Z.
2012-12-01
Deep tectonic tremor and episodic slow-slip events have been observed at major plate-boundary faults around the Pacific Rim. These events have much longer source durations than regular earthquakes, and are generally located near or below the seismogenic zone where regular earthquakes occur. Tremor and slow-slip events appear to be extremely stress sensitive, and could be instantaneously triggered by distant earthquakes and solid earth tides. However, many important questions remain open. For example, it is still not clear what are the necessary conditions for tremor generation, and how remote triggering could affect large earthquake cycle. Here I report a global search of tremor triggered by recent large teleseismic earthquakes. We mainly focus on major subduction zones around the Pacific Rim. These include the southwest and northeast Japan subduction zones, the Hikurangi subduction zone in New Zealand, the Cascadia subduction zone, and the major subduction zones in Central and South America. In addition, we examine major strike-slip faults around the Caribbean plate, the Queen Charlotte fault in northern Pacific Northwest Coast, and the San Andreas fault system in California. In each place, we first identify triggered tremor as a high-frequency non-impulsive signal that is in phase with the large-amplitude teleseismic waves. We also calculate the dynamic stress and check the triggering relationship with the Love and Rayleigh waves. Finally, we calculate the triggering potential with the local fault orientation and surface-wave incident angles. Our results suggest that tremor exists at many plate-boundary faults in different tectonic environments, and could be triggered by dynamic stress as low as a few kPas. In addition, we summarize recent observations of slow-slip events and earthquake swarms triggered by large distant earthquakes. Finally, we propose several mechanisms that could explain apparent clustering of large earthquakes around the world.
NASA Technical Reports Server (NTRS)
Wood, R. A.; Boyd, J. D.; Williams, D. N.; Jaffee, R. I.
1972-01-01
A detailed study was made of the relation between the size distribution of Ti3Al particles in a Ti-8Al alloy and the tensile properties measured in air and in saltwater. The size distribution of Ti3Al was varied by isothermal aging for various times at temperatures in the range 770 to 970 K (930 to 1290 F). The aging kinetics were found to be relatively slow. Quantitative measurements of the particle coarsening rate at 920 K (1200 F) showed good agreement with the predicted behavior for coarsening controlled by matrix diffusion, and suggested that the specific free energy of the Ti3Al alpha interface in negligible small. In all cases, the Ti3Al particles were sheared by the glide dislocations. It was concluded that there is a definite correlation between the presence of deformable Ti3Al particles and an alloy's susceptibility to aqueous stress corrosion cracking. Furthermore, the appearance of the surface slip lines and the dislocation substructure in deformed specimens suggest that the specific effect of the Ti3Al particles is to cause a nonhomogeneous planar slip character and an enhanced chemical potential of the slip bands.
NASA Astrophysics Data System (ADS)
Cochran, W. J.; Spotila, J. A.
2017-12-01
Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire SBM block, the slow rates of slip, and the geomorphic expression of these faults add difficulty for assessing fault-slip evolution. Although evidence for diffuse dextral faulting exists within the formerly uplifted SBM block, future work is needed along these faults to determine if the ECSZ is migrating west.