Sample records for finally controls wettability

  1. The comparison between two irrigation regimens on the dentine wettability for an epoxy resin based sealer by measuring its contact angle formed to the irrigated dentine.

    PubMed

    Mohan, Rayapudi Phani; Pai, Annappa Raghavendra Vivekananda

    2015-01-01

    The aim was to assess the influence of two irrigation regimens having ethylenediaminetetraacetic acid (EDTA) and ethylenediaminetetraacetic acid with cetrimide (EDTAC) as final irrigants, respectively, on the dentine wettability for AH Plus sealer by comparing its contact angle formed to the irrigated dentine. Study samples were divided into two groups (n = 10). The groups were irrigated with 3% sodium hypochlorite (NaOCl) solution followed by either 17% EDTA or 17% EDTAC solution. AH Plus was mixed, and controlled volume droplet (0.1 mL) of the sealer was placed on the dried samples. The contact angle was measured using a Dynamic Contact Angle Analyzer and results were analyzed using SPSS 21.0 and 2 sample t-test. There was a significant difference in the contact angle of AH Plus formed to the dentine irrigated with the above two regimens. AH Plus showed significantly lower contact angle with the regimen having EDTAC as a final irrigant than the one with EDTA (P < 0.05). An irrigation regimen consisting of NaOCl with either EDTA or EDTAC solution as a final irrigant influences the dentine wettability and contact angle of a sealer. EDTAC as a final irrigant facilitates better dentin wettability than EDTA for AH Plus to promote its better flow and adhesion.

  2. Carbon dioxide/brine wettability of porous sandstone versus solid quartz: An experimental and theoretical investigation.

    PubMed

    Alnili, Firas; Al-Yaseri, Ahmed; Roshan, Hamid; Rahman, Taufiq; Verall, Michael; Lebedev, Maxim; Sarmadivaleh, Mohammad; Iglauer, Stefan; Barifcani, Ahmed

    2018-08-15

    Wettability plays an important role in underground geological storage of carbon dioxide because the fluid flow and distribution mechanism within porous media is controlled by this phenomenon. CO 2 pressure, temperature, brine composition, and mineral type have significant effects on wettability. Despite past research on this subject, the factors that control the wettability variation for CO 2 /water/minerals, particularly the effects of pores in the porous substrate on the contact angle at different pressures, temperatures, and salinities, as well as the physical processes involved are not fully understood. We measured the contact angle of deionised water and brine/CO 2 /porous sandstone samples at different pressures, temperatures, and salinities. Then, we compared the results with those of pure quartz. Finally, we developed a physical model to explain the observed phenomena. The measured contact angle of sandstone was systematically greater than that of pure quartz because of the pores present in sandstone. Moreover, the effect of pressure and temperature on the contact angle of sandstone was similar to that of pure quartz. The results showed that the contact angle increases with increase in temperature and pressure and decreases with increase in salinity. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Evaluation of final irrigation regimens with maleic acid for smear layer removal and wettability of root canal sealer.

    PubMed

    Ballal, Nidambur Vasudev; Ferrer-Luque, Carmen Maria; Sona, Mrunali; Prabhu, K Narayan; Arias-Moliz, Teresa; Baca, Pilar

    2018-04-01

    To evaluate the smear layer removal and wettability of AH Plus sealer on root canal dentin treated with MA (maleic acid), MA + CTR (cetrimide) and MA + CTR + CHX (chlorhexidine) as final irrigating regimens. For smear layer removal, 40 teeth were instrumented to size F4 and divided into four groups: (1) 7% MA, (2) 7% MA + 0.2% CTR, (3) 7% MA + 0.2% CTR + 2% CHX, (4) distilled water (control). After irrigation, teeth were subjected to SEM analysis. For contact angle analysis, 20 teeth were split longitudinally and divided into four groups similar to smear layer analysis. AH plus sealer was placed on each specimen and contact angle was analysed. In both smear layer (p = .393) and contact angle analysis (p = .961), there was no significant difference between the groups MA and MA + CTR. However, MA + CTR + CHX removed smear layer less effectively (p = .023) and increased the contact angle of the sealer (p = .005). In smear layer analysis, specimens in negative control group were heavily smeared. In case of contact angle analysis, samples in the control group had least contact angle. MA alone or in combination with CTR removed smear layer effectively and increased the wettability of AH plus sealer to root canal dentin.

  4. Recent Advances in TiO2 -Based Nanostructured Surfaces with Controllable Wettability and Adhesion.

    PubMed

    Lai, Yuekun; Huang, Jianying; Cui, Zequn; Ge, Mingzheng; Zhang, Ke-Qin; Chen, Zhong; Chi, Lifeng

    2016-04-27

    Bioinspired surfaces with special wettability and adhesion have attracted great interest in both fundamental research and industry applications. Various kinds of special wetting surfaces have been constructed by adjusting the topographical structure and chemical composition. Here, recent progress of the artificial superhydrophobic surfaces with high contrast in solid/liquid adhesion has been reviewed, with a focus on the bioinspired construction and applications of one-dimensional (1D) TiO2-based surfaces. In addition, the significant applications related to artificial super-wetting/antiwetting TiO2-based structure surfaces with controllable adhesion are summarized, e.g., self-cleaning, friction reduction, anti-fogging/icing, microfluidic manipulation, fog/water collection, oil/water separation, anti-bioadhesion, and micro-templates for patterning. Finally, the current challenges and future prospects of this renascent and rapidly developing field, especially with regard to 1D TiO2-based surfaces with special wettability and adhesion, are proposed and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrical potential induced switchable wettability of super-aligned carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Zhang, Guang; Duan, Zheng; Wang, Qinggong; Li, Long; Yao, Wei; Liu, Changhong

    2018-01-01

    Controlling of the wettability of micro-nano scale surfaces not only plays important roles in basic science but also presents some significant applications in interference shielding materials, microfluidics and phase-change heat transfer enhancement, etc. Here, the superhydrophobic super-aligned carbon nanotube (SACNT) films are firstly obtained by the chemical vapor deposition method and the annealing process. Then their wettabilities are in-situ switched by the electrowetting strategy. Specifically, the fascinating transformation of superhydrophobicity to the superhydrophilicity is achieved by exerting external DC voltages across the CNT-liquid interfaces, and the transitions of Cassie-to-Wenzel states are observed on the multilayer SACNT films. In addition, the electrowetting induced salt absorption of the porous SACNT is also reported here. Finally, the threshold voltages of the electrowetting behaviors for different liquids on the SACNT films and unit capacitances across the CNT-liquid interfaces are obtained, which reveal that the SACNT films have much more outstanding electrowetting properties than the previously reported works. Our approach reported here demonstrates that the wettability of SACNT films could be simply, effectively and in-situ controlled by the electrowetting method, which will have many profound implications in numerous applications such as phase-change heat transfer enhancement, optical lens with variable focal length and microfluidics, etc.

  6. Lotus-on-chip: computer-aided design and 3D direct laser writing of bioinspired surfaces for controlling the wettability of materials and devices.

    PubMed

    Lantada, Andrés Díaz; Hengsbach, Stefan; Bade, Klaus

    2017-10-16

    In this study we present the combination of a math-based design strategy with direct laser writing as high-precision technology for promoting solid free-form fabrication of multi-scale biomimetic surfaces. Results show a remarkable control of surface topography and wettability properties. Different examples of surfaces inspired on the lotus leaf, which to our knowledge are obtained for the first time following a computer-aided design with this degree of precision, are presented. Design and manufacturing strategies towards microfluidic systems whose fluid driving capabilities are obtained just by promoting a design-controlled wettability of their surfaces, are also discussed and illustrated by means of conceptual proofs. According to our experience, the synergies between the presented computer-aided design strategy and the capabilities of direct laser writing, supported by innovative writing strategies to promote final size while maintaining high precision, constitute a relevant step forward towards materials and devices with design-controlled multi-scale and micro-structured surfaces for advanced functionalities. To our knowledge, the surface geometry of the lotus leaf, which has relevant industrial applications thanks to its hydrophobic and self-cleaning behavior, has not yet been adequately modeled and manufactured in an additive way with the degree of precision that we present here.

  7. A drop penetration method to measure powder blend wettability.

    PubMed

    Wang, Yifan; Liu, Zhanjie; Muzzio, Fernando; Drazer, German; Callegari, Gerardo

    2018-03-01

    Water wettability of pharmaceutical blends affects important quality attributes of final products. We investigate the wetting properties of a pharmaceutical blend lubricated with Magnesium Stearate (MgSt) as a function of the mechanical shear strain applied to the blend. We measure the penetration dynamics of sessile drops deposited on slightly compressed powder beds. We consider a blend composed of 9% Acetaminophen 90% Lactose and 1% MgSt by weight. Comparing the penetration time of water and a reference liquid Polydimethylsiloxane (silicon oil) we obtain an effective cosine of the contact angle with water, based on a recently developed drop penetration method. We repeat the experiments for blends exposed to increasing levels of shear strain and demonstrate a significant decrease in water wettability (decrease in the cosine of the contact angle). The results are consistent with the development of a hydrophobic film coating the powder particles as a result of the increased shear strain. Finally, we show that, as expected dissolution times increase with the level of shear strain. Therefore, the proposed drop penetration method could be used to directly assess the state of lubrication of a pharmaceutical blend and act as a quality control on powder blend attributes before the blend is tableted. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. An investigation into a micro-sized droplet impinging on a surface with sharp wettability contrast

    NASA Astrophysics Data System (ADS)

    Lim, C. Y.; Lam, Y. C.

    2014-10-01

    An experimental investigation was conducted into a micro-sized droplet jetted onto a surface with sharp wettability contrast. The dynamics of micro-sized droplet impingement on a sharp wettability contrast surface, which is critical in inkjet printing technology, has not been investigated in the literature. Hydrophilic lines with line widths ranging from 27 to 53 µm, and contact angle ranging from 17° to 77°, were patterned on a hydrophobic surface with a contact angle of 107°. Water droplets with a diameter of 81 µm were impinged at various offset distances from the centre of the hydrophilic line. The evolution of the droplet upon impingement can be divided into three distinct phases, namely the kinematic phase, the translating phase where the droplet moves towards the centre of the hydrophilic line, and the conforming phase where the droplet spreads along the line. The key parameters affecting the conformability of the droplet to the hydrophilic line pattern are the ratio of the line width to the initial droplet diameter and the contact angle of the hydrophilic line. The droplet will only conform completely to the hydrophilic pattern if the line width is not overly small relative to the droplet and the contact angle of the hydrophilic line is sufficiently low. The impact offset distance does not affect the final shape and final location of the droplet, as long as part of the droplet touches the hydrophilic line upon impingement. This process has a significant impact on inkjet printing technology as high accuracy of inkjet droplet deposition and shape control can be achieved through wettability patterning.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreasedmore » from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.« less

  10. Development of a Freeze-Dried Fungal Wettable Powder Preparation Able to Biodegrade Chlorpyrifos on Vegetables

    PubMed Central

    Chen, Shaohua; Xiao, Ying; Hu, Meiying; Zhong, Guohua

    2014-01-01

    Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711), a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM). The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues. PMID:25061758

  11. Development of a freeze-dried fungal wettable powder preparation able to biodegrade chlorpyrifos on vegetables.

    PubMed

    Liu, Jie; He, Yue; Chen, Shaohua; Xiao, Ying; Hu, Meiying; Zhong, Guohua

    2014-01-01

    Continuous use of the pesticide chlorpyrifos has resulted in harmful contaminations in environment and species. Based on a chlorpyrifos-degrading fungus Cladosporium cladosporioides strain Hu-01 (collection number: CCTCC M 20711), a fungal wettable powder preparation was developed aiming to efficiently remove chlorpyrifos residues from vegetables. The formula was determined to be 11.0% of carboxymethyl cellulose-Na, 9.0% of polyethylene glycol 6000, 5.0% of primary alcohol ethoxylate, 2.5% of glycine, 5.0% of fucose, 27.5% of kaolin and 40% of freeze dried fungi by response surface methodology (RSM). The results of quality inspection indicated that the fungal preparation could reach manufacturing standards. Finally, the degradation of chlorpyrifos by this fungal preparation was determined on pre-harvest cabbage. Compared to the controls without fungal preparation, the degradation of chlorpyrifos on cabbages, which was sprayed with the fungal preparation, was up to 91% after 7 d. These results suggested this freeze-dried fungal wettable powder may possess potential for biodegradation of chlorpyrifos residues on vegetables and provide a potential strategy for food and environment safety against pesticide residues.

  12. Electron beam irradiation impact on surface structure and wettability of ethylene-vinyl alcohol copolymer

    NASA Astrophysics Data System (ADS)

    El-Saftawy, A. A.; Ragheb, M. S.; Zakhary, S. G.

    2018-06-01

    In the present study, electron beam (EB) is utilized to tailor the surface structure and wetting behavior of ethylene-vinyl alcohol (EVOH) copolymer. The structural deformation is examined by x-ray diffractometer (XRD). The recorded patterns reveal the formation of disordered systems on the irradiated surface. Also, the surface crystallinity degree, crystallite size, and micro-strain are studied. The microstructure induced modifications of the irradiated samples are investigated by 1-dimensional proton nuclear magnetic resonance 1H NMR spectroscopic analysis. The recorded spectra showed that the hydroxyl group (O-H) absorption intensity, enhanced compared to that of methylene (-CH2) and methine (>C-H) groups. Likewise, the changes of the polymer surface chemistry are studied by Fourier transform infrared spectroscopy (FTIR) and showed that the surface polarity improved after irradiation. The contact angle method is used to prove the surface wettability improvements after irradiation. Additionally, the fucoidan-coated samples exhibit great enhancements in surface wettability and have a reduced recovery effect compared to the uncoated samples. The surface free energy and bonding adhesion are studied as well. The fucoidan-coated samples are found to have a larger adhesion strength than that of the EVOH samples (pristine and irradiated). Finally, surface morphology and roughness are traced by atomic force microscopy (AFM). The improvements in surface wettability and adhesion are attributed to the modified surface roughness and the increased surface polarity. To sum up, combining EB irradiation and fucoidan enhance the surface wettability of EVOH in a controlled way keeping the bulk properties unaffected.

  13. Electrospinning onto Insulating Substrates by Controlling Surface Wettability and Humidity

    NASA Astrophysics Data System (ADS)

    Choi, WooSeok; Kim, Geon Hwee; Shin, Jung Hwal; Lim, Geunbae; An, Taechang

    2017-11-01

    We report a simple method for electrospinning polymers onto flexible, insulating substrates by controlling the wettability of the substrate surface. Water molecules were adsorbed onto the surface of a hydrophilic polymer substrate by increasing the local humidity around the substrate. The adsorbed water was used as the ground electrode for electrospinning. The electrospun fibers were deposited only onto hydrophilic areas of the substrate, allowing for patterning through wettability control. Direct writing of polymer fiber was also possible through near-field electrospinning onto a hydrophilic surface.

  14. Switchable hydrophobic/hydrophilic surface of electrospun poly (l-lactide) membranes obtained by CF₄microwave plasma treatment

    DOE PAGES

    Yue, Mengyao; Zhou, Baoming; Jiao, Kunyan; ...

    2014-11-29

    A switchable surface that promotes either hydrophobic or hydrophilic wettability of poly (L-lactide) (PLLA) microfibrous membranes is obtained by CF₄ microwave plasma treatment in this paper. The results indicated that both etching and grafting process occurred during the CF₄ plasma treatment and these two factors synergistically affected the final surface wettability of PLLA membranes. When plasma treatment was taken under a relatively low power, the surface wettability of PLLA membranes turned from hydrophobic to hydrophilic. Especially when CF₄ plasma treatment was taken under 100 W for 10 min and 150 W for 5 min, the water contact angle sharply decreasedmore » from 116 ± 3.0° to ~0°. According to Field-emission scanning electron microscopy (FESEM) results, the PLLA fibers were notably etched by CF₄ plasma treatment. Combined with the X-ray photoelectron spectroscopy (XPS) measurements, only a few fluorine-containing groups were grafted onto the surface, so the etching effect directly affected the surface wettability of PLLA membranes in low plasma power condition. However, with the plasma power increasing to 200 W, the PLLA membrane surface turned to hydrophobic again. In contrast, the morphology changes of PLLA fiber surfaces were not obvious while a large number of fluorine-containing groups grafted onto the surface. So the grafting effect gradually became the major factor for the final surface wettability.« less

  15. Oil/water/rock wettability: Influencing factors and implications for low salinity water flooding in carbonate reservoirs

    DOE PAGES

    Chen, Yongqiang; Xie, Quan; Sari, Ahmad; ...

    2017-11-21

    Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies [1–3] show that manipulation of injected brine composition can enhance oil recovery by shifting wettability from oil-wet to water-wet. However, what factor(s) control system wettability has not been completely elucidated due to incomplete understanding of the geochemical system. To isolate and identify the key factors at play we used in this paper SO 4 2—free solutions to examine the effect of salinity (formation brine/FB, 10 times diluted formation brine/10 dFB, and 100more » times diluted formation brine/100 dFB) on the contact angle of oil droplets at the surface of calcite. We then compared contact angle results with predictions of surface complexation by low salinity water using PHREEQC software. We demonstrate that the conventional dilution approach likely triggers an oil-wet system at low pH, which may explain why the low salinity water EOR-effect is not always observed by injecting low salinity water in carbonated reservoirs. pH plays a fundamental role in the surface chemistry of oil/brine interfaces, and wettability. Our contact angle results show that formation brine triggered a strong water-wet system (35°) at pH 2.55, yet 100 times diluted formation brine led to a strongly oil-wet system (contact angle = 175°) at pH 5.68. Surface complexation modelling correctly predicted the wettability trend with salinity; the bond product sum ([>CaOH 2 +][–COO -] + [>CO 3 -][–NH +] + [>CO 3 -][–COOCa +]) increased with decreasing salinity. Finally, at pH < 6 dilution likely makes the calcite surface oil-wet, particularly for crude oils with high base number. Yet, dilution probably causes water wetness at pH > 7 for crude oils with high acid number.« less

  16. Oil/water/rock wettability: Influencing factors and implications for low salinity water flooding in carbonate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yongqiang; Xie, Quan; Sari, Ahmad

    Wettability of the oil/brine/rock system is an essential petro-physical parameter which governs subsurface multiphase flow behaviour and the distribution of fluids, thus directly affecting oil recovery. Recent studies [1–3] show that manipulation of injected brine composition can enhance oil recovery by shifting wettability from oil-wet to water-wet. However, what factor(s) control system wettability has not been completely elucidated due to incomplete understanding of the geochemical system. To isolate and identify the key factors at play we used in this paper SO 4 2—free solutions to examine the effect of salinity (formation brine/FB, 10 times diluted formation brine/10 dFB, and 100more » times diluted formation brine/100 dFB) on the contact angle of oil droplets at the surface of calcite. We then compared contact angle results with predictions of surface complexation by low salinity water using PHREEQC software. We demonstrate that the conventional dilution approach likely triggers an oil-wet system at low pH, which may explain why the low salinity water EOR-effect is not always observed by injecting low salinity water in carbonated reservoirs. pH plays a fundamental role in the surface chemistry of oil/brine interfaces, and wettability. Our contact angle results show that formation brine triggered a strong water-wet system (35°) at pH 2.55, yet 100 times diluted formation brine led to a strongly oil-wet system (contact angle = 175°) at pH 5.68. Surface complexation modelling correctly predicted the wettability trend with salinity; the bond product sum ([>CaOH 2 +][–COO -] + [>CO 3 -][–NH +] + [>CO 3 -][–COOCa +]) increased with decreasing salinity. Finally, at pH < 6 dilution likely makes the calcite surface oil-wet, particularly for crude oils with high base number. Yet, dilution probably causes water wetness at pH > 7 for crude oils with high acid number.« less

  17. Self-assembly and hierarchical patterning of aligned organic nanowire arrays by solvent evaporation on substrates with patterned wettability.

    PubMed

    Bao, Rong-Rong; Zhang, Cheng-Yi; Zhang, Xiu-Juan; Ou, Xue-Mei; Lee, Chun-Sing; Jie, Jian-Sheng; Zhang, Xiao-Hong

    2013-06-26

    The controlled growth and alignment of one-dimensional organic nanostructures at well-defined locations considerably hinders the integration of nanostructures for electronic and optoelectronic applications. Here, we demonstrate a simple process to achieve the growth, alignment, and hierarchical patterning of organic nanowires on substrates with controlled patterns of surface wettability. The first-level pattern is confined by the substrate patterns of wettability. Organic nanostructures are preferentially grown on solvent wettable regions. The second-level pattern is the patterning of aligned organic nanowires deposited by controlling the shape and movement of the solution contact lines during evaporation on the wettable regions. This process is controlled by the cover-hat-controlled method or vertical evaportation method. Therefore, various new patterns of organic nanostructures can be obtained by combing these two levels of patterns. This simple method proves to be a general approach that can be applied to other organic nanostructure systems. Using the as-prepared patterned nanowire arrays, an optoelectronic device (photodetector) is easily fabricated. Hence, the proposed simple, large-scale, low-cost method of preparing patterns of highly ordered organic nanostructures has high potential applications in various electronic and optoelectronic devices.

  18. Diagenetic and compositional controls of wettability in siliceous sedimentary rocks, Monterey Formation, California

    NASA Astrophysics Data System (ADS)

    Hill, Kristina M.

    Modified imbibition tests were performed on 69 subsurface samples from Monterey Formation reservoirs in the San Joaquin Valley to measure wettability variation as a result of composition and silica phase change. Contact angle tests were also performed on 6 chert samples from outcrop and 3 nearly pure mineral samples. Understanding wettability is important because it is a key factor in reservoir fluid distribution and movement, and its significance rises as porosity and permeability decrease and fluid interactions with reservoir grain surface area increase. Although the low permeability siliceous reservoirs of the Monterey Formation are economically important and prolific, a greater understanding of factors that alter their wettability will help better develop them. Imbibition results revealed a strong trend of decreased wettability to oil with increased detrital content in opal-CT phase samples. Opal-A phase samples exhibited less wettability to oil than both opal-CT and quartz phase samples of similar detrital content. Subsurface reservoir samples from 3 oil fields were crushed to eliminate the effect of capillary pressure and cleansed of hydrocarbons to eliminate wettability alterations by asphaltene, then pressed into discs of controlled density. Powder discs were tested for wettability by dispensing a controlled volume of water and motor oil onto the surface and measuring the time required for each fluid to imbibe into the sample. The syringe and software of a CAM101 tensiometer were used to control the amount of fluid dispensed onto each sample, and imbibition completion times were determined by high-speed photography for water drops; oil drop imbibition was significantly slower and imbibition was timed and determined visually. Contact angle of water and oil drops on polished chert and mineral sample surfaces was determined by image analysis and the Young-Laplace equation. Oil imbibition was significantly slower with increased detrital composition and faster with increased silica content in opal-CT and quartz phase samples, implying decreased wettability to oil with increased detrital (clay) content. However, contact angle tests showed that opal-CT is more wetting to oil with increased detritus and results for oil on quartz-phase samples were inconsistent between different proxies for detritus over their very small compositional range. Water contact angle trends also showed inconsistent wetting trends compared to imbibition tests. We believe this is because the small range in bulk detrital composition between the "pure" samples used in contact angle tests was close to analytical error and because small-scale spatial compositional variability may be significant enough to effect wettability. These experiments show that compositional variables significantly affect wettability, outweighing the effect of silica phase.

  19. Laser processing of metallic biomaterials: An approach for surface patterning and wettability control

    NASA Astrophysics Data System (ADS)

    Razi, Sepehr; Mollabashi, Mahmoud; Madanipour, Khosro

    2015-12-01

    Q -switched Nd:YAG laser is used to manipulate the surface morphology and wettability characteristic of 316L stainless steel (SS) and titanium biomaterials. Water and glycerol are selected as wettability testing liquids and the sessile drop method is used for the contact angle measurements. Results indicate that on both of the metals, wettability toward water improves significantly after the laser treatment. Different analyses including the study of the surface morphology, free energy and oxidation are assessed in correlation with wettability. Beside the important role of the laser-induced surface patterns, the increase in the surface roughness, oxygen content and the polar component of the surface energy, are detected as the most important physical and chemical phenomena controlling the improvement in the wettability. However, all the processed hydrophilic surfaces that are exposed to air become hydrophobic over time. The time dependency of the surface wettability is related to the chemical activities on the treated surfaces and the reduction of oxygen/carbon (O/C) ratio on them. The behavior is further studied with investigating the effect of the keeping environment and changes of the components of the surface tension. Results show that the pulsed laser treatment is a versatile approach to create either hydrophobic or super hydrophilic surfaces for industrial and medical applications.

  20. Impact of viscous droplets on different wettable surfaces: Impact phenomena, the maximum spreading factor, spreading time and post-impact oscillation.

    PubMed

    Lin, Shiji; Zhao, Binyu; Zou, Song; Guo, Jianwei; Wei, Zheng; Chen, Longquan

    2018-04-15

    In this paper, we experimentally investigated the impact dynamics of different viscous droplets on solid surfaces with diverse wettabilities. We show that the outcome of an impinging droplet is dependent on the physical property of the droplet and the wettability of the surface. Whereas only deposition was observed on lyophilic surfaces, more impact phenomena were identified on lyophobic and superlyophobic surfaces. It was found that none of the existing theoretical models can well describe the maximum spreading factor, revealing the complexity of the droplet impact dynamics and suggesting that more factors need to be considered in the theory. By using the modified capillary-inertial time, which considers the effects of liquid viscosity and surface wettability on droplet spreading, a universal scaling law describing the spreading time was obtained. Finally, we analyzed the post-impact droplet oscillation with the theory for damped harmonic oscillators and interpreted the effects of liquid viscosity and surface wettability on the oscillation by simple scaling analyses. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates

    PubMed Central

    Liu, Hui; Gao, Shou-Wei; Cai, Jing-Sheng; He, Cheng-Lin; Mao, Jia-Jun; Zhu, Tian-Xue; Chen, Zhong; Huang, Jian-Ying; Meng, Kai; Zhang, Ke-Qin; Al-Deyab, Salem S.; Lai, Yue-Kun

    2016-01-01

    Multifuntional fabrics with special wettability have attracted a lot of interest in both fundamental research and industry applications over the last two decades. In this review, recent progress of various kinds of approaches and strategies to construct super-antiwetting coating on cellulose-based substrates (fabrics and paper) has been discussed in detail. We focus on the significant applications related to artificial superhydrophobic fabrics with special wettability and controllable adhesion, e.g., oil-water separation, self-cleaning, asymmetric/anisotropic wetting for microfluidic manipulation, air/liquid directional gating, and micro-template for patterning. In addition to the anti-wetting properties and promising applications, particular attention is paid to coating durability and other incorporated functionalities, e.g., air permeability, UV-shielding, photocatalytic self-cleaning, self-healing and patterned antiwetting properties. Finally, the existing difficulties and future prospects of this traditional and developing field are briefly proposed and discussed. PMID:28773253

  2. Wettability control of micropore-array films by altering the surface nanostructures.

    PubMed

    Chang, Chi-Jung; Hung, Shao-Tsu

    2010-07-01

    By controlling the surface nanostructure, the wettability of films with similar pore-array microstructure can be tuned from hydrophilic to nearly superhydrophobic without variation of the chemical composition. PA1 pore-array film consisting of the horizontal ZnO nanosheets was nearly superhydrophobic. PA2 pore-array film consisting of growth-hindered vertically-aligned ZnO nanorods was hydrophilic. The influences of the nanostructure shape, orientation and the micropore size on the contact angle of the PA1 films were studied. This study provides a new approach to control the wettability of films with similar pore-array structure at the micro-scale by changing their surface nanostructure. PA1 films exhibited irradiation induced reversible wettability transition. The feasibility of creating a wetted radial pattern by selective UV irradiation of PA1 film through a mask with radial pattern and water vapor condensation was also evaluated.

  3. Controlled droplet transport to target on a high adhesion surface with multi-gradients

    PubMed Central

    Deng, Siyan; Shang, Weifeng; Feng, Shile; Zhu, Shiping; Xing, Yan; Li, Dan; Hou, Yongping; Zheng, Yongmei

    2017-01-01

    We introduce multi-gradients including Laplace pressure gradient, wettable gradient and wettable different gradient on a high adhesion surface via special wedge-pattern and improved anodic oxidation method. As a result of the cooperative effect mentioned above, controlled directional motion of a droplet on a high adhesion surface is realized, even when the surface is turned upside down. The droplet motion can be predicted and the movement distances can be controlled by simply adjusting the wedge angle and droplet volume. More interestingly, when Laplace pressure gradient is introduced on a V-shaped wettable gradient surface, two droplets can move toward one another as designed. PMID:28368020

  4. Reversible wettability of electron-beam deposited indium-tin-oxide driven by ns-UV irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persano, Luana; Center for Biomolecular Nanotechnologies UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano-LE; Del Carro, Pompilio

    2012-04-09

    Indium tin oxide (ITO) is one of the most widely used semiconductor oxides in the field of organic optoelectronics, especially for the realization of anode contacts. Here the authors report on the control of the wettability properties of ITO films deposited by reactive electron beam deposition and irradiated by means of nanosecond-pulsed UV irradiation. The enhancement of the surface water wettability, with a reduction of the water contact angle larger than 50 deg., is achieved by few tens of seconds of irradiation. The analyzed photo-induced wettability change is fully reversible in agreement with a surface-defect model, and it can bemore » exploited to realize optically transparent, conductive surfaces with controllable wetting properties for sensors and microfluidic circuits.« less

  5. Creation of wettability contrast patterns on metallic surfaces via pen drawn masks

    NASA Astrophysics Data System (ADS)

    Choi, Won Tae; Yang, Xiaolong; Breedveld, Victor; Hess, Dennis W.

    2017-12-01

    Micropatterned surfaces with wettability contrast have attracted considerable attention due to potential applications in 2D microfluidics, bioassays, and water harvesting. A simple method to develop wettability contrast patterns on metallic surfaces by using a commercial marker is described. A marker-drawn ink pattern on a copper surface displays chemical resistance to an aqueous solution of sodium bicarbonate and ammonium persulfate, thereby enabling selective nanowire growth in areas where ink is absent. Subsequent ink removal by an organic solvent followed by fluorocarbon film deposition yields a stable hydrophobic/super-hydrophobic patterned copper surface. Using this approach, hydrophobic dot and line patterns were constructed. The adhesion force of water droplets to the dots was controlled by adjusting pattern size, thus enabling controlled droplet transfer between two surfaces. Anisotropy of water droplet adhesion to line patterns can serve as a basis for directional control of water droplet motion. This general approach has also been employed to generate wettability contrast on aluminum surfaces, thereby demonstrating versatility. Due to its simplicity, low cost, and virtual independence of solid surface material, ink marker pens can be employed to create wettability patterns for a variety of applications, in fields as diverse as biomedicine and energy.

  6. Directional transport of droplets on wettability patterns at high temperature

    NASA Astrophysics Data System (ADS)

    Huang, Shuai; Yin, Shaohui; Chen, Fengjun; Luo, Hu; Tang, Qingchun; Song, Jinlong

    2018-01-01

    Directional transport of liquid has attracted increasing interest owing to its potential of application in lab-on-a-chip, microfluidic devices and thermal management technologies. Although numerous strategies have been developed to achieve directional transport of liquid at low temperature, controlling the directional transport of liquid at high temperature remains to be a challenging issue. In this work, we reported a novel strategy in which different parts of droplet contacted with surface with different wettability patterns, resulting in a discrepant evaporative vapor film to achieve the directional transport of liquid. The experimental results showed that the state of the liquid on wettability patterned surface gradually changed from contact boiling to Leidenfrost state with the increase of substrate temperature Ts, and liquid on superhydrophilic surface was in composite state of contact boiling and Leidenfrost when Ts was higher than 200 °C. Inspired by the different evaporation states of droplet on the wettability boundary, controlling preferential motion of droplets was observed at high temperature. By designing a surface with wettability pattern on which superhydrophobic region and superhydrophilic region are alternately arranged, a controlled directional transport of droplet can be achieved at high temperature.

  7. Spontaneous wettability patterning via creasing instability

    PubMed Central

    Chen, Dayong; McKinley, Gareth H.; Cohen, Robert E.

    2016-01-01

    Surfaces with patterned wettability contrast are important in industrial applications such as heat transfer, water collection, and particle separation. Traditional methods of fabricating such surfaces rely on microfabrication technologies, which are only applicable to certain substrates and are difficult to scale up and implement on curved surfaces. By taking advantage of a mechanical instability on a polyurethane elastomer film, we show that wettability patterns on both flat and curved surfaces can be generated spontaneously via a simple dip coating process. Variations in dipping time, sample prestress, and chemical treatment enable independent control of domain size (from about 100 to 500 μm), morphology, and wettability contrast, respectively. We characterize the wettability contrast using local surface energy measurements via the sessile droplet technique and tensiometry. PMID:27382170

  8. Competitive concurrence of surface wrinkling and dewetting of liquid crystalline polymer films on non-wettable substrates.

    PubMed

    Song, Sung E; Choi, Gwan H; Yi, Gi-Ra; Yoo, Pil J

    2017-11-01

    Polymeric thin films coated on non-wettable substrates undergo film-instabilities, which are usually manifested as surface deformation in the form of dewetting or wrinkling. The former takes place in fluidic films, whereas the latter occurs in solid films. Therefore, there have rarely been reports of systems involving simultaneous deformations of dewetting and wrinkling. In this study, we propose polymeric thin films of liquid crystalline (LC) mesogens prepared on a non-wettable Si substrate and apply a treatment of plasma irradiation to form a thin polymerized layer at the surface. The resulting compressive stress generated in the surface region drives the formation of wrinkles, while at the same time, dipolar attraction between LC molecules induces competitive cohesive dewetting. Intriguing surface structures were obtained whereby dewetting-like hole arrays are nested inside the randomly propagated wrinkles. The structural features are readily controlled by the degree of surface cross-linking, hydrophilicity of the substrates, and the LC film thickness. In particular, dewetting of LC mesogens is observed to be restricted to occur at the trough regions of wrinkles, exhibiting the typical behavior of geometrically confined dewetting. Finally, wrinkling-dewetting mixed structures are separated from the substrate in the form of free standing films to demonstrate the potential applicability as membranes.

  9. Numerical investigation of the droplet condensation on the horizontal surface with patterned wettability

    NASA Astrophysics Data System (ADS)

    Cho, Jaeyong; Lee, Joonsang

    2017-11-01

    The condensation is the one of the efficient heat transfer phenomenon that transfers the heat along an interface between two phases. This condensation is affected by the wettability of surface. Heat transfer rate can be improved by controlling the wettability of surface. Recently, the researches with patterned wettability, which is composed by a combination of hydrophilic and hydrophobic surface, have been performed to improve the heat transfer rate of condensation. In this study, we performed numerical simulation for condensation of droplet on the patterned wettability, and we analyze condensation phenomenon on the wettability pattered surface through the kinetic energy, heat flux curve, and droplet shape in the vicinity of the droplet. When we performed numerical simulations and analyzing the condensation with patterned wettability, we used the lattice Boltzmann method for the base model, and phase change was solved by Peng-Robinson equation of sate. We can find that the droplet is generated at the bottom surface and high condensation rate can be maintained on the patterned wettability. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.

  10. Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration Mechanisms for oil recovery during MEOR process.

    PubMed

    Sarafzadeh, Pegah; Hezave, Ali Zeinolabedini; Ravanbakhsh, Moosa; Niazi, Ali; Ayatollahi, Shahab

    2013-05-01

    Microbial enhanced oil recovery (MEOR) process utilizes microorganisms or their metabolites to mobilize the trapped oil in the oil formation after primary and secondary oil recovery stages. MEOR technique is considered as more environmentally friendly and low cost process. There are several identified mechanisms for more oil recovery using MEOR processes however; wettability alteration and interfacial tension (IFT) reduction are the important ones. Enterobacter Cloacae, a facultative bio-surfactant producer bacterium, was selected as a bacterial formulation due to its known performance on IFT reduction and wettability alteration. To quantify the effects of these two mechanisms, different tests including oil spreading, in situ and ex situ core flooding, wettability measurement (Amott), IFT, viscosity and pH measurements were performed. The obtained results revealed that the experimental procedure used in this study was able to quantitatively identify the individual effects of both mechanisms on the ultimate microbial oil recovery. The results demonstrated considerable effects of both mechanisms on the tertiary oil recovery; however after a proper shut in time period, more tertiary oil was recovered because of wettability alteration mechanism. Finally, SEM images taken from the treated cores showed biofilm formation on the rock pore surfaces, which is responsible for rock surface wettability alteration. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Temperature-tunable wettability on a bioinspired structured graphene surface for fog collection and unidirectional transport.

    PubMed

    Song, Yun-Yun; Liu, Yan; Jiang, Hao-Bo; Li, Shu-Yi; Kaya, Cigdem; Stegmaier, Thomas; Han, Zhi-Wu; Ren, Lu-Quan

    2018-02-22

    We designed a type of smart bioinspired wettable surface with tip-shaped patterns by combining polydimethylsiloxane (PDMS) and graphene (PDMS/G). The laser etched porous graphene surface can produce an obvious wettability change between 200 °C and 0 °C due to a change in aperture size and chemical components. We demonstrate that the cooperation of the geometrical structure and the controllable wettability play an important role in water gathering, and surfaces with tip-shaped wettability patterns can quickly drive tiny water droplets toward more wettable regions, so making a great contribution to the improvement of water collection efficiency. In addition, due to the effective cooperation between super hydrophobic and hydrophilic regions of the special tip-shaped pattern, unidirectional water transport on the 200 °C heated PDMS/G surface can be realized. This study offers a novel insight into the design of temperature-tunable materials with interphase wettability that may enhance fog collection efficiency in engineering liquid harvesting equipment, and realize unidirectional liquid transport, which could potentially be applied to the realms of microfluidics, medical devices and condenser design.

  12. Electrokinetic mechanism of wettability alternation at oil-water-rock interface

    NASA Astrophysics Data System (ADS)

    Tian, Huanhuan; Wang, Moran

    2017-12-01

    Design of ions for injection water may change the wettability of oil-brine-rock (OBR) system, which has very important applications in enhanced oil recovery. Though ion-tuned wettability has been verified by various experiments, the mechanism is still not clear. In this review paper, we first present a comprehensive summarization of possible wettability alteration mechanisms, including fines migration or dissolution, multicomponent ion-exchange (MIE), electrical double layer (EDL) interaction between rock and oil, and repulsive hydration force. To clarify the key mechanism, we introduce a complete frame of theories to calculate attribution of EDL repulsion to wettability alteration by assuming constant binding forces (no MIE) and rigid smooth surface (no fines migration or dissolution). The frame consists of three parts: the classical Gouy-Chapman model coupled with interface charging mechanisms to describe EDL in oil-brine-rock systems, three methods with different boundary assumptions to evaluate EDL interaction energy, and the modified Young-Dupré equation to link EDL interaction energy with contact angle. The quantitative analysis for two typical oil-brine-rock systems provides two physical maps that show how the EDL interaction influences contact angle at different ionic composition. The result indicates that the contribution of EDL interaction to ion-tuned wettability for the studied system is not quite significant. The classical and advanced experimental work using microfabrication is reviewed briefly on the contribution of EDL repulsion to wettability alteration and compared with the theoretical results. It is indicated that the roughness of real rock surface may enhance EDL interaction. Finally we discuss some pending questions, perspectives and promising applications based on the mechanism.

  13. Fabrication of high wettability gradient on copper substrate

    NASA Astrophysics Data System (ADS)

    Huang, Ding-Jun; Leu, Tzong-Shyng

    2013-09-01

    Copper is one of the most widely used materials in condensation heat transfer. Recently there has been great interest in improving the condensation heat transfer efficiency through copper surface modification. In this study, we describe the fabrication processes of how copper surfaces were modified to be superhydrophilic (CA ≤ 10°) and superhydrophobic (CA > 150°) by means of H2O2 immersion and fluorination with Teflon. The wettability gradient of copper surfaces with contact angles (CA) changing from superhydrophilic to superhydrophobic are also demonstrated. Unlike previous studies on gradient surfaces in which the wettability gradient is controlled either non-precisely or entirely uncontrolled, in this study, the contact angles along wettability gradient copper surfaces vary with a precisely designed gradient. It is demonstrated that a high wettability gradient copper surface can be successfully fabricated using photolithography to define the area ratios between superhydrophilic and superhydrophobic patterns within a short distance. The fabricated wettability gradient of copper surfaces is expected to be able to enhance the condensation heat transfer efficiency.

  14. Wettability of graphitic-carbon and silicon surfaces: MD modeling and theoretical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2015-07-28

    The wettability of graphitic carbon and silicon surfaces was numerically and theoretically investigated. A multi-response method has been developed for the analysis of conventional molecular dynamics (MD) simulations of droplets wettability. The contact angle and indicators of the quality of the computations are tracked as a function of the data sets analyzed over time. This method of analysis allows accurate calculations of the contact angle obtained from the MD simulations. Analytical models were also developed for the calculation of the work of adhesion using the mean-field theory, accounting for the interfacial entropy changes. A calibration method is proposed to providemore » better predictions of the respective contact angles under different solid-liquid interaction potentials. Estimations of the binding energy between a water monomer and graphite match those previously reported. In addition, a breakdown in the relationship between the binding energy and the contact angle was observed. The macroscopic contact angles obtained from the MD simulations were found to match those predicted by the mean-field model for graphite under different wettability conditions, as well as the contact angles of Si(100) and Si(111) surfaces. Finally, an assessment of the effect of the Lennard-Jones cutoff radius was conducted to provide guidelines for future comparisons between numerical simulations and analytical models of wettability.« less

  15. Soft liquid phase adsorption for fabrication of organic semiconductor films on wettability patterned surfaces.

    PubMed

    Watanabe, Satoshi; Akiyoshi, Yuri; Matsumoto, Mutsuyoshi

    2014-01-01

    We report a soft liquid-phase adsorption (SLPA) technique for the fabrication of organic semiconductor films on wettability-patterned substrates using toluene/water emulsions. Wettability-patterned substrates were obtained by the UV-ozone treatment of self-assembled monolayers of silane coupling agents on glass plates using a metal mask. Organic semiconductor polymer films were formed selectively on the hydrophobic part of the wettability-patterned substrates. The thickness of the films fabricated by the SLPA technique is significantly larger than that of the films fabricated by dip-coating and spin-coating techniques. The film thickness can be controlled by adjusting the volume ratio of toluene to water, immersion angle, immersion temperature, and immersion time. The SLPA technique allows for the direct production of organic semiconductor films on wettability-patterned substrates with minimized material consumption and reduced number of fabrication steps.

  16. Uni-directional liquid spreading on asymmetric nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Chu, Kuang-Han; Xiao, Rong; Wang, Evelyn N.

    2010-05-01

    Controlling surface wettability and liquid spreading on patterned surfaces is of significant interest for a broad range of applications, including DNA microarrays, digital lab-on-a-chip, anti-fogging and fog-harvesting, inkjet printing and thin-film lubrication. Advancements in surface engineering, with the fabrication of various micro/nanoscale topographic features, and selective chemical patterning on surfaces, have enhanced surface wettability and enabled control of the liquid film thickness and final wetted shape. In addition, groove geometries and patterned surface chemistries have produced anisotropic wetting, where contact-angle variations in different directions resulted in elongated droplet shapes. In all of these studies, however, the wetting behaviour preserves left-right symmetry. Here, we demonstrate that we can harness the design of asymmetric nanostructured surfaces to achieve uni-directional liquid spreading, where the liquid propagates in a single preferred direction and pins in all others. Through experiments and modelling, we determined that the spreading characteristic is dependent on the degree of nanostructure asymmetry, the height-to-spacing ratio of the nanostructures and the intrinsic contact angle. The theory, based on an energy argument, provides excellent agreement with experimental data. The insights gained from this work offer new opportunities to tailor advanced nanostructures to achieve active control of complex flow patterns and wetting on demand.

  17. Stability of lime essential oil microparticles produced with protein-carbohydrate blends.

    PubMed

    Campelo, Pedro Henrique; Sanches, Edgar Aparecido; Fernandes, Regiane Victória de Barros; Botrel, Diego Alvarenga; Borges, Soraia Vilela

    2018-03-01

    The objective of this work was to analyze the influence of maltodextrin equivalent dextrose on the lime essential oil reconstitution, storage, release and protection properties. Four treatments were evaluated: whey protein concentrate (WPC), and blends of maltodextrin with dextrose equivalents of 5 (WM5), 10 (WM10) and 20 (WM20). The reconstitution and storage properties of the microparticles (solubility, wettability and density), water kinetics adsorption, sorption isotherms, thermogravimetric properties, controlled release and degradation kinetics of encapsulated lime essential oil were studied to measure the quality of the encapsulated materials. The results of the study indicated that the DE degree influences the characteristics of reconstitution, storage, controlled release and degradation characteristics of encapsulated bioactive compounds. The increase in dextrose equivalent improves microparticle solubility, wettability and density, mainly due to the size of the maltodextrin molecules. The adsorption kinetics and sorption isotherm curves confirmed the increase in the hygroscopicity of maltodextrins with higher degrees of polymerization. The size of the maltodextrin chains influenced the release and protection of the encapsulated lime essential oil. Finally, the maltodextrin polymerization degree can be considered a parameter that will influence the physicochemical properties of microencapsulated food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. GO/PEDOT:PSS nanocomposites: effect of different dispersing agents on rheological, thermal, wettability and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Giuri, Antonella; Masi, Sofia; Colella, Silvia; Listorti, Andrea; Rizzo, Aurora; Liscio, Andrea; Treossi, Emanuele; Palermo, Vincenzo; Gigli, Giuseppe; Mele, Claudio; Esposito Corcione, Carola

    2017-04-01

    In this work glucose (G), α-cyclodextrin (α-CD) and sodium salt of carboxymethyl cellulose (CMCNa) are used as dispersing agents for graphene oxide (GO), exploring the influence of both saccharide units and geometric/steric hindrance on the rheological, thermal, wettability and electrochemical properties of a GO/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) nanocomposite. By acting on the saccharide-based additives, we can modulate the rheological, thermal, and wettability properties of the GO/PEDOT:PSS nanocomposite. Firstly, the influence of all the additives on the rheological behaviour of GO and PEDOT:PSS was investigated separately in order to understand the effect of the dispersing agent on both the components of the ternary nanocomposite, individually. Subsequently, steady shear and dynamic frequency tests were conducted on all the nanocomposite solutions, characterized by thermal, wettability and morphological analysis. Finally, the electrochemical properties of the GO/PEDOT composites with different dispersing agents for supercapacitors were investigated using cyclic voltammetry (CV). The CV results revealed that GO/PEDOT with glucose exhibited the highest specific capacitance among the systems investigated.

  19. Wettability changes in polyether impression materials subjected to immersion disinfection.

    PubMed

    Shetty, Shweta; Kamat, Giridhar; Shetty, Rajesh

    2013-07-01

    Disinfection of impression materials prevents cross-contamination; however, the disinfectants may alter the wettability property. The purpose of this investigation was to evaluate the wettability changes of polyether impression material after immersing in four different chemical disinfectant solutions for a period of 10 min and 30 min, respectively. A total of 45 samples of polyether dental impression material (Impregum soft, 3MESPE, St. Paul, MN, USA) were randomly divided into nine groups with five specimens each. Each specimen was disc shaped, flat of 32 mm diameter and 3 mm thickness. The samples were immersed in four disinfectant solutions: 2% Glutaraldehyde, 5% sodium hypochlorite, 0.05% iodophor, and 5.25% phenol for 10 min and 30 min, respectively. The control was without disinfection. Wettability of the samples was assessed by measuring the contact angle by using the Telescopic Goniometer. Data were subjected to analysis of variance (Fisher's test) and Tukey's post hoc test for multiple comparisons at 5% level of significance. The contact angle of 20.21° ± 0.22° were recorded in the control samples. After 10 min, the samples that were immersed in 5% sodium hypochlorite and 5.25% phenol showed significant statistical increase in the contact angle as compared to the control (P < 0.001). After 30 min of disinfection, only the samples immersed in 0.05% iodophor showed there were no significant changes in the contact angle, whereas the other disinfectants significantly increased the contact angle and decreased the wettability of the polyether material. Within the limitations of the study, 2% glutaraldehyde proved safe for 10 min of immersion disinfection while 0.05% iodophor holds promise as an effective disinfectant without affecting the wettability of the material.

  20. Wettability changes in polyether impression materials subjected to immersion disinfection

    PubMed Central

    Shetty, Shweta; Kamat, Giridhar; Shetty, Rajesh

    2013-01-01

    Background: Disinfection of impression materials prevents cross-contamination; however, the disinfectants may alter the wettability property. The purpose of this investigation was to evaluate the wettability changes of polyether impression material after immersing in four different chemical disinfectant solutions for a period of 10 min and 30 min, respectively. Materials and Methods: A total of 45 samples of polyether dental impression material (Impregum soft, 3MESPE, St. Paul, MN, USA) were randomly divided into nine groups with five specimens each. Each specimen was disc shaped, flat of 32 mm diameter and 3 mm thickness. The samples were immersed in four disinfectant solutions: 2% Glutaraldehyde, 5% sodium hypochlorite, 0.05% iodophor, and 5.25% phenol for 10 min and 30 min, respectively. The control was without disinfection. Wettability of the samples was assessed by measuring the contact angle by using the Telescopic Goniometer. Data were subjected to analysis of variance (Fisher's test) and Tukey's post hoc test for multiple comparisons at 5% level of significance. Results: The contact angle of 20.21° ± 0.22° were recorded in the control samples. After 10 min, the samples that were immersed in 5% sodium hypochlorite and 5.25% phenol showed significant statistical increase in the contact angle as compared to the control (P < 0.001). After 30 min of disinfection, only the samples immersed in 0.05% iodophor showed there were no significant changes in the contact angle, whereas the other disinfectants significantly increased the contact angle and decreased the wettability of the polyether material. Conclusion: Within the limitations of the study, 2% glutaraldehyde proved safe for 10 min of immersion disinfection while 0.05% iodophor holds promise as an effective disinfectant without affecting the wettability of the material. PMID:24130593

  1. Shear bond, wettability and AFM evaluations on CO2 laser-irradiated CAD/CAM ceramic surfaces.

    PubMed

    El Gamal, Ahmed; Medioni, Etienne; Rocca, Jean Paul; Fornaini, Carlo; Muhammad, Omid H; Brulat-Bouchard, Nathalie

    2017-05-01

    The purpose of this study is to determine the CO 2 laser irradiation in comparison with sandblasting (Sb), hydrofluoric acid (Hf) and silane coupling agent (Si) on shear bond strength (SBS), roughness (Rg) and wettability (Wt) of resin cement to CAD/CAM ceramics. Sixty (CAD/CAM) ceramic discs were prepared and distributed into six different groups: group A, control lithium disilicate (Li); group B, control zirconia (Zr); group C, Li: CO 2 /HF/Si; group D, Li: HF/Si; group E, Zr: CO 2 /Sb/Si; group F, Zr: Sb/Si. Result showed significant difference between irradiated and non-irradiated in terms of shear bond strength for zirconia ceramics (p value = 0.014). Moreover, partial surface wettability for irradiated and non-irradiated ceramics. Irradiated surface demonstrated more rough surface in lithium disilicate than zirconia ceramics. CO 2 irradiation could increase shear bond strength, surface roughness and wettability for both CAD/CAM ceramics.

  2. Cheerios Effect Controlled by Electrowetting.

    PubMed

    Yuan, Junqi; Feng, Jian; Cho, Sung Kwon

    2015-08-04

    The Cheerios effect is a common phenomenon in which small floating objects are either attracted or repelled by the sidewall due to capillary interaction. This attractive or repulsive behavior is highly dependent on the slope angles (angles of the interface on the wall or floating object with respect to a horizontal line) that can be mainly controlled by the wettability of the wall and floating object and the density of the object. In this paper, electrowetting on dielectric (EWOD) is implemented to the wall or floating object in order to actively control the wettability and thus capillary interaction. As such, the capillary force on buoyant and dense floating objects can be easily switched between repulsion and attraction by simply applying an electrical input. In addition, the theoretical prediction for the capillary force is verified experimentally by measuring the motion of floating particle and the critical contact angle on the wall at which the capillary force changes from attraction to repulsion. This successive verification is enabled by the merit of EWOD that allows for continuous change in the contact angle. Finally, the control method is extended to continuously move a floating object along a linear path and to continuously rotate a dumbbell-like floating object in centimeter scales using arrays of EWOD electrodes. A continuous linear motion is also accomplished in a smaller scale where the channel width (3 mm) is comparable to the capillary length.

  3. Environmental Applications of Interfacial Materials with Special Wettability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhangxin; Elimelech, Menachem; Lin, Shihong

    Interfacial materials with special wettability have become a burgeoning research area in materials science in the past decade. The unique surface properties of materials and interfaces generated by biomimetic approaches can be leveraged to develop effective solutions to challenging environmental problems. This critical review presents the concept, mechanisms, and fabrication techniques of interfacial materials with special wettability, and assesses the environmental applications of these materials for oil-water separation, membrane-based water purification and desalination, biofouling control, high performance vapor condensation, and atmospheric water collection. We also highlight the most promising properties of interfacial materials with special wettability that enable innovative environmentalmore » applications and discuss the practical challenges for large-scale implementation of these novel materials.« less

  4. Environmental Applications of Interfacial Materials with Special Wettability

    DOE PAGES

    Wang, Zhangxin; Elimelech, Menachem; Lin, Shihong

    2016-02-01

    Interfacial materials with special wettability have become a burgeoning research area in materials science in the past decade. The unique surface properties of materials and interfaces generated by biomimetic approaches can be leveraged to develop effective solutions to challenging environmental problems. This critical review presents the concept, mechanisms, and fabrication techniques of interfacial materials with special wettability, and assesses the environmental applications of these materials for oil-water separation, membrane-based water purification and desalination, biofouling control, high performance vapor condensation, and atmospheric water collection. We also highlight the most promising properties of interfacial materials with special wettability that enable innovative environmentalmore » applications and discuss the practical challenges for large-scale implementation of these novel materials.« less

  5. Light-responsive smart surface with controllable wettability and excellent stability.

    PubMed

    Zhou, Yin-Ning; Li, Jin-Jin; Zhang, Qing; Luo, Zheng-Hong

    2014-10-21

    Novel fluorinated gradient copolymer was designed for smart surface with light-responsive controllable wettability and excellent stability. The switchable mechanism and physicochemical characteristics of the as-prepared surface decorated by designed polymeric material were investigated by ultraviolet-visible (UV-vis) spectrum, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Thanks to the functional film and surface roughening, etched silicon surface fabricated by copolymer involving spiropyran (Sp) moieties possesses a fairly large variation range of WCA (28.1°) and achieves the transformation between hydrophilicity (95.2° < 109.2°) and hydrophobicity (123.3° > 109.2°) relative to blank sample (109.2°). The synthetic strategy and developed smart surface offer a promising application in coating with controllable wettability, which bridge the gap between chemical structure and material properties.

  6. A pore-scale numerical method for simulating low-salinity waterflooding in porous media

    NASA Astrophysics Data System (ADS)

    Jiang, F.; Yang, J.; Tsuji, T.

    2017-12-01

    Low-salinity (LS)water injection has been attracting attention as a practical oil recovery technique because of its low cost and high efficiency in recent years. Many researchers conducted laboratory and observed its significant benefits compared to conventional high-salinity (HS) waterflooding. However, the fundamental mechanisms remain poorly understood. Different mechanisms such as fine migration, wettability alteration have been proposed to explain this low-salinity effect. Here, we aim to focus on investigating the effect of wettability alteration on the recovery efficiency. For this purpose, we proposed a pore scale numerical method to quantitatively evaluate the impact of salinity concentration on the sweep efficiency. We first developed the pore scale model by coupling the convection-diffusion model for tracking the concentration change and the lattice Boltzmann model for two-phase flow behavior, and assuming that a reduction of water salinity leads to localised wettability alteration. The model is then validated by simulating the contact angle change of an oil droplet attached to a clay substrate. Finally, the method was applied on a real rock geometry extracted from the micro-CT images of Berea sandstone. The results indicate that the initial wettability state of the system and the extent of wettability alteration are important in predicting the improvement of oil recovery due to LS brine injection. This work was supported by JSPS KAKENHI Grant Numbers 16K18331.

  7. Altering Emulsion Stability with Heterogeneous Surface Wettability

    NASA Astrophysics Data System (ADS)

    Meng, Qiang; Zhang, Yali; Li, Jiang; Lammertink, Rob G. H.; Chen, Haosheng; Tsai, Peichun Amy

    2016-06-01

    Emulsions-liquid droplets dispersed in another immiscible liquid-are widely used in a broad spectrum of applications, including food, personal care, agrochemical, and pharmaceutical products. Emulsions are also commonly present in natural crude oil, hampering the production and quality of petroleum fuels. The stability of emulsions plays a crucial role in their applications, but controlling the stability without external driving forces has been proven to be difficult. Here we show how heterogeneous surface wettability can alter the stability and dynamics of oil-in-water emulsions, generated by a co-flow microfluidic device. We designed a useful methodology that can modify a micro-capillary of desired heterogeneous wettability (e.g., alternating hydrophilic and hydrophobic regions) without changing the hydraulic diameter. We subsequently investigated the effects of flow rates and heterogeneous wettability on the emulsion morphology and motion. The experimental data revealed a universal critical timescale of advective emulsions, above which the microfluidic emulsions remain stable and intact, whereas below they become adhesive or inverse. A simple theoretical model based on a force balance can be used to explain this critical transition of emulsion dynamics, depending on the droplet size and the Capillary number-the ratio of viscous to surface effects. These results give insight into how to control the stability and dynamics of emulsions in microfluidics with flow velocity and different wettability.

  8. Surface chemistry from wettability and charge for the control of mesenchymal stem cell fate through self-assembled monolayers.

    PubMed

    Hao, Lijing; Fu, Xiaoling; Li, Tianjie; Zhao, Naru; Shi, Xuetao; Cui, Fuzhai; Du, Chang; Wang, Yingjun

    2016-12-01

    Self-assembled monolayers (SAMs) of alkanethiols on gold are highly controllable model substrates and have been employed to mimic the extracellular matrix for cell-related studies. This study aims to systematically explore how surface chemistry influences the adhesion, morphology, proliferation and osteogenic differentiation of mouse mesenchymal stem cells (mMSCs) using various functional groups (-OEG, -CH 3 , -PO 3 H 2 , -OH, -NH 2 and -COOH). Surface analysis demonstrated that these functional groups produced a wide range of wettability and charge: -OEG (hydrophilic and moderate iso-electric point (IEP)), -CH 3 (strongly hydrophobic and low IEP), -PO 3 H 2 (moderate wettability and low IEP), -OH (hydrophilic and moderate IEP), -NH 2 (moderate wettability and high IEP) and -COOH (hydrophilic and low IEP). In terms of cell responses, the effect of wettability may be more influential than charge for these groups. Moreover, compared to -OEG and -CH 3 groups, -PO 3 H 2 , -OH, -NH 2 and -COOH functionalities tended to promote not only cell adhesion, proliferation and osteogenic differentiation but also the expression of α v and β 1 integrins. This finding indicates that the surface chemistry may guide mMSC activities through α v and β 1 integrin signaling pathways. Model surfaces with controllable chemistry may provide insight into biological responses to substrate surfaces that would be useful for the design of biomaterial surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Wetting kinetics of nanodroplets on lyophilic nanopillar-arrayed surfaces: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Zong, Diyuan; Yang, Zhen; Duan, Yuanyuan

    2017-10-01

    Wetting kinetics of water droplets on substrates with lyophilic nanopillars was investigated using molecular dynamics simulations. Early spreading of the droplet is hindered by the nanopillars because of the penetration of the liquid which induce an extra dissipation in the droplet. Droplet spreading is mainly controlled by liquid viscosity and surface tension and not dependent on solid wettability. Propagation of the fringe film is hindered by the enhanced solid wettability because of the energy barrier introduced by the interaction between water molecules and nanopillars which increase with solid wettability.

  10. Spatial Control of Condensation using Chemical Micropatterns

    NASA Astrophysics Data System (ADS)

    Murphy, Kevin; Hansen, Ryan; Nath, Saurabh; Retterer, Scott; Collier, Patrick; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team; CenterNanophase Materials Sciences Team

    2015-11-01

    Surfaces exhibiting wettability patterns can spatially control the nucleation of condensation to enable enhanced fog harvesting and phase-change heat transfer. To date, studies of patterned condensation have utilized a combination of chemical and topographical features, making it difficult to isolate the effects of intrinsic wettability versus surface roughness on spatially controlling the condensate. Here, we fabricate chemical micropatterns consisting of hydrophilic silicon oxide and a smooth hydrophobic silane monolayer to isolate the effects of changes in intrinsic wettability on the spatial control of condensation. Complete spatial control, defined as every nucleation and growth event occurring exclusively on the hydrophilic features, was observed even for supercooled droplets at high water vapor supersaturation. However, this complete spatial control was found to break down beyond a critical spacing that depended upon the extent of supersaturation. The average diameter of condensate was found to be smaller for the chemically micropatterned surfaces compared to a uniformly hydrophobic surface. Control of inter-droplet spacing between supercooled condensate through chemical patterning can be employed to minimize the growth of inter-droplet frost on cold surfaces.

  11. Experimental investigations of the wettability of clays and shales

    NASA Astrophysics Data System (ADS)

    Borysenko, Artem; Clennell, Ben; Sedev, Rossen; Burgar, Iko; Ralston, John; Raven, Mark; Dewhurst, David; Liu, Keyu

    2009-07-01

    Wettability in argillaceous materials is poorly understood, yet it is critical to hydrocarbon recovery in clay-rich reservoirs and capillary seal capacity in both caprocks and fault gouges. The hydrophobic or hydrophilic nature of clay-bearing soils and sediments also controls to a large degree the movement of spilled nonaqueous phase liquids in the subsurface and the options available for remediation of these pollutants. In this paper the wettability of hydrocarbons contacting shales in their natural state and the tendencies for wettability alteration were examined. Water-wet, oil-wet, and mixed-wet shales from wells in Australia were investigated and were compared with simplified model shales (single and mixed minerals) artificially treated in crude oil. The intact natural shale samples (preserved with their original water content) were characterized petrophysically by dielectric spectroscopy and nuclear magnetic resonance, plus scanning electron, optical and fluorescence microscopy. Wettability alteration was studied using spontaneous imbibition, pigment extraction, and the sessile drop method for contact angle measurement. The mineralogy and chemical compositions of the shales were determined by standard methods. By studying pure minerals and natural shales in parallel, a correlation between the petrophysical properties, and wetting behavior was observed. These correlations may potentially be used to assess wettability in downhole measurements.

  12. Thermoresponsive wettability of photonic crystals fabricated by core-shell poly(styrene-acrylamide) nano/microspheres.

    PubMed

    Zhang, Yuqi; Gao, Loujun; Heng, Liping; Wei, Qingbo; Yang, Hua; Wang, Qiao

    2013-03-01

    The photonic crystals (PCs) films with tunable wettability were fabricated from self-assembly of an amphiphilic latex nano/microspheres poly(styrene-acrylamide) at different temperatures. The results demonstrate that the surface wettability of the PCs film can be tuned from high hydrophilic (CA, 17 degrees) to high hydrophobic (CA, 127.8 degrees) by controlling the assembly temperature from 30 degrees C to 90 degrees C, while the position of the photonic stopbands of the PCs films unchanged virtually. The obvious wettability transition is due to the change of the surface chemical component of the latex spheres, which mainly derives from the phase separation of polymer segments driven toward minimum interfacial energy. The facile method could open new application fields of PCs in diverse environments.

  13. Drop splashing: the role of surface wettability and liquid viscosity

    NASA Astrophysics Data System (ADS)

    Almohammadi, Hamed; Amirfazli, Alidad; -Team

    2017-11-01

    There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.

  14. Laser-based nanoengineering of surface topographies for biomedical applications

    NASA Astrophysics Data System (ADS)

    Schlie, Sabrina; Fadeeva, Elena; Koroleva, Anastasia; Ovsianikov, Aleksandr; Koch, Jürgen; Ngezahayo, Anaclet; Chichkov, Boris. N.

    2011-04-01

    In this study femtosecond laser systems were used for nanoengineering of special surface topographies in silicon and titanium. Besides the control of feature sizes, we demonstrated that laser structuring caused changes in material wettability due to a reduced surface contact area. These laser-engineered topographies were tested for their capability to control cellular behavior of human fibroblasts, SH-SY5Y neuroblastoma cells, and MG-63 osteoblasts. We found that fibroblasts reduced cell growth on the structures, while the other cell types proliferated at the same rate. These findings make laser-surface structuring very attractive for biomedical applications. Finally, to explain the results the correlation between topography and the biophysics of cellular adhesion, which is the key step of selective cell control, is discussed.

  15. The tunable wettability in multistimuli-responsive smart graphene surfaces

    NASA Astrophysics Data System (ADS)

    Wan, Shanhong; Pu, Jibin; Zhang, Xiaoqian; Wang, Liping; Xue, Qunji

    2013-01-01

    The tunable wettability of smart graphene films onto stainless steel substrates with a multi-response to different environmental stimuli has been investigated including light irradiation, pH, electric field, and annealing temperature. Conductive graphene film exhibited the controllable transition from water-repellent to water-loving characteristic in response to different environment fields, which primarily resulted from the morpho-chemically synergistic effect as well as the restoration of electronic stucture. Based on the fundamental theories of wettability, mechanisms in switching from hydrophobicity to hydrophilicity for smart graphene surface including thermal chemistry, electrostatic, photo-induced surface chemistry, solvent, and pH methods were presented.

  16. Wettability control of droplet deposition and detachment.

    PubMed

    Baret, Jean-Christophe; Brinkmann, Martin

    2006-04-14

    The conditions for droplet deposition on plane substrates are studied using electrowetting to continuously modulate the surface wettability. Droplets of controlled volume attached to the tip of a pipette are brought into contact with the surface. During retraction of the pipette the droplets are deposited or detach completely depending on volume and contact angle. The experimental limit of deposition in the contact angle or volume plane is in good agreement with analytical and numerical predictions obtained within the capillary model.

  17. Tuning and predicting the wetting of nanoengineered material surface

    NASA Astrophysics Data System (ADS)

    Ramiasa-MacGregor, M.; Mierczynska, A.; Sedev, R.; Vasilev, K.

    2016-02-01

    The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability.The wetting of a material can be tuned by changing the roughness on its surface. Recent advances in the field of nanotechnology open exciting opportunities to control macroscopic wetting behaviour. Yet, the benchmark theories used to describe the wettability of macroscopically rough surfaces fail to fully describe the wetting behaviour of systems with topographical features at the nanoscale. To shed light on the events occurring at the nanoscale we have utilised model gradient substrata where surface nanotopography was tailored in a controlled and robust manner. The intrinsic wettability of the coatings was varied from hydrophilic to hydrophobic. The measured water contact angle could not be described by the classical theories. We developed an empirical model that effectively captures the experimental data, and further enables us to predict the wetting of surfaces with nanoscale roughness by considering the physical and chemical properties of the material. The fundamental insights presented here are important for the rational design of advanced materials having tailored surface nanotopography with predictable wettability. Electronic supplementary information (ESI) available: Detailed characterization of the nanorough substrates and model derivation. See DOI: 10.1039/c5nr08329j

  18. Wettability of root canal sealers on intraradicular dentine treated with different irrigating solutions.

    PubMed

    Ballal, Nidambur Vasudev; Tweeny, Adlyn; Khechen, Khaled; Prabhu, K Narayan; Satyanarayan; Tay, Franklin R

    2013-06-01

    The aim of this in vitro study was to evaluate the wettability of AH Plus and ThermaSeal Plus sealers on intraradicular dentine treated with different irrigating solutions. Fifty anterior teeth were decoronated and split longitudinally. Each root half was divided into 5 groups (n=10). Group I: 5mL of 2.5% NaOCl+QMix. Group II: 5mL of 2.5% NaOCl+17% EDTA. Group III: 5mL of 2.5% NaOCl+7% maleic acid. Group IV: 5mL of 2.5% NaOCl. Group V: 5mL of distilled water. Irrigation regimens were performed for 1min. Each specimen was placed inside a Dynamic Contact Angle Analyser. A controlled-volume droplet of sealer was placed on each specimen and the static contact angle was analysed. The contact angle made by both sealers with EDTA-irrigated dentine was significantly larger when compared to the other irrigants (P<0.05). For ThermaSeal Plus, contact angles produced on maleic acid-, NaOCl- and distilled water-irrigated dentine were not significantly different, but were all significantly larger than the contact angle produced on QMix-irrigated dentine (P<0.05). For AH Plus, contact angles produced on NaOCl- and distilled water-irrigated dentine were not significantly different, but were significantly larger than those made by maleic acid and QMix. When used as a final irrigant, QMix favours the wetting of root canal dentine by both AH Plus and ThermaSeal Plus sealers. Maleic acid shows a promising result when compared to EDTA and NaOCl. Wettability of both sealers is the worst on EDTA-irrigated dentine. The present study highlights the effect of newer endodontic irrigating solutions on the wettability of sealers on to the root canal dentine, which is required for obtaining good obturation seal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effect of wettability of a porous stainless steel on thermally induced liquid-vapor interface behavior

    NASA Astrophysics Data System (ADS)

    Oka, C.; Odagiri, K.; Nagano, H.

    2017-12-01

    Control of thermally induced liquid-vapor interface behavior at the contact surface of porous media is crucial for development of two-phase heat transfer devices such as loop heat pipes. The behavior experiences three modes with increase of heat flux, and the middle mode possesses the highest heat transfer performance. In this paper, the effect of improving wettability of the porous media is demonstrated experimentally and numerically for the first time, in particular with regard to the effect on a domain of the middle mode. Ethanol wettability of a porous stainless steel was improved via a facile method, which was a simple acid treatment. As a result, the domain of the middle mode was extended as a consequence of the wettability improvement. The mode transfers from the middle to the last one when the pressure drop in the liquid supply exceeds the capillary pressure of liquid bridges formed between the heating plate and the porous medium. Hence, the extension of the domain suggested that the capillary pressure was increased by the wettability improvement. This was verified via numerical calculation. The calculated capillary pressure was increased by 7% after improving wettability, which resulted in the extension of the domain of the middle mode.

  20. Cost-Effective Fabrication of Wettability Gradient Copper Surface by Screen Printing and its Application to Condensation Heat Transfer

    NASA Astrophysics Data System (ADS)

    Leu, Tzong-Shyng; Huang, Hung-Ming; Huang, Ding-Jun

    2016-06-01

    In this paper, wettability gradient pattern is applied to condensation heat transfer on a copper tube surface. For this application, the vital issue is how to fabricate gradient patterns on a curve tube surface to accelerate the droplet collection efficiently. For this purpose, novel fabrication processes are developed to form wettability gradient patterns on a curve copper tube surface by using roller screen printing surface modification techniques. The roller screen printing surface modification techniques can easily realize wettability gradient surfaces with superhydrophobicity and superhydrophilicity on a copper tube surface. Experimental results show the droplet nucleation sites, movement and coalescence toward the collection areas can be effectively controlled which can assist in removing the condensation water from the surface. The effectiveness of droplet collection is appropriate for being applied to condensation heat transfer in the foreseeable future.

  1. Drop impact and wettability: From hydrophilic to superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Antonini, Carlo; Amirfazli, Alidad; Marengo, Marco

    2012-10-01

    Experiments to understand the effect of surface wettability on impact characteristics of water drops onto solid dry surfaces were conducted. Various surfaces were used to cover a wide range of contact angles (advancing contact angle from 48° to 166°, and contact angle hysteresis from 5° to 56°). Several different impact conditions were analyzed (12 impact velocities on 9 different surfaces, among which 2 were superhydrophobic). Results from impact tests with millimetric drops show that two different regimes can be identified: a moderate Weber number regime (30 < We < 200), in which wettability affects both drop maximum spreading and spreading characteristic time; and a high Weber number regime (We > 200), in which wettability effect is secondary, because capillary forces are overcome by inertial effects. In particular, results show the role of advancing contact angle and contact angle hysteresis as fundamental wetting parameters to allow understanding of different phases of drop spreading and beginning of recoiling. It is also shown that drop spreading on hydrophilic and superhydrophobic surfaces occurs with different time scales. Finally, if the surface is superhydrophobic, eventual impalement, i.e., transition from Cassie to Wenzel wetting state, which might occur in the vicinity of the drop impact area, does not influence drop maximum spreading.

  2. Thin liquid films in improved oil recovery from low-salinity brine

    DOE PAGES

    Myint, Philip C.; Firoozabadi, Abbas

    2015-03-19

    Low-salinity waterflooding is a relatively new method for improved oil recovery that has generated much interest. It is generally believed that low-salinity brine alters the wettability of oil reservoir rocks towards a wetting state that is optimal for recovery. The mechanism(s) by which the wettability alteration occurs is currently an unsettled issue. This study reviews recent studies on wettability alteration mechanisms that affect the interactions between the brine/oil and brine/rock interfaces of thin brine films that wet the surface of reservoir rocks. Of these mechanisms, we pay particular attention to double-layer expansion, which is closely tied to an increase inmore » the thickness and stability of the thin brine films. Our review examines studies on both sandstones and carbonate rocks. We conclude that the thin-brine-film mechanisms provide a good qualitative, though incomplete, picture of this very complicated problem. Finally, we give suggestions for future studies that may help provide a more quantitative and complete understanding of low-salinity waterflooding.« less

  3. Wettability modification of porous PET by atmospheric femtosecond PLD

    NASA Astrophysics Data System (ADS)

    Assaf, Youssef; Forstmann, Guillaume; Kietzig, Anne-Marie

    2018-04-01

    In this study, porous structures were created on poly(ethylene terephthalate) (PET) by femtosecond (fs) laser micromachining. While such structures offer a texture that is desirable for several applications, their wettability does not always match the application in question. The aim of this investigation is to tune the wettability of such surfaces by incorporating a controlled amount of nanoparticles into the structure. The machined PET samples were thus used as substrates for fs pulsed laser deposition (PLD) of titanium under ambient conditions. The nanoparticles were deposited as nanochain clusters due to the formation of an oxide layer between individual nanoparticles. The stability of nanoparticle incorporation was tested by placing the samples in an ultrasonic ethanol bath. Results indicated that nanoparticles were still successfully incorporated into the microstructure after sonication. Nanoparticle surface coverage was observed to be controllable through the operating fluence. The dynamic contact angles of the resulting composite surface were observed to decrease with increasing titanium incorporation. Therefore, this work highlights atmospheric fs PLD as a method for wettability modification of high surface area microstructures without undermining their topology. In addition, this technique uses almost the same equipment as the machining process by which the microstructures are initially created, further highlighting its practicality.

  4. Comparative efficacy of oil solution and wettable powder of lambda-cyhalothrin to naturally occurring Ornithonyssus sylviarum infestation of chickens.

    PubMed

    Pan, Baoliang; Liang, Daming; Zhang, Yafeng; Wang, Hailiang; Wang, Ming

    2009-10-14

    The Northern Fowl Mite (NFM), Ornithonyssus sylviarum, is one of the most important and common pests of poultry. Most of available pesticides applied in the NFM control are formulated as wettable powder or emulsifiable concentrate and require to be diluted with water before use. As water has very low affinity to bird feathers, a part of the diluted pesticide will fall on the ground, on the cages, on feed bins or drift in the air upon application, which becomes a source of a potential harm to administrative workers and birds. In contrast to water, an oil solution of pesticide has a higher affinity for feathers and can stay on the feather for a longer time, and maybe provide a high efficacy and be effective for a longer, persistent period against the NFM. In the present study, the efficacy of oil solution and wettable powder of lambda-cyhalothrin to NFM in breeders was compared; the results showed that while spraying lambda-cyhalothrin wettable powder on birds could effectively control NFM, painting lambda-cyhalothrin oil solution on birds gave complete control of NFM for at least 6 weeks. In the application of lambda-cyhalothrin oil solution, no containment of pesticide to cages, feed bin and no pesticide drifting in the air was observed. These results indicated that lambda-cyhalothrin oil solution has a potential to become an effective and safe formulation to control NFM in breeders.

  5. On wettability of shale rocks.

    PubMed

    Roshan, H; Al-Yaseri, A Z; Sarmadivaleh, M; Iglauer, S

    2016-08-01

    The low recovery of hydraulic fracturing fluid in unconventional shale reservoirs has been in the centre of attention from both technical and environmental perspectives in the last decade. One explanation for the loss of hydraulic fracturing fluid is fluid uptake by the shale matrix; where capillarity is the dominant process controlling this uptake. Detailed understanding of the rock wettability is thus an essential step in analysis of loss of the hydraulic fracturing fluid in shale reservoirs, especially at reservoir conditions. We therefore performed a suit of contact angle measurements on a shale sample with oil and aqueous ionic solutions, and tested the influence of different ion types (NaCl, KCl, MgCl2, CaCl2), concentrations (0.1, 0.5 and 1M), pressures (0.1, 10 and 20MPa) and temperatures (35 and 70°C). Furthermore, a physical model was developed based on the diffuse double layer theory to provide a framework for the observed experimental data. Our results show that the water contact angle for bivalent ions is larger than for monovalent ions; and that the contact angle (of both oil and different aqueous ionic solutions) increases with increase in pressure and/or temperature; these increases are more pronounced at higher ionic concentrations. Finally, the developed model correctly predicted the influence of each tested variable on contact angle. Knowing contact angle and therefore wettability, the contribution of the capillary process in terms of water uptake into shale rocks and the possible impairment of hydrocarbon production due to such uptake can be quantified. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Modulation of the wettability of excipients by surfactant and its impacts on the disintegration and release of tablets.

    PubMed

    Yang, Baixue; Xu, Lu; Wang, Qiuxiao; Li, Sanming

    2016-12-01

    To investigate the modulation of the wettability of excipients by different types of surfactants and its impacts on the disintegration of tablets and drug release. The critical micelle concentration (CMC) of surfactants, including sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate (SDBS), dodecyl trimethyl ammonium bromide (DTAB), cetyltrimethyl ammonium bromide (CTAB) and polysorbate (Tween-20 and Tween-80), was obtained using the platinum ring method. Contact angles of surfactant solutions on the excipient compacts and double-distilled water on the mixture of surfactant and the other excipient (magnesium stearate (MgSt) or sodium alginate (SA)) were measured by the sessile drop technique. Besides, surface free energy of excipients was calculated by the Owens method. Finally, the disintegration of tablets and in vitro dissolution testing were performed according to the method described in USP. The wettability of excipients could be enhanced to different extent with low concentration of surfactant solutions and maintained stable basically after CMC. For MgSt (hydrophobic excipient), the shorter the hydrophobic chain (C 12 , including SDS and DTAB), the better the wettability with the addition of surfactant in the formulation, leading to the shorter disintegration time of tablets and higher drug release rate. In contrast, the wettability of SA (hydrophilic excipient) was reduced by adding surfactant, resulting in the longer disintegration time of tablets and lower release rate. The modulation of the wetting of pharmaceutical excipients by surfactant had changed the disintegration time of tablets and drug release rate to a greater extent.

  7. Polymeric surfaces exhibiting photocatalytic activity and controlled anisotropic wettability

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Spiros H.; Frysali, Melani A.; Papoutsakis, Lampros; Kenanakis, George; Stratakis, Emmanuel; Vamvakaki, Maria; Mountrichas, Grigoris; Pispas, Stergios

    2015-03-01

    In this work we focus on surfaces, which exhibit controlled, switchable wettability in response to one or more external stimuli as well as photocatalytic activity. For this we are inspired from nature to produce surfaces with a dual-scale hierarchical roughness and combine them with the appropriate inorganic and/or polymer coating. The combination of the hierarchical surface with a ZnO coating and a pH- or temperature-responsive polymer results in efficient photo-active properties as well as reversible superhydrophobic / superhydrophilic surfaces. Furthermore, we fabricate surfaces with unidirectional wettability variation. Overall, such complex surfaces require advanced design, combining hierarchically structured surfaces with suitable polymeric materials. Acknowledgment: This research was partially supported by the European Union (European Social Fund, ESF) and Greek national funds through the ``ARISTEIA II'' Action (SMART-SURF) of the Operational Programme ``Education and Lifelong Learning,'' NSRF 2007-2013, via the General Secretariat for Research & Technology, Ministry of Education and Religious Affairs, Greece.

  8. Effect of Extreme Wettability on Platelet Adhesion on Metallic Implants: From Superhydrophilicity to Superhydrophobicity.

    PubMed

    Moradi, Sona; Hadjesfandiari, Narges; Toosi, Salma Fallah; Kizhakkedathu, Jayachandran N; Hatzikiriakos, Savvas G

    2016-07-13

    In order to design antithrombotic implants, the effect of extreme wettability (superhydrophilicity to superhydrophobicity) on the biocompatibility of the metallic substrates (stainless steel and titanium) was investigated. The wettability of the surface was altered by chemical treatments and laser ablation methods. The chemical treatments generated different functionality groups and chemical composition as evident from XPS analysis. The micro/nanopatterning by laser ablation resulted in three different pattern geometry and different surface roughness and consequently wettability. The patterned surface were further modified with chemical treatments to generate a wide range of surface wettability. The influence of chemical functional groups, pattern geometry, and surface wettability on protein adsorption and platelet adhesion was studied. On chemically treated flat surfaces, the type of hydrophilic treatment was shown to be a contributing factor that determines the platelet adhesion, since the hydrophilic oxidized substrates exhibit less platelet adhesion in comparison to the control untreated or acid treated surfaces. Also, the surface morphology, surface roughness, and superhydrophobic character of the surfaces are contributing factors to platelet adhesion on the surface. Our results show that superhydrophobic cauliflower-like patterns are highly resistant to platelet adhesion possibly due to the stability of Cassie-Baxter state for this pattern compared to others. Our results also show that simple surface treatments on metals offer a novel way to improve the hemocompatibility of metallic substrates.

  9. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics

    PubMed Central

    Ramakrishnaiah, Ravikumar; Alkheraif, Abdulaziz A.; Divakar, Darshan Devang; Matinlinna, Jukka P.; Vallittu, Pekka K.

    2016-01-01

    The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max™, Dentsply Celtra™, Vita Suprinity™, Vita mark II™, and Vita Suprinity FC™); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces’ microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey’s test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability. PMID:27240353

  10. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    PubMed

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  11. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface.

    PubMed

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-03-02

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length ( L ), interval ( S ), and height ( H ) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure.

  12. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    PubMed Central

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-01-01

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L), interval (S), and height (H) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure. PMID:28772613

  13. Altering wettability to recover more oil from tight formations

    DOE PAGES

    Brady, Patrick V.; Bryan, Charles R.; Thyne, Geoffrey; ...

    2016-06-03

    We describe here a method for chemically modifying fracturing fluids and overflushes to chemically increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure oil-rock adhesion with middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that fracturing fluid and overflushmore » compositions can be individually tailored to increase oil recovery.« less

  14. Altering wettability to recover more oil from tight formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brady, Patrick V.; Bryan, Charles R.; Thyne, Geoffrey

    We describe here a method for chemically modifying fracturing fluids and overflushes to chemically increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure oil-rock adhesion with middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that fracturing fluid and overflushmore » compositions can be individually tailored to increase oil recovery.« less

  15. Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives.

    PubMed

    Baigl, Damien

    2012-10-07

    Using light to control liquid motion is a new paradigm for the actuation of microfluidic systems. We review here the different principles and strategies to induce or control liquid motion using light, which includes the use of radiation pressure, optical tweezers, light-induced wettability gradients, the thermocapillary effect, photosensitive surfactants, the chromocapillary effect, optoelectrowetting, photocontrolled electroosmotic flows and optical dielectrophoresis. We analyze the performance of these approaches to control using light many kinds of microfluidic operations involving discrete pL- to μL-sized droplets (generation, driving, mixing, reaction, sorting) or fluid flows in microchannels (valve operation, injection, pumping, flow rate control). We show that a complete toolbox is now available to control microfluidic systems by light. We finally discuss the perspectives of digital optofluidics as well as microfluidics based on all optical fluidic chips and optically reconfigurable devices.

  16. On the wettability diversity of C/SiC surface: Comparison of the ground C/SiC surface and ablated C/SiC surface from three aspects

    NASA Astrophysics Data System (ADS)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.

    2016-11-01

    The coefficient of thermal conductivity was influenced by the wetting state of material. The wetting state usually depends on the surface wettability. C/SiC is a promising ceramic composites with multi-components. The wettability of C/SiC composites is hard to resort to the classical wetting theory directly. So far, few investigations focused on C/SiC surface wettability diversity after different material removal processes. In this investigation, comparative studies of surface wettability of ground C/SiC surface and laser-ablated C/SiC surface were carried out through apparent contact angle (APCA) measurements. The results showed that water droplets easily reached stable state on ground C/SiC surface; while the water droplets rappidly penetrated into the laser-ablated C/SiC surface. In order to find out the reason for wettability distinctions between the ground C/SiC surface and the laser-ablated C/SiC surface, comparative studies on the surface micro-structure, surface C-O-Si distribution, and surface C-O-Si weight percentage were carried out. The results showed that (1) A large number of micro cracks in the fuzzy pattern layer over laser-ablated C/SiC surfaces easily destoried the surface tension of water droplets, while only a few cracks existed over the ground C/SiC surfaces. (2) Chemical components (C, O, Si) were non-uniformly distributed on ground C/SiC surfaces, while the chemical components (C, O, Si) were uniformly distributed on laser-ablated C/SiC surfaces. (3) The carbon weight percentage on ground C/SiC surfaces were higher than that on laser-ablated C/SiC surfaces. All these made an essential contribution to the surface wettability diversity of C/SiC surface. Although more investigations about the quantitative influence of surface topography and surface chemical composition on composites wettability are still needed, the conslusion can be used in application: the wettability of C/SiC surface can be controlled by different material removal process without individual following up surface modification process.

  17. Direct pore-scale reactive transport modelling of dynamic wettability changes induced by surface complexation

    NASA Astrophysics Data System (ADS)

    Maes, Julien; Geiger, Sebastian

    2018-01-01

    Laboratory experiments have shown that oil production from sandstone and carbonate reservoirs by waterflooding could be significantly increased by manipulating the composition of the injected water (e.g. by lowering the ionic strength). Recent studies suggest that a change of wettability induced by a change in surface charge is likely to be one of the driving mechanism of the so-called low-salinity effect. In this case, the potential increase of oil recovery during waterflooding at low ionic strength would be strongly impacted by the inter-relations between flow, transport and chemical reaction at the pore-scale. Hence, a new numerical model that includes two-phase flow, solute reactive transport and wettability alteration is implemented based on the Direct Numerical Simulation of the Navier-Stokes equations and surface complexation modelling. Our model is first used to match experimental results of oil droplet detachment from clay patches. We then study the effect of wettability change on the pore-scale displacement for simple 2D calcite micro-models and evaluate the impact of several parameters such as water composition and injected velocity. Finally, we repeat the simulation experiments on a larger and more complex pore geometry representing a carbonate rock. Our simulations highlight two different effects of low-salinity on oil production from carbonate rocks: a smaller number of oil clusters left in the pores after invasion, and a greater number of pores invaded.

  18. Block Copolymer Patterns as Templates for the Electrocatalyzed Deposition of Nanostructures on Electrodes and for the Generation of Surfaces of Controlled Wettability.

    PubMed

    Chandaluri, Chanchayya Gupta; Pelossof, Gilad; Tel-Vered, Ran; Shenhar, Roy; Willner, Itamar

    2016-01-20

    ITO electrodes modified with a nanopatterned film of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, where the P2VP domains are quaternized with iodomethane, are used for selective deposition of redox-active materials. Electrochemical studies (cyclic voltammetry, Faradaic impedance measurements) indicate that the PS domains insulate the conductive surface toward redox labels in solution. In turn, the quaternized P2VP domains electrostatically attract negatively charged redox labels solubilized in the electrolyte solution, resulting in an effective electron transfer between the electrode and the redox label. This phenomenon is implemented for the selective deposition of the electroactive Prussian blue on the nanopatterned surface and for the electrochemical deposition of Au nanoparticles, modified with a monolayer of p-aminothiophenol/2-mercaptoethanesulfonic acid, on the quaternized P2VP domains. The patterned Prussian blue-modified surface enables controlling the wettability properties by the content of the electrochemically deposited Prussian blue. Controlled wettability is unattainable with the homopolymer-modified surface, attesting to the role of the nanopattern.

  19. Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing

    NASA Astrophysics Data System (ADS)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2018-03-01

    Recently, controlling the wettability of a metallic surface so that it is either superhydrophobic or superhydrophilic has become important for many applications. However, conventional techniques require long fabrication times or involve toxic chemicals. Herein, through a combination of pulse laser ablation and simple post-processing, the surface of aluminum was controlled to either superhydrophobic or superhydrophilic in a short time of only a few hours. In this study, grid patterns were first fabricated on aluminum using a nanosecond pulsed laser, and then additional post-processing without any chemicals was used. Under heat treatment, the surface became superhydrophobic with a contact angle (CA) greater than 150° and a sliding angle (SA) lower than 10°. Conversely, when immersed in boiling water, the surface became superhydrophilic with a low contact angle. The mechanism for wettability change was also explained. The surfaces, obtained in a short time with environmentally friendly fabrication and without the use of toxic chemicals, could potentially be applied in various industry and manufacturing applications such as self-cleaning, anti-icing, and biomedical devices.

  20. Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways

    PubMed Central

    Shen, Yang; Wang, Guixue; Huang, Xianliang; Zhang, Qin; Wu, Jiang; Tang, Chaojun; Yu, Qingsong; Liu, Xiaoheng

    2012-01-01

    Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiOx:H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiOx:H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events. PMID:21715399

  1. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.

    PubMed

    Wang, Ben; Liang, Weixin; Guo, Zhiguang; Liu, Weimin

    2015-01-07

    Oil spills and industrial organic pollutants have induced severe water pollution and threatened every species in the ecological system. To deal with oily water, special wettability stimulated materials have been developed over the past decade to separate oil-and-water mixtures. Basically, synergy between the surface chemical composition and surface topography are commonly known as the key factors to realize the opposite wettability to oils and water and dominate the selective wetting or absorption of oils/water. In this review, we mainly focus on the development of materials with either super-lyophobicity or super-lyophilicity properties in oil/water separation applications where they can be classified into four kinds as follows (in terms of the surface wettability of water and oils): (i) superhydrophobic and superoleophilic materials, (ii) superhydrophilic and under water superoleophobic materials, (iii) superhydrophilic and superoleophobic materials, and (iv) smart oil/water separation materials with switchable wettability. These materials have already been applied to the separation of oil-and-water mixtures: from simple oil/water layered mixtures to oil/water emulsions (including oil-in-water emulsions and water-in-oil emulsions), and from non-intelligent materials to intelligent materials. Moreover, they also exhibit high absorption capacity or separation efficiency and selectivity, simple and fast separation/absorption ability, excellent recyclability, economical efficiency and outstanding durability under harsh conditions. Then, related theories are proposed to understand the physical mechanisms that occur during the oil/water separation process. Finally, some challenges and promising breakthroughs in this field are also discussed. It is expected that special wettability stimulated oil/water separation materials can achieve industrial scale production and be put into use for oil spills and industrial oily wastewater treatment in the near future.

  2. Wettability effect on capillary trapping of supercritical CO2 at pore-scale: micromodel experiment and numerical modeling

    NASA Astrophysics Data System (ADS)

    Hu, R.; Wan, J.

    2015-12-01

    Wettability of reservoir minerals along pore surfaces plays a controlling role in capillary trapping of supercritical (sc) CO2 in geologic carbon sequestration. The mechanisms controlling scCO2 residual trapping are still not fully understood. We studied the effect of pore surface wettability on CO2 residual saturation at the pore-scale using engineered high pressure and high temperature micromodel (transparent pore networks) experiments and numerical modeling. Through chemical treatment of the micromodel pore surfaces, water-wet, intermediate-wet, and CO2-wet micromodels can be obtained. Both drainage and imbibition experiments were conducted at 8.5 MPa and 45 °C with controlled flow rate. Dynamic images of fluid-fluid displacement processes were recorded using a microscope with a CCD camera. Residual saturations were determined by analysis of late stage imbibition images of flow path structures. We performed direct numerical simulations of the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework for the primary drainage and the followed imbibition for the micromodel experiments with different contact angles. The numerical simulations agreed well with our experimental observations. We found that more scCO2 can be trapped within the CO2-wet micromodel whereas lower residual scCO2 saturation occurred within the water-wet micromodels in both our experiments and the numerical simulations. These results provide direct and consistent evidence of the effect of wettability, and have important implications for scCO2 trapping in geologic carbon sequestration.

  3. Evaporation of NaCl solution from porous media with mixed wettability

    NASA Astrophysics Data System (ADS)

    Bergstad, Mina; Shokri, Nima

    2016-05-01

    Evaporation of saline water from porous media is ubiquitous in many processes including soil salinization, crop production, and CO2 sequestration in deep saline acquirer. It is controlled by the transport properties of porous media, atmospheric conditions, and properties of the evaporating saline solution. In the present study, the effects of mixed wettability conditions on the general dynamics of water evaporation from porous media saturated with NaCl solution were investigated. To do so, we conducted a comprehensive series of evaporation experiments using sand mixtures containing different fractions of hydrophobic grains saturated with NaCl solutions. Our results showed that increasing fraction of hydrophobic grains in the mixed wettability sand pack had minor impact on the evaporative mass losses due to the presence of salt whose precipitation patterns were significantly influenced by the mixed wettability condition. Through macroscale and microscale investigations, we found formation of patchy efflorescence in the case of mixed wettability sand pack as opposed to crusty efflorescence in the case of completely hydrophilic porous media. Furthermore, the presence of salty water and hydrophobic grains in the sand pack significantly influenced the general dynamics and morphology of the receding drying front. Our results extend the understanding of the saline water evaporation from porous media with direct applications to various hydrological and engineering processes.

  4. Influence of AlN(0001) Surface Reconstructions on the Wettability of an Al/AlN System: A First-Principle Study.

    PubMed

    Cao, Junhua; Liu, Yang; Ning, Xiao-Shan

    2018-05-11

    A successful application of a hot dip coating process that coats aluminum (Al) on aluminum nitride (AlN) ceramics, revealed that Al had a perfect wettability to the ceramics under specific circumstances, which was different from previous reports. In order to elucidate the mechanism that controlled the supernormal wetting phenomenon during the dip coating, a first-principle calculation of an Al(111)/AlN(0001) interface, based on the density functional theory (DFT), was employed. The wettability of the Al melt on the AlN(0001) surface, as well as the effect that the surface reconstruction of AlN and the oxygen adsorption had on Al for the adhesion and the wettability of the Al/AlN system, were studied. The results revealed that a LCM (laterally contracted monolayer) reconstruction could improve the adhesion and wettability of the system. Oxygen adsorption on the free surface of Al decreased the contact angle, because the adsorption reduced of the surface tension of Al. A prefect wetting was obtained only after some of the oxygen atoms adsorbed on the free surface of Al. The supernormal wetting phenomenon came from the surface reconstruction of the AlN and the adsorption of oxygen atoms on the Al melt surface.

  5. INFLUENCE OF WETTABILITY AND SATURATION ON LIQUID-LIQUID INTERFACIAL AREA IN POROUS MEDIA. (R827116)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. In Situ Apparatus to Study Gas-Metal Reactions and Wettability at High Temperatures for Hot-Dip Galvanizing Applications

    NASA Astrophysics Data System (ADS)

    Koltsov, A.; Cornu, M.-J.; Scheid, J.

    2018-02-01

    The understanding of gas-metal reactions and related surface wettability at high temperatures is often limited due to the lack of in situ surface characterization. Ex situ transfers at low temperature between annealing furnace, wettability device, and analytical tools induce noticeable changes of surface composition distinct from the reality of the phenomena.Therefore, a high temperature wettability device was designed in order to allow in situ sample surface characterization by x-rays photoelectron spectroscopy after gas/metal and liquid metal/solid metal surface reactions. Such airless characterization rules out any contamination and oxidation of surfaces and reveals their real composition after heat treatment and chemical reaction. The device consists of two connected reactors, respectively, dedicated to annealing treatments and wettability measurements. Heat treatments are performed in an infrared lamp furnace in a well-controlled atmosphere conditions designed to reproduce gas-metal reactions occurring during the industrial recrystallization annealing of steels. Wetting experiments are carried out in dispensed drop configuration with the precise control of the deposited droplets kinetic energies. The spreading of drops is followed by a high-speed CCD video camera at 500-2000 frames/s in order to reach information at very low contact time. First trials have started to simulate phenomena occurring during recrystallization annealing and hot-dip galvanizing on polished pure Fe and FeAl8 wt.% samples. The results demonstrate real surface chemistry of steel samples after annealing when they are put in contact with liquid zinc alloy bath during hot-dip galvanizing. The wetting results are compared to literature data and coupled with the characterization of interfacial layers by FEG-Auger. It is fair to conclude that the results show the real interest of such in situ experimental setup for interfacial chemistry studies.

  7. Adhesion switch on a gecko-foot inspired smart nanocupule surface

    NASA Astrophysics Data System (ADS)

    Song, Wenlong

    2014-10-01

    A gecko-foot inspired nanocupule surface prepared by an AAO template covering method was composed of poly(N-isopropylacrylamide) and polystyrene blend. Both superhydrophobicity and high adhesion force were exhibited on the PNIPAm/PS film at room temperature. Moreover, by controlling the temperature, the wettability of the film could be switched between 138.1 +/- 5.5° and 150.6 +/- 1.5°, and the adhesion force could also be correspondingly tuned accurately by temperature. This reversibility in both wettability and adhesion force could be used to construct smart devices for fine selection of water droplets. The proof-of-concept was demonstrated by the selective catching of precise weight controlled water droplets at different temperatures. This work could help us to design new type of devices for blood bioanalysis or lossless drug transportation.A gecko-foot inspired nanocupule surface prepared by an AAO template covering method was composed of poly(N-isopropylacrylamide) and polystyrene blend. Both superhydrophobicity and high adhesion force were exhibited on the PNIPAm/PS film at room temperature. Moreover, by controlling the temperature, the wettability of the film could be switched between 138.1 +/- 5.5° and 150.6 +/- 1.5°, and the adhesion force could also be correspondingly tuned accurately by temperature. This reversibility in both wettability and adhesion force could be used to construct smart devices for fine selection of water droplets. The proof-of-concept was demonstrated by the selective catching of precise weight controlled water droplets at different temperatures. This work could help us to design new type of devices for blood bioanalysis or lossless drug transportation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04090b

  8. Direct Measurement of the Wettability of Minerals Using Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Xu, L.; Lu, H.; Wang, H.; Shi, Y.

    2016-12-01

    The wettability of reservoir rock plays an essential role in affecting the states of fluids (water, oil, etc) in pores which are constructed with various minerals. The contact angle method, which is based on the optical microscope photographs of millimeter-sized droplets on a smooth mineral surface, is one of the most widely employed methods to evaluate the wettability of a rock. However, the real reservoir rocks are composed of several kinds of minerals and thus nonhomogeneous, which leads to different wettability at different location of the rock. The mineral grains are usually micrometer-sized so that the traditional optical contact angle method cannot obtain the wettability of different minerals in the rock. Here we used a tapping-mode atomic force microscopy (TM-AFM, MFP-3D-BIO, Asylum Research) to measure the contact angles of micrometer-sized water droplets on different minerals in a tight sand rock which is mainly composed of quartz, albite, potash feldspar and anorthite. The water droplets varied from submicron to several tens micron in diameter. With the optimization of tool and operation parameters, the AFM tip was well controlled so that the nanoscale morphology of the contact configuration between water film and the mineral surface can be obtained at high resolution without disturbing the liquid surface. The AFM results showed that the contact angles of water on quartz and albite were 30-40 ° and 37-45 °, respectively. The AFM method provides a new measure for the wettability evaluation of reservoir rocks, and it is with potential to be applied to oil and gas hydrate studies.

  9. Fabrication of a bionic microstructure on a C/SiC brake lining surface: Positive applications of surface defects for surface wetting control

    NASA Astrophysics Data System (ADS)

    Wu, M. L.; Ren, C. Z.; Xu, H. Z.; Zhou, C. L.

    2018-05-01

    The material removal processes generate interesting surface topographies, unfortunately, that was usually considered to be surface defects. To date, little attention has been devoted to the positive applications of these interesting surface defects resulted from laser ablation to improve C/SiC surface wettability. In this study, the formation mechanism behind surface defects (residual particles) is discussed first. The results showed that the residual particles with various diameters experienced regeneration and migration, causing them to accumulate repeatedly. The effective accumulation of these residual particles with various diameters provides a new method about fabricating bionic microstructures for surface wetting control. The negligible influence of ablation processes on the chemical component of the subsurface was studied by comparing the C-O-Si weight percentage at the C/SiC subsurface. A group of microstructures were fabricated under different laser trace and different laser parameters. Surface wettability experimental results for different types of microstructures were compared. The results showed that the surface wettability increased as the laser scanning speed decreased. The surface wettability increased with the density of the laser scanning trace. We also demonstrated the application of optimized combination of laser parameters and laser trace to simulate a lotus leaf's microstructure on C/SiC surfaces. The parameter selection depends on the specific material properties.

  10. Functional wettability in carbonate reservoirs

    DOE PAGES

    Brady, Patrick V.; Thyne, Geoffrey

    2016-10-11

    Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the ~30% OOIP recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexationmore » model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. Furthermore, the approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery.« less

  11. Pore Scale Investigation of Wettability Alteration Through Chemically-Tuned Waterflooding in Oil-Wet Carbonate Rocks Using X-Ray Micro-Ct Imaging

    NASA Astrophysics Data System (ADS)

    Tawfik, M. S.; Karpyn, Z.

    2017-12-01

    Carbonate reservoirs host more than half of the remaining oil reserves worldwide. Due to their complex pore structure and intermediate to oil-wet nature, it is challenging to produce the remaining oil from these formations. For two decades, chemically tuned waterflooding (CTWF) has gained the attention of many researchers. Experimental, numerical, and field studies suggest that changes in ion composition of injected brine can increase oil recovery in carbonate reservoirs via wettability alteration. However, previous studies explaining the improvement in oil recovery by wettability alteration deduce wettability based on indirect measurements, including sessile drop contact angle measurements on polished rocks, relative permeability, chromatographic separation of SCN- and potential determining ions (PDIs), etc. CTWF literature offers no direct measurement of wettability alteration at the pore scale. This study proposes a direct pore-scale measurement of changes in interfacial curvatures before and after CTWF. Micro-coreflood experiments are performed to investigate the effect of injection brine salinity, ion composition and temperature on rock wettability at the pore scale. X-ray micro-CT scanning is used to obtain 3D image sets to calculate in-situ contact angle distributions. The study also aims to find a correlation between the magnitude of improvement in oil recovery at the macro-scale and the corresponding contact angle distribution at the pore-scale at different experimental conditions. Hence, macro-scale coreflood experiments are performed using the same conditions as the micro-corefloods. Macro-scale coreflood experiments have shown that brines with higher concentration of Ca2+, Mg2+ and SO42- ions have higher recoveries compared to standard seawater. This translates to wettability alteration into a more intermediate-wet state. This study enhances the understanding of the pore-scale physico-chemical mechanisms controlling wettability alteration via CTWF, which helps tune existing CTWF models, and therefore results in more well-informed candidate reservoir selection and the development of a workflow to determine the optimum injection brine properties for a given crude oil-brine-rock system.

  12. Autoclaving as a mean of modifying the soil wettability characteristics

    NASA Astrophysics Data System (ADS)

    Urbanek, Emilia; Bodi, Merche; Shakesby, Rick; Doerr, Stefan

    2010-05-01

    Studies of soil water repellency have often attempted to isolate its hydrological impact by comparing responses of wettable and water repellent soils. It is, however, almost impossible to identify natural wettable and water repellent soils that are otherwise fully comparable. Furthermore no established methodology exists that allows changing a soil from wettable to water repellent (or vice versa) without affecting its chemical composition. Approaches used for rendering wettable soil (or sands) water repellent involve coating particles with hydrophobic or commercial water repellent spray. Heating soil to temperatures >300 °C has been used to eliminate existing water repellency from samples, but this can permanently alter the composition of organic matter. Here we report on a new technique for rendering wettable soil water repellent involving autoclaving. Autoclaving is commonly applied in medicine and biology for sterilization. It uses moist heat and pressure to destroy the bacteria, viruses and fungi. The same method has also been used in soil ecology studies for selective removal of certain micro-organisms. In our study, soils at various moisture contents were autoclaved in sealed bags for 1hr at 121°C. The soils became water repellent and the degree of water repellency was found to be dependent on the original soil moisture content and the soil wettability remained unchanged even with further drying of the soil up to 105°C. No changes in soil wettability were found after autoclaving very dry or wet soils. Only at certain intermediate water contents was the soil able to switch to a hydrophobic state. We suspect that the changes occurring during the autoclaving involve molecular orientation of hydrophobic and hydrophilic groups of soil organic matter, and moist heat and pressure cause the hydrophobic groups to be directed towards the outside of the soil particles which consequently repels water. Treatment of soil in this way presents a simple, inexpensive method of making a soil hydrophobic without changing its chemical composition. This has considerable potential for controlled experiments requiring both soils that differ only in terms of their degree of hydrophobicity.

  13. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    NASA Astrophysics Data System (ADS)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O2 or C3F8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  14. Wettability and surface free energy of polarised ceramic biomaterials.

    PubMed

    Nakamura, Miho; Hori, Naoko; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2015-01-13

    The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces.

  15. Wettability Switching Techniques on Superhydrophobic Surfaces

    PubMed Central

    2007-01-01

    The wetting properties of superhydrophobic surfaces have generated worldwide research interest. A water drop on these surfaces forms a nearly perfect spherical pearl. Superhydrophobic materials hold considerable promise for potential applications ranging from self cleaning surfaces, completely water impermeable textiles to low cost energy displacement of liquids in lab-on-chip devices. However, the dynamic modification of the liquid droplets behavior and in particular of their wetting properties on these surfaces is still a challenging issue. In this review, after a brief overview on superhydrophobic states definition, the techniques leading to the modification of wettability behavior on superhydrophobic surfaces under specific conditions: optical, magnetic, mechanical, chemical, thermal are discussed. Finally, a focus on electrowetting is made from historical phenomenon pointed out some decades ago on classical planar hydrophobic surfaces to recent breakthrough obtained on superhydrophobic surfaces.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukul M. Sharma; Steven L. Bryant; Carlos Torres-Verdin

    The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing rock properties at the relevant length scales. This project brings together several advanced technologies to characterize pore structure and wettability. Grain-scale models are developed that help to better interpret the electric and dielectric response of rocks. These studies allow themore » computation of realistic configurations of two immiscible fluids as a function of wettability and geologic characteristics. These fluid configurations form a basis for predicting and explaining macroscopic behavior, including the relationship between relative permeability, wettability and laboratory and wireline log measurements of NMR and dielectric response. Dielectric and NMR measurements have been made show that the response of the rocks depends on the wetting and flow properties of the rock. The theoretical models can be used for a better interpretation and inversion of standard well logs to obtain accurate and reliable estimates of fluid saturation and of their producibility. The ultimate benefit of this combined theoretical/empirical approach for reservoir characterization is that rather than reproducing the behavior of any particular sample or set of samples, it can explain and predict trends in behavior that can be applied at a range of length scales, including correlation with wireline logs, seismic, and geologic units and strata. This approach can substantially enhance wireline log interpretation for reservoir characterization and provide better descriptions, at several scales, of crucial reservoir flow properties that govern oil recovery.« less

  17. Bi-functional anodic TiO2 oxide: Nanotubes for wettability control and barrier oxide for uniform coloring

    NASA Astrophysics Data System (ADS)

    Kim, Sunkyu; Jung, Minkyeong; Kim, Moonsu; Choi, Jinsub

    2017-06-01

    A uniformly colored TiO2, on which the surface is functionalized with nanotubes to control wettability, was prepared by a two-step anodization; the first anodization was carried out to prepare nanotubes for a super-hydrophilic or -hydrophobic surface and the second anodization was performed to fabricate a thin film barrier oxide to ensure uniform coloring. The effect of the nanotubes on barrier oxide coloring was examined by spectrophotometry and UV-vis-IR spectroscopy. We found four different regimes governing the color changes in terms of anodization voltage, indicating that the color of the duplex TiO2 was primarily determined by the thickness of the barrier oxide layer formed during the second anodization step. The surface wettability, as confirmed by the water contact angle, revealed that the single barrier TiO2 yielded 74.6° ± 2.1, whereas the nanotubes on the barrier oxide imparted super-hydrophilic properties as a result of increasing surface roughness as well as imparting a higher hydrophobicity after organic acid treatment.

  18. Wetting in color: colorimetric differentiation of organic liquids with high selectivity.

    PubMed

    Burgess, Ian B; Koay, Natalie; Raymond, Kevin P; Kolle, Mathias; Lončar, Marko; Aizenberg, Joanna

    2012-02-28

    Colorimetric litmus tests such as pH paper have enjoyed wide commercial success due to their inexpensive production and exceptional ease of use. Expansion of colorimetry to new sensing paradigms is challenging because macroscopic color changes are seldom coupled to arbitrary differences in the physical/chemical properties of a system. Here we present in detail the design of a "Wetting In Color Kit" (WICK), an inexpensive and highly selective colorimetric indicator for organic liquids that exploits chemically encoded inverse-opal photonic crystals to project minute differences in liquids' wettability to macroscopically distinct, easy-to-visualize structural color patterns. We show experimentally and corroborate with theoretical modeling using percolation theory that the highly symmetric structure of our large-area, defect-free SiO(2) inverse-opal films leads to sharply defined threshold wettability for liquid infiltration, occurring at intrinsic contact angles near 20° with an estimated resolution smaller than 5°. The regular structure also produces a bright iridescent color, which disappears when infiltrated with liquid, naturally coupling the optical and fluidic responses. To deterministically design a WICK that differentiates a broad range of liquids, we introduced a nondestructive quality control procedure to regulate the pore structure and developed two new surface modification protocols, both requiring only silanization and selective oxidation. The resulting tunable, built-in horizontal and vertical chemistry gradients let us tailor the wettability threshold to specific liquids across a continuous range. With patterned oxidation as a final step, we control the shape of the liquid-specific patterns displayed, making WICK easier to read. Using these techniques, we demonstrate the applicability of WICKs in several exemplary systems that colorimetrically distinguish (i) ethanol-water mixtures varying by only 2.5% in concentration; (ii) methanol, ethanol, and isopropyl alcohol; (iii) hexane, heptane, octane, nonane, and decane; and (iv) samples of gasoline (regular unleaded) and diesel. As wetting is a generic fluidic phenomenon, we envision that WICK could be suitable for applications in authentication or identification of unknown liquids across a broad range of industries.

  19. Livestock grazing impact on soil wettability and erosion risk in post-fire agricultural lands.

    PubMed

    Stavi, Ilan; Barkai, Daniel; Knoll, Yaakov M; Zaady, Eli

    2016-12-15

    Fires in agricultural areas are common, modifying the functioning of agro-ecosystems. Such fires have been extensively studied, and reported to considerably affect soil properties. Yet, understanding of the impact of livestock grazing, or more precisely, trampling, in fire-affected lands is limited. The objective of this study was to assess the impact of low- to moderate-fire severity and livestock trampling (hoof action) on the solid soil's wettability and related properties, and on soil detachment, in burnt vs. non-burnt croplands. The study was implemented by allowing livestock to access plots under high, medium, and low stocking rates in (unintentionally) burnt and non-burnt lands. Also, livestock exclusion plots were assigned as a control treatment. Results showed that fire slightly decreased the soil wettability. At the same time, water drop penetration time (WDPT) was negatively related to the stocking rate, and critical surface tension (CST) was ~13% smaller in the control plots than in the livestock-presence treatments. Also, the results showed that following burning, the resistance of soil to shear decreased by ~70%. Mass of detached material was similar in the control plots of the burnt and non-burnt plots. At the same time, it was three-, eight-, and nine-fold greater in the plots of the burnt×low, burnt×medium, and burnt×high stocking rates, respectively, than in the corresponding non-burnt ones. This study shows that livestock trampling in low- to moderate-intensity fire-affected lands increased the shearing of the ground surface layer. On the one hand, this slightly increased soil wettability. On the other hand, this impact considerably increased risks of soil erosion and land degradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Dewetting of silica surfaces upon reactions with supercritical CO2 and brine: pore-scale studies in micromodels.

    PubMed

    Kim, Yongman; Wan, Jiamin; Kneafsey, Timothy J; Tokunaga, Tetsu K

    2012-04-03

    Wettability of reservoir minerals and rocks is a critical factor controlling CO(2) mobility, residual trapping, and safe-storage in geologic carbon sequestration, and currently is the factor imparting the greatest uncertainty in predicting capillary behavior in porous media. Very little information on wettability in supercritical CO(2) (scCO(2))-mineral-brine systems is available. We studied pore-scale wettability and wettability alteration in scCO(2)-silica-brine systems using engineered micromodels (transparent pore networks), at 8.5 MPa and 45 °C, over a wide range of NaCl concentrations up to 5.0 M. Dewetting of silica surfaces upon reactions with scCO(2) was observed through water film thinning, water droplet formation, and contact angle increases within single pores. The brine contact angles increased from initial values near 0° up to 80° with larger increases under higher ionic strength conditions. Given the abundance of silica surfaces in reservoirs and caprocks, these results indicate that CO(2) induced dewetting may have important consequences on CO(2) sequestration including reducing capillary entry pressure, and altering quantities of CO(2) residual trapping, relative permeability, and caprock integrity.

  1. Smart Polymers with Special Wettability.

    PubMed

    Chang, Baisong; Zhang, Bei; Sun, Taolei

    2017-01-01

    Surface wettability plays a key role in addressing issues ranging from basic life activities to our daily life, and thus being able to control it is an attractive goal. Learning from nature, both of its structure and function, brings us much inspiration in designing smart polymers to tackle this major challenge. Life functions particularly depend on biomolecular recognition-induced interfacial properties from the aqueous phase onto either "soft" cell and tissue or "hard" inorganic bone and tooth surfaces. The driving force is noncovalent weak interactions rather than strong covalent combinations. An overview is provided of the weak interactions that perform vital actions in mediating biological processes, which serve as a basis for elaborating multi-component polymers with special wettabilities. The role of smart polymers from molecular recognitions to macroscopic properties are highlighted. The rationale is that highly selective weak interactions are capable of creating a dynamic synergetic communication in the building components of polymers. Biomolecules could selectively induce conformational transitions of polymer chains, and then drive a switching of physicochemical properties, e.g., roughness, stiffness and compositions, which are an integrated embodiment of macroscopic surface wettabilities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of the morphology of adsorbed oleate on the wettability of a collophane surface

    NASA Astrophysics Data System (ADS)

    Ye, Junjian; Zhang, Qin; Li, Xianbo; Wang, Xianchen; Ke, Baolin; Li, Xianhai; Shen, Zhihui

    2018-06-01

    The adsorption of surfactants on a solid surface could alter its wettability, which offers a wide range of relevant applications such as mineral flotation, hydrophobic material preparation and nanomaterial dispersion. The morphology of adsorbed oleate on a collophane surface was visualized using the peakforce tapping mode of atomic force microscopy (AFM), and its effect on the wettability of collophane was analysed by contact angle measurements, adsorption measurements and molecular dynamics (MD) simulations. The AFM images demonstrated that the adsorbed structure varied with different oleate concentrations. First, the small cylindrical micelles with concomitant monolayer and bilayer structures were observed above the hemimicelle concentration (hmc) of 1 × 10-5 mol/L, which enhanced the hydrophobicity of the collophane surface, and the collophane surface was not completely covered with the oleate monolayer due to surface heterogeneity. Then, large cylindrical micelles with a major bilayer were formed as the critical micelle concentration (cmc) of 1 × 10-3 mol/L was approached, which decreased its hydrophobicity, and finally the formation of large cylindrical micelles with multilayer at the cmc caused the hydrophilicity of the collophane surface. Therefore, there was a suitable equilibrium concentration between the hmc and cmc for oleate as a collector during mineral flotation, and oleate could also be used as a dispersant for colloidal stability when its equilibrium concentration reached the cmc. The effect of the adsorbed structure on the wettability of collophane was also confirmed by MD simulations. This study provides a good understanding of the surface modification of particles by surfactants for flotation and dispersion applications.

  3. Effects of Surface Wettability on the Porosity and Wickability of Frost

    NASA Astrophysics Data System (ADS)

    Witt, Katherine; Ahmadi, Farzad; Boreyko, Jonathan

    2017-11-01

    The wicking of liquids through porous media has been studied for many materials, but never for frost, despite its implications for arctic oil spills and oil-infused surfaces. Here, we characterize silicone oils wicking up frost sheets. A layer of frost was grown on aluminum plates of varying surface wettability: superhydrophilic, hydrophilic, hydrophobic, and superhydrophobic. Once the desired frost thickness was grown, a humidity chamber was used to maintain the frost at the dew point and the bottom of the plate was dipped in a reservoir of fluorescent silicone oil. For all surfaces, the wicking rate of the oil increased with increasing wettability. For the wetting surfaces, this is manifested in the length vs. time data following the classical Washburn equation, exhibiting a power slope of about 1/2 and resulting in a larger effective pore radius with increasing wettability. However, we observed that on the non-wetting surfaces, the discrete distribution of the frosted dew droplets resulted in a new scaling law with a slope much less than 1/2, especially for the superhydrophobic surface which promoted jumping-droplet condensation. This research shows that the wicking of oil up a layer of frost can give insight into the morphology of frost. Conversely, if the underlying wettability of a frost sheet can be controlled, the spread of oil can be widely tuned. This work was supported by a Virginia Space Grant Consortium Undergraduate Research Scholarship (PMPTX7EP).

  4. Capillary pressure spectrometry: Toward a new method for the measurement of the fractional wettability of porous media

    NASA Astrophysics Data System (ADS)

    Sygouni, Varvara; Tsakiroglou, Christos D.; Payatakes, Alkiviades C.

    2006-05-01

    A transparent porous medium of controlled fractional wettability is fabricated by mixing intermediate-wet glass microspheres with strongly oil-wet polytetrafluouroethylene microspheres, and packing them between two transparent glass plates. Silicon oil is displaced by water, the growth pattern is video-recorded, and the transient response of the pressure drop across the pore network is measured for various fractions of oil-wet particles. The measured global capillary pressure fluctuates as the result of the variation of the equilibrium curvature of menisci between local maxima and local minima. With the aid of wavelets, the transient response of the capillary pressure is transformed to a capillary pressure spectrum (CPS). The peaks of the CPS are used to identify the most significant flow events and correlate their amplitude with the spatial distribution of fractional wettability. The flow events are closely related with the fluctuations of the capillary pressure and are classified into three main categories: motion in pore clusters, generation/expansion of capillary fingers, coalescence of interfaces. The amplitude of the peaks of CPS is related quasilinearly with a local coefficient of fractional wettability presuming that the same class of flow events is concerned. Approximate calculations of the maximum meniscus curvature in pores of converging-diverging geometry and uniform wettability in combination with simple mixing laws predict satisfactorily the experimentally measured average prebreakthrough capillary pressure as a function of the fraction of the oil-wet particles.

  5. The Probable Explanation for the Low Friction of Natural Joints.

    PubMed

    Pawlak, Zenon; Urbaniak, Wieslaw; Hagner-Derengowska, Magdalena; Hagner, Wojciech

    2015-04-01

    The surface of an articular cartilage, coated with phospholipid (PL) bilayers, plays an important role in its lubrication and movement. Intact (normal) and depleted surfaces of the joint were modelled and the pH influence on the surface interfacial energy, wettability and friction were investigated. In the experiments, the deterioration of the PL bilayer was controlled by its wettability and the applied friction. The surrounding fluid of an undamaged articular cartilage, the synovial fluid, has a pH value of approximately 7.4. Buffer solutions were formulated to represent the synovial fluid with various pH values. It was found that the surface interfacial energy was stabilised at its lowest values when the pH varied between 6.5 and 9.5. These results suggested that as the PL bilayers deteriorated, the hydration repulsion mechanism became less effective as friction increased. The decreased number of bilayers changed the wettability and lowered PL lubricant properties.

  6. Inkjet printing of aligned single-walled carbon-nanotube thin films

    NASA Astrophysics Data System (ADS)

    Takagi, Yuki; Nobusa, Yuki; Gocho, Shota; Kudou, Hikaru; Yanagi, Kazuhiro; Kataura, Hiromichi; Takenobu, Taishi

    2013-04-01

    We report a method for the inkjet printing of aligned single-walled carbon-nanotube (SWCNT) films by combining inkjet technology with the strong wettability contrast between hydrophobic and hydrophilic areas based on the patterning of self-assembled monolayers. Both the drying process control using the strong wettability boundary and the coffee-stain effect strongly promote the aggregation of SWCNTs along the contact line of a SWCNT ink droplet, thereby demonstrating our achievement of inkjet-printed aligned SWCNT films. This method could open routes for developing high-performance and environmentally friendly SWCNT printed electronics.

  7. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations - oil-based formulation and wettable powder - combined with Bacillus thuringiensis.

    PubMed

    Nian, Xiao-Ge; He, Yu-Rong; Lu, Li-Hua; Zhao, Rui

    2015-12-01

    Entomopathogenic fungi are potential candidates for controlling the diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae). The control efficacy of two Isaria fumosorosea conidial formulations - wettable powder and oil-based formulation - combined with Bacillus thuringiensis against P. xylostella was tested. In the laboratory, the combined application of two pathogens increased larval mortality either in an additive or a synergistic way. P. xylostella larvae treated with oil-based formulation died sooner than larvae infected with wettable powder. For pot and field experiments, each formulation was applied alone or combined with B. thuringiensis 668 µg mL(-1) , and then larval mortality, pupation rate, adult emergence rate, female longevity and fecundity were recorded. In pot experiments there was no evidence of any antagonistic effects between the two pathogens. Combined application of B. thuringiensis and a high concentration of the two I. fumosorosea formulations resulted in higher mortality (84.4 and 86.2%) with minimum pupation (15.6 and 11.9%) and adult emergence rates (8.7 and 7.0%). Female longevity and fecundity were significantly reduced by the two formulations at high concentration compared with the control. Similar results were also observed in field experiments. The combined application of I. fumosorosea and B. thuringiensis is a promising alternative strategy for P. xylostella control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media.

    PubMed

    Scanziani, Alessio; Singh, Kamaljit; Blunt, Martin J; Guadagnini, Alberto

    2017-06-15

    Multiphase flow in porous media is strongly influenced by the wettability of the system, which affects the arrangement of the interfaces of different phases residing in the pores. We present a method for estimating the effective contact angle, which quantifies the wettability and controls the local capillary pressure within the complex pore space of natural rock samples, based on the physical constraint of constant curvature of the interface between two fluids. This algorithm is able to extract a large number of measurements from a single rock core, resulting in a characteristic distribution of effective in situ contact angle for the system, that is modelled as a truncated Gaussian probability density distribution. The method is first validated on synthetic images, where the exact angle is known analytically; then the results obtained from measurements within the pore space of rock samples imaged at a resolution of a few microns are compared to direct manual assessment. Finally the method is applied to X-ray micro computed tomography (micro-CT) scans of two Ketton cores after waterflooding, that display water-wet and mixed-wet behaviour. The resulting distribution of in situ contact angles is characterized in terms of a mixture of truncated Gaussian densities. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  9. Surfactants have multi-fold effects on skin barrier function.

    PubMed

    Lemery, Emmanuelle; Briançon, Stéphanie; Chevalier, Yves; Oddos, Thierry; Gohier, Annie; Boyron, Olivier; Bolzinger, Marie-Alexandrine

    2015-01-01

    The stratum corneum (SC) is responsible for the barrier properties of the skin and the role of intercorneocyte skin lipids, particularly their structural organization, in controlling SC permeability is acknowledged. Upon contacting the skin, surfactants interact with the SC components leading to barrier damage. To improve knowledge of the effect of several classes of surfactant on skin barrier function at three different levels. The influence of treatments of human skin explants with six non-ionic and four ionic surfactant solutions on the physicochemical properties of skin was investigated. Skin surface wettability and polarity were assessed through contact angle measurements. Infrared spectroscopy allowed monitoring the SC lipid organization. The lipid extraction potency of surfactants was evaluated thanks to HPLC-ELSD assays. One anionic and one cationic surfactant increased the skin polarity by removing the sebaceous and epidermal lipids and by disturbing the organization of the lipid matrix. Another cationic surfactant displayed a detergency effect without disturbing the skin barrier. Several non-ionic surfactants disturbed the lipid matrix organization and modified the skin wettability without any extraction of the skin lipids. Finally two non-ionic surfactants did not show any effect on the investigated parameters or on the skin barrier. The polarity, the organization of the lipid matrix and the lipid composition of the skin allowed describing finely how surfactants can interact with the skin and disturb the skin barrier function.

  10. Formation of non-wettable soils...involves heat transfer mechanism

    Treesearch

    Leonardo F. Debano

    1966-01-01

    After a wiIdfire, some brushland soils in southern California have been found to include a non-wettable layer. This formation may be the result of hydrophobic material volatilizing and later condensing. In burning experiments, hydrophobic substances from ceanothus litter and non-wettable soil were moved downward into an underlying wettable sand by temperature gradients...

  11. Characterization of Mixed Wettability at Different Scales and its Impact on Oil Recovery Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Mukul M.; Hirasaki, George J.

    The objectives of this project was to: (1) quantify the pore scale mechanisms that determine the wettability state of a reservoir, (2) study the effect of crude oil, brine and mineral compositions in the establishment of mixed wet states, (3) clarify the effect of mixed - wettability on oil displacement efficiency in waterfloods, (4) develop a new tracer technique to measure wettability, fluid distributions, residual saturation's and relative permeabilities, and (5) develop methods for properly incorporating wettability in up-scaling from pore to core to reservoir scales.

  12. Switchable Wettability of the Honeybee’s Tongue Surface Regulated by Erectable Glossal Hairs

    PubMed Central

    Chen, Ji; Wu, Jianing; Yan, Shaoze

    2015-01-01

    Various nectarivorous animals apply bushy-hair-equipped tongues to lap nectar from nectaries of flowers. A typical example is provided by the Italian honeybee (Apis mellifera ligustica), who protracts and retracts its tongue (glossa) through a temporary tube, and actively controls the erectable glossal hairs to load nectar. We first examined the microstructure of the honeybee’s glossal surface, recorded the kinematics of its glossal hairs during nectar feeding process and observed the rhythmical hair erection pattern clearly. Then we measured the wettability of the glossal surface under different erection angles (EA) in sugar water of the mass concentration from 25 to 45%, mimicked by elongating the glossa specimens. The results show that the EA in retraction approximately remains stable under different nectar concentrations. In a specific concentration (35, 45, or 55%), the contact angle decreases and glossal surface area increases while the EA of glossal hairs rises, the glossa therefore could dynamically alter the glossal surface and wettability in foraging activities, not only reducing the energy consumption for impelling the nectar during tongue protraction, but also improving the nectar-trapping volume for feeding during glossa retraction. The dynamic glossal surface with switchable wettability regulated by erectable hairs may reveal the effective adaptation of the honeybee to nectar intake activities. PMID:26643560

  13. Biomimetic Transferable Surface for a Real Time Control over Wettability and Photoerasable Writing with Water Drop Lens

    PubMed Central

    Zillohu, Ahnaf Usman; Abdelaziz, Ramzy; Homaeigohar, Shahin; Krasnov, Igor; Müller, Martin; Strunskus, Thomas; Elbahri, Mady

    2014-01-01

    We demonstrate a transferable device that can turn wettability of surfaces to sticky or slippy, as per requirement. It is composed of polymeric yarn with a fibrous structure, which can be lifted and placed on any surface to render it the unique wettability properties. We introduce Polyvinylidenefluoride (PVDF) random fiber as biomimetic rose petal surface. When it is decorated with PVDF nanofibers yarns, the random mesh transform from rose petal sticky state into grass leaf slippy state. When it is placed on sticky, hydrophilic metal coin, it converts the surface of the coin to super hydrophobic. Adjustments in the yarn system, like interyarn spacing, can be done in real time to influence its wettability, which is a unique feature. Next, we load the polymer with a photochromic compound for chemical restructuring. It affects the sliding angle of water drop and makes the fibers optically active. We also demonstrate a “water droplets lens” concept that enables erasable writing on photochromic rose petal sticky fibrous surface. The droplet on a highly hydrophobic surface acts as a ball lens to concentrate light onto a hot spot; thereby we demonstrate UV light writing with water lenses and visible light erasing. PMID:25491016

  14. Experimental investigation of water distribution in a two-phase zone during gravity-dominated evaporation

    NASA Astrophysics Data System (ADS)

    Cejas, Cesare M.; Castaing, Jean-Christophe; Hough, Larry; Frétigny, Christian; Dreyfus, Rémi

    2017-12-01

    We characterize the water repartition within the partially saturated (two-phase) zone (PSZ) during evaporation from mixed wettable porous media by controlling the wettability of glass beads, their sizes, and as well the surrounding relative humidity. Here, capillary numbers are low and under these conditions, the percolating front is stabilized by gravity. Using experimental and numerical analyses, we find that the PSZ saturation decreases with the Bond number, where packing of smaller particles have higher saturation values than packing made of larger particles. Results also reveal that the extent (height) of the PSZ, as well as water saturation in the PSZ, both increase with wettability. We also numerically calculate the saturation exclusively contained in connected liquid films and results show that values are less than the expected PSZ saturation. These results strongly reflect that the two-phase zone is not solely made up of connected capillary networks but also made of disconnected water clusters or pockets. Moreover, we also find that global saturation (PSZ + full wet zone) decreases with wettability, confirming that greater quantity of water is lost via evaporation with increasing hydrophilicity. These results show that connected liquid films are favored in more-hydrophilic systems while disconnected water pockets are favored in less-hydrophilic systems.

  15. Thermal Instability of Fats Relative to Surface Wettability of Yellow Birchwood (Betula lutea)

    Treesearch

    Richard W. Hemingway

    1969-01-01

    The surface wettability and fats of yellow birchwood were examined in an attempt to illustrate how heat-induced changes in wood fats might be related to changes in surface wettability. A marked reduction of surface wettability accompanied heating of yellow birchwood. The degree of water repellency imparted to the wood was highly dependent upon heating temperature and...

  16. Impact of surface wettability on S-layer recrystallization: a real-time characterization by QCM-D.

    PubMed

    Iturri, Jagoba; Vianna, Ana C; Moreno-Cencerrado, Alberto; Pum, Dietmar; Sleytr, Uwe B; Toca-Herrera, José Luis

    2017-01-01

    Quartz crystal microbalance with dissipation monitoring (QCM-D) has been employed to study the assembly and recrystallization kinetics of isolated SbpA bacterial surface proteins onto silicon dioxide substrates of different surface wettability. Surface modification by UV/ozone oxidation or by vapor deposition of 1 H ,1 H ,2 H ,2 H -perfluorododecyltrichlorosilane yielded hydrophilic or hydrophobic samples, respectively. Time evolution of frequency and dissipation factors, either individually or combined as the so-called Df plots, showed a much faster formation of crystalline coatings for hydrophobic samples, characterized by a phase-transition peak at around the 70% of the total mass adsorbed. This behavior has been proven to mimic, both in terms of kinetics and film assembly steps, the recrystallization taking place on an underlying secondary cell-wall polymer (SCWP) as found in bacteria. Complementary atomic force microscopy (AFM) experiments corroborate these findings and reveal the impact on the final structure achieved.

  17. Preparation of novel film-forming armoured latexes using silica nanoparticles as a pickering emulsion stabiliser.

    PubMed

    Shiraz, Hana; Peake, Simon J; Davey, Tim; Cameron, Neil R; Tabor, Rico F

    2018-05-15

    Film-forming polymer latex particles of diameter <300 nm can be prepared in the complete absence of surfactants, stabilised in part by silica nanoparticles through a Pickering type emulsion polymerisation. Control of the silica wettability through modulation of reaction pH or by reaction of the nanoparticles with a hydrophobic silane results in silica-covered latex particles. The oil-in-water polymerisation process used methyl methacrylate (MMA) and n-butyl acrylate (BA) as co-monomers, potassium persulphate (KPS) as an initiator and a commercially available colloidal nano-silica (Ludox®-TM40). It was found that pH control before polymerisation using methacrylic acid (MAA) facilitated the formation of armoured latexes, and mechanistic features of this process are discussed. An alternative, more robust protocol was developed whereby addition of vinyltriethoxysilane (VTES) to control wettability resulted in latexes completely armoured in colloidal nano-silica. The latexes were characterised using SEM, cryo-TEM and AFM imaging techniques. The mechanism behind the adsorption was investigated through surface pressure and contact angle measurements to understand the factors that influence this irreversible adsorption. Results indicate that nanoparticle attachment (but intriguingly not latex size) is dependent on particle wettability, providing new insight into the formation of nanoparticle-armoured latexes, along with opportunities for further development of diversely functionalized inorganic/organic polymer composite particles. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Reversible switch between underwater superaerophilicity and superaerophobicity on the superhydrophobic nanowire-haired mesh for controlling underwater bubble wettability

    NASA Astrophysics Data System (ADS)

    Shan, Chao; Yong, Jiale; Yang, Qing; Chen, Feng; Huo, Jinglan; Zhuang, Jian; Jiang, Zhuangde; Hou, Xun

    2018-04-01

    Controlling the underwater bubble wettability on a solid surface is of great research significance. In this letter, a simple method to achieve reversible switch between underwater superaerophilicity and underwater superaerophobicity on a superhydrophobic nanowire-haired mesh by alternately vacuumizing treatment in water and drying in air is reported. Such reversible switch endows the as-prepared mesh with many functional applications in controlling bubble's behavior on a solid substrate. The underwater superaerophilic mesh is able to absorb/capture bubbles in water, while the superaerophobic mesh has great anti-bubble ability. The reversible switch between underwater superaerophilicity and superaerophobicity can selectively allow bubbles to go through the resultant mesh; that is, bubbles can pass through the underwater superaerophilic mesh while are fully intercepted by the underwater superaerophobic mesh in a water medium. We believe these meshes will have important applications in removing or capturing underwater bubbles/gas.

  19. Wettability Control of Gold Surfaces Modified with Benzenethiol Derivatives: Water Contact Angle and Thermal Stability.

    PubMed

    Tatara, Shingo; Kuzumoto, Yasutaka; Kitamura, Masatoshi

    2016-04-01

    The water wettability of Au surfaces has been controlled using various benzenethiol derivatives including 4-methylbenzenethiol, pentafluorobenzenethiol, 4-flubrobenzenethiol, 4-methoxy-benzenethiol, 4-nitrobenzenethiol, and 4-hydroxybenzenethiol. The water contact angle of the Au surface modified with the benzenethiol derivative was found to vary in the wide range of 30.9° to 88.3°. The contact angle of the modified Au films annealed was also measured in order to investigate their thermal stability. The change in the contact angle indicated that the modified surface is stable at temperatures below about 400 K. Meanwhile, the activation energy of desorption from the modified surface was estimated from the change in the contact angle. The modified Au surface was also examined using X-ray photoelectron spectroscopy.

  20. Zeta potential in oil-brine-sandstone system and its role in oil recovery during controlled salinity waterflooding

    NASA Astrophysics Data System (ADS)

    Li, S.; Jackson, M.

    2017-12-01

    Wettability alteration is widely recognised as a primary role in improved oil recovery (IOR) during controlled salinity waterflooding (CSW) by modifying brine composition. The change of wettability of core sample depends on adsorption of polar oil compounds into the mineral surface which influences its surface charge density and zeta potential. It has been proved that zeta potentials can be useful to quantify the wettability and incremental oil recovery in natural carbonates. However, the study of zeta potential in oil-brine-sandstone system has not investigated yet. In this experimental study, the zeta potential is used to examine the controlled salinity effects on IOR in nature sandstone (Doddington) aged with two types of crude oils (Oil T and Oil D) over 4 weeks at 80 °C. Results show that the zeta potential measured in the Oil T-brine-sandstone system following primary waterflooding decreases compared to that in fully water saturation, which is consistent with the negative oil found in carbonates study, and IOR response during secondary waterflooding using diluted seawater was observed. In the case of negative oil, the injected low salinity brine induces a more repulsive electrostatic force between the mineral-brine interface and oil-brine interface, which results in an increase disjoining pressure and alters the rock surface to be more water-wet. For Oil D with a positive oil-brine interface, the zeta potential becomes more positive compared to that under single phase condition. The conventional waterflooding fails to observe the IOR in Oil D-brine-sandstone system due to a less repulsive electrostatic force built up between the two interfaces. After switching the injection brine from low salinity brine to formation brine, the IOR was observed. Measured zeta potentials shed some light on the mechanism of wettability alteration in the oil-brine-sandstone system and oil recovery during CSW.

  1. Stocking rate impact on soil water repellency and erodibility of burnt lands

    NASA Astrophysics Data System (ADS)

    Stavi, Ilan; Zaady, Eli

    2017-04-01

    Wildfires and prescribed burnings are common, modifying the functioning of geo-ecosystems. Such fires have been extensively studied, and reported to considerably affect soil properties. Yet, understanding of the impact of livestock grazing, or more precisely, trampling, in fire-affected lands is limited. The objective of this study was to assess the impact of livestock trampling (hoof action) on the functioning of burnt vs. non-burnt lands. This was studied by focusing on the effects on wettability and related properties of solid soil, as well as on the quantity of unconsolidated material (detached matter) lying on the solid ground surface. The study was implemented in the semi-arid northern Negev of Israel, in lands which experienced a one cycle of (unintended) low- to moderate-fire severity. The study was conducted by allowing livestock to access plots under high, medium, and low stocking rates. Also, livestock exclusion plots were assigned as a control treatment. Soil wettability was studied by water drop penetration time (WDPT) and critical surface tension (CST) tests. Results show that fire slightly decreased the soil wettability. However, WDPT was negatively related to the stocking rate, and CST was 13% smaller in the control plots than in the livestock-presence treatments. Also, the results show that following burning, the resistance of soil to shear decreased by 70%. Mass of unconsolidated material was similar in the control plots of the burnt and non-burnt plots. At the same time, it was three-, eight-, and nine- fold greater in the plots of the burnt × low, burnt × medium, and burnt × high stocking rates, respectively, than in the corresponding non-burnt ones. This study shows that livestock trampling in low- to moderate-intensity fire-affected lands increases the shearing of the ground surface layer. On the one hand, this increases soil wettability. On the other hand, this impact considerably increases risks of on-site soil erosion and land degradation, and off-site environmental pollution.

  2. The impact of surface chemistry on the performance of localized solar-driven evaporation system

    PubMed Central

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-01-01

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation. PMID:26337561

  3. The impact of surface chemistry on the performance of localized solar-driven evaporation system.

    PubMed

    Yu, Shengtao; Zhang, Yao; Duan, Haoze; Liu, Yanming; Quan, Xiaojun; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2015-09-04

    This report investigates the influence of surface chemistry (or wettability) on the evaporation performance of free-standing double-layered thin film on the surface of water. Such newly developed evaporation system is composed of top plasmonic light-to-heat conversion layer and bottom porous supporting layer. Under solar light illumination, the induced plasmonic heat will be localized within the film. By modulating the wettability of such evaporation system through the control of surface chemistry, the evaporation rates are differentiated between hydrophilized and hydrophobized anodic aluminum oxide membrane-based double layered thin films. Additionally, this work demonstrated that the evaporation rate mainly depends on the wettability of bottom supporting layer rather than that of top light-to-heat conversion layer. The findings in this study not only elucidate the role of surface chemistry of each layer of such double-layered evaporation system, but also provide additional design guidelines for such localized evaporation system in applications including desalination, distillation and power generation.

  4. Control the wettability of poly(n-isopropylacrylamide-co-1-adamantan-1-ylmethyl acrylate) modified surfaces: the more Ada, the bigger impact?

    PubMed

    Shi, Xiu-Juan; Chen, Gao-Jian; Wang, Yan-Wei; Yuan, Lin; Zhang, Qiang; Haddleton, David M; Chen, Hong

    2013-11-19

    Surface-initiated SET-LRP was used to synthesize polymer brush containing N-isopropylacrylamide and adamantyl acrylate using Cu(I)Cl/Me6-TREN as precursor catalyst and isopropanol/H2O as solvent. Different reaction conditions were explored to investigate the influence of different parameters (reaction time, catalyst concentration, monomer concentration) on the polymerization. Copolymers with variable 1-adamantan-1-ylmethyl acrylate (Ada) content and comparable thickness were synthesized onto silicon surfaces. Furthermore, the hydrophilic and bioactive molecule β-cyclodextrin-(mannose)7 (CDm) was synthesized and complexed with adamantane via host-guest interaction. The effect of adamantane alone and the effect of CDm together with adamantane on the wettability and thermoresponsive property of surface were investigated in detail. Experimental and molecular structure analysis showed that Ada at certain content together with CDm has the greatest impact on surface wettability. When Ada content was high (20%), copolymer-CDm surfaces showed almost no CDm complexed with Ada as the result of steric hindrance.

  5. Fog collecting biomimetic surfaces: Influence of microstructure and wettability.

    PubMed

    Azad, M A K; Ellerbrok, D; Barthlott, W; Koch, K

    2015-01-19

    We analyzed the fog collection efficiency of three different sets of samples: replica (with and without microstructures), copper wire (smooth and microgrooved) and polyolefin mesh (hydrophilic, superhydrophilic and hydrophobic). The collection efficiency of the samples was compared in each set separately to investigate the influence of microstructures and/or the wettability of the surfaces on fog collection. Based on the controlled experimental conditions chosen here large differences in the efficiency were found. We found that microstructured plant replica samples collected 2-3 times higher amounts of water than that of unstructured (smooth) samples. Copper wire samples showed similar results. Moreover, microgrooved wires had a faster dripping of water droplets than that of smooth wires. The superhydrophilic mesh tested here was proved more efficient than any other mesh samples with different wettability. The amount of collected fog by superhydrophilic mesh was about 5 times higher than that of hydrophilic (untreated) mesh and was about 2 times higher than that of hydrophobic mesh.

  6. Morphology modulating the wettability of a diamond film.

    PubMed

    Tian, Shibing; Sun, Weijie; Hu, Zhaosheng; Quan, Baogang; Xia, Xiaoxiang; Li, Yunlong; Han, Dong; Li, Junjie; Gu, Changzhi

    2014-10-28

    Control of the wetting property of diamond surface has been a challenge because of its maximal hardness and good chemical inertness. In this work, the micro/nanoarray structures etched into diamond film surfaces by a maskless plasma method are shown to fix a surface's wettability characteristics, and this means that the change in morphology is able to modulate the wettability of a diamond film from weakly hydrophilic to either superhydrophilic or superhydrophobic. It can be seen that the etched diamond surface with a mushroom-shaped array is superhydrophobic following the Cassie mode, whereas the etched surface with nanocone arrays is superhydrophilic in accordance with the hemiwicking mechnism. In addition, the difference in cone densities of superhydrophilic nanocone surfaces has a significant effect on water spreading, which is mainly derived from different driving forces. This low-cost and convenient means of altering the wetting properties of diamond surfaces can be further applied to underlying wetting phenomena and expand the applications of diamond in various fields.

  7. Wettability and Flow Rate Impacts on Immiscible Displacement: A Theoretical Model

    NASA Astrophysics Data System (ADS)

    Hu, Ran; Wan, Jiamin; Yang, Zhibing; Chen, Yi-Feng; Tokunaga, Tetsu

    2018-04-01

    When a more viscous fluid displaces a less viscous one in porous media, viscous pressure drop stabilizes the displacement front against capillary pressure fluctuation. For this favorable viscous ratio conditions, previous studies focused on the front instability under slow flow conditions but did not address competing effects of wettability and flow rate. Here we study how this competition controls displacement patterns. We propose a theoretical model that describes the crossover from fingering to stable flow as a function of invading fluid contact angle θ and capillary number Ca. The phase diagram predicted by the model shows that decreasing θ stabilizes the displacement for θ≥45° and the critical contact angle θc increases with Ca. The boundary between corner flow and cooperative filling for θ < 45° is also described. This work extends the classic phase diagram and has potential applications in predicting CO2 capillary trapping and manipulating wettability to enhance gas/oil displacement efficiency.

  8. Hydrologic behavior of model slopes with synthetic water repellent soils

    NASA Astrophysics Data System (ADS)

    Zheng, Shuang; Lourenço, Sérgio D. N.; Cleall, Peter J.; Chui, Ting Fong May; Ng, Angel K. Y.; Millis, Stuart W.

    2017-11-01

    In the natural environment, soil water repellency decreases infiltration, increases runoff, and increases erosion in slopes. In the built environment, soil water repellency offers the opportunity to develop granular materials with controllable wettability for slope stabilization. In this paper, the influence of soil water repellency on the hydrological response of slopes is investigated. Twenty-four flume tests were carried out in model slopes under artificial rainfall; soils with various wettability levels were tested, including wettable (Contact Angle, CA < 90°), subcritical water repellent (CA ∼ 90°) and water repellent (CA > 90°). Various rainfall intensities (30 mm/h and 70 mm/h), slope angles (20° and 40°) and relative compactions (70% and 90%) were applied to model the response of natural and man-made slopes to rainfall. To quantitatively assess the hydrological response, a number of measurements were made: runoff rate, effective rainfall rate, time to ponding, time to steady state, runoff acceleration, total water storage and wetting front rate. Overall, an increase in soil water repellency reduces infiltration and shortens the time for runoff generation, with the effects amplified for high rainfall intensity. Comparatively, the slope angle and relative compaction had only a minor contribution to the slope hydrology. The subcritical water repellent soils sustained infiltration for longer than both the wettable and water repellent soils, which presents an added advantage if they are to be used in the built environment as barriers. This study revealed substantial impacts of man-made or synthetically induced soil water repellency on the hydrological behavior of model slopes in controlled conditions. The results shed light on our understanding of hydrological processes in environments where the occurrence of natural soil water repellency is likely, such as slopes subjected to wildfires and in agricultural and forested slopes.

  9. Contact angles and wettability of ionic liquids on polar and non-polar surfaces†

    PubMed Central

    Sousa, Filipa L.; Silva, Nuno J. O.; Lopes-da-Silva, José A.; Coutinho, João A. P.; Freire, Mara G.

    2016-01-01

    Many applications involving ionic liquids (ILs) require the knowledge of their interfacial behaviour, such as wettability and adhesion. In this context, herein, two approaches were combined aiming at understanding the impact of the IL chemical structures on their wettability on both polar and non-polar surfaces, namely: (i) the experimental determination of the contact angles of a broad range of ILs (covering a wide number of anions of variable polarity, cations, and cation alkyl side chain lengths) on polar and non-polar solid substrates (glass, Al-plate, and poly-(tetrafluoroethylene) (PTFE)); and (ii) the correlation of the experimental contact angles with the cation–anion pair interaction energies generated by the Conductor-like Screening Model for Real Solvents (COSMO-RS). The combined results reveal that the hydrogen-bond basicity of ILs, and thus the IL anion, plays a major role through their wettability on both polar and non-polar surfaces. The increase of the IL hydrogen-bond accepting ability leads to an improved wettability of more polar surfaces (lower contact angles) while the opposite trend is observed on non-polar surfaces. The cation nature and alkyl side chain lengths have however a smaller impact on the wetting ability of ILs. Linear correlations were found between the experimental contact angles and the cation–anion hydrogen-bonding and cation ring energies, estimated using COSMO-RS, suggesting that these features primarily control the wetting ability of ILs. Furthermore, two-descriptor correlations are proposed here to predict the contact angles of a wide variety of ILs on glass, Al-plate, and PTFE surfaces. A new extended list is provided for the contact angles of ILs on three surfaces, which can be used as a priori information to choose appropriate ILs before a given application. PMID:26554705

  10. Contact angles and wettability of ionic liquids on polar and non-polar surfaces.

    PubMed

    Pereira, Matheus M; Kurnia, Kiki A; Sousa, Filipa L; Silva, Nuno J O; Lopes-da-Silva, José A; Coutinho, João A P; Freire, Mara G

    2015-12-21

    Many applications involving ionic liquids (ILs) require the knowledge of their interfacial behaviour, such as wettability and adhesion. In this context, herein, two approaches were combined aiming at understanding the impact of the IL chemical structures on their wettability on both polar and non-polar surfaces, namely: (i) the experimental determination of the contact angles of a broad range of ILs (covering a wide number of anions of variable polarity, cations, and cation alkyl side chain lengths) on polar and non-polar solid substrates (glass, Al-plate, and poly-(tetrafluoroethylene) (PTFE)); and (ii) the correlation of the experimental contact angles with the cation-anion pair interaction energies generated by the Conductor-like Screening Model for Real Solvents (COSMO-RS). The combined results reveal that the hydrogen-bond basicity of ILs, and thus the IL anion, plays a major role through their wettability on both polar and non-polar surfaces. The increase of the IL hydrogen-bond accepting ability leads to an improved wettability of more polar surfaces (lower contact angles) while the opposite trend is observed on non-polar surfaces. The cation nature and alkyl side chain lengths have however a smaller impact on the wetting ability of ILs. Linear correlations were found between the experimental contact angles and the cation-anion hydrogen-bonding and cation ring energies, estimated using COSMO-RS, suggesting that these features primarily control the wetting ability of ILs. Furthermore, two-descriptor correlations are proposed here to predict the contact angles of a wide variety of ILs on glass, Al-plate, and PTFE surfaces. A new extended list is provided for the contact angles of ILs on three surfaces, which can be used as a priori information to choose appropriate ILs before a given application.

  11. Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability

    PubMed Central

    Tabassian, Rassoul; Oh, Jung-Hwan; Kim, Sooyeun; Kim, Donggyu; Ryu, Seunghwa; Cho, Seung-Min; Koratkar, Nikhil; Oh, Il-Kwon

    2016-01-01

    The wettability of graphene on various substrates has been intensively investigated for practical applications including surgical and medical tools, textiles, water harvesting, self-cleaning, oil spill removal and microfluidic devices. However, most previous studies have been limited to investigating the intrinsic and passive wettability of graphene and graphene hybrid composites. Here, we report the electrowetting of graphene-coated metal meshes for use as electroactive flow control devices, utilizing two antagonistic functions, hydrophobic repellency versus liquid permeability. Graphene coating was able to prevent the thermal oxidation and corrosion problems that plague unprotected metal meshes, while also maintaining its hydrophobicity. The shapes of liquid droplets and the degree of water penetration through the graphene-coated meshes were controlled by electrical stimuli based on the functional control of hydrophobic repellency and liquid permeability. Furthermore, using the graphene-coated metal meshes, we developed two active flow devices demonstrating the dynamic locomotion of water droplets and electroactive flow switching. PMID:27796291

  12. Graphene-coated meshes for electroactive flow control devices utilizing two antagonistic functions of repellency and permeability.

    PubMed

    Tabassian, Rassoul; Oh, Jung-Hwan; Kim, Sooyeun; Kim, Donggyu; Ryu, Seunghwa; Cho, Seung-Min; Koratkar, Nikhil; Oh, Il-Kwon

    2016-10-31

    The wettability of graphene on various substrates has been intensively investigated for practical applications including surgical and medical tools, textiles, water harvesting, self-cleaning, oil spill removal and microfluidic devices. However, most previous studies have been limited to investigating the intrinsic and passive wettability of graphene and graphene hybrid composites. Here, we report the electrowetting of graphene-coated metal meshes for use as electroactive flow control devices, utilizing two antagonistic functions, hydrophobic repellency versus liquid permeability. Graphene coating was able to prevent the thermal oxidation and corrosion problems that plague unprotected metal meshes, while also maintaining its hydrophobicity. The shapes of liquid droplets and the degree of water penetration through the graphene-coated meshes were controlled by electrical stimuli based on the functional control of hydrophobic repellency and liquid permeability. Furthermore, using the graphene-coated metal meshes, we developed two active flow devices demonstrating the dynamic locomotion of water droplets and electroactive flow switching.

  13. Study of wettability and cell viability of H implanted stainless steel

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur

    2018-03-01

    In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.

  14. Plasma treatments of wool fiber surface for microfluidic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su

    Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For thismore » reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.« less

  15. Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation.

    PubMed

    Yang, Chao; Wu, Lei; Li, Gang

    2018-06-13

    A smart, magnetically responsive superhydrophobic surface was facilely prepared by combining spray coating and magnetic-field-directed self-assembly. The surface comprised a dense array of magnetorheological elastomer micropillars (MREMPs). Benefitting from the magnetic field-stiffening effect of the MREMPs, the surface exhibited reversible switching of the wettability and adhesion that was responsive to an on/off magnetic field. The wettability and adhesion properties of the surfaces with MREMPs were investigated under different magnetic fields. The results revealed that the adhesion force and sliding behaviors of these surfaces were strongly dependent on the intensity of the applied magnetic field and the mixing ratio of poly(dimethylsiloxane) (PDMS), iron particles, and solvent (in solution) used for preparation of the magnetically responsive superhydrophobic surfaces. The adhesion transition was attributed to the tunable mechanical properties of the MREMPs, which was easily controlled by an external magnetic field. It was also demonstrated that the magnetically responsive superhydrophobic surface can be used as a "mechanical hand" for no-loss liquid droplet transportation. This magnetically responsive superhydrophobic surface not only provides a novel interface for microfluidic control and droplet transportation, but also opens up new avenues for achieving smart liquid-repellent skin, programmable fluid collection and transport, and smart microfluidic devices.

  16. Production of stable superhydrophilic surfaces on 316L steel by simultaneous laser texturing and SiO2 deposition

    NASA Astrophysics Data System (ADS)

    Rajab, Fatema H.; Liu, Zhu; Li, Lin

    2018-01-01

    Superhydrophilic surfaces with liquid contact angles of less than 5 ° have attracted much interest in practical applications including self-cleaning, cell manipulation, adhesion enhancement, anti-fogging, fluid flow control and evaporative cooling. Standard laser metal texturing method often result in unstable wetting characteristics, i.e. changing from super hydrophilic to hydrophobic in a few days or weeks. In this paper, a simple one step method is reported for fabricating a stable superhydrophilic metallic surface that lasted for at least 6 months. Here, 316L stainless steel substrates were textured using a nanosecond laser with in-situ SiO2 deposition. Morphology and chemistry of laser-textured surfaces were characterised using SEM, XRD, XPS and an optical 3D profiler. Static wettability analysis was carried out over a period of 6 months after the laser treatment. The effect of surface roughness on wettability was also studied. Results showed that the wettability of the textured surfaces could be controlled by changing the scanning speed of laser beam and number of passes. The main reason for the realisation of the stable superhydrophilic surface is the combination of the melted glass particles mainly Si and O with that of stainless steel in the micro-textured patterns. This study presents a useful method

  17. Composite nanowire networks for biological sensor platforms

    NASA Astrophysics Data System (ADS)

    Jabal, Jamie Marie Francisco

    The main goal of this research is to design, fabricate, and test a nanomaterial-based platform adequate for the measurement of physiological changes in living cells. The two primary objectives toward this end are (1) the synthesis and selection of a suitable nanomaterial and (2) the demonstration of cellular response to a direct stimulus. Determining a useful nanomaterial morphology and behavior within a sensor configuration presented challenges based on cellular integration and access to electrochemical characterization. The prospect for feasible optimization and eventual scale-up in technology were also significant. Constraining criteria are that the nanomaterial detector must (a) be cheap and relatively easy to fabricate controllably, (b) encourage cell attachment, (c) exhibit consistent wettability over time, and (d) facilitate electrochemical processes. The ultimate goal would be to transfer a proof-of-principle and proof-of-design for a whole-cell sensor technology that is cost effective and has a potential for hand-held packaging. Initial tasks were to determine an effective and highly-functional nanomaterial for biosensors by assessing wettability, morphology and conductivity behavior of several candidate materials: gallium nitride nanowires, silicon dioxide nanosprings and nanowires, and titania nanofibers. Electrospinning poly(vinyl pyrrolidone)-coated titania nano- and microfibers (O20 nm--2 microm) into a pseudo-random network is controllable to a uniformity of 1--2° in contact angle. The final electrode can be prepared with a precise wettability ranging from partial wetting to ultrahydrophobic (170°) on a variety of substrates: glass, indium tin oxide, silicon, and aluminum. Fiber mats exhibit excellent mechanical stability against rinsing, and support the incubation of epithelial (skin) and pancreatic cells. Impedance spectroscopy on the whole-cell sensor shows resistive changes attributed to cell growth as well as complex frequency-dependent behavior that can be interpreted as simple RCL circuit behavior with changing component parameters. Upon addition of lactic acid, some cell death is evident but complex impedance measurements indicate competing cell growth with adjustment to media pH. The surface impedance of the PVP-titania fiber-ITO electrode has been used in a novel measurement method to reveal significant qualitative and quantitative materials response characteristics associated with changes in solution environment, fiber mat morphology, and the state of the cells' attachment, proliferation and death.

  18. Wetting behavior of selected crude oil/brine/rock systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    Of the many methods of characterizing wettability of a porous medium, the most commonly used are the Amott test and the USBM test. The Amott test does not discriminate adequately between systems that give high values of wettability index to water and are collectively described as very strongly water-wet. The USBM test does not recognize systems that achieve residual oil saturation by spontaneous imbibition. For such systems, and for any systems that exhibit significant spontaneous imbibition, measurements of imbibition rate provide a useful characterization of wettability. Methods of interpreting spontaneous imbibition data are reviewed and a new method of quantifyingmore » wettability from rate of imbibition is proposed. Capillary pressure is the driving force in spontaneous imbibition. The area under an imbibition curve is closely related to the work of displacement that results from decrease in surface free energy. Imbibition rate data can be correlated to allow for differences in interracial tension, viscosities, pore structure, and sample size. Wettability, the remaining key factor in determining the capillary driving force and the related imbibition rate, then largely determines the differences in saturation vs. scaled time curves. These curves are used to obtain pseudo imbibition capillary pressure curves; a wettability index based on relative areas under these curves is defined as the relative pseudo work of imbibition. The method is applied for two crude oil/brine/rock systems. Comparison of the method with the Amott wettability index is made for different wettability states given by differences in aging of cores with crude oil. Correlations of wettability indices with waterflood recoveries are presented.« less

  19. Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability.

    PubMed

    Taylor, M T; Qian, Tiezheng

    2016-03-01

    The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis.

  20. Pore-scale observation and 3D simulation of wettability effects on supercritical CO2 - brine immiscible displacement in drainage

    NASA Astrophysics Data System (ADS)

    Hu, R.; Wan, J.; Chen, Y.

    2016-12-01

    Wettability is a factor controlling the fluid-fluid displacement pattern in porous media and significantly affects the flow and transport of supercritical (sc) CO2 in geologic carbon sequestration. Using a high-pressure micromodel-microscopy system, we performed drainage experiments of scCO2 invasion into brine-saturated water-wet and intermediate-wet micromodels; we visualized the scCO2 invasion morphology at pore-scale under reservoir conditions. We also performed pore-scale numerical simulations of the Navier-Stokes equations to obtain 3D details of fluid-fluid displacement processes. Simulation results are qualitatively consistent with the experiments, showing wider scCO2 fingering, higher percentage of scCO2 and more compact displacement pattern in intermediate-wet micromodel. Through quantitative analysis based on pore-scale simulation, we found that the reduced wettability reduces the displacement front velocity, promotes the pore-filling events in the longitudinal direction, delays the breakthrough time of invading fluid, and then increases the displacement efficiency. Simulated results also show that the fluid-fluid interface area follows a unified power-law relation with scCO2 saturation, and show smaller interface area in intermediate-wet case which suppresses the mass transfer between the phases. These pore-scale results provide insights for the wettability effects on CO2 - brine immiscible displacement in geologic carbon sequestration.

  1. Topography printing to locally control wettability.

    PubMed

    Zheng, Zijian; Azzaroni, Omar; Zhou, Feng; Huck, Wilhelm T S

    2006-06-21

    This paper reports a new patterning method, which utilizes NaOH to facilitate the irreversible binding between the PDMS stamp and substrates and subsequent cohesive mechanical failure to transfer the PDMS patterns. Our method shows high substrate tolerance and can be used to "print" various PDMS geometries on a wide range of surfaces, including Si100, glass, gold, polymers, and patterned SU8 photoresist. Using this technique, we are able to locally change the wettability of substrate surfaces by printing well-defined PDMS architectures on the patterned SU8 photoresist. It is possible to generate differential wetting and dewetting properties in microchannels and in the PDMS printed area, respectively.

  2. Preparation of novel cotton fabric composites with pH controlled switchable wettability for efficient water-in-oil and oil-in-water emulsions separation

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Wu, Jianning; Meng, Guihua; Wang, Yixi; Liu, Zhiyong; Guo, Xuhong

    2018-06-01

    The wetting materials with the ability of controllable oil/water separation have drawn more and more public attention. In this article, the novel cotton fabric (CF) with pH controlled wettability transition was designed by a simple, environmentally friendly coating copolymer/SiO2 nanoparticles, poly(heptadecafluorodecyl methacrylate- co-3-trimethoxysilylpropyl methacrylate- co-2-vinilpiridine) (PHDFDMA- co-PTMSPMA- co-P2VP). Furthermore, the structures and morphologies of coated CF were confirmed by Fourier transform infrared spectroscopy (FTIR), NMR, GPC, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The coated CF exhibits switchable wettability between superhydrophobicity and superhydrophilicity via adjusting pH value. When the coated CF is placed in the neutral aqueous (pH = 7.0), it is superhydrophobic in the air and superoleophilic. It allows oil to go through but blocking water. However, in acidic aqueous environment (pH = 3.0), it turns superhydrophilic and underwater superoleophobic, which allows water to penetrate but blocking oil. Therefore, the coated CF could be applied to separate oil/water mixtures, ternary oil/water/water mixtures continuously and different surfactant stabilized emulsions (oil-in-water, water-in-oil) and displays the superior separation capacity for oil-water mixtures with a high efficiency of 99.8%. Moreover, the cycling tests demonstrate that the coated CF possesses excellent recyclability and durability. Such an eminent, controllable water/oil permeation feature makes coated CF could be selected as an ideal candidate for oil/water separation.

  3. Synthesis and characterization of polymer layers for control of fluid transport

    NASA Astrophysics Data System (ADS)

    Vatansever, Fehime

    The level of wetting of fiber surface with liquids is an important characteristic of fibrous materials. It is related to fiber surface energy and the structure of the material. Surface energy can be changed by surface modification via the grafting methodologies that have been reported for introducing new and stable functionality to fibrous substrates without changing bulk properties. Present work is dedicated to synthesis and characterization of macromolecular layers grafted to fiber surface in order to achieve directional liquid transport for the modified fabric. Modification technique used here is based on formation of stable polymer layer on fabric surface using "grafting to" technique. Specifically, modification of fabric with wettability gradient for facilitated one way-liquid transport, and pointed modification of yarn-based channels on textile microfluidic device for directional liquid transport are reported here. First, fabric was activated with alkali (NaOH) solution. Second, poly (glycidyl methacrylate) (PGMA) was deposited on fabric as an anchoring layer. Finally, polymers of interest were grafted to surface through the epoxy functionality of PGMA. Effect of polymer grafting on the wicking property of the fabric has been evaluated by vertical wicking technique at the each step of surface modification. The results shows that wicking performance of fabric can be altered by grafting of a thin nanoscale polymeric film. For the facilitated liquid transport, the gradient polymer coating was created using "grafting to" technique and its dependence on the grafting temperature. Wettability gradient from hydrophilic to hydrophobic (change in water contact angle from 0 to 140 degrees on fabric) was achieved by grafting of polystyrene (PS) and polyacrylic acid (PAA) sequentially with concentration gradient. This study proposes that fabric with wettability gradient property can be used to transfer sweat from skin and support moisture management when it is used in a laminated garment structure. For cooling performance evaluation, modified fabrics were tested with surface differential scanning calorimeter, and improved cooling effect was found with the fabric that has wettability gradient. Directional liquid transport can be achieved on amphiphilic fabric. To this end, fabric consisting of PET and PP yarn is fabricated. Activation and PGMA deposition yields an array of highly reactive PET channels that are constrained by hydrophobic PP boundaries. Aqueous solutions are transported in the channels by capillary forces where the direction of the liquid transport is defined by pH-response of the grafted polymers. The system of pH-selective channels in the developed textile based microfluidic chip could find analytical applications and can be used for smart cloth.

  4. 4H-SiC surface energy tuning by nitrogen up-take

    NASA Astrophysics Data System (ADS)

    Pitthan, E.; Amarasinghe, V. P.; Xu, C.; Gustafsson, T.; Stedile, F. C.; Feldman, L. C.

    2017-04-01

    Surface energy modification and surface wettability of 4H silicon carbide (0001) as a function of nitrogen adsorption is reported. The surface wettability is shown to go from primarily hydrophilic to hydrophobic and the surface energy was significantly reduced with increasing nitrogen incorporation. These changes are investigated by x-ray photoelectron spectroscopy and contact angle measurements. The surface energy was quantitatively determined by the Fowkes model and interpreted primarily in terms of the variation of the surface chemistry with nitrogen coverage. Variable control of SiC surface energies with a simple and controllable atomic additive such as nitrogen that is inert to etching, stable against time, and also effective in electrical passivation, can provide new opportunities for SiC biomedical applications, where surface wetting plays an important role in the interaction with the biological interfaces.

  5. Wettability transition induced transformation and entrapment of polymer nanostructures in cylindrical nanopores.

    PubMed

    Feng, Xunda; Mei, Shilin; Jin, Zhaoxia

    2011-12-06

    We apply the concept of wettability transition to manipulate the morphology and entrapment of polymer nanostructures inside cylindrical nanopores of anodic aluminum oxide (AAO) membranes. When AAO/polystyrene (PS) hybrids, i.e., AAO/PS nanorods or AAO/PS nanotubes, are immersed into a polyethylene glycol (PEG) reservoir above the glass transition temperature of PS, a wettability transition from wetting to nonwetting of PS can be triggered due to the invasion of the more wettable PEG melt. The wettability transition enables us to develop a nondestructive method to entrap hemispherically capped nanorods inside nanopores. Moreover, we can obtain single nanorods with the desired aspect ratio by further dissolving the AAO template, in contrast to the drawbacks of nonuniformity or destructiveness from the conventional ultrasonication method. In the case of AAO/PS nanotubes, the wettability transition induced dewetting of PS nanotube walls results in the disconnection and entrapment of nonwetting PS domains (i.e., nanospheres, nanocapsules, or capped nanorods). Moreover, PEG is then washed to recover the pristine wettability of PS on the alumina surface; further annealing of the PS nanospheres inside AAO nanopores under vacuum can generate some unique nanostructures, particularly semicylindrical nanorods. © 2011 American Chemical Society

  6. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    PubMed

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  7. Wettability and XPS analyses of nickel-phosphorus surfaces after plasma treatment: An efficient approach for surface qualification in mechatronic processes

    NASA Astrophysics Data System (ADS)

    Vivet, L.; Joudrier, A.-L.; Bouttemy, M.; Vigneron, J.; Tan, K. L.; Morelle, J. M.; Etcheberry, A.; Chalumeau, L.

    2013-06-01

    Electroless nickel-high-phosphorus Ni-P plating is known for its physical properties. In case of electronic and mechatronic assembly processes achieved under ambient conditions the wettability of the Ni-P layer under ambient temperature and ambient air stays a point of surface quality investigation. This contribution will be devoted to the study of the surface properties of Ni-P films for which we performed air plasma treatment. We focus our attention on the evolution of the surface wettability, using the classical sessile drop technique. Interpreting the results with the OWRK model we extract the polar and disperse surface tension components from which we deduced typical evolution of the surface properties with the different treatment settings. By controlling the variations of the parameters of the plasma exposure we are able to change the responses of our Ni-P sample from total hydrophobic to total hydrophilic behaviours. All the intermediate states can be reached by adapting the treatment parameters. So it is demonstrated that the apparent Ni-P surface properties can be fully adapted and the surface setting can be well characterized by wettability measurements. To deep our knowledge of the surface modifications induced by plasma we performed parallel SEM and XPS analyses which provide informations on the structure and the chemical composition of the surface for each set of treatment parameters. Using this double approach we were able to propose a correlation between the evolution of surface chemical composition and surface wettability which are completely governed by the plasma treatment conditions. Chemical parameters as the elimination of the carbon contamination, the progressive surface oxidation, and the slight incorporation of nitrogen due to the air plasma interaction are well associated with the evolution of the wettability properties. So a complete engineering for the Ni-P surface preparation has been established. The sessile drop method can be considered as a very efficient method to propose qualification of treatments onto Ni-P surfaces before performing electronic and mechatronic assembly processes that are achieved under ambient conditions.

  8. Modeling Wettability Alteration using Chemical EOR Processes in Naturally Fractured Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mojdeh Delshad; Gary A. Pope; Kamy Sepehrnoori

    2007-09-30

    The objective of our search is to develop a mechanistic simulation tool by adapting UTCHEM to model the wettability alteration in both conventional and naturally fractured reservoirs. This will be a unique simulator that can model surfactant floods in naturally fractured reservoir with coupling of wettability effects on relative permeabilities, capillary pressure, and capillary desaturation curves. The capability of wettability alteration will help us and others to better understand and predict the oil recovery mechanisms as a function of wettability in naturally fractured reservoirs. The lack of a reliable simulator for wettability alteration means that either the concept that hasmore » already been proven to be effective in the laboratory scale may never be applied commercially to increase oil production or the process must be tested in the field by trial and error and at large expense in time and money. The objective of Task 1 is to perform a literature survey to compile published data on relative permeability, capillary pressure, dispersion, interfacial tension, and capillary desaturation curve as a function of wettability to aid in the development of petrophysical property models as a function of wettability. The new models and correlations will be tested against published data. The models will then be implemented in the compositional chemical flooding reservoir simulator, UTCHEM. The objective of Task 2 is to understand the mechanisms and develop a correlation for the degree of wettability alteration based on published data. The objective of Task 3 is to validate the models and implementation against published data and to perform 3-D field-scale simulations to evaluate the impact of uncertainties in the fracture and matrix properties on surfactant alkaline and hot water floods.« less

  9. Biocontrol Efficacy of Formulated Pseudomonas chlororaphis O6 against Plant Diseases and Root-Knot Nematodes

    PubMed Central

    Nam, Hyo Song; Anderson, Anne J.; Kim, Young Cheol

    2018-01-01

    Commercial biocontrol of microbial plant diseases and plant pests, such as nematodes, requires field-effective formulations. The isolate Pseudomonas chlororaphis O6 is a Gram-negative bacterium that controls microbial plant pathogens both directly and indirectly. This bacterium also has nematocidal activity. In this study, we report on the efficacy of a wettable powder-type formulation of P. chlororaphis O6. Culturable bacteria in the formulated product were retained at above 1 × 108 colony forming units/g after storage of the powder at 25 °C for six months. Foliar application of the diluted formulated product controlled leaf blight and gray mold in tomato. The product also displayed preventative and curative controls for root-knot nematode (Meloidogyne spp.) in tomato. Under laboratory conditions and for commercially grown melon, the control was at levels comparable to that of a standard commercial chemical nematicide. The results indicated that the wettable powder formulation product of P. chlororaphis O6 can be used for control of plant microbial pathogens and root-knot nematodes. PMID:29887780

  10. Visible light guided manipulation of liquid wettability on photoresponsive surfaces

    PubMed Central

    Kwon, Gibum; Panchanathan, Divya; Mahmoudi, Seyed Reza; Gondal, Mohammed A.; McKinley, Gareth H.; Varanasi, Kripa K.

    2017-01-01

    Photoresponsive titania surfaces are of great interest due to their unique wettability change upon ultraviolet light illumination. However, their applications are often limited either by the inability to respond to visible light or the need for special treatment to recover the original wettability. Sensitizing TiO2 surfaces with visible light-absorbing materials has been utilized in photovoltaic applications. Here we demonstrate that a dye-sensitized TiO2 surface can selectively change the wettability towards contacting liquids upon visible light illumination due to a photo-induced voltage across the liquid and the underlying surface. The photo-induced wettability change of our surfaces enables external manipulation of liquid droplet motion upon illumination. We show demulsification of surfactant-stabilized brine-in-oil emulsions via coalescence of brine droplets on our dye-sensitized TiO2 surface upon visible light illumination. We anticipate that our surfaces will have a wide range of applications including microfluidic devices with customizable wettability, solar-driven oil–water clean-up and demulsification technologies. PMID:28440292

  11. Effects of initial surface wettability on biofilm formation and subsequent settlement of Hydroides elegans.

    PubMed

    Huggett, Megan J; Nedved, Brian T; Hadfield, Michael G

    2009-01-01

    Hydroides elegans is a major fouling organism in tropical waters around the world, including Pearl Harbor, Hawaii. To determine the importance of initial surface characteristics on biofilm community composition and subsequent colonization by larvae of H. elegans, the settlement and recruitment of larvae to biofilmed surfaces with six different initial surface wettabilities were tested in Pearl Harbor. Biofilm community composition, as determined by a combined approach of denaturing gradient gel electrophoresis and fluorescence in situ hybridization, was similar across all surfaces, regardless of initial wettability, and all surfaces had distinct temporal shifts in community structure over a 10 day period. Larvae settled and recruited in higher numbers to surfaces with medium to low wettability in both May and August, and also to slides with high wettability in August. Pearl Harbor biofilm communities developed similarly on a range of surface wettabilities, and after 10 days in Pearl Harbor all surfaces were equally attractive to larvae of Hydroides elegans, regardless of initial surface properties.

  12. Effects of wettability and interfacial nanobubbles on flow through structured nanochannels: an investigation of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Yen, Tsu-Hsu

    2015-12-01

    Solid-fluid boundary conditions are strongly influenced by a number of factors, including the intrinsic properties of the solid/fluid materials, surface roughness, wettability, and the presence of interfacial nanobubbles (INBs). The interconnected nature of these factors means that they should be considered jointly. This paper employs molecular dynamics (MD) simulation in a series of studies aimed at elucidating the influence of wettability in boundary behaviour and the accumulation of interfacial gas. Specifically, we examined the relationship between effective slip length, the morphology of nanobubbles, and wettability. Two methods were employed for the promotion of hydrophobicity between two structured substrates with similar intrinsic contact angles. We also compared anisotropic and isotropic atomic arrangements in the form of graphite and Si(100), respectively. A physical method was employed to deal with variations in surface roughness, whereas a chemical method was used to adjust the wall-fluid interaction energy (ɛwf). We first compared the characteristic properties of wettability, including contact angle and fluid density within the cavity. We then investigated the means by which variations in solid-fluid interfacial wettability affect interfacial gas molecules. Our results reveal that the morphology of INB on a patterned substrate is determined by wettability as well as the methods employed for the promotion of hydrophobicity. The present study also illustrates the means by which the multiple effects of the atomic arrangement of solids, surface roughness, wettability and INB influence effective slip length.

  13. Engineering the extracellular environment: Strategies for building 2D and 3D cellular structures.

    PubMed

    Guillame-Gentil, Orane; Semenov, Oleg; Roca, Ana Sala; Groth, Thomas; Zahn, Raphael; Vörös, Janos; Zenobi-Wong, Marcy

    2010-12-21

    Cell fate is regulated by extracellular environmental signals. Receptor specific interaction of the cell with proteins, glycans, soluble factors as well as neighboring cells can steer cells towards proliferation, differentiation, apoptosis or migration. In this review, approaches to build cellular structures by engineering aspects of the extracellular environment are described. These methods include non-specific modifications to control the wettability and stiffness of surfaces using self-assembled monolayers (SAMs) and polyelectrolyte multilayers (PEMs) as well as methods where the temporal activation and spatial distribution of adhesion ligands is controlled. Building on these techniques, construction of two-dimensional cell sheets using temperature sensitive polymers or electrochemical dissolution is described together with current applications of these grafts in the clinical arena. Finally, methods to pattern cells in three-dimensions as well as to functionalize the 3D environment with biologic motifs take us one step closer to being able to engineer multicellular tissues and organs. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Light driven optofluidic switch developed in a ZnO-overlaid microstructured optical fiber.

    PubMed

    Konidakis, Ioannis; Konstantaki, Maria; Tsibidis, George D; Pissadakis, Stavros

    2015-11-30

    A great challenge of Optofluidics remains the control of the fluidic properties of a photonic circuit by solely utilizing light. In this study, the development of a ZnO nanolayered microstructured optical fiber (MOF) Fabry-Perot interferometer is demonstrated, along with its fully reversible optofluidic switching behaviour. The actuation and switching principle is entirely based on the employment of light sources, i.e. UV 248 nm and green 532 nm lasers, while using modest irradiation doses. The synthesized ZnO within the MOF capillaries acts as a light triggered wettability transducer, allowing the controlled water filling and draining of the MOF Fabry-Perot cavity. The progression of the optofluidic cycle is monitored in situ with optical microscopy, while Fabry-Perot reflection spectra are monitored in real time to probe temporal infiltration behaviour. Finally, a first insight on the light triggered switching mechanism, employing photoluminescence and spectrophotometric measurements is presented. Results appear highly promising towards the design of smart in-fiber optofluidic light switching devices, suitable for actuating and sensing applications.

  15. Macro and micro wettability of hydrophobic siloxane films with hierarchical surface roughness

    NASA Astrophysics Data System (ADS)

    Terpilowski, Konrad; Goncharuk, Olena; Gun’ko, Vladimir M.

    2018-07-01

    A method has been proposed to control the macro- and micro-wetting properties of hydrophobic surfaces through changes in the roughness due to modifying siloxane films with silica microparticles (MP). An experimental and theoretical analysis of macro- and micro-wettability dependence on the roughness of a film surface was carried out by combination of SEM and XPS methods with evaluation of equilibrium contact angles from Tadmor’s equation. SEM images (environmental mode) allowed characterizing the mosaic hydrophobicity/hydrophilicity of the siloxane film surface. Hydrophobic siloxane films filled with silica MP were synthesized on the plasma activated and non-activated glass substrates by the sol-gel dip-coating method using tetraethylorthosilicate based precursor compositions with subsequent reaction with hexamethyldisilazane. The values of water contact angles higher than 150° indicating a superhydrophobic effect were observed for films with combining nano- and micro-hierarchical roughness. Moreover, considering wettability on the micro scale the hybrid effect was discovered and confirmed by the SEM and XPS studies showing the presence of not only hydrophobic but also hydrophilic surface domains.

  16. Fast wettability transition from hydrophilic to superhydrophobic laser-textured stainless steel surfaces under low-temperature annealing

    NASA Astrophysics Data System (ADS)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2017-07-01

    Recently, the fabrication of superhydrophobic metallic surfaces by means of pulsed laser texturing has been developed. After laser texturing, samples are typically chemically coated or aged in ambient air for a relatively long time of several weeks to achieve superhydrophobicity. To accelerate the wettability transition from hydrophilicity to superhydrophobicity without the use of additional chemical treatment, a simple annealing post process has been developed. In the present work, grid patterns were first fabricated on stainless steel by a nanosecond pulsed laser, then an additional low-temperature annealing post process at 100 °C was applied. The effect of 100-500 μm step size of the textured grid upon the wettability transition time was also investigated. The proposed post process reduced the transition time from a couple of months to within several hours. All samples showed superhydrophobicity with contact angles greater than 160° and sliding angles smaller than 10° except samples with 500 μm step size, and could be applied in several potential applications such as self-cleaning and control of water adhesion.

  17. Impact of surface wettability on S-layer recrystallization: a real-time characterization by QCM-D

    PubMed Central

    Vianna, Ana C; Moreno-Cencerrado, Alberto; Pum, Dietmar; Sleytr, Uwe B

    2017-01-01

    Quartz crystal microbalance with dissipation monitoring (QCM-D) has been employed to study the assembly and recrystallization kinetics of isolated SbpA bacterial surface proteins onto silicon dioxide substrates of different surface wettability. Surface modification by UV/ozone oxidation or by vapor deposition of 1H,1H,2H,2H-perfluorododecyltrichlorosilane yielded hydrophilic or hydrophobic samples, respectively. Time evolution of frequency and dissipation factors, either individually or combined as the so-called Df plots, showed a much faster formation of crystalline coatings for hydrophobic samples, characterized by a phase-transition peak at around the 70% of the total mass adsorbed. This behavior has been proven to mimic, both in terms of kinetics and film assembly steps, the recrystallization taking place on an underlying secondary cell-wall polymer (SCWP) as found in bacteria. Complementary atomic force microscopy (AFM) experiments corroborate these findings and reveal the impact on the final structure achieved. PMID:28144568

  18. Wettability of graphene-laminated micropillar structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bong, Jihye; Seo, Keumyoung; Ju, Sanghyun, E-mail: jrahn@skku.edu, E-mail: shju@kgu.ac.kr

    2014-12-21

    The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues.

  19. Self-Cleaning Surfaces Prepared By Microstructuring System

    NASA Astrophysics Data System (ADS)

    Sabbah, Abbas; Vandeparre, H.; Brau, F.; Damman, P.

    The wettability of materials is a very important aspect of surface science governed by the chemical composition of the surface and its morphology. In this context, materials replicating nature's superhydrophobic surfaces, such as lotus leafs, rose petals and butterfly wings, have widely attracted attention of physicists and material engineers [1-3]. Despite of considerable efforts during the last decade, superhydrophobic surfaces are still expensive and usually involved microfabrication processes, such as photolithography technique. In this study, we propose an original and simple method to create superhydrophobic surfaces by controling elastic instabilities [4-8]. Indeed, we demonstrate that the self-organization of wrinkles on top of non-wettable polymer surfaces leads to surperhydrophobic surfaces.

  20. Hierarchical roughness of sticky and non-sticky superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Raza, Muhammad Akram; Kooij, Stefan; van Silfhout, Arend; Zandvliet, Harold; Poelsema, Bene; Physics Of Interfaces; Nanomaterials Team

    2011-03-01

    The importance of superhydrophobic substrates (contact angle > 150 r withslidingangle 10 r) inmoderntechnologyisundeniable . Wepresentasimplecolloidalroutetomanufacturesuperstructuredarrayswithsingle - andmulti - length - scaledroughnesstoobtainstickyandnon - stickysuperhydrophobicsurfaces . Thelargestlengthscaleisprovidedby (multi -) layersofsilicaspheres (1 μ m, 500nm and 150nm diameter). Decoration with gold nanoparticles (14nm, 26nm and 47nm) gives rise to a second length scale. To lower the surface energy, gold nanoparticles are functionalized with dodecanethiol and the silica spheres by perfluorooctyltriethoxysilane. The morphology was examined by helium ion microscopy (HIM), while wettability measurements were performed by using the sessile drop method. We conclude that wettability can be controlled by changing the surface chemistry and/or length scales of the structures. To achieve truly non-sticky superhydrophobic surfaces, hierarchical roughness plays a vital role.

  1. On the CO2 Wettability of Reservoir Rocks: Addressing Conflicting Information

    NASA Astrophysics Data System (ADS)

    Garing, C.; Wang, S.; Tokunaga, T. K.; Wan, J.; Benson, S. M.

    2017-12-01

    Conventional wisdom is that siliclastic rocks are strongly water wet for the CO2-brine system, leading to high irreducible water saturation, moderate residual gas trapping and implying that tight rocks provide efficient seals for buoyant CO2. If the wetting properties become intermediate or CO2 wet, the conclusions regarding CO2 flow and trapping could be very different. Addressing the CO2 wettability of seal and reservoir rocks is therefore essential to predict CO2 storage in geologic formation. Although a substantial amount of work has been dedicated to the topic, contact angle data show a large variability and experiments on plates, micromodels and cores report conflicting results regarding the influence of supercritical CO2 (scCO2) exposure on wetting properties: whereas some experimental studies suggest dewetting upon reaction with scCO2, some others observe no wettability alteration under reservoir scCO2 conditions. After reviewing evidences for and against wettability changes associated with scCO2, we discuss potential causes for differences in experimental results. They include the presence of organic matter and impact of sample treatment, the type of media (non consolidated versus real rock), experimental time and exposure to scCO2, and difference in measurement system (porous plate versus stationary fluid method). In order to address these points, new scCO2/brine drainage-imbibition experiments were conducted on a same Berea sandstone rock core, first untreated, then fired and finally exposed to scCO2 for three weeks, using the stationary fluid method. The results are compared to similar experiments performed on quartz sands, untreated and then baked, using the porous plate method. In addition, a comparative experiment using the same Idaho gray sandstone rock core was performed with both the porous plate and the stationary fluid methods to investigate possible method-dependent results.

  2. Enhancing dropwise condensation through bioinspired wettability patterning.

    PubMed

    Ghosh, Aritra; Beaini, Sara; Zhang, Bong June; Ganguly, Ranjan; Megaridis, Constantine M

    2014-11-04

    Dropwise condensation (DWC) heat transfer depends strongly on the maximum diameter (Dmax) of condensate droplets departing from the condenser surface. This study presents a facile technique implemented to gain control of Dmax in DWC within vapor/air atmospheres. We demonstrate how this approach can enhance the corresponding heat transfer rate by harnessing the capillary forces in the removal of the condensate from the surface. We examine various hydrophilic-superhydrophilic patterns, which, respectively, sustain and combine DWC and filmwise condensation on the substrate. The material system uses laser-patterned masking and chemical etching to achieve the desired wettability contrast and does not employ any hydrophobizing agent. By applying alternating straight parallel strips of hydrophilic (contact angle ∼78°) mirror-finish aluminum and superhydrophilic regions (etched aluminum) on the condensing surface, we show that the average maximum droplet size on the less-wettable domains is nearly 42% of the width of the corresponding strips. An overall improvement in the condensate collection rate, up to 19% (as compared to the control case of DWC on mirror-finish aluminum) was achieved by using an interdigitated superhydrophilic track pattern (on the mirror-finish hydrophilic surface) inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern design, particularly under higher humidity conditions in the presence of noncondensable gases (NCG), a condition that is more challenging for maintaining sustained DWC.

  3. Water-wettable polypropylene fibers by facile surface treatment based on soy proteins.

    PubMed

    Salas, Carlos; Genzer, Jan; Lucia, Lucian A; Hubbe, Martin A; Rojas, Orlando J

    2013-07-24

    Modification of the wetting behavior of hydrophobic surfaces is essential in a variety of materials, including textiles and membranes that require control of fluid interactions, adhesion, transport processes, sensing, etc. This investigation examines the enhancement of wettability of an important class of textile materials, viz., polypropylene (PP) fibers, by surface adsorption of different proteins from soybeans, including soy flour, isolate,glycinin, and β-conglycinin. Detailed investigations of soy adsorption from aqueous solution (pH 7.4, 25 °C) on polypropylene thin films is carried out using quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). A significant amount of protein adsorbs onto the PP surfaces primarily due to hydrophobic interactions. We establish that adsorption of a cationic surfactant, dioctadecyldimethylammonium bromide (DODA) onto PP surfaces prior to the protein deposition dramatically enhances its adsorption. The adsorption of proteins from native (PBS buffer, pH 7.4, 25 °C) and denatured conditions (PBS buffer, pH 7.4, 95 °C) onto DODA-treated PP leads to a high coverage of the proteins on the PP surface as confirmed by a significant improvement in water wettability. A shift in the contact angle from 128° to completely wettable surfaces (≈0°) is observed and confirmed by imaging experiments conducted with fluorescence tags. Furthermore, the results from wicking tests indicate that hydrophobic PP nonwovens absorb a significant amount of water after protein treatment, i.e., the PP-modified surfaces become completely hydrophilic.

  4. Induced wettability and surface-volume correlation of composition for bovine bone derived hydroxyapatite particles

    NASA Astrophysics Data System (ADS)

    Maidaniuc, Andreea; Miculescu, Florin; Voicu, Stefan Ioan; Andronescu, Corina; Miculescu, Marian; Matei, Ecaterina; Mocanu, Aura Catalina; Pencea, Ion; Csaki, Ioana; Machedon-Pisu, Teodor; Ciocan, Lucian Toma

    2018-04-01

    Hydroxyapatite powders characteristics need to be determined both for quality control purposes and for a proper control of microstructural features of bone reconstruction products. This study combines bulk morphological and compositional analysis methods (XRF, SEM-EDS, FT-IR) with surface-related methods (XPS, contact angle measurements) in order to correlate the characteristics of hydroxyapatite powders derived from bovine bone for its use in medical applications. An experimental approach for correlating the surface and volume composition was designed based on the analysis depth of each spectral method involved in the study. Next, the influences of powder particle size and forming method on the contact angle between water drops and ceramic surface were evaluated for identifying suitable strategies of tuning hydroxyapatite's wettability. The results revealed a preferential arrangement of chemical elements at the surface of hydroxyapatite particles which could induce a favourable material behaviour in terms of sinterability and biological performance.

  5. Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability.

    PubMed

    Yang, Seung Yun; Kim, Eung-Sam; Jeon, Gumhye; Choi, Kwan Yong; Kim, Jin Kon

    2013-04-01

    We independently controlled surface topography and wettability of polystyrene (PS) films by CF4 and oxygen plasma treatments, respectively, to evaluate the adhesion and proliferation of human fetal osteoblastic (hFOB) cells on the films. Among the CF4 plasma-treated PS films with the average surface roughness ranging from 0.9 to 70 nm, the highest adhesion of hFOB cells was observed on a PS film with roughness of ~11 nm. When this film was additionally treated by oxygen plasma to provide a hydrophilic surface with a contact angle less than 10°, the proliferation of bone-forming cell was further enhanced. Thus, the plasma-based independent modification of PS film into an optimum nanotexture for human osteoblast cells could be appplied to materials used in bone tissue engineering. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Turning bubbles on and off during boiling using charged surfactants

    PubMed Central

    Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.

    2015-01-01

    Boiling—a process that has powered industries since the steam age—is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles ‘on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications. PMID:26486275

  7. Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion batteries

    DOE PAGES

    Su, Chi -Cheung; He, Meinan; Redfern, Paul C.; ...

    2017-03-16

    New fluorinated sulfones were synthesized and evaluated in high voltage lithium-ion batteries using LiNi 0.5Mn 1.5O 4 (LNMO) cathode. Fluorinated sulfones with an α-trifluoromethyl group exhibit enhanced oxidation stability, reduced viscosity and superior separator wettability as compared to their non-fluorinated counterparts. Finally, the improved performance in high voltage cells makes it a promising high voltage electrolyte for 5-V lithium-ion chemistry.

  8. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery.

    PubMed

    Zhao, Jin; Wen, Dongsheng

    2017-08-27

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25-40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle-surfactant hybrid flooding process.

  9. Pore-scale simulation of wettability and interfacial tension effects on flooding process for enhanced oil recovery

    PubMed Central

    Zhao, Jin

    2017-01-01

    For enhanced oil recovery (EOR) applications, the oil/water flow characteristics during the flooding process was numerically investigated with the volume-of-fluid method at the pore scale. A two-dimensional pore throat-body connecting structure was established, and four scenarios were simulated in this paper. For oil-saturated pores, the wettability effect on the flooding process was studied; for oil-unsaturated pores, three effects were modelled to investigate the oil/water phase flow behaviors, namely the wettability effect, the interfacial tension (IFT) effect, and the combined wettability/IFT effect. The results show that oil saturated pores with the water-wet state can lead to 25–40% more oil recovery than with the oil-wet state, and the remaining oil mainly stays in the near wall region of the pore bodies for oil-wet saturated pores. For oil-unsaturated pores, the wettability effects on the flooding process can help oil to detach from the pore walls. By decreasing the oil/water interfacial tension and altering the wettability from oil-wet to water-wet state, the remaining oil recovery rate can be enhanced successfully. The wettability-IFT combined effect shows better EOR potential compared with decreasing the interfacial tension alone under the oil-wet condition. The simulation results in this work are consistent with previous experimental and molecular dynamics simulation conclusions. The combination effect of the IFT reducation and wettability alteration can become an important recovery mechanism in future studies for nanoparticles, surfactant, and nanoparticle–surfactant hybrid flooding process. PMID:29308190

  10. Analogies to Demonstrate the Effect of Roughness on Surface Wettability

    ERIC Educational Resources Information Center

    Yolcu, Hasan

    2017-01-01

    This article presents an analogy to illustrate the effect of surface roughness on surface wettability. I used a water-filled balloon to represent water droplet, a toothpick to represent surface roughness and Styrofoam as the surface. The analogies presented in this article will help visualize how roughness affects the wettability of the surface…

  11. Application of fluorinated nanofluid for production enhancement of a carbonate gas-condensate reservoir through wettability alteration

    NASA Astrophysics Data System (ADS)

    Sakhaei, Zahra; Azin, Reza; Naghizadeh, Arefeh; Osfouri, Shahriar; Saboori, Rahmatollah; Vahdani, Hosein

    2018-03-01

    Condensate blockage phenomenon in near-wellbore region decreases gas production rate remarkably. Wettability alteration using fluorinated chemicals is an efficacious way to vanquish this problem. In this study, new synthesized fluorinated silica nanoparticles with an optimized condition and mean diameter of 50 nm is employed to modify carbonate rock surface wettability. Rock characterization tests consisting Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive x-ray Spectroscopy (EDX) were utilized to assess the nanofluid adsorption on rock surface after treatment. Contact angle, spontaneous imbibition and core flooding experiments were performed to investigate the effect of synthesized nanofluid adsorption on wettability of rock surface and liquid mobility. Results of contact angle experiments revealed that wettability of rock could alter from strongly oil-wetting to the intermediate gas-wetting even at elevated temperature. Imbibition rates of oil and brine were diminished noticeably after treatment. 60% and 30% enhancement in pressure drop of condensate and brine floods after wettability alteration with modified nanofluid were observed which confirm successful field applicability of this chemical.

  12. Biocompatible patterning of proteins on wettability gradient surface by thermo-transfer printing.

    PubMed

    Kim, Sungho; Ryu, Yong-Sang; Suh, Jeng-Hun; Keum, Chang-Min; Sohn, Youngjoo; Lee, Sin-Doo

    2014-08-01

    We develop a simple and biocompatible method of patterning proteins on a wettability gradient surface by thermo-transfer printing. The wettability gradient is produced on a poly(dimethylsiloxane) (PDMS)-modified glass substrate through the temperature gradient during thermo-transfer printing. The water contact angle on the PDMS-modified surface is found to gradually increase along the direction of the temperature gradient from a low to a high temperature region. Based on the wettability gradient, the gradual change in the adsorption and immobilization of proteins (cholera toxin B subunit) is achieved in a microfluidic cell with the PDMS-modified surface.

  13. Dip-in Indicators for Visual Differentiation of Fuel Mixtures Based on Wettability of Fluoroalkylchlorosilane-Coated Inverse Opal Films.

    PubMed

    Sedighi, Abootaleb; Qiu, Shuang; Wong, Michael C K; Li, Paul C H

    2015-12-30

    We have developed the dip-in indicator based on the inverse opal film (IOF) for visual differentiation of organic liquid mixtures, such as oil/gasoline or ethanol/gasoline fuel mixtures. The IOF consists of a three-dimensional porous structure with a highly ordered periodic arrangement of nanopores. The specularly reflected light at the interface of the nanopores and silica walls contributes to the structural color of the IOF film. This color disappears when the nanopores are infiltrated by a liquid with a similar refractive index to silica. The disappearance of the structural color provides a means to differentiate various liquid fuel mixtures based on their wettability of the nanopores in the IOF-based indicators. For differentiation of various liquid mixtures, we tune the wettability threshold of the indicator in such a way that it is wetted (color disappears) by one liquid but is not wetted by the other (color remains). Although colorimetric differentiation of liquids based on IOF wettability has been reported, differentiation of highly similar liquid mixtures require complicated readout approaches. It is known that the IOF wettability is controlled by multiple surface properties (e.g., oleophobicity) and structural properties (e.g., neck angle and film thickness) of the nanostructure. Therefore, we aim to exploit the combined tuning of these properties for differentiation of fuel mixtures with close compositions. In this study, we have demonstrated that, for the first time, the IOF-based dip-in indicator is able to detect a slight difference in the fuel mixture composition (i.e., 0.4% of oil content). Moreover, the color/no-color differentiation platform is simple, powerful, and easy-to-read. This platform makes the dip-in indicator a promising tool for authentication and determination of fuel composition at the point-of-purchase or point-of-use.

  14. Canopy storage capacity and wettability of leaves and needles: The effect of water temperature changes

    NASA Astrophysics Data System (ADS)

    Klamerus-Iwan, Anna; Błońska, Ewa

    2018-04-01

    The canopy storage capacity (S) is a major component of the surface water balance. We analysed the relationship between the tree canopy water storage capacity and leaf wettability under changing simulated rainfall temperature. We estimated the effect of the rain temperature change on the canopy storage capacity and contact angle of leave and needle surfaces based on two scenarios. Six dominant forest trees were analysed: English oak (Quercus roburL.), common beech (Fagus sylvatica L.), small-leaved lime (Tilia cordata Mill), silver fir (Abies alba), Scots pine (Pinus sylvestris L.),and Norway spruce (Picea abies L.). Twigs of these species were collected from Krynica Zdrój, that is, the Experimental Forestry unit of the University of Agriculture in Cracow (southern Poland). Experimental analyses (simulations of precipitation) were performed in a laboratory under controlled conditions. The canopy storage capacity and leaf wettability classification were determined at 12 water temperatures and a practical calculator to compute changes of S and contact angles of droplets was developed. Among all species, an increase of the rainfall temperature by 0.7 °C decreases the contact angle between leave and needle surfaces by 2.41° and increases the canopy storage capacity by 0.74 g g-1; an increase of the rain temperature by 2.7 °C decreases the contact angle by 9.29° and increases the canopy storage capacity by 2.85 g g-1. A decreased contact angle between a water droplet and leaf surface indicates increased wettability. Thus, our results show that an increased temperature increases the leaf wettability in all examined species. The comparison of different species implies that the water temperature has the strongest effect on spruce and the weakest effect on oak. These data indicate that the rainfall temperature influences the canopy storage capacity.

  15. Fabrication and anisotropic wettability of titanium-coated microgrooves

    NASA Astrophysics Data System (ADS)

    Gui, N.; Xu, W.; Tian, J.; Rosengarten, G.; Brandt, M.; Qian, M.

    2018-03-01

    Surface wettability plays a critical role in a variety of key areas including orthopaedic implants and chemical engineering. Anisotropy in wettability can arise from surface grooves, which are of particular relevance to orthopaedic implants because they can mimic collagen fibrils that are the basic components of the extracellular matrix. Titanium (Ti) and its alloys have been widely used for orthopaedic and dental implant applications. This study is concerned with the fabrication of Ti-coated microgrooves with different groove widths and the characterisation of the anisotropy in wettability through measuring water contact angles, compared with both the Wenzel and Cassie models. Experimental results revealed that there existed significant anisotropy in the wettability of Ti-coated microgrooves, and the degree of anisotropy (Δθ) increased with an increasing groove width from 5 μm to 20 μm. On average, the contact angle measured parallel to the groove direction (θ//) was about 50°-60° smaller than that measured perpendicular to the groove direction (θ⊥). In general, the Wenzel model predicted the contact angles along the surface groove direction reasonably, and so did the Cassie model for the contact angles perpendicular to the groove direction. Osteoblast spreading was affected by the anisotropy in wettability, which occurred preferably along, rather than perpendicular to, the groove direction. These findings are informative for the design of Ti implant surfaces when anisotropy in wettability matters.

  16. Wettability behavior of water droplet on organic-polluted fused quartz surfaces of pillar-type nanostructures applying molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Chen, Jiaxuan; Chen, Wenyang; Xie, Yajing; Wang, Zhiguo; Qin, Jianbo

    2017-02-01

    Molecular dynamics (MD) is applied to research the wettability behaviors of different scale of water clusters absorbed on organic-polluted fused quartz (FQ) surface and different surface structures. The wettability of water clusters is studied under the effect of organic pollutant. With the combined influence of pillar height and interval, the stair-step Wenzel-Cassie transition critical line is obtained by analyzing stable state of water clusters on different surface structures. The results also show that when interval of pillars and the height of pillars keep constant respectively, the changing rules are exactly the opposite and these are termed as the "waterfall" rules. The substrate models of water clusters at Cassie-Baxter state which are at the vicinity of critical line are chosen to analyze the relationship of HI (refers to the pillar height/interval) ratio and scale of water cluster. The study has found that there is a critical changing threshold in the wettability changing process. When the HI ratio keeps constant, the wettability decreases first and then increase as the size of cluster increases; on the contrary, when the size of cluster keeps constant, the wettability decreases and then increase with the decrease of HI ratio, but when the size of water cluster is close to the threshold the HI ratio has little effect on the wettability.

  17. Wettability measurement apparatus for porous material using the modified Washburn method

    NASA Astrophysics Data System (ADS)

    Thakker, Manish; Karde, Vikram; Shah, Dinesh O.; Shukla, Premal; Ghoroi, Chinmay

    2013-12-01

    In this work a cost-effective instrument for measuring the wettability of powder materials was designed and developed, which works on the modified Washburn method. The instrument measures the mass gain against time due to penetration of the liquid into the powder materials using a microbalance and LabVIEW-based data acquisition system. The wettability characteristic of different powders was determined from the contact angle using the modified Washburn equation. To demonstrate the performance of the developed instrument, the wettability of as-received corn starch and nano-coated corn starch powders was estimated with water as a test liquid. The corn starch powders coated with hydrophilic grade (Aerosil 200P) and hydrophobic grade (Aerosil R972) nanoparticles at different coating levels showed expected changes in their contact angle. Some of the results were also verified against the available standard instrument for wettability measurement and found to be consistent. The present configuration of the instrument costs about 500 US which is 15 to 20 times less than the available advanced models. The developed instrument is thus a cost-effective solution for wettability measurement which can be used for materials in food processing, pharmaceuticals, horticulture, textile manufacturing, civil engineering etc. The developed instrument is expected to help many small scale industries or research labs who cannot afford an expensive instrument for wettability studies.

  18. Wettability of soybean (Glycine max L.) leaves by foliar sprays with respect to developmental changes.

    PubMed

    Puente, Diana W Moran; Baur, Peter

    2011-07-01

    Leaf wettability considerably defines the degree of retention of water and agrochemical sprays on crop and non-target plant surfaces. Plant surface structure varies with development therefore the goal was to characterise the wettability of soybean leaf surfaces as a function of growth stage (GS). Adaxial surfaces of leaves developed at GS 16 (BBCH) were 10 times more wettable with water than leaves at the lower canopy (GS 13). By measuring contact angles of a liquid having an intermediate surface tension on different leaf patches, an illustrative wetting profile was elucidated, showing to what degree wetting varies (from > 120° to < 20°) depending on leaf patch and GS. While the critical surface tension of leaf surfaces at different GSs did not correlate with the observed changes, the slope of the Zisman plot accurately represented the increase in wettability of leaves at the upper canopy and lateral shoots (GSs 17 to 19, 21 and 24). The discrimination given by the slopes was even better than that by water contact angles. SEM observations revealed that the low wettability observed at early GSs is mainly due to a dense layer of epicuticular wax crystals. The Zisman plot slope does not represent the changes in leaf roughness (i.e. epicuticular wax deposition), but provides an insight into chemical and compositional surface characteristics at the droplet-leaf interface. The results with different wettability measurement methods demonstrated that wetting is a feature that characterises each developmental stage of soybean leaves. Positional wettability differences among leaves at the same plant and within the same leaf are relevant for performance, selectivity and plant compatibility of agrochemicals. Implications are discussed. Copyright © 2011 Society of Chemical Industry.

  19. Surface wettability enhancement of silicone hydrogel lenses by processing with polar plastic molds.

    PubMed

    Lai, Y C; Friends, G D

    1997-06-05

    In the quest for hydrogel contact lenses with improved extended wear capability, the use of siloxane moieties in the lens materials was investigated. However, the introduction of hydrophobic siloxane groups gave rise to wettability and lipidlike deposit problems. It was found that when polysiloxane-based compositions for hydrogels were processed with polar plastic molds, such as those fabricated from an acrylonitrile-based polymer, the hydrogel lenses fabricated were wettable, with minimized lipidlike deposits. These findings were supported by the wettability of silicone hydrogel films, silicon, and nitrogen element contents near lens surfaces, as well as the results from clinical assessment of silicone hydrogel lenses.

  20. Wettability transition of laser textured brass surfaces inside different mediums

    NASA Astrophysics Data System (ADS)

    Yan, Huangping; Abdul Rashid, Mohamed Raiz B.; Khew, Si Ying; Li, Fengping; Hong, Minghui

    2018-01-01

    Hydrophobic surface on brass has attracted intensive attention owing to its importance in scientific research and practical applications. Laser texturing provides a simple and promising method to achieve it. Reducing wettability transition time from hydrophilicity to hydrophobicity or superhydrophobicity remains a challenge. Herein, wettability transition of brass surfaces with hybrid micro/nano-structures fabricated by laser texturing was investigated by immersing the samples inside different mediums. Scanning electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy and surface contact angle measurement were employed to characterize surface morphology, chemical composition and wettability of the fabricated surfaces of brass samples. Wettability transition time from hydrophilicity to hydrophobicity was shortened by immersion into isopropyl alcohol for a period of 3 h as a result of the absorption and accumulation of organic substances on the textured brass surface. When the textured brass sample was immersed into sodium bicarbonate solution, flower-like structures on the sample surface played a key role in slowing down wettability transition. Moreover, it had the smallest steady state contact angle as compared to the others. This study provides a facile method to construct textured surfaces with tunable wetting behaviors and effectively extend the industrial applications of brass.

  1. Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants

    NASA Astrophysics Data System (ADS)

    Hou, Bao-feng; Wang, Ye-fei; Huang, Yong

    2015-03-01

    Different analytical methods including Fourier transform infrared (FTIR), atomic force microscopy (AFM), zeta potential measurements, contact angle measurements and spontaneous imbibition tests were utilized to make clear the mechanism for wettability alteration of oil-wet sandstone surface using different surfactants. Results show that among three types of surfactants including cationic surfactants, anionic surfactants and nonionic surfactants, the cationic surfactant CTAB demonstrates the best effect on the wettability alteration of oil-wet sandstone surface. The positively charged head groups of CTAB molecules and carboxylic acid groups from crude oil could interact to form ion pairs, which could be desorbed from the solid surface and solubilized into the micelle formed by CTAB. Thus, the water-wetness of the solid surface is improved. Nonionic surfactant TX-100 could be adsorbed on oil-wet sandstone surface through hydrogen bonds and hydrophobic interaction to alter the wettability of oil-wet solid surface. The wettability alteration of oil-wet sandstone surface using the anionic surfactant POE(1) is caused by hydrophobic interaction. Due to the electrostatic repulsion between the anionic surfactant and the negatively charged surface, POE(1) shows less effect on the wettability alteration of oil-wet sandstone surface.

  2. A theoretical approach to the relationship between wettability and surface microstructures of epidermal cells and structured cuticles of flower petals

    PubMed Central

    Taneda, Haruhiko; Watanabe-Taneda, Ayako; Chhetry, Rita; Ikeda, Hiroshi

    2015-01-01

    Background and Aims The epidermal surface of a flower petal is composed of convex cells covered with a structured cuticle, and the roughness of the surface is related to the wettability of the petal. If the surface remains wet for an excessive amount of time the attractiveness of the petal to floral visitors may be impaired, and adhesion of pathogens may be promoted. However, it remains unclear how the epidermal cells and structured cuticle contribute to surface wettability of a petal. Methods By considering the additive effects of the epidermal cells and structured cuticle on petal wettability, a thermodynamic model was developed to predict the wetting mode and contact angle of a water droplet at a minimum free energy. Quantitative relationships between petal wettability and the geometries of the epidermal cells and the structured cuticle were then estimated. Measurements of contact angles and anatomical traits of petals were made on seven herbaceous species commonly found in alpine habitats in eastern Nepal, and the measured wettability values were compared with those predicted by the model using the measured geometries of the epidermal cells and structured cuticles. Key Results The model indicated that surface wettability depends on the height and interval between cuticular steps, and on a height-to-width ratio for epidermal cells if a thick hydrophobic cuticle layer covers the surface. For a petal epidermis consisting of lenticular cells, a repellent surface results when the cuticular step height is greater than 0·85 µm and the height-to-width ratio of the epidermal cells is greater than 0·3. For an epidermis consisting of papillate cells, a height-to-width ratio of greater than 1·1 produces a repellent surface. In contrast, if the surface is covered with a thin cuticle layer, the petal is highly wettable (hydrophilic) irrespective of the roughness of the surface. These predictions were supported by the measurements of petal wettability made on flowers of alpine species. Conclusions The results indicate that surface roughness caused by epidermal cells and a structured cuticle produces a wide range of petal wettability, and that this can be successfully modelled using a thermodynamic approach. PMID:25851137

  3. Fast light-induced reversible wettability of a zinc oxide nanorod array coated with a thin gold layer

    NASA Astrophysics Data System (ADS)

    Wei, Yuefan; Du, Hejun; Kong, Junhua; Tran, Van-Thai; Koh, Jia Kai; Zhao, Chenyang; He, Chaobin

    2017-11-01

    Zinc oxide (ZnO) has gained much attention recently due to its excellent physical and chemical properties, and has been extensively studied in energy harvesting applications such as photovoltaic and piezoelectric devices. In recent years, its reversible wettability has also attracted increasing interest. The wettability of ZnO nanostructures with various morphologies has been studied. However, to the best of our knowledge, there is still a lack of investigations on further modifications on ZnO to provide more benefits than pristine ZnO. Comprehensive studies on the reversible wettability are still needed. In this study, a ZnO nanorod array was prepared via a hydrothermal process and subsequently coated with thin gold layers with varied thickness. The morphologies and structures, optical properties and wettability were investigated. It is revealed that the ZnO-Au system possesses recoverable wettability upon switching between visible-ultraviolet light and a dark environment, which is verified by the contact angle change. The introduction of the thin gold layer to the ZnO nanorod array effectively increases the recovery rate of the wettability. The improvements are attributed to the hierarchical structures, which are formed by depositing thin gold layers onto the ZnO nanorod array, the visible light sensitivity due to the plasmonic effect of the deposited gold, as well as the fast charge-induced surface status change upon light illumination or dark storage. The improvement is beneficial to applications in environmental purification, energy harvesting, micro-lenses, and smart devices.

  4. Fast Transport of Water Droplets over a Thermo-Switchable Surface Using Rewritable Wettability Gradient.

    PubMed

    Banuprasad, Theneyur Narayanaswamy; Vinay, Thamarasseril Vijayan; Subash, Cherumannil Karumuthil; Varghese, Soney; George, Sajan D; Varanakkottu, Subramanyan Namboodiri

    2017-08-23

    In spite of the reported temperature dependent tunability in wettability of poly(N-isopropylacrylamide) (PNIPAAm) surfaces for below and above lower critical solution temperature (32 °C), the transport of water droplets is inhibited by the large contact angle hysteresis. Herein, for the first time, we report on-demand, fast, and reconfigurable droplet manipulation over a PNIPAAm grafted structured polymer surface using temperature-induced wettability gradient. Our study reveals that the PNIPAAm grafted on intrinsically superhydrophobic surfaces exhibit hydrophilic nature with high contact angle hysteresis below 30 °C and superhydrophobic nature with ultralow contact angle hysteresis above 36 °C. The transition region between 30 and 36 °C is characterized by a large change in water contact angle (∼100°) with a concomitant change in contact angle hysteresis. By utilizing this "transport zone" wherein driving forces overcome the frictional forces, we demonstrate macroscopic transport of water drops with a maximum transport velocity of approximately 40 cm/s. The theoretical calculations on the force measurements concur with dominating behavior of driving forces across the transport zone. The tunability in transport velocity by varying the temperature gradient along the surface or the inclination angle of the surface (maximum angle of 15° with a reduced velocity 0.4 mm/s) is also elucidated. In addition, as a practical application, coalescence of water droplets is demonstrated by using the temperature controlled wettability gradient. The presented results are expected to provide new insights on the design and fabrication of smart multifunctional surfaces for applications such as biochemical analysis, self-cleaning, and microfluidics.

  5. Filling schemes of silver dots inkjet-printed on pixelated nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Alan, Sheida; Jiang, Hao; Shahbazbegian, Haleh; Patel, Jasbir N.; Kaminska, Bozena

    2017-03-01

    Recently, our group demonstrated an inkjet-based technique to enable high-throughput, versatile and full-colour printing of structural colours on generic pixelated nanostructures, termed as molded ink on nanostructured surfaces. The printed colours are controlled by the area of printed silver on the pixelated red, green and blue polymer nanostructure arrays. This paper investigates the behaviour of jetted silver ink droplets on nanostructured surfaces and the microscale dot patterns implemented during printing process, for achieving accurate and consistent colours in the printed images. The surface wettability and the schemes of filling silver dots inside the subpixels are crucial to the quality of printed images. Several related concepts and definitions are introduced, such as filling ratio, full dots per subpixel (DPSP), number of printable colours, colour leaking and dot merging. In our experiments, we first chemically modified the surface to control the wettability and dot size. From each type of modified surface, various filling schemes were experimented and the printed results were evaluated with comprehensive considerations on the number of printable colours and the negative effects of colour leaking and dot merging. Rational selection of the best filling scheme resulted in a 2-line filling scheme using 20 μm dot spacing and line spacing capable of printing 9261 different colours with 121 pixel per inch display resolution, on low-wettability surface. This study is of vital importance for scaling up the printing technique in industrial applications and provides meaningful insights for inkjet-printing on nanostructures.

  6. Brownian motion as a new probe of wettability.

    PubMed

    Mo, Jianyong; Simha, Akarsh; Raizen, Mark G

    2017-04-07

    Understanding wettability is crucial for optimizing oil recovery, semiconductor manufacturing, pharmaceutical industry, and electrowetting. In this letter, we study the effects of wettability on Brownian motion. We consider the cases of a sphere in an unbounded fluid medium, as well as a sphere placed in the vicinity of a plane wall. For the first case, we show the effects of wettability on the statistical properties of the particles' motion, such as velocity autocorrelation, velocity, and thermal force power spectra over a large range of time scales. We also propose a new method to measure wettability based on the particles' Brownian motion. In addition, we compare the boundary effects on Brownian motion imposed by both no-slip and perfect-slip flat walls. We emphasize the surprising boundary effects on Brownian motion imposed by a perfect-slip wall in the parallel direction, such as a higher particle mobility parallel to a perfect flat wall compared to that in the absence of the wall, as well as compared to a particle near a no-slip flat wall.

  7. Switchable Underwater Bubble Wettability on Laser-Induced Titanium Multiscale Micro-/Nanostructures by Vertically Crossed Scanning.

    PubMed

    Jiao, Yunlong; Li, Chuanzong; Wu, Sizhu; Hu, Yanlei; Li, Jiawen; Yang, Liang; Wu, Dong; Chu, Jiaru

    2018-05-16

    We present here a kind of novel multiscale TiO 2 square micropillar arrays on titanium sheets through vertically crossed scanning of femtosecond laser. This multiscale micro-/nanostructure is ascribed to the combination of laser ablation/shock compression/debris self-deposition, which shows superaerophobicity in water with a very small sliding angle. The laser-induced sample displays switchable bubble wettability in water via heating in a dark environment and ultraviolet (UV) irradiation in alcohol. After heating in a dark environment (0.5 h), the ablated titanium surface shows superaerophilicity in water with a bubble contact angle (BCA) of ∼4°, which has a great ability of capturing bubbles in water. After UV irradiation in alcohol (1 h), the sample recovered its superaerophobicity in water and the BCA turns into 156°. The mechanism of reversible switching is believed as the chemical conversion between Ti-OH and Ti-O. It is worth noting that our proposed switching strategy is time-saving and the switch wetting cycle costs only 1.5 h. Then we repeat five switching cycles on the reversibility and the method shows excellent reproducibility and stability. Moreover, laser-induced samples with different scanning spacing (50-120 μm) are fabricated and all of them show switchable underwater bubble wettability via the above tunable methods. Finally, we fabricate hybrid-patterned microstructures to show different patterned bubbles in water on the heated samples. We believe the original works will provide some new insights to researchers in bubble manipulation and gas collection fields.

  8. pH-Driven Wetting Switchability of Electrodeposited Superhydrophobic Copolymers of Pyrene Bearing Acid Functions and Fluorinated Chains.

    PubMed

    Ramos Chagas, Gabriela; Kiryanenko, Denis; Godeau, Guilhem; Guittard, Frédéric; Darmanin, Thierry

    2017-12-06

    A smart stimuli-responsive surface was fabricated by the electro-copolymerization of pyrene monomers followed by base and acid treatment. Copolymers of pyrenes bearing fluorinated chains (Py-nF 6 ) and acid functions (Py-COOH) were produced with different molar concentrations of each monomer (0, 25, 50, 75, and 100 % of Py-nF 6 vs. Py-COOH) by an electrochemical process. Two different perfluorinated pyrenes containing ester and amide groups were used to reach superhydrophobic properties. The relation of those bonds with the final properties of the surface was explored. The pH-sensitive group of Py-COOH allowed the surfaces to be reversibly switched from superhydrophobic (water contact angle>θ w >150° and very low hysteresis) to hydrophilic (θ w <90°). The amide and ester bonds influenced the recovery of the original wettability after both base and acid treatment. Although the fluorinated homopolymer with ester bonds was insensitive to base and acid treatment due to its superhydrophobic properties with ultralow water adhesion, the recovery of the original wettability for the copolymers was much more important with amide bonds due to the amide functional groups be more resistant to the hydrolysis reaction. This strategy offered the opportunity to access superhydrophobic films with switchable wettability by simple pH treatment. The films proved to be a good tool for use in biological applications, for example, as a bacterial-resistant film if superhydrophobic and as a bacterial-adherent film if hydrophilic. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Wetting Behavior of Calcium Ferrite Slags on Cristobalite Substrates

    NASA Astrophysics Data System (ADS)

    Yang, Mingrui; Lv, Xuewei; Wei, Ruirui; Xu, Jian; Bai, Chenguang

    2018-03-01

    Calcium ferrite (CF) is a significant intermediate adhesive phase in high-basicity sinters. The wettability between calcium ferrite (CF) and gangue plays an important role in the assimilation process. The wettability of CF-based slags, in which a constant amount (2 mass pct.) of Al2O3, MgO, SiO2, and TiO2 was added, on solid SiO2 (cristobalite) substrates at 1523 K (1250 °C) was investigated. The interfacial microstructure and spreading mechanisms were discussed for each sample. All the tested slag samples exhibited good wettability on the SiO2 substrate. The initial apparent contact angles were in the range of 20 to 50 deg, while the final apparent contact angles were 5 deg. The wetting process could be divided into three stages on the basis of the change in diameter, namely the "linear spreading" stage, "spreading rate reduction" stage, and "wetting equilibrium" stage. It was found that the CF-SiO2 wetting system exhibits dissolutive wetting and the dissolution of SiO2 into slag influences its spreading process. The spreading rate increases with a decrease in the ratio of viscosity to interfacial tension, which is a result of the addition of Al2O3, MgO, SiO2, and TiO2. After cooling, a deep corrosion pit was formed in the substrate and a diffusion layer was generated in front of the residual slag zone; further, some SiO2 and Fe2O3 solid solutions precipitated in the slag.

  10. Wetting and Brazing of Alumina by Sn0.3Ag0.7Cu-Ti Alloy

    NASA Astrophysics Data System (ADS)

    Kang, J. R.; Song, X. G.; Hu, S. P.; Liu, D.; Guo, W. J.; Fu, W.; Cao, J.

    2017-12-01

    The wetting behavior of Sn0.3Ag0.7Cu (wt pct) with the addition of Ti on alumina was studied at 1273 K (1000 °C) using the sessile drop method. The wettability of Sn0.3Ag0.7Cu is significantly enhanced with the addition of Ti. Ti accumulates on the interface and reacts with O, producing TiO and yields good wetting. However, wetting is inhibited in high Ti containing droplets as intense Ti-Sn reactions take place. As a result of these competing reactions, the wettability of Sn0.3Ag0.7Cu-2Ti is the best, with the lowest equilibrium contact angle 24.6 deg. Thermodynamic calculations indicate that the value of the final contact angle cos θ varies linearly with Ti fraction in the Ti-Sn reaction-free case. The influence of the Ti-Sn reaction on wetting is quantitatively characterized by the deviation from the theoretical data. The adverse impact of Ti-Sn reaction on wetting increases in intensity with the droplets containing more Ti as the reaction between Ti and Sn becomes more intense and rapid. Alumina/alumina is brazed using different Ti containing Sn0.3Ag0.7Cu-Ti brazing metals at 1273 K (1000 °C) for 25 minutes. Pores are observed in joints prepared with Sn0.3Ag0.7Cu-0.7, 3, and 4Ti because of poor wettability. The highest joints shear strength of 28.6 MPa is obtained with Sn0.3Ag0.7Cu-2Ti.

  11. Wetting Behavior of Calcium Ferrite Slags on Cristobalite Substrates

    NASA Astrophysics Data System (ADS)

    Yang, Mingrui; Lv, Xuewei; Wei, Ruirui; Xu, Jian; Bai, Chenguang

    2018-06-01

    Calcium ferrite (CF) is a significant intermediate adhesive phase in high-basicity sinters. The wettability between calcium ferrite (CF) and gangue plays an important role in the assimilation process. The wettability of CF-based slags, in which a constant amount (2 mass pct.) of Al2O3, MgO, SiO2, and TiO2 was added, on solid SiO2 (cristobalite) substrates at 1523 K (1250 °C) was investigated. The interfacial microstructure and spreading mechanisms were discussed for each sample. All the tested slag samples exhibited good wettability on the SiO2 substrate. The initial apparent contact angles were in the range of 20 to 50 deg, while the final apparent contact angles were 5 deg. The wetting process could be divided into three stages on the basis of the change in diameter, namely the "linear spreading" stage, "spreading rate reduction" stage, and "wetting equilibrium" stage. It was found that the CF-SiO2 wetting system exhibits dissolutive wetting and the dissolution of SiO2 into slag influences its spreading process. The spreading rate increases with a decrease in the ratio of viscosity to interfacial tension, which is a result of the addition of Al2O3, MgO, SiO2, and TiO2. After cooling, a deep corrosion pit was formed in the substrate and a diffusion layer was generated in front of the residual slag zone; further, some SiO2 and Fe2O3 solid solutions precipitated in the slag.

  12. Determination of wood wettability properties of oil palm trunk, Shorea sp. and Paraserianthes falcataria by contact angle method

    NASA Astrophysics Data System (ADS)

    Sucipto, T.; Hartono, R.; Dwianto, W.

    2018-02-01

    The aim of this study was to determine the wettability of the inner part of oil palm trunk (OPT), the outer part of OPT, OPT that densified 50%, Shorea sp. and Paraserianthes falcataria wood, as raw material for laminated beams. The wettability of the wood was measured by using cosine-contact angle (CCA) method, which is measuring the angle between dripped resin liquid and the wood surface. The resins that used in this study is phenol formaldehyde (PF) and urea formaldehyde (UF). The results showed that the Shorea sp. and P. falcataria woods have the smallest contact angle or the best wettability properties than OPT. Shorea sp. has the best wettability on PF resin (83.00°), while P. falcataria on UF resin (90.89°), this is due to the levels of starch and extractive substances in Shorea sp. and P. falcataria wood are smaller than OPT. Furthermore, Shorea sp. and P. falcataria wood surfaces are flatter and smoother than OPT, so that the resin will flow easier and wetting the wood surface. In this condition, the liquid resin will flow easier and formed a smaller contact angle. The good wettability of wood will enhance the adhesion properties of laminated beams.

  13. Effects of Engineered Wettability on the Efficiency of Dew Collection.

    PubMed

    Gerasopoulos, Konstantinos; Luedeman, William L; Ölçeroglu, Emre; McCarthy, Matthew; Benkoski, Jason J

    2018-01-31

    Surface wettability plays an important role in dew collection. Nucleation is faster on hydrophilic surfaces, while droplets slide more readily on hydrophobic surfaces. Plants and animals in coastal desert environments appear to overcome this trade-off through biphilic surfaces with patterned wettability. In this study, we investigate the effects of millimeter-scale wettability patterns, mimicking those of the Stenocara beetle, on the rate of water collection from humid air. The rate of water collection per unit area is measured as a function of subcooling (ΔT = 1, 7, and 27 °C) and angle of inclination (from 10° to 90°). It is then compared for superbiphilic, hydrophilic, hydrophobic, and surperhydrophobic surfaces. For large subcooling, neither wettability nor tilt angle has a significant effect because the rate of condensation is so great. For 1 °C subcooling and large angles, hydrophilic surfaces perform best because condensation is the rate-limiting step. For low angles of inclination, superhydrophobic samples are best because droplet sliding is the rate-limiting step. Superbiphilic surfaces, in contrast to their superior fog collecting capabilities, generally collected dew at the slowest rate due to their inherent contact angle hysteresis. Theoretical considerations suggest that this finding may apply more generally to surfaces with patterned wettability.

  14. A pore-level scenario for the development of mixed-wettability in oil reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovscek, A.R.; Wong, H.; Radke, C.J.

    Understanding the role of thin films in porous media is vital if wettability is to be elucidated at the pore level. The type and thickness of films coating pore walls determines reservoir wettability and whether or not reservoir rock can be altered from its initial state of wettability. Pore shape, especially pore wall curvature, is an important factor in determining wetting-film thicknesses. Yet, pore shape and the physics of thin wetting films are generally neglected in models of flow in porous rocks. This paper incorporates thin-film forces into a collection of star-shaped capillary tubes model to describe the geological developmentmore » of mixed-wettability in reservoir rock. Here, mixed-wettability refers to continuous and distinct oil and water-wetting surfaces coexisting in the porous medium. The proposed model emphasizes the remarkable role of thin films. New pore-level fluid configurations arise that are quite unexpected. For example, efficient water displacement of oil (i.e, low residual oil saturation) characteristic of mixed-wettability porous media is ascribed to interconnected oil lenses or rivulets which bridge the walls adjacent to a pore corner. Predicted residual oil saturations are approximately 35 % less in mixed-wet rock compared to completely water-wet rock. Calculated capillary pressure curves mimic those of mixed-wet porous media in the primary drainage of water, imbibition of water, and secondary drainage modes. Amott-Harvey indices range from {minus}0.18 to 0.36 also in good agreement with experimental values. (Morrow et al, 1986; Judhunandan and Morrow, 1991).« less

  15. Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposure

    PubMed Central

    2016-01-01

    The wettability of graphene is both fundamental and crucial for interfacing in most applications, but a detailed understanding of its time evolution remains elusive. Here we systematically investigate the wettability of metal-supported, chemical vapor deposited graphene films as a function of ambient air exposure time using water and various other test liquids with widely different surface tensions. The wettability of graphene is not constant, but varies with substrate interactions and air exposure time. The substrate interactions affect the initial graphene wettability, where, for instance, water contact angles of ∼85 and ∼61° were measured for Ni and Cu supported graphene, respectively, after just minutes of air exposure. Analysis of the surface free energy components indicates that the substrate interactions strongly influence the Lewis acid–base component of supported graphene, which is considerably weaker for Ni supported graphene than for Cu supported graphene, suggesting that the classical van der Waals interaction theory alone is insufficient to describe the wettability of graphene. For prolonged air exposure, the effect of physisorption of airborne contaminants becomes increasingly dominant, resulting in an increase of water contact angle that follows a universal linear-logarithmic relationship with exposure time, until saturating at a maximum value of 92–98°. The adsorbed contaminants render all supported graphene samples increasingly nonpolar, although their total surface free energy decreases only by 10–16% to about 37–41 mJ/m2. Our finding shows that failure to account for the air exposure time may lead to widely different wettability values and contradicting arguments about the wetting transparency of graphene. PMID:26900413

  16. Three-level cobblestone-like TiO2 micro/nanocones for dual-responsive water/oil reversible wetting without fluorination

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Li, Guoqiang; Li, Chuanzong; Zhang, Zhen; Zhang, Yachao; Wu, Sizhu; Hu, Yanlei; Zhu, Wulin; Li, Jiawen; Chu, Jiaru; Hu, Zhijia; Wu, Dong; Yu, Liandong

    2017-10-01

    In this work, a kind of three-level cobblestone-like anatase TiO2 microcone array was fabricated on titanium sheets by femtosecond laser-induced self-assembly. This three level structure consisted of cobblestone-like features (15-25 μm in height and 20-35 μm in diameter), ˜460 nm ripple-like features, and smaller particles (10-500 nm). The formation of microcone arrays can be ascribed to the interaction of alternant laser beam ablation. TiO2 surfaces display dual-responsive water/oil reversible wetting via heat treatment and selective UV irradiation without fluorination. It is indicated that three-level scale surface roughness can amplify the wetting character of the Ti surface, and the mechanism for reversible switching between extreme wettabilities is caused by the conversion between Ti-OH and Ti-O. Moreover, the double-faced superhydrophobic and double-faced superhydrophilic Ti samples were constructed, which exhibited stable superhydrophobicity and underwater superoleophobicity in water-oil solution, respectively, even when strongly shaken. Finally, we present the hybrid-patterned TiO2 surface and realized reversible switching pattern wettability.

  17. Exploring the Role of Habitat on the Wettability of Cicada Wings.

    PubMed

    Oh, Junho; Dana, Catherine E; Hong, Sungmin; Román, Jessica K; Jo, Kyoo Dong; Hong, Je Won; Nguyen, Jonah; Cropek, Donald M; Alleyne, Marianne; Miljkovic, Nenad

    2017-08-16

    Evolutionary pressure has pushed many extant species to develop micro/nanostructures that can significantly affect wettability and enable functionalities such as droplet jumping, self-cleaning, antifogging, antimicrobial, and antireflectivity. In particular, significant effort is underway to understand the insect wing surface structure to establish rational design tools for the development of novel engineered materials. Most studies, however, have focused on superhydrophobic wings obtained from a single insect species, in particular, the Psaltoda claripennis cicada. Here, we investigate the relationship between the spatially dependent wing wettability, topology, and droplet jumping behavior of multiple cicada species and their habitat, lifecycle, and interspecies relatedness. We focus on cicada wings of four different species: Neotibicen pruinosus, N. tibicen, Megatibicen dorsatus, and Magicicada septendecim and take a comparative approach. Using spatially resolved microgoniometry, scanning electron microscopy, atomic force microscopy, and high speed optical microscopy, we show that within cicada species, the wettability of wings is spatially homogeneous across wing cells. All four species were shown to have truncated conical pillars with widely varying length scales ranging from 50 to 400 nm in height. Comparison of the wettability revealed three cicada species with wings that are superhydrophobic (>150°) with low contact angle hysteresis (<5°), resulting in stable droplet jumping behavior. The fourth, more distantly related species (Ma. septendecim) showed only moderate hydrophobic behavior, eliminating some of the beneficial surface functional aspects for this cicada. Correlation between cicada habitat and wing wettability yielded little connection as wetter, swampy environments do not necessarily equate to higher measured wing hydrophobicity. The results, however, do point to species relatedness and reproductive strategy as a closer proxy for predicting wettability and surface structure and resultant enhanced wing surface functionality. This work not only elucidates the differences between inter- and intraspecies cicada wing topology, wettability, and water shedding behavior but also enables the development of rational design tools for the manufacture of artificial surfaces for energy and water applications.

  18. Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate).

    PubMed

    Deng, Zilong; Jung, Jooyeoun; Simonsen, John; Zhao, Yanyun

    2017-10-01

    Cellulose nanomaterials (CNs)-incorporated emulsion coatings with improved moisture barrier, wettability and surface adhesion onto fruit surfaces were developed for controlling postharvest physiological activity and enhancing storability of bananas during ambient storage. Cellulose nanofiber (CNF)-based emulsion coating (CNFC: 0.3% CNF/1% oleic acid/1% sucrose ester fatty acid (w/w wet base)) had low contact angle, high spread coefficient onto banana surfaces, and lower surface tension (ST, 25.4mN/m) than the critical ST (35.2mN/m) of banana peels, and exhibited good wettability onto banana surfaces. CNFC coating delayed the ethylene biosynthesis pathway and reduced ethylene and CO 2 production, thus delaying fruit ripening. As the result, CNFC coating minimized chlorophyll degradation, weight loss, and firmness of bananas while ensuring the properly fruit ripening during 10d of ambient storage. This study demonstrated the effectiveness of CNF based emulsion coatings for improving the storability of postharvest bananas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Flexible manipulation of microfluids using optically regulated adsorption/desorption of hydrophobic materials.

    PubMed

    Nagai, Hidenori; Irie, Takashi; Takahashi, Junko; Wakida, Shin-ichi

    2007-04-15

    To realize highly integrated micro total analysis systems (microTAS), a simply controlled miniaturized valve should be utilized on microfluidic device. In this paper, we describe the application of photo-induced super-hydrophilicity of titanium dioxide (TiO2) to microfluidic manipulation. In addition, we found a new phenomenon for reversibly converting the surface wettability using a polydimethylsiloxane (PDMS) matrix and the photocatalytic properties of TiO2. While PDMS polymer was irradiated with UV, it was confirmed that hydrophobic material was released from the polymer to air. Several prepolymers were identified as the hydrophobic material with a gas chromatograph and mass spectrometer (GC/MS). Here, we successfully demonstrated the flexible manipulation of microfluid in a branched microchannel using the reversible wettability as micro opto-switching valve (MOS/V). The simultaneous control of MOS/Vs was also demonstrated on a 256-MOS/V integrated disk. The MOS/V promises to be one of the most effective flow switching valves for advanced applications in highly integrated micro/nano fluidics.

  20. Plasma-assisted interface engineering of boron nitride nanostructure films.

    PubMed

    Pakdel, Amir; Bando, Yoshio; Golberg, Dmitri

    2014-10-28

    Today many aspects of science and technology are progressing into the nanoscale realm where surfaces and interfaces are intrinsically important in determining properties and performances of materials and devices. One familiar phenomenon in which interfacial interactions play a major role is the wetting of solids. In this work we use a facile one-step plasma method to control the wettability of boron nitride (BN) nanostructure films via covalent chemical functionalization, while their surface morphology remains intact. By tailoring the concentration of grafted hydroxyl groups, superhydrophilic, hydrophilic, and hydrophobic patterns are created on the initially superhydrophobic BN nanosheet and nanotube films. Moreover, by introducing a gradient of the functional groups, directional liquid spreading toward increasing [OH] content is achieved on the films. The resulting insights are meant to illustrate great potentials of this method to tailor wettability of ceramic films, control liquid flow patterns for engineering applications such as microfluidics and biosensing, and improve the interfacial contact and adhesion in nanocomposite materials.

  1. Bioinspired Fabrication of one dimensional graphene fiber with collection of droplets application.

    PubMed

    Song, Yun-Yun; Liu, Yan; Jiang, Hao-Bo; Li, Shu-Yi; Kaya, Cigdem; Stegmaier, Thomas; Han, Zhi-Wu; Ren, Lu-Quan

    2017-09-21

    We designed a kind of smart bioinspired fiber with multi-gradient and multi-scale spindle knots by combining polydimethylsiloxane (PDMS) and graphene oxide (GO). Multilayered graphene structures can produce obvious wettability change after laser etching due to increased roughness. We demonstrate that the cooperation between curvature and the controllable wettability play an important role in water gathering, which regulate effectively the motion of tiny water droplets. In addition, due to the effective cooperation of multi-gradient and multi-scale hydrophilic spindle knots, the length of the three-phase contact line (TCL) can be longer, which makes a great contribution to the improvement of collecting efficiency and water-hanging ability. This study offers a novel insight into the design of smart materials that may control the transport of tiny drops reversibly in directions, which could potentially be extended to the realms of in microfluidics, fog harvesting filtration and condensers designs, and further increase water collection efficiency and hanging ability.

  2. Effect of airborne contaminants on the wettability of supported graphene and graphite

    NASA Astrophysics Data System (ADS)

    Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P.; Li, Lei; Liu, Haitao

    2013-10-01

    It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

  3. Effect of airborne contaminants on the wettability of supported graphene and graphite.

    PubMed

    Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P; Li, Lei; Liu, Haitao

    2013-10-01

    It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

  4. Collagen density gradient on three-dimensional printed poly(ε-caprolactone) scaffolds for interface tissue engineering.

    PubMed

    D'Amora, Ugo; D'Este, Matteo; Eglin, David; Safari, Fatemeh; Sprecher, Christoph M; Gloria, Antonio; De Santis, Roberto; Alini, Mauro; Ambrosio, Luigi

    2018-02-01

    The ability to engineer scaffolds that resemble the transition between tissues would be beneficial to improve repair of complex organs, but has yet to be achieved. In order to mimic tissue organization, such constructs should present continuous gradients of geometry, stiffness and biochemical composition. Although the introduction of rapid prototyping or additive manufacturing techniques allows deposition of heterogeneous layers and shape control, the creation of surface chemical gradients has not been explored on three-dimensional (3D) scaffolds obtained through fused deposition modelling technique. Thus, the goal of this study was to introduce a gradient functionalization method in which a poly(ε-caprolactone) surface was first aminolysed and subsequently covered with collagen via carbodiimide reaction. The 2D constructs were characterized for their amine and collagen contents, wettability, surface topography and biofunctionality. Finally, chemical gradients were created in 3D printed scaffolds with controlled geometry and porosity. The combination of additive manufacturing and surface modification is a viable tool for the fabrication of 3D constructs with controlled structural and chemical gradients. These constructs can be employed for mimicking continuous tissue gradients for interface tissue engineering. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Patterned-wettability-induced alteration of electro-osmosis over charge-modulated surfaces in narrow confinements.

    PubMed

    Ghosh, Uddipta; Chakraborty, Suman

    2012-04-01

    In the present study, we focus on alterations in flow physics as a consequence of interactions between patterned-wettability gradients on microfluidic substrates with modulated surface charge distributions, giving rise to an intricate electrohydrodynamic coupling over small scales. We demonstrate that by exploiting such intricate coupling, it may be possible to pattern vortices occurring in the fluidic confinement by exploiting an interplay between the Navier slip and electro-osmotic transport. Our studies do reveal that the resultant flow structure originating out of the spatially periodic variations in the surface charge and surface wettability may depend critically on several independently tunable controlling parameters, such as the amplitudes and frequencies of the respective patterning functions, the phase shift between the two, an asymmetry factor, and the channel height to Debye length ratio. We show that judicious choices with regard to the combinations of these parameters may result in significant augmentations in the corresponding mixing efficiency without any appreciable compromise in the net microfluidic throughput. Furthermore, our studies reveal an optimum patterning frequency, which results in the most efficient microfluidic mixing within the constraints of achieving a desired volumetric flow rate. Our results also demonstrate that the net flow rate is maximized when the surface wettability variation functions and surface charge-density functions are in phase, whereas mixing is best facilitated when they are in opposite phase. In practice, therefore, one may select an intermediate value of the phase angle depending on the extent of compromise necessary between flow rate and mixing characteristics, yielding far-ranging scientific and technological advances toward an improved design of miniaturized fluidic devices of practical relevance.

  6. Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method.

    PubMed

    Kim, Jiseok; Lew, Brian; Kim, Woo Soo

    2011-12-06

    Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method. The hydrophilic block of an amphiphilic polymer helps in the fabrication of the nano-needle arrays through the production of well-ordered honeycomb films and good adhesion of the film to a substrate. Anisotropic patterns with water wettability difference can be useful for patterning cells and other materials using their selective growth on the hydrophilic part of the pattern. However, there has not been a simple way to generate patterns with highly different wettability. Mechanical stamping of the nano-needle array with a polyurethane stamp might be the simplest way to fabricate patterns with wettability difference. In this study, super-hydrophobic nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films. The maximum water contact angle obtained with the nano-needle array was 150°. By controlling the pore size and the density of the honeycomb films, the height, width, and density of nano-needle arrays were determined. Anisotropic patterns with different wettability were fabricated by simply pressing the nano-needle array at ambient temperature with polyurethane stamps which were flexible but tough. Mechanical stamping of nano-needle arrays with micron patterns produced hierarchical super-hydrophobic structures.PACS: 05.70.Np, 68.55.am, 68.55.jm.

  7. Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method

    PubMed Central

    2011-01-01

    Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method. The hydrophilic block of an amphiphilic polymer helps in the fabrication of the nano-needle arrays through the production of well-ordered honeycomb films and good adhesion of the film to a substrate. Anisotropic patterns with water wettability difference can be useful for patterning cells and other materials using their selective growth on the hydrophilic part of the pattern. However, there has not been a simple way to generate patterns with highly different wettability. Mechanical stamping of the nano-needle array with a polyurethane stamp might be the simplest way to fabricate patterns with wettability difference. In this study, super-hydrophobic nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films. The maximum water contact angle obtained with the nano-needle array was 150°. By controlling the pore size and the density of the honeycomb films, the height, width, and density of nano-needle arrays were determined. Anisotropic patterns with different wettability were fabricated by simply pressing the nano-needle array at ambient temperature with polyurethane stamps which were flexible but tough. Mechanical stamping of nano-needle arrays with micron patterns produced hierarchical super-hydrophobic structures. PACS: 05.70.Np, 68.55.am, 68.55.jm PMID:22145673

  8. Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles.

    PubMed

    Kozbial, Andrew; Trouba, Charlie; Liu, Haitao; Li, Lei

    2017-01-31

    Elucidating the intrinsic water wettability of the graphitic surface has increasingly attracted research interests, triggered by the recent finding that the well-established hydrophobicity of graphitic surfaces actually results from airborne hydrocarbon contamination. Currently, static water contact angle (WCA) is often used to characterize the intrinsic water wettability of graphitic surfaces. In the current paper, we show that because of the existence of defects, static WCA does not necessarily characterize the intrinsic water wettability. Freshly exfoliated graphite of varying qualities, characterized using atomic force microscopy and Raman spectroscopy, was studied using static, advancing, and receding WCA measurements. The results showed that graphite of different qualities (i.e., defect density) always has a similar advancing WCA, but it could have very different static and receding WCAs. This finding indicates that defects play an important role in contact angle measurements, and the static contact angle does not always represent the intrinsic water wettability of pristine graphite. On the basis of the experimental results, a qualitative model is proposed to explain the effect of defects on static, advancing, and receding contact angles. The model suggests that the advancing WCA reflects the intrinsic water wettability of pristine (defect-free) graphite. Our results showed that the advancing WCA for pristine graphite is 68.6°, which indicates that graphitic carbon is intrinsically mildly hydrophilic.

  9. Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns.

    PubMed

    Kumar C S, Sujith; Chang, Yao Wen; Chen, Ping-Hei

    2017-04-10

    In this study, pool-boiling heat-transfer experiments were performed to investigate the effect of the number of interlines and the orientation of the hybrid wettable pattern. Hybrid wettable patterns were produced by coating superhydrophilic SiO2 on a masked, hydrophobic, cylindrical copper surface. Using de-ionized (DI) water as the working fluid, pool-boiling heat-transfer studies were conducted on the different surface-treated copper cylinders of a 25-mm diameter and a 40-mm length. The experimental results showed that the number of interlines and the orientation of the hybrid wettable pattern influenced the wall superheat and the HTC. By increasing the number of interlines, the HTC was enhanced when compared to the plain surface. Images obtained from the charge-coupled device (CCD) camera indicated that more bubbles formed on the interlines as compared to other parts. The hybrid wettable pattern with the lowermost section being hydrophobic gave the best heat-transfer coefficient (HTC). The experimental results indicated that the bubble dynamics of the surface is an important factor that determines the nucleate boiling.

  10. Basic evaluation of typical nanoporous silica nanoparticles in being drug carrier: Structure, wettability and hemolysis.

    PubMed

    Li, Jing; Guo, Yingyu

    2017-04-01

    Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration.

    PubMed

    Liang, Yunfeng; Tsuji, Shinya; Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-07-18

    Carbon dioxide (CO 2 ) capture and storage (CCS) is an important climate change mitigation option along with improved energy efficiency, renewable energy, and nuclear energy. CO 2 geosequestration, that is, to store CO 2 under the subsurface of Earth, is feasible because the world's sedimentary basins have high capacity and are often located in the same region of the world as emission sources. How CO 2 interacts with the connate water and minerals is the focus of this Account. There are four trapping mechanisms that keep CO 2 in the pores of subsurface rocks: (1) structural trapping, (2) residual trapping, (3) dissolution trapping, and (4) mineral trapping. The first two are dominated by capillary action, where wettability controls CO 2 and water two-phase flow in porous media. We review state-of-the-art studies on CO 2 /water/mineral wettability, which was found to depend on pressure and temperature conditions, salt concentration in aqueous solutions, mineral surface chemistry, and geometry. We then review some recent advances in mineral trapping. First, we show that it is possible to reproduce the CO 2 /water/mineral wettability at a wide range of pressures using molecular dynamics (MD) simulations. As the pressure increases, CO 2 gas transforms into a supercritical fluid or liquid at ∼7.4 MPa depending on the environmental temperature. This transition leads to a substantial decrease of the interfacial tension between CO 2 and reservoir brine (or pure water). However, the wettability of CO 2 /water/rock systems depends on the type of rock surface. Recently, we investigated the contact angle of CO 2 /water/silica systems with two different silica surfaces using MD simulations. We found that contact angle increased with pressure for the hydrophobic (siloxane) surface while it was almost constant for the hydrophilic (silanol) surface, in excellent agreement with experimental observations. Furthermore, we found that the CO 2 thin films at the CO 2 -hydrophilic silica and CO 2 -H 2 O interfaces displayed a linear correlation, which can in turn explain the constant contact angle on the hydrophilic silica surface. In view of the literature and our study results, a few recommendations seem necessary to construct a molecular system suitable to study wettability with MD simulations. Future work should be conducted to determine the influence of brine salinity on the wettability of minerals with high cation exchange capacity. Mineral trapping is believed to be an extremely slow process, likely taking thousands of years. However, a recent pilot study demonstrated that CO 2 mineralization occurs within 2 years in highly reactive basalt reservoirs. A first-principles MD study has also shown that carbonation reactions occur rapidly at the surface oxygen sites of a reactive mineral. We observed carbonate ions on both a newly cleaved quartz surface (without hydrolysis), and a basalt andesine surface after hydrolysis in a CO 2 -rich environment. Future work should consider the influence of water, gas impurities, and mineral cation type on carbonation.

  12. Effects of intermediate wettability on entry capillary pressure in angular pores.

    PubMed

    Rabbani, Harris Sajjad; Joekar-Niasar, Vahid; Shokri, Nima

    2016-07-01

    Entry capillary pressure is one of the most important factors controlling drainage and remobilization of the capillary-trapped phases as it is the limiting factor against the two-phase displacement. It is known that the entry capillary pressure is rate dependent such that the inertia forces would enhance entry of the non-wetting phase into the pores. More importantly the entry capillary pressure is wettability dependent. However, while the movement of a meniscus into a strongly water-wet pore is well-defined, the invasion of a meniscus into a weak or intermediate water-wet pore especially in the case of angular pores is ambiguous. In this study using OpenFOAM software, high-resolution direct two-phase flow simulations of movement of a meniscus in a single capillary channel are performed. Interface dynamics in angular pores under drainage conditions have been simulated under constant flow rate boundary condition at different wettability conditions. Our results shows that the relation between the half corner angle of pores and contact angle controls the temporal evolution of capillary pressure during the invasion of a pore. By deviating from pure water-wet conditions, a dip in the temporal evolution of capillary pressure can be observed which will be pronounced in irregular angular cross sections. That enhances the pore invasion with a smaller differential pressure. The interplay between the contact angle and pore geometry can have significant implications for enhanced remobilization of ganglia in intermediate contact angles in real porous media morphologies, where pores are very heterogeneous with small shape factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Surfactant Based Enhanced Oil Recovery and Foam Mobility Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George J. Hirasaki; Clarence A. Miller; Gary A. Pope

    2005-07-01

    Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacialmore » tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.« less

  14. Fabrication of a wettability-gradient surface on copper by screen-printing techniques

    NASA Astrophysics Data System (ADS)

    Huang, Ding-Jun; Leu, Tzong-Shyng

    2015-08-01

    In this study, a screen-printing technique is utilized to fabricate a wettability-gradient surface on a copper substrate. The pattern definitions on the copper surface were freely fabricated to define the regions with different wettabilities, for which the printing definition technique was developed as an alternative to the existing costly photolithography techniques. This fabrication process using screen printing in tandem with chemical modification methods can easily realize an excellent wettability-gradient surface with superhydrophobicity and superhydrophilicity. Surface analyses were performed to characterize conditions in some fabrication steps. A water droplet movement sequence is provided to clearly demonstrate the droplet-driving effectiveness of the fabricated gradient surface. The droplet-driving efficiency offers a promising solution for condensation heat transfer applications in the foreseeable future.

  15. The relation between residual stress, interfacial structure and the joint property in the SiO2f/SiO2-Nb joints.

    PubMed

    Ma, Qiang; Li, Zhuo Ran; Yang, Lai Shan; Lin, Jing Huang; Ba, Jin; Wang, Ze Yu; Qi, Jun Lei; Feng, Ji Cai

    2017-06-23

    In order to achieve a high-quality joint between SiO 2f /SiO 2 and metals, it is necessary to address the poor wettability of SiO 2f /SiO 2 and the high residual stress in SiO 2f /SiO 2 -Nb joint. Here, we simultaneously realize good wettability and low residual stress in SiO 2f /SiO 2 -Nb joint by combined method of HF etching treatment and Finite Element Analysis (FEA). After etching treatment, the wettability of E-SiO 2f /SiO 2 was improved, and the residual stress in the joint was decreased. In order to better control the quality of joints, efforts were made to understand the relationship between surface structure of E-SiO 2f /SiO 2 and residual stress in joint using FEA. Based on the direction of FEA results, a relationship between residual stress, surface structure and joint property in the brazed joints were investigated by experiments. As well the FEA and the brazing test results both realized the high-quality joint of E-SiO 2f /SiO 2 -Nb and the shear strength of the joint reached 61.9 MPa.

  16. A multifunctional polymeric nanofilm with robust chemical performances for special wettability.

    PubMed

    Wang, Yabin; Lin, Feng; Dong, Yaping; Liu, Zhong; Li, Wu; Huang, Yudong

    2016-03-07

    A multifunctional polymeric nanofilm of a triazinedithiolsilane compound, which can protect metallic substrates and activate the corresponding surface simultaneously, is introduced onto a copper mesh surface via facile solution-immersion approaches. The resultant interface exhibits hydrophilic features due to the existence of silanol groups (SiOH) outward and has the potential to act as a superhydrophilic and underwater superoleophobic material. As the polymeric nanofilm atop the copper mesh is modified with long-chain octadecyltrichlorosilane (OTS), the functionalized surface becomes superhydrophobic and superoleophilic. The OTS-modified polymeric nanofilm shows outstanding chemical durability and stability that are seldom concurrently satisfied for a material with special wettability, owing to its inherent architecture. These textures generate high separation efficiency, durable separation capability and excellent thermal stability. The protective ability, originating from the textures of the underlying cross-linked disulfide units (-SS-) and siloxane networks (SiOSi) on the top of the nanofilm, prolongs the chemical durability. The activating capability stemming from the residual SiOH groups improves the chemical stability as a result of the chemical bonds developed by these sites. The significant point of this investigation lies in enlightening us on the fabrication of multifunctional polymeric nanofilms on different metal surfaces using various triazinedithiolsilane compounds, and on the construction of interfaces with controllable wettable performances in demanding research or industrial applications.

  17. Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.

    PubMed

    Lan, Chuanjin; Pal, Souvik; Li, Zhen; Ma, Yanbao

    2015-09-08

    Single-cell analysis techniques have been developed as a valuable bioanalytical tool for elucidating cellular heterogeneity at genomic, proteomic, and cellular levels. Cell manipulation is an indispensable process for single-cell analysis. Digital microfluidics (DMF) is an important platform for conducting cell manipulation and single-cell analysis in a high-throughput fashion. However, the manipulation of single cells in DMF has not been quantitatively studied so far. In this article, we investigate the interaction of a single microparticle with a liquid droplet on a flat substrate using numerical simulations. The droplet is driven by capillary force generated from the wettability gradient of the substrate. Considering the Brownian motion of microparticles, we utilize many-body dissipative particle dynamics (MDPD), an off-lattice mesoscopic simulation technique, in this numerical study. The manipulation processes (including pickup, transport, and drop-off) of a single microparticle with a liquid droplet are simulated. Parametric studies are conducted to investigate the effects on the manipulation processes from the droplet size, wettability gradient, wetting properties of the microparticle, and particle-substrate friction coefficients. The numerical results show that the pickup, transport, and drop-off processes can be precisely controlled by these parameters. On the basis of the numerical results, a trap-free delivery of a hydrophobic microparticle to a destination on the substrate is demonstrated in the numerical simulations. The numerical results not only provide a fundamental understanding of interactions among the microparticle, the droplet, and the substrate but also demonstrate a new technique for the trap-free immobilization of single hydrophobic microparticles in the DMF design. Finally, our numerical method also provides a powerful design and optimization tool for the manipulation of microparticles in DMF systems.

  18. Robust diamond meshes with unique wettability properties.

    PubMed

    Yang, Yizhou; Li, Hongdong; Cheng, Shaoheng; Zou, Guangtian; Wang, Chuanxi; Lin, Quan

    2014-03-18

    Robust diamond meshes with excellent superhydrophobic and superoleophilic properties have been fabricated. Superhydrophobicity is observed for water with varying pH from 1 to 14 with good recyclability. Reversible superhydrophobicity and hydrophilicity can be easily controlled. The diamond meshes show highly efficient water-oil separation and water pH droplet transference.

  19. Thermoresponsive electrospun fibers for water harvesting applications

    NASA Astrophysics Data System (ADS)

    Thakur, Neha; Baji, Avinash; Ranganath, Anupama Sargur

    2018-03-01

    Temperature triggered switchable cellulose acetate-poly(N-isopropylacrylamide) (CA-PNIPAM) core-shell and blend nanofibers are fabricated for controlled moisture harvesting applications. Core-shell fibers are fabricated using a co-axial electrospinning setup whereas the conventional electrospinning setup is employed for fabricating the blend fibers. Investigation of their wettability behaviour demonstrated that the blend fibers are superhydrophilic whereas the core-shell fibers are hydrophilic at ambient temperature. Furthermore, both the samples have an ability to switch between the two states viz. hydrophilic to hydrophobic state based on thermal stimulus. The core-shell fibers are shown to have higher moisture sorption ability compared to the blend fibers. This study investigates the mechanism behind the switchable wettability behaviour of the core-shell fibers and demonstrates the crucial role played by the functional groups present on the surface layer of fibers in governing their moisture collection efficiency.

  20. Splashing Threshold of Oblique Droplet Impacts on Surfaces of Various Wettability.

    PubMed

    Aboud, Damon G K; Kietzig, Anne-Marie

    2015-09-15

    Oblique drop impacts were performed at high speeds (up to 27 m/s, We > 9000) with millimetric water droplets, and a linear model was applied to define the oblique splashing threshold. Six different sample surfaces were tested: two substrate materials of different inherent surface wettability (PTFE and aluminum), each prepared with three different surface finishes (smooth, rough, and textured to support superhydrophobicity). Our choice of surfaces has allowed us to make several novel comparisons. Considering the inherent surface wettability, we discovered that PTFE, as the more hydrophobic surface, exhibits lower splashing thresholds than the hydrophilic surface of aluminum of comparable roughness. Furthermore, comparing oblique impacts on smooth and textured surfaces, we found that asymmetrical spreading and splashing behaviors occurred under a wide range of experimental conditions on our smooth surfaces; however, impacts occurring on textured surfaces were much more symmetrical, and one-sided splashing occurred only under very specific conditions. We attribute this difference to the air-trapping nature of textured superhydrophobic surfaces, which lowers the drag between the spreading lamella and the surface. The reduced drag affects oblique drop impacts by diminishing the effect of the tangential component of the impact velocity, causing the impact behavior to be governed almost exclusively by the normal velocity. Finally, by comparing oblique impacts on superhydrophobic surfaces at different impact angles, we discovered that although the pinning transition between rebounding and partial rebounding is governed primarily by the normal impact velocity, there is also a weak dependence on the tangential velocity. As a result, pinning is inhibited in oblique impacts. This led to the observation of a new behavior in highly oblique impacts on our superhydrophobic surfaces, which we named the stretched rebound, where the droplet is extended into an elongated pancake shape and rebounds while still outstretched, without exhibiting a recession phase.

  1. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions.

    PubMed

    Saraji, Soheil; Goual, Lamia; Piri, Mohammad; Plancher, Henry

    2013-06-11

    Injection of carbon dioxide in deep saline aquifers is considered as a method of carbon sequestration. The efficiency of this process is dependent on the fluid-fluid and rock-fluid interactions inside the porous media. For instance, the final storage capacity and total amount of capillary-trapped CO2 inside an aquifer are affected by the interfacial tension between the fluids and the contact angle between the fluids and the rock mineral surface. A thorough study of these parameters and their variations with temperature and pressure will provide a better understanding of the carbon sequestration process and thus improve predictions of the sequestration efficiency. In this study, the controversial concept of wettability alteration of quartz surfaces in the presence of supercritical carbon dioxide (sc-CO2) was investigated. A novel apparatus for measuring interfacial tension and contact angle at high temperatures and pressures based on Axisymmetric Drop Shape Analysis with no-Apex (ADSA-NA) method was developed and validated with a simple system. Densities, interfacial tensions, and dynamic contact angles of CO2/water/quartz systems were determined for a wide range of pressures and temperatures relevant to geological sequestration of CO2 in the subcritical and supercritical states. Image analysis was performed with ADSA-NA method that allows the determination of both interfacial tensions and contact angles with high accuracy. The results show that supercritical CO2 alters the wettability of quartz surface toward less water-wet conditions compared to subcritical CO2. Also we observed an increase in the water advancing contact angles with increasing temperature indicating less water-wet quartz surfaces at higher temperatures.

  2. The Measurement of Wettability

    ERIC Educational Resources Information Center

    Pirie, Brian J. S.; Gregory, David W.

    1973-01-01

    Discusses the use of a simple apparatus to measure contact angles between a liquid drop and a solid surface which are determining factors of wettability. Included are examples of applying this technique to various experimental situations. (CC)

  3. Wettability of partially suspended graphene

    DOE PAGES

    Ondarçuhu, Thierry; Thomas, Vincent; Nuñez, Marc; ...

    2016-04-13

    Dependence on the wettability of graphene on the nature of the underlying substrate remains only partially understood. We systematically investigate the role of liquid-substrate interactions on the wettability of graphene by varying the area fraction of suspended graphene from 0 to 95% by means of nanotextured substrates. We find that completely suspended graphene exhibits the highest water contact angle (85° ± 5°) compared to partially suspended or supported graphene, regardless of the hydrophobicity (hydrophilicity) of the substrate. Moreover, 80% of the long-range water-substrate interactions are screened by the graphene monolayer, the wettability of which is primarily determined by short-range graphene-liquidmore » interactions. By its well-defined chemical and geometrical properties, supported graphene therefore provides a model system to elucidate the relative contribution of short and long range interactions to the macroscopic contact angle.« less

  4. The effect of surface wettability on the performance of a piezoelectric membrane pump

    NASA Astrophysics Data System (ADS)

    Wang, Jiantao; Yang, Zhigang; Liu, Yong; Shen, Yanhu; Chen, Song; Yu, Jianqun

    2018-04-01

    In this paper, we studied the effect of surface wettability on the bubble tolerance of a piezoelectric membrane pump, by applying the super-hydrophilic or super-hydrophobic surface to the key elements on the pump. Wettability for the flow passage surface has a direct influence on the air bubbles flowing in the fluid. Based on the existing research results, we first analyzed the relationship between the flow passage surface of the piezoelectric pump and the bubbles in the fluid. Then we made three prototypes where pump chamber walls and valve plate surfaces were given different wettability treatments. After the output performance test, results demonstrate that giving super-hydrophilic treatment on the surface of key elements can improve the bubble tolerance of piezoelectric pump; in contrast, giving super-hydrophobic treatment will reduce the bubble tolerance.

  5. Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions

    NASA Astrophysics Data System (ADS)

    Özen, İlhan; Şimşek, Süleyman; Okyay, Gamze

    2015-03-01

    In this study, a diatomite sample, which is a natural inorganic mineral with inherently high water and oil absorption capacity, was subjected to grinding before surface modification. Afterwards, the diatomite surface was modified via facile methods using a fluorocarbon (FC) chemical and stearic acid (SA) in addition to the sol-gel fluorosilanization (FS) process. The water and oil wettability, and oil absorbency properties of the unmodified and modified diatomites were investigated in addition to diatomite characterizations such as chemical content, surface area, particle size distribution, morphology, and modification efficiency. It was revealed that the wettability was changed completely depending on the surface modification agent and the media used, while the oil absorbency property surprisingly did not change. On the other hand, the oil absorbency was worsened by the grinding process, whereas the wettability was not affected.

  6. Time dependent wettability of graphite upon ambient exposure: The role of water adsorption

    NASA Astrophysics Data System (ADS)

    Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan; Chiesa, Matteo

    2014-08-01

    We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ˜68° to ˜90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmed by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene).

  7. Time dependent wettability of graphite upon ambient exposure: The role of water adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amadei, Carlo A.; Lai, Chia-Yun; Heskes, Daan

    We report the temporal evolution of the wettability of highly ordered pyrolytic graphite (HOPG) exposed to environmental conditions. Macroscopic wettability is investigated by static and dynamic contact angles (SCA and DCA) obtaining values comparable to the ones presented in the literature. SCA increases from ∼68° to ∼90° during the first hour of exposure after cleaving, whereas DCA is characterized by longer-scale (24 h) time evolution. We interpret these results in light of Fourier transform infrared spectroscopy, which indicates that the evolution of the HOPG wettability is due to adsorption of molecules from the surrounding atmosphere. This hypothesis is further confirmedmore » by nanoscopic observations obtained by atomic force microscope (AFM)-based force spectroscopy, which monitor the evolution of surface properties with a spatial resolution superior to macroscopic experiments. Moreover, we observe that the results of macro- and nanoscale measurements evolve in similar fashion with time and we propose a quantitative correlation between SCA and AFM measurements. Our results suggest that the cause of the transition in the wettability of HOPG is due to the adsorption of hydrocarbon contaminations and water molecules from the environment. This is corroborated by annealing the HOPG is vacuum conditions at 150°, allowing the desorption of molecules on the surface, and thus re-establishing the initial macro and nano surface properties. Our findings can be used in the interpretation of the wettability of more complicated systems derived from HOPG (i.e., graphene)« less

  8. Modification of the continuous flow diffusion chamber for use in zero-gravity. [atmospheric cloud physics lab

    NASA Technical Reports Server (NTRS)

    Keyser, G.

    1978-01-01

    The design philosophy and performance characteristics of the continuous flow diffusion chamber developed for use in ground-based simulation of some of the experiments planned for the atmospheric cloud physics laboratory during the first Spacelab flight are discussed. Topics covered include principle of operation, thermal control, temperature measurement, tem-powered heat exchangers, wettable metal surfaces, sample injection system, and control electronics.

  9. Using atmospheric plasma to increase wettability, imbibition and germination of physically dormant seeds of Mimosa Caesalpiniafolia.

    PubMed

    da Silva, A R M; Farias, M L; da Silva, D L S; Vitoriano, J O; de Sousa, R C; Alves-Junior, C

    2017-09-01

    In this study, we analyzed seed wettability as well as imbibition and germination after treatment with atmospheric pressure cold plasma (APCP) using dielectric barrier discharge (DBD) in seeds that have very low germination rates. To aid industrial applications, several seeds were simultaneously treated with plasma within a space between two coaxial glass tubes sandwiched by two metal mesh screens that produced high-voltage pulses at 17.5kV with a frequency of 990Hz. Three treatment times (3min, 9min and 15min) as well as untreated seeds were used to conduct the wettability, imbibition and germination tests. The wettability and imbibition were found to be directly related to the treatment duration, but saturation of the imbibition was found for treatment durations greater than 9min. Plasma treatment was also effective in improving germination, but shorter treatment duration presented greater germination. This apparent contradiction is explained by the cell damage caused by the increased exposure to plasma, as observed in other studies. The results suggest that there must be an optimal wettability and imbibition condition that ensures that excessive moisture does not harm the germination process. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    NASA Astrophysics Data System (ADS)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-07-01

    The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  11. Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces

    PubMed Central

    Ahn, Hyun Hee; Lee, Il Woo; Lee, Hai Bang; Kim, Moon Suk

    2014-01-01

    Appropriate surface wettability and roughness of biomaterials is an important factor in cell attachment and proliferation. In this study, we investigated the correlation between surface wettability and roughness, and biological response in human adipose-derived stem cells (hADSCs). We prepared wettable and rough gradient polyethylene (PE) surfaces by increasing the power of a radio frequency corona discharge apparatus with knife-type electrodes over a moving sample bed. The PE changed gradually from hydrophobic and smooth surfaces to hydrophilic (water contact angle, 90º to ~50º) and rough (80 to ~120 nm) surfaces as the power increased. We found that hADSCs adhered better to highly hydrophilic and rough surfaces and showed broadly stretched morphology compared with that on hydrophobic and smooth surfaces. The proliferation of hADSCs on hydrophilic and rough surfaces was also higher than that on hydrophobic and smooth surfaces. Furthermore, integrin beta 1 gene expression, an indicator of attachment, and heat shock protein 70 gene expression were high on hydrophobic and smooth surfaces. These results indicate that the cellular behavior of hADSCs on gradient surface depends on surface properties, wettability and roughness. PMID:24477265

  12. A Brief Research Review for Improvement Methods the Wettability between Ceramic Reinforcement Particulate and Aluminium Matrix Composites

    NASA Astrophysics Data System (ADS)

    Razzaq, Alaa Mohammed; Majid, Dayang Laila Abang Abdul; Ishak, M. R.; B, Uday M.

    2017-05-01

    The development of new methods for addition fine ceramic powders to Al aluminium alloy melts, which would lead to more uniform distribution and effective incorporation of the reinforcement particles into the aluminium matrix alloy. Recently the materials engineering research has moved to composite materials from monolithic, adapting to the global need for lightweight, low cost, quality, and high performance advanced materials. Among the different methods, stir casting is one of the simplest ways of making aluminium matrix composites. However, it suffers from poor distribution and combination of the reinforcement ceramic particles in the metal matrix. These problems become significantly effect to reduce reinforcement size, more agglomeration and tendency with less wettability for the ceramic particles in the melt process. Many researchers have carried out different studies on the wettability between the metal matrix and dispersion phase, which includes added wettability agents, fluxes, preheating the reinforcement particles, coating the reinforcement particles, and use composting techniques. The enhancement of wettability of ceramic particles by the molten matrix alloy and the reinforcement particles distribution improvement in the solidified matrix is the main objective for many studies that will be discussed in this paper.

  13. Novel Approaches in Formulation of Entomopathogenic Fungi for Control of Insects in Soil, Foliar, and Structural Habitats: Thinking Outside the Box and Expecting the Unexpected

    USDA-ARS?s Scientific Manuscript database

    By and large, mycoinsecticide formulations have involved sprayable products, typically oil flowables, emulsifiable suspensions, wettable powders, and water dispersable granules. Various nutritive or inert carriers have been used to create granular formulations for use against soil pests. Sometime...

  14. UV-driven microvalve based on a micro-nano TiO₂/SiO₂ composite surface for microscale flow control.

    PubMed

    Guo, Ting; Meng, Tao; Li, Wei; Qin, Jilong; Tong, Zhiping; Zhang, Qing; Li, Xueru

    2014-03-28

    This paper presents a novel ultraviolet (UV)-driven microvalve based on the concept of inserting a trimethyl chlorosilane (CTMS) modified TiO₂/SiO₂ composite patch of switchable wettability in a microfluidic system. A unique micro-nano hierarchical structure was designed and used to enhance the overall wetting contrast with the aim of improving the wetting-based valve performances. Field-emission scanning electron microscopy (FE-SEM) and x-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and chemical composition of the surface. UV-driven wettability conversion on the patched microchannel was investigated using water column relative height tests, and the results confirmed the significant improvement of the hierarchical structure with the surface hydrophobic/hydrophilic conversion, which produced enhancements of 276% and 95% of the water-repellent and water-sucking pressures, respectively, compared with those of the single-scale TiO₂ nanopatterned structure. Accordingly, a good reversible and repeated on-off performance was identified by the valve tests, highlighting the potential application of the novel microvalve in the efficient control of microscale flow.

  15. UV-driven microvalve based on a micro-nano TiO2/SiO2 composite surface for microscale flow control

    NASA Astrophysics Data System (ADS)

    Guo, Ting; Meng, Tao; Li, Wei; Qin, Jilong; Tong, Zhiping; Zhang, Qing; Li, Xueru

    2014-03-01

    This paper presents a novel ultraviolet (UV)-driven microvalve based on the concept of inserting a trimethyl chlorosilane (CTMS) modified TiO2/SiO2 composite patch of switchable wettability in a microfluidic system. A unique micro-nano hierarchical structure was designed and used to enhance the overall wetting contrast with the aim of improving the wetting-based valve performances. Field-emission scanning electron microscopy (FE-SEM) and x-ray photoelectron spectroscopy (XPS) were used to characterize the morphology and chemical composition of the surface. UV-driven wettability conversion on the patched microchannel was investigated using water column relative height tests, and the results confirmed the significant improvement of the hierarchical structure with the surface hydrophobic/hydrophilic conversion, which produced enhancements of 276% and 95% of the water-repellent and water-sucking pressures, respectively, compared with those of the single-scale TiO2 nanopatterned structure. Accordingly, a good reversible and repeated on-off performance was identified by the valve tests, highlighting the potential application of the novel microvalve in the efficient control of microscale flow.

  16. Patterned surface with controllable wettability for inkjet printing of flexible printed electronics.

    PubMed

    Nguyen, Phuong Q M; Yeo, Lip-Pin; Lok, Boon-Keng; Lam, Yee-Cheong

    2014-03-26

    Appropriate control of substrate surface properties prior to inkjet printing could be employed to improve the printing quality of fine resolution structures. In this paper, novel methods to fabricate patterned surfaces with a combination of hydrophilic and hydrophobic properties are investigated. The results of inkjet printing of PEDOT/PSS conductive ink on these modified surfaces are presented. Selective wetting was achieved via a two-step hydrophilic-hydrophobic coating of 3-aminopropyl trimethoxysilane (APTMS) and 3M electronic grade chemical respectively on PET surfaces; this was followed by a selective hydrophilic treatment (either atmospheric O2/Ar plasma or UV/ozone surface treatment) with the aid of a Nickel stencil. Hydrophobic regions with water contact angle (WCA) of 105° and superhydrophilic regions with WCA <5° can be achieved on a single surface. During inkjet printing of the treated surfaces, PEDOT/PSS ink spread spontaneously along the hydrophilic areas while avoiding the hydrophobic regions. Fine features smaller than the inkjet droplet size (approximately 55 μm in diameter) can be successfully printed on the patterned surface with high wettability contrast.

  17. Printable Functional Chips Based on Nanoparticle Assembly.

    PubMed

    Huang, Yu; Li, Wenbo; Qin, Meng; Zhou, Haihua; Zhang, Xingye; Li, Fengyu; Song, Yanlin

    2017-01-01

    With facile manufacturability and modifiability, impressive nanoparticles (NPs) assembly applications were performed for functional patterned devices, which have attracted booming research attention due to their increasing applications in high-performance optical/electrical devices for sensing, electronics, displays, and catalysis. By virtue of easy and direct fabrication to desired patterns, high throughput, and low cost, NPs assembly printing is one of the most promising candidates for the manufacturing of functional micro-chips. In this review, an overview of the fabrications and applications of NPs patterned assembly by printing methods, including inkjet printing, lithography, imprinting, and extended printing techniques is presented. The assembly processes and mechanisms on various substrates with distinct wettabilities are deeply discussed and summarized. Via manipulating the droplet three phase contact line (TCL) pinning or slipping, the NPs contracted in ink are controllably assembled following the TCL, and generate novel functional chips and correlative integrate devices. Finally, the perspective of future developments and challenges is presented and widely exhibited. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Tailoring properties of reduced graphene oxide by oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Kondratowicz, Izabela; Nadolska, Małgorzata; Şahin, Samet; Łapiński, Marcin; Prześniak-Welenc, Marta; Sawczak, Mirosław; Yu, Eileen H.; Sadowski, Wojciech; Żelechowska, Kamila

    2018-05-01

    We report an easily controllable, eco-friendly method for tailoring the properties of reduced graphene oxide (rGO) by means of oxygen plasma. The effect of oxygen plasma treatment time (1, 5 and 10 min) on the surface properties of rGO was evaluated. Physicochemical characterization using microscopic, spectroscopic and thermal techniques was performed. The results revealed that different oxygen-containing groups (e.g. carboxyl, hydroxyl) were introduced on the rGO surface enhancing its wettability. Furthermore, upon longer treatment time, other functionalities were created (e.g. quinones, lactones). Moreover, external surface of rGO was partially etched resulting in an increase of the material surface area and porosity. Finally, the oxygen plasma-treated rGO electrodes with bilirubin oxidase were tested for oxygen reduction reaction. The study showed that rGO treated for 10 min exhibited twofold higher current density than untreated rGO. The oxygen plasma treatment may improve the enzyme adsorption on rGO electrodes by introduction of oxygen moieties and increasing the porosity.

  19. Influence of biochar and terra preta substrates on wettability and erodibility of soils

    NASA Astrophysics Data System (ADS)

    Smetanova, A.; Dotterweich, M.; Diehl, D.; Ulrich, U.; Fohrer, N.

    2012-04-01

    Biochar (BC) and terra preta substrates (TPS) have recently been promoted as soil amendments suitable for soil stabilization, soil amelioration and long-term carbon sequestration. BC is a carbon-enriched substance produced by thermal decomposition of organic material. TPS is composed of liquid and solid organic matter, including BC, altered by acid-lactic fermentation. Their effect on wettability, soil erodibility and nutrient discharge through overland flow was studied by laboratory experiments. At water contents between 0 and 100% BC is water repellent, while TPS changes from a wettable into a repellent state. The 5 and 10 vol % mixtures of BC and 10 and 20 vol% mixtures of TPS with sand remain mainly wettable during drying but repellency maxima are shifted to higher water contents with respect to pure sand and are mainly of subcritical nature. The runoff response was dominated by infiltration properties of the substrates rather than their wettability.Only one mixtures (20% TPS) produced more runoff than sandy-loamy soil on a 15% slope at an intensity of 25 mm•h-1. The 10% BC decreased runoff by up to 40%. At higher rainfall intensities (45 and 55 mm•h-1) the 10% TPS7 was up to 35% less erodible than 10% BC. Despite the TPS containing more nutrients, nutrient discharge varied between types of nutrients, slopes, rainfall intensities and mixtures. The application of a 1 cm layer onto the soil surface instead of 10% mixtures is not recommended due to high nutrient concentrations in the runoff and the wettability of pure substrates. The usage of 10% BC in lowland areas with low frequency and low-intensity precipitation and 10% TPS7 in areas with higher rainfall intensities appears to be appropriate and commendable according to current results. However, together with reversibility of repellency, it needs to undergo further examination in the field under different environmental and land use conditions Key words: biochar, terra preta substrate, wettability, erodibility, nutrient discharge

  20. Dielectric barrier discharge and jet type plasma surface modifications of hybrid polymeric poly (ε-caprolactone)/chitosan scaffolds.

    PubMed

    Ozkan, Ozan; Turkoglu Sasmazel, Hilal

    2018-04-01

    In this study, dry air plasma jet and dielectric barrier discharge Ar + O 2 or Ar + N 2 plasma modifications and their effects on wettability, topography, functionality and biological efficiency of the hybrid polymeric poly (ε-caprolactone)/chitosan scaffolds were reported. The samples treated with Ar + O 2 dielectric barrier discharge plasma (80 sccm O 2 flow rate, 3-min treatment) or with dry air plasma jet (15-cm nozzle-sample distance, 13-min treatment) had the closest wettability (49.11 ± 1.83 and 53.60 ± 0.95, respectively) to the commercial tissue culture polystyrene used for cell cultivation. Scanning electron microscopy images and X-ray photoelectron spectrometry analysis showed increase in topographical roughness and OH/NH 2 functionality, respectively. Increased fluid uptake capacity for the scaffolds treated with Ar + O 2 dielectric barrier discharge plasma (73.60% ± 1.78) and dry air plasma jet (72.48% ± 0.75) were also noted. Finally, initial cell attachment as well as seven-day cell viability, growth and proliferation performances were found to be significantly better for both plasma treated scaffolds than for untreated scaffolds.

  1. Influence of composite processing on the properties of CNT grown on carbon surfaces

    NASA Astrophysics Data System (ADS)

    Guignier, Claire; Bueno, Marie-Ange; Camillieri, Brigitte; Durand, Bernard

    2018-01-01

    Carbon nanotubes (CNT) grafted on carbon fibres (CF) are the subject of more and more studies on the reinforcement of composite materials thanks to the CNT' mechanical properties. This study concerns the growth of CNT directly on CF by the flame method, which is an assembly-line process. However the industrial-scale use of this method and of the composite processing leads to stresses on the CNT-grafted fabrics, such as friction and pulling-out. The aim of this study is to determine the behaviour of the CNT under these kinds of stresses and to study theirs consequences in composite processing. For this purpose, adhesion tests and friction tests were performed as well as analysis of the surface by Scanning Electron Microscopy (SEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). In friction tests, CNT formed a transfer film, and its effect on the wettability of the fabric with epoxy resin is determined. Finally, the wear of the CNT does not influence the wettability of the fabric. Furthermore, it is proven that the nature of the catalyst needed to grow the CNT modifies the behaviour of the surface.

  2. Surface modification of carbon fibers by a polyether sulfone emulsion sizing for increased interfacial adhesion with polyether sulfone

    NASA Astrophysics Data System (ADS)

    Yuan, Haojie; Zhang, Shouchun; Lu, Chunxiang

    2014-10-01

    Interests on carbon fiber-reinforced thermoplastic composites are growing rapidly, but the challenges with poor interfacial adhesion have slowed their adoption. In this work, a polyether sulfone (PES) emulsion sizing was prepared successfully for increased interfacial adhesion of carbon fiber/PES composites. To obtain a high-quality PES emulsion sizing, the key factor, emulsifier concentration, was studied by dynamic light scattering technique. The results demonstrated that the suitable weight ratio of PES to emulsifier was 8:3, and the resulting PES emulsion sizing had an average particle diameter of 117 nm and Zeta potential of -52.6 mV. After sizing, the surface oxygen-containing functional groups, free energy and wettability of carbon fibers increased significantly, which were advantageous to promote molecular-level contact between carbon fiber and PES. Finally, short beam shear tests were performed to evaluate the interfacial adhesion of carbon fiber/PES composites. The results indicated that PES emulsion sizing played a critical role for the enhanced interfacial adhesion in carbon fiber/PES composites, and a 26% increase of interlaminar shear strength was achieved, because of the improved fiber surface wettability and interfacial compatibility between carbon fiber and PES.

  3. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability.

    PubMed

    Nakamura, Miho; Hori, Naoko; Ando, Hiroshi; Namba, Saki; Toyama, Takeshi; Nishimiya, Nobuyuki; Yamashita, Kimihiro

    2016-05-01

    The initial adhesion of cells to biomaterials is critical in the regulation of subsequent cell behaviors. The purpose of this study was to investigate a mechanism through which the surface wettability of biomaterials can be improved and determine the effects of biomaterial surface characteristics on cellular behaviors. We investigated the surface characteristics of various types of hydroxyapatite after sintering in different atmospheres and examined the effects of various surface characteristics on cell adhesion to study cell-biomaterial interactions. Sintering atmosphere affects the polarization capacity of hydroxyapatite by changing hydroxide ion content and grain size. Compared with hydroxyapatite sintered in air, hydroxyapatite sintered in saturated water vapor had a higher polarization capacity that increased surface free energy and improved wettability, which in turn accelerated cell adhesion. We determined the optimal conditions of hydroxyapatite polarization for the improvement of surface wettability and acceleration of cell adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Influence of surface contamination on the wettability of heat transfer surfaces

    DOE PAGES

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng; ...

    2015-08-08

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less

  5. The effect of organic acids on wettability of sandstone and carbonate rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mwangi, Paulina; Brady, Patrick V.; Radonjic, Mileva

    This paper examines the role of crude oil’s organic acid surface active compounds (SAC) in determining the reservoir wettability over a range of salinities and temperatures. To isolate the effects of individual SACs, this project used model oil mixtures of pure decane and single SACs to represent the oleic phase. Due to the large number of experiments in this study, we used wettability measurement method by the modified flotation technique (MFT) to produce fast, reliable, and quantitative results. The results showed that oil wetting by decane increased with temperature for carbonate rocks. Sandstones oil wetting showed little temperature dependency. Themore » presence of long-chained acids in decane increased oil wetting in sandstone and carbonate rocks as salinity was lowered, while the short-chained acid increased water wetting under the same conditions. The effect of organic acids on wettability was slightly enhanced with increasing temperature for all rock types.« less

  6. The effect of organic acids on wettability of sandstone and carbonate rocks

    DOE PAGES

    Mwangi, Paulina; Brady, Patrick V.; Radonjic, Mileva; ...

    2018-02-21

    This paper examines the role of crude oil’s organic acid surface active compounds (SAC) in determining the reservoir wettability over a range of salinities and temperatures. To isolate the effects of individual SACs, this project used model oil mixtures of pure decane and single SACs to represent the oleic phase. Due to the large number of experiments in this study, we used wettability measurement method by the modified flotation technique (MFT) to produce fast, reliable, and quantitative results. The results showed that oil wetting by decane increased with temperature for carbonate rocks. Sandstones oil wetting showed little temperature dependency. Themore » presence of long-chained acids in decane increased oil wetting in sandstone and carbonate rocks as salinity was lowered, while the short-chained acid increased water wetting under the same conditions. The effect of organic acids on wettability was slightly enhanced with increasing temperature for all rock types.« less

  7. A numerical investigation of the effect of surface wettability on the boiling curve.

    PubMed

    Hsu, Hua-Yi; Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A

    2017-01-01

    Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° - 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights.

  8. Surface nanoporosity has a greater influence on osteogenic and bacterial cell adhesion than crystallinity and wettability

    NASA Astrophysics Data System (ADS)

    Rodriguez-Contreras, Alejandra; Guadarrama Bello, Dainelys; Nanci, Antonio

    2018-07-01

    There has been much emphasis on the influence of crystallinity and wettability for modulating cell activity, particularly for bone biomaterials. In this context, we have generated titanium oxide layers with similar mesoporous topography and surface roughness but with amorphous or crystalline oxide layers and differential wettability. We then investigated their influence on the behavior of MC3T3 osteoblastic and bacterial cells. There was no difference in cell adhesion, spreading and growth on amorphous and crystalline surfaces. The number of focal adhesions was similar, however, cells on the amorphous surface exhibited a higher frequency of mature adhesions. The crystallinity of the surface layers also had no bearing on bacterial adhesion. While it cannot be excluded that surface crystallinity, roughness and wettability contribute to some degree to determining cell behavior, our data suggest that physical characteristics of surfaces represent the major determinant.

  9. Influence of surface contamination on the wettability of heat transfer surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng

    In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less

  10. A study of metal-ceramic wettability in SiC-Al using dynamic melt infiltration of SiC

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Rohatgi, P. K.

    1993-01-01

    Pressure-assisted infiltration with a 2014 Al alloy of plain and Cu-coated single crystal platelets of alpha silicon carbide was used to study particulate wettability under dynamic conditions relevant to pressure casting of metal-matrix composites. The total penetration length of infiltrant metal in porous compacts was measured at the conclusion of solidification as a function of pressure, infiltration time, and SiC size for both plain and Cu-coated SiC. The experimental data were analyzed to obtain a threshold pressure for the effect of melt intrusion through SiC compacts. The threshold pressure was taken either directly as a measure of wettability or converted to an effective wetting angle using the Young-Laplace capillary equation. Cu coating resulted in partial but beneficial improvements in wettability as a result of its dissolution in the melt, compared to uncoated SiC.

  11. A numerical investigation of the effect of surface wettability on the boiling curve

    PubMed Central

    Lin, Ming-Chieh; Popovic, Bridget; Lin, Chii-Ruey; Patankar, Neelesh A.

    2017-01-01

    Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° − 180°) has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights. PMID:29125847

  12. Impact of a complex fluid droplet on wettable and non wettable surfaces

    NASA Astrophysics Data System (ADS)

    Bolleddula, Daniel; Aliseda, Alberto

    2008-11-01

    The impact of liquid droplets is a phenomenon prevalent in many natural and industrial processes. Such events include rain drops, fuel injection, and ink-jet printing. To date, research in atomization and droplet impact has been focused on Newtonian fluids. In the coating of pharmaceutical tablets, the coating solutions contain polymers, surfactants, and large concentrations of insoluble solids in suspension which inherently exhibit non-Newtonian behavior. In this work, we will present ongoing droplet impact experiments using complex rheology fluids under a wide range of Weber and Ohnesorge numbers. Both hydrophilic and hydrophobic surfaces are been studied, and the effect of surface roughness has also been considered. We will describe the limits of bouncing, spreading, and splashing for these complex fluids. We will also discuss quantitative information such as spreading rates and contact angle measurements on wettable and non-wettable surfaces obtained from high speed images.

  13. Primitive control of cellular metabolism

    NASA Technical Reports Server (NTRS)

    Mitz, M. A.

    1974-01-01

    It is pointed out that control substances must have existed from the earliest times in the evolution of life and that the same control mechanisms must exist today. The investigation reported is concerned with the concept that carbon dioxide is a primitive regulator of cell function. The effects of carbon dioxide on cellular materials are examined, taking into account questions of solubilization, dissociation, changes of charge, stabilization, structural changes, wettability, the exclusion of other gases, the activation of compounds, changes in plasticity, and changes in membrane permeability.

  14. Study on the Effect of Surface Energy of Polypropylene/Polyamide12 polymer Hybrid Matrix Reinforced with Virgin and Recycled Carbon Fiber

    NASA Astrophysics Data System (ADS)

    Sena Maia, Bruno

    The presented work is focused on characterization of thermal treated recycled and virgin carbon fibers. Their thermal performances, chemical surface composition and its influence on interfacial adhesion phenomena on PP/PA12 hybrid matrix were compared using TGA, FTIR and XPS analysis. Additionally, differences between hybrid matrix structural performances of PP/PA12 using both surface modifiers PMPPIC and MAPP were investigated. Final mechanical properties improvements between 8% up to 17% were reached by addition of PMPPIC in PP/PA12 hybrid matrix. For PP/PA12 matrix reinforcement using virgin and recycled carbon fibers, impact energy was improved up to 98% compared with MAPP modified matrix leading to a novel composite with good energy absorption. Finally, wettability studies and surface free energy analysis of all materials studied support the effect of the addition of PMPPIC, MAPP and carbon fibers in final composite surface thermodynamics bringing important data correlation between interfacial adhesion mechanisms and final composite performance.

  15. Increased ambient air temperature alters the severity of soil water repellency

    NASA Astrophysics Data System (ADS)

    van Keulen, Geertje; Sinclair, Kat; Hallin, Ingrid; Doerr, Stefan; Urbanek, Emilia; Quinn, Gerry; Matthews, Peter; Dudley, Ed; Francis, Lewis; Gazze, S. Andrea; Whalley, Richard

    2017-04-01

    Soil repellency, the inability of soils to wet readily, has detrimental environmental impacts such as increased runoff, erosion and flooding, reduced biomass production, inefficient use of irrigation water and preferential leaching of pollutants. Its impacts may exacerbate (summer) flood risks associated with more extreme drought and precipitation events. In this study we have tested the hypothesis that transitions between hydrophobic and hydrophilic soil particle surface characteristics, in conjunction with soil structural properties, strongly influence the hydrological behaviour of UK soils under current and predicted UK climatic conditions. We have addressed the hypothesis by applying different ambient air temperatures under controlled conditions to simulate the effect of predicted UK climatic conditions on the wettability of soils prone to develop repellency at different severities. Three UK silt-loam soils under permanent vegetation were selected for controlled soil perturbation studies. The soils were chosen based on the severity of hydrophobicity that can be achieved in the field: severe to extreme (Cefn Bryn, Gower, Wales), intermediate to severe (National Botanical Garden, Wales), and subcritical (Park Grass, Rothamsted Research near London). The latter is already highly characterised so was also used as a control. Soils were fully saturated with water and then allowed to dry out gradually upon exposure to controlled laboratory conditions. Soils were allowed to adapt for a few hours to a new temperature prior to initiation of the controlled experiments. Soil wettability was determined at highly regular intervals by measuring water droplet penetration times. Samples were collected at four time points: fully wettable, just prior to and after the critical soil moisture concentrations (CSC), and upon reaching air dryness (to constant weight), for further (ultra)metaproteomic and nanomechanical studies to allow integration of bulk soil characterisations with functional expression and nanoscale studies to generate deep mechanistic understanding of the roles of microbes in soil ecosystems. Our controlled soil pertubation studies have shown that an increase in ambient temperature has consistently affected the severity of soil water repellency. Surprisingly, a higher ambient air temperature impacts soils that in the field develop subcritical and extreme repellency, differently under controlled laboratory conditions. We will discuss the impact of these results in relation to predicted UK climatic conditions. Soil metaproteomics will provide mechanistic insight at the molecular level whether differential microbial adaptation is correlated with the apparent different response to a higher ambient air temperature.

  16. Surface modification of gutta-percha cones by non-thermal plasma.

    PubMed

    Prado, Maíra; Menezes, Marilia Santana de Oliveira; Gomes, Brenda Paula Figueiredo de Almeida; Barbosa, Carlos Augusto de Melo; Athias, Leonardo; Simão, Renata Antoun

    2016-11-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1min; Argon: treatment with Argon plasma for 1min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Tuning Wettability and Adhesion of Structured Surfaces

    NASA Astrophysics Data System (ADS)

    Badge, Ila

    Structured surfaces with feature size ranging from a few micrometers down to nanometers are of great interest in the applications such as design of anti-wetting surfaces, tissue engineering, microfluidics, filtration, microelectronic devices, anti-reflective coatings and reversible adhesives. A specific surface property demands particular roughness geometry along with suitable surface chemistry. Plasma Enhanced Chemical Vapor Deposition (PECVD) is a technique that offers control over surface chemistry without significantly affecting the roughness and thus, provides a flexibility to alter surface chemistry selectively for a given structured surface. In this study, we have used PECVD to fine tune wetting and adhesion properties. The research presented focuses on material design aspects as well as the fundamental understanding of wetting and adhesion phenomena of structured surfaces. In order to study the effect of surface roughness and surface chemistry on the surface wettability independently, we developed a model surface by combination of colloidal lithography and PECVD. A systematically controlled hierarchical roughness using spherical colloidal particles and surface chemistry allowed for quantitative prediction of contact angles corresponding to metastable and stable wetting states. A well-defined roughness and chemical composition of the surface enabled establishing a correlation between theory predictions and experimental measurements. We developed an extremely robust superhydrophobic surface based on Carbon-Nanotubes (CNT) mats. The surface of CNTs forming a nano-porous mesh was modified using PECVD to deposit a layer of hydrophobic coating (PCNT). The PCNT surface thus formed is superhydrophobic with almost zero contact angle hysteresis. We demonstrated that the PCNT surface is not wetted under steam condensation even after prolonged exposure and also continues to retain its superhydrophobicity after multiple frosting-defrosting cycles. The anti-wetting behavior of PCNT surface is consistent with our model predictions, derived based on thermodynamic theory of wetting. The surface of gecko feet is a very unique natural structured surface. The hierarchical surface structure of a Gecko toe pad is responsible for its reversible adhesive properties and superhydrophobicity. van der Waals interactions is known to be the key mechanism behind Gecko adhesion. However, we found that the wettability, thus the surface chemistry plays a significant role in Gecko adhesion mechanism, especially in the case of underwater adhesion. We used PECVD process to deposit a layer of coating with known chemistry on the surface of sheds of gecko toes to study the effect that wettability of the toe surface has on its adhesion. In summary, we demonstrated that PECVD can be effectively used as means of surface chemistry control for tunable structure-property relationship of three types of structured surfaces; each having unique surface features.

  18. Transition from stripe-like patterns to a particulate film using driven evaporating menisci.

    PubMed

    Noguera-Marín, Diego; Moraila-Martínez, Carmen L; Cabrerizo-Vílchez, Miguel A; Rodríguez-Valverde, Miguel A

    2014-07-01

    Better control of colloidal assembly by convective deposition is particularly helpful in particle templating. However, knowledge of the different factors that can alter colloidal patterning mechanisms is still insufficient. Deposit morphology is strongly ruled by contact line dynamics, but the wettability properties of the substrate can alter it drastically. In this work, we experimentally examined the roles of substrate contact angle hysteresis and receding contact angle using driven evaporating menisci similar to the dip-coating technique but at a low capillary number. We used smooth substrates with very different wettability properties and nanoparticles of different sizes. For fixed withdrawal velocity, evaporation conditions, and nanoparticle concentration, we analyzed the morphology of the deposits formed on each substrate. A gradual transition from stripe-like patterns to a film was observed as the contact angle hysteresis and receding contact angle were lowered.

  19. Hierarchical roughness of sticky and non-sticky superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Raza, Muhammad; Kooij, Stefan; van Silfhout, Arend; Zandvliet, Harold; Poelsema, Bene

    2011-11-01

    The importance of superhydrophobic substrates (contact angle >150° with sliding angle <10°) in modern technology is undeniable. We present a simple colloidal route to manufacture superstructured arrays with single- and multi-length-scaled roughness to obtain sticky and non-sticky superhydrophobic surfaces. The largest length scale is provided by (multi-)layers of silica spheres (1 μm, 500nm and 150nm diameter). Decoration with gold nanoparticles (14nm, 26nm and 47nm) gives rise to a second length scale. To lower the surface energy, gold nanoparticles are functionalized with dodecanethiol and the silica spheres by perfluorooctyltriethoxysilane. The morphology was examined by helium ion microscopy (HIM), while wettability measurements were performed by using the sessile drop method. We conclude that wettability can be controlled by changing the surface chemistry and/or length scales of the structures. To achieve truly non-sticky superhydrophobic surfaces, hierarchical roughness plays a vital role.

  20. Electrowetting of Weak Polyelectrolyte-Coated Surfaces.

    PubMed

    Sénéchal, Vincent; Saadaoui, Hassan; Rodriguez-Hernandez, Juan; Drummond, Carlos

    2017-05-23

    Polymer coatings are commonly used to modify interfacial properties like wettability, lubrication, or biocompatibility. These properties are determined by the conformation of polymer molecules at the interface. Polyelectrolytes are convenient elementary bricks to build smart materials, given that polyion chain conformation is very sensitive to different environmental variables. Here we discuss the effect of an applied electric field on the properties of surfaces coated with poly(acrylic acid) brushes. By combining atomic force microscopy, quartz crystal microbalance, and contact angle experiments, we show that it is possible to precisely tune polyion chain conformation, surface adhesion, and surface wettability using very low applied voltages if the polymer grafting density and environmental conditions (pH and ionic strength) are properly formulated. Our results indicate that the effective ionization degree of the grafted weak polyacid can be finely controlled with the externally applied field, with important consequences for the macroscopic surface properties.

  1. Wettability and friction coefficient of micro-magnet arrayed surface

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Liao, Sijie; Wang, Xiaolei

    2012-01-01

    Surface coating is an important part of surface engineering and it has been successfully used in many applications to improve the performance of surfaces. In this paper, magnetic arrayed films with different thicknesses were fabricated on the surface of 316 stainless steel disks. Controllable colloid - ferrofluids (FF) was chosen as lubricant, which can be adsorbed on the magnetic surface. The wettability of the micro-magnet arrayed surface was evaluated by measuring the contract angle of FF drops on surface. Tribological experiments were carried out to investigate the effects of magnetic film thickness on frictional properties when lubricated by FF under plane contact condition. It was found that the magnetic arrayed surface with thicker magnetic films presented larger contract angle. The frictional test results showed that samples with thicker magnetic films could reduce friction and wear more efficiently at higher sliding velocity under the lubrication of FF.

  2. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jill S. Buckley; Norman R. Morrow

    2006-01-01

    The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.

  3. Effect of surface treatment on the corrosion properties of magnesium-based fibre metal laminate

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Zhang, Y.; Ma, Q. Y.; Dai, Y.; Hu, F. P.; Wei, G. B.; Xu, T. C.; Zeng, Q. W.; Wang, S. Z.; Xie, W. D.

    2017-02-01

    The surface roughness, weight of phosphating film and wettability of magnesium alloy substrates after abrasion and phosphating treatment were investigated in this work. The interfacial bonding and corrosion properties of a magnesium-based fibre metal laminate (MgFML) were analysed. The results showed that the wettability of the magnesium alloy was greatly influenced by the surface roughness, and the rough surface possessed a larger surface energy and better wettability. The surface energy and wettability of the magnesium alloy were significantly improved by the phosphating treatment. After phosphating for 5 min, a phosphating film with a double-layer structure was formed on the magnesium substrate, and the weight of the phosphating film and the surface energy reached their maximum values. The surface energies of the phosphated substrate after abrasion with #120 and #3000 grit abrasive papers were 84.31 mJ/m2 and 83.65 mJ/m2, respectively. The wettability of the phosphated magnesium was significantly better than the abraded magnesium. The phosphated AZ31B sheet had a better corrosion resistance than the abraded AZ31B sheet within short times. The corrosion resistance of the magnesium alloy was greatly increased by being composited with glass fibre/epoxy prepregs.

  4. Bioinspired Photonic Pigments from Colloidal Self-Assembly.

    PubMed

    Goerlitzer, Eric S A; Klupp Taylor, Robin N; Vogel, Nicolas

    2018-05-07

    The natural world is a colorful environment. Stunning displays of coloration have evolved throughout nature to optimize camouflage, warning, and communication. The resulting flamboyant visual effects and remarkable dynamic properties, often caused by an intricate structural design at the nano- and microscale, continue to inspire scientists to unravel the underlying physics and to recreate the observed effects. Here, the methodologies to create bioinspired photonic pigments using colloidal self-assembly approaches are considered. The physics governing the interaction of light with structural features and natural examples of structural coloration are briefly introduced. It is then outlined how the self-assembly of colloidal particles, acting as wavelength-scale building blocks, can be particularly useful to replicate coloration from nature. Different coloration effects that result from the defined structure of the self-assembled colloids are introduced and it is highlighted how these optical properties can be translated into photonic pigments by modifications of the assembly processes. The importance of absorbing elements, as well as the role of surface chemistry and wettability to control structural coloration is discussed. Finally, approaches to integrate dynamic control of coloration into such self-assembled photonic pigments are outlined. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Commercial production of microbials by Reuter Laboratories, inc., for control of the gypsy moth and the spruce budworm

    Treesearch

    F. D. Obenchain

    1985-01-01

    Reuter Laboratories announces additions to its line of microbial insecticides with the 1984-85 introduction of a Bacillus thuringiensis, Berliner, variety Kurstaki (HD-1, H-3A3B) wettable powder formulation. Gypsy moth nucleopolyhedrosis virus, in experimental production since 1982, is scheduled for commercial introduction as a...

  6. Nanoparticle mediated micromotor motion

    NASA Astrophysics Data System (ADS)

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-03-01

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ~200 μm s-1. By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ~10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ~200 μm s-1. By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ~10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems. Electronic supplementary information (ESI) available: Fig. S1-S5 and Video S1-S3. See DOI: 10.1039/c4nr07558g

  7. Water and oil wettability of anodized 6016 aluminum alloy surface

    NASA Astrophysics Data System (ADS)

    Rodrigues, S. P.; Alves, C. F. Almeida; Cavaleiro, A.; Carvalho, S.

    2017-11-01

    This paper reports on the control of wettability behaviour of a 6000 series aluminum (Al) alloy surface (Al6016-T4), which is widely used in the automotive and aerospace industries. In order to induce the surface micro-nanostructuring of the surface, a combination of prior mechanical polishing steps followed by anodization process with different conditions was used. The surface polishing with sandpaper grit size 1000 promoted aligned grooves on the surface leading to static water contact angle (WCA) of 91° and oil (α-bromonaphthalene) contact angle (OCA) of 32°, indicating a slightly hydrophobic and oleophilic character. H2SO4 and H3PO4 acid electrolytes were used to grow aluminum oxide layers (Al2O3) by anodization, working at 15 V/18° C and 100 V/0 °C, respectively, in one or two-steps configuration. Overall, the anodization results showed that the structured Al surfaces were hydrophilic and oleophilic-like with both WCA and OCA below 90°. The one-step configuration led to a dimple-shaped Al alloy surface with small diameter of around 31 nm, in case of H2SO4, and with larger diameters of around 223 nm in case of H3PO4. The larger dimples achieved with H3PO4 electrolyte allowed to reach a slight hydrophobic surface. The thicker porous Al oxide layers, produced by anodization in two-step configuration, revealed that the liquids can penetrate easily inside the non-ordered porous structures and, thus, the surface wettability tended to superhydrophilic and superoleophilic character (CA < 10°). These results indicate that the capillary-pressure balance model, described for wettability mechanisms of porous structures, was broken. Moreover, thicker oxide layers with narrow pores of about 29 nm diameter allowed to achieve WCA < OCA. This inversion in favour of the hydrophilic-oleophobic surface behaviour is of great interest either for lubrication of mechanical components or in water-oil separation process.

  8. When the Desert Beetle Met the Carnivorous Plant: A Perfect Match for Droplet Growth and Shedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aizenberg, Joanna; Park, Kyoo Chul; Kim, Philseok

    2015-01-14

    Phase change of vapor followed by coalescence and transport on ubiquitous bumped or curved surfaces is of fundamental importance for a wide range of phenomena and applications from water condensation on cold beverage bottles, to fogging on glasses and windshields, self-cleaning by jumping droplets, weathering, self-assembly, desalination, latent heat transfer, etc. Over the past decades, many attempts to understand and control the droplet growth dynamics and shedding of condensates on textured surfaces have focused on finding the role of micro/nanotexture combined with wettability. In particular, inspired by the Namib desert beetle bump structure, studies tested the effect of topography onmore » the preferential condensation. However, like the preferential condensation observed on flat surfaces, hybrid wettability rather than texture plays a major role; the role of bump topography on local preferential condensation has been unexplored and still not clearly understood. In addition, given that not only facilitating the droplet growth but also transporting the condensed droplets toward the desired reservoir is essential to make fresh sites for renucleation and regrowth of the droplets for enhancing condensation efficiency, the current hybrid-wettability- based design is not efficient to transport the condensates due to the high contact angle hysteresis created by highly wettable pinning points. Here we show that beetle-inspired bump topography leads faster localized condensation and transport of water. Employing simple analytic and more complicated numerical calculations, we reveal the detailed role of topography and predict the focused diffusion flux based on the distortion of concentration gradient around convex surface topography. We experimentally demonstrate the systematic understanding on the unseen effect of topographical parameters on faster droplet growth dynamics on various bump geometries. Further rational design of asymmetric topography and synergetic combination with slippery coating simultaneously enable both faster droplet growth and transport for applications including efficient water condensation.« less

  9. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.

    PubMed

    Chen, Longquan; Bonaccurso, Elmar

    2014-08-01

    In this paper, we experimentally investigated the dynamic spreading of liquid drops on solid surfaces. Drop of glycerol water mixtures and pure water that have comparable surface tensions (62.3-72.8 mN/m) but different viscosities (1.0-60.1 cP) were used. The size of the drops was 0.5-1.2 mm. Solid surfaces with different lyophilic and lyophobic coatings (equilibrium contact angle θ(eq) of 0°-112°) were used to study the effect of surface wettability. We show that surface wettability and liquid viscosity influence wetting dynamics and affect either the coefficient or the exponent of the power law that describes the growth of the wetting radius. In the early inertial wetting regime, the coefficient of the wetting power law increases with surface wettability but decreases with liquid viscosity. In contrast, the exponent of the power law does only depend on surface wettability as also reported in literature. It was further found that surface wettability does not affect the duration of inertial wetting, whereas the viscosity of the liquid does. For low viscosity liquids, the duration of inertial wetting corresponds to the time of capillary wave propagation, which can be determined by Lamb's drop oscillation model for inviscid liquids. For relatively high viscosity liquids, the inertial wetting time increases with liquid viscosity, which may due to the viscous damping of the surface capillary waves. Furthermore, we observed a viscous wetting regime only on surfaces with an equilibrium contact angle θ(eq) smaller than a critical angle θ(c) depending on viscosity. A scaling analysis based on Navier-Stokes equations is presented at the end, and the predicted θ(c) matches with experimental observations without any additional fitting parameters.

  10. Microbial enhanced oil recovery and wettability research program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is amore » significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.« less

  11. External-Field-Induced Gradient Wetting for Controllable Liquid Transport: From Movement on the Surface to Penetration into the Surface.

    PubMed

    Li, Yan; He, Linlin; Zhang, Xiaofang; Zhang, Na; Tian, Dongliang

    2017-12-01

    External-field-responsive liquid transport has received extensive research interest owing to its important applications in microfluidic devices, biological medical, liquid printing, separation, and so forth. To realize different levels of liquid transport on surfaces, the balance of the dynamic competing processes of gradient wetting and dewetting should be controlled to achieve good directionality, confined range, and selectivity of liquid wetting. Here, the recent progress in external-field-induced gradient wetting is summarized for controllable liquid transport from movement on the surface to penetration into the surface, particularly for liquid motion on, patterned wetting into, and permeation through films on superwetting surfaces with external field cooperation (e.g., light, electric fields, magnetic fields, temperature, pH, gas, solvent, and their combinations). The selected topics of external-field-induced liquid transport on the different levels of surfaces include directional liquid motion on the surface based on the wettability gradient under an external field, partial entry of a liquid into the surface to achieve patterned surface wettability for printing, and liquid-selective permeation of the film for separation. The future prospects of external-field-responsive liquid transport are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Complementary effect of Phloxine B on the insecticidal efficacy of Isaria fumosorosea SFP-198 wettable powder against greenhouse whitefly, Trialeurodes vaporariorum West.

    PubMed

    Kim, Jae Su; Je, Yeon Ho; Choi, Jae Young

    2010-12-01

    Insecticidal activities of five photoactive dyes against greenhouse whitefly (GWF), Trialeurodes vaporariorum West., in tomatoes were investigated to improve the control efficacy of an entomopathogenic fungal product, Isaria fumosorosea SFP-198 wettable powder (WP). Azorubine, Eosin B, Erythrosine, Brilliant Green and Phloxine B were used in this work, accompanying pyriproxyfen emulsifiable concentrate (EC) as a commercial standard for comparison. Phloxine B had the highest control efficacy in glasshouse conditions. The most suitable dose of Phloxine B was determined as 0.005 g L(-1) , given the dosage-dependent control efficacy and phytotoxicity of the dye, and its influence on the germination of SFP-198 conidia. In field conditions, SFP-198 WP + Phloxine B (2 + 0.005 g L(-1) ; tank mix) showed 89.1 and 95.3% control efficacy 7 and 14 days post-application, which was significantly higher than the efficacy of SFP-198 WP alone (43.5 and 64.0%), Phloxine B (47.5 and 30.7%) or pyriproxyfen EC (67.7 and 80.2%). Phloxine B cooperates with SFP-198 WP complementarily, possibly in the order of killing action (early: Phloxine B; late: SFP-198 WP). The dye can be incorporated into SFP-198 WP to improve its efficacy and applied to other Hypocrelean entomopathogenic fungal products. Copyright © 2010 Society of Chemical Industry.

  13. Proposition of stair climb of a drop using chemical wettability gradient

    NASA Astrophysics Data System (ADS)

    Seerha, Prabh P. S.; Kumar, Parmod; Das, Arup K.; Mitra, Sushanta K.

    2017-07-01

    We propose a passive technique for a drop to climb along the staircase textured surface using chemical wettability gradients. The stair structure, droplet configuration, and contact angle gradient are modeled using Lagrangian smoothed particle hydrodynamics. The stair climb efficiency of the droplet is found to be a function of wettability gradient strength. Using analytical balance of actuation and resistive forces across droplets, physical reasons behind stair climbing are established and influencing parameters are identified. Evolution of the droplet shape along with the advancing and the receding contact angles is presented from where instantaneous actuation and hysteresis forces are calculated. Using history of Lagrangian particles, circulation at the foot of stairs and progressing development of the advancing drop front are monitored. Higher efficiency in stair climbing in the case of a bigger sized drop than smaller one is obtained from simulation results and realized from force balance. Difficulty in climbing steeper stairs is also demonstrated to delineate the effect of gravitational pull against the actuation force due to the wettability gradient.

  14. The dynamics of the water droplet impacting onto hot solid surfaces at medium Weber numbers

    NASA Astrophysics Data System (ADS)

    Mitrakusuma, Windy H.; Kamal, Samsul; Indarto; Dyan Susila, M.; Hermawan; Deendarlianto

    2017-10-01

    The effects of the wettability of a droplet impacting onto a hot solid surface under medium Weber numbers were studied experimentally. The Weber numbers used in the present experiment were 52.1, 57.6, and 63.1. Three kinds of solid surfaces with different wettability were used. These were normal stainless steel (NSS), TiO2 coated NSS, and TiO2 coated NSS radiated with ultraviolet rays. The surface temperatures were varied from 60 to 200 °C. The image of side the view and 30° from horizontal were taken to explain the spreading and the interfacial behavior of a single droplet during impact the hot solid surfaces. It was found that under medium Weber numbers, the surface wettability plays an important role on the droplet spreading and evaporation time during the impact on the hot solid surfaces. The higher the wettability, the larger the droplet spreading on the hot surface, and the lower the evaporation time.

  15. Distinct ice patterns on solid surfaces with various wettabilities

    PubMed Central

    Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun

    2017-01-01

    No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice Ih), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. PMID:29073045

  16. Distinct ice patterns on solid surfaces with various wettabilities.

    PubMed

    Liu, Jie; Zhu, Chongqin; Liu, Kai; Jiang, Ying; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun

    2017-10-24

    No relationship has been established between surface wettability and ice growth patterns, although ice often forms on top of solid surfaces. Here, we report experimental observations obtained using a process specially designed to avoid the influence of nucleation and describe the wettability-dependent ice morphology on solid surfaces under atmospheric conditions and the discovery of two growth modes of ice crystals: along-surface and off-surface growth modes. Using atomistic molecular dynamics simulation analysis, we show that these distinct ice growth phenomena are attributable to the presence (or absence) of bilayer ice on solid surfaces with different wettability; that is, the formation of bilayer ice on hydrophilic surface can dictate the along-surface growth mode due to the structural match between the bilayer hexagonal ice and the basal face of hexagonal ice (ice I h ), thereby promoting rapid growth of nonbasal faces along the hydrophilic surface. The dramatically different growth patterns of ice on solid surfaces are of crucial relevance to ice repellency surfaces. Published under the PNAS license.

  17. A Review on the Wettability of Dental Implant Surfaces II: Biological and Clinical Aspects

    PubMed Central

    Gittens, Rolando A.; Scheideler, Lutz; Rupp, Frank; Hyzy, Sharon L.; Geis-Gerstorfer, Jürgen; Schwartz, Zvi; Boyan, Barbara D.

    2014-01-01

    Dental and orthopaedic implants have been under continuous advancement to improve their interactions with bone and ensure a successful outcome for patients. Surface characteristics such as surface topography and surface chemistry can serve as design tools to enhance the biological response around the implant, with in vitro, in vivo and clinical studies confirming their effects. However, the comprehensive design of implants to promote early and long-term osseointegration requires a better understanding of the role of surface wettability and the mechanisms by which it affects the surrounding biological environment. This review provides a general overview of the available information about the contact angle values of experimental and of marketed implant surfaces, some of the techniques used to modify surface wettability of implants, and results from in vitro and clinical studies. We aim to expand the current understanding on the role of wettability of metallic implants at their interface with blood and the biological milieu, as well as with bacteria, and hard and soft tissues. PMID:24709541

  18. Superior Thermally Stable and Nonflammable Porous Polybenzimidazole Membrane with High Wettability for High-Power Lithium-Ion Batteries.

    PubMed

    Li, Dan; Shi, Dingqin; Xia, Yonggao; Qiao, Lin; Li, Xianfeng; Zhang, Huamin

    2017-03-15

    Separators with high security, reliability, and rate capacity are in urgent need for the advancement of high power lithium ion batteries. The currently used porous polyolefin membranes are critically hindered by their low thermal stability and poor electrolyte wettability, which further lead to low rate capacity. Here we present a novel promising porous polybenzimidazole (PBI) membrane with super high thermal stability and electrolyte wettability. The rigid structure and functional groups in the PBI chain enable membranes to be stable at temperature as high as 400 °C, and the unique flame resistance of PBI could ensure the high security of a battery as well. In particular, the prepared membrane owns 328% electrolyte uptake, which is more than two times higher than commercial Celgard 2325 separator. The unique combination of high thermal stability, high flame resistance and super high electrolyte wettability enable the PBI porous membranes to be highly promising for high power lithium battery.

  19. Structure and wettability property of the growth and nucleation surfaces of thermally treated freestanding CVD diamond films

    NASA Astrophysics Data System (ADS)

    Pei, Xiaoqiang; Cheng, Shaoheng; Ma, Yibo; Wu, Danfeng; Liu, Junsong; Wang, Qiliang; Yang, Yizhou; Li, Hongdong

    2015-08-01

    This paper reports the surface features and wettability properties of the (1 0 0)-textured freestanding chemical vapor deposited (CVD) diamond films after thermal exposure in air at high temperature. Thermal oxidation at proper conditions eliminates selectively nanodiamonds and non-diamond carbons in the films. The growth side of the films contains (1 0 0)-oriented micrometer-sized columns, while its nucleation side is formed of nano-sized tips. The examined wettability properties of the as-treated diamond films reveal a hydrophilicity and superhydrophilicity on the growth surface and nucleation surface, respectively, which is determined by oxygen termination and geometry structure of the surface. When the surface termination is hydrogenated, the wettability of nucleation side converted from superhydrophilicity to high hydrophobicity, while the hydrophilicity of the growth side does not change significantly. The findings open a possibility for realizing freestanding diamond films having not only novel surface structures but also multifunction applications, especially proposed on the selected growth side or nucleation side in one product.

  20. Wettability of nano-epoxies to UHMWPE fibers.

    PubMed

    Neema, S; Salehi-Khojin, A; Zhamu, A; Zhong, W H; Jana, S; Gan, Y X

    2006-07-01

    Ultra high molecular weight polyethylene (UHMWPE) fibers have a unique combination of outstanding mechanical, physical, and chemical properties. However, as reinforcements for manufacturing high performance composite materials, UHMWPE fibers have poor wettability with most polymers. As a result, the interfacial bonding strength between the fibers and polymer matrices is very low. Recently, developing so-called nano-matrices containing reactive graphitic nanofibers (r-GNFs) has been proposed to promote the wetting of such matrices to certain types of fiber reinforcements. In this work, the wettability of UHMWPE fibers with different epoxy matrices including a nano-epoxy, and a pure epoxy was investigated. Systematic experimental work was conducted to determine the viscosity of the epoxies, the contact angle between the epoxies and the fibers. Also obtained are the surface energy of the fibers and the epoxies. The experimental results show that the wettability of the UHMWPE fibers with the nano-epoxy is much better than that of the UHMWPE fibers with the pure epoxy.

  1. A dual ammonia-responsive sponge sensor: preparation, transition mechanism and sensitivity.

    PubMed

    Guo, Jiahong; Bai, Zhiwei; Lyu, Yonglei; Wang, Jikui; Wang, Qiang

    2018-06-13

    PDMS-PU (polydimethylsiloxane-polyurethane) sponge decorated with In(OH)3 (indium hydroxide) and BCP (bromocresol purple) particles is shown to be a room-temperature ammonia sensor with high sensitivity and excellent reproducibility; it can accomplish real-time detection and monitoring of ammonia in the surrounding environment. The superhydrophobic and yellowish In(OH)3-BCP-TiO2-based ammonia-responsive (IBT-AR) sponge changes to a purple superhydrophilic one when exposed to ammonia. Notably, after reacting with ammonia, the sponge can recover its original wettability and color after heating in air. The wettability, color and absorption signal of IBT-AR sponge have been measured for sensing ammonia using the water contact angle, macroscopic observation and UV-vis absorption spectrometry, respectively. The minimum ammonia concentrations that can be detected by the sponge wettability, color and absorption signal are 0.5%, 1.4 ppm and 50 ppb, respectively. This kind of sponge with smart wettability and color is a promising new ammonia detector.

  2. Fabrication of superhydrophobic polyaniline films with rapidly switchable wettability

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoyan; Zhang, Zhaozhu; Men, Xuehu; Yang, Jin; Xu, Xianghui; Zhu, Xiaotao; Xue, Qunji

    2011-10-01

    A superhydrophobic polyaniline (PANI) film has been fabricated by using a facile one-step spraying method. The PANI was synthesized via in situ doping polymerization in the presence of perfluorooctanoic acid (PFOA) as the dopant. The water contact angle of this superhydrophobic surface reaches to 156°. Both the surface chemical compositions and morphological structures were analyzed. A granular morphology of PANI with a moderate amount of nanofibers was obtained. Moreover, a rapid surface wettability transition between superhydrophobicity and superhydrophilicity can be observed when it is doped with PFOA and de-doped with base. The mechanism for this tunable wettability has been discussed in detail.

  3. Ordered to isotropic morphology transition in pattern-directed dewetting of polymer thin films on substrates with different feature heights.

    PubMed

    Roy, Sudeshna; Mukherjee, Rabibrata

    2012-10-24

    Controlled dewetting of a thin polymer film on a topographically patterned substrate is an interesting approach for aligning isotropic dewetted structures. In this article, we investigate the influence of substrate feature height (H(S)) on the dewetting pathway and final pattern morphology by studying the dewetting of polystyrene (PS) thin films on grating substrates with identical periodicity (λ(P) = 1.5 μm), but H(S) varying between 10 nm and 120 nm. We identify four distinct categories of final dewetted morphology, with different extent of ordering: (1) array of aligned droplets (H(S) ≈ 120 nm); (2) aligned undulating ribbons (H(S) ≈ 70-100 nm); (3) multilength scale structures with coexisting large droplets uncorrelated to the substrate and smaller droplets/ribbons aligned along the stripes (H(S) ≈ 40-60 nm); and (4) large droplets completely uncorrelated to the substrate (H(S) < 25 nm). The distinct morphologies across the categories are attributed to two major factors: (a) whether the as-cast film is continuous (H(S)≤ 80 nm) or discontinuous (H(S)≥ 100 nm) and (b) in case of a continuous film, whether the film ruptures along each substrate stripe (H(S)≥ 70 nm) or with nucleation of random holes that are not correlated to the substrate features (H(S)≤ 60 nm). While the ranges of H(S) values indicated in the parentheses are valid for PS films with an equivalent thickness (h(E)) ≈ 50.3 nm on a flat substrate, a change in h(E) merely alters the cut-off values of H(S), as the final dewetted morphologies and transition across categories remain generically unaltered. We finally show that the structures obtained by dewetting on different H(S) substrates exhibits different levels of hydrophobicity because of combined spatial variation of chemical and topographic contrast along the surface. Thus, the work reported in this article can find potential application in fabricating surfaces with controlled wettability.

  4. Flexible, High-Wettability and Fire-Resistant Separators Based on Hydroxyapatite Nanowires for Advanced Lithium-Ion Batteries.

    PubMed

    Li, Heng; Wu, Dabei; Wu, Jin; Dong, Li-Ying; Zhu, Ying-Jie; Hu, Xianluo

    2017-11-01

    Separators play a pivotal role in the electrochemical performance and safety of lithium-ion batteries (LIBs). The commercial microporous polyolefin-based separators often suffer from inferior electrolyte wettability, low thermal stability, and severe safety concerns. Herein, a novel kind of highly flexible and porous separator based on hydroxyapatite nanowires (HAP NWs) with excellent thermal stability, fire resistance, and superior electrolyte wettability is reported. A hierarchical cross-linked network structure forms between HAP NWs and cellulose fibers (CFs) via hybridization, which endows the separator with high flexibility and robust mechanical strength. The high thermal stability of HAP NW networks enables the separator to preserve its structural integrity at temperatures as high as 700 °C, and the fire-resistant property of HAP NWs ensures high safety of the battery. In particular, benefiting from its unique composition and highly porous structure, the as-prepared HAP/CF separator exhibits near zero contact angle with the liquid electrolyte and high electrolyte uptake of 253%, indicating superior electrolyte wettability compared with the commercial polyolefin separator. The as-prepared HAP/CF separator has unique advantages of superior electrolyte wettability, mechanical robustness, high thermal stability, and fire resistance, thus, is promising as a new kind of separator for advanced LIBs with enhanced performance and high safety. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Simulating secondary waterflooding in heterogeneous rocks with variable wettability using an image-based, multiscale pore network model

    NASA Astrophysics Data System (ADS)

    Bultreys, Tom; Van Hoorebeke, Luc; Cnudde, Veerle

    2016-09-01

    The two-phase flow properties of natural rocks depend strongly on their pore structure and wettability, both of which are often heterogeneous throughout the rock. To better understand and predict these properties, image-based models are being developed. Resulting simulations are however problematic in several important classes of rocks with broad pore-size distributions. We present a new multiscale pore network model to simulate secondary waterflooding in these rocks, which may undergo wettability alteration after primary drainage. This novel approach permits to include the effect of microporosity on the imbibition sequence without the need to describe each individual micropore. Instead, we show that fluid transport through unresolved pores can be taken into account in an upscaled fashion, by the inclusion of symbolic links between macropores, resulting in strongly decreased computational demands. Rules to describe the behavior of these links in the quasistatic invasion sequence are derived from percolation theory. The model is validated by comparison to a fully detailed network representation, which takes each separate micropore into account. Strongly and weakly water-and oil-wet simulations show good results, as do mixed-wettability scenarios with different pore-scale wettability distributions. We also show simulations on a network extracted from a micro-CT scan of Estaillades limestone, which yields good agreement with water-wet and mixed-wet experimental results.

  6. Melt dumping in string stabilized ribbon growth

    DOEpatents

    Sachs, Emanuel M.

    1986-12-09

    A method and apparatus for stabilizing the edge positions of a ribbon drawn from a melt includes the use of wettable strings drawn in parallel up through the melt surface, the ribbon being grown between the strings. A furnace and various features of the crucible used therein permit continuous automatic growth of flat ribbons without close temperature control or the need for visual inspection.

  7. Wettability of three Honduran bamboo species

    Treesearch

    X. B. Li; T.F. Shube; C.Y. Hse

    2004-01-01

    This study was initiated to determine the wettability of three Honduran bamboo species by contact-angiemeasurements. Static contact angles of urea formaldehyde (UF), phenol formaldehyde (PF), isocyanate (ISO) and distilled water on the bamboo surfaces were measured. The effects of bamboo species, layer (outer, middle and inner) and chemical treatment (hydrochloric acid...

  8. Surfactant and Irrigation Effects on Runoff, Erosion, and Water Retention of Three Wettable Soils

    USDA-ARS?s Scientific Manuscript database

    Surfactants are chemical compounds that change the contact angle of water on solid surfaces and are commonly used to increase infiltration into hydrophobic soil. Since production fields with water-repellent soil often contain areas of wettable soil, surfactants applied to such fields will likely be ...

  9. Surfactant and irrigation effects on wettable soils: Runoff, erosion, and water retention responses

    USDA-ARS?s Scientific Manuscript database

    Surfactants are chemical compounds that change the contact angle of water on solid surfaces and are commonly used to increase infiltration into hydrophobic soil. Since production fields with water-repellent soil often contain areas of wettable soil, surfactants applied to such fields will likely be ...

  10. Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution.

    PubMed

    Hassenkam, T; Skovbjerg, L L; Stipp, S L S

    2009-04-14

    Pore surface properties control oil recovery. This is especially true for chalk reservoirs, where pores are particularly small. Wettability, the tendency for a surface to cover itself with fluid, is traditionally defined by the angle a droplet makes with a surface, but this macroscopic definition is meaningless when the particles are smaller than even the smallest droplet. Understanding surface wetting, at the pore scale, will provide clues for more effective oil recovery. We used a special mode of atomic force microscopy and a hydrophobic tip to collect matrices of 10,000 force curves over 5- x 5-mum(2) areas on internal pore surfaces and constructed maps of topography, adhesion, and elasticity. We investigated chalk samples from a water-bearing formation in the Danish North Sea oil fields that had never seen oil. Wettability and elasticity were inhomogeneous over scales of 10s of nanometers, smaller than individual chalk particles. Some areas were soft and hydrophobic, whereas others showed no correlation between hardness and adhesion. We conclude that the macroscopic parameter, "wetting," averages the nanoscopic behavior along fluid pathways, and "mixed-wet" samples have patches with vastly different properties. Development of reservoir hydrophobicity has been attributed to infiltrating oil, but these new results prove that wettability and elasticity are inherent properties of chalk. Their variability, even on single particles, must result from material originally present during sedimentation or material sorbed from the pore fluid some time later.

  11. Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution

    PubMed Central

    Hassenkam, T.; Skovbjerg, L. L.; Stipp, S. L. S.

    2009-01-01

    Pore surface properties control oil recovery. This is especially true for chalk reservoirs, where pores are particularly small. Wettability, the tendency for a surface to cover itself with fluid, is traditionally defined by the angle a droplet makes with a surface, but this macroscopic definition is meaningless when the particles are smaller than even the smallest droplet. Understanding surface wetting, at the pore scale, will provide clues for more effective oil recovery. We used a special mode of atomic force microscopy and a hydrophobic tip to collect matrices of 10,000 force curves over 5- × 5-μm2 areas on internal pore surfaces and constructed maps of topography, adhesion, and elasticity. We investigated chalk samples from a water-bearing formation in the Danish North Sea oil fields that had never seen oil. Wettability and elasticity were inhomogeneous over scales of 10s of nanometers, smaller than individual chalk particles. Some areas were soft and hydrophobic, whereas others showed no correlation between hardness and adhesion. We conclude that the macroscopic parameter, “wetting,” averages the nanoscopic behavior along fluid pathways, and “mixed-wet” samples have patches with vastly different properties. Development of reservoir hydrophobicity has been attributed to infiltrating oil, but these new results prove that wettability and elasticity are inherent properties of chalk. Their variability, even on single particles, must result from material originally present during sedimentation or material sorbed from the pore fluid some time later. PMID:19321418

  12. Characterization of highly hydrophobic textiles by means of X-ray microtomography, wettability analysis and drop impact

    NASA Astrophysics Data System (ADS)

    Santini, M.; Guilizzoni, M.; Fest-Santini, S.; Lorenzi, M.

    2017-11-01

    Highly hydrophobic surfaces have been intensively investigated in the last years because their properties may lead to very promising technological spillovers encompassing both everyday use and high-tech fields. Focusing on textiles, hydrophobic fabrics are of major interest for applications ranging from clothes to architecture to environment protection and energy conversion. Gas diffusion media - made by a gas diffusion layer (GDL) and a microporous layer (MPL) - for fuel cells are a good benchmark to develop techniques aimed at characterizing the wetting performances of engineered textiles. An experimental investigation was carried out about carbon-based, PTFE-treated GDLs with and without MPLs. Two samples (woven and woven-non-woven) were analysed before and after coating with a MPL. Their three-dimensional structure was reconstructed and analysed by computer-aided X-ray microtomography (µCT). Static and dynamic wettability analyses were then carried out using a modified axisymmetric drop shape analysis technique. All the surfaces exhibited very high hydrophobicity, three of them near to a super-hydrophobic behavior. Water drop impacts were performed, evidencing different bouncing, sticking and fragmentation outcomes for which critical values of the Weber number were identified. Finally, a µCT scan of a drop on a GDL was performed, confirming the Cassie-Baxter wetting state on such surface.

  13. Fabrication of Artificial Leaf to Develop Fluid Pump Driven by Surface Tension and Evaporation

    NASA Astrophysics Data System (ADS)

    Lee, Minki; Lim, Hosub; Lee, Jinkee

    2017-11-01

    Plants transport water from roots to leaves via xylem through transpiration, which is an evaporation process that occurs at the leaves. During transpiration, negative pressure can be generated by the porous structure of mesophyll cells in the leaves. Here, an artificial leaf mimicking structure using hydrogel, which has a nanoporous structure is fabricated. The cryogel method is used to develop a hierarchy structure on the nano- and microscale in the hydrogel media that is similar to the mesophyll cells and veins of a leaf, respectively. The theoretical model is analyzed to calculate the flow resistance in the artificial leaf, and compare the model with the experimental results. The experiment involves connecting a glass capillary tube at the bottom of the artificial leaf to observe the fluid velocity in the glass capillary tube generated by the negative pressure. The use of silicone oil as fluid instead of water to increase the flow resistance enables the measurement of negative pressure. The negative pressure of the artificial leaf is affected by several variables (e.g., pore size, wettability of the structure). Finally, by decreasing the pore size and increasing the wettability, the maximum negative pressure of the artificial leaf, -7.9 kPa is obtained.

  14. Thermal Stability and Surface Wettability Studies of Polylactic Acid/Halloysite Nanotube Nanocomposite Scaffold for Tissue Engineering Studies

    NASA Astrophysics Data System (ADS)

    Nizar, M. Mohd; Hamzah, M. S. A.; Razak, S. I. Abd; Mat Nayan, N. H.

    2018-03-01

    This paper reports the preliminary study about the incorporation of halloysite nanotubes (HNT) into polylactic acid (PLA) scaffold to improve the thermal resistance and surface wettability properties. The fabrication of the porous scaffold requires a simple yet effective technique with low-cost materials within freeze extraction method. The thermal stability of PLA/HNT scaffold compared to neat PLA scaffold achieved with increased content of HNT by 5 wt%. Moreover, the surface wettability of the scaffold also shows a positive impact with high content of HNT by 5 wt%. This new nanocomposite scaffold may have high potential as a suitable template for tissue regeneration.

  15. Preparation and wettability examinations of transparent SiO2 binder-added MgF2 nanoparticle coatings covered with fluoro-alkyl silane self-assembled monolayer.

    PubMed

    Murata, Tsuyoshi; Hieda, Junko; Saito, Nagahiro; Takai, Osamu

    2012-05-01

    SiO2-added MgF2 nanoparticle coatings with various surface roughness properties were formed on fused silica-glass substrates from autoclaved sols prepared at 100-180 °C. To give it hydrophobicity, we treated the samples with fluoro-alkyl silane (FAS) vapor to form self-assembled monolayers on the nanoparticle coating and we examined the wettability of the samples. The samples preserved good transparency even after the FAS treatment. The wettability examination revealed that higher autoclave temperatures produced a larger average MgF2 nanoparticle particle size, a larger surface roughness, and a higher contact angle and the roll-off angle.

  16. Growth and physical investigations of sprayed ZnMoO4 thin films along with wettability tests

    NASA Astrophysics Data System (ADS)

    Askri, Besma; Mhamdi, Ammar; Mahdhi, Noureddine; Amlouk, Mosbah

    2018-06-01

    Ternary oxides based on zinc and molybdenum elements have known as semiconductor oxides with large band gap energies. With the focus mainly on their synthesis by cost-effective process as thin films, the aspect of their stability and reactivity as transparent layers against both UV radiation and oxidation under wet medium due to their oxygen deficiency has so far not been investigated. This work covers the synthesis as well as the structural, electrical and the wettability properties of ZnMoO4 thin films which have been prepared by the spray pyrolysis method on glass substrates at 460 °C. First, X-ray diffraction analysis shows that this oxide crystallizes in triclinic structure with the space group P-1. The thickness value of ZnMoO4 thin film of about 1.5 μm was estimated by spectroscopic ellipsometry (SE). Moreover, a special emphasis has been focused on the photoluminescence properties of such films to reach possible presence of defaults and oxygen vacancy. Second, the electrical conductivity, conduction mechanism, relaxation model of these films were indeed studied using impedance spectroscopy technique in the frequency range 10-1-106 Hz at various temperatures (25-300 °C). At high temperature, σAC conductivity obeys to the power law established by Jonscher. Besides, the variation of σDC with the inverse of the temperature follows Arrhenius law. This evolution suggests that the conduction process is thermally activated and the activation energy of this process is equal to 0.97 eV. Finally, the wettability tests reveal that zinc molybdates loses its hydrophobic character during aging under UV radiation to become completely hydrophilic. All these physical investigations demonstrated that such ternary oxide contains oxygen deficiency which may be of interest for photocatalytic purposes and pave the way for various sensitivity applications like gas and bio-sensors.

  17. Effect of substrate roughness on the apparent surface free energy of sputter deposited superhydrophobic polytetrafluoroethylene coatings: A comparison of experimental data with different theoretical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvakumar, N.; Barshilia, Harish C.; Rajam, K. S.

    2010-07-15

    We have studied the effect of substrate roughness on the wettability and the apparent surface free energy (SFE) of sputter deposited polytetrafluoroethylene (PTFE) coatings deposited on untreated glass (average roughness, R{sub a}=2.0 nm), plasma etched glass (R{sub a}=7.4 nm), and sandblasted glass (R{sub a}=4500 nm) substrates. The wettability of the PTFE coatings deposited on substrates with varying roughnesses was evaluated by measuring the apparent contact angle (CA) using a series of probe liquids from nonpolar aprotic to polar protic. The wettability measurements indicate that an apparent water CA of 152 deg. with a sliding angle of 8 deg. was achievedmore » for PTFE coatings deposited on a substrate with R{sub a}=4500 nm. The superhydrophobicity observed in these coatings is attributed to the presence of dual scale roughness, densely packed microstructure and the presence of CF{sub 3} groups. Unlike the bulk PTFE which is mainly dispersive, the sputter deposited PTFE coatings are expected to have some degree of polar component due to the plasma treatment. In order to calculate the dispersive SFE of PTFE coatings, we have used the Girifalco-Good-Fowkes (GGF) method and validated it with the Zisman model. Furthermore, the Owens-Wendt model has been used to calculate the dispersive and the polar components of the apparent SFE of the PTFE coatings. These results are further corroborated using the Fowkes method. Finally, an ''equation of state'' theory proposed by Neumann has been used to calculate the apparent SFE values of the PTFE coatings. The results indicate that the apparent SFE values of the PTFE coatings obtained from the Owens-Wendt and the Fowkes methods are comparable to those obtained from the Neumann's method. The analyses further demonstrate that the GGF and the Zisman methods underestimate the apparent SFE values of the sputter deposited PTFE coatings.« less

  18. Controllable Broadband Optical Transparency and Wettability Switching of Temperature-Activated Solid/Liquid-Infused Nanofibrous Membranes.

    PubMed

    Manabe, Kengo; Matsubayashi, Takeshi; Tenjimbayashi, Mizuki; Moriya, Takeo; Tsuge, Yosuke; Kyung, Kyu-Hong; Shiratori, Seimei

    2016-09-29

    Inspired by biointerfaces, such as the surfaces of lotus leaves and pitcher plants, researchers have developed innovative strategies for controlling surface wettability and transparency. In particular, great success has been achieved in obtaining low adhesion and high transmittance via the introduction of a liquid layer to form liquid-infused surfaces. Furthermore, smart surfaces that can change their surface properties according to external stimuli have recently attracted substantial interest. As some of the best-performing smart surface materials, slippery liquid-infused porous surfaces (SLIPSs), which are super-repellent, demonstrate the successful achievement of switchable adhesion and tunable transparency that can be controlled by a graded mechanical stimulus. However, despite considerable efforts, producing temperature-responsive, super-repellent surfaces at ambient temperature and pressure remains difficult because of the use of nonreactive lubricant oil as a building block in previously investigated repellent surfaces. Therefore, the present study focused on developing multifunctional materials that dynamically adapt to temperature changes. Here, we demonstrate temperature-activated solidifiable/liquid paraffin-infused porous surfaces (TA-SLIPSs) whose transparency and control of water droplet movement at room temperature can be simultaneously controlled. The solidification of the paraffin changes the surface morphology and the size of the light-transmission inhibitor in the lubricant layer; as a result, the control over the droplet movement and the light transmittance at different temperatures is dependent on the solidifiable/liquid paraffin mixing ratio. Further study of such temperature-responsive, multifunctional systems would be valuable for antifouling applications and the development of surfaces with tunable optical transparency for innovative medical applications, intelligent windows, and other devices.

  19. Soil wettability and wetting agents . . . our current knowledge of the problem

    Treesearch

    Leonard F. DeBano; Joseph F. Osborn; Jay S. Krammes; John Letey

    1967-01-01

    Soils that resist wetting are a widespread phenomenon on chaparral areas of southern California watersheds. On burned watersheds, non-wettable soils markedly reduce moisture movement during both evaporation and infiltration. The reduced infiltration rate probably contributes significantly to the high debris production from the watersheds. Factors involved in the...

  20. Influence of extractives on wood gluing and finishing- a review

    Treesearch

    Chung-Yun Hse; Mon-Lin Kuo

    1988-01-01

    Migration of extractives to the wood surface alters the properties of wood as an adherent. Extractives change the wettability and the curing properties of adhesives. A desirable wettability-permeability relationship is sometimes affected by extractives, thus reducing the gluebond strength and performance. Past efforts to determine which of the components of extractives...

  1. An investigation of factors affecting wettability of some southern hardwoods

    Treesearch

    Todd F. Shupe; Chung Y. Hse; Wan H. Wang

    1999-01-01

    >Wettability of sanded and nonsanded transverse and tangential sections of 22 southern hardwood species were[was] judged by measurement of contact angles using phenol-formaldehyde resins. As ex­pected, contact angle values on transverse sec­tions were higher than on tangential sections for both sanded and...

  2. An investigation of selected factors that influence hardwood wettability

    Treesearch

    Todd F. Shupe; Chung-Yun Hse; Wan H. Wang

    2001-01-01

    Wettability of sanded and non-sanded transverse and tangential sections of 22 southern hardwoods species was judged by measurement of contact angles using phenol formaldehyde resins. As expected, contact angle values on transverse sections were higher than those on tangential sections for both sanded and non-sanded surfaces. On sanded surfaces, hackberry had the...

  3. Superhydrophobic Natural and Artificial Surfaces—A Structural Approach

    PubMed Central

    Avrămescu, Roxana-Elena; Ghica, Mihaela Violeta; Dinu-Pîrvu, Cristina; Prisada, Răzvan; Popa, Lăcrămioara

    2018-01-01

    Since ancient times humans observed animal and plants features and tried to adapt them according to their own needs. Biomimetics represents the foundation of many inventions from various fields: From transportation devices (helicopter, airplane, submarine) and flying techniques, to sports’ wear industry (swimming suits, scuba diving gear, Velcro closure system), bullet proof vests made from Kevlar etc. It is true that nature provides numerous noteworthy models (shark skin, spider web, lotus leaves), referring both to the plant and animal kingdom. This review paper summarizes a few of “nature’s interventions” in human evolution, regarding understanding of surface wettability and development of innovative special surfaces. Empirical models are described in order to reveal the science behind special wettable surfaces (superhydrophobic /superhydrophilic). Materials and methods used in order to artificially obtain special wettable surfaces are described in correlation with plants’ and animals’ unique features. Emphasis is placed on joining superhydrophobic and superhydrophilic surfaces, with important applications in cell culturing, microorganism isolation/separation and molecule screening techniques. Bio-inspired wettability is presented as a constitutive part of traditional devices/systems, intended to improve their characteristics and extend performances. PMID:29789488

  4. Does the kinorhynch have a hydrophobic body surface? Measurement of the wettability of a meiobenthic metazoan

    NASA Astrophysics Data System (ADS)

    Ishii, Daisuke; Yamasaki, Hiroshi; Uozumi, Ryosuke; Hirose, Euichi

    2016-10-01

    The body surface of aquatic invertebrates is generally thought to be hydrophilic to prevent the attachment of air bubbles. In contrast, some interstitial invertebrates, such as kinorhynchs and some crustaceans, have a hydrophobic body surface: they are often trapped at the water surface when the sediment in which they reside is mixed with air and water. Here, we directly measured the wettability of the body surface of the kinorhynch Echinoderes komatsui, using a microscopic contact angle meter. The intact body surface of live specimens was not hydrophobic, but the anterior part was less hydrophilic. Furthermore, washing with seawater significantly decreased the wettability of the body surface, but a hydrophilic surface was recovered after a 1 h incubation in seawater. We believe that the hydrophobic cuticle of the kinorhynch has a hydrophilic coat that is readily exfoliated by disturbance. Ultrastructural observations supported the presence of a mucus-like coating on the cuticle. Regulation of wettability is crucial to survival in shallow, fluctuating habitats for microscopic organisms and may also contribute to expansion of the dispersal range of these animals.

  5. Reversible tuning of the wettability on a silver mesodendritic surface by the formation and disruption of lipid-like bilayers

    NASA Astrophysics Data System (ADS)

    Gao, Yuanji; Xia, Bing; Liu, Jie; Ding, Lisheng; Li, Bangjing; Zhou, Yan

    2015-02-01

    This study reported a smart, easy to apply, flexible and green strategy for obtaining a biomimic micro-nanostructures. 1-Mercapto-12-(p-nitrophenoxy) dodecane (MPND) and n-dodecanethiol were used to form low surface energy film on a silver mesodendritic structure coated zinc substrate. Scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology and mesocrystal structures. Noncovalently linked sodium nonanoyloxy benzene sulfonate (NOBS) was used to form "lipid-like bilayers" on the surface, making it possible for the surface to switch its surface wettability reversibly. The water contact angle (CA) on the constructed surface varies from 168 ± 2° (before processed by NOBS) to 55 ± 2° (after processed by NOBS). This phenomenon can be explained by the formation and disruption of "lipid-like bilayers" to affect the wettability of the surface. This work is of great scientific interests and may provide insights into the design of novel functional devices that are relevant to surface wettability, such as microfluidic devices and sensors.

  6. Superhydrophobic Natural and Artificial Surfaces-A Structural Approach.

    PubMed

    Avrămescu, Roxana-Elena; Ghica, Mihaela Violeta; Dinu-Pîrvu, Cristina; Prisada, Răzvan; Popa, Lăcrămioara

    2018-05-22

    Since ancient times humans observed animal and plants features and tried to adapt them according to their own needs. Biomimetics represents the foundation of many inventions from various fields: From transportation devices (helicopter, airplane, submarine) and flying techniques, to sports' wear industry (swimming suits, scuba diving gear, Velcro closure system), bullet proof vests made from Kevlar etc. It is true that nature provides numerous noteworthy models (shark skin, spider web, lotus leaves), referring both to the plant and animal kingdom. This review paper summarizes a few of "nature's interventions" in human evolution, regarding understanding of surface wettability and development of innovative special surfaces. Empirical models are described in order to reveal the science behind special wettable surfaces (superhydrophobic /superhydrophilic). Materials and methods used in order to artificially obtain special wettable surfaces are described in correlation with plants' and animals' unique features. Emphasis is placed on joining superhydrophobic and superhydrophilic surfaces, with important applications in cell culturing, microorganism isolation/separation and molecule screening techniques. Bio-inspired wettability is presented as a constitutive part of traditional devices/systems, intended to improve their characteristics and extend performances.

  7. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant.

    PubMed

    Song, Meirong; Ju, Jie; Luo, Siqi; Han, Yuchun; Dong, Zhichao; Wang, Yilin; Gu, Zhen; Zhang, Lingjuan; Hao, Ruiran; Jiang, Lei

    2017-03-01

    Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface.

  8. Controlling liquid splash on superhydrophobic surfaces by a vesicle surfactant

    PubMed Central

    Song, Meirong; Ju, Jie; Luo, Siqi; Han, Yuchun; Dong, Zhichao; Wang, Yilin; Gu, Zhen; Zhang, Lingjuan; Hao, Ruiran; Jiang, Lei

    2017-01-01

    Deposition of liquid droplets on solid surfaces is of great importance to many fundamental scientific principles and technological applications, such as spraying, coating, and printing. For example, during the process of pesticide spraying, more than 50% of agrochemicals are lost because of the undesired bouncing and splashing behaviors on hydrophobic or superhydrophobic leaves. We show that this kind of splashing on superhydrophobic surfaces can be greatly inhibited by adding a small amount of a vesicular surfactant, Aerosol OT. Rather than reducing splashing by increasing the viscosity via polymer additives, the vesicular surfactant confines the motion of liquid with the help of wettability transition and thus inhibits the splash. Significantly, the vesicular surfactant exhibits a distinguished ability to alter the surface wettability during the first inertial spreading stage of ~2 ms because of its dense aggregates at the air/water interface. A comprehensive model proposed by this idea could help in understanding the complex interfacial interactions at the solid/liquid/air interface. PMID:28275735

  9. Nanoparticle mediated micromotor motion.

    PubMed

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y

    2015-03-21

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ∼200 μm s(-1). By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ∼10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.

  10. Wetting properties of molecularly rough surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svoboda, Martin; Lísal, Martin, E-mail: lisal@icpf.cas.cz; Department of Physics, Institute of Science, J. E. Purkinje University, 400 96 Ústí n. Lab.

    2015-09-14

    We employ molecular dynamics simulations to study the wettability of nanoscale rough surfaces in systems governed by Lennard-Jones (LJ) interactions. We consider both smooth and molecularly rough planar surfaces. Solid substrates are modeled as a static collection of LJ particles arranged in a face-centered cubic lattice with the (100) surface exposed to the LJ fluid. Molecularly rough solid surfaces are prepared by removing several strips of LJ atoms from the external layers of the substrate, i.e., forming parallel nanogrooves on the surface. We vary the solid-fluid interactions to investigate strongly and weakly wettable surfaces. We determine the wetting properties bymore » measuring the equilibrium droplet profiles that are in turn used to evaluate the contact angles. Macroscopic arguments, such as those leading to Wenzel’s law, suggest that surface roughness always amplifies the wetting properties of a lyophilic surface. However, our results indicate the opposite effect from roughness for microscopically corrugated surfaces, i.e., surface roughness deteriorates the substrate wettability. Adding the roughness to a strongly wettable surface shrinks the surface area wet with the liquid, and it either increases or only marginally affects the contact angle, depending on the degree of liquid adsorption into the nanogrooves. For a weakly wettable surface, the roughness changes the surface character from lyophilic to lyophobic due to a weakening of the solid-fluid interactions by the presence of the nanogrooves and the weaker adsorption of the liquid into the nanogrooves.« less

  11. The behavior of MC3T3-E1 cells on chitosan/poly-L-lysine composite films: effect of nanotopography, surface chemistry, and wettability.

    PubMed

    Zheng, Zhenhuan; Zhang, Ling; Kong, Lijun; Wang, Aijun; Gong, Yandao; Zhang, Xiufang

    2009-05-01

    In the present work, a series of composite films were produced from chitosan/poly-L-lysine blend solutions. The surface topography, chemistry, and wettability of composite films were characterized by atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and contact angle assay, respectively. For all composite films, blending with poly-L-lysine induced changes in surface chemistry and wettability. Interestingly, it was also found that increasing poly-L-lysine weight fraction in blend solutions could result in different nanoscaled surface topographic features, which displayed particle-, granule-, or fiber-dominant morphologies. MC3T3-E1 osteoblast-like cells were cultured on all composite films to evaluate the effects of surface nanotopography, chemistry, and wettability on cell behavior. The observations indicated that MC3T3-E1 cell behavior was affected by surface topography, chemistry, and wettability simultaneously and that cells showed strong responses to surface topography. On fiber-dominant surface, cells fully spread with obvious cytoskeleton organization and exhibited significantly higher level of adhesion and proliferation compared with particle- or granule-dominant surfaces. Furthermore, fiber-dominant surface also induced greater expression of mature osteogenic marker osteocalcin and higher mineralization based on RT-PCR and von Kossa staining. The results suggest that topographic modification of chitosan substratum at the nanoscale may be exploited in regulating cell behavior for its applications in tissue engineering.

  12. Wettability, structural and optical properties investigation of TiO{sub 2} nanotubular arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalnezhad, E., E-mail: erfan@hanyang.ac.kr; Maleki, E.; Banihashemian, S.M.

    2016-06-15

    Graphical abstract: FESEM images of the TiO 2 nanotube layers formed at 0.5 wt% NH4F/ glycerol. - Highlights: • Structural property investigation of TiO{sub 2} nanotube. • Evaluation of wettability of TiO{sub 2} nanotube. • Study on optical properties of TiO{sub 2} nanotube. • The effect of anatase phase on optical and wettability properties of TiO{sub 2.} - Abstract: In this study, the effect of microstructural evolution of TiO{sub 2} nanotubular arrays on wettability and optical properties was investigated. Pure titanium was deposited on silica glass by PVD magnetron sputtering technique. The Ti coated substrates were anodized in an electrolytemore » containing NH{sub 4}F/glycerol. The structures of the ordered anodic TiO{sub 2} nanotubes (ATNs) as long as 175 nm were studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). The result shows a sharp peak in the optical absorbance spectra around the band gap energy, 3.49–3.42 eV for annealed and non-annealed respectively. The thermal process induced growth of the grain size, which influence on the density of particles and the index of refraction. Furthermore, the wettability tests' result displays that the contact angle of intact substrate (θ = 74.7°) was decreased to 31.4° and 17.4° after anodization for amorphous and heat treated (450 °C) ANTs coated substrate, respectively.« less

  13. Contact Lenses Wettability In Vitro: Effect of Surface-Active Ingredients

    PubMed Central

    Lin, Meng C.; Svitova, Tatyana F.

    2010-01-01

    Purpose To investigate the release of surface-active agents (surfactants) from unworn soft contact lenses and their influence on the lens surface wettability in vitro. Methods Surface tension (ST) of blister pack solutions was measured by pendant-drop technique. STs at the air-aqueous interface and contact angles (CAs) of four conventional and seven silicone hydrogel (SiH) soft contact lenses (SCLs) were evaluated in a dynamic-cycling regime using a modified captive-bubble tensiometer-goniometer. Measurements were performed immediately after removal from blister packs, and after soaking in a glass vial filled with a surfactant-free solution, which was replaced daily for one week. Lens surface wettability was expressed as adhesion energy (AE) according to Young’s equation. Results STs of all blister pack solutions were lower than the reference ST of pure water (72.5 mN/m), indicating the presence of surfactants. When lenses were depleted of surfactants by soaking, the STs of all studied lenses and advancing CAs of selected lenses increased (p < 0.001). Receding CAs of all studied lenses were 12° ± 5° and were not affected by the presence of surfactants. For most of the conventional lenses, the surface wettability was largely dependent on surfactants, and reduced significantly after surfactant depletion. In contrast, most SiH lenses exhibited stable and self-sustained surface wettability in vitro. Conclusions The manufacturer-added surfactants affected wetting properties of all studied SCLs, although to different degrees. PMID:20400924

  14. Effects of ionic and nonionic surfactants on milk shell wettability during co-spray-drying of whole milk particles.

    PubMed

    Lallbeeharry, P; Tian, Y; Fu, N; Wu, W D; Woo, M W; Selomulya, C; Chen, X D

    2014-09-01

    Mixing surfactants with whole milk feed before spray drying could be a commercially favorable approach to produce instant whole milk powders in a single step. Pure whole milk powders obtained directly from spray drying often have a high surface fat coverage (up to 98%), rendering them less stable during storage and less wettable upon reconstitution. Dairy industries often coat these powders with lecithin, a food-grade surfactant, in a secondary fluidized-bed drying stage to produce instant powders. This study investigated the changes in wetting behavior on the surface of a whole milk particle caused by the addition of surfactants before drying. Fresh whole milk was mixed with 0.1% (wt/wt) Tween 80 or 1% (wt/wt) lecithin (total solids), and the wetting behavior of the shell formed by each sample was captured using a single-droplet drying device at intermediate drying stages as the shell was forming. The addition of surfactants improved shell wettability from the beginning of shell formation, producing more wettable milk particles after drying. The increase in surfactant loading by 10 times reduced the wetting time from around 30s to <5s. At the same loading of 1% (wt/wt; total solids), milk particles with Tween 80 were much more wettable than those with lecithin (<5s compared with >30s). We proposed that Tween 80 could adsorb at the oil-water interface of fat globules, making the surface fat more wettable, whereas lecithin tends to combine with milk proteins to form a complex, which then competes for the air-water surface with fat globules. Spray-drying experiments confirmed the greatly improved wettability of whole milk powders by the addition of either 0.1% (wt/wt) Tween 80 or 1% (wt/wt) lecithin; wetting time was reduced from 35±4s to <15s. To the best of our knowledge, this is the first time that a dynamic droplet drying system has been used to elucidate the complex interactions between ionic or nonionic surfactants and milk components (both proteins and fat), as well as the resultant effect on the development of milk particle functionality during drying. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Wettability shifts caused by CO2 aging on mineral surfaces

    NASA Astrophysics Data System (ADS)

    Liang, B.; Clarens, A. F.

    2015-12-01

    Interfacial forces at the CO2/brine/mineral ternary interface have a well-established impact on multiphase flow properties through porous media. In the context of geologic carbon sequestration, this wettability will impact capillary pressure, residual trapping, and a variety of other key parameters of interest. While the wettability of CO2 on pure mineral and real rock sample have been studied a great deal over the past few year, very little is known about how the wettability of these rocks could change over long time horizons as CO2 interacts with species in the brine and on the mineral surface. In this work we sought to explore the role that dilute inorganic and organic species that are likely to exist in connate brines might have on a suite of mineral species. High-pressure contact angle experiments were carried out on a suite of polished mineral surfaces. Both static captive bubble and advancing/receding contact angle measurements were carried out. The effect of ionic strength, and in particular the valence of the dominant ions in the brine are found to have an important impact on the wettability which cannot be explained solely based on the shifts in the interfacial tension between the CO2 and brine. More significantly, three organic species, formate, acetate, and oxalate, all three of which are representative species commonly encountered in the saline aquifers that are considered target repositories for carbon sequestration. All three organic species show impacts on wettability, with the organics generally increasing the CO2 wetting of the mineral surface. Not all pure minerals respond the same to the presence of organics, with micas showing a more pronounced influence than quartz. Sandstone and limestone samples aged with different kinds of hydrocarbons, a surrogate for oil-bearing rocks, are generally more CO2-wet, with larger contact angles in the CO2/brine system. Over multiple days, the contact angle decreases, which could be attributed to partitioning of oil films off of the surface and into the CO2 phase, which drives the wettability towards the original water-wet state. This effect could be particularly important for organic rich repositories like depleted oil and gas fields or fractured shale formations where organic species could be presented both on mineral surfaces and in the aqueous phase.

  16. Wettability of Complex Fluids and Surfactant Capped Nanoparticle-Induced Quasi-Universal Wetting Behavior.

    PubMed

    Harikrishnan, A R; Dhar, Purbarun; Agnihotri, Prabhat K; Gedupudi, Sateesh; Das, Sarit Kumar

    2017-06-22

    Even though there are quite large studies on wettability of aqueous surfactants and a few studies on effects of nanoparticles on wettability of colloids, to the best of authors' knowledge, there is no study reported on the combined effect of surfactant and nanoparticles in altering the wettability. The present study, for the first time, reports an extensive experimental and theoretical study on the combined effect of surfactants and nanoparticles on the wettability of complex fluids such as nanocolloids on different substrates, ranging from hydrophilic with a predominantly polar surface energy component (silicon wafer and glass) to near hydrophobic range with a predominantly dispersive component of surface energy (aluminum and copper substrates). Systematically planned experiments are carried out to segregate the contributing effects of surfactants, particles, and combined particle and surfactants in modulating the wettability. The mechanisms and the governing parameters behind the interactions of nanocolloids alone and of surfactant capped nanocolloids with different surfaces are found to be grossly different. The article, for the first time, also analyzes the interplay of the nature of surfaces, surfactant and particle concentrations on contact angle, and contact angle hysteresis (CAH) of particle and surfactant impregnated colloidal suspensions. In the case of nanoparticle suspensions, the contact angle is observed to decrease for the hydrophobic system and increase for the hydrophilic systems considered. On the contrary, the combined particle and surfactant colloidal system shows a quasi-unique wetting behavior of decreasing contact angle with particle concentration on all substrates. Also interestingly, the combined particle surfactant system at all particle concentrations shows a wetting angle much lower than that of the only-surfactant case at the same surfactant concentration. Such counterintuitive observations have been explained based on the near-surface interactivity of the particle, fluid, and surfactant molecules based on effective slip length considerations. The CAH analyses of colloidal suspensions at varying surfactant and particle concentrations reveal in-depth physical insight into contact line pinning, and a unique novel relationship is established between the contact angle and differential energy for distorting the instantaneous contact angle for a pinned sessile droplet. A detailed theoretical analysis of the governing parameters influencing the wettability has been presented invoking the principles of DLVO (Derjaguin-Landau-Verwey-Overbeek), surface energy and interaction parameters influencing at the molecular scale, and the theoretical framework is found to support the experimental observations.

  17. In vitro and in vivo evaluation of SLA titanium surfaces with further alkali or hydrogen peroxide and heat treatment.

    PubMed

    Zhang, E W; Wang, Y B; Shuai, K G; Gao, F; Bai, Y J; Cheng, Y; Xiong, X L; Zheng, Y F; Wei, S C

    2011-04-01

    The present study aimed to evaluate the bioactivity of titanium surfaces sandblasted with large-grit corundum and acid etched (SLA) plus further alkali or hydrogen peroxide and heat treatment for dental implant application. Pure titanium disks were mechanically polished as control surface (Ti-control) and then sandblasted with large-grit corundum and acid etched (SLA). Further chemical modifications were conducted using alkali and heat treatment (ASLA) and hydrogen peroxide and heat treatment (HSLA) alternatively. The surface properties were characterized by scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and contact angle and roughness measurements. Further evaluation of surface bioactivity was conducted by MC3T3-E1 cell attachment, proliferation, morphology, alkaline phosphatase (ALP) activity and calcium deposition on the sample surfaces. After insertion in the beagle's mandibula for a specific period, cylindrical implant samples underwent micro-CT examination and then histological examination. It was found that ASLA and HSLA surfaces significantly increased the surface wettability and MC3T3-E1 cell attachment percentage, ALP activity and the quality of calcium deposition in comparison with simple SLA and Ti-control surfaces. Animal studies showed good osseointegration of ASLA and HSLA surfaces with host bone. In conclusion, ASLA and HSLA surfaces enhanced the bioactivity of the traditional SLA surface by integrating the advantages of surface topography, composition and wettability.

  18. Effect of micropatterning induced surface hydrophobicity on drug release from electrospun cellulose acetate nanofibers

    NASA Astrophysics Data System (ADS)

    Adepu, Shivakalyani; Gaydhane, Mrunalini K.; Kakunuri, Manohar; Sharma, Chandra S.; Khandelwal, Mudrika; Eichhorn, Stephen J.

    2017-12-01

    Sustained release and prevention of burst release for low half-life drugs like Diclofenac sodium is crucial to prevent drug related toxicity. Electrospun nanofibers have emerged recently as potential carrier materials for controlled and sustained drug release. Here, we present a facile method to prevent burst release by tuning the surface wettability through template assisted micropatterning of drug loaded electrospun cellulose acetate (CA) nanofibers. A known amount of drug (Diclofenac sodium) was first mixed with CA and then electrospun in the form of a nanofabric. This as-spun network was hydrophilic in nature. However, when electrospinning was carried out through non-conducting templates, viz nylon meshes with 50 and 100 μm size openings, two kinds of hydrophobic micro-patterned CA nanofabrics were produced. In vitro transdermal testing of our nanofibrous mats was carried out; these tests were able to show that it would be possible to create a patch for transdermal drug release. Further, our results show that with optimized micro-patterned dimensions, a zero order sustained drug release of up to 12 h may be achieved for the transdermal system when compared to non-patterned samples. This patterning caused a change in the surface wettability, to a hydrophobic surface, resulting in a controlled diffusion of the hydrophilic drug. Patterning assisted in controlling the initial burst release, which is a significant finding especially for low half-life drugs.

  19. Wettability Control on Fluid-Fluid Displacements in Patterned Microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Trojer, M.; Cueto-Felgueroso, L.; Juanes, R.

    2014-12-01

    Two-phase flow in porous media is important in many natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and water infiltration in soil. While it is well known that the wetting properties of porous media can vary drastically depending on the type of media and the pore fluids, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We confirm that wettability exerts a fundamental control on meniscus deformation, and synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We compare our experiments to a macroscopic phase-field model of two-phase flow. We use the insights gained from the capillary tube experiments to explore the viscous fingering instability in the Hele-Shaw geometry in the partial-wetting regime. A key difference between a Hele-Shaw cell and a porous medium is the existence of micro-structures (i.e. pores and pore throats). To investigate how these micro-structrues impact fluid-fluid displacement, we conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.

  20. Preheat effect on titanium plate fabricated by sputter-free selective laser melting in vacuum

    NASA Astrophysics Data System (ADS)

    Sato, Yuji; Tsukamoto, Masahiro; Shobu, Takahisa; Yamashita, Yorihiro; Yamagata, Shuto; Nishi, Takaya; Higashino, Ritsuko; Ohkubo, Tomomasa; Nakano, Hitoshi; Abe, Nobuyuki

    2018-04-01

    The dynamics of titanium (Ti) melted by laser irradiation was investigated in a synchrotron radiation experiment. As an indicator of wettability, the contact angle between a selective laser melting (SLM) baseplate and the molten Ti was measured by synchrotron X-rays at 30 keV during laser irradiation. As the baseplate temperature increased, the contact angle decreased, down to 28° at a baseplate temperature of 500 °C. Based on this result, the influence of wettability of a Ti plate fabricated by SLM in a vacuum was investigated. It was revealed that the improvement of wettability by preheating suppressed sputtering generation, and a surface having a small surface roughness was fabricated by SLM in a vacuum.

  1. Wettability control on fluid-fluid displacements in patterned microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, B.; MacMinn, C. W.; Juanes, R.

    2015-12-01

    Two-phase flow in porous media is important in many natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and water infiltration in soil. While it is well known that the wetting properties of porous media can vary drastically depending on the type of media and the pore fluids, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we conduct two-phase flow experiments via radial displacement of viscous silicone oil by water, in planar microfluidic devices patterned with vertical posts. These devices allow for visualization of flow through a complex but well-defined microstructure. In addition, the surface energy of the devices can be tuned over a wide range of contact angles, allowing us to access different wettability conditions. We use a fluorescent dye to measure the in-plane water saturation. We perform constant-rate injection experiments with highly unfavorable mobility contrast (viscosity of injected water is 350 times less than the displaced silicone oil) at injection rates over four orders of magnitude. We focus on three particular wetting conditions: drainage (θ=120°), weak imbibition (θ=60°), and strong imbibition (θ=7°). In drainage, we observe a transition from viscous fingering at high capillary numbers to a morphology that, in contrast with conventional knowledge, is different from capillary fingering. In weak imbibition, we observe an apparent stabilization of flow instabilities, as a result of cooperative invasion at the pore scale. In strong imbibition, we find that the flow behavior is heavily influenced by a precursor front that emanates from the main imbibition front. The nature of the precursor front depends on the capillary number. At intermediate capillary numbers, the precursor front consists primarily of corner flow that connects the surface of neighboring posts, forming ramified fingers. The progress of corner flow is overtaken by the spreading of precursor film (~1 um thick) at lower capillary numbers. The ensuing main imbibition front preferentially invades areas already coated by the precursor film, forming a more compact invasion pattern. Our work demonstrates the important, yet intricate, impact of wettability on the morphology of fluid-fluid displacement in porous media.

  2. 25th anniversary article: scalable multiscale patterned structures inspired by nature: the role of hierarchy.

    PubMed

    Bae, Won-Gyu; Kim, Hong Nam; Kim, Doogon; Park, Suk-Hee; Jeong, Hoon Eui; Suh, Kahp-Yang

    2014-02-01

    Multiscale, hierarchically patterned surfaces, such as lotus leaves, butterfly wings, adhesion pads of gecko lizards are abundantly found in nature, where microstructures are usually used to strengthen the mechanical stability while nanostructures offer the main functionality, i.e., wettability, structural color, or dry adhesion. To emulate such hierarchical structures in nature, multiscale, multilevel patterning has been extensively utilized for the last few decades towards various applications ranging from wetting control, structural colors, to tissue scaffolds. In this review, we highlight recent advances in scalable multiscale patterning to bring about improved functions that can even surpass those found in nature, with particular focus on the analogy between natural and synthetic architectures in terms of the role of different length scales. This review is organized into four sections. First, the role and importance of multiscale, hierarchical structures is described with four representative examples. Second, recent achievements in multiscale patterning are introduced with their strengths and weaknesses. Third, four application areas of wetting control, dry adhesives, selectively filtrating membranes, and multiscale tissue scaffolds are overviewed by stressing out how and why multiscale structures need to be incorporated to carry out their performances. Finally, we present future directions and challenges for scalable, multiscale patterned surfaces. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Alcohol dose dumping: The influence of ethanol on hot-melt extruded pellets comprising solid lipids.

    PubMed

    Jedinger, N; Schrank, S; Mohr, S; Feichtinger, A; Khinast, J; Roblegg, E

    2015-05-01

    The objective of the present study was to investigate interactions between alcohol and hot-melt extruded pellets and the resulting drug release behavior. The pellets were composed of vegetable calcium stearate as matrix carrier and paracetamol or codeine phosphate as model drugs. Two solid lipids (Compritol® and Precirol®) were incorporated into the matrix to form robust/compact pellets. The drug release characteristics were a strong function of the API solubility, the addition of solid lipids, the dissolution media composition (i.e., alcohol concentration) and correspondingly, the pellet wettability. Pellets comprising paracetamol, which is highly soluble in ethanol, showed alcohol dose dumping regardless of the matrix composition. The wettability increased with increasing ethanol concentrations due to higher paracetamol solubilities yielding increased dissolution rates. For pellets containing codeine phosphate, which has a lower solubility in ethanol than in acidic media, the wettability was a function of the matrix composition. Dose dumping occurred for formulations comprising solid lipids as they showed increased wettabilities with increasing ethanol concentrations. In contrast, pellets comprising calcium stearate as single matrix component showed robustness in alcoholic media due to wettabilities that were not affected by the addition of ethanol. The results clearly indicate that the physico-chemical properties of the drug and the matrix systems are crucial for the design of ethanol-resistant dosage forms. Moreover, hydrophobic calcium stearate can be considered a suitable matrix system that minimizes the risk of ethanol-induced dose dumping for certain API's. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Water retention of repellent and subcritical repellent soils: New insights from model and experimental investigations

    NASA Astrophysics Data System (ADS)

    Czachor, H.; Doerr, S. H.; Lichner, L.

    2010-01-01

    SummarySoil organic matter can modify the surface properties of the soil mineral phase by changing the surface tension of the mineral surfaces. This modifies the soil's solid-water contact angle, which in turn would be expected to affect its water retention curve (SWRC). Here we model the impact of differences in the soil pore-water contact angle on capillarity in non-cylindrical pores by accounting for their complex pore geometry. Key outcomes from the model include that (i) available methods for measuring the Young's wetting angle on soil samples are insufficient in representing the wetting angle in the soil pore space, (ii) the wetting branch of water retention curves is strongly affected by the soil pore-water contact angle, as manifest in the wetting behavior of water repellent soils, (iii) effects for the drying branch are minimal, indicating that both wettable and water repellent soils should behave similarly, and (vi) water retention is a feature not of only wettable soils, but also soils that are in a water repellent state. These results are tested experimentally by determining drying and wetting branches for (a) 'model soil' (quartz sands with four hydrophobization levels) and (b) five field soil samples with contrasting wettability, which were used with and without the removal of the soil organic matter. The experimental results support the theoretical predictions and indicate that small changes in wetting angle can cause switches between wettable and water repellent soil behavior. This may explain the common observation that relatively small changes in soil water content can cause substantial changes in soil wettability.

  5. Measuring the wetting angle and perimeter of single wood pulp fibers : a modified method

    Treesearch

    John H. Klungness

    1981-01-01

    In pulp processing development it is often necessary to measure the effect of a process variable on individual pulp fiber wettability. Such processes would include drying of market pulps, recycling of secondary fibers, and surface modification of fibers as in sizing. However, if wettability is measured on a fiber sheet surface, the results are confounded by...

  6. Effect of wood grain and veneer side on loblolly pine veneer wettability

    Treesearch

    Todd E. Shupe; Chung Y. Hse; Elvin T. Choong; Leslie H. Groom

    1998-01-01

    Research was initiated to determine the effect of veneer side (tight or loose), and wood grain (earlywood or latewood) on the wettability of loblolly pine veneer. Contact angle measurements were performed with phenol-formaldehyde resin and distilled water. The resin and distilled water showed slightly higher contact angle mean values on the latewood portion for both...

  7. Novel robust cellulose-based foam with pH and light dual-response for oil recovery

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Meng, Guihua; Wu, Jianning; Wang, Yixi; Liu, Zhiyong; Guo, Xuhong

    2018-05-01

    We fabricated pH and light dual-responsive adsorption materials which could induce the transition of surface wettability between hydrophobicity and hydrophilicity by using ATRP. The structure and morphology of adsorption materials were confirmed by ATR-FTIR, XPS, TGA and SEM. It showed that the modified cellulose (CE)-based foam was hydrophobic, which can adsorb a range of oils and organic solvents in water under pH = 7.0 or visible light irradiation (λ > 500 nm). Meanwhile, the wettability of robust CE-based foam can convert hydrophobicity into hydrophilicity and underwater oleophobicity under pH = 3.0 or UV irradiation (λ = 365 nm), giving rise to release oils and organic solvents. Most important of all, the adsorption and desorption processes of the modified CE-based foam could be switched by external stimuli. Furthermore, the modified CE-based foam was not damaged and still retained original performance after reversible cycle repeated for many times with variation of surface wettability. In short, it indicates that CE-based foam materials with switchable surface wettability are new responsive absorbent materials and have owned potential application in the treatment of oil recovery.

  8. Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development

    NASA Astrophysics Data System (ADS)

    Gartner, Hunter; Li, Yana; Almenar, Eva

    2015-03-01

    The objective of this study was to investigate the effect of methyldiphenyl diisocyanate (MDI) concentration (0, 0.2, 1, 2, and 3%) on the wettability and adhesion of blend solutions of poly(lactic acid) (PLA) and chitosan (CS) when coated on PLA film for development of a bio-based multi-layer film suitable for food packaging and other applications. Characterization was carried out by attenuated total reflectance infrared spectrometry (ATR-FTIR), contact angle (θ), mechanical adhesion pull-off testing, and scanning electron microscopy (SEM). The θ of the PLA/CS blend shifted to a lower value (41-35°) with increasing MDI concentration showing that the surface tension was modified between the PLA/CS blend solution and PLA film and better wettability was achieved. The increase in MDI also resulted in an increased breaking strength (228-303 kPa) due to the increased H-bonding resulting from the more urethane groups formed within the PLA/CS blend as shown by ATR-FTIR. The improved adhesion was also shown by the increased number of physical entanglements observed by SEM. It can be concluded that MDI can be used to improve wettability and adhesion between PLA/CS coating and PLA film.

  9. Versatile wettability gradients prepared by chemical modification of polymer brushes on polymer foils.

    PubMed

    Neuhaus, Sonja; Padeste, Celestino; Spencer, Nicholas D

    2011-06-07

    A method to create a wettability gradient by variation of the chemical functionality in a polymer brush is presented. A poly(N-methyl-vinylpyridinium) (QP4VP) brush was created on a poly(ethylene-alt-tetrafluoroethylene) (ETFE) foil by the grafting of 4-vinylpyridine and subsequent quaternization. The instability of QP4VP, a strong polyelectrolyte, in alkaline media was exploited to transform it to the neutral poly(vinyl(N-methyl-2-pyridone)) (PVMP), as confirmed with ATR-IR spectroscopy. The slow transformation resulted in a substantial, time-dependent decrease in wettability. A nearly linear gradient in water contact angle (CA) was created by immersion of a QP4VP brush modified sample into a sodium hydroxide solution, resulting in CAs ranging from 10° to 60°. The concurrent decrease in the number of charged functional groups along the gradient was characterized by loading an anionic dye into the polymer brush and measuring the UV transmittance of the sample. The versatility of the wettability gradient was demonstrated by exchanging the counterions of the N-methyl-vinylpyridinium groups, whereby a reversal of gradient direction was reproducibly achieved.

  10. Wettability, water sorption and water solubility of seven silicone elastomers used for maxillofacial prostheses.

    PubMed

    Hulterström, Anna Karin; Berglund, Anders; Ruyter, I Eystein

    2008-01-01

    The wettability, water sorption and solubility of silicone elastomers used for maxillofacial prostheses were studied. The hypothesis was, that a material that has absorbed water would show an increase in the wettability and thus also the surface free energy of the material. Seven silicone elastomers, both addition- and condensation type polymers, were included. Five specimens of each material were subjected to treatment according to ISO standards 1567:1999 and 10477: 2004 for water sorption and solubility. The volumes of the specimens were measured according to Archimedes principle. The contact angle was measured with a contact angle goniometer at various stages of the sorption/solubility test. Wettability changed over the test period, but not according to theory. The addition type silicones showed little or no sorption and solubility, but two of the condensation type polymers tested had a significant sorption and solubility. This study showed that condensation type polymers may show too large volumetric changes when exposed to fluids, and therefore should no longer be used in prosthetic devices. The results of this study also suggests that it might be of interest to test sorption and solubility of materials that are to be implanted, since most of the materials had some solubility.

  11. Novel robust cellulose-based foam with pH and light dual-response for oil recovery

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Meng, Guihua; Wu, Jianning; Wang, Yixi; Liu, Zhiyong; Guo, Xuhong

    2018-06-01

    We fabricated pH and light dual-responsive adsorption materials which could induce the transition of surface wettability between hydrophobicity and hydrophilicity by using ATRP. The structure and morphology of adsorption materials were confirmed by ATR-FTIR, XPS, TGA and SEM. It showed that the modified cellulose (CE)-based foam was hydrophobic, which can adsorb a range of oils and organic solvents in water under pH = 7.0 or visible light irradiation ( λ > 500 nm). Meanwhile, the wettability of robust CE-based foam can convert hydrophobicity into hydrophilicity and underwater oleophobicity under pH = 3.0 or UV irradiation ( λ = 365 nm), giving rise to release oils and organic solvents. Most important of all, the adsorption and desorption processes of the modified CE-based foam could be switched by external stimuli. Furthermore, the modified CE-based foam was not damaged and still retained original performance after reversible cycle repeated for many times with variation of surface wettability. In short, it indicates that CE-based foam materials with switchable surface wettability are new responsive absorbent materials and have owned potential application in the treatment of oil recovery.

  12. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    PubMed

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  13. Leaf physico-chemical and physiological properties of maize (Zea mays L.) populations from different origins.

    PubMed

    Revilla, Pedro; Fernández, Victoria; Álvarez-Iglesias, Lorena; Medina, Eva T; Cavero, José

    2016-10-01

    In this study we evaluated the leaf surface properties of maize populations native to different water availability environments. Leaf surface topography, wettability and gas exchange performance of five maize populations from the Sahara desert, dry (south) and humid (north-western) areas of Spain were analysed. Differences in wettability, stomatal and trichome densities, surface free energy and solubility parameter values were recorded between populations and leaf sides. Leaves from the humid Spanish population with special regard to the abaxial side, were less wettable and less susceptible to polar interactions. The higher wettability and hydrophilicity of Sahara populations with emphasis on the abaxial leaf surfaces, may favour dew deposition and foliar water absorption, hence improving water use efficiency under extremely dry conditions. Compared to the other Saharan populations, the dwarf one had a higher photosynthesis rate suggesting that dwarfism may be a strategy for improving plant tolerance to arid conditions. The results obtained for different maize populations suggest that leaf surfaces may vary in response to drought, but further studies will be required to examine the potential relationship between leaf surface properties and plant stress tolerance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Diffusion Monte Carlo method for evaluating Hamaker constants

    NASA Astrophysics Data System (ADS)

    Maezono, Ryo; Hongo, Kenta

    We evaluated Hamaker's constants for Si6H12 (CHS) to investigate its wettability, which is industrially useful but no references available. The constant is fundamental for wettability, but not directly accessible by experiments. Ab initio estimations are therefore in demand, and surely give an impact for broader fields such as tribology where the wettability plays an important role. The evaluation of binding curves itself could be a big challenge if it is applied to a practical molecule such as CHS, because highly accurate descriptions of electron correlations in vdW bindings get tough for such larger sizes with anisotropy. We applied DMC to overcome this difficulty, showing a new direction for wettability issues. Since ab intio estimations rely on simple assumptions such as additivity (and hence we denote it as Aadd), it would include biases. Taking a benzene as a benchmark, we compared Aadd evaluated from several available binding curves with other reported AL (estimations based on Lifshitz theory). By the comparison, we get trends of biases in Aa dd due to non-additivity and anisotropy because AL is expected to capture these effects to some extent in macroscopic manner. The expected trends here surprisingly well explain the series of results for CHS.

  15. Experiments on the Motion of Drops on a Horizontal Solid Surface due to a Wettability Gradient

    NASA Technical Reports Server (NTRS)

    Moumen, Nadjoua; Subramanian, R, Shankar; MLaughlin, john B.

    2006-01-01

    Results from experiments performed on the motion of drops of tetraethylene glycol in a wettability gradient present on a silicon surface are reported and compared with predictions from a recently developed theoretical model. The gradient in wettability was formed by exposing strips cut from a silicon wafer to decyltrichlorosiland vapors. Video images of the drops captured during the experiments were subsequently analyzed for drop size and velocity as functions of position along the gradient. In separate experiments on the same strips, the static contact angle formed by small drops was measured and used to obtain the local wettability gradient to which a drop is subjected. The velocity of the drops was found to be a strong function of position along the gradient. A quasi-steady theoretical model that balances the local hydrodynamic resistance with the local driving force generally describes the observations; possible reasons for the remaining discrepancies are discussed. It is shown that a model in which the driving force is reduced to accomodate the hysteresis effect inferred from the data is able to remove most of the discrepancy between the observed and predicted velocities.

  16. Effect of disinfection and sterilization on the tensile strength, surface roughness, and wettability of elastomers.

    PubMed

    Kotha, Sunil Babu; Ramakrishnaiah, Ravikumar; Devang Divakar, Darshan; Celur, Sree Lalita; Qasim, Saad; Matinlinna, Jukka P

    2017-11-01

    The aim of the present study was to evaluate the effect of chemical disinfection, autoclave, and microwave sterilization on some of the key properties of elastomers. Five polyvinylsiloxane elastomeric impression materials were evaluated. Forty samples were fabricated from each material. The samples were randomly selected and assigned to four experimental groups with 50 samples each: group I, control; group II,chemical disinfection; group III, autoclave sterilization; and group IV, microwave sterilization. The differences in the mean values were contrasted and compared with the control group and analyzed using two-way analysis of variance (P < 0.05). The results showed that chemical disinfection and autoclave sterilization had no significant effect on the tensile strength and surface roughness, whereas microwave sterilization showed a statistically-significant reduction in tensile strength, and an increase in surface roughness. None of the disinfection and sterilization techniques had a significant effect on wettability. However, autoclave and microwave sterilization resulted in an increase in hydrophilicity of all the materials tested. Chemical disinfection and autoclave sterilization had no statistically-significant effect on the tested properties of elastomers, thus autoclave sterilization can be considered as an alternative and an effective mode of disinfection and sterilization to eliminate all forms of disease causing microorganisms from dental impressions. © 2016 John Wiley & Sons Australia, Ltd.

  17. [Influence of tendencies toward depression, neurosis and psychosomatic disorders on oral symptoms].

    PubMed

    Sasaki, Emi

    2005-12-01

    This study revealed that the tendencies towards depression, neurosis, and psychosomatic disorders have effects on oral symptoms. The total number of subjects was 102. The subjects were divided into two groups using the SDS (Self-rating Depression Scale): a control group of 66 subjects with an SDS value of less than 40, and a group of 36 subjects having depression tendencies with an SDS value of over 50. Most of the subjects in the depression tendency group showed symptoms of neurosis and psychosomatic disorders as well. The two groups were compared on the basis of their psychological characteristics, dosages of medicine taken, esthesis of mouth dryness, glossalgia, salivary flow rate, oral wettability, existence of dental cavities, and condition of the oral mucosa. No xerostomia at the mucobuccal fold was observed in the depression tendency group. However, there was an evident decrease of the resting salivary flow rate and the wettability of proglossis. It is considered that such a decrease resulted in an increase in the symptoms derived from xerostomia or esthesis of mouth dryness. The number of conservable but untreated dental cavities in the depression tendency group was larger than that in the control group with a significant difference, suggesting that both oral self-care and dental care management tended to be inadequate in the depression tendency group.

  18. The Influence of Structure Heights and Opening Angles of Micro- and Nanocones on the Macroscopic Surface Wetting Properties

    NASA Astrophysics Data System (ADS)

    Schneider, Ling; Laustsen, Milan; Mandsberg, Nikolaj; Taboryski, Rafael

    2016-02-01

    We discuss the influence of surface structure, namely the height and opening angles of nano- and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll-off angles. The textured surfaces are fabricated on silicon wafers by using a simple one-step method of reactive ion etching at different processing time and gas flow rates. By using hydrophobic coating or hydrophilic surface treatment, we are able to switch the surface wettability from superhydrophilic to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures.

  19. How a Nanodroplet Diffuses on Smooth Surfaces

    NASA Astrophysics Data System (ADS)

    Li, Chu; Huang, Jizu; Li, Zhigang

    2016-11-01

    In this study, we investigate how nanodroplets diffuse on smooth surfaces through molecular dynamics (MD) simulations and theoretical analyses. The simulations results show that the surface diffusion of nanodroplet is different from that of single molecules and solid nanoparticles. The dependence of nanodroplet diffusion coefficient on temperature is surface wettability dependent, which undergoes a transition from linear to nonlinear as the surface wettability is weakened due to the coupling of temperature and surface energy. We also develop a simple relation for the diffusion coefficient by using the contact angle and contact radius of the droplet. It works well for different surface wettabilities and sized nanodroplets, as confirmed by MD simulations. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region under Grant No. 615312.

  20. Titanium Surface Chemical Composition Interferes in the Pseudomonas aeruginosa Biofilm Formation.

    PubMed

    Nunes Filho, Antonio; Aires, Michelle de Medeiros; Braz, Danilo Cavalcante; Hinrichs, Ruth; Macedo, Alexandre José; Alves, Clodomiro

    2018-02-01

    Bacterial adhesion on three different surfaces: untreated Ti, plasma nitriding, and plasma carbonitriding Ti substrates were investigated. The samples were placed in bacterial cultures of Pseudomonas aeruginosa to assess biofilm formation. The correlation between the amount of bacteria attached to the surface after a lapse of time with nanotopography and physicochemical properties was performed. TiN showed the highest capacity to avoid bacterial adhesion, while presenting intermediate roughness and wettability. Although the surface of TiCN had the highest surface roughness and low contact angle (high wettability), bacterial adhesion was intermediate on this sample. Untreated Ti, even though presenting a smooth surface and low wettability, had the highest tendency to form biofilms. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Johnson; Mehdi Salehi; Karl Eisert

    This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium.more » The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine surfactant concentrations. To reliably quantify both benchmark surfactants and surfactin, a surfactant ion-selective electrode was used as an indicator in the potentiometric titration of the anionic surfactants with Hyamine 1622. The wettability change mediated by dilute solutions of a commercial preparation of SLS (STEOL CS-330) and surfactin was assessed using two-phase separation, and water flotation techniques; and surfactant loss due to retention and adsorption on the rock was determined. Qualitative tests indicated that on a molar basis, surfactin is more effective than STEOL CS-330 in altering wettability of crushed Lansing-Kansas City carbonates from oil-wet to water-wet state. Adsorption isotherms of STEOL CS-330 and surfactin on crushed Lansing-Kansas City outcrop and reservoir material showed that surfactin has higher specific adsorption on these oomoldic carbonates. Amott wettability studies confirmed that cleaned cores are mixed-wet, and that the aging procedure renders them oil-wet. Tests of aged cores with no initial water saturation resulted in very little spontaneous oil production, suggesting that water-wet pathways into the matrix are required for wettability change to occur. Further investigation of spontaneous imbibition and forced imbibition of water and surfactant solutions into LKC cores under a variety of conditions--cleaned vs. crude oil-aged; oil saturated vs. initial water saturation; flooded with surfactant vs. not flooded--indicated that in water-wet or intermediate wet cores, sodium laureth sulfate is more effective at enhancing spontaneous imbibition through wettability change. However, in more oil-wet systems, surfactin at the same concentration performs significantly better.« less

  2. The Effect of Different Coupling Agents on Nano-ZnO Materials Obtained via the Sol-Gel Process.

    PubMed

    Purcar, Violeta; Şomoghi, Raluca; Niţu, Sabina Georgiana; Nicolae, Cristian-Andi; Alexandrescu, Elvira; Gîfu, Ioana Cătălina; Gabor, Augusta Raluca; Stroescu, Hermine; Ianchiş, Raluca; Căprărescu, Simona; Cinteză, Ludmila Otilia

    2017-12-12

    Hybrid nanomaterials based on zinc oxide were synthesized via the sol-gel method, using different silane coupling agents: (3-glycidyloxypropyl)trimethoxysilane (GPTMS), phenyltriethoxysilane (PhTES), octyltriethoxysilane (OTES), and octadecyltriethoxysilane (ODTES). Morphological properties and the silane precursor type effect on the particle size were investigated using dynamic light scattering (DLS), environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The bonding characteristics of modified ZnO materials were investigated using Fourier transform infrared spectroscopy (FTIR). The final solutions were deposited on metallic substrate (aluminum) in order to realize coatings with various wettability and roughness. The morphological studies, obtained by ESEM and TEM analysis, showed that the sizes of the ZnO nanoparticles are changed as function of silane precursor used in synthesis. The thermal stability of modified ZnO materials showed that the degradation of the alkyl groups takes place in the 300-500 °C range. Water wettability study revealed a contact angle of 142 ± 5° for the surface covered with ZnO material modified with ODTES and showed that the water contact angle increases as the alkyl chain from the silica precursor increases. These modified ZnO materials, therefore, can be easily incorporated in coatings for various applications such as anti-corrosion and anti-icing.

  3. Wettability dynamics of liquid filaments on horizontal substrates

    NASA Astrophysics Data System (ADS)

    Diez, Javier; Ravazzoli, Pablo; Cuellar, Ingrith; Gonzalez, Alejandro

    2017-11-01

    We study the hydrodynamic mechanisms involved in the motion of the contact line formed at the end region of a liquid filament laying on a planar and horizontal substrate. Since the flow develops under partially wetting conditions, the tip of the filament recedes and forms a bulged region (head) that subsequently develops a neck region behind it. Later the neck breaks up leading to a separated drop, while the rest of the filament restarts the sequence. One main feature of this flow is that the whole dynamics and final drop shapes are strongly influenced by the hysteresis of the contact angle typical in most of the liquid-substrate systems. The time evolution till breakup is studied experimentally and pictured in terms of a hybrid wettability theory which involves the Cox-Voinov hydrodynamic approach combined with the molecular kinetic theory developed by Blake. The parameters of this theory are determined for our liquid-substrate system (silicone oil ``coated glass). The experimental results of the retracting filament are described in terms of a simple heuristic model and compared with numerical simulations of the full Navier-Stokes equations. This study is of special interest in the context of pulsed laser-induced dewetting. The authors acknowledge support from Consejo Nacional de Investigaciones Cientficas y Tcnicas (CONICET, Argentina) with Grant PIP 844/2012 and Agencia Nacional de Promocin Cientfica y Tecnolgica (ANPCyT, Argentina) with Grant PICT 931/2012.

  4. Wettability of southern pine veneer by phenol formaldehyde wood adhesives

    Treesearch

    Chung-Yun Hse

    1972-01-01

    Wettability of southern pine veneers was judged by measuring the contact angles made by 36 phenol formaldehyde resins. Formulation of the resins was by factorial design, the molar ratios of sodium hydroxide to phenol being 0.4, 0.7, and 1.0, the levels of resin solids content in the reaction mixture 37, 40, and 43 percent, and the molar ratios of formaldehyde to phenol...

  5. Reversing Glass Wettability

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Smith, J. E., Jr.; Kaukler, W. F.

    1985-01-01

    Treatment reverses wettability of glassware: Liquids that normally wet glass no longer do, and those that do not wet glass are made to do so. Useful in research on container effects in nucleation and growth of secondary phase from solution. Treatment consists of spreading 3 percent (by weight) solution of silicone oil in hexane isomers over glass, drying in air, and curing at 300 degrees C in vacuum for one hour.

  6. Synthesis of ‘reactive’ and covalent polymeric multilayer coatings with durable superoleophobic and superoleophilic properties under water† †Electronic supplementary information (ESI) available: Fig. S1–S15 accounting the growth of NC with and without the LbL deposition process, detailed comparisons of the multilayers of BPEI and NC, the change in the underwater oil-wettability with increasing deposition cycles of NC, the change in the optical transparency of the multilayers under water, the underwater oil-wettability of various model oils on post-modified multilayers of NC, bouncing of oil droplets underwater, the change in adhesive interactions with LbL deposition of NC, beading and wetting of oil droplets on post-modified multilayers under water, the effect of heating, freezing, and chemical and physical insults on the oil-wettability of the multilayers under water, LbL coating of various substrates, the guided transfer of oil droplets under water and the cleaning of oil using superoleophilic cotton under water. See DOI: 10.1039/c7sc01055a Click here for additional data file.

    PubMed Central

    Parbat, Dibyangana

    2017-01-01

    Bioinspired underwater super-oil-wettability (superoleophilic/superoleophobic) properties are emerging as a potential avenue for developing smart materials for addressing issues related to healthcare, environment, energy, etc. However, the inherent poor durability of the materials that are mostly developed using polymeric hydrogel, metal oxide coatings and electrostatic multilayers often challenges the application of these wettability properties in practical scenarios. Here, ‘amine-reactive’ polymeric multilayers of nano-complex were developed to fabricate ‘internal’ underwater superoleophobic/superoleophilic coatings with impeccable physical/chemical durability. This allows the super-wetting properties to exist beyond the surface of the material and remain intact even after severe physical damage including erosion of the material and continuous exposure to an artificial-marine environment for more than 80 days. Moreover, this current design allowed for independent revalidation of some key hypotheses with direct experimental demonstrations, and provided a basis to develop highly durable super-oil-wettability properties under water. It is believed that this contemporary study will make a worthwhile contribution on developing multifunctional materials for widespread practical applications by exploiting these super-oil-wetting properties. PMID:28989639

  7. Nano scale dynamics of bubble nucleation in confined liquid subjected to rapid cooling: Effect of solid-liquid interfacial wettability

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Mukut, K. M.; Tamim, Saiful Islam; Faisal, A. H. M.

    2017-06-01

    This study focuses on the occurrence of bubble nucleation in a liquid confined in a nano scale confinement and subjected to rapid cooling at one of its wall. Due to the very small size scale of the present problem, we adopt the molecular dynamics (MD) approach. The liquid (Argon) is confined within two solid (Platinum) walls. The temperature of the upper wall of the confinement is maintained at 90 K while the lower wall is being cooled rapidly to 50 K from initial equilibrium temperature of 90 K within 0.1 ns. This results in the nucleation and formation of nanobubbles in the liquid. The pattern of bubble nucleation has been studied for three different conditions of solid-liquid interfacial wettability such as hydrophilic, hydrophobic and neutral. Behavior of bubble nucleation is significantly different in the three case of solid-liquid interfacial wettability. In case of the hydrophobic confinement (weakly adsorbing), the liquid cannot achieve deeper metastability; vapor layers appear immediately on the walls. In case of the neutral confinement (moderately adsorbing), bubble nucleation is promoted by the walls where the nucleation is heterogeneous. In case of the hydrophilic walls (strongly adsorbing) bubbles are developed inside the liquid; that is the nucleation process is homogeneous. The variation in bubble nucleation under different conditions of surface wettability has been studied by the analysis of number density distribution, spatial temperature distribution, spatial number density distribution and heat flux through the upper and lower walls of the confinement. The present study indicates that the variation of heat transfer efficiency due to different surface wettability has significant effect on the size, shape and location of bubble nucleation in case rapid cooling of liquid in nano confinement.

  8. Non-lead, environmentally safe projectiles and explosives containers

    DOEpatents

    Lowden, Richard A.; McCoig, Thomas M.; Dooley, Joseph B.; Smith, Cyrus M.

    2001-01-16

    A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent.

  9. Non-lead environmentally safe projectiles and explosive container

    DOEpatents

    Lowden, Richard A.; McCoig, Thomas M.; Dooley, Joseph B.; Smith, Cyrus M.

    1999-06-15

    A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent.

  10. Characteristics of hierarchical micro/nano surface structure formation generated by picosecond laser processing in water and air

    NASA Astrophysics Data System (ADS)

    Rajab, Fatema H.; Whitehead, David; Liu, Zhu; Li, Lin

    2017-12-01

    Laser surface texturing or micro/nano surface structuring in the air has been extensively studied. However, until now, there are very few studies on the characteristics of laser-textured surfaces in water, and there was no reported work on picosecond laser surface micro/nano-structuring in water. In this work, the surface properties of picosecond laser surface texturing in water and air were analysed and compared. 316L stainless steel substrates were textured using a picosecond laser. The surface morphology and the chemical composition were characterised using Philips XL30 FEG-SEM, EDX and confocal laser microscopy. The wettability of the textured surfaces was determined using a contact angle analyser FTA 188. Results showed that a variety of hierarchical micro/nano surface patterns could be controlled by a suitable adjustment of laser parameters. Not only surface morphology but also remarkable differences in wettability, optical reflectivity and surface oxygen content were observed for different types of surface textures produced by laser surface texture in water and air. The possible mechanisms of the changes in the behaviour of laser-textured surfaces are discussed.

  11. Control of interfaces in Al-C fibre composites

    NASA Technical Reports Server (NTRS)

    Warrier, S. G.; Blue, C. A.; Lin, R. Y.

    1993-01-01

    The interface of Al-C fiber composite was modified by coating a silver layer on the surface of carbon fibres prior to making composites, in an attempt to improve the wettability between molten aluminum and carbon fibers during infiltration. An electroless plating technique was adopted and perfected to provide a homogeneous silver coating on the carbon fiber surface. Al-C fiber composites were prepared using a liquid infiltration technique in a vacuum. It was found that silver coating promoted the wetting between aluminum and carbon fibers, particularly with polyacrylonitrile-base carbon fibers. However, due to rapid dissolution of silver in molten aluminum, it was believed that the improved infiltration was not due to the wetting behavior between molten aluminum and silver. The cleaning of the fiber surface and the preservation of the cleaned carbon surface with silver coating was considered to be the prime reason for the improved wettability. Interfacial reactions between aluminum and carbon fibers were observed. Amorphous carbon was found to react more with aluminum than graphitic carbon. This is believed to be because of the inertness of the graphitic basal planes.

  12. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-Hung

    2016-04-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface.

  13. Static and dynamic wetting behaviour of ionic liquids.

    PubMed

    Delcheva, Iliana; Ralston, John; Beattie, David A; Krasowska, Marta

    2015-08-01

    Ionic liquids (ILs) are a unique family of molecular liquids ('molten salts') that consist of a combination of bulky organic cations coupled to inorganic or organic anions. The net result of steric hindrance and strong hydrogen bonding between components results in a material that is liquid at room temperature. One can alter the properties of ionic liquids through chemical modification of anion and cation, thus tailoring the IL for a given application. One such property that can be controlled or selected is the wettability of an IL on a particular solid substrate. However, the study of wetting of ionic liquids is complicated by the care required for accurate and reproducible measurement, due to both the susceptibility of the IL properties to water content, as well as to the sensitivity of wettability measurements to the state of the solid surface. This review deals with wetting studies of ILs to date, including both static and dynamic wetting, as well as issues concerning line tension and the formation of precursor and wetting films. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Nano- and Micro-Scale Oxidative Patterning of Titanium Implant Surfaces for Improved Surface Wettability.

    PubMed

    Kim, In-hye; Son, Jun Sik; Choi, Seok Hwa; Kim, Kyo-han; Kwon, Tae-yub

    2016-02-01

    A simple and scalable surface modification treatment is demonstrated, in which nano- and microscale features are introduced into the surface of titanium (Ti) substrates by means of a novel and eco-friendly oxidative aqueous solution composed of hydrogen peroxide (H202) and sodium bicarbonate (NaHCO3). By immersing mirror-polished Ti discs in an aqueous mixture of 30 wt% H2O2/5 wt% NaHCO3 at 23 +/- 3 degrees C for 4 h, it was confirmed that this mixture is capable of generating microscale topographies on Ti surfaces. It also simultaneously formed nanochannels that were regularly arranged in a comb-like pattern on the Ti surface, thus forming a hierarchical surface structure. Further, these nano/micro-textured Ti surfaces showed great surface roughness and excellent wettability when compared with control Ti surfaces. This study demonstrates that a H2O2/NaHCO3 mixture can be effectively utilized to create reproducible nano/microscale topographies on Ti implant surfaces, thus providing an economical new oxidative solution that may be used effectively and safely as a Ti surface modification treatment.

  15. Ion adsorption-induced wetting transition in oil-water-mineral systems.

    PubMed

    Mugele, Frieder; Bera, Bijoyendra; Cavalli, Andrea; Siretanu, Igor; Maestro, Armando; Duits, Michel; Cohen-Stuart, Martien; van den Ende, Dirk; Stocker, Isabella; Collins, Ian

    2015-05-27

    The relative wettability of oil and water on solid surfaces is generally governed by a complex competition of molecular interaction forces acting in such three-phase systems. Herein, we experimentally demonstrate how the adsorption of in nature abundant divalent Ca(2+) cations to solid-liquid interfaces induces a macroscopic wetting transition from finite contact angles (≈ 10°) with to near-zero contact angles without divalent cations. We developed a quantitative model based on DLVO theory to demonstrate that this transition, which is observed on model clay surfaces, mica, but not on silica surfaces nor for monovalent K(+) and Na(+) cations is driven by charge reversal of the solid-liquid interface. Small amounts of a polar hydrocarbon, stearic acid, added to the ambient decane synergistically enhance the effect and lead to water contact angles up to 70° in the presence of Ca(2+). Our results imply that it is the removal of divalent cations that makes reservoir rocks more hydrophilic, suggesting a generalizable strategy to control wettability and an explanation for the success of so-called low salinity water flooding, a recent enhanced oil recovery technology.

  16. Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay

    NASA Astrophysics Data System (ADS)

    Sando, Shota; Zhang, Bo; Cui, Tianhong

    2017-12-01

    Combination of shrink induced nano-composites technique and layer-by-layer (LbL) self-assembled graphene challenges controlling surface morphology. Adjusting shrink temperature achieves tunability on graphene surface morphology on shape memory polymers, and it promises to be an alternative in fields of high-surface-area conductors and molecular detection. In this study, self-assembled graphene on a shrink polymer substrate exhibits nanowrinkles after heating. Induced nanowrinkles on graphene with different shrink temperature shows distinct surface roughness and wettability. As a result, it becomes more hydrophilic with higher shrink temperatures. The tunable wettability promises to be utilized in, for example, microfluidic devices. The graphene on shrink polymer also exhibits capability of being used in sensing applications for pH and alpha-fetoprotein (AFP) detection with advantages of label free and low cost, due to self-assembly technique, easy functionalization, and antigen-antibody reaction on graphene surface. The detection limit of AFP detection is down to 1 pg/mL, and therefore the sensor also has a significant potential for biosensing as it relies on low-cost self-assembly and label-free assay.

  17. Maximum spreading of liquid drop on various substrates with different wettabilities

    NASA Astrophysics Data System (ADS)

    Choudhury, Raihan; Choi, Junho; Yang, Sangsun; Kim, Yong-Jin; Lee, Donggeun

    2017-09-01

    This paper describes a novel model developed for a priori prediction of the maximal spread of a liquid drop on a surface. As a first step, a series of experiments were conducted under precise control of the initial drop diameter, its falling height, roughness, and wettability of dry surfaces. The transient liquid spreading was recorded by a high-speed camera to obtain its maximum spreading under various conditions. Eight preexisting models were tested for accurate prediction of the maximum spread; however, most of the model predictions were not satisfactory except one, in comparison with our experimental data. A comparative scaling analysis of the literature models was conducted to elucidate the condition-dependent prediction characteristics of the models. The conditioned bias in the predictions was mainly attributed to the inappropriate formulations of viscous dissipation or interfacial energy of liquid on the surface. Hence, a novel model based on energy balance during liquid impact was developed to overcome the limitations of the previous models. As a result, the present model was quite successful in predicting the liquid spread in all the conditions.

  18. Fabrication of large area flexible nanoplasmonic templates with flow coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qian; Devetter, Brent M.; Roosendaal, Timothy

    Here, we describe the development of a custom-built two-axis flow coater for the deposition of polymeric nanosphere monolayers used in the fabrication of large area nanoplasmonic films. The technique described here has the capability of depositing large areas (up to 7” x 10”) of self-assembled monolayers of polymeric nanospheres onto polyethylene terephthalate (PET) films. Here, three sets of film consisting of different diameter (ranging from 100 to 300 nm) polymeric nanospheres were used to demonstrate the capabilities of this instrument. To improve the surface wettability of the PET substrates during wet-deposition we enhanced the wettability by using a forced airmore » blown-arc plasma treatment system. Both the local microstructure, as confirmed by scanning electron microscopy, describing monolayer and multilayer coverage, and the overall macroscopic uniformity of the resultant nanostructured film were optimized by controlling the relative stage to blade speed and nanosphere concentration. As this is a scalable technique, large area films such as the ones described here, have a variety of crucial emerging applications in areas such as energy, catalysis, and chemical sensing.« less

  19. Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds

    NASA Astrophysics Data System (ADS)

    Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu

    2016-07-01

    Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μm and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns.

  20. Molecular Dynamics Study of Thermally Augmented Nanodroplet Motion on Chemical Energy Induced Wettability Gradient Surfaces.

    PubMed

    Chakraborty, Monojit; Chowdhury, Anamika; Bhusan, Richa; DasGupta, Sunando

    2015-10-20

    Droplet motion on a surface with chemical energy induced wettability gradient has been simulated using molecular dynamics (MD) simulation to highlight the underlying physics of molecular movement near the solid-liquid interface including the contact line friction. The simulations mimic experiments in a comprehensive manner wherein microsized droplets are propelled by the surface wettability gradient against forces opposed to motion. The liquid-wall Lennard-Jones interaction parameter and the substrate temperature are varied to explore their effects on the three-phase contact line friction coefficient. The contact line friction is observed to be a strong function of temperature at atomistic scales, confirming their experimentally observed inverse functionality. Additionally, the MD simulation results are successfully compared with those from an analytical model for self-propelled droplet motion on gradient surfaces.

  1. Correlation between surface properties and wettability of multi-scale structured biocompatible surfaces

    NASA Astrophysics Data System (ADS)

    Gorodzha, S. N.; Surmeneva, M. A.; Prymak, O.; Wittmar, A.; Ulbricht, M.; Epple, M.; Teresov, A.; Koval, N.; Surmenev, R. A.

    2015-11-01

    The influence of surface properties of radio-frequency (RF) magnetron deposited hydroxyapatite (HA) and Si-containing HA coatings on wettability was studied. The composition and morphology of the coatings fabricated on titanium (Ti) were characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). The surface wettability was studied using contact angle analysis. Different geometric parameters of acid-etched (AE) and pulse electron beam (PEB)-treated Ti substrates and silicate content in the HA films resulted in the different morphology of the coatings at micro- and nano- length scales. Water contact angles for the HA coated Ti samples were evaluated as a combined effect of micro roughness of the substrate and nano-roughness of the HA films resulting in higher water contact angles compared with acid-etched (AE) or pulse electron beam (PEB) treated Ti substrates.

  2. Machining-induced surface transformations of magnesium alloys to enhance corrosion resistance in human-like environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruschi, Stefania; Bertolini, Rachele; Ghiotti, Andrea

    We report that magnesium alloys are becoming increasingly attractive for producing temporary prosthetic devices thanks to their bioresorbable characteristics in human body. However, their poor corrosion resistance to body fluids seriously limits their applicability. In this work, machining-induced surface transformations are explored as means to enhance corrosion resistance of AZ31 magnesium alloy. Surface characteristics including topography, residual stresses, wettability, microstructures and depth of transformed layer, were analysed and correlated to in-vitro corrosion resistance. Results showed that cryogenic machining at low feed provided the most promising corrosion reduction. Finally, thorough physical characterizations gave fundamental insights into possible drivers for this enhancedmore » resistance.« less

  3. Machining-induced surface transformations of magnesium alloys to enhance corrosion resistance in human-like environment

    DOE PAGES

    Bruschi, Stefania; Bertolini, Rachele; Ghiotti, Andrea; ...

    2018-04-22

    We report that magnesium alloys are becoming increasingly attractive for producing temporary prosthetic devices thanks to their bioresorbable characteristics in human body. However, their poor corrosion resistance to body fluids seriously limits their applicability. In this work, machining-induced surface transformations are explored as means to enhance corrosion resistance of AZ31 magnesium alloy. Surface characteristics including topography, residual stresses, wettability, microstructures and depth of transformed layer, were analysed and correlated to in-vitro corrosion resistance. Results showed that cryogenic machining at low feed provided the most promising corrosion reduction. Finally, thorough physical characterizations gave fundamental insights into possible drivers for this enhancedmore » resistance.« less

  4. The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces

    PubMed Central

    Seo, Donghyun; Lee, Junghun; Lee, Choongyeop; Nam, Youngsuk

    2016-01-01

    The efficient water harvesting from air-laden moisture has been a subject of great interest to address world-wide water shortage issues. Recently, it has been shown that tailoring surface wettability can enhance the moisture harvesting performance. However, depending on the harvesting condition, a different conclusion has often been reported and it remains unclear what type of surface wettability would be desirable for the efficient water harvesting under the given condition. Here we compare the water harvesting performance of the surfaces with various wettability under two different harvesting conditions–dewing and fogging, and show that the different harvesting efficiency of each surface under these two conditions can be understood by considering the relative importance of the water capturing and removal efficiency of the surface. At fogging, the moisture harvesting performance is determined by the water removal efficiency of the surface with the oil-infused surfaces exhibiting the best performance. Meanwhile, at dewing, both the water capturing and removal efficiency are crucial to the harvesting performance. And well-wetting surfaces with a lower barrier to nucleation of condensates exhibit a better harvesting performance due to the increasing importance of the water capture efficiency over the water removal efficiency at dewing. PMID:27063149

  5. Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment

    PubMed Central

    Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen

    2015-01-01

    To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability. PMID:26257980

  6. Wettability of AFM tip influences the profile of interfacial nanobubbles

    NASA Astrophysics Data System (ADS)

    Teshima, Hideaki; Takahashi, Koji; Takata, Yasuyuki; Nishiyama, Takashi

    2018-02-01

    To accurately characterize the shape of interfacial nanobubbles using atomic force microscopy (AFM), we investigated the effect of wettability of the AFM tip while operating in the peak force tapping (PFT) mode. The AFM tips were made hydrophobic and hydrophilic by Teflon AF coating and oxygen plasma treatment, respectively. It was found that the measured base radius of nanobubbles differed between AFM height images and adhesion images, and that this difference depended on the tip wettability. The force curves obtained during the measurements were also different depending on the wettability, especially in the range of the tip/nanobubble interaction and in the magnitude of the maximum attractive force in the retraction period. The difference suggests that hydrophobic tips penetrate the gas/liquid interface of the nanobubbles, with the three phase contact line being pinned on the tip surface; hydrophilic tips on the other hand do not penetrate the interface. We then quantitatively estimated the pinning position and recalculated the true profiles of the nanobubbles by comparing the height images and adhesion images. As the AFM tip was made more hydrophilic, the penetration depth decreased and eventually approached zero. This result suggests that the PFT measurement using a hydrophilic tip is vital for the acquisition of reliable nanobubble profiles.

  7. Adsorption energy as a metric for wettability at the nanoscale

    PubMed Central

    Giro, Ronaldo; Bryant, Peter W.; Engel, Michael; Neumann, Rodrigo F.; Steiner, Mathias B.

    2017-01-01

    Wettability is the affinity of a liquid for a solid surface. For energetic reasons, macroscopic drops of liquid form nearly spherical caps. The degree of wettability is then captured by the contact angle where the liquid-vapor interface meets the solid-liquid interface. As droplet volumes shrink to the scale of attoliters, however, surface interactions become significant, and droplets assume distorted shapes. In this regime, the contact angle becomes ambiguous, and a scalable metric for quantifying wettability is needed, especially given the emergence of technologies exploiting liquid-solid interactions at the nanoscale. Here we combine nanoscale experiments with molecular-level simulation to study the breakdown of spherical droplet shapes at small length scales. We demonstrate how measured droplet topographies increasingly reveal non-spherical features as volumes shrink. Ultimately, the nanoscale droplets flatten out to form layer-like molecular assemblies at the solid surface. For the lack of an identifiable contact angle at small scales, we introduce a droplet’s adsorption energy density as a new metric for a liquid’s affinity for a surface. We discover that extrapolating the macroscopic idealization of a drop to the nanoscale, though it does not geometrically resemble a realistic droplet, can nonetheless recover its adsorption energy if line tension is included. PMID:28397869

  8. Effect of Al and Mg Contents on Wettability and Reactivity of Molten Zn-Al-Mg Alloys on Steel Sheets Covered with MnO and SiO2 Layers

    NASA Astrophysics Data System (ADS)

    Huh, Joo-Youl; Hwang, Min-Je; Shim, Seung-Woo; Kim, Tae-Chul; Kim, Jong-Sang

    2018-05-01

    The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) SiO2-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at 460 °C and the variation in the contact angles (θc) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the a-SiO2-covered steel exhibited nonreactive, nonwetting (θc > 90°) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the a-SiO2 layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the a-SiO2 layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and SiO2, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.

  9. Reducing the impact of pesticides on biological control in Australian vineyards: pesticide mortality and fecundity effects on an indicator species, the predatory mite Euseius victoriensis (Acari: Phytoseiidae).

    PubMed

    Bernard, Martina B; Cole, Peter; Kobelt, Amanda; Horne, Paul A; Altmann, James; Wratten, Stephen D; Yen, Alan L

    2010-12-01

    Laboratory bioassays on detached soybean, Glycine max (L.) Merr., leaves were used to test 23 fungicides, five insecticides, two acaricides, one herbicide, and two adjuvants on a key Australian predatory mite species Euseius victoriensis (Womersley) in "worst-case scenario" direct overspray assays. Zero- to 48-h-old juveniles, their initial food, and water supply were sprayed to runoff with a Potter tower; spinosad and wettable sulfur residues also were tested. Tests were standardized to deliver a pesticide dose comparable with commercial application of highest label rates at 1,000 liter/ha. Cumulative mortality was assessed 48 h, 4 d, and 7 d after spraying. Fecundity was assessed for 7 d from start of oviposition. No significant mortality or fecundity effects were detected for the following compounds at single-use application at 1,000 liter/ha: azoxystrobin, Bacillus thuringiensis (Bt) subsp. kurstaki, captan, chlorothalonil, copper hydroxide, fenarimol, glyphosate, hexaconazole, indoxacarb, metalaxyl/copper hydroxide, myclobutanil, nonyl phenol ethylene oxide, phosphorous acid, potassium bicarbonate, pyraclostrobin, quinoxyfen, spiroxamine, synthetic latex, tebufenozide, triadimenol, and trifloxystrobin. Iprodione and penconazole had some detrimental effect on fecundity. Canola oil as acaricide (2 liter/100 liter) and wettable sulfur (200 g/100 liter) had some detrimental effect on survival and fecundity and cyprodinil/fludioxonil on survivor. The following compounds were highly toxic (high 48-h mortality): benomyl, carbendazim, emamectin benzoate, mancozeb, spinosad (direct overspray and residue), wettable sulfur (> or = 400 g/100 liter), and pyrimethanil; pyrimethanil had no significant effect on fecundity of surviving females. Indoxacarb safety to E. victoriensis contrasts with its toxicity to key parasitoids and chrysopid predators. Potential impact of findings is discussed.

  10. Carbon nanowall scaffold to control culturing of cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Watanabe, Hitoshi; Kondo, Hiroki; Okamoto, Yukihiro; Hiramatsu, Mineo; Sekine, Makoto; Baba, Yoshinobu; Hori, Masaru

    2014-12-01

    The effect of carbon nanowalls (CNWs) on the culturing rate and morphological control of cervical cancer cells (HeLa cells) was investigated. CNWs with different densities were grown using plasma-enhanced chemical vapor deposition and subjected to post-growth plasma treatment for modification of the surface terminations. Although the surface wettability of the CNWs was not significantly dependent on the CNW densities, the cell culturing rates were significantly dependent. Morphological changes of the cells were not significantly dependent on the density of CNWs. These results indicate that plasma-induced surface morphology and chemical terminations enable nanobio applications using carbon nanomaterials.

  11. Wetting Heterogeneities in Porous Media Control Flow Dissipation

    NASA Astrophysics Data System (ADS)

    Murison, Julie; Semin, Benoît.; Baret, Jean-Christophe; Herminghaus, Stephan; Schröter, Matthias; Brinkmann, Martin

    2014-09-01

    Pressure-controlled displacement of an oil-water interface is studied in dense packings of functionalized glass beads with well-defined spatial wettability correlations. An enhanced dissipation is observed if the typical extension ξ of the same-type wetting domains is smaller than the average bead diameter d. Three-dimensional imaging using x-ray microtomography shows that the frequencies n(s) of residual droplet volumes s for different ξ collapse onto the same curve. This indicates that the additional dissipation for small ξ is due to contact line pinning rather than an increase of capillary break-up and coalescence events.

  12. Superhydrophobic Surface With Shape Memory Micro/Nanostructure and Its Application in Rewritable Chip for Droplet Storage.

    PubMed

    Lv, Tong; Cheng, Zhongjun; Zhang, Dongjie; Zhang, Enshuang; Zhao, Qianlong; Liu, Yuyan; Jiang, Lei

    2016-09-21

    Recently, superhydrophobic surfaces with tunable wettability have aroused much attention. Noticeably, almost all present smart performances rely on the variation of surface chemistry on static micro/nanostructure, to obtain a surface with dynamically tunable micro/nanostructure, especially that can memorize and keep different micro/nanostructures and related wettabilities, is still a challenge. Herein, by creating micro/nanostructured arrays on shape memory polymer, a superhydrophobic surface that has shape memory ability in changing and recovering its hierarchical structures and related wettabilities was reported. Meanwhile, the surface was successfully used in the rewritable functional chip for droplet storage by designing microstructure-dependent patterns, which breaks through current research that structure patterns cannot be reprogrammed. This article advances a superhydrophobic surface with shape memory hierarchical structure and the application in rewritable functional chip, which could start some fresh ideas for the development of smart superhydrophobic surface.

  13. Graphene/Ionic Liquid Composite Films and Ion Exchange

    PubMed Central

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  14. Enhanced wettability of SU-8 photoresist through a photografting procedure for bioanalytical device applications

    PubMed Central

    Gao, Zhan; Henthorn, David B.; Kim, Chang-Soo

    2009-01-01

    In this work, we detail a method whereby a polymeric hydrogel layer is grafted to the negative tone photoresist SU-8 in order to improve its wettability. A photoinitiator is first immobilized on freshly prepared SU-8 samples, acting as the starting point for various surface modifications strategies. Grafting of a 2-hydroxyethylmethacrylate-based hydrogel from the SU-8 surface resulted in the reduction of the static contact angle of a water droplet from 79 ± 1° to 36 ± 1°, while addition of a poly(ethylene glycol)-rich hydrogel layer resulted in further improvement (8 ± 1°). Wettability is greatly enhanced after 30 minutes of polymerization, with a continued but more gradual decrease in contact angle up to approximately 50 minutes. Hydrogel formation is triggered by exposure to UV irradiation, allowing for the formation of photopatterned structures using existing photolithographic techniques. PMID:19756177

  15. Evaluation of Reservoir Wettability and its Effect on Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, Jill S.

    1999-07-01

    The objective of this five-year project are: (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding. During the second year of this project we have tested the generality of the proposed mechanisms by which crude oil components can alter wetting. Using these mechanisms, we have begun a program of characterizing crude oils with respectmore » to their wettability altering potential. Wettability assessment has been improved by replacing glass with mica as a standard surface material and crude oils have been used to alter wetting in simple square glass capillary tubes in which the subsequent imbibition of water can be followed visually.« less

  16. Photoresponsive Polymer Surfaces

    NASA Astrophysics Data System (ADS)

    Anastasiadis, Spiros H.; Lygeraki, M. I.; Lakiotaki, K.; Varda, M.; Athanassiou, A.; Farsari, M.; Fotakis, C.

    2007-03-01

    Photochromic spiropyran molecules are utilized as additives for the development of polymer surfaces whose wetting characteristics can reversibly respond to irradiation with laser beams of properly chosen photon energy. The hydrophilicity is enhanced upon UV laser irradiation since the embedded non-polar spiropyran molecules convert to their polar merocyanine isomers, which is reversed upon green laser irradiation. Micropatterning of the photochromic-polymer films using soft lithography or photo-polymerization techniques affects their wettability towards a more hydrophobic or more hydrophilic behavior depending on the dimensions of the patterned features and on the hydrophilicity-hydrophobicity of the flat surface. The light-induced wettability variations of the structured surfaces are enhanced by up to a factor of three as compared to those on the flat surfaces. This enhancement is attributed to the photoinduced reversible volume changes to the imprinted gratings, which additionally contribute to the wettability changes due to the light-induced photochromic interconversions.

  17. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    NASA Astrophysics Data System (ADS)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  18. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    NASA Astrophysics Data System (ADS)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  19. Non-lead environmentally safe projectiles and explosive container

    DOEpatents

    Lowden, R.A.; McCoig, T.M.; Dooley, J.B.; Smith, C.M.

    1999-06-15

    A solid object having controlled frangibility, such as a bullet or a container for explosives, is made by combining two different metals in proportions calculated to achieve a desired density, without using lead. A wetting material is deposited on the base constituent which is made of a relative dense, hard material. The wetting material enhances the wettability of the base constituent with the binder constituent, which is lighter and softer than the base constituent. 10 figs.

  20. Lattice Boltzmann simulation of immiscible displacement in the cavity with different channel configurations

    NASA Astrophysics Data System (ADS)

    Lou, Qin; Zang, Chenqiang; Yang, Mo; Xu, Hongtao

    In this work, the immiscible displacement in a cavity with different channel configurations is studied using an improved pseudo-potential lattice Boltzmann equation (LBE) model. This model overcomes the drawback of the dependence of the fluid properties on the grid size, which exists in the original pseudo-potential LBE model. The approach is first validated by the Laplace law. Then, it is employed to study the immiscible displacement process. The influences of different factors, such as the surface wettability, the distance between the gas cavity and liquid cavity and the surface roughness of the channel are investigated. Numerical results show that the displacement efficiency increases and the displacement time decreases with the increase of the surface contact angle. On the other hand, the displacement efficiency increases with increasing distance between the gas cavity and the liquid cavity at first and finally reaches a constant value. As for the surface roughness, two structures (a semicircular cavity and a semicircular bulge) are studied. The comprehensive results show that although the displacement processes for both the structures depend on the surface wettability, they present quite different behaviors. Specially, for the roughness structure constituted by the semicircular cavity, the displacement efficiency decreases and displacement time increases evidently with the size of the semicircular cavity for the small contact angle. The trend slows down as the increase of the contact angle. Once the contact angle exceeds a certain value, the size of the semicircular cavity almost has no influence on the displacement process. While for the roughness structure of a semicircular bulge, the displacement efficiency increases with the size of bulge first and then it decreases for the small contact angle. The displacement efficiency increases first and finally reaches a constant for the large contact angle. The results also show that the displacement time has an extreme value in these cases for the small contact angles.

  1. Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy

    NASA Astrophysics Data System (ADS)

    Ren, Yu; Wang, Chunxia; Qiu, Yiping

    2007-09-01

    One of the main differences between a low-pressure plasma treatment and an atmospheric pressure plasma treatment is that in atmosphere, the substrate material may absorb significant amount of water which may potentially influence the plasma treatment effects. This paper investigates how the moisture absorbed by aramid fibers during the atmospheric pressure plasma treatment influences the aging behavior of the modified surfaces. Kevlar 49 fibers with different moisture regains (MR) (0.5, 3.5 and 5.5%, respectively) are treated with atmospheric pressure plasma jet (APPJ) with helium as the carrier gas and oxygen as the treatment gas. Surface wettability and chemical compositions, and interfacial shear strengths (IFSS) to epoxy for the aramid fibers in all groups are determined using water contact angle measurements, X-ray photoelectron spectroscopy (XPS), and micro-bond pull out tests, respectively. Immediately after the plasma treatment, the treated fibers have substantially lower water contact angles, higher surface oxygen and nitrogen contents, and larger IFSS to epoxy than those of the control group. At the end of 30 day aging period, the fibers treated with 5.5% moisture regain had a lower water contact angle and more polar groups on the fiber surface, leading to 75% improvement of IFSS over the control fibers, while those for the 0.5 and 3.5% moisture regain groups were only 30%.

  2. Thermocapillary droplet actuation on structured solid surfaces

    NASA Astrophysics Data System (ADS)

    Karapetsas, George; Chamakos, Nikolaos T.; Papathanasiou, Athanasios G.

    2017-11-01

    The present work investigates, through 2D and 3D finite element simulations, the thermocapillary-driven flow inside a droplet which resides on a non-uniformly heated patterned surface. We employ a recently proposed sharp-interface scheme capable of efficiently modelling the flow over complicate surfaces and consider a wide range of substrate wettabilities, i.e. from hydrophilic to super-hydrophobic surfaces. Our simulations indicate that due to the presence of the solid structures and the induced effect of contact angle hysteresis, inherently predicted by our model, a critical thermal gradient arises beyond which droplet migration is possible, in line with previous experimental observations. The migration velocity as well as the direction of motion depends on the combined action of the net mechanical force along the contact line and the thermocapillary induced flow at the liquid-air interface. We also show that through a proper control and design of the substrate wettability, the contact angle hysteresis and the induced flow field it is possible to manipulate the droplet dynamics, e.g. controlling its motion along a predefined track or entrapping by a wetting defect a droplet based on its size as well as providing appropriate conditions for enhanced mixing inside the droplet. Funding from the European Research Council under the Europeans Community's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. [240710] is acknowledged.

  3. Removal of Organic Pollutants from Water Using Superwetting Materials.

    PubMed

    Li, Lingxiao; Zhang, Junping; Wang, Aiqin

    2018-02-01

    The frequent occurrence of water pollution accidents and the leakage of organic pollutants have caused severe environmental and ecological crisis. It is thus highly imperative to find efficient materials to solve the problem. Inspired by the lotus leaf, superwetting materials are receiving increasing attention in the field of removal of organic pollutants from water. Various superwetting materials have been successfully generated and integrated into devices for removal of organic pollutants from water. On the basis of our previous work in the field, we summarized in this account the progress of removal of (1) floating and underwater insoluble, (2) emulsified insoluble, and (3) both insoluble and soluble organic pollutants from water using superwetting materials including superhydrophobic & superoleophilic materials, superhydrophilic & underwater superoleophobic materials, and materials with controllable wettability. The superwetting materials are in the forms of 2D porous materials, 3D porous materials and particles, etc. Finally, the current state and future challenges in this field are discussed. We hope this account could shed light on the design of novel superwetting materials for efficient removal of organic pollutants from water. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Influence of temperature, filter wettability, and timing of filtration on the removal of WBCs from RBC concentrates.

    PubMed

    van der Meer, P F; Pietersz, R N; Reesink, H W

    2001-04-01

    The efficacy of the removal of WBCs from buffy coat-reduced RBC concentrates by filtration is determined by many variables. The aim of this study was to investigate the influence of the filtration temperature, the wettability of the filter material, and the timing of the filtration after collection. The investigation used commercially available filters: 3 dry "online" filters (Cellselect FR, Fresenius Hemocare; BioR-01-max, Fresenius; Leucoflex LCG1, MacoPharma) and one wet "inline" filter (Leucoflex LCR4, MacoPharma) that contained saline-adenine-glucose-mannitol additive solution for RBCs and differed from the online version only in wettability. After buffy coat removal and suspension in saline-adenine-glucose-mannitol, filtrations were performed immediately at room temperature (RT) and after 2 hours' storage of the RBC concentrates at 4 degrees C, while the Leucoflex LCR4 was also tested after 24 hours' storage of the RBC concentrates at 4 degrees C. Sets of 12 pooled experiments were performed to prevent donor-dependent differences. The Cellselect FR gave significantly better WBC removal from RBC concentrates at 4 degrees C than at RT, with residual WBCs of 1.44 +/- 0.58 x 10(6) and 2.78 +/- 1.23 x 10(6), respectively (p<0.001). The BioR-01-max gave no significant difference: 0.62 +/- 0.27 x 10(6) WBCs (at 4 degrees C) versus 0.61 +/- 0.25 x 10(6) WBCs (at RT). Filtration with the Leucoflex LCG1 resulted in 0.06 +/- 0.03 x 10(6) and 0.07 +/- 0.07 x 10(6) WBCs at 4 degrees C and RT, respectively, which is not a significant difference. The Leucoflex LCR4, however, gave 2.08 +/- 0.84 x 10(6) WBCs at RT, 0.52 +/- 0.44 x 10(6) WBCs at 4 degrees C after 2 hours' cooling, and 0.05 +/- 0.10 x 10(6) WBCs at 4 degrees C after 24 hours' cooling (all p<0.001). Temperature, filter wettability, and timing of filtration after collection influence the efficacy of a filter for RBC concentrates. These variables need to be established, validated, and controlled before a filter can be selected for routine use.

  5. Studies on polyurethane adhesives and surface modification of hydrophobic substrates

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Jayaraman

    This thesis work deals with (a) Curing of reactive, hot-melt polyurethane adhesives and (b) Adsorption studies using different interactions. Research on polyurethanes involves characterization of polyurethane prepolymers and a novel mechanism to cure isocyanate-terminated polyurethane prepolymer by a "trigger" mechanism. Curing of isocyanate-terminated polyurethane prepolymers has been shown to be influenced by morphology and environmental conditions such as temperature and relative humidity. Although the initial composition, final morphology and curing kinetics are known, information regarding the intermediate prepolymer mixture is yet to be established. Polyurethane prepolymers prepared by the reaction of diisocyanates with the primary hydroxyls of polyester diol (PHMA) and secondary hydroxyls of polyether diol (PPG) were characterized. The morphology and crystallization kinetics of a polyurethane prepolymer was compared with a blend of PPG prepolymer (the product obtained by the reaction of PPG with diisocyanate) and a PHMA prepolymer (the product obtained by the reaction of PHMA with diisocyanate) to study the effect of copolymer formed in the polyurethane prepolymer on the above-mentioned properties. Although the morphology of the polyurethane prepolymer is determined in the first few minutes of application, the chemical curing of isocyanate-terminated prepolymer occurs over hours to days. In the literature, different techniques are described to follow the curing kinetics. But there is no established technique to control the curing of polyurethane prepolymer. To make the curing process independent of environmental factors, a novel approach using a trigger mechanism was designed and implemented by using ammonium salts as curing agents. Ammonium salts that are stable at room temperature but decompose on heating to yield active hydrogen-containing compounds, NH3 and H2O, were used as 'Trojan horses' to cure the prepolymer chemically. Research on adsorption studies involved making functionalized, thickness-controlled, wettability-controlled multilayers on hydrophobic substrates and the adsorption of carboxylic acid-terminated poly(styrene-b-isoprene) on alumina/silica substrates. Poly(vinyl alcohol) has been shown to adsorb onto hydrophobic surfaces irreversibly due to hydrophobic interactions. This thin semicrystalline coating is chemically modified using acid chlorides, butyl isocyanate and butanal to form thicker and hydrophobic coatings. The products of the modification reactions allow adsorption of a subsequent layer of poly(vinyl alcohol) that could subsequently be hydrophobized. This 2-step (adsorption/chemical modification) allows layer-by-layer deposition to prepare coatings with thickness, chemical structure and wettability control on any hydrophobic surface. Research on adsorption characteristics of carboxylic acid-terminated poly(styrene-b-isoprene) involved syntheses of block copolymers with the functional group present at specific ends. Comparative adsorption studies for carboxylic acid-terminated and hydrogen-terminated block copolymers was carried out on alumina and silica substrates.

  6. Structural, surface wettability and antibacterial properties of HPMC-ZnO nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, B. Lakshmeesha; Asha, S.; Madhukumar, R.

    The developed hydroxypropyl methylcellulose (HPMC)/Zinc oxide (ZnO) nanocomposite films were examined for structural property and surface wettability using X-ray diffraction and contact angle measurement. Antibacterial activity of these films was evaluated as a function of ZnO concentration. The microstructuralline parameters ( and (g in %)) decreased with increasing concentration of ZnO nanoparticles and there was increase in hydrophilicity. Addition of ZnO nanoparticles in films resulted in antimicrobial activity against tested microorganisms.

  7. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection.

    PubMed

    Ju, Jie; Xiao, Kai; Yao, Xi; Bai, Hao; Jiang, Lei

    2013-11-06

    Inspired by the efficient fog collection on cactus spines, conical copper wires with gradient wettability are fabricated through gradient electrochemical corrosion and subsequent gradient chemical modification. These dual-gradient copper wires' fog-collection ability is demonstrated to be higher than that of conical copper wires with pure hydrophobic surfaces or pure hydrophilic surfaces, and the underlying mechanism is also analyzed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Experimental Investigation of 2D thermal signature and 3D X-Ray Computed Tomography in contrasting Wettable and Water-Repellent Beads

    NASA Astrophysics Data System (ADS)

    Alsih, Abdulkareem; Flavel, Richard; McGrath, Gavan

    2017-04-01

    This study presents experimental results investigating spatial patterns of infiltration and evaporation in heterogeneous water repellent media. Infrared camera measurements and 3D X-ray computed tomography imaging was performed across wet-dry cycles on glass beads with engineered patches of water repellence. The imaging revealed spatial variability in infiltration and the redistribution of water in the media resulting in differences in relative evaporation rates during drying. It appears that the spatial organization of the heterogeneity play a role in the breakdown of water repellence at the interface of the two media. This suggests a potential mechanism for self-organization of repellency spatial patterns in field soils. At the interface between wettable and water repellent beads a lateral drying front propagates towards the wettable beads from the repellent beads. During this drying the relative surface temperatures change from a relatively cooler repellent media surface to a relatively cooler wettable media surface indicating the changes in evaporative water loss between the beads of varying water repellence. The lateral drying front was confirmed using thermography in a small-scale model of glass beads with chemically induced repellence and then subjected to 3D X-ray imaging. Pore-scale imaging identified the hydrology at the interface of the two media and at the drying front giving insights into the physics of water flow in water repellent soil.

  9. Making and breaking bridges in a Pickering emulsion.

    PubMed

    French, David J; Taylor, Phil; Fowler, Jeff; Clegg, Paul S

    2015-03-01

    Particle bridges form in Pickering emulsions when the oil-water interfacial area generated by an applied shear is greater than that which can be stabilised by the available particles and the particles have a slight preference for the continuous phase. They can subsequently be broken by low shear or by modifying the particle wettability. We have developed a model oil-in-water system for studying particle bridging in Pickering emulsions stabilised by fluorescent Stöber silica. A mixture of dodecane and isopropyl myristate was used as the oil phase. We have used light scattering and microscopy to study the degree to which emulsions are bridged, and how this is affected by parameters including particle volume fraction, particle wettability and shear rate. We have looked for direct evidence of droplets sharing particles using freeze fracture scanning electron microscopy. We have created strongly aggregating Pickering emulsions using our model system. This aggregating state can be accessed by varying several different parameters, including particle wettability and particle volume fraction. Particles with a slight preference for the continuous phase are required for bridging to occur, and the degree of bridging increases with increasing shear rate but decreases with increasing particle volume fraction. Particle bridges can subsequently be removed by applying low shear or by modifying the particle wettability. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Anisotropic wetting of microstructured surfaces as a function of surface chemistry.

    PubMed

    Neuhaus, Sonja; Spencer, Nicholas D; Padeste, Celestino

    2012-01-01

    In order to study the influence of surface chemistry on the wetting of structured surfaces, microstructures consisting of grooves or squares were produced via hot embossing of poly(ethylene-alt-tetrafluoroethylene) ETFE substrates. The structured substrates were modified with polymer brushes, thereby changing their surface functionality and wettability. Water droplets were most strongly pinned to the structure when the surface was moderately hydrophilic, as in the case of poly(4-vinylpyridine) (P4VP) or poly(vinyl(N-methyl-2-pyridone) (PVMP) brush-modified substrates. As a result, the droplet shape was determined by the features of the microstructure. The water contact angles (CA) were considerably higher than on flat surfaces and differed, in the most extreme case, by 37° when measured on grooved substrates, parallel and perpendicular to the grooves. On hydrophobic substrates (pristine ETFE), the same effects were observed but were much less pronounced. On very hydrophilic sampes (those modified with poly(N-methyl-vinylpyridinium) (QP4VP)), the microstructure had no influence on the drop shape. These findings are explained by significant differences in apparent and real contact angles at the relatively smooth edges of the embossed structures. Finally, the highly anisotropic grooved microstructure was combined with a gradient in polymer brush composition and wettability. In the case of a parallel alignment of the gradient direction to the grooves, the directed spreading of water droplets could be observed. © 2011 American Chemical Society

  11. Functional characteristics, wettability properties and cytotoxic effect of starch film incorporated with multi-walled and hydroxylated multi-walled carbon nanotubes.

    PubMed

    Shahbazi, Mahdiyar; Rajabzadeh, Ghadir; Sotoodeh, Shahnaz

    2017-11-01

    Two types of multi-walled carbon nanotubes (CNT and CNT-OH) at different levels (0.1-0.9wt%) were introduced into starch matrix in order to modify its functional properties. The optimum concentration of each nanotube was selected based on the results of water solubility, water permeability and mechanical experiments. The physico-mechanical data showed that CNT up to 0.7wt% led to a notable increase in water resistance, water barrier property and tensile strength, whilst regarding CNT-OH, these improvements found at 0.9wt%. Therefore, effects of optimized level of each nanotube on the starch film were evaluated by XRD, surface hydrophobicity, wettability and surface energy tests. XRD revealed that the position of starch characteristic peak shifted to higher degree after nanotubes introducing. The hydrophobic character of the film was greatly increased with incorporation of nanoparticles, as evidenced by increased contact angle with greatest value regarding CNT-OH. Moreover, CNT-OH notably decreased the surface free energy of the starch film. Finally, the conformity of both nanocomposites with actual food regulations on biodegradable materials was tested by cytotoxicity assay to evaluate the possibility of application in food packaging sector. Both nanocomposite films had potential of cytotoxic effects, since they could increase cytoplasmic lactate dehydrogenase release from L-929 fibroblast cells in contact with their surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of surface active agents on DNAPL migration and distribution in saturated porous media.

    PubMed

    Cheng, Zhou; Gao, Bin; Xu, Hongxia; Sun, Yuanyuan; Shi, Xiaoqing; Wu, Jichun

    2016-11-15

    Dissolved surface active agents such as surfactant and natural organic matter can affect the distribution and fate of dense nonaqueous liquids (DNAPLs) in soil and groundwater systems. This work investigated how two common groundwater surface active agents, humic acid (HA) and Tween 80, affected tetrachloroethylene (PCE) migration and source zone architecture in saturated porous media under environmentally relevant conditions. Batch experiments were first conducted to measure the contact angles and interfacial tensions (IFT) between PCE and quartz surface in water containing different amount of surface active agents. Results showed that the contact angle increased and IFT decreased with concentration of surface active agent increasing, and Tween 80 was much more effective than HA. Five 2-D flow cell experiments were then conducted. Correspondingly, Tween 80 showed strong effects on the migration and distribution of PCE in the porous media due to its ability to change the medium wettability from water-wet into intermediate/NAPL-wet. The downward migration velocities of the PCE in three Tween 80 cells were slower than those in the other two cells. In addition, the final saturation of the PCE in the cells containing surface active agents was higher than that in the water-only cell. Results from this work indicate that the presence of surface active agents in groundwater may strongly affect the fate and distribution of DNAPL through altering porous medium wettability. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Influence of surface morphology and UFG on damping and mechanical properties of composite reinforced with spinel MgAl{sub 2}O{sub 4}-SiC core-shell microcomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Subhash; Pal, Kaushik, E-mail: pl_kshk@yaho

    Interface between ceramic particulate and matrix is known to control the response of the materials and functionality of the composite. Among numerous physical properties, grain structure of the materials has also played a significant role in defining the behaviour of metal matrix composites. Usually, silicon carbide (SiC) particles show poor interfacial wettability in aluminium melt. Herein, we were successfully synthesized magnesium oxide (MgO) and nanocrystalline magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel coated silicon carbide (SiC) core-shell micro-composites through sol-gel technique to improve the wettability of dispersoids. Core-shell structures of submicron size were thoroughly investigated by various characterization techniques. Further, aluminiummore » matrix composites incorporated with pristine SiC, MgO grafted SiC and MgAl{sub 2}O{sub 4} grafted SiC particles were fabricated by stir casting technique, respectively. Additionally, as-cast composites were processed via friction stir processing (FSP) technique to observe the influence of grain refinement on mechanical and damping properties. Electron back scattered diffraction (EBSD), Field emission scanning electron microscopy (FE-SEM) and X-ray energy dispersion spectroscopy (EDX) analysis were conducted for investigating grain size refinement, adequate dispersion, stability and de-agglomeration of encapsulated SiC particles in aluminium matrix. The mechanical as well as thermal cyclic (from − 100 to 400 °C) damping performance of the as-cast and friction stir processed composites were studied, respectively. Finally, the enhanced properties were attributable to reduced agglomeration, stabilization and proper dispersion of the tailored SiC particles Al matrix. - Highlights: •Synthesizing a novel coating layer of MgO and MgAl{sub 2}O{sub 4} spinel onto SiC particles •Significant improvement in UTS and hardness by reinforcing tailored SiC in Al •Significant grain refinements were obtained through FSP •SiC/MgAl{sub 2}O{sub 4}/Al exhibits ~ 61% higher storage modulus as compare to pure Al after FSP.« less

  14. Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications.

    PubMed

    Grundke, K; Pöschel, K; Synytska, A; Frenzel, R; Drechsler, A; Nitschke, M; Cordeiro, A L; Uhlmann, P; Welzel, P B

    2015-08-01

    Contact angle hysteresis phenomena on polymer surfaces have been studied by contact angle measurements using sessile liquid droplets and captive air bubbles in conjunction with a drop shape method known as Axisymmetric Drop Shape Analysis - Profile (ADSA-P). In addition, commercially available sessile drop goniometer techniques were used. The polymer surfaces were characterized with respect to their surface structure (morphology, roughness, swelling) and surface chemistry (elemental surface composition, acid-base characteristics) by scanning electron microscopy (SEM), scanning force microscopy (SFM), ellipsometry, X-ray photoelectron spectroscopy (XPS) and streaming potential measurements. Heterogeneous polymer surfaces with controlled roughness and chemical composition were prepared by different routes using plasma etching and subsequent dip coating or grafting of polymer brushes, anodic oxidation of aluminium substrates coated with thin polymer films, deposition techniques to create regular patterned and rough fractal surfaces from core-shell particles, and block copolymers. To reveal the effects of swelling and reorientation at the solid/liquid interface contact angle hysteresis phenomena on polyimide surfaces, cellulose membranes, and thermo-responsive hydrogels have been studied. The effect of different solutes in the liquid (electrolytes, surfactants) and their impact on contact angle hysteresis were characterized for solid polymers without and with ionizable functional surface groups in aqueous electrolyte solutions of different ion concentrations and pH and for photoresist surfaces in cationic aqueous surfactant solutions. The work is an attempt toward the understanding of contact angle hysteresis phenomena on polymer surfaces aimed at the control of wettability for different applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films

    NASA Astrophysics Data System (ADS)

    Schutzius, Thomas M.; Bayer, Ilker S.; Jursich, Gregory M.; Das, Arindam; Megaridis, Constantine M.

    2012-08-01

    Surfaces patterned with alternating (binary) superhydrophobic-superhydrophilic regions can be found naturally, offering a bio-inspired template for efficient fluid collection and management technologies. We describe a simple wet-processing, thermal treatment method to produce such patterns, starting with inherently superhydrophobic polysilsesquioxane-silica composite coatings prepared by spray casting nanoparticle dispersions. Such coatings become superhydrophilic after localized thermal treatment by means of laser irradiation or open-air flame exposure. When laser processed, the films are patternable down to ~100 μm scales. The dispersions consist of hydrophobic fumed silica (HFS) and methylsilsesquioxane resin, which are dispersed in isopropanol and deposited onto various substrates (glass, quartz, aluminum, copper, and stainless steel). The coatings are characterized by advancing, receding, and sessile contact angle measurements before and after thermal treatment to delineate the effects of HFS filler concentration and thermal treatment on coating wettability. SEM, XPS and TGA measurements reveal the effects of thermal treatment on surface chemistry and texture. The thermally induced wettability shift from superhydrophobic to superhydrophilic is interpreted with the Cassie-Baxter wetting theory. Several micropatterned wettability surfaces demonstrate potential in pool boiling heat transfer enhancement, capillarity-driven liquid transport in open surface-tension-confined channels (e.g., lab-on-a-chip), and select surface coating applications relying on wettability gradients. Advantages of the present approach include the inherent stability and inertness of the organosilane-based coatings, which can be applied on many types of surfaces (glass, metals, etc.) with ease. The present method is also scalable to large areas, thus being attractive for industrial coating applications.Surfaces patterned with alternating (binary) superhydrophobic-superhydrophilic regions can be found naturally, offering a bio-inspired template for efficient fluid collection and management technologies. We describe a simple wet-processing, thermal treatment method to produce such patterns, starting with inherently superhydrophobic polysilsesquioxane-silica composite coatings prepared by spray casting nanoparticle dispersions. Such coatings become superhydrophilic after localized thermal treatment by means of laser irradiation or open-air flame exposure. When laser processed, the films are patternable down to ~100 μm scales. The dispersions consist of hydrophobic fumed silica (HFS) and methylsilsesquioxane resin, which are dispersed in isopropanol and deposited onto various substrates (glass, quartz, aluminum, copper, and stainless steel). The coatings are characterized by advancing, receding, and sessile contact angle measurements before and after thermal treatment to delineate the effects of HFS filler concentration and thermal treatment on coating wettability. SEM, XPS and TGA measurements reveal the effects of thermal treatment on surface chemistry and texture. The thermally induced wettability shift from superhydrophobic to superhydrophilic is interpreted with the Cassie-Baxter wetting theory. Several micropatterned wettability surfaces demonstrate potential in pool boiling heat transfer enhancement, capillarity-driven liquid transport in open surface-tension-confined channels (e.g., lab-on-a-chip), and select surface coating applications relying on wettability gradients. Advantages of the present approach include the inherent stability and inertness of the organosilane-based coatings, which can be applied on many types of surfaces (glass, metals, etc.) with ease. The present method is also scalable to large areas, thus being attractive for industrial coating applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30979c

  16. Treatment of Pesticide-Laden Wastewaters from Army Pest Control Facilities by Activated Carbon Filtration Using the Carbolator Treatment System

    DTIC Science & Technology

    1983-08-01

    Malathion ---- Olethylmercapto- 0 succinate S-ester of .0PSCCIn145 ppm (250 0.0-dimethyiphosphoro- S cm~coft dl thionate 0 Propoxur Baygon 2-Isopropoxy...Description 1. Baygon ( propoxur ) Baygon - 70% wettable powder, Chemagro Agricultural Division of Mlobay Chem. Corp., Kansas City, MO 2. Diaxinon Diazinon...indicate that 2,4-D diethylamine salt, parathion, carbaryl , and chlordane may also be removed from water by this method. 4. With the exception of chlordane

  17. Initiated Chemical Vapor Deposition (iCVD) of Highly Cross-Linked Polymer Films for Advanced Lithium-Ion Battery Separators.

    PubMed

    Yoo, Youngmin; Kim, Byung Gon; Pak, Kwanyong; Han, Sung Jae; Song, Heon-Sik; Choi, Jang Wook; Im, Sung Gap

    2015-08-26

    We report an initiated chemical vapor deposition (iCVD) process to coat polyethylene (PE) separators in Li-ion batteries with a highly cross-linked, mechanically strong polymer, namely, polyhexavinyldisiloxane (pHVDS). The highly cross-linked but ultrathin pHVDS films can only be obtained by a vapor-phase process, because the pHVDS is insoluble in most solvents and thus infeasible with conventional solution-based methods. Moreover, even after the pHVDS coating, the initial porous structure of the separator is well preserved owing to the conformal vapor-phase deposition. The coating thickness is delicately controlled by deposition time to the level that the pore size decreases to below 7% compared to the original dimension. The pHVDS-coated PE shows substantially improved thermal stability and electrolyte wettability. After incubation at 140 °C for 30 min, the pHVDS-coated PE causes only a 12% areal shrinkage (versus 90% of the pristine separator). The superior wettability results in increased electrolyte uptake and ionic conductivity, leading to significantly improved rate performance. The current approach is applicable to a wide range of porous polymeric separators that suffer from thermal shrinkage and poor electrolyte wetting.

  18. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    NASA Astrophysics Data System (ADS)

    Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph

    2011-02-01

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  19. Fabrication of a superhydrophobic coating with high adhesive effect to substrates and tunable wettability

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Zhang, Zhaozhu; Zhu, Xiaotao; Men, Xuehu; Ge, Bo; Zhou, Xiaoyan

    2015-02-01

    In this paper, a new superhydrophobic coating was successfully prefabricated by a facile sol-gel process which was made up of first the surface chemical reaction of (3-Glycidyloxypropyl) trimethoxysilane (A-187) and SiO2 particles and subsequent spray-coating onto the substrate. Further hardening treatment and surface fluorination allowed the SiO2 coating with the optimum mass ratio of 2.0:1 to exhibit nice superhydrophobic property and high adhesive effect to substrates. Our researches indicated that the mass ratio of A-187 and SiO2 particles could significantly control the surface morphology (or the wettability) and affect adhesion force of the superhydrophobic coating to substrates. In the process, hardening temperature was quite important for rapid evaporation of the solvent and then fast hardening of the coating despite the absence of the similar effect to the mass ratio of A-187 and SiO2 particles on the superhydrophobic coating, and moreover, a higher hardening temperature could also highly improve transparency of the superhydrophobic coating. These findings suggest that the superhydrophobic coating should have promising commercial applications as a self-cleaning product.

  20. Large-scale Generation of Patterned Bubble Arrays on Printed Bi-functional Boiling Surfaces

    PubMed Central

    Choi, Chang-Ho; David, Michele; Gao, Zhongwei; Chang, Alvin; Allen, Marshall; Wang, Hailei; Chang, Chih-hung

    2016-01-01

    Bubble nucleation control, growth and departure dynamics is important in understanding boiling phenomena and enhancing nucleate boiling heat transfer performance. We report a novel bi-functional heterogeneous surface structure that is capable of tuning bubble nucleation, growth and departure dynamics. For the fabrication of the surface, hydrophobic polymer dot arrays are first printed on a substrate, followed by hydrophilic ZnO nanostructure deposition via microreactor-assisted nanomaterial deposition (MAND) processing. Wettability contrast between the hydrophobic polymer dot arrays and aqueous ZnO solution allows for the fabrication of heterogeneous surfaces with distinct wettability regions. Heterogeneous surfaces with various configurations were fabricated and their bubble dynamics were examined at elevated heat flux, revealing various nucleate boiling phenomena. In particular, aligned and patterned bubbles with a tunable departure frequency and diameter were demonstrated in a boiling experiment for the first time. Taking advantage of our fabrication method, a 6 inch wafer size heterogeneous surface was prepared. Pool boiling experiments were also performed to demonstrate a heat flux enhancement up to 3X at the same surface superheat using bi-functional surfaces, compared to a bare stainless steel surface. PMID:27034255

  1. Wettability control on fluid-fluid displacements in patterned microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, Benzhong; MacMinn, Christopher; Juanes, Ruben

    2015-11-01

    Two-phase flow in porous media is important in many natural and industrial processes. While it is well known the wetting properties of porous media can vary drastically depending on the media and the pore fluids, their effect continues to challenge our microscopic and macroscopic descriptions. We conduct experiments via radial displacement of silicone oil by water in microfluidic devices patterned with vertical posts. These devices allow for flow visualization in a complex but well-defined microstructure. Additionally, the surface energy of the devices can be tuned over a wide range of contact angles. We perform injection experiments with highly unfavorable mobility contrast at rates over four orders of magnitude. We focus on three wetting conditions: drainage θ = 120°, weak imbibition θ = 60°, and strong imbibition θ = 7°. In drainage, we see a transition from viscous fingering at high capillary numbers to a morphology that differs from capillary fingering. In weak imbibition, we observe stabilization of flow due to cooperative invasion at the pore scale. In strong imbibition, we find the flow is heavily influenced by a precursor front that emanates from the main imbibition front. Our work shows the important, yet intricate, impact of wettability on immiscible flow in porous media.

  2. Wettability control on fluid-fluid displacements in patterned microfluidics and porous media

    NASA Astrophysics Data System (ADS)

    Juanes, Ruben; Trojer, Mathias; Zhao, Benzhong

    2014-11-01

    While it is well known that the wetting properties are critical in two-phase flows in porous media, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We then conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.

  3. [Surface modification of dental alumina ceramic with silica coating].

    PubMed

    Xie, Hai-Feng; Zhang, Fei-Min; Wang, Xiao-Zu; Xia, Yang

    2006-12-01

    To make silica coating through sol-gel process, and to evaluate the wettability of dental alumina ceramic with or without coating. Silica coating was prepared with colloidal silica sol on In-Ceram alumina ceramic surface which had been treated with air particle abrasion. Coating gel after heat treatment was observed with atomic force microscope (AFM), and was analyzed by infrared spectrum (IR) with gel without sintered as control. Contact angles of oleic acid to be finished, sandblasted and coated ceramic surface of were measured. AFM pictures showed that some parts of nano-particles in coating gel conglomerated after heat treatment. It can be seen from the IR picture that bending vibration absorption kurtosis of Si-OH also vanished after heat treatment. Among contact angles of three treated surface, the ones on polished surface were the biggest (P = 0.000, P = 0.000), and sandblasting+silica coating surface the smallest (P = 0.000, P = 0.003). Silica coating can be made with sol-gel process successfully. Heat treatment may reinforce Si-O-Si net structure of coating gel. Wettability of dental alumina ceramic with silica coating is higher than with sandblasting and polishing.

  4. Sunlight-Sensitive Anti-Fouling Nanostructured TiO2 coated Cu Meshes for Ultrafast Oily Water Treatment

    PubMed Central

    Liu, HaoRan; Raza, Aikifa; Aili, Abulimiti; Lu, JinYou; AlGhaferi, Amal; Zhang, TieJun

    2016-01-01

    Nanostructured materials with desired wettability and optical property can play an important role in reducing the energy consumption of oily water treatment technologies. For effective oily water treatment, membrane materials with high strength, sunlight-sensitive anti-fouling, relative low fabrication cost, and controllable wettability are being explored. In the proposed oily water treatment approach, nanostructured TiO2-coated copper (TNS-Cu) meshes are used. These TNS-Cu meshes exhibit robust superhydrophilicity and underwater oleophobicity (high oil intrusion pressure) as well as excellent chemical and thermal stability (≈250 °C). They have demonstrated high separation efficiency (oil residue in the filtrate ≤21.3 ppm), remarkable filtration flux (≥400 kL h−1 m−2), and sunlight-sensitive anti-fouling properties. Both our theoretical analysis and experimental characterization have confirmed the enhanced light absorption property of TNS-Cu meshes in the visible region (40% of the solar spectrum) and consequently strong anti-fouling capability upon direct solar light illumination. With these features, the proposed approach promises great potential in treating produced oily wastewater from industry and daily life. PMID:27160349

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe

    A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property comparedmore » to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.« less

  6. Graphite fiber/copper composites prepared by spontaneous infiltration

    NASA Astrophysics Data System (ADS)

    Wang, Hongbao; Tao, Zechao; Li, Xiangfen; Yan, Xi; Liu, Zhanjun; Guo, Quangui

    2018-05-01

    The major bottleneck in developing graphite fiber reinforced copper (GF/Cu) composites is the poor wettability of Cu/graphite system. Alloying element of chromium (Cr) is introduced to improve the wettability of liquid copper on graphite. Sessile drop method experiments illustrate that the contact angle of liquid Cu-Cr (1.0 wt.%) alloy on graphite substrate decreases to 43° at 1300 °C. The improvement of wettability is related to the formation of chromium carbide layer at interface zone. Based on the wetting experiment, a spontaneous infiltration method for preparing GF/Cu composites is proposed. Unidirectional GF preforms are infiltrated by Cu-Cr alloys without external pressure in a tubular furnace. Results reveal that the GF preform can be fully infiltrated by Cu-Cr alloy (8 wt.%) spontaneously when fiber volume fraction is 40%. The coefficient of thermal expansion (CTE) of GF/Cu-Cr (8.0 wt.%) composites is 4.68 × 10-6/K along the longitudinal direction.

  7. Preparing Al-Mg Substrate for Thermal Spraying: Evaluation of Surface State After Different Pretreatments

    NASA Astrophysics Data System (ADS)

    Lukauskaitė, R.; Valiulis, A. V.; Černašėjus, O.; Škamat, J.; Rębiś, J. A.

    2016-08-01

    The article deals with the pretreatment technique for preparing the surface of aluminum alloy EN AW 5754 before thermal spray. The surface after different pretreatments, including degreasing with acetone, chemical etching with acidic and alkali solutions, grit-blasting, cathodic cleaning, and some combinations of these techniques, has been studied. The investigation of pre-treated surfaces covered the topographical study (using scanning electron microscopy, atomic force microscopy, and 3D profilometry), the chemical analysis by x-ray photoelectron spectroscopy, the evaluation of surface wettability (sessile drop method), and the assessment of surface free energy. Compared with all the techniques used in present work, the cathodic cleaning and its combination with grit-blasting provide the most preferable chemistry of the surface. Due to the absence of hydroxides at the surface and, possible, due to the diffusion of magnesium to the surface of substrate, the surface wettability and the surface free energy have been significantly improved. No direct correlation between the surface topography and the surface wettability has been established.

  8. Wetting in Color: Designing a colorometric indicator for wettability

    NASA Astrophysics Data System (ADS)

    Raymond, Kevin; Burgess, Ian B.; Koay, Natalie; Kolle, Mathias; Loncar, Marko; Aizenberg, Joanna

    2012-02-01

    Colorimetric litmus tests such as pH paper have enjoyed wide commercial success due to their inexpensive production and exceptional ease of use. While such indicators commonly rely on a specific photochemical response to an analyte, we exploit structural color, derived from coherent scattering from wavelength-scale porosity rather than molecular absorption or luminescence, to create a Wetting-in-Color-Kit (WICK). This inexpensive and highly selective colorimetric indicator for organic liquids employs chemically encoded inverse-opal photonic crystals to translate minute differences in liquids' wettability to macroscopically distinct, easy-to-visualize color patterns. The highly symmetric re-entrant inter-pore geometry imparts a highly specific wetting threshold for liquids. We developed surface modification techniques to generate built-in chemistry gradients within the porous network. These let us tailor the wettability threshold to specific liquids across a continuous range. As wetting is a generic fluidic phenomenon, we envision that WICK could be suitable for applications in authentication or identification of unknown liquids across a broad range of industries.

  9. Selective separation of oil and water with mesh membranes by capillarity.

    PubMed

    Yu, Yuanlie; Chen, Hua; Liu, Yun; Craig, Vincent S J; Lai, Zhiping

    2016-09-01

    The separation of oil and water from wastewater generated in the oil-production industries, as well as in frequent oil spillage events, is important in mitigating severe environmental and ecological damage. Additionally, a wide arrange of industrial processes require oils or fats to be removed from aqueous systems. The immiscibility of oil and water allows for the wettability of solid surfaces to be engineered to achieve the separation of oil and water through capillarity. Mesh membranes with extreme, selective wettability can efficiently remove oil or water from oil/water mixtures through a simple filtration process using gravity. A wide range of different types of mesh membranes have been successfully rendered with extreme wettability and applied to oil/water separation in the laboratory. These mesh materials have typically shown good durability, stability as well as reusability, which makes them promising candidates for an ever widening range of practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Wettability of LaRC Colorless Polyimide Resins on Casting Surfaces

    NASA Technical Reports Server (NTRS)

    Miner, Gilda A.; Stoakley, Diane M.; St.Clair, Anne K.; Gierow, Paul A.; Bates, Kevin

    1997-01-01

    Two colorless polyimides developed at NASA Langley Research Center, LaRC -CP1 and LaRC -CP2, are noted for being optically transparent, resistant to radiation, and soluble in the imide form. These materials may be used to make transparent, thin polymer films for building large space reflector/collector inflatable antennas, solar arrays, radiometers, etc. Structures such as these require large area, seamless films produced via spin casting or spray coating the soluble imide on a variety of substrates. The ability of the soluble imide to wet and spread over the mandrel or casting substrate is needed information for processing these structures with minimum waste and reprocessing, thereby, reducing the production costs. The wettability of a liquid is reported as the contact angle of the solid/liquid system. This fairly simple measurement is complicated by the porosity and the amount of contamination of the solid substrate. This work investigates the effect of inherent viscosity, concentration of polyimide solids, and solvent type on the wettability of various curing surfaces.

  11. Tuning the Wettability of Halloysite Clay Nanotubes by Surface Carbonization for Optimal Emulsion Stabilization.

    PubMed

    Owoseni, Olasehinde; Zhang, Yueheng; Su, Yang; He, Jibao; McPherson, Gary L; Bose, Arijit; John, Vijay T

    2015-12-29

    The carbonization of hydrophilic particle surfaces provides an effective route for tuning particle wettability in the preparation of particle-stabilized emulsions. The wettability of naturally occurring halloysite clay nanotubes (HNT) is successfully tuned by the selective carbonization of the negatively charged external HNT surface. The positively charge chitosan biopolymer binds to the negatively charged external HNT surface by electrostatic attraction and hydrogen bonding, yielding carbonized halloysite nanotubes (CHNT) on pyrolysis in an inert atmosphere. Relative to the native HNT, the oil emulsification ability of the CHNT at intermediate levels of carbonization is significantly enhanced due to the thermodynamically more favorable attachment of the particles at the oil-water interface. Cryogenic scanning electron microscopy (cryo-SEM) imaging reveals that networks of CHNT attach to the oil-water interface with the particles in a side-on orientation. The concepts advanced here can be extended to other inorganic solids and carbon sources for the optimal design of particle-stabilized emulsions.

  12. Duty cycle dependent chemical structure and wettability of RF pulsed plasma copolymers of acrylic acid and octafluorocyclobutane

    NASA Astrophysics Data System (ADS)

    Muzammil, I.; Li, Y. P.; Li, X. Y.; Lei, M. K.

    2018-04-01

    Octafluorocyclobutane and acrylic acid (C4F8-co-AA) plasma copolymer coatings are deposited using a pulsed wave (PW) radio frequency (RF) plasma on low density polyethylene (LDPE). The influence of duty cycle in pulsed process with the monomer feed rate on the surface chemistry and wettability of C4F8-co-AA plasma polymer coatings is studied. The concentration of the carboxylic acid (hydrophilic) groups increase, and that of fluorocarbon (hydrophobic) groups decrease by lowering the duty cycle. The combined effect of surface chemistry and surface morphology of the RF pulsed plasma copolymer coatings causes tunable surface wettability and surface adhesion. The gradual emergence of hydrophilic contents leads to surface heterogeneity by lowering duty cycle causing an increased surface adhesion in hydrophobic coatings. The C4F8-co-AA plasma polymer coatings on the nanotextured surfaces are tuned from repulsive superhydrophobicity to adhesive superhydrophobicity, and further to superhydrophilicity by adjusting the duty cycles with the monomer feed rates.

  13. Laser surface modification of AZ31B Mg alloy for bio-wettability.

    PubMed

    Ho, Yee-Hsien; Vora, Hitesh D; Dahotre, Narendra B

    2015-02-01

    Magnesium alloys are the potential degradable materials for load-bearing implant application due to their comparable mechanical properties to human bone, excellent bioactivity, and in vivo non-toxicity. However, for a successful load-bearing implant, the surface of bio-implant must allow protein absorption and layer formation under physiological environment that can assist the cell/osteoblast growth. In this regard, surface wettability of bio-implant plays a key role to dictate the quantity of protein absorption. In light of this, the main objective of the present study was to produce favorable bio-wettability condition of AZ31B Mg alloy bio-implant surface via laser surface modification technique under various laser processing conditions. In the present efforts, the influence of laser surface modification on AZ31B Mg alloy surface on resultant bio-wettability was investigated via contact-angle measurements and the co-relationships among microstructure (grain size), surface roughness, surface energy, and surface chemical composition were established. In addition, the laser surface modification technique was simulated by computational (thermal) model to facilitate the prediction of temperature and its resultant cooling/solidification rates under various laser processing conditions for correlating with their corresponding composition and phase evolution. These predicted thermal properties were later used to correlate with the corresponding microstructure, chemical composition, and phase evolution via experimental analyses (X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy). © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Wettability impact on supercritical CO2 capillary trapping: Pore-scale visualization and quantification

    NASA Astrophysics Data System (ADS)

    Hu, Ran; Wan, Jiamin; Kim, Yongman; Tokunaga, Tetsu K.

    2017-08-01

    How the wettability of pore surfaces affects supercritical (sc) CO2 capillary trapping in geologic carbon sequestration (GCS) is not well understood, and available evidence appears inconsistent. Using a high-pressure micromodel-microscopy system with image analysis, we studied the impact of wettability on scCO2 capillary trapping during short-term brine flooding (80 s, 8-667 pore volumes). Experiments on brine displacing scCO2 were conducted at 8.5 MPa and 45°C in water-wet (static contact angle θ = 20° ± 8°) and intermediate-wet (θ = 94° ± 13°) homogeneous micromodels under four different flow rates (capillary number Ca ranging from 9 × 10-6 to 8 × 10-4) with a total of eight conditions (four replicates for each). Brine invasion processes were recorded and statistical analysis was performed for over 2000 images of scCO2 saturations, and scCO2 cluster characteristics. The trapped scCO2 saturation under intermediate-wet conditions is 15% higher than under water-wet conditions under the slowest flow rate (Ca ˜ 9 × 10-6). Based on the visualization and scCO2 cluster analysis, we show that the scCO2 trapping process in our micromodels is governed by bypass trapping that is enhanced by the larger contact angle. Smaller contact angles enhance cooperative pore filling and widen brine fingers (or channels), leading to smaller volumes of scCO2 being bypassed. Increased flow rates suppress this wettability effect.

  15. Silane Modification of Glass and Silica Surfaces to Obtain Equally Oil-Wet Surfaces in Glass-Covered Silicon Micromodel Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.

    2013-08-05

    The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this technical note, surface cleaning pretreatments were investigated to determine conditions that would yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Air-water contact angles were less sensitive to differences between silanized silica and glass surfaces, often yielding similar values while the oil-water contact anglesmore » were quite different. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane, while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HDMS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400oC. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscisble fluid displacements in the pore network.« less

  16. The Effect of Wettability Heterogeneity on Relative Permeability of Two-Phase Flow in Porous Media: A Lattice Boltzmann Study

    DOE PAGES

    Zhao, Jianlin; Kang, Qinjun; Yao, Jun; ...

    2018-02-27

    Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. In this study, to investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as themore » water saturation decreases to an intermediate value (about 0.4–0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. Lastly, the relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.« less

  17. Wettability of Molten Aluminum-Silicon Alloys on Graphite and Surface Tension of Those Alloys at 1273 K (1000 °C)

    NASA Astrophysics Data System (ADS)

    Mao, Weiji; Noji, Takayasu; Teshima, Kenichiro; Shinozaki, Nobuya

    2016-06-01

    The wettability of molten aluminum-silicon alloys with silicon contents of 0, 6, 10, and 20 mass pct on graphite substrates by changing the placing sequence of aluminum and silicon and the surface tension of those alloys were investigated at 1273 K (1000 °C) using the sessile drop method under vacuum. The results showed that the wetting was not affected by changing the placing sequence of the Al-Si alloys on the graphite substrates. The wettability was not improved significantly upon increasing the Si content from 0 to 10 mass pct, whereas a notable decrease of 22 deg in the contact angle was observed when increasing the Si content from 10 to 20 mass pct. This was attributed to the transformation of the interfacial reaction product from Al4C3 into SiC, provided the addition of Si to Al was sufficient. It was verified that the liquid Al can wet the SiC substrate very well in nature, which might explain why the occurrence of SiC would improve the wettability of the Al-20 mass pct Si alloy on the graphite substrate. The results also showed that the surface tension values of the molten Al-Si alloys decreased monotonously with an increase in Si content, being 875, 801, 770, and 744 mN/m for molten Al, Al-6 mass pct Si, Al-10 mass pct Si, and Al-20 mass pct Si alloys, respectively.

  18. The Effect of Wettability Heterogeneity on Relative Permeability of Two-Phase Flow in Porous Media: A Lattice Boltzmann Study

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Kang, Qinjun; Yao, Jun; Viswanathan, Hari; Pawar, Rajesh; Zhang, Lei; Sun, Hai

    2018-02-01

    Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. To investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as the water saturation decreases to an intermediate value (about 0.4-0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. The relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.

  19. A study on air bubble wetting: Role of surface wettability, surface tension, and ionic surfactants

    NASA Astrophysics Data System (ADS)

    George, Jijo Easo; Chidangil, Santhosh; George, Sajan D.

    2017-07-01

    Fabrication of hydrophobic/hydrophilic surfaces by biomimicking nature has attracted significant attention recently due to their potential usage in technologies, ranging from self-cleaning to DNA condensation. Despite the potential applications, compared to surfaces of tailored wettability, less attention has been paid towards development and understanding of air bubble adhesion and its dynamics on surfaces with varying wettability. In this manuscript, following the commonly used approach of oxygen plasma treatment, polydimethylsiloxane surfaces with tunable wettability are prepared. The role of plasma treatment conditions on the surface hydrophilicity and the consequent effect on adhesion dynamics of an underwater air bubble is explored for the first time. The ATR-FTIR spectroscopic analysis reveals that the change in hydrophilicity arises from the chemical modification of the surface, manifested as Si-OH vibrations in the spectra. The thickness of the formed thin liquid film at the surface responsible for the experimentally observed air bubble repellency is estimated from the augmented Young-Laplace equation. The concentration dependent studies using cationic as well as anionic surfactant elucidate that the reduced surface tension of the aqueous solution results in a stable thicker film and causes non-adherence of air bubble to the aerophilic surface. Furthermore, the study carried out to understand the combined effect of plasma treatment and surfactants reveals that even below critical micelle concentration, a negatively charged surface results in air bubble repellency for the anionic surfactant, whereas only enhanced air bubble contact angle is observed for the cationic surfactant.

  20. The Effect of Wettability Heterogeneity on Relative Permeability of Two-Phase Flow in Porous Media: A Lattice Boltzmann Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jianlin; Kang, Qinjun; Yao, Jun

    Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. In this study, to investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as themore » water saturation decreases to an intermediate value (about 0.4–0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. Lastly, the relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.« less

  1. Investigation of Physicochemical Drug Properties to Prepare Fine Globular Granules Composed of Only Drug Substance in Fluidized Bed Rotor Granulation.

    PubMed

    Mise, Ryohei; Iwao, Yasunori; Kimura, Shin-Ichiro; Osugi, Yukiko; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    The effect of some drug properties (wettability and particle size distribution) on granule properties (mean particle size, particle size distribution, sphericity, and granule strength) were investigated in a high (>97%) drug-loading formulation using fluidized bed rotor granulation. Three drugs: acetaminophen (APAP); ibuprofen (IBU); and ethenzamide (ETZ) were used as model drugs based on their differences in wettability and particle size distribution. Granules with mean particle sizes of 100-200 µm and a narrow particle size distribution (PSD) could be prepared regardless of the drug used. IBU and ETZ granules showed a higher sphericity than APAP granules, while APAP and ETZ granules exhibited higher granule strength than IBU. The relationship between drug and granule properties suggested that the wettability and the PSD of the drugs were critical parameters affecting sphericity and granule strength, respectively. Furthermore, the dissolution profiles of granules prepared with poorly water-soluble drugs (IBU and ETZ) showed a rapid release (80% release in 20 min) because of the improved wettability with granulation. The present study demonstrated for the first time that fluidized bed rotor granulation can prepare high drug-loaded (>97%) globular granules with a mean particle size of less than 200 µm and the relationship between physicochemical drug properties and the properties of the granules obtained could be readily determined, indicating the potential for further application of this methodology to various drugs.

  2. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.

    PubMed

    Iglauer, Stefan

    2017-05-16

    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the ability to quantitatively predict it are currently limited although recent advances have been made. Moreover, data for real storage rock and real injection gas (which contains impurities) is scarce and it is an open question how realistic subsurface conditions can be reproduced in laboratory experiments. In conclusion, however, it is clear that in principal CO 2 -wettability can vary drastically from completely water-wet to almost completely CO 2 -wet, and this possible variation introduces a large uncertainty into trapping capacity and containment security predictions.

  3. Reservoir assessment of the Nubian sandstone reservoir in South Central Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    El-Gendy, Nader; Barakat, Moataz; Abdallah, Hamed

    2017-05-01

    The Gulf of Suez is considered as one of the most important petroleum provinces in Egypt and contains the Saqqara and Edfu oil fields located in the South Central portion of the Gulf of Suez. The Nubian sandstone reservoir in the Gulf of Suez basin is well known for its great capability to store and produce large volumes of hydrocarbons. The Nubian sandstone overlies basement rocks throughout most of the Gulf of Suez region. It consists of a sequence of sandstones and shales of Paleozoic to Cretaceous age. The Nubian sandstone intersected in most wells has excellent reservoir characteristics. Its porosity is controlled by sedimentation style and diagenesis. The cementation materials are mainly kaolinite and quartz overgrowths. The permeability of the Nubian sandstone is mainly controlled by grain size, sorting, porosity and clay content especially kaolinite and decreases with increase of kaolinite. The permeability of the Nubian Sandstone is evaluated using the Nuclear Magnetic Resonance (NMR technology) and formation pressure data in addition to the conventional logs and the results were calibrated using core data. In this work, the Nubian sandstone was investigated and evaluated using complete suites of conventional and advanced logging techniques to understand its reservoir characteristics which have impact on economics of oil recovery. The Nubian reservoir has a complicated wettability nature which affects the petrophysical evaluation and reservoir productivity. So, understanding the reservoir wettability is very important for managing well performance, productivity and oil recovery.

  4. Microfog lubricant application system for advanced turbine engine components, phase 2. Tasks 3, 4 and 5: Wettability and heat transfer of microfog jets impinging on a heated rotating disc, and evaluation of reclassifying nozzles and a vortex mist generator

    NASA Technical Reports Server (NTRS)

    Shim, J.; Leonardi, S. J.

    1972-01-01

    The wettabilities and heat transfer rates of microfog jets (oil-mist nozzle flows) impinging on a heated rotating disc were determined under an inert atmosphere of nitrogen at temperatures ranging from 600 to 800 F. The results are discussed in relation to the various factors involved in the microfog lubricant application systems. Two novel reclassifying nozzles and a vortex mist generator were also studied.

  5. Flexible Substrates Comparison for Pled Technology

    NASA Astrophysics Data System (ADS)

    Nenna, G.; Miscioscia, R.; Tassini, P.; Minarini, C.; Vacca, P.; Valentino, O.

    2008-08-01

    Flexible substrate displays are critical to organic electronics, e-paper's and e-ink's development. Many different types of materials are under investigation, including glass, polymer films and metallic foils. In this work we report a comparison study of polymer films as flexible substrates for polymer light emitting diodes (PLEDs) technology. The selected polymer substrates are two thermoplastic semi-crystalline polymers (PET and PEN) and a high Tg material that cannot be melt processed (PAR). Firstly, the chosen films were characterized in morphology and optical properties with the aim to confirm their suitability for optoelectronic applications. Transmittance was analysed by UV-Vis spectrophotometry and roughness by a surface profilometer. Finally, the surface energy of substrates (untreated and after UV-ozone treatment) was estimated by contact angle measurements in order to evaluate their wettability for active materials deposition.

  6. Effects of Contaminated Fluids on Complex Moduli in Porous Rocks; Lab and Field.

    NASA Astrophysics Data System (ADS)

    Spetzler, H.; Snieder, R.; Zhang, J.

    2006-12-01

    The interaction between fluids and porous rocks has been measured in the laboratory and in a controlled field experiment. In the laboratory we measured the static and dynamic effect of various contaminated fluids on the wettability, capillary pressure and other flow properties on geometrically simple surfaces. The characteristics of the menisci were quantified by measuring the forces required to deform and move them. Rate dependent surface tension and contact angles describe the hysteresis of the contact line motion. Finally we used geometrically complex surfaces, i.e. real rocks, and observed similar behavior. Then we did a field experiment where we could controllably irrigate a test volume and observe changes in deformation. At low deformation rates, where viscous deformation of the fluid is negligible, the dynamic hystereses of menisci deformation become the dominant mechanism for changes in complex moduli of partially fluid saturated rocks. In the laboratory for contaminated samples we observe attenuation increasing from below 1 Hz to 1 mHz, the limit of our patience in making these measurements. In the field we used microseisms and solid Earth tides as low frequency deformation sources. In the case of the tides we compare changes in observed tilt with theoretical site specific tidal tilts. Preliminary theoretical modeling suggests that indeed small changes in the moduli should be observable in changes in tilt response. In this paper we present our laboratory results and the field data and analysis to date.

  7. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media: A pore-scale network modeling approach

    NASA Astrophysics Data System (ADS)

    Raeesi, Behrooz; Piri, Mohammad

    2009-10-01

    SummaryWe use a three-dimensional mixed-wet random pore-scale network model to investigate the impact of wettability and trapping on the relationship between interfacial area, capillary pressure and saturation in two-phase drainage and imbibition processes. The model is a three-dimensional network of interconnected pores and throats of various geometrical shapes. It allows multiple phases to be present in each capillary element in wetting and spreading layers, as well as occupying the center of the pore space. Two different random networks that represent the pore space in Berea and a Saudi Arabia reservoir sandstone are used in this study. We allow the wettability of the rock surfaces contacted by oil to alter after primary drainage. The model takes into account both contact angle and trapping hystereses. We model primary oil drainage and water flooding for mixed-wet conditions, and secondary oil injection for a water-wet system. The total interfacial area for pores and throats are calculated when the system is at capillary equilibrium. They include contributions from the arc menisci (AMs) between the bulk and corner fluids, and from the main terminal menisci (MTMs) between different bulk fluids. We investigate hysteresis in these relationships by performing water injection into systems of varying wettability and initial water saturation. We show that trapping and contact angle hystereses significantly affect the interfacial area. In a strongly water-wet system, a sharp increase is observed at the beginning of water flood, which shifts the area to a higher level than primary drainage. As we change the wettability of the system from strongly water-wet to strongly oil-wet, the trapped oil saturation decreases significantly. Starting water flood from intermediate water saturations, greater than the irreducible water saturation, can also affect the non-wetting phase entrapment, resulting in different interfacial area behaviors. This can increase the interfacial area significantly in oil-wet systems. A qualitative comparison of our results with the experimental data available in literature for glass beads shows, with some expected differences, an encouraging agreement. Also, our results agree well with those generated by the previously developed models.

  8. Moment Analysis Characterizing Water Flow in Repellent Soils from On- and Sub-Surface Point Sources

    NASA Astrophysics Data System (ADS)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2010-05-01

    Water repellency has a significant impact on water flow patterns in the soil profile. Flow tends to become unstable in such soils, which affects the water availability to plants and subsurface hydrology. In this paper, water flow in repellent soils was experimentally studied using the light reflection method. The transient 2D moisture profiles were monitored by CCD camera for tested soils packed in a transparent flow chamber. Water infiltration experiments and subsequent redistribution from on-surface and subsurface point sources with different flow rates were conducted for two soils of different repellency degrees as well as for wettable soil. We used spatio-statistical analysis (moments) to characterize the flow patterns. The zeroth moment is related to the total volume of water inside the moisture plume, and the first and second moments are affinitive to the center of mass and spatial variances of the moisture plume, respectively. The experimental results demonstrate that both the general shape and size of the wetting plume and the moisture distribution within the plume for the repellent soils are significantly different from that for the wettable soil. The wetting plume of the repellent soils is smaller, narrower, and longer (finger-like) than that of the wettable soil compared with that for the wettable soil that tended to roundness. Compared to the wettable soil, where the soil water content decreases radially from the source, moisture content for the water-repellent soils is higher, relatively uniform horizontally and gradually increases with depth (saturation overshoot), indicating that flow tends to become unstable. Ellipses, defined around the mass center and whose semi-axes represented a particular number of spatial variances, were successfully used to simulate the spatial and temporal variation of the moisture distribution in the soil profiles. Cumulative probability functions were defined for the water enclosed in these ellipses. Practically identical cumulative probability functions (beta distribution) were obtained for all soils, all source types, and flow rates. Further, same distributions were obtained for the infiltration and redistribution processes. This attractive result demonstrates the competence and advantage of the moment analysis method.

  9. The effect of changes in surface wettability on two-phase saturated flow in horizontal replicas of single natural fractures.

    PubMed

    Bergslien, Elisa; Fountain, John

    2006-12-15

    By using translucent epoxy replicas of natural single fractures, it is possible to optically measure aperture distribution and directly observe NAPL flow. However, detailed characterization of epoxy reveals that it is not a sufficiently good analogue to natural rock for many two-phase flow studies. The surface properties of epoxy, which is hydrophobic, are quite unlike those of natural rock, which is generally assumed to be hydrophilic. Different surface wettabilities result in dramatically different two-phase flow behavior and residual distributions. In hydrophobic replicas, the NAPL flows in well-developed channels, displacing water and filling all of the pore space. In hydrophilic replicas, the invading NAPL is confined to the largest aperture pathways and flow frequently occurs in pulses, with no limited or no stable channel development, resulting in isolated blobs with limited accessible surface area. The pulsing and channel abandonment behaviors described are significantly different from the piston-flow frequently assumed in current modeling practice. In addition, NAPL never achieved total saturation in hydrophilic models, indicating that significantly more than a monolayer of water was bound to the model surface. Despite typically only 60-80% NAPL saturation, there was generally good agreement between theoretically calculated Young-Laplace aperture invasion boundaries and the observed minimum apertures invaded. The key to determining whether surface wettability is negligible, or not, lies in accurate characterization of the contaminant-geologic media system under study. As long as the triple-point contact angle of the system is low (<20 degrees), the assumption of perfect water wettability is not a bad one.

  10. Doping-Driven Wettability of Two-Dimensional Materials: A Multiscale Theory.

    PubMed

    Tian, Tian; Lin, Shangchao; Li, Siyu; Zhao, Lingling; Santos, Elton J G; Shih, Chih-Jen

    2017-11-07

    Engineering molecular interactions at two-dimensional (2D) materials interfaces enables new technological opportunities in functional surfaces and molecular epitaxy. Understanding the wettability of 2D materials represents the crucial first step toward quantifying the interplay between the interfacial forces and electric potential of 2D materials interfaces. Here we develop the first theoretical framework to model the wettability of the doped 2D materials by properly bridging the multiscale physical phenomena at the 2D interfaces, including (i) the change of 2D materials surface energy (atomistic scale, several angstroms), (ii) the molecular reorientation of liquid molecules adjacent to the interface (molecular scale, 10 0 -10 1 nm), and (iii) the electrical double layer (EDL) formed in the liquid phase (mesoscopic scales, 10 0 -10 4 nm). The latter two effects are found to be the major mechanisms responsible for the contact angle change upon doping, while the surface energy change of a pure 2D material has no net effect on the wetting property. When the doping level is electrostatically tuned, we demonstrate that 2D materials with high quantum capacitances (e.g., transition metal dichalcogenides, TMDCs) possess a wider range of tunability in the interfacial tension, under the same applied gate voltage. Furthermore, practical considerations such as defects and airborne contamination are also quantitatively discussed. Our analysis implies that the doping level can be another variable to modulate the wettability at 2D materials interfaces, as well as the molecular packing behavior on a 2D material-coated surface, essentially facilitating the interfacial engineering of 2D materials.

  11. Impacts of Natural Surfactant Soybean Phospholipid on Wettability of High-rank Coal Reservoir

    NASA Astrophysics Data System (ADS)

    Lyu, S.; Xiao, Y.; Yuan, M.; Wang, S.

    2017-12-01

    It is significant to change the surface wettability of coal rock with the surfactant in coal mining and coalbed methane exploitation. Soybean phospholipid (SP) is a kind of natural zwitterionic surfactant which is non-toxic and degradable. In order to study the effects of soybean phospholipid on wettability of high-rank coal in Qinshui Basin, some experiments including surface tension test, contact angle measurement on the coal surface, coal fines imbibition, observation of dispersion effect and gas permeability test were carried out, and water locking mechanism of fracturing fluid in micro fractures of coal reservoir was analyzed. The results show that the surface of high-rank coal was negatively charged in solution and of weak hydrophilicity. The soybean phospholipid with the mass fraction of 0.1% reduced the surface tension of water by 69%, and increased the wettability of coal. Meanwhile, the soybean phospholipid helped coal fines to disperse by observation of the filter cake with the scanning electron microscope. The rising rate of soybean phospholipid solution in the pipe filled with coal fines was lower than that of anionic and cationic surfactant, higher than that of clean water and non-ionic surfactant. Composite surfactant made up of soybean phospholipid and OP-10 at the ratio of 1:3 having a low surface tension and large contact angle, reduced the capillary force effectively, which could be conducive to discharge of fracturing fluid from coal reservoir micro fracture and improve the migration channels of gas. Therefore it has a broad application prospect.

  12. Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir.

    PubMed

    Rabiei, Arash; Sharifinik, Milad; Niazi, Ali; Hashemi, Abdolnabi; Ayatollahi, Shahab

    2013-07-01

    Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC) 1798) and Enterobacter hormaechei (PTCC 1799) produce 1.53 g/l of biosurfactant. The produced biosurfactant caused substantial surface tension reduction of the growth medium and interfacial tension reduction between oil and brine to 31 and 3.2 mN/m from the original value of 72 and 29 mN/m, respectively. A novel set of core flooding tests, including in situ and ex situ scenarios, was designed to explore the potential of the isolated consortium as an agent for MEOR process. Besides, the individual effects of wettability alteration and IFT reduction on oil recovery efficiency by this process were investigated. The results show that the wettability alteration of the reservoir rock toward neutrally wet condition in the course of the adsorption of bacteria cells and biofilm formation are the dominant mechanisms on the improvement of oil recovery efficiency.

  13. Hierarchical Surface Architecture of Plants as an Inspiration for Biomimetic Fog Collectors.

    PubMed

    Azad, M A K; Barthlott, W; Koch, K

    2015-12-08

    Fog collectors can enable us to alleviate the water crisis in certain arid regions of the world. A continuous fog-collection cycle consisting of a persistent capture of fog droplets and their fast transport to the target is a prerequisite for developing an efficient fog collector. In regard to this topic, a biological superior design has been found in the hierarchical surface architecture of barley (Hordeum vulgare) awns. We demonstrate here the highly wettable (advancing contact angle 16° ± 2.7 and receding contact angle 9° ± 2.6) barbed (barb = conical structure) awn as a model to develop optimized fog collectors with a high fog-capturing capability, an effective water transport, and above all an efficient fog collection. We compare the fog-collection efficiency of the model sample with other plant samples naturally grown in foggy habitats that are supposed to be very efficient fog collectors. The model sample, consisting of dry hydrophilized awns (DH awns), is found to be about twice as efficient (fog-collection rate 563.7 ± 23.2 μg/cm(2) over 10 min) as any other samples investigated under controlled experimental conditions. Finally, a design based on the hierarchical surface architecture of the model sample is proposed for the development of optimized biomimetic fog collectors.

  14. Nano-scale surface morphology, wettability and osteoblast adhesion on nitrogen plasma-implanted NiTi shape memory alloy.

    PubMed

    Liu, X M; Wu, S L; Chu, Paul K; Chung, C Y; Chu, C L; Chan, Y L; Lam, K O; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K

    2009-06-01

    Plasma immersion ion implantation (PIII) is an effective method to increase the corrosion resistance and inhibit nickel release from orthopedic NiTi shape memory alloy. Nitrogen was plasma-implanted into NiTi using different pulsing frequencies to investigate the effects on the nano-scale surface morphology, structure, wettability, as well as biocompatibility. X-ray photoelectron spectroscopy (XPS) results show that the implantation depth of nitrogen increases with higher pulsing frequencies. Atomic force microscopy (AFM) discloses that the nano-scale surface roughness increases and surface features are changed from islands to spiky cones with higher pulsing frequencies. This variation in the nano surface structures leads to different surface free energy (SFE) monitored by contact angle measurements. The adhesion, spreading, and proliferation of osteoblasts on the implanted NiTi surface are assessed by cell culture tests. Our results indicate that the nano-scale surface morphology that is altered by the implantation frequencies impacts the surface free energy and wettability of the NiTi surfaces, and in turn affects the osteoblast adhesion behavior.

  15. A bifunctional electrolyte additive for separator wetting and dendrite suppression in lithium metal batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Hao; Xie, Yong; Xiang, Hongfa

    Reformulation of electrolyte systems and improvement of separator wettability are vital to electrochemical performances of rechargeable lithium (Li) metal batteries, especially for suppressing Li dendrites. In this work we report a bifunctional electrolyte additive that improves separator wettability and suppresses Li dendrite growth in LMBs. A triblock polyether (Pluronic P123) was introduced as an additive into a commonly used carbonate-based electrolyte. It was found that addition of 0.2~1% (by weight) P123 into the electrolyte could effectively enhance the wettability of polyethylene separator. More importantly, the adsorption of P123 on Li metal surface can act as an artificial solid electrolyte interphasemore » layer and contribute to suppress the growth of Li dendrites. A smooth and dendritic-free morphology can be achieved in the electrolyte with 0.2% P123. The Li||Li symmetric cells with the 0.2% P123 containing electrolyte exhibit a relatively stable cycling stability at high current densities of 1.0 and 3.0 mA cm-2.« less

  16. Wettability of MnxSiyOz by Liquid Zn-Al Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Yunkyum; Shin, Minsoo; Tang, Chengying; Lee, Joonho

    2010-08-01

    The wettability of MnxSiyOz by liquid Zn-Al alloys was investigated to obtain basic information on the coating properties of high-strength steels with surface oxides in the hot-dip galvanizing process. In this study, the contact angles of liquid Zn-Al alloys (Al concentrations were 0.12 and 0.23 wt pct) on four different MnxSiyOz oxides, namely MnO, MnSiO3, Mn2SiO4, and SiO2, were measured with the dispensed drop method. The contact angle did not change across time. With an increasing Al concentration, the contact angle was slightly decreased for MnO and Mn2SiO4, but there was no change for MnSiO3 and SiO2. With an increasing SiO2 content, the contact angle gradually increased by 54 wt pct to form MnSiO3, and for pure SiO2 substrate, the contact angle decreased again. Consequently, the MnSiO3 substrate showed the worst wettability among the four tested oxide substrates.

  17. Wettability and impact dynamics of water droplets on rice ( Oryza sativa L.) leaves

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Hee; Huh, Hyung Kyu; Lee, Sang Joon

    2014-03-01

    We investigated the wettability and impact dynamics of water droplets on rice leaves at various leaf inclination angles and orientations. Contact angle, contact angle hysteresis (CAH), and roll-off angle ( α roll) of water droplets were measured quantitatively. Results showed that droplet motion exhibited less resistance along the longitudinal direction. Impact dynamic parameters, such as impact behaviors, maximum spreading factor, contact distance, and contact time were also investigated. Three different impact behaviors were categorized based on the normal component of Weber number irrespective of the inclination angle of the rice leaf. The asymmetric impact behavior induced by the tangential Weber number was also identified. Variation in the maximum spreading factor according to the normal Weber number was measured and compared with theoretical value obtained according to scaling law to show the wettability of the rice leaves. The contact distance of the impacting droplets depended on the inclination angle of the leaves. Along the longitudinal direction of rice leaves, contact distance was farther than that along the transverse direction. This result is consistent with the smaller values of CAH and α roll along the longitudinal direction.

  18. Nucleate boiling performance on nano/microstructures with different wetting surfaces

    PubMed Central

    2012-01-01

    A study of nucleate boiling phenomena on nano/microstructures is a very basic and useful study with a view to the potential application of modified surfaces as heating surfaces in a number of fields. We present a detailed study of boiling experiments on fabricated nano/microstructured surfaces used as heating surfaces under atmospheric conditions, employing identical nanostructures with two different wettabilities (silicon-oxidized and Teflon-coated). Consequently, enhancements of both boiling heat transfer (BHT) and critical heat flux (CHF) are demonstrated in the nano/microstructures, independent of their wettability. However, the increment of BHT and CHF on each of the different wetting surfaces depended on the wetting characteristics of heating surfaces. The effect of water penetration in the surface structures by capillary phenomena is suggested as a plausible mechanism for the enhanced CHF on the nano/microstructures regardless of the wettability of the surfaces in atmospheric condition. This is supported by comparing bubble shapes generated in actual boiling experiments and dynamic contact angles under atmospheric conditions on Teflon-coated nano/microstructured surfaces. PMID:22559173

  19. Study of Surface Wettability Change of Unconsolidated Sand Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Thermogravimetric Analysis.

    PubMed

    Gómora-Herrera, Diana; Navarrete Bolaños, Juan; Lijanova, Irina V; Olivares-Xometl, Octavio; Likhanova, Natalya V

    2018-04-01

    The effects exerted by the adsorption of vapors of a non-polar compound (deuterated benzene) and a polar compound (water) on the surface of Ottawa sand and a sample of reservoir sand (Channel), which was previously impregnated with silicon oil or two kinds of surfactants, (2-hydroxyethyl) trimethylammonium oleate (HETAO) and (2-hydroxyethyl)trimethylammonium azelate (HETAA), were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The surface chemistry of the sandstone rocks was elucidated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Terminal surface groups such as hydroxyls can strongly adsorb molecules that interact with these surface groups (surfactants), resulting in a wettability change. The wettability change effect suffered by the surface after treating it with surfactants was possible to be detected by the DRIFTS technique, wherein it was observed that the surface became more hydrophobic after being treated with silicon oil and HETAO; the surface became more hydrophilic after treating it with HETAA.

  20. Direct and accurate measurement of size dependent wetting behaviors for sessile water droplets

    PubMed Central

    Park, Jimin; Han, Hyung-Seop; Kim, Yu-Chan; Ahn, Jae-Pyeong; Ok, Myoung-Ryul; Lee, Kyung Eun; Lee, Jee-Wook; Cha, Pil-Ryung; Seok, Hyun-Kwang; Jeon, Hojeong

    2015-01-01

    The size-dependent wettability of sessile water droplets is an important matter in wetting science. Although extensive studies have explored this problem, it has been difficult to obtain empirical data for microscale sessile droplets at a wide range of diameters because of the flaws resulting from evaporation and insufficient imaging resolution. Herein, we present the size-dependent quantitative change of wettability by directly visualizing the three phase interfaces of droplets using a cryogenic-focused ion beam milling and SEM-imaging technique. With the fundamental understanding of the formation pathway, evaporation, freezing, and contact angle hysteresis for sessile droplets, microdroplets with diameters spanning more than three orders of magnitude on various metal substrates were examined. Wetting nature can gradually change from hydrophobic at the hundreds-of-microns scale to super-hydrophobic at the sub-μm scale, and a nonlinear relationship between the cosine of the contact angle and contact line curvature in microscale water droplets was demonstrated. We also showed that the wettability could be further tuned in a size-dependent manner by introducing regular heterogeneities to the substrate. PMID:26657208

  1. Use of Self-Assembled Monolayers of Different Wettabilities To Study Surface Selection and Primary Adhesion Processes of Green Algal (Enteromorpha) Zoospores

    PubMed Central

    Callow, Maureen E.; Callow, J. A.; Ista, Linnea K.; Coleman, Sarah E.; Nolasco, Aleece C.; López, Gabriel P.

    2000-01-01

    We investigated surface selection and adhesion of motile zoospores of a green, macrofouling alga (Enteromorpha) to self-assembled monolayers (SAMs) having a range of wettabilities. The SAMs were formed from alkyl thiols terminated with methyl (CH3) or hydroxyl (OH) groups or mixtures of CH3- and OH-terminated alkyl thiols and were characterized by measuring the advancing contact angles and by X-ray photoelectron spectroscopy. There was a positive correlation between the number of spores that attached to the SAMs and increasing contact angle (hydrophobicity). Moreover, the sizes of the spore groups (adjacent spores touching) were larger on the hydrophobic SAMs. Video microscopy of a patterned arrangement of SAMs showed that more zoospores were engaged in swimming and “searching” above the hydrophobic sectors than above the hydrophilic sectors, suggesting that the cells were able to “sense” that the hydrophobic surfaces were more favorable for settlement. The results are discussed in relation to the attachment of microorganisms to substrata having different wettabilities. PMID:10919777

  2. Laser-structured Janus wire mesh for efficient oil-water separation.

    PubMed

    Liu, Yu-Qing; Han, Dong-Dong; Jiao, Zhi-Zhen; Liu, Yan; Jiang, Hao-Bo; Wu, Xuan-Hang; Ding, Hong; Zhang, Yong-Lai; Sun, Hong-Bo

    2017-11-23

    We report here the fabrication of a Janus wire mesh by a combined process of laser structuring and fluorosilane/graphene oxide (GO) modification of the two sides of the mesh, respectively, toward its applications in efficient oil/water separation. Femtosecond laser processing has been employed to make different laser-induced periodic surface structures (LIPSS) on each side of the mesh. Surface modification with fluorosilane on one side and GO on the other side endows the two sides of the Janus mesh with distinct wettability. Thus, one side is superhydrophobic and superoleophilic in air, and the other side is superhydrophilic in air and superoleophobic under water. As a proof of concept, we demonstrated the separation of light/heavy oil and water mixtures using this Janus mesh. To realize an efficient separation, the intrusion pressure that is dominated by the wire mesh framework and the wettability should be taken into account. Our strategy may open up a new way to design and fabricate Janus structures with distinct wettability; and the resultant Janus mesh may find broad applications in the separation of oil contaminants from water.

  3. Wettability of magnesium based alloys

    NASA Astrophysics Data System (ADS)

    Ornelas, Victor Manuel

    The premise of this project was to determine the wettability behavior of Mg-based alloys using three different liquids. Contact angle measurements were carried out along with utilizing the Zisman method for obtaining values for the critical surface tension. Adhesion energy values were also found through the use of the Young-Dupre equation. This project utilized the Mg-based alloy Mg-2Zn-2Gd with supplemented alpha-Minimum Essential Medium (MEM), Phosphate Buffer Saline solution (PBS), and distilled water. These three liquids are commonly used in cell cultivation and protein adsorption studies. Supplemented alpha-MEM consisted of alpha-MEM, fetal bovine serum, and penicillin-streptomycin. Mg-2Zn-2Gd was used because of observed superior mechanical properties and better corrosion resistance as compared to conventional Mg-alloys. These attractive properties have made it possible for this alloy to be used in biomedical devices within the human body. However, the successful use of this alloy system in the human body requires knowledge in the response of protein adsorption on the alloy surface. Protein adsorption depends on many parameters, but one of the most important factors is the wettability behavior at the surface.

  4. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds.

    PubMed

    Butscher, Andre; Bohner, Marc; Roth, Christian; Ernstberger, Annika; Heuberger, Roman; Doebelin, Nicola; von Rohr, Philipp Rudolf; Müller, Ralph

    2012-01-01

    Three-dimensional printing (3DP) is a versatile method to produce scaffolds for tissue engineering. In 3DP the solid is created by the reaction of a liquid selectively sprayed onto a powder bed. Despite the importance of the powder properties, there has to date been a relatively poor understanding of the relation between the powder properties and the printing outcome. This article aims at improving this understanding by looking at the link between key powder parameters (particle size, flowability, roughness, wettability) and printing accuracy. These powder parameters are determined as key factors with a predictive value for the final 3DP outcome. Promising results can be expected for mean particle size in the range of 20-35 μm, compaction rate in the range of 1.3-1.4, flowability in the range of 5-7 and powder bed surface roughness of 10-25 μm. Finally, possible steps and strategies in pushing the physical limits concerning improved quality in 3DP are addressed and discussed. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Proof-of-concept switchable hydrophobic/hydrophilic patterned surfaces from thermo-mechanically tailored acrylate systems

    NASA Astrophysics Data System (ADS)

    Laursen, Christopher M.

    A novel, proof-of-concept, switchable hydrophobic/hydrophilic structured surface targeted to assist in antifouling of materials in aqueous environments was created through the development of a multi-tiered platform. The understructure consists of a thermo-mechanically tailored acrylate based polymer patterned in a pillared array, which was then overlaid with spatially tailored hydrophobic/hydrophilic surface chemistry treatments. Development focused on the synthesis of a ternary acrylate system displaying proper thermo-mechanical behavior in submerged conditions for the understructure, creation of a sufficient soft molding technique, and methods to chemically alter water-surface wetting interactions. The final acrylate based polymer constituents were chosen based on expected low-toxicity and the ability to be photopolymerized, while the final system displayed appropriate mechanical toughness, water absorption, and material stiffness over a select temperature window. This was important as alteration in wettability characteristics relied upon a stark transition in the polymeric materials stiffness within a narrow temperature range. The material qualitatively displayed a more hydrophobic state with the pillared surface structures erect, and a more hydrophilic state with the pillars bent over.

  6. Enhanced in vitro biocompatibility of ultrafine-grained biomedical NiTi alloy with microporous surface

    NASA Astrophysics Data System (ADS)

    Zheng, C. Y.; Nie, F. L.; Zheng, Y. F.; Cheng, Y.; Wei, S. C.; Valiev, R. Z.

    2011-08-01

    Bulk ultrafine-grained Ni 50.8Ti 49.2 alloy (UFG-NiTi) was successfully fabricated by equal-channel angular pressing (ECAP) technique in the present study, and to further improve its surface biocompatibility, surface modification techniques including sandblasting, acid etching and alkali treatment were employed to produce either irregularly roughened surface or microporous surface or hierarchical porous surface with bioactivity. The effect of the above surface treatments on the surface roughness, wettability, corrosion behavior, ion release, apatite forming ability and cytocompatibility of UFG-NiTi alloy were systematically investigated with the coarse-grained NiTi alloy as control. The pitting corrosion potential ( Epit) was increased from 393 mV (SCE) to 704 mV (SCE) with sandblasting and further increased to 1539 mV (SCE) with following acid etching in HF/HNO 3 solution. All the above surface treatment increased the apatite forming ability of UFG-NiTi in varying degrees when soaked them in simulated body fluid (SBF). Meanwhile, both sandblasting and acid etching could promote the cytocompatibility for osteoblasts: sandblasting enhanced cell attachment and acid etching increased cell proliferation. The different corrosion behavior, apatite forming ability and cellular response of UFG-NiTi after different surface modifications are attributed to the topography and wettability of the resulting surface oxide layer.

  7. Hierarchical Structure and Multifunctional Surface Properties of Carnivorous Pitcher Plants Nepenthes

    NASA Astrophysics Data System (ADS)

    Hsu, Chiao-Peng; Lin, Yu-Min; Chen, Po-Yu

    2015-04-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved specialized leaves fulfilling the multi-functions of attracting, capturing, retaining and digesting the prey, mostly arthropods. Different capturing mechanisms have been proposed and discussed in previous works. The most important capture mechanism is the unique super-hydrophilic surface properties of the peristome. The combination of a hierarchical surface structure and nectar secretions results in an exceptional water-lubricated trapping system. Anisotropic and unidirectional wettability is attributed to the ridge-like surface and epidermal folding. The three-dimensional plate-like wax crystals in the hydrophobic waxy zone can further prevent the prey from escaping. The captured prey are then digested in the hydrophilic digestive zone. The hybrid species Nepenthes × Miranda was investigated in this study. The surface morphology and hierarchical microstructure were characterized by scanning electron microscope. Contact angle measurement and wetting efficiency tests were performed to determine the wettability of the peristome under fresh, nectar-free and sucrose-coated conditions with controlled temperature and humidity. The results showed that sucrose-coated peristome surfaces possess the best wetting efficiency. The structure-property-function relationship and the capturing mechanism of Nepenthes were elucidated, which could further lead to the design and synthesis of novel bio-inspired surfaces and potential applications.

  8. Wetting state and maximum spreading factor of microdroplets impacting on superhydrophobic textured surfaces with anisotropic arrays of pillars

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Hee; Huh, Hyung Kyu; Lee, Sang Joon

    2013-07-01

    The dynamic behaviors of microdroplets that impact on textured surfaces with various patterns of microscale pillars are experimentally investigated in this study. A piezoelectric inkjet is used to generate the microdroplets that have a diameter of less than 46 μm and a controlled Weber number. The impact and spreading dynamics of an individual droplet are captured by using a high-speed imaging system. The anisotropic and directional wettability and the wetting states on the textured surfaces with anisotropically arranged pillars are revealed for the first time in this study. The impalement transition from the Cassie-Baxter state to the partially impaled state is evaluated by balancing the wetting pressure P wet and the capillary pressure P C even on the anisotropic textured surfaces. The maximum spreading factor is measured and compared with the theoretical prediction to elucidate the wettability of the textured surfaces. For a given Weber number, the maximum spreading factor decreases as the texture area fraction of the textured surface decreases. In addition, the maximum spreading factors along the direction of longer inter-pillar spacing always have smaller values than those along the direction of shorter inter-pillar spacing when a droplet impacts on the anisotropic arrays of pillars.

  9. Field Performance of Dieldrin/Resin Wettable Powders on Sorptive Mud Surface

    PubMed Central

    Van Tiel, N.

    1961-01-01

    Recent field experiments on the relative performance of dieldrin and dieldrin/resin wettable powders on sorptive mud surface have not confirmed the promising results obtained with the latter products in earlier laboratory tests. In view of this a renewed investigation into the possible factors governing the performance of such products was considered desirable, and further laboratory and field experiments were carried out in co-operation with the Colonial Pesticides Research Unit at Arusha, Tanganyika. The results of these experiments have given a better understanding of the factors involved, and a coherent interpretation of the differences in performance shown by various products under different conditions. The main factors to be taken into account appear to be: mobility of the insects during exposure, as influenced by insect species and exposure conditions; inherent toxicity of the dieldrin/resin particles; and the average relative humidity inside the experimental huts. The sorption phenomenon can be demonstrated in the field, but in view of the humidity conditions it does not seem likely that it will interfere seriously with practical mosquito control. A potential critical condition might be prevalent only in areas where the presence of sorptive mud is coupled with long periods of low humidity inside the huts, but further experimental data are necessary to confirm this. PMID:13780061

  10. Electrowetting on plasma-deposited fluorocarbon hydrophobic films for biofluid transport in microfluidics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayiati, P.; Tserepi, A.; Petrou, P. S.

    2007-05-15

    The present work focuses on the plasma deposition of fluorocarbon (FC) films on surfaces and the electrostatic control of their wettability (electrowetting). Such films can be employed for actuation of fluid transport in microfluidic devices, when deposited over patterned electrodes. Here, the deposition was performed using C{sub 4}F{sub 8} and the plasma parameters that permit the creation of films with optimized properties desirable for electrowetting were established. The wettability of the plasma-deposited surfaces was characterized by means of contact angle measurements (in the static and dynamic mode). The thickness of the deposited films was probed in situ by means ofmore » spectroscopic ellipsometry, while the surface roughness was provided by atomic force microscopy. These plasma-deposited FC films in combination with silicon nitride, a material of high dielectric constant, were used to create a dielectric structure that requires reduced voltages for successful electrowetting. Electrowetting experiments using protein solutions were conducted on such optimized dielectric structures and were compared with similar structures bearing commercial spin-coated Teflon registered amorphous fluoropolymer (AF) film as the hydrophobic top layer. Our results show that plasma-deposited FC films have desirable electrowetting behavior and minimal protein adsorption, a requirement for successful transport of biological solutions in 'digital' microfluidics.« less

  11. A combined bottom-up/top-down approach to prepare a sterile injectable nanosuspension.

    PubMed

    Hu, Xi; Chen, Xi; Zhang, Ling; Lin, Xia; Zhang, Yu; Tang, Xing; Wang, Yanjiao

    2014-09-10

    To prepare a uniform nanosuspension of strongly hydrophobic riboflavin laurate (RFL) allowing sterile filtration, physical modification (bottom-up) was combined with high-pressure homogenization (top-down) method. Unlike other bottom-up approaches, physical modification with surfactants (TPGS and PL-100) by lyophilization controlled crystallization and compensated for the poor wettability of RFL. On one hand, crystal growth and aggregation during freezing was restricted by a stabilizer-layer adsorbed on the drug surface by hydrophobic interaction. On the other hand, subsequent crystallization of drug in the sublimation process was limited to the interstitial spaces between solvent crystals. After lyophilization, modified drug with a smaller particle size and better wettability was obtained. When adding surfactant solution, water molecules passed between the hydrophilic groups of surface active molecules and activated the polymer chains allowing them to stretch into water. The coarse suspension was crushed into a nanosuspension (MP=162 nm) by high-pressure homogenization. For long term stability, lyophilization was applied again to solidify the nanosuspension (sorbitol as cryoprotectant). A slight crystal growth to about 600 nm was obtained to allow slow release for a sustained effect after muscular administration. Moreover, no paw-licking responses and very slight muscular inflammation demonstrated the excellent biocompatibility of this long-acting RFL injection. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Surface properties of sprayed and electrodeposited ZnO rod layers

    NASA Astrophysics Data System (ADS)

    Gromyko, I.; Krunks, M.; Dedova, T.; Katerski, A.; Klauson, D.; Oja Acik, I.

    2017-05-01

    Herein we present a comparative study on as-deposited, two-month-stored, and heat-treated ZnO rods obtained by spray pyrolysis (SP) at 550 °C, and electrodeposition (ED) at 80 °C. The aim of the study is to establish the reason for different behaviour of wettability and photocatalytic activity (PA) of SP and ED rods. Samples were studied using XPS, SEM, XRD, Raman, contact angle (CA) measurements and photocatalytic oxidation of doxycycline. Wettability and PA are mainly controlled by surface composition rather than by morphology. The relative amount of hydroxyl groups on the surface of as-deposited ED rods is four times higher compared to as-deposited SP rods. Opposite to SP rods, ED rods contain oxygen vacancy defects (Vo). Therefore, as-deposited ED rods are superhydrophilic (CA ∼ 3°) and show highest PA among studied samples, being three times higher compared to SP rods (removing of 75% of doxycycline after 30 min). It was revealed that as-deposited ED rods are inclined to faster contamination. The amount of Cdbnd C groups on the surface of aged ED rods is six times higher compared to aged SP rods. Stored ED samples become hydrophobic (CA ∼ 120°) and PA decreases sharply while SP rods remain hydrophilic (CA ∼ 50°), being more resistive to the contamination.

  13. Fabrication and Mechanical Behavior of Ex Situ Mg-Based Bulk Metallic Glass Matrix Composite Reinforced with Electroless Cu-Coated SiC Particles.

    PubMed

    Wang, Xin; Zhao, Lichen; Hu, Ximei; Cheng, Yongjian; Liu, Shuiqing; Chen, Peng; Cui, Chunxiang

    2017-11-30

    Magnesium-based bulk metallic glass matrix composites (BMGMCs) have better plasticity than the corresponding bulk metallic glasses (BMGs); however, their strength and density are often compromised due to the fact that the effective reinforcement phase is mostly plastic heavy metal. For lightweight SiC-particle reinforced BMGMCs, interface wettability and the sharpness of the particles often reduce the strengthening effect. In this work, SiC particles were coated with a thin Cu coating by electroless plating, and added to Mg 54 Cu 26.5 Ag 8.5 Gd 11 melt in an amount of 5 wt % to prepare a BMGMC. The microstructure of the interface, mechanical behavior and fracture morphology of the BMGMC were studied by scanning electron microscopy and quasi-static compression testing. The results showed that the Cu coating improved the wettability between SiC and the matrix alloy without obvious interfacial reactions, leading to the dispersion of SiC particles in the matrix. The addition of Cu-coated SiC particles improved the plastic deformation ability of Mg 54 Cu 26.5 Ag 8.5 Gd 11 BMG, proving that electroless plating was an effective method for controlling the interface microstructure and mechanical behavior of BMGMCs.

  14. Highly Efficient Gating of Electrically Actuated Nanochannels for Pulsatile Drug Delivery Stemming from a Reversible Wettability Switch.

    PubMed

    Zhang, Qianqian; Kang, Jianxin; Xie, Zhiqiang; Diao, Xungang; Liu, Zhaoyue; Zhai, Jin

    2018-01-01

    Many ion channels in the cell membrane are believed to function as gates that control the water and ion flow through the transitions between an inherent hydrophobic state and a stimuli-induced hydration state. The construction of nanofluidic gating systems with high gating efficiency and reversibility is inspired by this hydrophobic gating behavior. A kind of electrically actuated nanochannel is developed by integrating a polypyrrole (PPy) micro/nanoporous film doped with perfluorooctanesulfonate ions onto an anodic aluminum oxide nanoporous membrane. Stemming from the reversible wettability switch of the doped PPy film in response to the applied redox potentials, the nanochannels exhibit highly efficient and reversible gating behaviors. The optimized gating ratio is over 10 5 , which is an ultrahigh value when compared with that of the existing reversibly gated nanochannels with comparable pore diameters. Furthermore, the gating behavior of the electrically actuated nanochannels shows excellent repeatability and stability. Based on this highly efficient and reversible gating function, the electrically actuated nanochannels are further applied for drug delivery, which achieves the pulsatile release of two water-soluble drug models. The electrically actuated nanochannels may find potential applications in accurate and on-demand drug therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Internal stress induced natural self-chemisorption of ZnO nanostructured films

    PubMed Central

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-01-01

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from −1.62 GPa to −0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption. PMID:28233827

  16. Internal stress induced natural self-chemisorption of ZnO nanostructured films

    NASA Astrophysics Data System (ADS)

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-02-01

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.

  17. Internal stress induced natural self-chemisorption of ZnO nanostructured films.

    PubMed

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-02-24

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.

  18. Wetting behaviour of carbon nitride nanostructures grown by plasma enhanced chemical vapour deposition technique

    NASA Astrophysics Data System (ADS)

    Ahmad Kamal, Shafarina Azlinda; Ritikos, Richard; Abdul Rahman, Saadah

    2015-02-01

    Tuning the wettability of various coating materials by simply controlling the deposition parameters is essential for various specific applications. In this work, carbon nitride (CNx) films were deposited on silicon (1 1 1) substrates using radio-frequency plasma enhanced chemical vapour deposition employing parallel plate electrode configuration. Effects of varying the electrode distance (DE) on the films' structure and bonding properties were investigated using Field emission scanning electron microscopy, Atomic force microscopy, Fourier transform infrared and X-ray photoemission spectroscopy. The wettability of the films was analyzed using water contact angle measurements. At high DE, the CNx films' surface was smooth and uniform. This changed into fibrous nanostructures when DE was decreased. Surface roughness of the films increased with this morphological transformation. Nitrogen incorporation increased with decrease in DE which manifested the increase in both relative intensities of Cdbnd N to Cdbnd C and Nsbnd H to Osbnd H bonds. sp2-C to sp3-C ratio increased as DE decreased due to greater deformation of sp2 bonded carbon at lower DE. The films' characteristics changed from hydrophilic to super-hydrophobic with the decrease in DE. Roughness ratio, surface porosity and surface energy calculated from contact angle measurements were strongly dependent on the morphology, surface roughness and bonding properties of the films.

  19. Construction of digital core by adaptive porosity method

    NASA Astrophysics Data System (ADS)

    Xia, Huifen; Liu, Ting; Zhao, Ling; Sun, Yanyu; Pan, Junliang

    2017-05-01

    The construction of digital core has its unique advantages in the study of water flooding or polymer flooding oil displacement efficiency. The frequency distribution of pore size is measured by mercury injection experiment, the coordination number by CT scanning method, and the wettability data by imbibition displacement was measured, on the basis of considering the ratio of pore throat ratio and wettability, the principle of adaptive porosity is used to construct the digital core. The results show that the water flooding recovery, the degree of polymer flooding and the results of the Physical simulation experiment are in good agreement.

  20. Droplet flow along the wall of rectangular channel with gradient of wettability

    NASA Astrophysics Data System (ADS)

    Kupershtokh, A. L.

    2018-03-01

    The lattice Boltzmann equations (LBE) method (LBM) is applicable for simulating the multiphysics problems of fluid flows with free boundaries, taking into account the viscosity, surface tension, evaporation and wetting degree of a solid surface. Modeling of the nonstationary motion of a drop of liquid along a solid surface with a variable level of wettability is carried out. For the computer simulation of such a problem, the three-dimensional lattice Boltzmann equations method D3Q19 is used. The LBE method allows us to parallelize the calculations on multiprocessor graphics accelerators using the CUDA programming technology.

  1. Reversible Hydrophobic to Hydrophilic Transition in Graphene via Water Splitting Induced by UV Irradiation

    PubMed Central

    Xu, Zhemi; Ao, Zhimin; Chu, Dewei; Younis, Adnan; Li, Chang Ming; Li, Sean

    2014-01-01

    Although the reversible wettability transition between hydrophobic and hydrophilic graphene under ultraviolet (UV) irradiation has been observed, the mechanism for this phenomenon remains unclear. In this work, experimental and theoretical investigations demonstrate that the H2O molecules are split into hydrogen and hydroxyl radicals, which are then captured by the graphene surface through chemical binding in an ambient environment under UV irradiation. The dissociative adsorption of H2O molecules induces the wettability transition in graphene from hydrophobic to hydrophilic. Our discovery may hold promise for the potential application of graphene in water splitting. PMID:25245110

  2. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    NASA Astrophysics Data System (ADS)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.

  3. Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process

    NASA Astrophysics Data System (ADS)

    Kang, Dong Hee; Kang, Hyun Wook

    2016-11-01

    Electrospinning is a nano-scale fiber production method with various polymer materials. This technique allows simple fiber diameters control by changing the physical conditions such as applied voltage and polymer solution viscosity during the fabrication process. The electrospun polymer fibers form a thin porous film with high surface area to volume ratio. Due to these unique characteristics, it is widely used for many application fields such as photocatalyst, electric sensor, and antibacterial scaffold for tissue engineering. Filtration is one of the main applications of electrospun polymer fibers for specific application of filtering out dust particles and dehumidification. Most polymers which are commonly used in electrospinning are hard to perform the filtering and dehumidification simultaneously because of their low hygroscopic property. To overcome this obstacle, the desiccant polymers are developed such as polyacrylic acid and polysulfobetaine methacrylate. However, the desiccant polymers are generally expensive and need special solvent for electrospinning. An alternating way to solve these problems is mixing desiccant material like zeolite in polymer solution during an electrospinning process. In this study, the free surface energy characteristics of electrospun polyvinylidene fluoride (PVDF) film with various zeolite concentrations are investigated to control the hygroscopic property of general polymers. Fundamental physical property of wettability with PVDF shows hydrophobicity. The electrospun PVDF film with small weight ratio with higher than 0.1% of zeolite powder shows diminished contact angles that certifying the wettability of PVDF can be controlled using desiccant material in electrospinning process. To quantify the surface energy of electrospun PVDF films, sessile water droplets are introduced on the electrospun PVDF film surface and the contact angles are measured. The contact angles of PVDF film are 140° for without zeolite and 80° for with 5 wt% of zeolite respectively. As a result, the surface energy of PVDF film can be controlled by embedding zeolite particles in electrospinning process and applied to filtration application of dust filtering and dehumidification simultaneously with low manufacturing cost.

  4. Effect of phosphate group addition on the properties of denture base resins

    PubMed Central

    Puri, Gaurav; Berzins, David W.; Dhuru, Virendra B.; Raj, Periathamby A.; Rambhia, Sameer K.; Dhir, Gunjan; Dentino, Andrew R.

    2009-01-01

    Statement of problem Acrylic resins are prone to microbial adherence, especially by Candida albicans. Surface-charged resins alter the ionic interaction between the denture resin and Candida hyphae, and these resins are being developed as a means to reduce microbial colonization on the denture surface. Purpose The purpose of this study was to investigate the physical and mechanical properties of phosphate-containing polymethyl methacrylate resins for their suitability as a denture material. Material and methods Using PMMA with cross-linker (Lucitone 199) as a control, 4 experimental groups containing various levels of phosphate with and without cross-linker were generated. The properties examined were impact strength, fracture toughness, wettability (contact angle), and resin bonding ability to denture teeth. Impact strength was tested in the Izod configuration (n=16), and fracture toughness (n=13) was measured using the single-edge notched bend test. Wettability was determined by calculating the contact angle of water on the material surface (n=12), while ISO 1567 was used for bonding ability (n=12). The data were analyzed by 1- and 2-way ANOVA (α=.05). Results A trend of increased hydrophilicity, as indicated by lower contact angle, was observed with increased concentrations of phosphate. With regard to the other properties, no significant differences were found when compared with the control acrylic resin. Conclusions No adverse physical effect due to the addition of a phosphate-containing monomer was found in the acrylic denture resins. Additional mechanical and physical properties, biocompatibility, and clinical efficacy studies are needed to confirm the in vivo anti-Candida activity of these novel resins. PMID:18922259

  5. In Vivo High-Content Evaluation of Three-Dimensional Scaffolds Biocompatibility

    PubMed Central

    Oliveira, Mariana B.; Ribeiro, Maximiano P.; Miguel, Sónia P.; Neto, Ana I.; Coutinho, Paula; Correia, Ilídio J.

    2014-01-01

    While developing tissue engineering strategies, inflammatory response caused by biomaterials is an unavoidable aspect to be taken into consideration, as it may be an early limiting step of tissue regeneration approaches. We demonstrate the application of flat and flexible films exhibiting patterned high-contrast wettability regions as implantable platforms for the high-content in vivo study of inflammatory response caused by biomaterials. Screening biomaterials by using high-throughput platforms is a powerful method to detect hit spots with promising properties and to exclude uninteresting conditions for targeted applications. High-content analysis of biomaterials has been mostly restricted to in vitro tests where crucial information is lost, as in vivo environment is highly complex. Conventional biomaterials implantation requires the use of high numbers of animals, leading to ethical questions and costly experimentation. Inflammatory response of biomaterials has also been highly neglected in high-throughput studies. We designed an array of 36 combinations of biomaterials based on an initial library of four polysaccharides. Biomaterials were dispensed onto biomimetic superhydrophobic platforms with wettable regions and processed as freeze-dried three-dimensional scaffolds with a high control of the array configuration. These chips were afterward implanted subcutaneously in Wistar rats. Lymphocyte recruitment and activated macrophages were studied on-chip, by performing immunocytochemistry in the miniaturized biomaterials after 24 h and 7 days of implantation. Histological cuts of the surrounding tissue of the implants were also analyzed. Localized and independent inflammatory responses were detected. The integration of these data with control data proved that these chips are robust platforms for the rapid screening of early-stage in vivo biomaterials' response. PMID:24568682

  6. Bioinspired polyethylene terephthalate nanocone arrays with underwater superoleophobicity and anti-bioadhesion properties

    NASA Astrophysics Data System (ADS)

    Liu, Wendong; Liu, Xueyao; Fangteng, Jiaozi; Wang, Shuli; Fang, Liping; Shen, Huaizhong; Xiang, Siyuan; Sun, Hongchen; Yang, Bai

    2014-10-01

    This paper presents a facile method to fabricate bioinspired polyethylene terephthalate (PET) nanocone arrays via colloidal lithography. The aspect ratio (AR) of the nanocones can be finely modulated ranging from 1 to 6 by regulating the etching time. The samples with the AR value of 6 can present underwater superoleophobicity with the underwater oil contact angle (OCA) of 171.8°. The as-prepared PET nanocone arrays perform anti-bioadhesion behavior, which inhibits the formation of the actin cytoskeleton when it used as the substrate for cell culture. Moreover, the oil wettability is temperature controlled after modifying the PET nanocone arrays with PNIPAAm film, and the oil wettability of the functionalized nanocone arrays can be transformed from the superoleophobic state with OCA about 151° to the oleophilic state with OCA about 25° reversibly. Due to the high-throughput, parallel fabrication and cost-efficiency of this method, it will be favourable for researchers to introduce oleophobic properties to various substrate and device surfaces. Due to the superoleophobicity and simple functionalizing properties, the PET nanocone arrays are very promising surfaces for anti-adhesion, self-cleaning and have potential applications in material, medical, and biological fields.This paper presents a facile method to fabricate bioinspired polyethylene terephthalate (PET) nanocone arrays via colloidal lithography. The aspect ratio (AR) of the nanocones can be finely modulated ranging from 1 to 6 by regulating the etching time. The samples with the AR value of 6 can present underwater superoleophobicity with the underwater oil contact angle (OCA) of 171.8°. The as-prepared PET nanocone arrays perform anti-bioadhesion behavior, which inhibits the formation of the actin cytoskeleton when it used as the substrate for cell culture. Moreover, the oil wettability is temperature controlled after modifying the PET nanocone arrays with PNIPAAm film, and the oil wettability of the functionalized nanocone arrays can be transformed from the superoleophobic state with OCA about 151° to the oleophilic state with OCA about 25° reversibly. Due to the high-throughput, parallel fabrication and cost-efficiency of this method, it will be favourable for researchers to introduce oleophobic properties to various substrate and device surfaces. Due to the superoleophobicity and simple functionalizing properties, the PET nanocone arrays are very promising surfaces for anti-adhesion, self-cleaning and have potential applications in material, medical, and biological fields. Electronic supplementary information (ESI) available: The optical microscopy image of the self-assembled 2D PS microspheres over a large area, the diameter of the PS microsphere is 580 nm; The top-view SEM image of the PET nanocone arrays over a large area, the AR of the nanocone is 6; The SEM image of the PET nanocone arrays obtained after 30 min etching; The optical image of the water droplet on the PET nanocone arrays with an AR of 6; The schematic illustration of the nanocone arrays modification with PNIPAAm; High resolution XPS spectra of the PNIPAAm modified PET nanocone arrays. See DOI: 10.1039/c4nr04471a

  7. Effect of lens care system on silicone hydrogel contact lens wettability.

    PubMed

    Guillon, Michel; Maissa, Cécile; Wong, Stéphanie; Patel, Trisha; Garofalo, Renée

    2015-12-01

    The purpose was to compare the effect of the repeated usage of two care systems (one hydrogen peroxide cleaning and disinfecting system and one polyaminopropyl biguanide (PHMB) containing multi-purpose system) with silicone hydrogel contact lenses worn for three months on a daily wear modality. A specific aspect of interest was of the effect of the care systems on contact lens wettability. Seventy-four symptomatic contact lens wearers, habitually wearing either ACUVUE(®) OASYS(®) (n=37) or PureVision™ (n=37), constituted the study population. The study was a two-arm prospective, investigator-masked, bilateral study of three-month duration to evaluate the effects of CLEAR CARE(®) compared with renu(®) fresh™. The subjects were randomized to one of the two lens care systems. Contact lens wettability and surface cleanliness were assessed with the Tearscope and reported in terms of pre-lens non-invasive break-up time (PL-NIBUT) and visible deposits. Baseline assessments at enrollment were with the subjects' own contact lenses worn for at least 6h when using their habitual PHMB-preserved care system and at the dispensing visit with new contact lenses. At the follow-up visits, the contact lenses were worn for at least 6h, and were at least 11 days old for ACUVUE(®) OASYS(®) and 25 days old for PureVision™. The results obtained showed that: (i) with CLEAR CARE(®), a significant improvement in contact lens wettability was recorded compared with the habitual care system at the three-month follow-up visit (mean median PL-NIBUT 5.8 vs. 4.0 s, p<0.001). Further, with this same lens care system a significant increase in wettability was observed at the three-month follow-up visit compared with dispensing (mean median PL-NIBUT 5.8 vs. 4.5s, p=0.022). (ii) Whereas no difference in contact lens wettability was observed at dispensing between the two lens care groups (mean PL-NIBUT: 4.5 vs. 4.2s, p=0.518), a significantly more stable pre-lens tear film was observed with CLEAR CARE(®) than with renu(®) fresh™ at both the two-month (mean PL-NIBUT: 4.6 vs. 3.7s, p=0.005) and three-month (mean PL-NIBUT: 5.8 vs. 4.2 s, p=0.028) visits. iii. With renu(®) fresh™, no significant differences were observed at the end of three months of use compared with either the habitual care system or the new contact lens solution (mean PL-NIBUT: 3M 4.2 vs. Disp 4.2 s (p=0.420) vs. enrolment habitual care solution 5.1s (p=0.734)). iv. With CLEAR CARE(®) significant increases in the incidence of surfaces free of both mucus (3 month 95%. vs. habitual solution 82% enrolment; p=0.005) and lipid (3 month 87% vs. habitual solution 72% enrolment; p=0.009) were observed. Significantly better contact lens wettability and surface cleanliness were achieved for ACUVUE(®) OASYS(®) and PureVision™ with CLEAR CARE(®) than with renu(®) fresh™ at the end of three months of use. Copyright © 2015. Published by Elsevier Ltd.

  8. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.

    PubMed

    Zhang, Chunmei; Wang, Liwei; Zhai, Tianliang; Wang, Xinchao; Dan, Yi; Turng, Lih-Sheng

    2016-01-01

    Graphene oxide (GO) was incorporated into poly(lactic acid) (PLA) as a reinforcing nanofiller to produce composite nanofibrous scaffolds using the electrospinning technique. To improve the dispersion of GO in PLA and the interfacial adhesion between the filler and matrix, GO was surface-grafted with poly(ethylene glycol) (PEG). Morphological, thermal, mechanical, and wettability properties, as well as preliminary cytocompatibility with Swiss mouse NIH 3T3 cells of PLA, PLA/GO, and PLA/GO-g-PEG electrospun nanofibers, were characterized. Results showed that the average diameter of PLA/GO-g-PEG electrospun nanofibers decreased with filler content. Both GO and GO-g-PEG improved the thermal stability of PLA, but GO-g-PEG was more effective. The water contact angle test of the nanofiber mats showed that the addition of GO in PLA did not change the surface wettability of the materials, but PLA/GO-g-PEG samples exhibited improved wettability with lower water contact angles. The tensile strength of the composite nanofiber mats was improved with the addition of GO, and it was further enhanced when GO was surface grafted with PEG. This suggested that improved interfacial adhesion between GO and PLA was achieved by grafting PEG onto the GO. The cell viability and proliferation results showed that the cytocompatibility of PLA was not compromised with the addition of GO and GO-g-PEG. With enhanced mechanical properties as well as good wettability and cytocompatibility, PLA/GO-g-PEG composite nanofibers have the potential to be used as scaffolds in tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia.

    PubMed

    Wennerberg, Ann; Jimbo, Ryo; Stübinger, Stefan; Obrecht, Marcel; Dard, Michel; Berner, Simon

    2014-09-01

    Implant surface properties have long been identified as an important factor to promote osseointegration. The importance of nanostructures and hydrophilicity has recently been discussed. The aim of this study was to investigate how nanostructures and wettability influence osseointegration and to identify whether the wettability, the nanostructure or both in combination play the key role in improved osseointegration. Twenty-six adult rabbits each received two Ti grade 4 discs in each tibia. Four different types of surface modifications with different wettability and nanostructures were prepared: hydrophobic without nanostructures (SLA), with nanostructures (SLAnano); hydrophilic with two different nanostructure densities (low density: pmodSLA, high density: SLActive). All four groups were intended to have similar chemistry and microroughness. The surfaces were evaluated with contact angle measurements, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and interferometry. After 4 and 8 weeks healing time, pull-out tests were performed. SLA and SLAnano were hydrophobic, whereas SLActive and pmodSLA were super-hydrophilic. No nanostructures were present on the SLA surface, but the three other surface modifications clearly showed the presence of nanostructures, although more sparsely distributed on pmodSLA. The hydrophobic samples showed higher carbon contamination levels compared with the hydrophilic samples. After 4 weeks healing time, SLActive implants showed the highest pull-out values, with significantly higher pull-out force than SLA and SLAnano. After 8 weeks, the SLActive implants had the highest pull-out force, significantly higher than SLAnano and SLA. The strongest bone response was achieved with a combination of wettability and the presence of nanostructures (SLActive). © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Wettability of eutectic NaLiCO3 salt on magnesium oxide substrates at 778 K

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Li, Qi; Cao, Hui; Leng, Guanghui; Li, Yongliang; Wang, Li; Zheng, Lifang; Ding, Yulong

    2018-06-01

    We investigated the wetting behavior of a eutectic carbonate salt of NaLiCO3 on MgO substrates at an elevated temperature of 778 K by measuring contact angle with a sessile drop method. Both sintered and non-sintered MgO were prepared and used as the substrates. The sintered substrates were obtained by sintering compacted MgO powders at 500-1300 °C. For comparison purposes, a single crystal MgO substrate was also used in the work. The different sintering temperatures provided MgO substrates with different structures, allowing their effects on salt penetration and hence wettability and surface energy to be investigated. A scanning electron microscope equipped with energy dispersive spectrometry and an atomic force microscope were used to observe the morphology and structures of the MgO substrates as well as the salt penetration. The results showed a good wettability of the carbonate salt on both the sintered and non-sintered MgO substrates and the wettability depended strongly on the structure of the substrates. The non-sintered MgO substrate has a loose surface particle packing with large pores and crevices, leading to significant salt infiltration, and the corresponding contact angle was measured to be ∼25°. The contact angle of the salt on the sintered MgO substrates increased with an increase in the sintering temperature of the MgO substrate, and the contact angle of the salt on the single crystal substrate was the highest at ∼40°. The effect of the sintering temperature for making the MgO substrate could be linked to the surface energy, and the linkage is validated by the AFM measurements of the adhesion forces of the MgO substrates.

  11. Effect of dimethyl sulfoxide on dentin collagen.

    PubMed

    Mehtälä, P; Pashley, D H; Tjäderhane, L

    2017-08-01

    Infiltration of adhesive on dentin matrix depends on interaction of surface and adhesive. Interaction depends on dentin wettability, which can be enhanced either by increasing dentin surface energy or lowering the surface energy of adhesive. The objective was to examine the effect of dimethyl sulfoxide (DMSO) on demineralized dentin wettability and dentin organic matrix expansion. Acid-etched human dentin was used for sessile drop contact angle measurement to test surface wetting on 1-5% DMSO-treated demineralized dentin surface, and linear variable differential transformer (LVDT) to measure expansion/shrinkage of dentinal matrix. DMSO-water binary liquids were examined for surface tension changes through concentrations from 0 to 100% DMSO. Kruskal-Wallis and Mann-Whitney tests were used to test the differences in dentin wettability, expansion and shrinkage, and Spearman test to test the correlation between DMSO concentration and water surface tension. The level of significance was p<0.05. Pretreatment with 1-5% DMSO caused statistically significant concentration-dependent increase in wetting: the immediate contact angles decreased by 11.8% and 46.6% and 60s contact angles by 9.5% and 47.4% with 1% and 5% DMSO, respectively. DMSO-water mixtures concentration-dependently expanded demineralized dentin samples less than pure water, except with high (≥80%) DMSO concentrations which expanded demineralized dentin more than water. Drying times of LVDT samples increased significantly with the use of DMSO. Increased dentin wettability may explain the previously demonstrated increase in adhesive penetration with DMSO-treated dentin, and together with the expansion of collagen matrix after drying may also explain previously observed increase in dentin adhesive bonding. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces

    PubMed Central

    Xu, Li-Chong; Siedlecki, Christopher A.

    2013-01-01

    Atomic force microscopy (AFM) was used to directly measure the adhesion forces between three test proteins and low density polyethylene (LDPE) surfaces treated by glow discharge plasma to yield various levels of water wettability. The adhesion of proteins to the LDPE substrates showed a step dependence on the wettability of surfaces as measured by the water contact angle (θ). For LDPE surfaces with θ > ∼60–65°, stronger adhesion forces were observed for bovine serum albumin, fibrinogen and human FXII than for the surfaces with θ < 60°. Smaller adhesion forces were observed for FXII than for the other two proteins on all surfaces although trends were identical. Increasing the contact time from 0 to 50 s for each protein–surface combination increased the adhesion force regardless of surface wettability. Time varying adhesion data was fit to an exponential model and free energies of protein unfolding were calculated. This data, viewed in light of previously published studies, suggests a 2-step model of protein denaturation, an early stage on the order of seconds to minutes where the outer surface of the protein interacts with the substrate and a second stage involving movement of hydrophobic amino acids from the protein core to the protein/surface interface. Impact statement The work described in this manuscript shows a stark transition between protein adherent and protein non-adherent materials in the range of water contact angles 60–65°, consistent with known changes in protein adsorption and activity. Time-dependent changes in adhesion force were used to calculate unfolding energies relating to protein–surface interactions. This analysis provides justification for a 2-step model of protein denaturation on surfaces. PMID:17466368

  13. Survey of Thermal-Fluids Evaluation and Confirmatory Experimental Validation Requirements of Accident Tolerant Cladding Concepts with Focus on Boiling Heat Transfer Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R.; Wysocki, Aaron J.; Terrani, Kurt A.

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE) Advanced Fuels Campaign (AFC) is working closely with the nuclear industry to develop fuel and cladding candidates with potentially enhanced accident tolerance, also known as accident tolerant fuel (ATF). Thermal-fluids characteristics are a vital element of a holistic engineering evaluation of ATF concepts. One vital characteristic related to boiling heat transfer is the critical heat flux (CHF). CHF plays a vital role in determining safety margins during normal operation and also in the progression of potential transient or accident scenarios. This deliverable is a scoping survey of thermal-fluids evaluation andmore » confirmatory experimental validation requirements of accident tolerant cladding concepts with a focus on boiling heat transfer characteristics. The key takeaway messages of this report are: 1. CHF prediction accuracy is important and the correlations may have significant uncertainty. 2. Surface conditions are important factors for CHF, primarily the wettability that is characterized by contact angle. Smaller contact angle indicates greater wettability, which increases the CHF. Surface roughness also impacts wettability. Results in the literature for pool boiling experiments indicate changes in CHF by up to 60% for several ATF cladding candidates. 3. The measured wettability of FeCrAl (i.e., contact angle and roughness) indicates that CHF should be investigated further through pool boiling and flow boiling experiments. 4. Initial measurements of static advancing contact angle and surface roughness indicate that FeCrAl is expected to have a higher CHF than Zircaloy. The measured contact angle of different FeCrAl alloy samples depends on oxide layer thickness and composition. The static advancing contact angle tends to decrease as the oxide layer thickness increases.« less

  14. Phase-field modeling of liquids splitting between separating surfaces and its application to high-resolution roll-based printing technologies

    NASA Astrophysics Data System (ADS)

    Hizir, F. E.; Hardt, D. E.

    2017-05-01

    An in-depth understanding of the liquid transport in roll-based printing systems is essential for advancing the roll-based printing technology and enhancing the performance of the printed products. In this study, phase-field simulations are performed to characterize the liquid transport in roll-based printing systems, and the phase-field method is shown to be an effective tool to simulate the liquid transport. In the phase-field simulations, the liquid transport through the ink transfer rollers is approximated as the stretching and splitting of liquid bridges with pinned or moving contact lines between vertically separating surfaces. First, the effect of the phase-field parameters and the mesh characteristics on the simulation results is examined. The simulation results show that a sharp interface limit is approached as the capillary width decreases while keeping the mobility proportional to the capillary width squared. Close to the sharp interface limit, the mobility changes over a specified range are observed to have no significant influence on the simulation results. Next, the ink transfer from the cells on the surface of an ink-metering roller to the surface of stamp features is simulated. Under negligible inertial effects and in the absence of gravity, the amount of liquid ink transferred from an axisymmetric cell with low surface wettability to a stamp with high surface wettability is found to increase as the cell sidewall steepness and the cell surface wettability decrease and the stamp surface wettability and the capillary number increase. Strategies for improving the resolution and quality of roll-based printing are derived based on an analysis of the simulation results. The application of novel materials that contain cells with irregular surface topography to stamp inking in high-resolution roll-based printing is assessed.

  15. Wettable and Unsinkable: The Hydrodynamics of Saccate Pollen Grains in Relation to the Pollination Mechanism in the Two New Zealand Species of Prumnopitys Phil. (Podocarpaceae)

    PubMed Central

    SALTER, JOSHUA; MURRAY, BRIAN G.; BRAGGINS, JOHN E.

    2002-01-01

    The pollination mechanism of most genera of the Podocarpaceae involves inverted ovules, a pollination drop and bisaccate pollen grains. Saccate grains have sometimes been referred to as ‘non‐wettable’ due to their buoyant properties, while non‐saccate pollen grains have been described as ‘wettable’. The hydrodynamic properties of saccate pollen grains of seven podocarp species in five genera, Dacrydium Sol. ex G. Forst., Dacrycarpus (Endl.) de Laub., Manoao Molloy, Podocarpus L‘Hér. ex Pers. and Prumnopitys Phil. have been tested in water, together with saccate and non‐saccate pollen of four other conifer genera, Cedrus Trew (Pinaceae), Cephalotaxus Siebold & Zucc. ex Endl. (Cephalotaxaceae), Cupressus L. (Cupressaceae) and Phyllocladus Rich. ex Mirb. (Phyllocladaceae), and spores of three fern species and one lycopod species. All four spore types studied were non‐wettable, whereas the bisaccate and trisaccate pollen types, like all other conifer pollen types, were wettable, enabling the grains to cross the surface tension barrier of water. Once past this barrier, grain behaviour was governed by presence or absence of sacci. Non‐saccate and vestigially saccate grains sank, whereas saccate grains behaved like air bubbles, floating up to the highest point. In addition, the grains were observed to float in water with sacci uppermost, consistent with the suggestion that distally placed sacci serve to orientate the germinal furrow of the pollen grain towards the nucellus of an inverted ovule. Observations of pollen grains in the pollen chambers of naturally pollinated Prumnopitys ovules confirmed this. The combination of buoyancy and wettability in saccate pollen has implications for the efficiency of the typical podocarp pollination mechanism. PMID:12099344

  16. Roughness and wettability effect on histological and mechanical response of self-drilling orthodontic mini-implants.

    PubMed

    Espinar-Escalona, Eduardo; Bravo-Gonzalez, Luis-Alberto; Pegueroles, Marta; Gil, Francisco Javier

    2016-06-01

    Self-drilling orthodontic mini-implants can be used as temporary devices for orthodontic treatments. Our main goal was to evaluate surface characteristics, roughness and wettability, of surface modified mini-implants to increase their stability during orthodontic treatment without inducing bone fracture and tissue destruction during unscrewing. Modified mini-implants by acid etching, grit-blasting and its combination were implanted in 20 New Zealand rabbits during 10 weeks. After that, the bone-to-implant (BIC) parameter was determined and the torque during unscrewing was measured. The surface characteristics, roughness and wettability, were also measured, onto modified Ti c.p. discs. Acid-etched mini-implants (R a ≈ 1.7 μm, contact angle (CA) ≈ 66°) significantly improved the bone-to-implant parameter, 26 %, compared to as-machined mini-implants (R a ≈ 0.3 μm, CA ≈ 68°, BIC = 19 %) due to its roughness. Moreover, this surface treatment did not modify torque during unscrewing due to their statistically similar wettability (p > 0.05). Surface treatments with higher roughness and hydrophobicity (R a ≈ 4.5 μm, CA ≈ 74°) lead to a greater BIC and to a higher removal torque during unscrewing, causing bone fracture, compared to as-machined mini-implants. Based on these in vivo findings, we conclude that acid-etching surface treatment can support temporary anchoring of titanium mini-implants. This treatment represents a step forward in the direction of reducing the time prior to mini-implant loading by increasing their stability during orthodontic treatment, without inducing bone fracture and tissue destruction during unscrewing.

  17. In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery

    PubMed Central

    Pokrowiecki, Rafał; Zaręba, Tomasz; Szaraniec, Barbara; Pałka, Krzysztof; Mielczarek, Agnieszka; Menaszek, Elżbieta; Tyski, Stefan

    2017-01-01

    The addition of an antibacterial agent to dental implants may provide the opportunity to decrease the percentage of implant failures due to peri-implantitis. For this purpose, in this study, the potential efficacy of nanosilver-doped titanium biomaterials was determined. Titanium disks were incorporated with silver nanoparticles over different time periods by Tollens reaction, which is considered to be an eco-friendly, cheap, and easy-to-perform method. The surface roughness, wettability, and silver release profile of each disc were measured. In addition, the antibacterial activity was also evaluated by using disk diffusion tests for bacteria frequently isolated from the peri-implant biofilm: Streptococcus mutans, Streptococcus mitis, Streptococcus oralis, Streptococcus sanguis, Porphyromonas gingivalis, Staphylococcus aureus, and Escherichia coli. Cytotoxicity was evaluated in vitro in a natural human osteoblasts cell culture. The addition of nanosilver significantly increased the surface roughness and decreased the wettability in a dose-dependent manner. These surfaces were significantly toxic to all the tested bacteria following a 48-hour exposure, regardless of silver doping duration. A concentration of 0.05 ppm was sufficient to inhibit Gram-positive and Gram-negative species, with the latter being significantly more susceptible to silver ions. However, after the exposure of human osteoblasts to 0.1 ppm of silver ions, a significant decrease in cell viability was observed by using ToxiLight™ BioAssay Kit after 72 hours. Data from the present study indicated that the incorporation of nanosilver may influence the surface properties that are important in the implant healing process. The presence of nanosilver on the titanium provides an antibacterial activity related to the bacteria involved in peri-implantitis. Finally, the potential toxicological considerations of nanosilver should further be investigated, as both the antibacterial and cytotoxic properties may be observed at similar concentration ranges. PMID:28652733

  18. Microstructures and Properties of Plasma Electrolytic Oxidized Ti Alloy (Ti-6Al-4V) for Bio-implant Application

    NASA Astrophysics Data System (ADS)

    Kumari, Renu; Blawert, Carsten; Majumdar, J. Dutta

    2016-02-01

    In the present study, plasma electrolytic oxidation (PEO) of Ti6Al4V has been performed in an electrolyte containing 20 g/L of Na2SiO3, 10 g/L of Na3PO4, 2 g/L of KOH, and 5 g/L of hydroxyapatite at an optimum constant potential of 430 V for 10 minutes. Followed by PEO treatment, surface roughness was measured using non-contact optical profilometer. A detailed characterization of microstructure, composition and phase analysis was carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopic analysis, Fourier-transform infrared, and X-ray diffraction study. The mechanical properties of the surface have been evaluated by measuring nano-hardness and wear resistance. The effect of surface modification on corrosion resistance property has also been evaluated in Hank's solution. Finally, wettability and bioactivity test have been also performed. PEO developed a thick (150 μm) porous (35 pct) oxide film on the surface of Ti-6Al-4V consisting of anatase, rutile, and SiO2. The nano-hardness of the PEO-treated surface is increased to 8 ± 0.5 GPa as compared to 2 ± 0.4 GPa of the as-received Ti-6Al-4V. Wear and corrosion resistance were improved following oxidation. There is an improvement in wettability in terms of decrease in contact angle from 60 ± 1.5 to 45 ± 1 deg. Total surface energy and its polar component were also increased significantly on PEO-treated surface as compared to the as-received Ti6Al4V.

  19. Physical study on Cobalt-Indium Co-doped ZnO nanofilms as hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Mimouni, R.; Mahdhi, N.; Boubaker, K.; Madouri, A.; Amlouk, M.

    2016-03-01

    The present work reports some physical investigations on (Co,In) codoped zinc oxide nanofilms deposited on glass substrates at 460 °C by the spray pyrolysis technique. The effect of Co and In concentration on the structural, morphological, optical and surface wettability properties have been investigated using X-ray diffraction (XRD) patterns, Raman spectroscopy, SEM, optical measurement, photoluminescence spectroscopy as well as the measurement of hydrophobicity in terms of water contact angle. It is found that all films crystallized in würtzite ZnO phase, with a preferentially orientation towards (002) direction parallel to c-axis. The Raman spectra of the samples exhibit the presence of E2high characteristic mode of würtzite structure with high crystallinity as well as two dominant bands 1LO and 2LO. Also, no additional modes introduced by codopoing have been found. SEM micrographs show the uniform deposition of fine grains on surface films. Thicknesses of films are less than 100 nm. In addition, optical investigations indicate that the band gap narrowing of (Co,In) codoped ZnO thin films is due to the increase in the band tail width. Indeed, PL study indicates that (Co,In) codoped ZnO nanofilms exhibit a large decrease of the UV luminescence, which is assigned to the trapping of photo-generated electrons by both In3+ and Co2+ ions as well as an improvement of charge separation in the ZnO thin films. Finally, the (Co,In) codoping influences the surface wettability property and transform the ZnO character from hydrophilic (θ < 90°) for pure ZnO nanofilm to hydrophobic (θ > 90°) for (Co,In) codoped ZnO ones.

  20. Adhesion mechanisms at the interface between Y-TZP and veneering ceramic with and without modifier.

    PubMed

    Monaco, Carlo; Tucci, Antonella; Esposito, Leonardo; Scotti, Roberto

    2014-11-01

    This study investigated the mechanism of action at the interface between a commercially available Y-TZP and its veneering ceramic after final firing. Particular attention was paid, from a microstructural point of view, to evaluating the effects of different surface treatments carried out on the zirconia. In total, 32 specimens of presintered zirconia Y-TZP (LavaFrame, 3M ESPE, Germany) were cut with a low-speed diamond blade. The specimens were divided in two major groups, for testing after fracture or after mirror finishing, and were sintered following the manufacturer's instructions. Each major group was then randomly divided into four subgroups, according to using or not using the dedicated framework modifier, with or without a preliminary silica coating (CoJet, 3M ESPE). A suitable veneering ceramic was used for each group (Lava Ceram Overlay Porcelain, 3M ESPE). A detailed microstructural study of the interfaces of the zirconia-veneering ceramic was performed using a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer to evaluate chemical variation at the interfaces. When the framework modifier was not applied on the Y-TZP surface, microdetachments, porosities, and openings in the ceramic layer were observed at the interlayers. A degree of diffusion of different elements through the interfaces from both the zirconia and veneering layers was detected. Application of the framework modifier can increase the wettability of the zirconia surfaces, allowing a continuous contact with the veneering layer. The micro-analysis performed showed the presence of a reaction area at the interface between the different materials. the increase of the wettability of the zirconia surface could improve the adhesion at interface with the veneering ceramic and reduce the clinical failure as chipping or delamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of silane- and MDP-based primers application orders on zirconia-resin adhesion-A ToF-SIMS study.

    PubMed

    Chuang, Shu-Fen; Kang, Li-Li; Liu, Yi-Chuan; Lin, Jui-Che; Wang, Ching-Cheng; Chen, Hui-Min; Tai, Cheng-Kun

    2017-08-01

    To evaluate the 3-methacryloyloxypropyltrimethoxysilane (MPS)- and 10-methacryloyloxydecyl-dihydrogen-phosphate (MDP)-base primers, in their single or sequential applications, with regard to modifying zirconia surfaces and improving resin-zirconia adhesion. Zirconia disks received different treatments: without primer (Zr), MPS-base primer (S), MDP-base primer (M), MPS/MDP mixture (SMmix), MPS followed by MDP (SM), and MDP followed by MPS (MS). The compositions and chemical interactions of the coatings to zirconia were analyzed using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and reconstructed 3D ion images. Surface wettability of these coatings to water and resin adhesive was assessed. The shear bond strength (SBS) between resin and the treated zirconia was also examined before and after thermocycling. Groups S and MS presented substantial OH - ions in the coatings and zirconia substrate. PO 2 - and PO 3 - fragments existed in all MDP-treatment groups with various proportions and distributions, while groups M and SM showed higher proportions of PO 3 - and the zirconium phosphate related ions. In 3D ion images, PO 3 - in groups M and SM was denser and segregated to the interface, but was dispersed or overlaid above PO 2 - in SMmix and MS. All the primers increased the surface wettability to water and resin, with M and SM presenting superhydrophilic surfaces. All MDP-treatment groups showed improved SBS before thermocycling, while M and SM retained higher SBS after this. The MDP-base primer shows a relevant function in facilitating POZr bonding and enhancing resin-zirconia bonding. The co-treated MPS impairs the chemical activity of MDP, especially if it is the final coat. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. High-throughput controllable generation of droplet arrays with low consumption

    NASA Astrophysics Data System (ADS)

    Lin, Yinyin; Wu, Zhongsheng; Gao, Yibo; Wu, Jinbo; Wen, Weijia

    2018-06-01

    We describe a controllable sliding method for fabricating millions of isolated femto- to nanoliter-sized droplets with defined volume, geometry and position and a speed of up to 375 kHz. In this work, without using a superhydrophobic or superoleophobic surface, arrays of droplets are instantly formed on the patterned substrate by sliding a strip of liquid, including water, low-surface-tension organic solvents and solution, along the substrate. To precisely control the volume of the droplets, we systemically investigate the effects of the size of the wettable pattern, the viscosity of the liquid and sliding speed, which were found to vary independently to tune the height and volume of the droplets. Through this method, we successfully fabricated an oriented single metal-organic framework crystal array with control over their XY positioning on the surface, as characterized by microscopy and X-ray diffraction (XRD) techniques.

  3. A Smart Superwetting Surface with Responsivity in Both Surface Chemistry and Microstructure.

    PubMed

    Zhang, Dongjie; Cheng, Zhongjun; Kang, Hongjun; Yu, Jianxin; Liu, Yuyan; Jiang, Lei

    2018-03-26

    Recently, smart surfaces with switchable wettability have aroused much attention. However, only single surface chemistry or the microstructure can be changed on these surfaces, which significantly limits their wetting performances, controllability, and applications. A new surface with both tunable surface microstructure and chemistry was prepared by grafting poly(N-isopropylacrylamide) onto the pillar-structured shape memory polymer on which multiple wetting states from superhydrophilicity to superhydrophobicity can be reversibly and precisely controlled by synergistically regulating the surface microstructure and chemistry. Meanwhile, based on the excellent controllability, we also showed the application of the surface as a rewritable platform, and various gradient wettings can be obtained. This work presents for the first time a surface with controllability in both surface chemistry and microstructure, which starts some new ideas for the design of novel superwetting materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Photo-induced wettability of TiO{sub 2} film with Au buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purkayastha, Debarun Dhar; Sangani, L. D. Varma; Krishna, M. Ghanashyam

    2014-04-24

    The effect of thickness of Au buffer layer (15-25 nm) between TiO{sub 2} film and substrate on the wettability of TiO{sub 2} films is reported. TiO{sub 2} films grown on Au buffer layer have a higher contact angle of 96-;100° as compared to 47.6o for the film grown without buffer layer. The transition from hydrophobicity to hydrophilicity under UV irradiation occurs within 10 min. for the buffer layered films whereas it is almost 30 min. for the film grown without buffer layer. The enhanced photo induced hydrophilicity is shown to be surface energy driven.

  5. The influence of the emulsion composition on the wettability of the emulsion

    NASA Astrophysics Data System (ADS)

    Liu, Yan Jun; Shao, Jian Nan; Lei Liu, Peng

    2018-03-01

    In order to explore the influence of the emulsion composition on the wettability of the emulsion, using lauric acid polyoxyethylene esters (LAE) and polyethylene oleic acid diester (DQA) as the emulsifier and oleic acid ester (QA) as the smoothing agent, the spinning oil emulsion system with the content of smoothing agent above 30% was prepared. The results show that: with the increase of emulsion concentration, the surface tension of emulsion, the contact Angle of emulsion on the surface of the polypropylene fiber and the wetting time of canvas in emulsion all decreases. At the same time,the emulsion has critical micelle concentration, when the concentration is less than CMC, the surface tension of emulsion, the contact Angle of emulsion on the surface of the polypropylene fiber and the wetting time of canvas in the emulsion decreases rapidly with the increase of the emulsion concentration, while it’s more than this concentration, the influence of emulsion concentration on the three kinds of nature is smaller. Besides, the increase of the mass fraction of the smoothing agent and the increase of the compound emulsifier HLB will result in worse wettability.

  6. Femtosecond laser-induced surface wettability modification of polystyrene surface

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Wang, XinCai; Zheng, HongYu; Lam, YeeCheong

    2016-12-01

    In this paper, we demonstrated a simple method to create either a hydrophilic or hydrophobic surface. With femtosecond laser irradiation at different laser parameters, the water contact angle (WCA) on polystyrene's surface can be modified to either 12.7° or 156.2° from its original WCA of 88.2°. With properly spaced micro-pits created, the surface became hydrophilic probably due to the spread of the water droplets into the micro-pits. While with properly spaced micro-grooves created, the surface became rough and more hydrophobic. We investigated the effect of laser parameters on WCAs and analyzed the laser-treated surface roughness, profiles and chemical bonds by surface profilometer, scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). For the laser-treated surface with low roughness, the polar (such as C—O, C=O, and O—C=O bonds) and non-polar (such as C—C or C—H bonds) groups were found to be responsible for the wettability changes. While for a rough surface, the surface roughness or the surface topography structure played a more significant role in the changes of the surface WCA. The mechanisms involved in the laser surface wettability modification process were discussed.

  7. A travel in the Echeveria genus wettability's world

    NASA Astrophysics Data System (ADS)

    Godeau, Guilhem; Laugier, Jean-Pierre; Orange, François; Godeau, René-Paul; Guittard, Frédéric; Darmanin, Thierry

    2017-07-01

    Nature is a constant source of inspiration for researchers and engineers. In this work, we study the wettability of various species from the genus Echeveria. All species studied present very strong hydrophobic properties with various water adhesions. Echeveria 'Perle von Nürnberg' has properties very close to superhydrophobicity with low water adhesion (sliding angle α = 15° and contact angle hysteresis H = 9°) while Echeveria pallida and Echeveria runyonii are completely sticky (parahydrophobic) and water droplets do not move even if the surface is inclined to 90°. This work shows that most of the differences in the hydrophobic properties depend on the amount of wax crystallization. However, Echeveria pulvinata shows special wettability results. Their leaves possess long hairs. When a water droplet is placed on the surface, the water droplet is completely sticky. When the size of the droplets becomes critical, the water droplets spread across the leaf surface displaying superhydrophilic properties. More investigations reveal that the hairs are highly hydrophobic and rough due to the presence of wax crystals while the bottom of the surface is smooth and hydrophilic. Such materials are excellent candidates for water harvesting systems and oil/water separation membranes.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arul, K. Thanigai; Kolanthai, Elayaraja; Manikandan, E.

    Highlights: • Rapid technique to synthesize nanorods of magnesium ion incorporated hydroxyapatite. • Enhanced electrical and mechanical properties. • Improved photoluminescence and wettability on magnesium incorporation. • Increased in vitro bioactivity. - Abstract: Nanocrystalline hydroxyapatite (HAp-Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2,} 35 nm) and magnesium (Mg{sup 2+}) ion incorporated HAp were synthesized by microwave technique. XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), FE-HRTEM (Field emission high resolution transmission electron microscopy), DLS (dynamic light scattering), EDXRF (energy dispersive X-ray fluorescence spectrometry), microhardness, permittivity and alternating current (ac) conductivity, besides the PL (photoluminescence), wettability and in vitro bioactivity of the samples weremore » analysed. EDXRF revealed the Mg{sup 2+} ion incorporation in HAp. The Mg{sup 2+} ion incorporation did not alter the phase but drastically reduced the crystallite size and particle size respectively by 48% and 32%. There was enhanced microhardness (24%) at low level (<13%) and decreased zeta potential of Mg{sup 2+} ion incorporation. The permittivity, ac conductivity, PL, wettability and in vitro bioactivity were enhanced on Mg{sup 2+} ion incorporation. These properties enable them to be a promising candidate for wound healing, bone replacement applications and also as a biosensor.« less

  9. Initial biocompatibility of plasma polymerized hexamethyldisiloxane films with different wettability

    NASA Astrophysics Data System (ADS)

    Krasteva, N. A.; Toromanov, G.; Hristova, K. T.; Radeva, E. I.; Pecheva, E. V.; Dimitrova, R. P.; Altankov, G. P.; Pramatarova, L. D.

    2010-11-01

    Understanding the relationships between material surface properties, behaviour of adsorbed proteins and cellular responses is essential to design optimal material surfaces for tissue engineering. In this study we modify thin layers of plasma polymerized hexamethyldisiloxane (PPHMDS) by ammonia treatment in order to increase surface wettability and the corresponding biological response. The physico-chemical properties of the polymer films were characterized by contact angle (CA) measurements and Fourier Transform Infrared Spectroscopy (FTIR) analysis.Human umbilical vein endothelial cells (HUVEC) were used as model system for the initial biocompatibility studies following their behavior upon preadsorption of polymer films with three adhesive proteins: fibronectin (FN), fibrinogen (FG) and vitronectin (VN). Adhesive interaction of HUVEC was evaluated after 2 hours by analyzing the overall cell morphology, and the organization of focal adhesion contacts and actin cytoskeleton. We have found similar good cellular response on FN and FG coated polymer films, with better pronounced vinculin expression on FN samples while. Conversely, on VN coated surfaces the wettability influenced significantly initial celular interaction spreading. The results obtained suggested that ammonia plasma treatment can modulate the biological activity of the adsorbed protein s on PPHMDS surfaces and thus to influence the interaction with endothelial cells.

  10. Determination of metalaxyl and identification of adjuvants in wettable powder pesticide technical formulas.

    PubMed

    Pose-Juan, Eva; Rial-Otero, Raquel; Martínez-Carballo, Elena; López-Periago, Eugenio; Simal-Gándara, Jesús

    2009-07-01

    Foliar runoff is one of the most important processes affecting off-target movement of fungicides. In this way, Ridomil Gold Plus and Ridomil Gold MZ are two types of wettable powder technical formulations which contain metalaxyl and they are used for such a purpose. A method for quantitative determination of metalaxyl in pesticide formulas has been developed, validated, and subsequently applied to Ridomil Gold Plus and Ridomil Gold MZ. The method employs liquid-liquid extraction followed by liquid chromatography coupled with UV detection (LC-UV), using gas chromatography coupled with mass spectrometry as confirmation technique and to carry out a screening of organic adjuvants of these two selected pesticide formulas. Metalaxyl of 26.5 and 41 g/kg was detected in Ridomil Gold Plus and Ridomil Gold MZ, close to the manufacture specified level of 25 and 40 g/kg, respectively. Activator and utility adjuvants were detected in these two wettable powder technical formulations. Only methyl-ester-based surfactants were found within the group of nonionic surfactants, but the long-term fates of most adjuvants in soils and elsewhere in the environment are largely unknown, partially because of the lack of long-term monitoring data.

  11. Fabrication of highly hydrophobic two-component thermosetting polyurethane surfaces with silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Song, Jialu; Hou, Xianghui

    2018-05-01

    Highly hydrophobic thermosetting polyurethane (TSU) surfaces with micro-nano hierarchical structures were developed by a simple process combined with sandpaper templates and nano-silica embellishment. Sandpapers with grit sizes varying from 240 to 7000 grit were used to obtain micro-scale roughness on an intrinsic hydrophilic TSU surface. The surface wettability was investigated by contact angle measurement. It was found that the largest contact angle of the TSU surface without nanoparticles at 102 ± 3° was obtained when the template was 240-grit sandpaper and the molding progress started after 45 min curing of TSU. Silica nanoparticles modified with polydimethylsiloxane were scattered onto the surfaces of both the polymer and the template to construct the desirable nanostructures. The influences of the morphology, surface composition and the silica content on the TSU surface wettability were studied by scanning electron microscopy (SEM), attenuated total reflection (ATR) infrared (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The surface of the TSU/SiO2 nanocomposites containing 4 wt% silica nanoparticles exhibited a distinctive dual-scale structure and excellent hydrophobicity with the contact angle above 150°. The mechanism of wettability was also discussed by Wenzel model and Cassie-Baxter model.

  12. Optimal design of permeable fiber network structures for fog harvesting.

    PubMed

    Park, Kyoo-Chul; Chhatre, Shreerang S; Srinivasan, Siddarth; Cohen, Robert E; McKinley, Gareth H

    2013-10-29

    Fog represents a large untapped source of potable water, especially in arid climates. Numerous plants and animals use textural and chemical features on their surfaces to harvest this precious resource. In this work, we investigate the influence of the surface wettability characteristics, length scale, and weave density on the fog-harvesting capability of woven meshes. We develop a combined hydrodynamic and surface wettability model to predict the overall fog-collection efficiency of the meshes and cast the findings in the form of a design chart. Two limiting surface wettability constraints govern the re-entrainment of collected droplets and clogging of mesh openings. Appropriate tuning of the wetting characteristics of the surfaces, reducing the wire radii, and optimizing the wire spacing all lead to more efficient fog collection. We use a family of coated meshes with a directed stream of fog droplets to simulate a natural foggy environment and demonstrate a five-fold enhancement in the fog-collecting efficiency of a conventional polyolefin mesh. The design rules developed in this work can be applied to select a mesh surface with optimal topography and wetting characteristics to harvest enhanced water fluxes over a wide range of natural convected fog environments.

  13. The wettability of selected organic soils in Poland

    NASA Astrophysics Data System (ADS)

    Całka, A.; Hajnos, M.

    2009-04-01

    The wettability was measured in the laboratory by means of two methods: Water Drop Penetration Time (WDPT) test and Thin Column Wicking (TCW) method. WDPT is fast and simple method and was used to investigate potential water repellency of analyzed samples. TCW is an indirect method and was used to determine contact angles and surface free energy components. The measurement was performed in horizontal teflon chambers for thin-layer chromatography, adapted for tubes 10 cm long. The experiment was carried out on muck soils (samples were taken from two levels of soil profile: 0-20 cm and 20-40 cm) and peat soils. There were two types of peats: low-moor peats and high moor peats. Samples of low-moor peats were taken from level 25-75 cm (alder peat) and 75-125cm (sedge peat) and 25-75 cm (peloid peat). Samples of high moor peats from level 25-175 cm (sphagnum peat) and 175-225 cm (sphagnum peat with Eriophorum). There was found no variability in persistence of potential water repellency but there were differences in values of contact angles of individual soil samples. Both muck and peat samples are extremely water repellent soils. Water droplets persisted on the surface of soils for more than 24 hours. Contact angles and surface free energy components for all samples were differentiated. Ranges of water contact angles for organic soils are from 27,54o to 96,50o. The highest values of contact angles were for sphagnum peats, and the lowest for muck soil from 20-40 cm level. It means, that there are differences in wettability between these samples. Muck soil is the best wettable and sphagnum peats is the worst wettable soil. If the content of organic compounds in the soil exceeds 40% (like in peats), the tested material displays only dispersion-type interactions. Therefore for peat soils, the technique of thin column wicking could only be used to determine the dispersive component γiLW. For muck soils it was also determined electron-acceptor (Lewis acid) γ+ and electron-donor (Lewis base) γ- surface free energy components. The authors gratefully acknowledge the Ministry of Science and Higher Education for financial support of this work (grant No. N N310 149335).

  14. Megasonic cleaning strategy for sub-10nm photomasks

    NASA Astrophysics Data System (ADS)

    Hsu, Jyh-Wei; Samayoa, Martin; Dress, Peter; Dietze, Uwe; Ma, Ai-Jay; Lin, Chia-Shih; Lai, Rick; Chang, Peter; Tuo, Laurent

    2016-10-01

    One of the main challenges in photomask cleaning is balancing particle removal efficiency (PRE) with pattern damage control. To overcome this challenge, a high frequency megasonic cleaning strategy is implemented. Apart from megasonic frequency and power, photomask surface conditioning also influences cleaning performance. With improved wettability, cleanliness is enhanced while pattern damage risk is simultaneously reduced. Therefore, a particle removal process based on higher megasonic frequencies, combined with proper surface pre-treatment, provides improved cleanliness without the unintended side effects of pattern damage, thus supporting the extension of megasonic cleaning technology into 10nm half pitch (hp) device node and beyond.

  15. A Comparison of Splash Erosion Behavior between Wettable and Water Repellent 'Soil' Particles

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Hamlett, C. A.; Doerr, S.; Bryant, R.; Shirtcliffe, N.; McHale, G.; Newton, M.

    2011-12-01

    Wildfires remove vegetation and litter cover and expose soil surfaces to particle detachment by rain splash. This can serve as an agent of initial soil modification and erosion in the post-fire period. Splash behavior is mainly determined by the kinetic energy delivered by impacting water drops (erosivity), and the detachability (erodibility) of surface particles, affected by their size, aggregate stability and shear strength. Soil detachability may also be affected by water repellency (hydrophobicity). This soil characteristic is influenced by wildfire and may affect splash behavior by reducing capillary forces between particles. Previous work on splash behavior using cumulative drop impact reported larger ejection droplets and lower and shorter trajectories of ejections for water repellent soil compared with wettable soil (Terry and Shakesby 1993). A water film generated by delayed infiltration on water repellent soil was suggested to account for the difference. This study compares the trajectories of ejected wettable and hydrophobic model soil particles from single water drop impacts in order to isolate the effect of soil particle wettability on splash erosion behavior. Acid-washed (wettable) and hydrophobized (water repellent) glass beads used as model soil particles were held in an array within a squat cylinder of 1.5 cm diameter in the centre of a 20 cm diameter disk covered with a viscous adhesive film. A distilled water drop (20μL) was released 40 cm above the centre of the array and the resultant impact was recorded at 976 frames per second using a high speed video camera. The populations of, and distances travelled by, the particles were measured for three arrays of bead sizes within the range (180-400 μm). Three to five replications were made for each test. The trajectory of each ejected particle was traced on video frames and corrected for the actual distance and direction of travel measured from the adhesive film. The initial velocity and ejecting angle of individual particles were calculated from the equation of motion, ignoring the air resistance and in-flight evaporation. In contrast to Terry and Shakesby (1993), we observed that a single drop impact resulted mainly in dispersion (splash saltation) with few ejections of particles entrained by a water droplet (splashing), and the trajectories of ejections from water repellent particle arrays were higher than those from the hydrophilic arrays. These higher trajectories were driven by higher initial velocity for the water repellent particles, despite lower ejecting angles. This result suggests that water repellent soil is more vulnerable to initial splash detachment before a water film is generated by accumulation of rain drops. The distributions of initial velocity and ejecting angle of all particles are compared between wettable and water repellent particles and discussed in detail in this contribution. Terry JP and Shakesby RA, 1993. Earth Surface Processes and Landforms 18: 519-525. Acknowledgement: This study has been funded by Engineering and Physical Sciences Research Council of United Kingdom.

  16. Titanium nitride formation by a dual-stage femtosecond laser process

    NASA Astrophysics Data System (ADS)

    Hammouti, S.; Holybee, B.; Zhu, W.; Allain, J. P.; Jurczyk, B.; Ruzic, D. N.

    2018-06-01

    Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titanium nitride formation through an irradiation under a nitrogen reactive environment. An extensive XPS study was performed to identify and quantify laser-induced titanium surface chemistry modifications after a single-stage laser process (Ar and N2 individually), and a dual-stage laser process. The importance of each step that composes the dual-stage laser process was demonstrated and leads to the dual-stage laser process for the formation of TiO, Ti2O3 and TiN. In this study, the largest nitride formation occurs for the dual stage process with laser conditions at 4 W/1.3 J cm-2 under argon and 5 W/1.6 J cm-2 under nitrogen, yielding a total TiN composition of 8.9%. Characterization of both single-stage and dual-stage laser process-induced surface morphologies has been performed as well, leading to the observation of a wide range of hierarchical surface structures such as high-frequency ripples, grooves, protuberances and pillow-like patterns. Finally, water wettability was assessed by means of contact angle measurements on untreated titanium surface, and titanium surfaces resulting from either single-stage laser process or dual-stage laser process. Dual-stage laser process allows a transition of titanium surface, from phobic (93°) to philic (35°), making accessible both hydrophilic and chemically functionalized hierarchical surfaces.

  17. WETTABILITY AND IMBIBITION: MICROSCOPIC DISTRIBUTION OF WETTING AND ITS CONSEQUENCES AT THE CORE AND FIELD SCALES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jill S. Buckley; Norman R. Morrow; Chris Palmer

    2003-02-01

    The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting themore » onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this project we have many new tools for studying wetting at microscopic and macroscopic scales and a library of well-characterized fluids for use in studies of crude oil/brine/rock interactions.« less

  18. Primary drainage in geological fractures: Effects of aperture variability and wettability

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Méheust, Y.; Neuweiler, I.

    2017-12-01

    Understanding and controlling fluid-fluid displacement in porous and fractured media is a key asset for many practical applications, such as the geological storage of CO2, hydrocarbon recovery, groundwater remediation, etc. We numerically investigate fluid-fluid displacement in rough-walled fractures with a focus on the combined effect of wettability, the viscous contrast between the two fluids, and fracture surface topography on drainage patterns and interface growth. A model has been developed to simulate the dynamic displacement of one fluid by another immiscible one in a rough geological fracture; the model takes both capillary and viscous forces into account. Capillary pressures at the fluid-fluid interface are calculated based on the Young-Laplace equation using the two principal curvatures (aperture-induced curvature and in-plane curvature) [1], while viscous forces are calculated by continuously solving the fluid pressure field in the fracture. The aperture field of a fracture is represented by a spatially correlated random field, with a power spectral density of the fracture wall topographies scaling as a power law, and a cutoff wave-length above which the Fourier modes of the two walls are identical [2]. We consider flow scenarios with both rectangular and radial configurations. Results show that the model is able to produce displacement patterns of compact displacement, capillary fingering, and viscous fingering, as well as the transitions between them. Both reducing the aperture variability and increasing the contact angle (from drainage to weak imbibition) can stabilize the displacement due to the influence of the in-plane curvature, an effect analogous to that of the cooperative pore filling in porous media. These results suggest that for geometries typical of geological fractures we can extend the phase diagram in the parameter space of capillary number and mobility ratio by another dimension to take into account the combined effect of wettability and fracture aperture topography. References: [1] Yang, Z. et al. (2012), A generalized approach for estimation of in-plane curvature in invasion percolation models for drainage in fractures. Wat. Resour. Res., 48(9), W09507. [2] Yang, Z. et al. (2016), Fluid trapping during capillary displacement in fractures. Adv. Water Resour., 95, 264-275.

  19. 8. Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buongiorno, Jacopo; Hu, Lin-wen

    2009-07-31

    Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interestmore » in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (≤ 0.1 % by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ±20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m2s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site density changes, but no definitive correlation between the nucleation site density and the heat transfer coefficient data could be found. Wettability of the surface was substantially increased for heater coupons boiled in alumina and zinc oxide nanofluids, and such wettability increase seems to correlate reasonably well with the observed marked CHF enhancement for the respective nanofluids. Interpretation of the experimental data was conducted in light of the governing surface parameters (surface area, contact angle, roughness, thermal conductivity) and existing models. It was found that no single parameter could explain the observed HTC or CHF phenomena.« less

  20. Unusual dewetting of thin polymer films in liquid media containing a poor solvent and a nonsolvent.

    PubMed

    Xu, Lin; Sharma, Ashutosh; Joo, Sang Woo; Liu, Hui; Shi, Tongfei

    2014-12-16

    We investigate the control of pattern size and kinetics in spontaneous dewetting of thin polymer films (polystyrene) that are stable to thermal annealing by annealing in a poor solvent (acetone)/nonsolvent (ethanol or n-hexane) liquid mixture. Dewetting occurs by the formation and growth of circular holes that coalesce to form droplets. The influence of the nature and the volume fraction of the nonsolvents on the contact angle of polymer droplets, number density of holes, and the kinetics of holes formation and growth is studied. Addition of ethanol greatly increases the hole density and slows down the kinetics substantially, while affecting only a small change in wettability. n-Hexane addition shows an interesting nonmonotonic response in decreasing the hole density and contact angle in the volume fraction range of 0-0.3 but an opposite effect beyond that. Although the two nonsolvents chosen cannot by themselves induce dewetting, their relative affinity for the solid substrate vis-à-vis acetone can strongly influence the observed dewetting scenarios that are not understood by the existing theoretical considerations. n-Hexane, for example, has great affinity for silicon substrate. In addition to the changes in wettability, viscosity, and film interfacial tension engendered by the nonsolvents, the possibility of the formation of adsorbed liquid layers at the substrate-polymer interface, which can modify the interfacial friction and slippage, needs to be considered.

Top