Using Storytelling Strategies to Improve Student Comprehension in Online Classes
ERIC Educational Resources Information Center
Powell, Rasby Marlene; Murray, Ottis
2012-01-01
Previous research shows that presenting class material in story formats can improve student learning in lecture classes. This pilot study of eight sociology classes investigates the efficacy of using storytelling as a means to improve student comprehension in online classes. Our findings show that when material is presented in story format rather…
Summary and Findings of the ARL Dynamic Failure Forum
2016-09-29
short beam shear, quasi -static indentation, depth of penetration, and V50 limit velocity. o Experimental technique suggestions for improvement included...art in experimental , theoretical, and computational studies of dynamic failure. The forum also focused on identifying technologies and approaches...Army-specific problems. Experimental exploration of material behavior and an improved ability to parameterize material models is essential to improving
Breidenbach, Andrew P; Dyment, Nathaniel A; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T; Rowe, David W; Kadler, Karl E; Butler, David L
2015-02-01
The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair.
Dyment, Nathaniel A.; Lu, Yinhui; Rao, Marepalli; Shearn, Jason T.; Rowe, David W.; Kadler, Karl E.; Butler, David L.
2015-01-01
The prevalence of tendon and ligament injuries and inadequacies of current treatments is driving the need for alternative strategies such as tissue engineering. Fibrin and collagen biopolymers have been popular materials for creating tissue-engineered constructs (TECs), as they exhibit advantages of biocompatibility and flexibility in construct design. Unfortunately, a few studies have directly compared these materials for tendon and ligament applications. Therefore, this study aims at determining how collagen versus fibrin hydrogels affect the biological, structural, and mechanical properties of TECs during formation in vitro. Our findings show that tendon and ligament progenitor cells seeded in fibrin constructs exhibit improved tenogenic gene expression patterns compared with their collagen-based counterparts for approximately 14 days in culture. Fibrin-based constructs also exhibit improved cell-derived collagen alignment, increased linear modulus (2.2-fold greater) compared with collagen-based constructs. Cyclic tensile loading, which promotes the maturation of tendon constructs in a previous work, exhibits a material-dependent effect in this study. Fibrin constructs show trending reductions in mechanical, biological, and structural properties, whereas collagen constructs only show improved tenogenic expression in the presence of mechanical stimulation. These findings highlight that components of the mechanical stimulus (e.g., strain amplitude or time of initiation) need to be tailored to the material and cell type. Given the improvements in tenogenic expression, extracellular matrix organization, and material properties during static culture, in vitro findings presented here suggest that fibrin-based constructs may be a more suitable alternative to collagen-based constructs for tissue-engineered tendon/ligament repair. PMID:25266738
Rational design of new electrolyte materials for electrochemical double layer capacitors
NASA Astrophysics Data System (ADS)
Schütter, Christoph; Husch, Tamara; Viswanathan, Venkatasubramanian; Passerini, Stefano; Balducci, Andrea; Korth, Martin
2016-09-01
The development of new electrolytes is a centerpiece of many strategies to improve electrochemical double layer capacitor (EDLC) devices. We present here a computational screening-based rational design approach to find new electrolyte materials. As an example application, the known chemical space of almost 70 million compounds is investigated in search of electrochemically more stable solvents. Cyano esters are identified as especially promising new compound class. Theoretical predictions are validated with subsequent experimental studies on a selected case. These studies show that based on theoretical predictions only, a previously untested, but very well performing compound class was identified. We thus find that our rational design strategy is indeed able to successfully identify completely new materials with substantially improved properties.
NASA Astrophysics Data System (ADS)
Aghandeh, Hadi; Sedigh Ziabari, Seyed Ali
2017-11-01
This study investigates a junctionless tunnel field-effect transistor with a dual material gate and a heterostructure channel/source interface (DMG-H-JLTFET). We find that using the heterostructure interface improves device behavior by reducing the tunneling barrier width at the channel/source interface. Simultaneously, the dual material gate structure decreases ambipolar current by increasing the tunneling barrier width at the drain/channel interface. The performance of the device is analyzed based on the energy band diagram at on, off, and ambipolar states. Numerical simulations demonstrate improvements in ION, IOFF, ION/IOFF, subthreshold slope (SS), transconductance and cut-off frequency and suppressed ambipolar behavior. Next, the workfunction optimization of dual material gate is studied. It is found that if appropriate workfunctions are selected for tunnel and auxiliary gates, the JLTFET exhibits considerably improved performance. We then study the influence of Gaussian doping distribution at the drain and the channel on the ambipolar performance of the device and find that a Gaussian doping profile and a dual material gate structure remarkably reduce ambipolar current. Gaussian doped DMG-H-JLTFET, also exhibits enhanced IOFF, ION/IOFF, SS and a low threshold voltage without degrading IOFF.
Converting Garbage to Gold: Recycling Our Materials.
ERIC Educational Resources Information Center
Chandler, William U.
1984-01-01
Recycling conserves energy, fights pollution and inflation, creates jobs, and improves the outlook for the future of materials. But converting a throwaway society to recycling will depend on finding good markets for waste paper and scrap metals. (RM)
2014-01-01
Study Material properties and performance are governed by material molecular chemistry structures and molecular level interactions. Methods to...understand relationships between the material properties and performance and their correlation to the molecular level chemistry and morphology, and thus...find ways of manipulating and adjusting matters at the atomistic level in order to improve material performance are required. A computational material
Forest Products Laboratory research program on small-diameter material.
2000-01-01
Forests in the United States contain a significant amount of small-diameter and underutilized material. These overstocked stands not only increase the risk of insect, disease, fire, and drought damage, but also are costly to remove. Finding economical and marketable uses for small-diameter and underutilized material would alleviate these problems while improving...
An active learning approach to Bloom's Taxonomy.
Weigel, Fred K; Bonica, Mark
2014-01-01
As educators strive toward improving student learning outcomes, many find it difficult to instill their students with a deep understanding of the material the instructors share. One challenge lies in how to provide the material with a meaningful and engaging method that maximizes student understanding and synthesis. By following a simple strategy involving Active Learning across the 3 primary domains of Bloom's Taxonomy (cognitive, affective, and psychomotor), instructors can dramatically improve the quality of the lesson and help students retain and understand the information. By applying our strategy, instructors can engage their students at a deeper level and may even find themselves enjoying the process more.
Modification of hydraulic conductivity in granular soils using waste materials.
Akbulut, S; Saglamer, A
2004-01-01
This paper evaluates the use of waste products such as silica fume and fly ash in modification of the granular soils in order to remove some environmental problems and create new useful findings in the field of engineering. It is known that silica fume and fly ash, as well as clay material, are used in geotechnical engineering because of their pozzolanic reactivity and fineness to improve the soil properties needed with respect to engineering purposes. The main objective of this research project was to investigate the use of these materials in geotechnical engineering and to improve the hydraulic properties of soils by means of grouting. For this reason, firstly, suitable grouts in suspension forms were prepared by using silica fume, fly ash, clay and cement in different percentages. The properties of these cement-based grouts were then determined to obtain the desired optimum values for grouting. After that, these grouts were penetrated into the soil samples under pressure. The experimental work indicates that these waste materials and clay improved the physical properties and the fluidity of the cement-based grouts and they also decreased the hydraulic conductivity of the grouted soil samples by sealing the voids of the soil. The results of this study have important findings concerning the use of these materials in soil treatment and the improvement of hydraulic conductivity of the soils.
NASA Astrophysics Data System (ADS)
Avianti, R.; Suyatno; Sugiarto, B.
2018-04-01
This study aims to create an appropriate learning material based on CORE (Connecting, Organizing, Reflecting, Extending) model to improve students’ learning achievement in Chemical Bonding Topic. This study used 4-D models as research design and one group pretest-posttest as design of the material treatment. The subject of the study was teaching materials based on CORE model, conducted on 30 students of Science class grade 10. The collecting data process involved some techniques such as validation, observation, test, and questionnaire. The findings were that: (1) all the contents were valid, (2) the practicality and the effectiveness of all the contents were good. The conclusion of this research was that the CORE model is appropriate to improve students’ learning outcomes for studying Chemical Bonding.
Surface design methodology - challenge the steel
NASA Astrophysics Data System (ADS)
Bergman, M.; Rosen, B.-G.; Eriksson, L.; Anderberg, C.
2014-03-01
The way a product or material is experienced by its user could be different depending on the scenario. It is also well known that different materials and surfaces are used for different purposes. When optimizing materials and surface roughness for a certain something with the intention to improve a product, it is important to obtain not only the physical requirements, but also the user experience and expectations. Laws and requirements of the materials and the surface function, but also the conservative way of thinking about materials and colours characterize the design of medical equipment. The purpose of this paper is to link the technical- and customer requirements of current materials and surface textures in medical environments. By focusing on parts of the theory of Kansei Engineering, improvements of the companys' products are possible. The idea is to find correlations between desired experience or "feeling" for a product, -customer requirements, functional requirements, and product geometrical properties -design parameters, to be implemented on new improved products. To be able to find new materials with the same (or better) technical requirements but a higher level of user stimulation, the current material (stainless steel) and its surface (brushed textures) was used as a reference. The usage of focus groups of experts at the manufacturer lead to a selection of twelve possible new materials for investigation in the project. In collaboration with the topical company for this project, three new materials that fulfil the requirements -easy to clean and anti-bacterial came to be in focus for further investigation in regard to a new design of a washer-disinfector for medical equipment using the Kansei based Clean ability approach CAA.
Using the Clear Communication Index to Improve Materials for a Behavioral Intervention.
Porter, Kathleen J; Alexander, Ramine; Perzynski, Katelynn M; Kruzliakova, Natalie; Zoellner, Jamie M
2018-02-08
Ensuring that written materials used in behavioral interventions are clear is important to support behavior change. This study used the Clear Communication Index (CCI) to assess the original and revised versions of three types of written participant materials from the SIPsmartER intervention. Materials were revised based on original scoring. Scores for the entire index were significantly higher among revised versions than originals (57% versus 41%, p < 0.001); however, few revised materials (n = 2 of 53) achieved the benchmark of ≥90%. Handouts scored higher than worksheets and slide sets for both versions. The proportion of materials scored as having "a single main message" significantly increased between versions for worksheets (7% to 57%, p = 0.003) and slide sets (33% to 67%, p = 0.004). Across individual items, most significant improvements were in Core, with four-items related to the material having a single main message. Findings demonstrate that SIPsmartER's revised materials improved after CCI-informed edits. They advance the evidence and application of the CCI, suggesting it can be effectively used to support improvement in clarity of different types of written materials used in behavioral interventions. Implications for practical considerations of using the tool and suggestions for modifications for specific types of materials are presented.
New methods and materials for molding and casting ice formations
NASA Technical Reports Server (NTRS)
Reehorst, Andrew L.; Richter, G. Paul
1987-01-01
This study was designed to find improved materials and techniques for molding and casting natural or simulated ice shapes that could replace the wax and plaster method. By utilizing modern molding and casting materials and techniques, a new methodology was developed that provides excellent reproduction, low-temperature capability, and reasonable turnaround time. The resulting casts are accurate and tough.
NASA Astrophysics Data System (ADS)
Thiébaut, E.; Goupil, C.; Pesty, F.; D'Angelo, Y.; Guegan, G.; Lecoeur, P.
2017-12-01
Increasing the maximum cooling effect of a Peltier cooler can be achieved through material and device design. The use of inhomogeneous, functionally graded materials may be adopted in order to increase maximum cooling without improvement of the Z T (figure of merit); however, these systems are usually based on the assumption that the local optimization of the Z T is the suitable criterion to increase thermoelectric performance. We solve the heat equation in a graded material and perform both analytical and numerical analysis of a graded Peltier cooler. We find a local criterion that we use to assess the possible improvement of graded materials for thermoelectric cooling. A fair improvement of the cooling effect (up to 36%) is predicted for semiconductor materials, and the best graded system for cooling is described. The influence of the equation of state of the electronic gas of the material is discussed, and the difference in term of entropy production between the graded and the classical system is also described.
NASA Technical Reports Server (NTRS)
Meador, Michael A.
2005-01-01
Single-wall carbon nanotubes have been shown to possess a combination of outstanding mechanical, electrical, and thermal properties. The use of carbon nanotubes as an additive to improve the mechanical properties of polymers and/or enhance their thermal and electrical conductivity has been a topic of intense interest. Nanotube-modified polymeric materials could find a variety of applications in NASA missions including large-area antennas, solar arrays, and solar sails; radiation shielding materials for vehicles, habitats, and extravehicular activity suits; and multifunctional materials for vehicle structures and habitats. Use of these revolutionary materials could reduce vehicle weight significantly and improve vehicle performance and capabilities.
NASA Technical Reports Server (NTRS)
Cooper, B. L.
2007-01-01
Possible areas of mafic material on the rim and floor of Scott crater (82.1 S, 48.5 E) and on the northeast flank of Mons Malapert (85.5 S, 0 E) are suggested by analysis of shadow-masked Clementine false-colorration images. Mafic materials can produce more oxygen than can highlands materials, and mafic materials close to the south pole may be important for propellant production for a future lunar mission. If the dark patches are confirmed as mafic materials, this finding would suggest that other mafic patches may also exist, perhaps even closer to the poles. These preliminary findings illustrate the need for additional site selection studies in the lunar polar regions, to improve our capability to "live off the land".
MGM - MS Reilly holds a container used in the MGM experiment
1998-03-04
S89-E-5328 (27 Jan 1998) --- This Electronic Still Camera (ESC) image shows astronaut James F. Reilly, mission specialist, holding the Mechanics of Granular Materials (MGM) experiment. The MGM experiment is aimed at understanding the behavior of granular materials, such as sand or salt, under very low confining pressure. This pressure is the force that keeps a granular material ?sticking together?. The experiment has applications in a wide range of fields, including earthquake engineering; coastal and off-shore engineering; mining; transportation of granular materials; soil erosion; the handling of granular materials such as grains and powders; off-road vehicles; geology of the Earth; and planetary geology and exploration. Findings from the experiment may lead to improved selection and preparation of building sites, better management of undeveloped land, and improved handling of materials in chemical, agricultural and other industries.
Improving student understanding in web programming material through multimedia adventure games
NASA Astrophysics Data System (ADS)
Fitriasari, N. S.; Ashiddiqi, M. F.; Nurdin, E. A.
2018-05-01
This study aims to make multimedia adventure games and find out the improvement of learners’ understanding after being given treatment of using multimedia adventure game in learning Web Programming. Participants of this study are students of class X (ten) in one of the Vocational Schools (SMK) in Indonesia. The material of web programming is a material that difficult enough to be understood by the participant therefore needed tools to facilitate the participants to understand the material. Solutions offered in this study is by using multimedia adventures game. Multimedia has been created using Construct2 and measured understood with method Non-equivalent Control Group Design. Pre-test and post-test has given to learners who received treatment using the multimedia adventure showed increase in understanding web programming material.
An Improved Thermal Conductivity Polyurethane Composite for a Space Borne 20KV Power Supply
NASA Technical Reports Server (NTRS)
Shapiro, Andrew A.; Haque, Inam
2005-01-01
This effort was designed to find a way to reduce the temperature rise of critical components of a 20KV High Voltage Power Supply (HVPS) by improving the overall thermal conductivity of the encapsulated modules. Three strategies were evaluated by developing complete procedures, preparing samples, and performing tests. The three strategies were: 1. Improve the thermal conductivity of the polyurethane encapsulant through the addition of thermally conductive powder while minimizing impact on other characteristics of the encapsulant. 2. Improve the thermal conductivity of the polyurethane encapsulated assembly by the addition of a slab of thermally conductive, electrically insulating material, which is to act as a heat spreader. 3. Employ a more thermally conductive substrate (Al203) with the existing encapsulation scheme. The materials were chosen based on the following criteria: high dielectric breakdown strength; high thermal conductivity, ease of manufacturing, high compliance, and other standard space qualified materials properties (low out-gassing, etc.). An optimized cure was determined by a statistical design of experiments for both filled and unfilled materials. The materials were characterized for the desired properties and a complete process was developed and tested. The thermal performance was substantially improved and the strategies may be used for space flight.
Vaderhobli, Ram M
2011-07-01
The use of materials to rehabilitate tooth structures is constantly changing. Over the past decade, newer material processing techniques and technologies have significantly improved the dependability and predictability of dental material for clinicians. The greatest obstacle, however, is in choosing the right combination for continued success. Finding predictable approaches for successful restorative procedures has been the goal of clinical and material scientists. This article provides a broad perspective on the advances made in various classes of dental restorative materials in terms of their functionality with respect to pit and fissure sealants, glass ionomers, and dental composites. Copyright © 2011 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
New York State Office of the Comptroller, Albany.
Findings of an audit of the New York State Education Department's procedures to maintain security over Pupil Evaluation Program (PEP) and Program Evaluation Test (PET) examination materials are presented in this report. The audit sought to determine whether the department's security procedures adequately prevented unauthorized access to exam…
Nuclear Fuels & Materials Spotlight Volume 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petti, David Andrew
2016-10-01
As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system.more » • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.« less
Office of the Under Secretary of Defense (Comptroller)
provide all of the information you need to understand the budget and financial management policy of the functionalStatements OUSD(C) History FMR Budget Materials Budget Execution Financial Management Improving Financial will also find information about the Department's ongoing effort to improve efficiency and
Research Translation Strategies to Improve the Readability of Workplace Health Promotion Resources
ERIC Educational Resources Information Center
Wallace, Alison; Joss, Nerida
2016-01-01
Without deliberate and resourced translation, research evidence is unlikely to inform policy and practice. This paper describes the processes and practical solutions used to translate evaluation research findings to improve the readability of print materials in a large scale worksite health programme. It is argued that a knowledge brokering and…
Increased Preclass Preparation Underlies Student Outcome Improvement in the Flipped Classroom
Gross, David; Pietri, Evava S.; Anderson, Gordon; Moyano-Camihort, Karin; Graham, Mark J.
2015-01-01
Active-learning environments such as those found in a flipped classroom are known to increase student performance, although how these gains are realized over the course of a semester is less well understood. In an upper-level lecture course designed primarily for biochemistry majors, we examine how students attain improved learning outcomes, as measured by exam scores, when the course is converted to a more active flipped format. The context is a physical chemistry course catering to life science majors in which approximately half of the lecture material is placed online and in-class problem-solving activities are increased, while total class time is reduced. We find that exam performance significantly improves by nearly 12% in the flipped-format course, due in part to students interacting with course material in a more timely and accurate manner. We also find that the positive effects of the flipped class are most pronounced for students with lower grade point averages and for female students. PMID:26396151
Light Trapping, Absorption and Solar Energy Harvesting by Artificial Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
John, Sajeev
2014-06-04
We have studied light trapping in conical pore silicon photonic crystal architectures. We find considerable improvement in solar absorption (relative to nanowires) in a square lattice of conical nano-pores.
Effects of natural enrichment materials on stress, memory and exploratory behavior in mice.
Acklin, Casey J; Gault, Ruth A
2015-07-01
Environmental enrichment is an essential component of laboratory animal housing that allows animals to engage in natural behaviors in an otherwise artificial setting. Previous research by the authors suggested that, compared with synthetic enrichment materials, natural materials were associated with lower stress levels in mice. Here, the authors compare the effects of different enrichment materials on stress, memory and exploratory behavior in Swiss Webster mice. Mice that were provided with natural enrichment materials had lower stress levels, better memory and greater exploratory behavior than did mice provided with synthetic enrichment materials or with no enrichment materials. These findings suggest that provision of natural enrichment materials can improve well-being of laboratory mice.
ERIC Educational Resources Information Center
Korim, Andrew S.
In Phase 2, materials on traffic accident investigation were introduced into the curriculum to determine the appropriateness of such materials in preparing traffic engineering technicians. This report gives findings, conclusions, and recommendations based on the testing efforts. The primary conclusion is that the curriculum being tested was…
Advances in the history of composite resins.
Minguez, Nieves; Ellacuria, Joseba; Soler, José Ignacio; Triana, Rodrigo; Ibaseta, Guillermo
2003-11-01
The use of composite resins as direct restoration material in posterior teeth has demonstrated a great increase, due to esthetic requirements and the controversy regarding the mercury content in silver amalgams. In this article, we have reviewed the composition modifications which have occurred in materials based on resins since their introduction over a half a century ago which have enabled great improvements in their physical and mechanical properties. Likewise, we have highlighted current lines of research, centered on finding the ideal material for replacing silver amalgam as a direct filling material.
The electrical conductivities of candidate beam-waveguide antenna shroud materials
NASA Technical Reports Server (NTRS)
Otoshi, T. Y.; Franco, M. M.
1994-01-01
The shroud on the beam-waveguide (BWG) antenna at DSS 13 is made from highly magnetic American Society for Testing and Materials (ASTM) A36 steel. Measurements at 8.42 GHz showed that this material (with paint) has a very poor electrical conductivity that is 600 times worse than aluminum. In cases where the BWG mirrors might be slightly misaligned, unintentional illumination and poor electrical conductivity of the shroud walls can cause system noise temperature to be increased significantly. This potential increase of noise temperature contribution can be reduced through the use of better conductivity materials for the shroud walls. An alternative is to attempt to improve the conductivity of the currently used ASTM A36 steel by means of some type of plating, surface treatment, or high-conductivity paints. This article presents the results of a study made to find improved materials for future shrouds and mirror supports.
Schweizer, Susanne; Hampshire, Adam; Dalgleish, Tim
2011-01-01
So-called 'brain-training' programs are a huge commercial success. However, empirical evidence regarding their effectiveness and generalizability remains equivocal. This study investigated whether brain-training (working memory [WM] training) improves cognitive functions beyond the training task (transfer effects), especially regarding the control of emotional material since it constitutes much of the information we process daily. Forty-five participants received WM training using either emotional or neutral material, or an undemanding control task. WM training, regardless of training material, led to transfer gains on another WM task and in fluid intelligence. However, only brain-training with emotional material yielded transferable gains to improved control over affective information on an emotional Stroop task. The data support the reality of transferable benefits of demanding WM training and suggest that transferable gains across to affective contexts require training with material congruent to those contexts. These findings constitute preliminary evidence that intensive cognitively demanding brain-training can improve not only our abstract problem-solving capacity, but also ameliorate cognitive control processes (e.g. decision-making) in our daily emotive environments.
Sparking Curiosity: How Do You Know What Your Students Are Thinking?
ERIC Educational Resources Information Center
Adams, Wendy K.; Willis, Courtney
2015-01-01
People find it easier to learn about topics that interest them. Recent neuroscience research has demonstrated that memory is improved when learning material about which we are curious. Therefore teaching in the context of what students are interested in should result in improved learning. How do we figure out what our students are curious about?…
Size-dependent surface phase change of lithium iron phosphate during carbon coating
NASA Astrophysics Data System (ADS)
Wang, Jiajun; Yang, Jinli; Tang, Yongji; Liu, Jian; Zhang, Yong; Liang, Guoxian; Gauthier, Michel; Karen Chen-Wiegart, Yu-Chen; Norouzi Banis, Mohammad; Li, Xifei; Li, Ruying; Wang, Jun; Sham, T. K.; Sun, Xueliang
2014-03-01
Carbon coating is a simple, effective and common technique for improving the conductivity of active materials in lithium ion batteries. However, carbon coating provides a strong reducing atmosphere and many factors remain unclear concerning the interface nature and underlying interaction mechanism that occurs between carbon and the active materials. Here, we present a size-dependent surface phase change occurring in lithium iron phosphate during the carbon coating process. Intriguingly, nanoscale particles exhibit an extremely high stability during the carbon coating process, whereas microscale particles display a direct visualization of surface phase changes occurring at the interface at elevated temperatures. Our findings provide a comprehensive understanding of the effect of particle size during carbon coating and the interface interaction that occurs on carbon-coated battery material—allowing for further improvement in materials synthesis and manufacturing processes for advanced battery materials.
PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition
Gad, Mohammed M; Fouda, Shaimaa M; Al-Harbi, Fahad A; Näpänkangas, Ritva; Raustia, Aune
2017-01-01
This paper reviews acrylic denture base resin enhancement during the past few decades. Specific attention is given to the effect of fiber, filler, and nanofiller addition on poly(methyl methacrylate) (PMMA) properties. The review is based on scientific reviews, papers, and abstracts, as well as studies concerning the effect of additives, fibers, fillers, and reinforcement materials on PMMA, published between 1974 and 2016. Many studies have reported improvement of PMMA denture base material with the addition of fillers, fibers, nanofiller, and hybrid reinforcement. However, most of the studies were limited to in vitro investigations without bioactivity and clinical implications. Considering the findings of the review, there is no ideal denture base material, but the properties of PMMA could be improved with some modifications, especially with silanized nanoparticle addition and a hybrid reinforcement system. PMID:28553115
Rational In Silico Design of an Organic Semiconductor with Improved Electron Mobility.
Friederich, Pascal; Gómez, Verónica; Sprau, Christian; Meded, Velimir; Strunk, Timo; Jenne, Michael; Magri, Andrea; Symalla, Franz; Colsmann, Alexander; Ruben, Mario; Wenzel, Wolfgang
2017-11-01
Organic semiconductors find a wide range of applications, such as in organic light emitting diodes, organic solar cells, and organic field effect transistors. One of their most striking disadvantages in comparison to crystalline inorganic semiconductors is their low charge-carrier mobility, which manifests itself in major device constraints such as limited photoactive layer thicknesses. Trial-and-error attempts to increase charge-carrier mobility are impeded by the complex interplay of the molecular and electronic structure of the material with its morphology. Here, the viability of a multiscale simulation approach to rationally design materials with improved electron mobility is demonstrated. Starting from one of the most widely used electron conducting materials (Alq 3 ), novel organic semiconductors with tailored electronic properties are designed for which an improvement of the electron mobility by three orders of magnitude is predicted and experimentally confirmed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heterojunction Solid-State Devices for Millimeter-Wave Sources.
1983-10-01
technology such as MBE and/or OK-CVD will be required. Our large-signal, numerical WATT device simulations are the first to predict from basic transport...results are due to an improved method for determining semiconductor material parameters. We use a theoretical Monte Carlo materials simulation ... simulations . These calculations have helped provide insight into velocity overshoot and ballistic transport phenomena. We find that ballistic or near
ERIC Educational Resources Information Center
van Gog, Tamara; Sweller, John
2015-01-01
The testing effect is a finding from cognitive psychology with relevance for education. It shows that after an initial study period, taking a practice test improves long-term retention compared to not taking a test and--more interestingly--compared to restudying the learning material. Boundary conditions of the effect that have received attention…
NASA Astrophysics Data System (ADS)
Du, Qing; An, Jingkun; Li, Junhui; Zhou, Lean; Li, Nan; Wang, Xin
2017-03-01
The bacterial anode material is important to the performance of microbial fuel cells (MFCs) because its characteristics affect the biofilm formation and extracellular electron transfer. Here we find that a superhydrophilic semiconductor, polydopamine (PDA), is an effective modification material for the anode to accelerate startup and improve power density. When the activated carbon anode is added with 50% (wt.) PDA, the startup time is 14% shorter than the control (from 88 h to 76 h), with a 31% increase in maximum power density from 613 ± 9 to 803 ± 6 mW m-2, and the Columbic efficiency increases from 19% to 48%. These can be primarily attributed to the abundant functional groups (such as amino group, and catechol functions) introduced by PDA that improve hydrophilicity and extracellular electron transfer. PDA also increases proportions of Proteobacteria and Firmicutes families, indicating that PDA has a selective effect on anode microbial community. Our findings provide a new approach to accelerate anode biofilm formation and enhance MFC power output by modification of biocompatible PDA.
Forsström, J
1992-01-01
The ID3 algorithm for inductive learning was tested using preclassified material for patients suspected to have a thyroid illness. Classification followed a rule-based expert system for the diagnosis of thyroid function. Thus, the knowledge to be learned was limited to the rules existing in the knowledge base of that expert system. The learning capability of the ID3 algorithm was tested with an unselected learning material (with some inherent missing data) and with a selected learning material (no missing data). The selected learning material was a subgroup which formed a part of the unselected learning material. When the number of learning cases was increased, the accuracy of the program improved. When the learning material was large enough, an increase in the learning material did not improve the results further. A better learning result was achieved with the selected learning material not including missing data as compared to unselected learning material. With this material we demonstrate a weakness in the ID3 algorithm: it can not find available information from good example cases if we add poor examples to the data.
Improvement of acoustical characteristics : wideband bamboo based polymer composite
NASA Astrophysics Data System (ADS)
Farid, M.; Purniawan, A.; Rasyida, A.; Ramadhani, M.; Komariyah, S.
2017-07-01
Environmental friendly and comfortable materials are desirable for applications in the automobile interior. The objective of this research was to examine and develop bamboo based polymer composites applied to the sound absorption materials of automobile door panels. Morphological analysis of the polyurethane/bamboo powder composite materials was carried out using scanning electron microscope to reveal the microscopic material behavior and followed by the FTIR and TGA testing. The finding demonstrated that this acoustical polymer composite materials provided a potential wideband sound absorption material. The range of frequency can be controlled between 500 and 4000 Hz with an average of sound absorption coefficient around 0.411 and it met to the door panels criteria.
Bernhard, Bo; Abarbanel, Brett L. L.; St. John, Sarah; Kalina, Ashlee
2014-01-01
The objective of this study was to evaluate the relationship between treatment service quality, perceived improvement in social, functional, and material well-being and reduction in gambling behaviors among clients of Nevada state-funded pathological gambling treatment programs. Utilizing survey data from 361 clients from 2009 to 2010, analyses revealed that client satisfaction with treatment services is positively associated with perceived improvements in social, functional, and material well-being, abstinence from gambling, reduction in gambling thoughts and reduction in problems associated with gambling, even after controlling for various respondent characteristics. These findings can be useful to treatment program staff in managing program development and allocating resources. PMID:23756725
A Batch Feeder for Inhomogeneous Bulk Materials
NASA Astrophysics Data System (ADS)
Vislov, I. S.; Kladiev, S. N.; Slobodyan, S. M.; Bogdan, A. M.
2016-04-01
The work includes the mechanical analysis of mechanical feeders and batchers that find application in various technological processes and industrial fields. Feeders are usually classified according to their design features into two groups: conveyor-type feeders and non-conveyor feeders. Batchers are used to batch solid bulk materials. Less frequently, they are used for liquids. In terms of a batching method, they are divided into volumetric and weighting batchers. Weighting batchers do not provide for sufficient batching accuracy. Automatic weighting batchers include a mass controlling sensor and systems for automatic material feed and automatic mass discharge control. In terms of operating principle, batchers are divided into gravitational batchers and batchers with forced feed of material using conveyors and pumps. Improved consumption of raw materials, decreased loss of materials, ease of use in automatic control systems of industrial facilities allows increasing the quality of technological processes and improve labor conditions. The batch feeder suggested by the authors is a volumetric batcher that has no comparable counterparts among conveyor-type feeders and allows solving the problem of targeted feeding of bulk material batches increasing reliability and hermeticity of the device.
NASA Astrophysics Data System (ADS)
Han, Jinhyup; Hwang, Soo Min; Go, Wooseok; Senthilkumar, S. T.; Jeon, Donghoon; Kim, Youngsik
2018-01-01
Cell design and optimization of the components, including active materials and passive components, play an important role in constructing robust, high-performance rechargeable batteries. Seawater batteries, which utilize earth-abundant and natural seawater as the active material in an open-structured cathode, require a new platform for building and testing the cells other than typical Li-ion coin-type or pouch-type cells. Herein, we present new findings based on our optimized cell. Engineering the cathode components-improving the wettability of cathode current collector and seawater catholyte flow-improves the battery performance (voltage efficiency). Optimizing the cell component and design is the key to identifying the electrochemical processes and reactions of active materials. Hence, the outcome of this research can provide a systematic study of potentially active materials used in seawater batteries and their effectiveness on the electrochemical performance.
Espinosa, Horacio D; Juster, Allison L; Latourte, Felix J; Loh, Owen Y; Gregoire, David; Zavattieri, Pablo D
2011-02-01
Nacre, the iridescent material in seashells, is one of many natural materials employing hierarchical structures to achieve high strength and toughness from relatively weak constituents. Incorporating these structures into composites is appealing as conventional engineering materials often sacrifice strength to improve toughness. Researchers hypothesize that nacre's toughness originates within its brick-and-mortar-like microstructure. Under loading, bricks slide relative to each other, propagating inelastic deformation over millimeter length scales. This leads to orders-of-magnitude increase in toughness. Here, we use in situ atomic force microscopy fracture experiments and digital image correlation to quantitatively prove that brick morphology (waviness) leads to transverse dilation and subsequent interfacial hardening during sliding, a previously hypothesized dominant toughening mechanism in nacre. By replicating this mechanism in a scaled-up model synthetic material, we find that it indeed leads to major improvements in energy dissipation. Ultimately, lessons from this investigation may be key to realizing the immense potential of widely pursued nanocomposites.
Development of performance properties of ternary mixtures : laboratory study on concrete.
DOT National Transportation Integrated Search
2011-03-01
This research project is a comprehensive study of how supplementary cementitious materials (SCMs) can be used to : improve the performance of concrete mixtures. This report summarizes the findings of the Laboratory Study on Concrete : phase of this w...
Fire Safety in the Low-Gravity Spacecraft Environment
NASA Technical Reports Server (NTRS)
Friedman, Robert
1999-01-01
Research in microgravity (low-gravity) combustion promises innovations and improvements in fire prevention and response for human-crew spacecraft. Findings indicate that material flammability and fire spread in microgravity are significantly affected by atmospheric flow rate, oxygen concentration, and diluent composition. This information can lead to modifications and correlations to standard material-assessment tests for prediction of fire resistance in space. Research on smoke-particle changes in microgravity promises future improvements and increased sensitivity of smoke detectors in spacecraft. Research on fire suppression by extinguishing agents and venting can yield new information on effective control of the rare, but serious fire events in spacecraft.
Ceramic Matrix Composite (CMC) Materials Development
NASA Technical Reports Server (NTRS)
DiCarlo, James
2001-01-01
Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) Sic fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.
Ceramic Matrix Composite (CMC) Materials Characterization
NASA Technical Reports Server (NTRS)
Calomino, Anthony
2001-01-01
Under the former NASA EPM Program, much initial progress was made in identifying constituent materials and processes for SiC/SiC ceramic composite hot-section components. This presentation discusses the performance benefits of these approaches and elaborates on further constituent and property improvements made under NASA UEET. These include specific treatments at NASA that significantly improve the creep and environmental resistance of the Sylramic(TM) SiC fiber as well as the thermal conductivity and creep resistance of the CVI Sic matrix. Also discussed are recent findings concerning the beneficial effects of certain 2D-fabric architectures and carbon between the BN interphase coating and Sic matrix.
Development of a novel regenerated cellulose composite material.
De Silva, Rasike; Vongsanga, Kylie; Wang, Xungai; Byrne, Nolene
2015-05-05
We report for the first time on a new natural composite material achieved by blending cotton and duck feather using an ionic liquid. The addition of duck feather was found to improve the elasticity, strain at break, by 50% when compared to regenerated cellulose alone. This is a significant finding since regenerated cotton using ionic liquids often suffers from poor elasticity. The improved elasticity is likely due to the regenerated duck feather maintaining its helical structure. The new regenerated cellulose composites were characterized using a combination of dynamic mechanical analysis, Fourier transform infrared spectroscopy, thermal gravimetric analysis, contact angle measurements and scanning electron microscopy. Copyright © 2015. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Bryce, C. F. A.; Stewart, A. M.
A brief review of the characteristics of computer assisted instruction and the attributes of audiovisual media introduces this report on a project designed to improve the effectiveness of computer assisted learning through the incorporation of audiovisual materials. A discussion of the implications of research findings on the design and layout of…
Micro- and Macromechanical Properties of Thermoelectric Lead Chalcogenides.
Li, Guodong; Aydemir, Umut; Duan, Bo; Agne, Matthias T; Wang, Hongtao; Wood, Max; Zhang, Qingjie; Zhai, Pengcheng; Goddard, William A; Snyder, G Jeffrey
2017-11-22
Both n- and p-type lead telluride (PbTe)-based thermoelectric (TE) materials display high TE efficiency, but the low fracture strength may limit their commercial applications. To find ways to improve these macroscopic mechanical properties, we report here the ideal strength and deformation mechanism of PbTe using density functional theory calculations. This provides structure-property relationships at the atomic scale that can be applied to estimate macroscopic mechanical properties such as fracture toughness. Among all the shear and tensile paths that are examined here, we find that the lowest ideal strength of PbTe is 3.46 GPa along the (001)/⟨100⟩ slip system. This leads to an estimated fracture toughness of 0.28 MPa m 1/2 based on its ideal stress-strain relation, which is in good agreement with our experimental measurement of 0.59 MPa m 1/2 . We find that softening and breaking of the ionic Pb-Te bond leads to the structural collapse. To improve the mechanical strength of PbTe, we suggest strengthening the structural stiffness of the ionic Pb-Te framework through an alloying strategy, such as alloying PbTe with isotypic PbSe or PbS. This point defect strategy has a great potential to develop high-performance PbTe-based materials with robust mechanical properties, which may also be applied to other materials and applications.
High-pressure torsion for new hydrogen storage materials.
Edalati, Kaveh; Akiba, Etsuo; Horita, Zenji
2018-01-01
High-pressure torsion (HPT) is widely used as a severe plastic deformation technique to create ultrafine-grained structures with promising mechanical and functional properties. Since 2007, the method has been employed to enhance the hydrogenation kinetics in different Mg-based hydrogen storage materials. Recent studies showed that the method is effective not only for increasing the hydrogenation kinetics but also for improving the hydrogenation activity, for enhancing the air resistivity and more importantly for synthesizing new nanostructured hydrogen storage materials with high densities of lattice defects. This manuscript reviews some major findings on the impact of HPT process on the hydrogen storage performance of different titanium-based and magnesium-based materials.
Siahpush, Mohammad; Spittal, Matt; Singh, Gopal K
2007-01-01
Objectives. We used 4 waves of prospective data to examine the association of smoking cessation with financial stress and material well-being. Methods. Data (n = 5699 at baseline) came from 4 consecutive waves (2001–2005) of the Household Income and Labour Dynamics in Australia survey. We used mixed models to examine the participant-specific association of smoking cessation with financial stress and material well-being. Results. On average, a smoker who quits is expected to have a 25% reduction (P<.001; odds ratio [OR]=0.75; 95% confidence interaval [CI]=0.69, 0.81) in the odds of financial stress. Similarly, the data provided strong evidence (P<.001) that a smoker who quits is likely to experience an enhanced level of material well-being. Conclusions. Our findings indicate that interventions to encourage smoking cessation are likely to improve standards of living and reduce deprivation. The findings provide grounds for encouraging the social services sector to incorporate smoking cessation efforts into their programs to enhance the material or financial conditions of disadvantaged groups. The findings also provide additional incentives for smokers to stop smoking and as such can be used in antismoking campaigns and by smoking cessation services. PMID:17971550
Improvement of Functional Properties by Sever Plastic Deformation on Parts of Titanium Biomaterials
NASA Astrophysics Data System (ADS)
Czán, Andrej; Babík, Ondrej; Daniš, Igor; Martikáň, Pavol; Czánová, Tatiana
2017-12-01
Main task of materials for invasive implantology is their biocompatibility with the tissue but also requirements for improving the functional properties of given materials are increasing constantly. One of problems of materials biocompatibility is the impossibility to improve of functional properties by change the percentage of the chemical elements and so it is necessary to find other innovative methods of improving of functional properties such as mechanical action in the form of high deformation process. This paper is focused on various methods of high deformation process such as Equal Channel Angular Pressing (ECAP) when rods with record strength properties were obtained.The actual studies of the deformation process properties as tri-axial compress stress acting on workpiece with high speed of deformation shows effects similar to results obtained using the other methods, but in lower levels of stress. Hydrostatic extrusion (HE) is applying for the purpose of refining the structure of the commercially pure titanium up to nano-scale. Experiments showed the ability to reduce the grain size below 100 nm. Due to the significant change in the performance of the titanium materials by severe plastic deformation is required to identify the processability of materials with respect to the identification of created surfaces and monitoring the surface integrity, where the experimental results show ability of SPD technologies application on biomaterials.
Devonshire, Alison S; O'Sullivan, Denise M; Honeyborne, Isobella; Jones, Gerwyn; Karczmarczyk, Maria; Pavšič, Jernej; Gutteridge, Alice; Milavec, Mojca; Mendoza, Pablo; Schimmel, Heinz; Van Heuverswyn, Fran; Gorton, Rebecca; Cirillo, Daniela Maria; Borroni, Emanuele; Harris, Kathryn; Barnard, Marinus; Heydenrych, Anthenette; Ndusilo, Norah; Wallis, Carole L; Pillay, Keshree; Barry, Thomas; Reddington, Kate; Richter, Elvira; Mozioğlu, Erkan; Akyürek, Sema; Yalçınkaya, Burhanettin; Akgoz, Muslum; Žel, Jana; Foy, Carole A; McHugh, Timothy D; Huggett, Jim F
2016-08-03
Real-time PCR (qPCR) based methods, such as the Xpert MTB/RIF, are increasingly being used to diagnose tuberculosis (TB). While qualitative methods are adequate for diagnosis, the therapeutic monitoring of TB patients requires quantitative methods currently performed using smear microscopy. The potential use of quantitative molecular measurements for therapeutic monitoring has been investigated but findings have been variable and inconclusive. The lack of an adequate reference method and reference materials is a barrier to understanding the source of such disagreement. Digital PCR (dPCR) offers the potential for an accurate method for quantification of specific DNA sequences in reference materials which can be used to evaluate quantitative molecular methods for TB treatment monitoring. To assess a novel approach for the development of quality assurance materials we used dPCR to quantify specific DNA sequences in a range of prototype reference materials and evaluated accuracy between different laboratories and instruments. The materials were then also used to evaluate the quantitative performance of qPCR and Xpert MTB/RIF in eight clinical testing laboratories. dPCR was found to provide results in good agreement with the other methods tested and to be highly reproducible between laboratories without calibration even when using different instruments. When the reference materials were analysed with qPCR and Xpert MTB/RIF by clinical laboratories, all laboratories were able to correctly rank the reference materials according to concentration, however there was a marked difference in the measured magnitude. TB is a disease where the quantification of the pathogen could lead to better patient management and qPCR methods offer the potential to rapidly perform such analysis. However, our findings suggest that when precisely characterised materials are used to evaluate qPCR methods, the measurement result variation is too high to determine whether molecular quantification of Mycobacterium tuberculosis would provide a clinically useful readout. The methods described in this study provide a means by which the technical performance of quantitative molecular methods can be evaluated independently of clinical variability to improve accuracy of measurement results. These will assist in ultimately increasing the likelihood that such approaches could be used to improve patient management of TB.
NASA Technical Reports Server (NTRS)
Herald, Stephen D.; Frisby, Paul M.; Davis, Samuel Eddie
2009-01-01
Safe and reliable seal materials for high-pressure oxygen systems sometimes appear to be extinct species when sought out by oxygen systems designers. Materials that seal well are easy to find, but these materials are typically incompatible with oxygen, especially in cryogenic liquid form. This incompatibility can result in seals that leak, or much worse, seals that easily ignite and burn during use. Materials that are compatible with oxygen are easy to find, such as the long list of compatible metals, but these metallic materials are limiting as seal materials. A material that seals well and is oxygen compatible has been the big game in the designer's safari. Scientists at the Materials Combustion Research Facility (MCRF), part of NASA/Marshall Space Flight Center (MSFC), are constantly searching for better materials and processes to improve the safety of oxygen systems. One focus of this effort is improving the characteristics of polymers used in the presence of an oxygen enriched environment. Very few systems can be built which contain no polymeric materials; therefore, materials which have good impact resistance, low heat of combustion, high auto-ignition temperature and that maintain good mechanical properties are essential. The scientists and engineers at the Materials Combustion Research Facility, in cooperation with seal suppliers, are currently testing a new formulation of polytetrafluoroethylene (PTFE) with Brass filler. This Brass-filled PTFE is showing great promise as a seal and seat material for high pressure oxygen systems. Early research has demonstrated very encouraging results, which could rank this material as one of the best fluorinated polymers ever tested. This paper will compare the data obtained for Brass-filled PTFE with other fluorinated polymers, such as TFE-Teflon (PTFE) , Kel-F 81, Viton A, Viton A-500, Fluorel , and Algoflon . A similar metal filled fluorinated polymer, Salox-M , was tested in comparison to Brass-filled PTFE to demonstrate the importance of the metal chosen and relative percentage of filler. General conclusions on the oxygen compatibility of this formulation are drawn, with an emphasis on comparing and contrasting the materials performance to the performance of the current state-of-the-art oxygen compatible polymers.
NASA Astrophysics Data System (ADS)
Gelles, D. S.
1990-05-01
Ferritic and martensitic steels are finding increased application for structural components in several reactor systems. Low-alloy steels have long been used for pressure vessels in light water fission reactors. Martensitic stainless steels are finding increasing usage in liquid metal fast breeder reactors and are being considered for fusion reactor applications when such systems become commercially viable. Recent efforts have evaluated the applicability of oxide dispersion-strengthened ferritic steels. Experiments on the effect of irradiation on these steels provide several examples where contributions are being made to materials science and engineering. Examples are given demonstrating improvements in basic understanding, small specimen test procedure development, and alloy development.
Improved Gloves for Firefighters
NASA Technical Reports Server (NTRS)
Tschirch, R. P.; Sidman, K. R.; Arons, I. J.
1983-01-01
New firefighter's gloves are more flexible and comfortable than previous designs. Since some firefighters prefer gloves made of composite materials while others prefer dip-coated gloves, both types were developed. New gloves also find uses in foundries, steelmills, and other plants where they are substituted for asbestos gloves.
Does a Drama-Inspired "Mirroring" Exercise Enhance Mathematical Learning?
ERIC Educational Resources Information Center
Smyrnis, Eleni; Ginns, Paul
2016-01-01
Learning from complex instructional materials typically requires sustained attention, but many learners--both children and adults--may find their minds "wandering" when learning. Drama educators have argued that "mirroring" exercises, where students in pairs or groups mirror each other's movements, improve attention; but, to…
NASA Astrophysics Data System (ADS)
Dullah, Hayana; Abidin Akasah, Zainal; Zaini Nik Soh, Nik Mohd; Mangi, Sajjad Ali
2017-11-01
The utilization of oil palm empty fruit bunch (OPEFB) fibre on bio-composite product has been introduced to replace current material mainly wood fibre. OPEFB is widely available as palm oil is one of the major agricultural crops in Malaysia. EFB fibre are lignocellulosic materials that could replace other natural fibre product especially cement bonded board. However, the contains of residual oil and sugar in EFB fibre has been detected to be the reason for incompatibility issue between EFB fibre and cement mixtures. Regarding on the issue, a study has been conducted widely on finding the suitable pre-treatment method for EFB fibre to remove carbohydrate contained in the said fibre that are known to inhibit cement hydration. Aside from that, cement accelerator was introduced to enhance the hydration of cement when it was mixed with natural fibre. Hence, this paper will summaries the previous findings and in-depth study on the use of EFB fibre as a replacement material in cement bonded fibre boards.
NASA Astrophysics Data System (ADS)
Dwidarma Nataadmadja, Adelia; Prahara, Eduardi; Sumbung, Pierre Christian
2017-12-01
There has been an increasing demand in using more environmentally friendly materials in pavement construction. One of the alternative materials that have been widely used is the Reclaimed Asphalt Pavement (RAP) aggregates. The RAP aggregates are derived from the crushed and screened pavement materials that contain asphalt and aggregates. This material is usually combined with natural aggregates and virgin asphalt binder to construct a new pavement. There have been numerous positive feedbacks in using this material although RAP aggregates also have certain weaknesses, such as questionable interaction between virgin and recycled materials and increased stiffness of RAP binder. Moreover, there has been a push on using rubber as an additive to asphalt binder to improve the welfare of rubber farmers. This research combines the usage of both latex and RAP as the ingredients to design hot mix asphalt (HMA) as latex could help in improving the flexibility of HMA and the interaction between the virgin and recycled materials. The main objective of this research is to find a suitable percentage of RAP aggregates to be used in HMA with certain percentage of latex as the binder additive.
NASA Astrophysics Data System (ADS)
Wendell, Kristen Bethke; Lee, Hee-Sun
2010-12-01
Materials science, which entails the practices of selecting, testing, and characterizing materials, is an important discipline within the study of matter. This paper examines how third grade students' materials science performance changes over the course of instruction based on an engineering design challenge. We conducted a case study of nine students who participated in engineering design-based science instruction with the goal of constructing a stable, quiet, thermally comfortable model house. The learning outcome of materials science practices was assessed by clinical interviews conducted before and after the instruction, and the learning process was assessed by students' workbooks completed during the instruction. The interviews included two materials selection tasks for designing a sturdy stepstool and an insulated pet habitat. Results indicate that: (1) students significantly improved on both materials selection tasks, (2) their gains were significantly positively associated with the degree of completion of their workbooks, and (3) students who were highly engaged with the workbook's reflective record-keeping tasks showed the greatest improvement on the interviews. These findings suggest the important role workbooks can play in facilitating elementary students' learning of science through authentic activity such as engineering design.
Analyzing Enron Data: Bitmap Indexing Outperforms MySQL Queries bySeveral Orders of Magnitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stockinger, Kurt; Rotem, Doron; Shoshani, Arie
2006-01-28
FastBit is an efficient, compressed bitmap indexing technology that was developed in our group. In this report we evaluate the performance of MySQL and FastBit for analyzing the email traffic of the Enron dataset. The first finding shows that materializing the join results of several tables significantly improves the query performance. The second finding shows that FastBit outperforms MySQL by several orders of magnitude.
Reflectin as a Material for Neural Stem Cell Growth
2015-01-01
Cephalopods possess remarkable camouflage capabilities, which are enabled by their complex skin structure and sophisticated nervous system. Such unique characteristics have in turn inspired the design of novel functional materials and devices. Within this context, recent studies have focused on investigating the self-assembly, optical, and electrical properties of reflectin, a protein that plays a key role in cephalopod structural coloration. Herein, we report the discovery that reflectin constitutes an effective material for the growth of human neural stem/progenitor cells. Our findings may hold relevance both for understanding cephalopod embryogenesis and for developing improved protein-based bioelectronic devices. PMID:26703760
NASA Technical Reports Server (NTRS)
1973-01-01
The ALERT program, a system for communicating common problems with parts, materials, and processes, is condensed and catalogued. Expanded information on selected topics is provided by relating the problem area (failure) to the cause, the investigations and findings, the suggestions for avoidance (inspections, screening tests, proper part applications), and failure analysis procedures. The basic objective of ALERT is the avoidance of the recurrence of parts, materials, and processed problems, thus improving the reliability of equipment produced for and used by the government.
Advances in electrode materials for Li-based rechargeable batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hui; Mao, Chengyu; Li, Jianlin
Rechargeable lithium-ion batteries store energy as chemical energy in electrode materials during charge and can convert the chemical energy into electrical energy when needed. Tremendous attention has been paid to screen electroactive materials, to evaluate their structural integrity and cycling reversibility, and to improve the performance of electrode materials. This review discusses recent advances in performance enhancement of both anode and cathode through nanoengineering active materials and applying surface coatings, in order to effectively deal with the challenges such as large volume variation, instable interface, limited cyclability and rate capability. We also introduce and discuss briefly the diversity and newmore » tendencies in finding alternative lithium storage materials, safe operation enabled in aqueous electrolytes, and configuring novel symmetric electrodes and lithium-based flow batteries.« less
Doxycycline-induced gastrointestinal injury.
Affolter, Kajsa; Samowitz, Wade; Boynton, Kathleen; Kelly, Erinn Downs
2017-08-01
Doxycycline-induced gastric injury is a rarely recognized adverse effect of a common medication. Only 2 cases have previously described the distinctive capillary degeneration identified in gastric mucosa. We expanded on this by describing additional involved sites, endoscopic findings, and patient characteristics. Gastrointestinal biopsy materials for cases indexed with the word doxycycline were retrieved and the histology reviewed. The medical record was used to obtain clinical details. Three cases with biopsy materials were identified from the search, and doxycycline ingestion was confirmed. All patients' gastric biopsies had small vessel injury with fibrinoid material around the vessel, and 1 patient had similar changes in the duodenum. Endoscopic findings included fundic and pyloric erosions and ulcers. One patient had a normal endoscopy on follow-up after drug cessation. Confirmation and increased understanding of this drug-specific injury pattern are important for patient management, as cessation appears to result in symptom improvement and healing. Copyright © 2017 Elsevier Inc. All rights reserved.
The way we encounter reading material influences how frequently we mind wander.
Varao Sousa, Trish L; Carriere, Jonathan S A; Smilek, Daniel
2013-01-01
We examined whether different encounters of reading material influence the likelihood of mind wandering, memory for the material, and the ratings of interest in the material. In a within-subjects design participants experienced three different reading encounters: (1) reading a passage aloud, (2) listening to a passage being read to them, and (3) reading a passage silently. Throughout each reading encounter probes were given in order to identify mind wandering. After finishing the passage participants also rated how interesting it was and completed a content recognition test. Results showed that reading aloud led to the least amount of mind wandering, while listening to the passage led to the most mind wandering. Listening to the passage was also associated with the poorest memory performance and the least interest in the material. Finally, within the silent reading and listening encounters we observed negative relations between mind wandering and both memory performance and interest in the material, replicating previous findings. Taken together, the present findings improve our understanding of the nature of mind wandering while reading, and have potentially important implications for readers seeking to take advantage of the convenience of audiobooks and podcasts.
The way we encounter reading material influences how frequently we mind wander
Varao Sousa, Trish L.; Carriere, Jonathan S. A.; Smilek, Daniel
2013-01-01
We examined whether different encounters of reading material influence the likelihood of mind wandering, memory for the material, and the ratings of interest in the material. In a within-subjects design participants experienced three different reading encounters: (1) reading a passage aloud, (2) listening to a passage being read to them, and (3) reading a passage silently. Throughout each reading encounter probes were given in order to identify mind wandering. After finishing the passage participants also rated how interesting it was and completed a content recognition test. Results showed that reading aloud led to the least amount of mind wandering, while listening to the passage led to the most mind wandering. Listening to the passage was also associated with the poorest memory performance and the least interest in the material. Finally, within the silent reading and listening encounters we observed negative relations between mind wandering and both memory performance and interest in the material, replicating previous findings. Taken together, the present findings improve our understanding of the nature of mind wandering while reading, and have potentially important implications for readers seeking to take advantage of the convenience of audiobooks and podcasts. PMID:24348444
ERIC Educational Resources Information Center
Science and Children, 1992
1992-01-01
Presents an activity that is part of the National Science and Technology Week (NSTW) 1993. Students apply principles of biomechanics to find the most effective techniques for performing a standing broad jump and use that analysis to improve their own jumping. Instructions include procedures, materials needed, and possible extensions to the…
Recruiting Strategically: Increasing Enrollment in Academic Programs of Agriculture
ERIC Educational Resources Information Center
Baker, Lauri M.; Settle, Quisto; Chiarelli, Christy; Irani, Tracy
2013-01-01
Agriculture continues to struggle to find enough qualified students to advance the industry. Thus, recruiting practice improvement is imperative. This study assessed the efficacy of message strategies, message channels, recruiting materials, and messages for recruiting students into an academic program with low enrollment. Focus groups were…
NASA Technical Reports Server (NTRS)
Hambourger, Paul D.
1997-01-01
Useful and informative results were obtained on virtually all materials investigated. For example, the stability of ITO-based arc-proof transparent coatings was greatly improved by substitution of silicon oxide for magnesium fluoride as a dopant. Research on 'air-doped' ITO films has yielded new insight into their conduction mechanism which will help in further development of these coatings. Some air-doped films were found to be extremely pressure sensitive. This work may lead to improved, low-cost gas sensors and vacuum gauges. Work on another promising transparent arc-proof coating (titanium oxide) was initiated in collaboration with industry. Graphite oxide-like materials were synthesized and tested for possible use in high energy-density batteries and other applications. We also started a high-priority project to find the cause of unexpected environmental damage to the exterior of the Hubble Space Telescope (HST) discovered on a recent Shuttle mission. Materials were characterized before and after exposure to soft x-rays and other threats in ground-based simulators.
Improved Financial Capability Can Reduce Material Hardship among Mothers.
Huang, Jin; Nam, Yunju; Sherraden, Michael; Clancy, Margaret M
2016-10-01
This study draws on the theoretical framework of financial capability in investigating whether financial access (that is, availability of financial products and services) and financial knowledge (that is, understanding of basic financial concepts) can influence the risk of material hardship. Authors examine the possibility of direct associations as well as of indirect ones in which financial management (that is, individual financial behaviors) serves as a mediator. The probability sample of mothers with young children born in Oklahoma during 2007 (N = 2,529) was selected from Oklahoma birth certificates. Results from structural equation modeling analyses show that financial access is positively associated with financial management (p < 0.001) but that financial knowledge is not; both financial access (p < 0.001) and financial management (p < 0.001) are negatively correlated with material hardship. Similar results are obtained from analyses with a subsample of low-income mothers. Findings suggest that financial capability, particularly the financial access component, is critical for improving financial management and reducing the risk of material hardship among mothers with young children, including low-income mothers. Efforts to promote financial capability offer social workers an important strategy for improving their clients’ economic well-being.
High-pressure torsion for new hydrogen storage materials
Edalati, Kaveh; Akiba, Etsuo; Horita, Zenji
2018-01-01
Abstract High-pressure torsion (HPT) is widely used as a severe plastic deformation technique to create ultrafine-grained structures with promising mechanical and functional properties. Since 2007, the method has been employed to enhance the hydrogenation kinetics in different Mg-based hydrogen storage materials. Recent studies showed that the method is effective not only for increasing the hydrogenation kinetics but also for improving the hydrogenation activity, for enhancing the air resistivity and more importantly for synthesizing new nanostructured hydrogen storage materials with high densities of lattice defects. This manuscript reviews some major findings on the impact of HPT process on the hydrogen storage performance of different titanium-based and magnesium-based materials. PMID:29511396
Vélez-Coto, María; Rodríguez-Fórtiz, María José; Rodriguez-Almendros, María Luisa; Cabrera-Cuevas, Marcelino; Rodríguez-Domínguez, Carlos; Ruiz-López, Tomás; Burgos-Pulido, Ángeles; Garrido-Jiménez, Inmaculada; Martos-Pérez, Juan
2017-05-01
People with low-functioning ASD and other disabilities often find it difficult to understand the symbols traditionally used in educational materials during the learning process. Technology-based interventions are becoming increasingly common, helping children with cognitive disabilities to perform academic tasks and improve their abilities and knowledge. Such children often find it difficult to perform certain tasks contained in educational materials since they lack necessary skills such as abstract reasoning. In order to help these children, the authors designed and created SIGUEME to train attention and the perceptual and visual cognitive skills required to work with and understand graphic materials and objects. A pre-test/post-test design was implemented to test SIGUEME. Seventy-four children with low-functioning ASD (age=13.47, SD=8.74) were trained with SIGUEME over twenty-five sessions and compared with twenty-eight children (age=12.61, SD=2.85) who had not received any intervention. There was a statistically significant improvement in the experimental group in Attention (W=-5.497, p<0.001). There was also a significant change in Association and Categorization (W=2.721, p=0.007) and Interaction (W=-3.287, p=0.001). SIGUEME is an effective tool for improving attention, categorization and interaction in low-functioning children with ASD. It is also a useful and powerful instrument for teachers, parents and educators by increasing the child's motivation and autonomy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fabrication and test of experimental automotive friction materials
NASA Technical Reports Server (NTRS)
Halberstadt, M. L.
1976-01-01
Three classes of experimental ingredients having good high temperature stability were substituted, singly and in combination, for corresponding ingredients in a standard friction material. The effects of substitution were evaluated by physical and chemical analysis, and principally by determination of friction and wear properties as a function of temperature on a sample drag dynamometer. The major finding was the demonstration of the potential of potassium titanate fiber for the improvement of a friction material of the secondary lining type. For example, the maintenance of a mean friction coefficient of 0.35 between 232 and 343 C (450 and 650 F) was achieved in the presence of the titanate fiber, as opposed to a value of 0.30 in its absence. Wear improvement of the order of 30 to 40% also becomes possible by proper adjustment of resin content and potassium titanate fiber-to-asbestos ratio.
NASA Astrophysics Data System (ADS)
Hui, Kai Hwee; Ambrosi, Adriano; Sofer, Zdeněk; Pumera, Martin; Bonanni, Alessandra
2015-05-01
Graphene doped with heteroatoms can show new or improved properties as compared to the original undoped material. It has been reported that the type of heteroatoms and the doping conditions can have a strong influence on the electronic and electrochemical properties of the resulting material. Here, we wish to compare the electrochemical behavior of two n-type and two p-type doped graphenes, namely boron-doped graphenes and nitrogen-doped graphenes containing different amounts of heteroatoms. We show that the boron-doped graphene containing a higher amount of dopants provides the best electroanalytical performance in terms of calibration sensitivity, selectivity and linearity of response for the detection of gallic acid normally used as the standard probe for the quantification of antioxidant activity of food and beverages. Our findings demonstrate that the type and amount of heteroatoms used for the doping have a profound influence on the electrochemical detection of gallic acid rather than the structural properties of the materials such as amounts of defects, oxygen functionalities and surface area. This finding has a profound influence on the application of doped graphenes in the field of analytical chemistry.Graphene doped with heteroatoms can show new or improved properties as compared to the original undoped material. It has been reported that the type of heteroatoms and the doping conditions can have a strong influence on the electronic and electrochemical properties of the resulting material. Here, we wish to compare the electrochemical behavior of two n-type and two p-type doped graphenes, namely boron-doped graphenes and nitrogen-doped graphenes containing different amounts of heteroatoms. We show that the boron-doped graphene containing a higher amount of dopants provides the best electroanalytical performance in terms of calibration sensitivity, selectivity and linearity of response for the detection of gallic acid normally used as the standard probe for the quantification of antioxidant activity of food and beverages. Our findings demonstrate that the type and amount of heteroatoms used for the doping have a profound influence on the electrochemical detection of gallic acid rather than the structural properties of the materials such as amounts of defects, oxygen functionalities and surface area. This finding has a profound influence on the application of doped graphenes in the field of analytical chemistry. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01045d
Breaking the Silence: Toward Improving LGBTQ Representation in Composition Readers
ERIC Educational Resources Information Center
Hudson, John
2014-01-01
Lesbian-Gay-Bisexual-Transgender-Queer (LGBTQ) representation in composition readers remains limited and is frequently nonexistent. In addition, the LGBTQ-related materials that do find their way into composition readers are often problematic. In this essay I explain why WPAs and composition teachers should be concerned about LGBTQ representation…
Ethical Reasoning Instruction in Non-Ethics Business Courses: A Non-Intrusive Approach
ERIC Educational Resources Information Center
Wilhelm, William J.
2010-01-01
This article discusses four confirmatory studies designed to corroborate findings from prior developmental research which yielded statistically significant improvements in student moral reasoning when specific instructional strategies and content materials were utilized in non-ethics business courses by instructors not formally trained in business…
Tackling Misconceptions in Geometrical Optics
ERIC Educational Resources Information Center
Ceuppens, S.; Deprez, J.; Dehaene, W.; De Cock, M.
2018-01-01
To improve the teaching and learning materials for a curriculum it is important to incorporate the findings from educational research. In light of this, we present creative exercises and experiments to elicit, confront and resolve misconceptions in geometrical optics. Since ray diagrams can be both the cause and the solution for many…
NASA Astrophysics Data System (ADS)
Neophytou, Neophytos
2015-04-01
Silicon based low-dimensional materials receive significant attention as new generation thermoelectric materials after they have demonstrated record low thermal conductivities. Very few works to-date, however, report significant advances with regards to the power factor. In this review we examine possibilities of power factor enhancement in: (i) low-dimensional Si channels and (ii) nanocrystalline Si materials. For low-dimensional channels we use atomistic simulations and consider ultra-narrow Si nanowires and ultra-thin Si layers of feature sizes below 15 nm. Room temperature is exclusively considered. We show that, in general, low-dimensionality does not offer possibilities for power factor improvement, because although the Seebeck coefficient could slightly increase, the conductivity inevitably degrades at a much larger extend. The power factor in these channels, however, can be optimized by proper choice of geometrical parameters such as the transport orientation, confinement orientation, and confinement length scale. Our simulations show that in the case where room temperature thermal conductivities as low as κ l = 2 W/mK are achieved, the ZT figure of merit of an optimized Si low-dimensional channel could reach values around unity. For the second case of materials, we show that by making effective use of energy filtering, and taking advantage of the inhomogeneity within the nanocrystalline geometry, the underlying potential profile and dopant distribution large improvements in the thermoelectric power factor can be achieved. The paper is intended to be a review of the main findings with regards to the thermoelectric performance of nanoscale Si through our simulation work as well as through recent experimental observations.
Kucinska-Lipka, J; Gubanska, I; Strankowski, M; Cieśliński, H; Filipowicz, N; Janik, H
2017-06-01
In this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik and Volk (1954), Li et al. (2001), Cursino et al. (2005) . Hydrophilic PURs were obtained with the use of amorphous α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA) polyol, 1,4-butanediol (BDO) chain extender and aliphatic 4,4'-methylenebis(cyclohexyl isocyanate) (HMDI). HMDI was chosen as a nontoxic diisocyanate, suitable for biomedical PUR synthesis. Modification with l-ascorbic acid (AA) was performed to improve obtained PUR materials biocompatibility. Chemical structure of obtained PURs was provided and confirmed by Fourier transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance spectroscopy ( 1 HNMR). Differential scanning calorimetry (DSC) was used to indicate the influence of ascorbic acid modification on such parameters as glass transition temperature, melting temperature and melting enthalpies of obtained materials. To determine how these materials may potentially behave, after implementation in tissue, degradation behavior of obtained PURs in various chemical environments, which were represented by canola oil, saline solution, distilled water and phosphate buffered saline (PBS) was estimated. The influence of AA on hydrophilic-hydrophobic character of obtained PURs was established by contact angle study. This experiment revealed that ascorbic acid significantly improves hydrophilicity of obtained PUR materials and the same cause that they are more suitable candidates for biomedical applications. Good hemocompatibility characteristic of studied PUR materials was confirmed by the hemocompatibility test with human blood. Microbiological tests were carried out to indicate the microbiological sensitivity of obtained PURs. Results of performed studies showed that obtained AA-modified PUR materials may find an application in soft tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
Special features of design and calculation for structures made of anisotropic fiberglass
NASA Astrophysics Data System (ADS)
Shambina, S. L.; Virchenko, G. A.
2017-07-01
In recent years composite materials find wide application in various fields of engineering, because they have a number of advantages over other structural materials. A variety of composites’ physical and mechanical properties (especially anisotropy) requires an improvement of existing calculation methods and creation of new ones for structural elements made of these materials. This is an important task which will contribute to their wider use. In this paper some famous criteria of anisotropic materials are examined, and their advantages and disadvan-tages are discussed. The authors of the paper suggest new variants of strength criteria for anisotropic materials. These new criteria are based on new mechanical characteristics which are more convenient for experimental obtaining. Also new criteria use separate form of writing for each quadrant of the stress plain.
Energy Materials Center at Cornell: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abruña, Héctor; Mutolo, Paul F
2015-01-02
The mission of the Energy Materials Center at Cornell (emc 2) was to achieve a detailed understanding, via a combination of synthesis of new materials, experimental and computational approaches, of how the nature, structure, and dynamics of nanostructured interfaces affect energy conversion and storage with emphasis on fuel cells, batteries and supercapacitors. Our research on these systems was organized around a full system strategy for; the development and improved performance of materials for both electrodes at which storage or conversion occurs; understanding their internal interfaces, such as SEI layers in batteries and electrocatalyst supports in fuel cells, and methods formore » structuring them to enable high mass transport as well as high ionic and electronic conductivity; development of ion-conducting electrolytes for batteries and fuel cells (separately) and other separator components, as needed; and development of methods for the characterization of these systems under operating conditions (operando methods) Generally, our work took industry and DOE report findings of current materials as a point of departure to focus on novel material sets for improved performance. In addition, some of our work focused on studying existing materials, for example observing battery solvent degradation, fuel cell catalyst coarsening or monitoring lithium dendrite growth, employing in operando methods developed within the center.« less
Low-dimensional thermoelectricity in graphene: The case of gated graphene superlattices
NASA Astrophysics Data System (ADS)
Molina-Valdovinos, S.; Martínez-Rivera, J.; Moreno-Cabrera, N. E.; Rodríguez-Vargas, I.
2018-07-01
Low-dimensional thermoelectricity is a key concept in modern thermoelectricity. This concept refers to the possibility to improve thermoelectric performance through redistribution of the density of states by reducing the dimensionality of thermoelectric devices. Among the most successful low-dimensional structures we can find superlattices of quantum wells, wires and dots. In this work, we show that this concept can be extended to cutting-edge materials like graphene. In specific, we carry out a systematic assessment of the thermoelectric properties of quantum well gated graphene superlattices. In particular, we find giant values for the Seebeck coefficient and the power factor by redistributing the density of states through the modulation of the fundamental parameters of the graphene superlattice. Even more important, these giant values can be further improved by choosing appropriately the angle of incidence of Dirac electrons, the number of superlattice periods, the width of the superlattice unit cell as well as the height of the barriers. We also find that the power factor presents a series of giant peaks, clustered in twin fashion, associated to the oscillating nature of the conductance. Finally, we consider that low-dimensional thermoelectricity in graphene and related 2D materials is promising and constitutes a possible route to push forward this exciting field.
[Evidence-based management of medical disposable materials].
Yang, Hai
2009-03-01
Evidence-based management of medical disposable materials pays attention to collect evidence comprehensively and systematically, accumulate and create evidence through its own work and also evaluate evidence strictly. This can be used as a function to guide out job. Medical disposable materials evidence system contains product register qualification, product quality certification, supplier's behavior, internal and external communication evidence. Managers can find different ways in creating and using evidence referring to specific inside and outside condition. Evidence-based management can help accelerating the development of management of medical disposable materials from traditional experience pattern to a systematic and scientific pattern. It also has the very important meaning to improve medical quality, control the unreasonable growth of medical expense and make purchase and supply chain be more efficient.
ERIC Educational Resources Information Center
Brisco, Nicole D.
2010-01-01
As art teachers, it is in their nature to collect everything they get their hands on. They teach their students how to find beauty in the resources they have. Students can improve their portfolios by using innovative materials that allow them to tell a story that is also beneficial to the planet. Most art teachers are experienced in scavenging,…
The Effect and Implications of a "Self-Correcting" Assessment Procedure
ERIC Educational Resources Information Center
Francis, Alisha L.; Barnett, Jerrold
2012-01-01
We investigated Montepare's (2005, 2007) self-correcting procedure for multiple-choice exams. Findings related to memory suggest this procedure should lead to improved retention by encouraging students to distribute the time spent reviewing the material. Results from a general psychology class (n = 98) indicate that the benefits are not as…
Numerical Characterization of Piezoceramics Using Resonance Curves
Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar
2016-01-01
Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods. PMID:28787875
Numerical Characterization of Piezoceramics Using Resonance Curves.
Pérez, Nicolás; Buiochi, Flávio; Brizzotti Andrade, Marco Aurélio; Adamowski, Julio Cezar
2016-01-27
Piezoelectric materials characterization is a challenging problem involving physical concepts, electrical and mechanical measurements and numerical optimization techniques. Piezoelectric ceramics such as Lead Zirconate Titanate (PZT) belong to the 6 mm symmetry class, which requires five elastic, three piezoelectric and two dielectric constants to fully represent the material properties. If losses are considered, the material properties can be represented by complex numbers. In this case, 20 independent material constants are required to obtain the full model. Several numerical methods have been used to adjust the theoretical models to the experimental results. The continuous improvement of the computer processing ability has allowed the use of a specific numerical method, the Finite Element Method (FEM), to iteratively solve the problem of finding the piezoelectric constants. This review presents the recent advances in the numerical characterization of 6 mm piezoelectric materials from experimental electrical impedance curves. The basic strategy consists in measuring the electrical impedance curve of a piezoelectric disk, and then combining the Finite Element Method with an iterative algorithm to find a set of material properties that minimizes the difference between the numerical impedance curve and the experimental one. Different methods to validate the results are also discussed. Examples of characterization of some common piezoelectric ceramics are presented to show the practical application of the described methods.
Printed health information materials: evaluation of readability and suitability.
Shieh, Carol; Hosei, Barbara
2008-01-01
This study examined readability and suitability of printed health information materials colleted from multiple sources. In phase I, nursing students used Simple Measure of Gobbledygook (SMOG; McLaughlin, 1969) to assess the readability of 21 materials collected from the community. In phases II and III, nursing students and registered nurses used SMOG and the Suitability Assessment of Materials (SAM; Doak, Doak, & Root, 1996) to evaluate 15 prenatal materials from a Healthy Start program. SMOG assigns a reading grade level based on the number of words with 3 or more syllables. SAM has 22 items in 6 evaluation areas: content, literacy demand, graphics, layout and typography, learning stimulation and motivation, and cultural appropriateness. Major findings included that 53% to 86% of the printed materials had a reading level at or higher than 9th grade; materials lacked summary, interaction, and modeled behaviors, and registered nurses rated more materials as not suitable and fewer as superior for suitability qualities than students. Improving printed materials to have lower reading levels and better suitability qualities are indicated.
Prefabricated Refractory Panels for Use in KSC's Flame Deflectors: A Feasibility Study
NASA Technical Reports Server (NTRS)
Calle, Luz Maria; Trejo, David
2010-01-01
The launch complexes at the John F. Kennedy Space Center (KSC) have been used to launch space vehicles for the Apollo and Space Shuttle programs. NASA is currently designing and developing a new space vehicle. The launch complexes have been in service for a significant duration and the aggressive conditions of the Florida coast and the launches have resulted in failures within the launch complexes. Of particular interests is the performance of the refractory lining that covers the steel base structure for the diversion of the exhaust from the launched vehicles (i.e., the flame deflectors). An unprotected steel base structure would likely experience loss of strength and possible failure when subjected to the high temperatures during launches. The refractory lining is critical for successful launches. The refractory material currently used in the flame trenches was developed in 1959 and is the only refractory material approved for use in these facilities. Significant effort and costs are expended in repairing the lining system after each launch. NASA is currently performing a comprehensive research program to assess and develop refractory materials for improved performance in the flame trenches. However, one challenge associated with the use of refractory materials in the flame trench is that the materials should be cured, dried, and fired to maximize their properties and characteristics. Because of the large size of the deflectors and trenches, drying and firing of the lining system is difficult, if not impossible. Most refractory materials are dried and fired before use. Because the refractory materials used for the deflector lining cannot be dried and fired, the full potential of the materials are not being realized. A system that could use refractory materials that could be cured, dried, and sintered in a controlled environment would likely improve the performance of the lining system. This report evaluates the feasibility of fabricating and placing prefabricated refractory panels on the deflector. Panels could be fabricated and processed off-site in a controlled environment to maximize performance. These panels could then be transported to KSC and installed on the flame deflector. The findings of this report indicate that conventionally reinforced, prefabricated refractory panels can likely be designed, fabricated, and placed on the deflector. Post-tensioning of the panels will reduce the amount of "open' joints, which can be susceptible to accelerated erosion and abrasion. The panels, produced with newer, better performing refractory materials, should exhibit lower deterioration, providing a more economical system. A method for placing the panels has been provided. The findings of this research indicate that post-tensioned, prefabricated refractory panels can be placed on the flame deflectors and should exhibit improved performance when compared with the current method of gunning the refractories on the deflector. Further evaluation will be needed to confirm these findings. Specific focus should be placed on the performance of the joints transverse to the exhaust flow, erosion/abrasion rates of "closed" joints, uplift forces at joints transverse to the exhaust flow, development of composite action between the steel base and the refractory panels, and refractory material resistance to the launch and Florida coast environment.
Recruiting for Caregiver Education Research
Finlayson, Marcia; Henkel, Christin
2012-01-01
Caregiver education programs can support participants in a role that is often challenging. Research is needed to determine the effectiveness of these programs; however, recruitment for such studies can be difficult. The objectives of this study were to explore 1) how multiple sclerosis (MS) caregivers respond to recruitment materials for a research study evaluating a caregiver education program, including aspects of the materials that encourage or discourage their interest in participation; and 2) what recommendations MS caregivers have for improving study recruitment advertising. Qualitative interviews were conducted with seven MS caregivers. Participants were asked about their reactions to advertisements for a pilot study intended to evaluate an MS caregiver education program. Participants were also asked to reflect on factors that would influence their decision to participate in the program and to provide suggestions to improve recruitment materials. Data were analyzed using a constant-comparative approach. Study findings indicated that the language and visual design of the advertisements influenced the participants' initial responses. Some caregivers first responded to the fact that the program was part of a research study, and these caregivers had overall negative responses to the advertising, such as concern that the program was being “tested.” Other caregivers first considered the personal relevance of the program. These caregivers had neutral-to-positive responses to the flyers and weighed the relevance of the program against the research and logistical aspects. Participants provided recommendations to improve the recruitment materials. While recruiting for caregiver education research can be challenging, piloting recruitment materials and using a variety of advertising options may improve response. PMID:24453751
Recent Advances in Modeling Hugoniots with Cheetah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaesemann, K R; Fried, L E
2005-07-26
We describe improvements to the Cheetah thermochemical-kinetics code's equilibrium solver to enable it to find a wider range of thermodynamic states. Cheetah supports a wide range of elements, condensed detonation products, and gas phase reactions. Therefore, Cheetah can be applied to a wide range of shock problems involving both energetic and non-energetic materials. An improve equation of state is also introduced. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots.
Recent Advances in Modeling Hugoniots with Cheetah
NASA Astrophysics Data System (ADS)
Glaesemann, K. R.; Fried, L. E.
2006-07-01
We describe improvements to the Cheetah thermochemical-kinetics code's equilibrium solver to enable it to find a wider range of thermodynamic states. Cheetah supports a wide range of elements, condensed detonation products, and gas phase reactions. Therefore, Cheetah can be applied to a wide range of shock problems involving both energetic and non-energetic materials. An improve equation of state is also introduced. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots.
[Role of "Health" National project in improvement of health parameters in working population].
Bykovskaia, T Iu
2011-01-01
The author analyzed results of "Health" National project accomplishment in Rostov region over 2006-2009. Findings are that quality of primary medical care has improved, material and technical basis of municipal health care institutions has progressed, salary of primary health care division specialists has increased. Over this period, infant mortality and mortality among able-bodied population in the region has decreased, birth rate has increased, coefficient of natural loss of population has reduced, life expectancy has increased.
Provider documentation of patient education: a lean investigation*
Shipman, Jean P.; Lake, Erica W.; Van Der Volgen, Jessica; Doman, Darrin
2016-01-01
Purpose The study evaluates how providers give patient education materials and identifies improvements to comply with Meaningful Use (MU) requirements. Methods Thirty-eight patient-provider interactions in two health care outpatient clinics were observed. Results Providers do not uniformly know MU patient education requirements. Providers have individual preferences and find gaps in what is available. Accessing and documenting patient education varies among providers. Embedded electronic health record (EHR) materials, while available, have technical access barriers. Conclusions Providers' EHR skills and knowledge levels contribute to non-standardized patient education delivery. PMID:27076805
Multimodal and self-healable interfaces enable strong and tough graphene-derived materials
NASA Astrophysics Data System (ADS)
Liu, Yilun; Xu, Zhiping
2014-10-01
Recent studies have shown that graphene-derived materials not only feature outstanding multifunctional properties, but also act as model materials to implant nanoscale structural engineering insights into their macroscopic performance optimization. In this work, we explore strengthening and toughening strategies of this class of materials by introducing multimodal crosslinks, including long, strong and short, self-healable ones. We identify two failure modes by fracturing functionalized graphene sheets or their crosslinks, and the role of brick-and-mortar hierarchy in mechanical enhancement. Theoretical analysis and atomistic simulation results show that multimodal crosslinks synergistically transfer tensile load to enhance the strength, whereas reversible rupture and formation of healable crosslinks improve the toughness. These findings lay the ground for future development of high-performance paper-, fiber- or film-like macroscopic materials from low-dimensional structures with engineerable interfaces.
Development of Highly Fluorescent Materials Based on Thiophenylimidazole Dyes
NASA Technical Reports Server (NTRS)
Santos, Javier; Bu, Xiu R.; Mintz, Eric A.; Meador, Michael A. (Technical Monitor)
2000-01-01
Organic fluorescent materials are expected to find many potential applications in optical devices and photo-functionalized materials. Although many investigations have been focused on heterocyclic compounds such as coumarins, bipyridines, rhodamines, and pyrrole derivatives, little is known for fluorescent imidazole materials. We discovered that one particular class of imidazole derivatives is highly fluorescent. A series of monomeric and polymeric based fluorescent dyes were prepared containing a thiophene unit at the second position of the imidazole ring. Dependence of fluorescence efficiency on parameters such as solvent polarity and substituent groups has been investigated. It was found that a formyl group at the 2-position of the thiophene ring dramatically enhance fluorescence properties. Ion recognition probes indicated their potential as sensor materials. These fluorophores have flexibility for introduction of versatile substituent groups that could improve the fluorescence efficiency and sensor properties.
NASA Astrophysics Data System (ADS)
Thesberg, Mischa; Kosina, Hans; Neophytou, Neophytos
2016-12-01
Electron energy filtering has been suggested as a promising way to improve the power factor and enhance the ZT figure of merit of thermoelectric materials. In this work, we explore the effect that reduced dimensionality has on the success of the energy-filtering mechanism for power factor enhancement. We use the quantum mechanical non-equilibrium Green's function method for electron transport including electron-phonon scattering to explore 1D and 2D superlattice/nanocomposite systems. We find that, given identical material parameters, 1D channels utilize energy filtering more effectively than 2D as they: (i) allow one to achieve the maximal power factor for smaller well sizes/smaller grains which are needed to maximize the phonon scattering, (ii) take better advantage of a lower thermal conductivity in the barrier/boundary materials compared to the well/grain materials in both: enhancing the Seebeck coefficient; and in producing a system which is robust against detrimental random deviations from the optimal barrier design. In certain cases, we find that the relative advantage can be as high as a factor of 3. We determine that energy-filtering is most effective when the average energy of carrier flow varies the most between the wells and the barriers along the channel, an event which occurs when the energy of the carrier flow in the host material is low, and when the energy relaxation mean-free-path of carriers is short. Although the ultimate reason for these aspects, which cause a 1D system to see greater relative improvement than a 2D, is the 1D system's van Hove singularity in the density-of-states, the insights obtained are general and inform energy-filtering design beyond dimensional considerations.
Long-lived thermal control materials for high temperature and deep space applications
NASA Technical Reports Server (NTRS)
Whitt, Robin; O'Donnell, Tim
1988-01-01
Considerable effort has been put into developing thermal-control materials for the Galileo space-craft. This paper presents a summary of these findings to date with emphasis on requirements, testing and results for the post-Challenger Galileo mission. Polyimide film (Kapton), due to its inherent stability in vacuum, UV, and radiation environments, combined with good mechanical properties over a large temperature range, has been the preferred substrate for spacecraft thermal control materials. Composite outer layers, using Kapton substrates, can be fabricated to meet the requirements of severe space environments. Included in the processing of Kapton-based composite outer layers can be the deposition of metal oxide, metallic and/or polymeric thin-film coatings to provide desirable electrical, optical and thermo-optical properties. In addition, reinforcement of Kapton substrates with fabrics and films is done to improve mechanical properties. Also these substrates can be filled with varying amounts of carbon to achieve particular electrical properties. The investigation and material development reported on here has led to improved thermo-gravimetric stability, surface conductivity, RF transparency, radiation and UV stability, flammability and handle-ability of outer layer thermal control materials for deep space and near-sun spacecraft. Designing, testing, and qualifying composite thermal-control film materials to meet the requirements of the Galileo spacecraft is the scope of this paper.
"ASTRO 101" Course Materials 2.0: Next Generation Lecture Tutorials and Beyond
NASA Astrophysics Data System (ADS)
Slater, Stephanie; Grazier, Kevin
2015-01-01
Early efforts to create course materials were often local in scale and were based on "gut instinct," and classroom experience and observation. While subsequent efforts were often based on those same instincts and observations of classrooms, they also incorporated the results of many years of education research. These "second generation" course materials, such as lecture tutorials, relied heavily on research indicating that instructors need to actively engage students in the learning process. While imperfect, these curricular innovations, have provided evidence that research-based materials can be constructed, can easily be disseminated to a broad audience, and can provide measureable improvement in student learning across many settings. In order to improve upon this prior work, next generation materials must build upon the strengths of these innovations while engineering in findings from education research, cognitive science, and instructor feedback. A next wave of materials, including a set of next generation lecture tutorials, have been constructed with attention to the body of research on student motivation, and cognitive load; and they are responsive to our body of knowledge on learning difficulties related to specific content in the domain. From instructor feedback, these materials have been constructed to have broader coverage of the materials typically taught in an ASTRO 101 course, to take less class time, and to be more affordable for students. This next generation of lecture tutorials may serve as a template of the ways in which course materials can be reengineered to respond to current instructor and student needs.
Preliminary studies on SMA embedded wind turbine blades for passive control of vibration
NASA Astrophysics Data System (ADS)
Haghdoust, P.; Cinquemani, S.; Lo Conte, A.
2018-03-01
Wind turbine blades are being bigger and bigger, thus requiring lightweight structures that are more flexible and thus more sensitive to dynamic excitations and to vibration problems. This paper investigates a preliminary architecture of large wind turbine blades, embedding thin sheets of SMA to passively improve their total damping. A phenomenological material model is used for simulation of strain-dependent damping in SMA materials and an user defined material model was developed for this purpose. The response of different architectures of SMA embedded blades have been investigated in the time domain to find an optimal solution in which the less amount of SMA is used while the damping of the system is maximized
ERIC Educational Resources Information Center
Minarni, Ani; Napitupulu, E. Elvis
2017-01-01
Solving problem either within mathematics or beyond is one of the ultimate goal students learn mathematics. It is since mathematics takes role tool as well as vehicle to develop problem solving ability. One of the supporting components to problem solving is mathematical representation ability (MRA). Nowadays, many teachers and researchers find out…
Nanostructured bioactive polymers used in food-packaging.
Mateescu, Andreea L; Dimov, Tatiana V; Grumezescu, Alexandru M; Gestal, Monica C; Chifiriuc, Mariana C
2015-01-01
The development of effective packaging materials is crucial, because food microorganisms determine economic and public health issues. The current paper describes some of the most recent findings in regards of food preservation through novel packaging methods, using biodegradable polymers, efficient antimicrobial agents and nanocomposites with improved mechanical and oxidation stability, increased biodegradability and barrier effect comparatively with conventional polymeric matrices.
Finding a New Way: Reinventing a Sixth-Grade Reading Program
ERIC Educational Resources Information Center
Ahrens, Brooke Carey
2005-01-01
The author found that the reading program at her school did not address the needs of struggling readers and that reading teachers lacked the materials and knowledge needed to make improvements. As part of an action research project, she redesigned the reading program and introduced her colleagues to research-based teaching methods. The author…
Is Social Justice Found in Japanese Education? The Yutori Curriculum and After
ERIC Educational Resources Information Center
Hosokawa, Mitsue
2016-01-01
The Ministry of Education, Culture, Sports, Science and Technology (MEXT) has implemented various curriculums, so-called the Course of Study, over the past few decades. The Yutori curriculum, which was introduced in the 1990's, aimed to improve flexible thinking by reducing the amount of study materials. After finding lowered scores on the PISA…
ERIC Educational Resources Information Center
Fleisch, Brahm; Taylor, Nick; Herholdt, Roelien; Sapire, Ingrid
2011-01-01
Can providing learner support materials, particularly custom-designed workbooks, improve primary mathematics achievement more cost effectively than providing conventional textbooks? To contribute to this debate, this paper reports on the findings of a study conducted in 2010 by a consortium of educational researchers at JET Education Services and…
Feedback, Questions and Information Processing--Putting It All Together.
ERIC Educational Resources Information Center
Wager, Walter; Mory, Edna
This review of research on the effectiveness of adding questions to text materials to improve learning and the research on feedback posits that there is a connection between the findings in these two areas that can be viewed from an information processing perspective. A model of information processing taken from Gagne is used to organize the…
Murphy, Amy; Rhodes, Anne Giuranna; Taxman, Faye S
2012-09-01
Contingency management (CM) is widely recognized as an evidence-based practice, but it is not widely used in either treatment settings or justice settings. CM is perceived as adaptable in justice settings given the natural inclination to use contingencies to improve compliance to desired behaviors. In the Justice Steps implementation study, 5 federal district court jurisdictions agreed to consider implementing CM in specialized problem-solving courts or probation settings. A baseline survey (N = 186) examined the acceptance and feasibility of using rewards as a tool to manage offender compliance. The results of the survey revealed that most of the respondents believe that rewards are acceptable, with little difference between social and material rewards. Survey findings also showed that female justice workers and those who were not probation officers were more accepting of material rewards than their counterparts. Findings are consistent with prior research in drug treatment settings where there is little concern about using rewards. Copyright © 2012 Elsevier Inc. All rights reserved.
Extrinsic doping of the half-Heusler compounds
NASA Astrophysics Data System (ADS)
Stern, Robin; Dongre, Bonny; Madsen, Georg K. H.
2016-08-01
Controlling the p- and n-type doping is a key tool to improve the power-factor of thermoelectric materials. In the present work we provide a detailed understanding of the defect thermochemistry in half-Heusler compounds. We calculate the formation energies of intrinsic and extrinsic defects in state of the art n-type TiNiSn and p-type TiCoSb thermoelectric materials. It is shown how the incorporation of online repositories can reduce the workload in these calculations. In TiNiSn we find that Ni- and Ti-interstitial defects play a crucial role in the carrier concentration of TiNiSn. Furthermore, we find that extrinsic doping with Sb can substantially enhance the carrier concentration, in agreement with experiment. In case of TiCoSb, we find ScTi, FeCo and SnSb being possible p-type dopants. While experimental work has mainly focussed on Sn-doping of the Sb site, the present result underlines the possibility to p-dope TiCoSb on all lattice sites.
Murphy, Amy; Rhodes, Anne Giuranna; Taxman, Faye S.
2011-01-01
Contingency management (CM) is widely recognized as an evidence-based practice, but it is not widely used in either treatment settings or justice settings. CM is perceived as adaptable in justice settings given the natural inclination to use contingencies to improve compliance to desired behaviors. In the Justice Steps implementation study, five federal district court jurisdictions agreed to consider implementing CM in specialized problem-solving courts or probation settings. A baseline survey (n=186) examined the acceptance and feasibility of using rewards as a tool to manage offender compliance. The results of the survey revealed that the majority of respondents believe that rewards are acceptable, with little difference between social and material rewards. Survey findings also showed that female justice workers and those who were not Probation Officers were more accepting of material rewards than their counterparts. Findings are consistent with prior research in drug treatment settings where there is little concern about using rewards. PMID:22209658
Wong, Kevin; Levi, Jessica R
2017-01-01
Objective Previous studies have shown that patient education materials published by the American Academy of Otolaryngology-Head and Neck Surgery Foundation may be too difficult for the average reader to understand. The purpose of this study was to determine if current educational materials show improvements in readability. Study Design Cross-sectional analysis. Setting The Patient Health Information section of the American Academy of Otolaryngology-Head and Neck Surgery Foundation website. Subjects and Methods All patient education articles were extracted in plain text. Webpage navigation, references, author information, appointment information, acknowledgments, and disclaimers were removed. Follow-up editing was also performed to remove paragraph breaks, colons, semicolons, numbers, percentages, and bullets. Readability grade was calculated with the Flesch-Kincaid Grade Level, Flesch Reading Ease, Gunning-Fog Index, Coleman-Liau Index, Automated Readability Index, and Simple Measure of Gobbledygook. Intra- and interobserver reliability were assessed. Results A total of 126 articles from 7 topics were analyzed. Readability levels across all 6 tools showed that the difficulty of patient education materials exceeded the abilities of an average American. As compared with previous studies, current educational materials by the American Academy of Otolaryngology-Head and Neck Surgery Foundation have shown a decrease in difficulty. Intra- and interobserver reliability were both excellent, with intraclass coefficients of 0.99 and 0.96, respectively. Conclusion Improvements in readability is an encouraging finding and one that is consistent with recent trends toward improved health literacy. Nevertheless, online patient educational material is still too difficult for the average reader. Revisions may be necessary for current materials to benefit a larger readership.
Wolverton, Christopher; Hattrick-Simpers, Jason; Mehta, Apurva
2018-01-01
With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly influenced by processing. We train a machine learning (ML) model on previously reported observations, parameters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput (HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations are in good agreement with the predictions of the model, but there are quantitative discrepancies in the precise compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries. Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate discovery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of materials and should prove equally powerful for other materials and properties that are synthesis path–dependent and that current physiochemical theories find challenging to predict. PMID:29662953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Fang; Ward, Logan; Williams, Travis
With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly influenced by processing. We train a machine learning (ML) model on previously reported observations, parameters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput (HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations are in good agreement with the predictions of the model, butmore » there are quantitative discrepancies in the precise compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries. Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate discovery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of materials and should prove equally powerful for other materials and properties that are synthesis path–dependent and that current physiochemical theories find challenging to predict.« less
Ren, Fang; Ward, Logan; Williams, Travis; ...
2018-04-01
With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly influenced by processing. We train a machine learning (ML) model on previously reported observations, parameters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput (HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations are in good agreement with the predictions of the model, butmore » there are quantitative discrepancies in the precise compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries. Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate discovery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of materials and should prove equally powerful for other materials and properties that are synthesis path–dependent and that current physiochemical theories find challenging to predict.« less
Review on Advances of Functional Material for Additive Manufacturing
NASA Astrophysics Data System (ADS)
Zulkifli, Nur Amalina Binti; Akmal Johar, Muhammad; Faizan Marwah, Omar Mohd; Irwan Ibrahim, Mohd Halim
2017-08-01
The attempt of finding and making new materials in improving products that are already in the market are widely done by researchers nowadays. This project is focusing on making new materials for functional material through additive manufacturing application. The idea of this project came from the ability limitation of capacitor in market nowadays in storing higher charges but smaller in size. Powder glass is the new material that could to be used as a dielectric material for capacitor with the help of palm kernel oil as the binder. This paper reviews on applications done through additive manufacturing method and also types of functional materials used in this method previously. Structure of a capacitor, dielectric properties and measurement techniques that are trying to be carried out are also explains in this paper. Last part of this paper brief on the material proposal and reasons those materials are chosen. New dielectric material for capacitor which are able to store more charges but still small in size are expected to be produced as the outcome of this research.
NASA Astrophysics Data System (ADS)
Hu, Meishao; Ni, Jiangpeng; Zhang, Boping; Neelakandan, Sivasubramaniyan; Wang, Lei
2018-06-01
Crosslinking is an effective method to improve the properties of high temperature proton exchange membranes based on polybenzimidazole. However, the compact structure of crosslinked polybenzimidazole hinders the phosphoric acid absorption of the membranes, resulting in a relatively poor fuel cell performance. Recently, we find that branched polymers can absorb more phosphoric acid with a larger free volume, but suffer from deteriorated mechanical strength. In this work, a new method is proposed to obtain excellent over-all properties of high temperature proton exchange membranes. A series of crosslinked polybenzimidazoles containing branching structure as membrane materials are successfully prepared for the first time. Compared with conventional crosslinked membranes, these crosslinked polybenzimidazole membranes containing branching structure exhibit a higher phosphoric acid doping level and proton conductivity, improved durability, lower swelling rate and comparable mechanical strength. In particular, the fuel cell base on the crosslinked and branched membrane with a 10% ratio of crosslinker in non-humidified hydrogen/air at 160 °C achieves a power density of 404 mW cm-2. The results indicate that the combination of crosslinking and branching is an effective approach to improve the properties of polybenzimidazole membrane materials.
NASA Astrophysics Data System (ADS)
Sunarno, Sunarno; Muflichatun Mardiati, Siti; Rahadian, Rully
2018-05-01
Physiological aging and aging due to oxidative stress are a major factor cause accelerated brain aging. Aging is characterized by a decrease of brain function of the hippocampus which is linked to the decline in the capability of learning-memory and motoric activity. The objective of this research is to obtain the important information about the mechanisms of brain antiaging associated with the improvement of hippocampus function, which includes aspects of learning-memory capability and motoric activity as well as mitochondrial ultrastructure profile of hippocampus cornu ammonis cells after treated by fish snakehead fish extract. Snakehead fish in Rawa Pening Semarang District allegedly holds the potential of endemic, which contains bioactive antiaging material that can prevent aging or improve the function of the hippocampus. This research has been conducted using a completely randomized design consisting of four treatments with five replications. The treatments were including rats with physiological aging or aging due to oxidative stress which was treated and without treated with meat extract of snakehead fish. The research was divided into two stages, i.e., determining of learning-memory capability, and determining motoric activity. The measured-parameters are time response to find feed, distance travel, time stereotypes, ambulatory time, and resting time. The result showed that the snakehead fish meat extract might improve function hippocampus, both in physiological aging or aging due to oxidative stress. The capability of learning and memory showed that the rats in both conditions of aging after getting treatment of meat extract of snakehead fish could get a feed in the fourth arm maze faster than rats untreated snakehead fish meat extract. Similarly, the measurement of the distance traveled, time stereotypes, ambulatory time, and resting time showed that rats which received treatment of meat extract of snakehead fish were better than the untreated rats. To conclude, the meat extract of snakehead fish can be used as antiaging material to improve the function of the hippocampus, to improve the capability of learning and memory, to improve motoric activity, and to prevent aging. These findings are expected to provide comprehensive information for the development of antiaging research as an effort to improve public health and to improve learning-memory capability and motoric activity.
Analysis of SnS2 hyperdoped with V proposed as efficient absorber material.
Seminovski, Yohanna; Palacios, Pablo; Wahnón, Perla
2014-10-01
Intermediate-band materials can improve the photovoltaic efficiency of solar cells through the absorption of two subband-gap photons that allow extra electron-hole pair formations. Previous theoretical and experimental findings support the proposal that the layered SnS2 compound, with a band-gap of around 2 eV, is a candidate for an intermediate-band material when it is doped with a specific transition-metal. In this work we characterize vanadium doped SnS2 using density functional theory at the dilution level experimentally found and including a dispersion correction combined with the site-occupancy-disorder method. In order to analyze the electronic characteristics that depend on geometry, two SnS2 polytypes partially substituted with vanadium in symmetry-adapted non-equivalent configurations were studied. In addition the magnetic configurations of vanadium in a SnS2 2H-polytype and its comparison with a 4H-polytype were also characterized. We demonstrate that a narrow intermediate-band is formed, when these dopant atoms are located in different layers. Our theoretical predictions confirm the recent experimental findings in which a paramagnetic intermediate-band material in a SnS2 2H-polytype with 10% vanadium concentration is obtained.
A Global Approach to the Optimal Trajectory Based on an Improved Ant Colony Algorithm for Cold Spray
NASA Astrophysics Data System (ADS)
Cai, Zhenhua; Chen, Tingyang; Zeng, Chunnian; Guo, Xueping; Lian, Huijuan; Zheng, You; Wei, Xiaoxu
2016-12-01
This paper is concerned with finding a global approach to obtain the shortest complete coverage trajectory on complex surfaces for cold spray applications. A slicing algorithm is employed to decompose the free-form complex surface into several small pieces of simple topological type. The problem of finding the optimal arrangement of the pieces is translated into a generalized traveling salesman problem (GTSP). Owing to its high searching capability and convergence performance, an improved ant colony algorithm is then used to solve the GTSP. Through off-line simulation, a robot trajectory is generated based on the optimized result. The approach is applied to coat real components with a complex surface by using the cold spray system with copper as the spraying material.
Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W
2016-05-01
Development of lithium-ion battery recycling systems is a current focus of much research; however, significant research remains to optimize the process. One key area not studied is the utilization of mechanical pre-recycling steps to improve overall yield. This work proposes a pre-recycling process, including mechanical shredding and size-based sorting steps, with the goal of potential future scale-up to the industrial level. This pre-recycling process aims to achieve material segregation with a focus on the metallic portion and provide clear targets for subsequent recycling processes. The results show that contained metallic materials can be segregated into different size fractions at different levels. For example, for lithium cobalt oxide batteries, cobalt content has been improved from 35% by weight in the metallic portion before this pre-recycling process to 82% in the ultrafine (<0.5mm) fraction and to 68% in the fine (0.5-1mm) fraction, and been excluded in the larger pieces (>6mm). However, size fractions across multiple battery chemistries showed significant variability in material concentration. This finding indicates that sorting by cathode before pre-treatment could reduce the uncertainty of input materials and therefore improve the purity of output streams. Thus, battery labeling systems may be an important step towards implementation of any pre-recycling process. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bustamante, Michele L; Gaustad, Gabrielle; Alonso, Elisa
2018-01-02
Materials criticality assessment is a screening framework increasingly applied to identify materials of importance that face scarcity risks. Although these assessments highlight materials for the implicit purpose of informing future action, the aggregated nature of their findings make them difficult to use for guidance in developing nuanced mitigation strategy and policy response. As a first step in the selection of mitigation strategies, the present work proposes a modeling framework and accompanying set of metrics to directly compare strategies by measuring effectiveness of risk reduction as a function of the features of projected supply demand balance over time. The work focuses on byproduct materials, whose criticality is particularly important to understand because their supplies are inherently less responsive to market balancing forces, i.e., price feedbacks. Tellurium, a byproduct of copper refining, which is critical to solar photovoltaics, is chosen as a case study, and three commonly discussed byproduct-relevant strategies are selected: dematerialization of end-use product, byproduct yield improvement, and end-of-life recycling rate improvement. Results suggest that dematerialization will be nearly twice as effective at reducing supply risk as the next best option, yield improvement. Finally, due to its infrequent use at present and its dependence upon long product lifespans, recycling end-of-life products is expected to be the least effective option despite potentially offering other benefits (e.g., cost savings and environmental impact reduction).
1988-03-01
INDUSTRY ANALYSIS/FINDINGS 132 12 EQUIPMENT/MACHINERY ALTERNATIVES 134 13 MIS REQUIREMENTS/IMPROVEMENTS 135 14 COST BENEFIT ANALYSIS AND PROCEDURE 137 15...SOFTWARE DIAGRAM 14.0-1 COST BENEFIT ANALYSIS METHODOLOGY 138 14.3-1 PROJECT 80 EXPENDITURE SCHEDULE 141 14.4-1 PROJECT 80 CASH FLOWS 142 15.1-1 PROJECT 80...testing, streamlining work flow, and installation of ergonomically designed work cell/work centers. The benefits associated with the implementation of ITM
Effects of potassium titanate fiber on the wear of automotive brake linings
NASA Technical Reports Server (NTRS)
Halberstadt, M. L.; Mansfield, J. A.; Rhee, S. K.
1977-01-01
Asbestos reinforcing fiber in an automotive friction material was replaced by an experimental ingredient having better thermal stability, and the effects on wear and friction were studied. A friction materials test machine (SAE J661a) was used to determine friction and wear, under constant energy output conditions, as a function of temperature between 121 and 343 C (250 and 650 F). When potassium titanate fiber replaced one half of the asbestos in a standard commercial lining, with a 40 percent upward adjustment of phenolic resin content, wear above 204 C (400 F) was improved by 40% and friction by 30%. Tests on a full-scale inertial dynamometer supported the findings of the sample dynamometer tests. It was demonstrated that the potassium titanate fiber contributes directly to the improvement in wear and friction.
Improved performance of InSe field-effect transistors by channel encapsulation
NASA Astrophysics Data System (ADS)
Liang, Guangda; Wang, Yiming; Han, Lin; Yang, Zai-Xing; Xin, Qian; Kudrynskyi, Zakhar R.; Kovalyuk, Zakhar D.; Patanè, Amalia; Song, Aimin
2018-06-01
Due to the high electron mobility and photo-responsivity, InSe is considered as an excellent candidate for next generation electronics and optoelectronics. In particular, in contrast to many high-mobility two-dimensional (2D) materials, such as phosphorene, InSe is more resilient to oxidation in air. Nevertheless, its implementation in future applications requires encapsulation techniques to prevent the adsorption of gas molecules on its surface. In this work, we use a common lithography resist, poly(methyl methacrylate) (PMMA) to encapsulate InSe-based field-effect transistors (FETs). The encapsulation of InSe by PMMA improves the electrical stability of the FETs under a gate bias stress, and increases both the drain current and electron mobility. These findings indicate the effectiveness of the PMMA encapsulation method, which could be applied to other 2D materials.
Effect of Electric Field on CO2 Photoreduction by TiO2 Film
NASA Astrophysics Data System (ADS)
Huang, Zhengfeng; Cheng, Xudong; Dong, Peimei; Zhang, Xiwen
2017-02-01
To mitigate the greenhouse effect, many studies have been carried out to improve the CO2 conversion efficiency of TiO2. Modification of TiO2 has been intensively investigated, but the influence of an electric field on photoreduction by this material remains largely unknown. Accordingly, in this study, we explored the effect of an electric field on the photoreduction process using a porous TiO2-Ti material. The results indicated that the CO yield improved 85-fold (equivalent to 4772 μmol/g h) when a 30-kV voltage was applied during the reduction process. To make the electric field effect fully functional, we also explored the effect of water on the photoreduction process, finding that TiO2 showed the highest conversion rate when the humidity was controlled at 50% relative humidity (RH).
Mariana Balu, Alina; Pineda, Antonio; Yoshida, Kenta; Manuel Campelo, Juan; Gai, Pratibha L; Luque, Rafael; Angel Romero, Antonio
2010-11-07
A synergetic Fe-Al effect in Fe(2)O(3) nanoparticles supported on mesoporous aluminosilicates compared to pure siliceous silicates has been demonstrated, for the first time, by a remarkably superior catalytic activity of the former in the microwave-assisted selective oxidation of benzyl alcohol to benzaldehyde. This significant finding, that also deeply influences the acidity of the materials (increasing total and particularly Lewis acidity), can have important consequences in the improved efficiency of these systems in related oxidations as well as in acid catalysed processes.
ERIC Educational Resources Information Center
Nagra, Maninder K.; White, Rose; Appiah, Afua; Rayner, Kelly
2017-01-01
Background: Intensive interaction (II) is a communication approach useful for working with people with severe intellectual disabilities. Health and social care providers offer II training courses to paid carers working in local services with the goal of improving social communication for their clients. Materials and methods: Eight paid carers who…
The existence of a temperature-driven solid solution in LixFePO4 for 0 <= x <= 1
NASA Astrophysics Data System (ADS)
Delacourt, Charles; Poizot, Philippe; Tarascon, Jean-Marie; Masquelier, Christian
2005-03-01
Lithium-ion batteries have revolutionized the powering of portable electronics. Electrode reactions in these electrochemical systems are based on reversible insertion/deinsertion of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive positive electrode materials will be required, among which LiFePO4 is a leading contender. An intriguing fundamental problem is to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO4 system. In contrast to the well-documented two-phase nature of this system at room temperature, we give the first experimental evidence of a solid solution LixFePO4 (0 <= x <= 1) at 450 °C, and two new metastable phases at room temperature with Li0.75FePO4 and Li0.5FePO4 composition. These experimental findings challenge theorists to improve predictive models commonly used in the field. Our results may also lead to improved performances of these electrodes at elevated temperatures.
NASA Astrophysics Data System (ADS)
Emmerton, Bevan; Burgess, Jon; Esterle, Joan; Erskine, Peter; Baumgartl, Thomas
2017-04-01
Large-scale open cut mining in the Bowen Basin, Queensland, Australia has undergone an evolutionary process over the period of a few decades, transitioning from shallow mining depths, limited spoil elevation and pasture based rehabilitation to increased mining depths, escalating pre-stripping, elevated mesa-like landforms and native woody species rehabilitation. As a consequence of this development, the stabilisation of recent constructed landforms has to be assured through means other than the establishment of vegetative cover. Recent developments are the specific selection and partitioning of resilient fragmental spoil types for the construction of final landform surface. They can also be used as cladding resources for stabilizing steep erosive batters and this has been identified as a practical methodology that has the potential to significantly improve rehabilitation outcomes. Examples of improvements are an increase of the surface rock cover, roughness and infiltration and reducing inherent erodibility and runoff and velocity of surface flow. However, a thorough understanding of the properties and behavior of individual spoil materials disturbed during mining is required. Relevant information from published literature on the geological origins, lithology and weathering characteristics of individual strata within the Bowen Basin Coal Measures located in Queensland, Australia (and younger overlying weathered strata) has been studied, and related both to natural landforms and to the surface stability of major strata types when disturbed by mining. The resulting spoil classification developed from this study is based primarily on inherent geological characteristics and weathering behaviour of identifiable lithologic components, and as such describes the expected fragmental resilience likely within disturbed materials at Bowen Basin coal mines. The proposed classification system allows the allocation of spoil types to use categories which have application in pre-mine feasibility investigations, landform design and material selection and placement. It finds its application by practitioners who find encouragement in using this approach of a relatively easy usable classification system to improve the overall outcome of rehabilitation through selection of optimal substrates.
Investigations on Absorber Materials at Cryogenic Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marhauser, Frank; Elliott, Thomas; Rimmer, Robert
2009-05-01
In the framework of the 12 GeV upgrade project for the Continuous Electron Beam Accelerator Facility (CEBAF) improvements are being made to refurbish cryomodules housing Thomas Jefferson National Accelerator Facility's (JLab) original 5-cell cavities. Recently we have started to look into a possible simplification of the existing Higher Order Mode (HOM) absorber design combined with the aim to find alternative material candidates. The absorbers are implemented in two HOM-waveguides immersed in the helium bath and operate at 2 K temperature. We have built a cryogenic setup to perform measurements on sample load materials to investigate their lossy characteristics and variationsmore » from room temperature down to 2 K. Initial results are presented in this paper.« less
NASA Astrophysics Data System (ADS)
Yusoh, R.; Saad, R.; Saidin, M.; Muhammad, S. B.; Anda, S. T.
2018-04-01
Both electrical resistivity and seismic refraction profiling has become a common method in pre-investigations for visualizing subsurface structure. The encouragement to use these methods is that combined of both methods can decrease the obscure inherent to the distinctive use of these methods. Both method have their individual software packages for data inversion, but potential to combine certain geophysical methods are restricted; however, the research algorithms that have this functionality was exists and are evaluated personally. The interpretation of subsurface were improve by combining inversion data from both method by influence each other models using closure coupling; thus, by implementing both methods to support each other which could improve the subsurface interpretation. These methods were applied on a field dataset from a pre-investigation for archeology in finding the material deposits of impact crater. There were no major changes in the inverted model by combining data inversion for this archetype which probably due to complex geology. The combine data analysis shows the deposit material start from ground surface to 20 meter depth which the class separation clearly separate the deposit material.
Reticulated Organic Photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiros T.; Yager K.; Mannsfeld S.
2012-03-21
This paper shows how the self-assembled interlocking of two nanostructured materials can lead to increased photovoltaic performance. A detailed picture of the reticulated 6-DBTTC/C{sub 60} organic photovoltaic (OPV) heterojunction, which produces devices approaching the theoretical maximum for these materials, is presented from near edge X-ray absorption spectroscopy (NEXAFS), X-ray photoelectron spectroscopy (XPS), Grazing Incidence X-ray diffraction (GIXD) and transmission electron microscopy (TEM). The complementary suite of techniques shows how self-assembly can be exploited to engineer the interface and morphology between the cables of donor (6-DBTTC) material and a polycrystalline acceptor (C{sub 60}) to create an interpenetrating network of pure phasesmore » expected to be optimal for OPV device design. Moreover, we find that there is also a structural and electronic interaction between the two materials at the molecular interface. The data show how molecular self-assembly can facilitate 3-D nanostructured photovoltaic cells that are made with the simplicity and control of bilayer device fabrication. The significant improvement in photovoltaic performance of the reticulated heterojunction over the flat analog highlights the potential of these strategies to improve the efficiency of organic solar cells.« less
Diffused holographic information storage and retrieval using photorefractive optical materials
NASA Astrophysics Data System (ADS)
McMillen, Deanna Kay
Holography offers a tremendous opportunity for dense information storage, theoretically one bit per cubic wavelength of material volume, with rapid retrieval, of up to thousands of pages of information simultaneously. However, many factors prevent the theoretical storage limit from being reached, including dynamic range problems and imperfections in recording materials. This research explores new ways of moving closer to practical holographic information storage and retrieval by altering the recording materials, in this case, photorefractive crystals, and by increasing the current storage capacity while improving the information retrieved. As an experimental example of the techniques developed, the information retrieved is the correlation peak from an optical recognition architecture, but the materials and methods developed are applicable to many other holographic information storage systems. Optical correlators can potentially solve any signal or image recognition problem. Military surveillance, fingerprint identification for law enforcement or employee identification, and video games are but a few examples of applications. A major obstacle keeping optical correlators from being universally accepted is the lack of a high quality, thick (high capacity) holographic recording material that operates with red or infrared wavelengths which are available from inexpensive diode lasers. This research addresses the problems from two positions: find a better material for use with diode lasers, and reduce the requirements placed on the material while maintaining an efficient and effective system. This research found that the solutions are new dopants introduced into photorefractive lithium niobate to improve wavelength sensitivities and the use of a novel inexpensive diffuser that reduces the dynamic range and optical element quality requirements (which reduces the cost) while improving performance. A uniquely doped set of 12 lithium niobate crystals was specified and procured for this research. Transmission spectra and diffraction efficiencies were measured for each of the crystals using wavelengths in the visible spectrum. The diffraction efficiency was increased by as much as two orders of magnitude by using a new dopant combination. A new optical diffuser was designed, modeled, fabricated, and tested as a means of improving storage capacity for angularly multiplexed holograms in photorefractive crystals. The diffuser reduced the dynamic range requirement by over three orders of magnitude, increased the storage capacity by more than 400%, and dramatically improved the correlation signals.
Citric acid functionalized carbon materials for fuel cell applications
NASA Astrophysics Data System (ADS)
Poh, Chee Kok; Lim, San Hua; Pan, Hui; Lin, Jianyi; Lee, Jim Yang
Carbon materials can be easily functionalized using citric acid (CA) treatment. The CA modification of carbon materials is both simple and effective. It requires no prolonged heating, filtration and washing, and produces more functional groups such as carboxyl and hydroxide on CA-modified carbon nanotubes and XC72 carbon blacks than on HNO 3-H 2SO 4 oxidized carbon nanotubes and as-purchased XC72. Platinum nanoparticles are deposited on these functionalized carbon materials by means of a microwave-assisted polyol process. The investigations using TEM, XRD, FTIR and TGA indicate that CA modification creates more functional groups and thus deposits more Pt nanoparticles with smaller average particle size on the surface of carbon materials. Electrochemical studies of the Pt/C samples for methanol oxidation reveal higher activity for Pt on CA-modified carbon materials. It is therefore considered that this method can find important applications in reducing the cost and improving performance of proton-exchange membrane fuel cells.
Waveguide-based electro-absorption modulator performance: comparative analysis
NASA Astrophysics Data System (ADS)
Amin, Rubab; Khurgin, Jacob B.; Sorger, Volker J.
2018-06-01
Electro-optic modulation is a key function for data communication. Given the vast amount of data handled, understanding the intricate physics and trade-offs of modulators on-chip allows revealing performance regimes not explored yet. Here we show a holistic performance analysis for waveguide-based electro-absorption modulators. Our approach centers around material properties revealing obtainable optical absorption leading to effective modal cross-section, and material broadening effects. Taken together both describe the modulator physical behavior entirely. We consider a plurality of material modulation classes to include two-level absorbers such as quantum dots, free carrier accumulation or depletion such as ITO or Silicon, two-dimensional electron gas in semiconductors such as quantum wells, Pauli blocking in Graphene, and excitons in two-dimensional atomic layered materials such as found in transition metal dichalcogendies. Our results show that reducing the modal area generally improves modulator performance defined by the amount of induced electrical charge, and hence the energy-per-bit function, required switching the signal. We find that broadening increases the amount of switching charge needed. While some material classes allow for reduced broadening such as quantum dots and 2-dimensional materials due to their reduced Coulomb screening leading to increased oscillator strengths, the sharpness of broadening is overshadowed by thermal effects independent of the material class. Further we find that plasmonics allows the switching charge and energy-per-bit function to be reduced by about one order of magnitude compared to bulk photonics. This analysis is aimed as a guide for the community to predict anticipated modulator performance based on both existing and emerging materials.
Cooperative Learning in Industrial-sized Biology Classes
Chang, Shu-Mei; Brickman, Marguerite
2007-01-01
This study examined the impact of cooperative learning activities on student achievement and attitudes in large-enrollment (>250) introductory biology classes. We found that students taught using a cooperative learning approach showed greater improvement in their knowledge of course material compared with students taught using a traditional lecture format. In addition, students viewed cooperative learning activities highly favorably. These findings suggest that encouraging students to work in small groups and improving feedback between the instructor and the students can help to improve student outcomes even in very large classes. These results should be viewed cautiously, however, until this experiment can be replicated with additional faculty. Strategies for potentially improving the impact of cooperative learning on student achievement in large courses are discussed. PMID:17548878
Cooperative learning in industrial-sized biology classes.
Armstrong, Norris; Chang, Shu-Mei; Brickman, Marguerite
2007-01-01
This study examined the impact of cooperative learning activities on student achievement and attitudes in large-enrollment (>250) introductory biology classes. We found that students taught using a cooperative learning approach showed greater improvement in their knowledge of course material compared with students taught using a traditional lecture format. In addition, students viewed cooperative learning activities highly favorably. These findings suggest that encouraging students to work in small groups and improving feedback between the instructor and the students can help to improve student outcomes even in very large classes. These results should be viewed cautiously, however, until this experiment can be replicated with additional faculty. Strategies for potentially improving the impact of cooperative learning on student achievement in large courses are discussed.
Key improvements in machining of Ti6al4v alloy: A review
NASA Astrophysics Data System (ADS)
Katta, Sivakoteswararao; Chaitanya, G.
2017-07-01
Now a days the use of ti-6al-4v alloy is high in demand in many industries like aero space, bio medical automobile, space, military etc. the production rates in the industries are not sufficient because the machiniability of ti-6al-4v is the main problem, there are several cutting tools available for metal cutting operations still there is a gap in finding the proper cutting tool material for machining of ti-6al-4v. because the properties of titanium like high heat resistant, low thermal conductivity, low weight ratio, less corrosiveness, and more many properties attracting the industrialists to use titanium as their material for their products, many researchers done the research on machininbility of ti-6al-4v by using different tool materials. but as for my literature survey there is still lot of scope is available, to find better cutting tool with techniques for machining ti-6al-4v. in this paper iam discussing the work done by various researchers on ti-6al-4v alloy with different techniques.
States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit
Gruber, Matthias J.; Gelman, Bernard D.; Ranganath, Charan
2014-01-01
Summary People find it easier to learn about topics that interest them, but little is known about the mechanisms by which intrinsic motivational states affect learning. We used functional magnetic resonance imaging to investigate how curiosity (intrinsic motivation to learn) influences memory. In both immediate and one-day delayed memory tests, participants showed improved memory for information that they were curious about, and also for incidental material learned during states of high curiosity. FMRI results revealed that activity in the midbrain and the nucleus accumbens was enhanced during states of high curiosity. Importantly, individual variability in curiosity-driven memory benefits for incidental material was supported by anticipatory activity in the midbrain and hippocampus and by functional connectivity between these regions. These findings suggest a link between the mechanisms supporting extrinsic reward motivation and intrinsic curiosity and highlight the importance of stimulating curiosity in order to create more effective learning experiences. PMID:25284006
Design principles for solid-state lithium superionic conductors.
Wang, Yan; Richards, William Davidson; Ong, Shyue Ping; Miara, Lincoln J; Kim, Jae Chul; Mo, Yifei; Ceder, Gerbrand
2015-10-01
Lithium solid electrolytes can potentially address two key limitations of the organic electrolytes used in today's lithium-ion batteries, namely, their flammability and limited electrochemical stability. However, achieving a Li(+) conductivity in the solid state comparable to existing liquid electrolytes (>1 mS cm(-1)) is particularly challenging. In this work, we reveal a fundamental relationship between anion packing and ionic transport in fast Li-conducting materials and expose the desirable structural attributes of good Li-ion conductors. We find that an underlying body-centred cubic-like anion framework, which allows direct Li hops between adjacent tetrahedral sites, is most desirable for achieving high ionic conductivity, and that indeed this anion arrangement is present in several known fast Li-conducting materials and other fast ion conductors. These findings provide important insight towards the understanding of ionic transport in Li-ion conductors and serve as design principles for future discovery and design of improved electrolytes for Li-ion batteries.
Active interrogation using low-energy nuclear reactions
NASA Astrophysics Data System (ADS)
Antolak, Arlyn; Doyle, Barney; Leung, Ka-Ngo; Morse, Daniel; Provencio, Paula
2005-09-01
High-energy photons and neutrons can be used to interrogate for heavily shielded fissile materials inside sealed cargo containers by detecting their prompt and/or delayed fission signatures. The FIND (Fissmat Inspection for Nuclear Detection) active interrogation system is based on a dual neutron+gamma source that uses low-energy (< 500 keV) proton- or deuteron-induced nuclear reactions to produce high intensities of mono-energetic gamma rays and/or neutrons. The source can be operated in either pulsed (e.g., to detect delayed photofission neutrons and gammas) or continuous (e.g., detecting prompt fission signatures) modes. For the gamma-rays, the source target can be segmented to incorporate different (p,γ) isotopes for producing gamma-rays at selective energies, thereby improving the probability of detection. The design parameters for the FIND system are discussed and preliminary accelerator-based measurements of gamma and neutron yields, background levels, and fission signals for several target materials under consideration are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snydacker, David H.; Wolverton, Chris
The performance of olivine cathode materials can be improved using core/shell structures such as LiMnPO 4/LiFePO 4 and LiMnPO 4/LiNiPO 4. We use density functional theory to calculate the energetics, phase stability, and voltages of transition-metal mixing for a series of olivine phosphate materials. For LiMn 1–yFe yPO 4, LiFe 1–yNi yPO 4, and LiMn 1–yNi yPO 4, we find phase-separating tendencies with (mean-field) maximum miscibility gap temperatures of 120, 320, and 760 K respectively. At room temperature, we find that Mn is completely miscible in LiFePO 4, whereas Mn solubility in LiNiPO 4 is just 0.3%. Therefore, we suggestmore » that core/shell LiMnPO 4/LiNiPO 4 particles could be more effective at containing Mn in the particle core and limiting Mn dissolution into the electrolyte relative to LiMnPO 4/LiFePO 4 particles. We calculate shifts in redox potentials for dilute transition metals, M, substituted into Li xM'PO 4 host materials. Unmixed Li xMnPO 4 exhibits a redox potential of 4.0 V, but we find that dilute Mn in a LiNiPO 4 shell exhibits a redox potential of 4.3 V and therefore remains redox inactive at lower cathode potentials. We find that strain plays a large role in the redox potentials of some mixed systems (Li xMn 1–yFe yPO 4) but not others (Li xMn 1–yNi yPO 4).« less
Wu, Zhongzhen; Ji, Shunping; Hu, Zongxiang; Zheng, Jiaxin; Xiao, Shu; Lin, Yuan; Xu, Kang; Amine, Khalil; Pan, Feng
2016-06-22
Transition metal oxide materials Li(NixMnyCoz)O2 (NMCxyz) based on layered structure are potential cathode candidates for automotive Li-ion batteries because of their high specific capacities and operating potentials. However, the actual usable capacity, cycling stability, and first-cycle Coulombic efficiency remain far from practical. Previously, we reported a combined strategy consisting of depolarization with embedded carbon nanotube (CNT) and activation through pre-lithiation of the NMC host, which significantly improved the reversible capacity and cycling stability of NMC532-based material. In the present work we attempt to understand how pre-lithiation leads to these improvements on an atomic level with experimental investigation and ab initio calculations. By lithiating a series of NMC materials with varying chemical compositions prepared via a conventional approach, we identified the Ni in the NMC lattice as the component responsible for accommodating a double-layered Li structure. Specifically, much better improvements in the cycling stability and capacity can be achieved with the NMC lattices populated with Ni(3+) than those populated with only Ni(2+). Using the XRD we also found that the emergence of a double-layer Li structure is not only reversible during the pre-lithiation and the following delithiation, but also stable against elevated temperatures up to 320 °C. These new findings regarding the mechanism of pre-lithiation as well as how it affects the reversibility and stability of NMC-based cathode materials prepared by the conventional slurry approach will promote the possibility of their application in the future battery industry.
Evaluation of the AHRQ Patient Safety Initiative: Synthesis of Findings
Farley, Donna O; Damberg, Cheryl L
2009-01-01
Objective To present overall findings from the 4-year evaluation of the national patient safety initiative operated by the Agency for Healthcare Research and Quality (AHRQ). Data Sources Interviews with AHRQ staff, grantees, and other patient safety stakeholders; published materials; and internal AHRQ documents. Study Design The evaluation was structured to address a system framework of five components involved in improving safety. The initiative's contributions to improving each system component were assessed qualitatively, comparing results from three separate analyses—AHRQ's achievement of its patient safety goals, our own assessment of the initiative's activities, and independent stakeholder ratings of AHRQ's contributions. Findings and Conclusions AHRQ has faced a daunting challenge for improving patient safety, given the complex problems of the U.S. health care system and the limited resources AHRQ has had to address them. The patient safety initiative achieved strongest progress for its contributions to knowledge of patient safety epidemiology and effective practices, where AHRQ has considerable experience, and to strengthening infrastructure to support adoption of safe practices. Progress was slower in establishing a national monitoring capability and dissemination of safe practices for adoption. AHRQ needs to expand efforts to apply new knowledge for stimulating use of safe practices in the field. PMID:21456115
Latycheva, O; Chera, R; Hampson, C; Masuda, J R; Stewart, M; Elliott, S J; Fenton, N E
2013-01-01
Asthma is a growing concern in First Nations and Inuit communities. As with many health indicators and outcomes, Aboriginal peoples living in remote areas experience greater disparities in respiratory health compared with non-Aboriginal Canadians. Therefore, it is critically important to take into account their unique needs when developing asthma educational materials and resources. The purpose of this study is to assess the cultural relevance of existing asthma education materials for First Nations and Inuit peoples. Five First Nations and Inuit communities from across Canada participated in the project. A combination of quantitative evaluations (eg surveys) and qualitative approaches (eg open discussion, live chats) were used to assess printed and web-based asthma education materials. Participants represented First Nations and Inuit communities from across Canada and were selected on the basis of age and role: 6 to 12 years old (children), 12 and over (youth), parents and grandparents, community leaders and teachers, and community advisory group members. In general, the results showed that although participants of all age categories liked the selection of asthma educational materials and resources, they identified pictures and images related to First Nations and Inuit people living and coping with asthma as ways of improving cultural relevance. This reinforces findings that tailoring materials to include Aboriginal languages, ceremonies and traditions would enhance their uptake. Our findings also demonstrate that visually based content in both printed and virtual form were the preferred style of learning of all participants, except young children who preferred to learn through play and interactive activities. Asthma is a growing concern in First Nations and Inuit communities. Given this concern, it is essential to understand cultural needs and preferences when developing asthma education materials and resources. The findings from this research emphasize the need to adapt existing asthma educational materials to better suit First Nations and Inuit cultures and the importance of directly engaging community members in the process.
NASA Astrophysics Data System (ADS)
Shi, Guangsha
Solar electricity is a reliable and environmentally friendly method of sustainable energy production and a realistic alternative to conventional fossil fuels. Moreover, thermoelectric energy conversion is a promising technology for solid-state refrigeration and efficient waste-heat recovery. Predicting and optimizing new photovoltaic and thermoelectric materials composed of Earth-abundant elements that exceed the current state of the art, and understanding how nanoscale structuring and ordering improves their energy conversion efficiency pose a challenge for materials scientists. I approach this challenge by developing and applying predictive high-performance computing methods to guide research and development of new materials for energy-conversion applications. Advances in computer-simulation algorithms and high-performance computing resources promise to speed up the development of new compounds with desirable properties and significantly shorten the time delay between the discovery of new materials and their commercial deployment. I present my calculated results on the extraordinary properties of nanostructured semiconductor materials, including strong visible-light absorbance in nanoporous silicon and few-layer SnSe and GeSe. These findings highlight the capability of nanoscale structuring and ordering to improve the performance of Earth-abundant materials compared to their bulk counterparts for solar-cell applications. I also successfully identified the dominant mechanisms contributing to free-carrier absorption in n-type silicon. My findings help evaluate the impact of the energy loss from this absorption mechanism in doped silicon and are thus important for the design of silicon solar cells. In addition, I calculated the thermoelectric transport properties of p-type SnSe, a bulk material with a record thermoelectric figure of merit. I predicted the optimal temperatures and free-carrier concentrations for thermoelectric energy conversion, as well the theoretical upper limit of the figure of merit. I also determined the electronic structures and thermoelectric properties of Mg2Si, Mg2Ge, and Mg2Sn, a family of Earth-abundant thermoelectric compounds. I uncovered the importance of quasiparticle corrections and the proper treatment of pseudopotentials in the determination of the band gaps and the thermoelectric transport properties at high temperatures. The methods and codes I developed in my research form a general predictive toolbox for the design and optimization of the functional properties of materials for energy applications.
Characterization of an improved 1-3 piezoelectric composite by simulation and experiment.
Zhong, Chao; Wang, Likun; Qin, Lei; Zhang, Yanjun
2017-06-16
To increase electromechanical coupling factor of 1-3 piezoelectric composite and reduce its bending deformation under external stress, an improved 1-3 piezoelectric composite is developed. In the improved structure, both epoxy resin and silicone rubber are used as polymer material. The simulation model of the improved 1-3 piezoelectric composite was established using the finite element software ANSYS. The relationship of the performance of the improved composite to the volume percentage of silicone rubber was determined by harmonic response analysis and the bending deformation under external stress was simulated by static analysis. The improved composite samples were prepared by cutting and filling methods, and the performance was tested. The feasibility of the improved structure was verified by finite element simulation and experiment. The electromechanical coupling factor of the improved composite can reach 0.67 and meanwhile the characteristic impedance can decline to 13 MRayl. The electromechanical coupling factor of the improved composite is higher than that of the composite with only epoxy resin as the polymer and the improved composite can reduce bending deformation. Comparison of simulation and experiment, the results of the experiment are in general agreement with those from the simulation. However, most experimental values were higher than the simulation results, and the abnormality of the test results was also more obvious than that of the simulation. These findings may be attributed to slight difference in the material parameters of simulation and experiment.
ERIC Educational Resources Information Center
President's Commission on Olympic Sports, Washington, DC.
This document is a presentation of primary and secondary information collected by the President's Commission on Olympic Sports and used as the basis for their recommendations on improving U.S. performance capabilities in international competition. The document is divided into three sections: (1) a sport-by-sport analysis of thirty Olympic sports,…
Hilton, Claire
2016-03-01
In the 1950s, the population aged over 65 years continued to increase, and older people occupied mental hospital beds disproportionately. A few psychiatrists and geriatricians demonstrated what could be done to improve the wellbeing of mentally unwell older people, who were usually labelled as having irreversible 'senile dementia'. Martin Roth demonstrated that 'senile dementia' comprised five different disorders, some of which were reversible. These findings challenged established teaching and were doubted by colleagues. Despite diagnostic improvements and therapeutic successes, clinical practice changed little. Official reports highlighted the needs, but government commitment to increase and improve services did not materialize. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; Otani, Minoru; Wood, Brandon C.
2015-03-01
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic "quantum capacitance" of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulating charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.
An algorithm-based topographical biomaterials library to instruct cell fate
Unadkat, Hemant V.; Hulsman, Marc; Cornelissen, Kamiel; Papenburg, Bernke J.; Truckenmüller, Roman K.; Carpenter, Anne E.; Wessling, Matthias; Post, Gerhard F.; Uetz, Marc; Reinders, Marcel J. T.; Stamatialis, Dimitrios; van Blitterswijk, Clemens A.; de Boer, Jan
2011-01-01
It is increasingly recognized that material surface topography is able to evoke specific cellular responses, endowing materials with instructive properties that were formerly reserved for growth factors. This opens the window to improve upon, in a cost-effective manner, biological performance of any surface used in the human body. Unfortunately, the interplay between surface topographies and cell behavior is complex and still incompletely understood. Rational approaches to search for bioactive surfaces will therefore omit previously unperceived interactions. Hence, in the present study, we use mathematical algorithms to design nonbiased, random surface features and produce chips of poly(lactic acid) with 2,176 different topographies. With human mesenchymal stromal cells (hMSCs) grown on the chips and using high-content imaging, we reveal unique, formerly unknown, surface topographies that are able to induce MSC proliferation or osteogenic differentiation. Moreover, we correlate parameters of the mathematical algorithms to cellular responses, which yield novel design criteria for these particular parameters. In conclusion, we demonstrate that randomized libraries of surface topographies can be broadly applied to unravel the interplay between cells and surface topography and to find improved material surfaces. PMID:21949368
Public awareness and disaster risk reduction: just-in-time networks and learning.
Ardalan, Ali; Linkov, Faina; Shubnikov, Eugene; LaPorte, Ronald E
2008-01-01
Improving public awareness through education has been recognized widely as a basis for reducing the risk of disasters. Some of the first disaster just-in-time (JIT) education modules were built within 3-6 days after the south Asia tsunami, Hurricane Katrina, and the Bam, Pakistan, and Indonesia earthquakes through a Supercourse. Web monitoring showed that visitors represented a wide spectrum of disciplines and educational levels from 120 developed and developing countries. Building disaster networks using an educational strategy seizes the opportunity of increased public interest to teach and find national and global expertise in hazard and risk information. To be effective, an expert network and a template for the delivery of JIT education must be prepared before an event occurs, focusing on developing core materials that could be customized rapidly, and then be based on the information received from a recent disaster. The recyclable process of the materials would help to improve the quality of the teaching, and decrease the time required for preparation. The core materials can be prepared for disasters resulting from events such as earthquakes, hurricanes, tsunamis, floods, and bioterrorism.
Innovating e-waste management: From macroscopic to microscopic scales.
Zeng, Xianlai; Yang, Congren; Chiang, Joseph F; Li, Jinhui
2017-01-01
Waste electrical and electronic equipment (WEEE or e-waste) has become a global problem, due to its potential environmental pollution and human health risk, and its containing valuable resources (e.g., metals, plastics). Recycling for e-waste will be a necessity, not only to address the shortage of mineral resources for electronics industry, but also to decline environmental pollution and human health risk. To systematically solve the e-waste problem, more attention of e-waste management should transfer from macroscopic to microscopic scales. E-waste processing technology should be significantly improved to diminish and even avoid toxic substance entering into downstream of material. The regulation or policy related to new production of hazardous substances in recycled materials should also be carried out on the agenda. All the findings can hopefully improve WEEE legislation for regulated countries and non-regulated countries. Copyright © 2016 Elsevier B.V. All rights reserved.
Seidler, Konstanze; Griesser, Markus; Kury, Markus; Reghunathan, Harikrishna; Dorfinger, Peter; Koch, Thomas; Svirkova, Anastasiya; Marchetti-Deschmann, Martina; Stampfl, Jürgen; Moszner, Norbert; Gorsche, Christian; Liska, Robert
2018-05-04
Photoinitiated radical polymer network formation is lacking freedom for tailored network design. Resulting inhomogeneous network architectures and brittle material behavior of such glassy-type networks limit the commercial application of photopolymers in 3D printing, biomedicine or microelectronics. An ester-activated vinyl sulfonate ester (EVS) is presented for the rapid formation of tailored methacrylate-based networks with nearly no retardation, reduced shrinkage stress, high monomer conversion and improved material toughness. Laser flash photolysis followed by theoretical calculations and photoreactor studies elucidate the fast chain transfer reaction and exceptional regulating ability of EVS. Final photopolymer networks exhibit high tensile strength, improved elongation at break and high impact resistance, while maintaining high modulus and hardness at ambient conditions. These findings make EVS an exceptional candidate for the 3D printing of tough photopolymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Beemkumar, N.; Karthikeyan, A.; Shiva Keshava Reddy, Kota; Rajesh, Kona; Anderson, A.
2017-05-01
The discontinuous temperament of the solar power forces to consider about the energy storage. This work is to analyze the tank, amount of energy stored and its storage time. The thermal and flow analysis has been done by ANSYS with different set temperature values. The experimentation is done for various encapsulating materials with different phase change material (PCM). Findings: The results obtained from experimental work are compared with ANSYS output. The competence of the TES is calculated and further improvements are made to enhance its performance. During charging process the temperature distribution from heat transfer fluid (HTF) to PCM is maximum in copper encapsulations followed by aluminium encapsulations and brass encapsulations. The comparison shows only when the electrical power as an input source. The efficient way of captivating solar energy could be a better replacement for electrical input.
NASA Astrophysics Data System (ADS)
Zhou, Yuan-Qi; Zhan, Li-Hua
2016-05-01
Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.
Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric; Lawrence, Chad; Vijayakumar, M; Henderson, Wesley A; Liu, Tianbiao; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent; Wang, Wei
2015-07-20
Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all-organic flow battery based on high concentrations of redox materials, which shows significant, comprehensive improvement in flow battery performance. A mechanistic electron spin resonance study reveals that the choice of supporting electrolytes greatly affects the chemical stability of the charged radical species especially the negative side radical anion, which dominates the cycling stability of these flow cells. This finding not only increases our fundamental understanding of performance degradation in flow batteries using radical-based redox species, but also offers insights toward rational electrolyte optimization for improving the cycling stability of these flow batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Generalized contact and improved frictional heating in the material point method
NASA Astrophysics Data System (ADS)
Nairn, J. A.; Bardenhagen, S. G.; Smith, G. D.
2017-09-01
The material point method (MPM) has proved to be an effective particle method for computational mechanics modeling of problems involving contact, but all prior applications have been limited to Coulomb friction. This paper generalizes the MPM approach for contact to handle any friction law with examples given for friction with adhesion or with a velocity-dependent coefficient of friction. Accounting for adhesion requires an extra calculation to evaluate contact area. Implementation of velocity-dependent laws usually needs numerical methods to find contacting forces. The friction process involves work which can be converted into heat. This paper provides a new method for calculating frictional heating that accounts for interfacial acceleration during the time step. The acceleration terms is small for many problems, but temporal convergence of heating effects for problems involving vibrations and high contact forces is improved by the new method. Fortunately, the new method needs few extra calculations and therefore is recommended for all simulations.
Nano-scale hydrogen-bond network improves the durability of greener cements
Jacobsen, Johan; Rodrigues, Michelle Santos; Telling, Mark T. F.; Beraldo, Antonio Ludovico; Santos, Sérgio Francisco; Aldridge, Laurence P.; Bordallo, Heloisa N.
2013-01-01
More than ever before, the world's increasing need for new infrastructure demands the construction of efficient, sustainable and durable buildings, requiring minimal climate-changing gas-generation in their production. Maintenance-free “greener” building materials made from blended cements have advantages over ordinary Portland cements, as they are cheaper, generate less carbon dioxide and are more durable. The key for the improved performance of blends (which substitute fine amorphous silicates for cement) is related to their resistance to water penetration. The mechanism of this water resistance is of great environmental and economical impact but is not yet understood due to the complexity of the cement's hydration reactions. Using neutron spectroscopy, we studied a blend where cement was replaced by ash from sugar cane residuals originating from agricultural waste. Our findings demonstrate that the development of a distinctive hydrogen bond network at the nano-scale is the key to the performance of these greener materials. PMID:24036676
Zhu, Youqin; Liu, Jingli; Zhao, Jiao; Li, Yang; Qiao, Bo; Song, Dandan; Huang, Yan; Xu, Zheng; Zhao, Suling; Xu, Xurong
2018-01-01
Small molecule organic solar cells (SMOSCs) have attracted extensive attention in recent years. Squaraine (SQ) is a kind of small molecule material for potential use in high-efficiency devices, because of its high extinction coefficient and low-cost synthesis. However, the charge carrier mobility of SQ-based film is much lower than other effective materials, which leads to the pretty low fill factor (FF). In this study, we improve the performance of SQ derivative-based solar cells by incorporating PCDTBT into LQ-51/PC71BM host binary blend film. The incorporation of PCDTBT can not only increase the photon harvesting, but also provide an additional hole transport pathway. Through the charge carrier mobility and transient photovoltage measurement, we find that the hole mobility and charge carrier lifetime increase in the ternary system. Also, we carefully demonstrate that the charge carrier transport follows a parallel-like behavior. PMID:29747394
Generalized contact and improved frictional heating in the material point method
NASA Astrophysics Data System (ADS)
Nairn, J. A.; Bardenhagen, S. G.; Smith, G. D.
2018-07-01
The material point method (MPM) has proved to be an effective particle method for computational mechanics modeling of problems involving contact, but all prior applications have been limited to Coulomb friction. This paper generalizes the MPM approach for contact to handle any friction law with examples given for friction with adhesion or with a velocity-dependent coefficient of friction. Accounting for adhesion requires an extra calculation to evaluate contact area. Implementation of velocity-dependent laws usually needs numerical methods to find contacting forces. The friction process involves work which can be converted into heat. This paper provides a new method for calculating frictional heating that accounts for interfacial acceleration during the time step. The acceleration terms is small for many problems, but temporal convergence of heating effects for problems involving vibrations and high contact forces is improved by the new method. Fortunately, the new method needs few extra calculations and therefore is recommended for all simulations.
Numerical simulations of regolith sampling processes
NASA Astrophysics Data System (ADS)
Schäfer, Christoph M.; Scherrer, Samuel; Buchwald, Robert; Maindl, Thomas I.; Speith, Roland; Kley, Wilhelm
2017-07-01
We present recent improvements in the simulation of regolith sampling processes in microgravity using the numerical particle method smooth particle hydrodynamics (SPH). We use an elastic-plastic soil constitutive model for large deformation and failure flows for dynamical behaviour of regolith. In the context of projected small body (asteroid or small moons) sample return missions, we investigate the efficiency and feasibility of a particular material sampling method: Brushes sweep material from the asteroid's surface into a collecting tray. We analyze the influence of different material parameters of regolith such as cohesion and angle of internal friction on the sampling rate. Furthermore, we study the sampling process in two environments by varying the surface gravity (Earth's and Phobos') and we apply different rotation rates for the brushes. We find good agreement of our sampling simulations on Earth with experiments and provide estimations for the influence of the material properties on the collecting rate.
NASA Astrophysics Data System (ADS)
Luo, D.; Guan, Z.; Wang, C.; Yue, L.; Peng, L.
2017-06-01
Distribution of different parts to the assembly lines is significant for companies to improve production. Current research investigates the problem of distribution method optimization of a logistics system in a third party logistic company that provide professional services to an automobile manufacturing case company in China. Current research investigates the logistics leveling the material distribution and unloading platform of the automobile logistics enterprise and proposed logistics distribution strategy, material classification method, as well as logistics scheduling. Moreover, the simulation technology Simio is employed on assembly line logistics system which helps to find and validate an optimization distribution scheme through simulation experiments. Experimental results indicate that the proposed scheme can solve the logistic balance and levels the material problem and congestion of the unloading pattern in an efficient way as compared to the original method employed by the case company.
Strong, tough and stiff bioinspired ceramics from brittle constituents
NASA Astrophysics Data System (ADS)
Bouville, Florian; Maire, Eric; Meille, Sylvain; van de Moortèle, Bertrand; Stevenson, Adam J.; Deville, Sylvain
2014-05-01
High strength and high toughness are usually mutually exclusive in engineering materials. In ceramics, improving toughness usually relies on the introduction of a metallic or polymeric ductile phase, but this decreases the material’s strength and stiffness as well as its high-temperature stability. Although natural materials that are both strong and tough rely on a combination of mechanisms operating at different length scales, the relevant structures have been extremely difficult to replicate. Here, we report a bioinspired approach based on widespread ceramic processing techniques for the fabrication of bulk ceramics without a ductile phase and with a unique combination of high strength (470 MPa), high toughness (22 MPa m1/2), and high stiffness (290 GPa). Because only mineral constituents are needed, these ceramics retain their mechanical properties at high temperatures (600 °C). Our bioinspired, material-independent approach should find uses in the design and processing of materials for structural, transportation and energy-related applications.
Jackson, Dawnyea D.; Owens, Otis L.; Friedman, Daniela B.; Dubose-Morris, Ragan
2014-01-01
African Americans (AA) are more likely to develop and die from cancer than any other racial or ethnic group. The aims of this research were to: (1) evaluate current education materials being implemented in a community-based prostate cancer education program for AA communities; (2) refine materials based on findings from Aim 1; (3) share updated materials with participants from Aim 1 for additional improvements; and (4) disseminate and evaluate the improved education program through a statewide videoconference with AA men and women. AA individuals evaluated the current education program through a mail survey (n=32) and community forum (n=38). Participants reported that the existing prostate cancer education program content could be understood by lay persons, but recommendations for improvement were identified. They included: defining unknown and/or scientific terminology, increasing readability by increasing font size and enlarging images, and including more recent and relevant statistics. Following refinement of the education materials based on survey and forum feedback, a statewide videoconference was implemented. Following the videoconference, participants (25 men; 3 women) reported that they would encourage others to learn more about prostate cancer, talk to their doctor about whether or not to get screened for prostate cancer, and would recommend the conference to others. There is great potential for using this type of iterative approach to education program development with community and clinical partners for others conducting similar work. PMID:25510370
Role of organic and inorganic cations on thermal behavior of lead iodide perovskites
NASA Astrophysics Data System (ADS)
Singh, Rajan Kumar; Dash, Saumya R.; Kumar, Ranveer; Jain, Neha; Singh, Jai
2018-04-01
Recently, organic-inorganic perovskite materials have attracted much attention due to their enormous potential for use in future of new sustainable energy sources. However, fabrication of environmental friendly perovskite and achieving better stability is a major concern towards the commercialization. Here we study the role of cations in the perovskite powder and their influence upon thermodynamic stability. In this study we find, inorganic (cesium, Cs+) cation is shown to be more efficient in the thermal stabilization of the perovskite material than organic (methylamine, CH3NH2+) cation. This study reviles that stability of perovskite can be improved by incorporation of inorganic cation.
Li, L; Zheng, Q; Zou, Q; Rajput, S; Ijaduola, A O; Wu, Z; Wang, X P; Cao, H B; Somnath, S; Jesse, S; Chi, M; Gai, Z; Parker, D; Sefat, A S
2017-04-19
Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2 As 2 -based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Néel-ordering temperature in BaFe 2 As 2 crystal (T N = 132 K to 136 K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2 As 2 crystal (T c = 23 to 25 K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. While annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c .
Li, L.; Zheng, Q.; Zou, Q.; ...
2017-04-19
Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2As 2-based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Neel-ordering temperature in BaFe 2As 2 crystal (T N=132K to 136K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2As 2 crystalmore » (T c=23 to 25K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. And while annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it also promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L.; Zheng, Q.; Zou, Q.
Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2As 2-based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Neel-ordering temperature in BaFe 2As 2 crystal (T N=132K to 136K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2As 2 crystalmore » (T c=23 to 25K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. And while annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it also promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c« less
A step-up test procedure to find the minimum effective dose.
Wang, Weizhen; Peng, Jianan
2015-01-01
It is of great interest to find the minimum effective dose (MED) in dose-response studies. A sequence of decreasing null hypotheses to find the MED is formulated under the assumption of nondecreasing dose response means. A step-up multiple test procedure that controls the familywise error rate (FWER) is constructed based on the maximum likelihood estimators for the monotone normal means. When the MED is equal to one, the proposed test is uniformly more powerful than Hsu and Berger's test (1999). Also, a simulation study shows a substantial power improvement for the proposed test over four competitors. Three R-codes are provided in Supplemental Materials for this article. Go to the publishers online edition of Journal of Biopharmaceutical Statistics to view the files.
NASA Astrophysics Data System (ADS)
Bilan, Yaroslav
Sustainability of modern concrete industry recently has become an important topic of scientific discussion, and consequently there is an effort to study the potential of the emerging new supplementary cementitious materials. This study has a purpose to investigate the effect of reactive magnesia (reactive MgO) as a replacement for general use (GU) Portland Cements and the effect of environmental factors (CO2 concentrations and relative humidity) on accelerated carbonation curing results. The findings of this study revealed that improvement of physical properties is related directly to the increase in CO2 concentrations and inversely to the increase in relative humidity and also depends much on %MgO in the mixture. The conclusions of this study helped to clarify the effect of variable environmental factors and the material replacement range on carbonation of reactive magnesia concrete materials, as well as providing an assessment of the optimal conditions for the effective usage of the material.
Disability, Poverty, and Material Hardship since the Passage of the ADA
Drew, Julia A. Rivera
2015-01-01
The past 25 years have seen an unprecedented expansion in formal civil rights for people with disabilities that, among other things, was predicted to improve their economic well-being. Studies of economic well-being among people with disabilities have traditionally focused on employment and earnings, despite the fact that a minority of people with disabilities are employed. More recent literature has expanded to include measures of income poverty and material hardship, but has not examined trends in these dimensions of economic well-being over time or across different groups of people with disabilities. The current study uses nationally representative data covering the 1993-2010 period to examine trends over time in cross-sectional and dynamic measures of income poverty, and multiple dimensions of material hardship. It also describes differences in time trends by education, sex, race/ethnicity, and employment status among people with disabilities in income poverty and any material hardship. Levels of both material hardship and income poverty are high across the entire period for all groups, but while material hardship remains at the same level between 1993 and 2010, income poverty declines. These findings show that there has been little improvement over the past two decades in the economic well-being of people with disabilities, and additional research is needed to understand the mechanisms that keep even groups that are relatively privileged – college graduates and full-time, full-year workers – at very low levels of economic well-being. PMID:27042381
Achieving High Performance Perovskite Solar Cells
NASA Astrophysics Data System (ADS)
Yang, Yang
2015-03-01
Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imrich, K.J.; Bickford, D.F.; Wicks, G.G.
1997-06-27
A study was undertaken to evaluate a variety of materials and coatings for the DWPF pour spout bellows liner. The intent was to identify materials that would minimize or eliminate adherence of glass on the bellows liner wall and help minimize possible pluggage during glass pouring operations in DWPF. Glass has been observed adhering to the current bellow`s liner, which is made of 304L stainless steel. Materials were identified which successfully allowed molten glass to hit these surfaces and not adhere. Results of this study suggest that if these materials are used in the pouring system glass could still fallmore » into the canister without appreciable plugging, even if an unstable glass stream is produced. The materials should next be evaluated under the most realistic DWPF conditions possible. Other findings of this study include the following: (1) increasing coupon thickness produced a favorable increase in the glass sticking temperature; (2) highly polished surfaces, with the exception of the oxygen-free copper coupon coated with Armoloy dense chromium, did not produce a significant improvement in the glass sticking temperature, increasing angle of contact of the coupon to the falling glass did not yield a significant performance improvement; (3) electroplating with gold and silver and various diffusion coatings did not produce a significant increase in the glass sticking temperature. However, they may provide added oxidation and corrosion resistance for copper and bronze liners. Boron nitride coatings delaminated immediately after contact with the molten glass.« less
Cost Models for MMC Manufacturing Processes
NASA Technical Reports Server (NTRS)
Elzey, Dana M.; Wadley, Haydn N. G.
1996-01-01
The quality cost modeling (QCM) tool is intended to be a relatively simple-to-use device for obtaining a first-order assessment of the quality-cost relationship for a given process-material combination. The QCM curve is a plot of cost versus quality (an index indicating microstructural quality), which is unique for a given process-material combination. The QCM curve indicates the tradeoff between cost and performance, thus enabling one to evaluate affordability. Additionally, the effect of changes in process design, raw materials, and process conditions on the cost-quality relationship can be evaluated. Such results might indicate the most efficient means to obtain improved quality at reduced cost by process design refinements, the implementation of sensors and models for closed loop process control, or improvement in the properties of raw materials being fed into the process. QCM also allows alternative processes for producing the same or similar material to be compared in terms of their potential for producing competitively priced, high quality material. Aside from demonstrating the usefulness of the QCM concept, this is one of the main foci of the present research program, namely to compare processes for making continuous fiber reinforced, metal matrix composites (MMC's). Two processes, low pressure plasma spray deposition and tape casting are considered for QCM development. This document consists of a detailed look at the design of the QCM approach, followed by discussion of the application of QCM to each of the selected MMC manufacturing processes along with results, comparison of processes, and finally, a summary of findings and recommendations.
Using eHealth to improve health literacy among the patient population.
Landry, Kathryn E
2015-01-01
There is no denying the global influence of eHealth, in its various forms, on the health care system in the 21st Century. Health care professionals are often familiar with technological tools used to enhance health outcomes by assisting clinicians in meeting the needs of the patient population. In an age of social media, web-based information, and material available literally in an instant, it is crucial for nurses to use and proactively share their knowledge regarding accessing and finding credible sources of online health information with the patient population. By improving health literacy among consumers, self-sufficiency and competence can be developed and promoted to improve health outcomes, placing the patient in a participatory starring role of managing and improving his or her overall well-being.
Reaching kids: partnering with preschools and schools to improve children's health.
2009-11-01
As part of its continuing mission to serve trustees and staff of health foundations and corporate giving programs, Grantmakers In Health (GIH) convened a group of grantmakers and education experts on May 27, 2009, for an informative discussion about ways in which preschools and schools are working to improve outcomes related to children's health. The Issue Dialogue Reaching Kids: Partnering with Preschools and Schools to Improve Children's Health synthesized the latest research on health-related issues affecting children's educational outcomes. It also provided illustrative examples of foundation-driven initiatives aimed at promoting collaborations between the health and education sectors to improve children's health and development outcomes. This Issue Brief summarizes background materials compiled for the meeting and highlights key themes and findings that emerged from the day's discussion among meeting participants.
Corbella, Clara; Puigagut, Jaume
2018-08-01
For the past few years, there has been an increasing interest in the operation of constructed wetlands as microbial fuel cells (CW-MFCs) for both the improvement of wastewater treatment efficiency and the production of energy. However, there is still scarce information on design and operation aspects to maximize CW-MFCs efficiency, especially for the treatment of real domestic wastewater. The aim of this study was to quantify the extent of treatment efficiency improvement carried out by membrane-less MFCs simulating a core of a shallow un-planted horizontal subsurface flow constructed wetland. The influence of the external resistance (50, 220, 402, 604 and 1000Ω) and the anode material (graphite and gravel) on treatment efficiency improvement were addressed. To this purpose, 6 lab-scale membrane-less MFCs were set-up and loaded in batch mode with domestic wastewater for 13weeks. Results showed that 220Ω was the best operation condition for maximising MFCs treatment efficiency, regardless the anode material employed. Gravel-based anode MFCs operated at closed circuit showed ca. 18%, 15%, 31% and 25% lower effluent concentration than unconnected MFCs to the COD, TOC, PO 4 -3 and NH 4 + -N, respectively. Main conclusion of the present work is that constructed wetlands operated as MFCs is a promising strategy to improve domestic wastewater treatment efficiency. However, further studies at pilot scale under more realistic conditions (such as planted systems operated under continuous mode) shall be performed to confirm the findings here reported. Copyright © 2018 Elsevier B.V. All rights reserved.
Basic Aspects of Deep Soil Mixing Technology Control
NASA Astrophysics Data System (ADS)
Egorova, Alexandra A.; Rybak, Jarosław; Stefaniuk, Damian; Zajączkowski, Przemysław
2017-10-01
Improving a soil is a process of increasing its physical/mechanical properties without changing its natural structure. Improvement of soil subbase is reached by means of the knitted materials, or other methods when strong connection between soil particles is established. The method of DSM (Deep Soil Mixing) columns has been invented in Japan in 1970s. The main reason of designing cement-soil columns is to improve properties of local soils (such as strength and stiffness) by mixing them with various cementing materials. Cement and calcium are the most commonly used binders. However new research undertaken worldwide proves that apart from these materials, also gypsum or fly ashes can also be successfully implemented. As the Deep Soil Mixing is still being under development, anticipating mechanical properties of columns in particular soils and the usage of cementing materials in formed columns is very difficult and often inappropriate to predict. That is why a research is carried out in order to find out what binders and mixing technology should be used. The paper presents several remarks on the testing procedures related to quality and capacity control of Deep Soil Mixing columns. Soil improvement methods, their advantages and limitations are briefly described. The authors analyse the suitability of selected testing methods on subsequent stages of design and execution of special foundations works. Chosen examples from engineering practice form the basis for recommendations for the control procedures. Presented case studies concerning testing the on capacity field samples and laboratory procedures on various categories of soil-cement samples were picked from R&D and consulting works offered by Wroclaw University of Science and Technology. Special emphasis is paid to climate conditions which may affect the availability of performing and controlling of DSM techniques in polar zones, with a special regard to sample curing.
Design and application of shape memory actuators
NASA Astrophysics Data System (ADS)
Mertmann, M.; Vergani, G.
2008-05-01
The use of shape memory alloys in actuators allows the development of robust, simple and lightweight elements for application in a multitude of different industries. Over the years, the intermetallic compound Nickel-Titanium (NiTi or Nitinol) together with its ternary and quaternary derivates has gained general acceptance as a standard alloy. Even though as many as 99% of all shape memory actuator applications make use of Nitinol there are certain properties of this alloy system which require further research in order to find improvements and new markets: • Lack of higher transformation temperatures in the available alloys in order to open the field of automotive applications (Mf temperature > 80 °C) • Non-linearity in the electrical resistivity in order to improve the controllability of the actuator, • Wide hysteresis in the temperature-vs.-strain behaviour, which has a signi-ficant effect on both, the dynamics of the actuator and its controllability. Hence, there is a constant strive in the field towards an improvement of the related properties. However, these improvements are not always just alloy composition related. There is also a tremendous potential in the thermomechanical treatment of the material and in the design of the actuator. Significant improvement steps are already possible if the usage of the existent materials is optimized for the projected application and if the actuator system is designed in the most efficient way. This paper provides an overview about existent designs, applications and alloys for use in actuators, as well as examples of new shape memory actuator application with improved performance. It also gives an overview about general design rules and reflects about the strengths of the material and the related opportunities for its application.
2017-12-01
respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other...2 2 Prototype Equipment Design ...Program Manager was Mr. Jeb S. Tingle. This work was performed by the Airfields and Pavements Branch (APB) of the Engineering Systems and Materials
2013 Center for Army Leadership Annual Survey of Army Leadership (CASAL): Main Findings
2014-04-01
enhances Esprit de Corps. The Center for Army Profession and Ethic (CAPE) has fielded education and training materials (including doctrine, pamphlets ...videos, brochures , and lesson plans available online) to assist Army leaders in executing this program (The FY14 America’s Army-Our Profession...contribution of warrant officer courses for improving leadership capabilities are not unexpected. However, Department of the Army Pamphlet (DA PAM) 600-3
Kalet, A L; Song, H S; Sarpel, U; Schwartz, R; Brenner, J; Ark, T K; Plass, J
2012-01-01
Well-designed computer-assisted instruction (CAI) can potentially transform medical education. Yet little is known about whether specific design features such as direct manipulation of the content yield meaningful gains in clinical learning. We designed three versions of a multimedia module on the abdominal exam incorporating different types of interactivity. As part of their physical diagnosis course, 162 second-year medical students were randomly assigned (1:1:1) to Watch, Click or Drag versions of the abdominal exam module. First, students' prior knowledge, spatial ability, and prior experience with abdominal exams were assessed. After using the module, students took a posttest; demonstrated the abdominal exam on a standardized patient; and wrote structured notes of their findings. Data from 143 students were analyzed. Baseline measures showed no differences among groups regarding prior knowledge, experience, or spatial ability. Overall there was no difference in knowledge across groups. However, physical exam scores were significantly higher for students in the Click group. A mid-range level of behavioral interactivity was associated with small to moderate improvements in performance of clinical skills. These improvements were likely mediated by enhanced engagement with the material, within the bounds of learners' cognitive capacity. These findings have implications for the design of CAI materials to teach procedural skills.
Wang, Yonggang; Hu, Lintong; Zhang, Yue; Shi, Chao; Guo, Kai; Zhai, Tianyou; Li, Huiqiao
2018-05-24
Carbon based electrochemical double layer capacitors (EDLCs) generally exhibit high power and long life, but low energy density/capacitance. Pore/morphology optimization and pseudocapacitive materials modification of carbon materials have been used to improve electrode capacitance, but leading to the consumption of tap density, conductivity and stability. Introducing soluble redox mediators into electrolyte is a promising alternative to improve the capacitance of electrode. However, it is difficult to find one redox mediator that can provide additional capacitance for both positive and negative electrodes simultaneously. Here, an ambipolar organic radical, 2, 2, 6, 6-tetramethylpiperidinyloxyl (TEMPO) is first introduced to the electrolyte, which can substantially contribute additional pseudocapacitance by oxidation at the positive electrode and reduction at the negative electrode simultaneously. The EDLC with TEMPO mediator delivers an energy density as high as 51 Wh kg-1, 2.4 times of the capacitor without TEMPO, and a long cycle stability over 4000 cycles. The achieved results potentially point a new way to improve the energy density of EDLCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Attention and material-specific memory in children with lateralized epilepsy.
Engle, Jennifer A; Smith, Mary Lou
2010-01-01
Epilepsy is frequently associated with attention and memory problems. In adults, lateralization of seizure focus impacts the type of memory affected (left-sided lesions primarily impact verbal memory, while right-sided lesions primarily impact visual memory), but the relationship between seizure focus and the nature of the memory impairment is less clear in children. The current study examines the correlation between parent-reported attention problems and material-specific memory (verbal or visual-spatial) in 65 children (ages 6-16) with medically intractable lateralized epilepsy. There were no significant differences in attention and memory between those with left-lateralized epilepsy (n=25) and those with right-lateralized epilepsy (n=40). However, in the left-lateralized group attention problems were significantly negatively correlated only with delayed visual memory (r=-.450, p<.05), while the right-lateralized group demonstrated the opposite pattern (attention problems significantly negatively correlated with delayed verbal memory; r=-.331, p<.05). These findings suggest that lateralization of seizure focus may in fact impact children's memory in a material-specific manner, while problems with attention may impact memory more globally. Therefore, interventions designed to improve attention in children with epilepsy may have utility in improving certain aspects of memory, but further suggest that in children with lateralized epilepsy, material-specific memory deficits may not resolve with such interventions.
Solid lipid nanoparticles release DNA upon endosomal acidification in human embryonic kidney cells.
Radaic, A; de Jesus, M B
2018-08-03
Nanotechnology can produce materials with unique features compared to their bulk counterparts, which can be useful for medical applications (i.e. nanomedicine). Among the therapeutic agents used in nanomedicine, small molecules or biomacromolecules, such as proteins or genetic materials, can be designed for disease diagnostics and treatment. To transport these biomacromolecules to the target cells, nanomedicine requires nanocarriers. Solid lipid nanoparticles (SLNs) are among the promising nanocarriers available, because they can be made from biocompatible materials and present high stability (over one year). In addition, upon the binding genetic material, SLNs form SLNplexes. However, little is yet known about how cells process these SLNplexes-in particular, how internalization and endosome acidification affects the transfection mediated by SLNplexes. Therefore, we aim to investigate how these processes affect SLNplex transfection in HEK293T cells. We find that the SLNplex is mainly internalized by clathrin-mediated endocytosis, which is a fast and reliable pathway to transfection, leading to approximately 60% transfection efficiency. Interestingly, upon acidification (below pH 5.0), the SLN seems to release its DNA content, which can be an essential step for SLNplex transfection. The underlying mechanisms described in this work may help improve SLNplex formulations and transfection efficiency. Moreover, these advances can improve the field of nanomedical research and bring new ways to cure diseases.
Becker, Stephen P.; Epstein, Jeffery N.; Vaughn, Aaron J.; Girio-Herrera, Erin
2013-01-01
The purpose of the study was to evaluate predictors of response and mechanisms of change for the Homework, Organization, and Planning Skills (HOPS) intervention for middle school students with Attention-Deficit/Hyperactivity Disorder (ADHD). Twenty-three middle school students with ADHD (grades 6–8) received the HOPS intervention implemented by school mental health providers and made significant improvements in parent-rated materials organization and planning skills, impairment due to organizational skills problems, and homework problems. Predictors of response examined included demographic and child characteristics, such as gender, ethnicity, intelligence, ADHD and ODD symptom severity, and ADHD medication use. Mechanisms of change examined included the therapeutic alliance and adoption of the organization and planning skills taught during the HOPS intervention. Participant implementation of the HOPS binder materials organization system and the therapeutic alliance as rated by the student significantly predicted post-intervention outcomes after controlling for pre-intervention severity. Adoption of the binder materials organization system predicted parent-rated improvements in organization, planning, and homework problems above and beyond the impact of the therapeutic alliance. These findings demonstrate the importance of teaching students with ADHD to use a structured binder organization system for organizing and filing homework and classwork materials and for transferring work to and from school. PMID:24319323
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Xinyi; Kestell, John; Kisslinger, Kim
Infiltration synthesis, the atomic-layer-deposition-based organic–inorganic material hybridization technique that enables unique hybrid composites with improved material properties and inorganic nanostructures replicated from polymer templates, is shown to be driven by the binding reaction between reactive chemical groups of polymers and perfusing vapor-phase material precursors. Here in this paper, we discover that residual solvent molecules from polymer processing can react with infiltrating material precursors to enable the infiltration synthesis of metal oxides in a nonreactive polymer. The systematic study, which combines in situ quartz crystal microgravimetry, polarization-modulated infrared reflection–absorption spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, shows that the ZnOmore » infiltration synthesis in nominally nonreactive SU-8 polymer is mediated by residual processing solvent cyclopentanone, a cyclic ketone whose Lewis-basic terminal carbonyl group can react with the infiltrating Lewis-acidic Zn precursor diethylzinc (DEZ). In addition, we find favorable roles of residual epoxy rings in the SU-8 film in further assisting the infiltration synthesis of ZnO. Lastly, the discovered rationale not only improves the understanding of infiltration synthesis mechanism, but also potentially expands its application to more diverse polymer systems for the generation of unique functional organic–inorganic hybrids and inorganic nanostructures.« less
Ye, Xinyi; Kestell, John; Kisslinger, Kim; ...
2017-05-04
Infiltration synthesis, the atomic-layer-deposition-based organic–inorganic material hybridization technique that enables unique hybrid composites with improved material properties and inorganic nanostructures replicated from polymer templates, is shown to be driven by the binding reaction between reactive chemical groups of polymers and perfusing vapor-phase material precursors. Here in this paper, we discover that residual solvent molecules from polymer processing can react with infiltrating material precursors to enable the infiltration synthesis of metal oxides in a nonreactive polymer. The systematic study, which combines in situ quartz crystal microgravimetry, polarization-modulated infrared reflection–absorption spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, shows that the ZnOmore » infiltration synthesis in nominally nonreactive SU-8 polymer is mediated by residual processing solvent cyclopentanone, a cyclic ketone whose Lewis-basic terminal carbonyl group can react with the infiltrating Lewis-acidic Zn precursor diethylzinc (DEZ). In addition, we find favorable roles of residual epoxy rings in the SU-8 film in further assisting the infiltration synthesis of ZnO. Lastly, the discovered rationale not only improves the understanding of infiltration synthesis mechanism, but also potentially expands its application to more diverse polymer systems for the generation of unique functional organic–inorganic hybrids and inorganic nanostructures.« less
Randomized controlled trial of a computer-based module to improve contraceptive method choice.
Garbers, Samantha; Meserve, Allison; Kottke, Melissa; Hatcher, Robert; Ventura, Alicia; Chiasson, Mary Ann
2012-10-01
Unintended pregnancy is common in the United States, and interventions are needed to improve contraceptive use among women at higher risk of unintended pregnancy, including Latinas and women with low educational attainment. A three-arm randomized controlled trial was conducted at two family planning sites serving low-income, predominantly Latina populations. The trial tested the efficacy of a computer-based contraceptive assessment module in increasing the proportion of patients choosing an effective method of contraception (<10 pregnancies/100 women per year, typical use). Participants were randomized to complete the module and receive tailored health materials, to complete the module and receive generic health materials, or to a control condition. In intent-to-treat analyses adjusted for recruitment site (n=2231), family planning patients who used the module were significantly more likely to choose an effective contraceptive method: 75% among those who received tailored materials [odds ratio (OR)=1.56; 95% confidence interval (CI): 1.23-1.98] and 78% among those who received generic materials (OR=1.74; 95% CI: 1.35-2.25), compared to 65% among control arm participants. The findings support prior research suggesting that patient-centered interventions can positively influence contraceptive method choice. Copyright © 2012 Elsevier Inc. All rights reserved.
Shellac/nanoparticles dispersions as protective materials for wood
NASA Astrophysics Data System (ADS)
Weththimuni, Maduka L.; Capsoni, Doretta; Malagodi, Marco; Milanese, Chiara; Licchelli, Maurizio
2016-12-01
Wood is a natural material that finds numerous and widespread applications, but is subject to different decay processes. Surface coating is the most common method used to protect wood against deterioration and to improve and stabilize its distinctive appearance. Shellac is a natural resin that has been widely used as a protective material for wooden artefacts (e.g. furniture, musical instruments), due to its excellent properties. Nevertheless, diffusion of shellac-based varnishes has significantly declined during the last decades, because of some limitations such as the softness of the coating, photo-degradation, and sensitivity to alcoholic solvents and to pH variations. In the present study, different inorganic nanoparticles were dispersed into dewaxed natural shellac and the resulting materials were investigated even after application on wood specimens in order to assess variations of the coating properties. Analyses performed by a variety of experimental techniques have shown that dispersed nanoparticles do not significantly affect some distinctive and desirable features of the shellac varnish such as chromatic aspect, film-forming ability, water repellence, and adhesion. On the other hand, the obtained results suggested that some weak points of the coating, such as low hardness and poor resistance to UV-induced ageing, can be improved by adding ZrO2 and ZnO nanoparticles, respectively.
Validating YouTube Factors Affecting Learning Performance
NASA Astrophysics Data System (ADS)
Pratama, Yoga; Hartanto, Rudy; Suning Kusumawardani, Sri
2018-03-01
YouTube is often used as a companion medium or a learning supplement. One of the educational places that often uses is Jogja Audio School (JAS) which focuses on music production education. Music production is a difficult material to learn, especially at the audio mastering. With tutorial contents from YouTube, students find it easier to learn and understand audio mastering and improved their learning performance. This study aims to validate the role of YouTube as a medium of learning in improving student’s learning performance by looking at the factors that affect student learning performance. The sample involves 100 respondents from JAS at audio mastering level. The results showed that student learning performance increases seen from factors that have a significant influence of motivation, instructional content, and YouTube usefulness. Overall findings suggest that YouTube has a important role to student learning performance in music production education and as an innovative and efficient learning medium.
Mechanism for rapid growth of organic–inorganic halide perovskite crystals
Nayak, Pabitra K.; Moore, David T.; Wenger, Bernard; Nayak, Simantini; Haghighirad, Amir A.; Fineberg, Adam; Noel, Nakita K.; Reid, Obadiah G.; Rumbles, Garry; Kukura, Philipp; Vincent, Kylie A.; Snaith, Henry J.
2016-01-01
Optoelectronic devices based on hybrid halide perovskites have shown remarkable progress to high performance. However, despite their apparent success, there remain many open questions about their intrinsic properties. Single crystals are often seen as the ideal platform for understanding the limits of crystalline materials, and recent reports of rapid, high-temperature crystallization of single crystals should enable a variety of studies. Here we explore the mechanism of this crystallization and find that it is due to reversible changes in the solution where breaking up of colloids, and a change in the solvent strength, leads to supersaturation and subsequent crystallization. We use this knowledge to demonstrate a broader range of processing parameters and show that these can lead to improved crystal quality. Our findings are therefore of central importance to enable the continued advancement of perovskite optoelectronics and to the improved reproducibility through a better understanding of factors influencing and controlling crystallization. PMID:27830749
Tunable green graphene-silk biomaterials: Mechanism of protein-based nanocomposites.
Wang, Fang; Jyothirmayee Aravind, S S; Wu, Hao; Forys, Joseph; Venkataraman, Venkat; Ramanujachary, Kandalam; Hu, Xiao
2017-10-01
Green graphene materials prepared by photoreduction of graphite oxide were first time blended with aqueous-based silk fibroin proteins to improve the mechanical and thermal properties of silk biomaterials, and their nanocomposite interaction mechanism was illustrated. Powder X-ray diffraction (XRD) analysis confirmed the complete exfoliation of graphite oxide to graphene in presence of focused pulses of solar radiation. By varying the concentration of graphene (0.1wt% to 10wt%), a series of free standing graphene-silk films were prepared and were systematically characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and nanoindentation measurements. The homogeneity of graphene in silk as well as the thermal stability of the composite films was demonstrated by thermal gravimetric analysis (TGA) and temperature-modulated differential scanning calorimetry (TMDSC). Surprisingly, silk composite film containing only 0.5wt% of graphene gives the highest Young's modulus of 1.65GPa (about 5.8 times higher than the pure silk's modulus), indicating a nano-composite to micro-composite transition of silk-graphene structure occurred around this mixing ratio. This finding provided an easy approach to improve the elastic modulus and other physical properties of silk materials by adding a tiny amount of graphene sheets. Fibroblast cells studies also proved that these graphene-silk materials can significantly improve cell adhesion, growth and proliferation. This protein nanocomposite study provided a useful model to understand how to manipulate the hydrophobic-hydrophobic and polar-polar interactions between high-surface-area inorganic nanomaterials and amphiphilic protein materials, which has many emerging applications in the material science and engineering, such as bio-device fabrication, drug storage and release, and tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyes, B.L.P.
1992-06-01
The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All datamore » in this report were taken from the project's semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.« less
Mass of materials: the impact of designers on construction ergonomics.
Smallwood, John
2012-01-01
Many construction injuries are musculoskeletal related in the form of sprains and strains arising from the handling of materials, which are specified by designers. The paper presents the results of a study conducted among delegates attending two 'designing for H&S' (DfH&S) seminars using a questionnaire. The salient findings include: the level of knowledge relative to the mass and density of materials is limited; designers generally do not consider the mass and density of materials when designing structures and elements and specifying materials; to a degree designers appreciate that the mass and density of materials impact on construction ergonomics; designers rate their knowledge of the mass and density of materials as limited, and designers appreciate the potential of the consideration of the mass and density of materials to contribute to an improvement in construction ergonomics. Conclusions include: designers lack the requisite knowledge relative to the mass and density of materials; designers are thus precluded from conducting optimum design hazard identification and risk assessments, and tertiary built environment designer education does not enlighten designers relative to construction ergonomics. Recommendations include: tertiary built environment designer education should construction ergonomics; professional associations should raise the level of awareness relative to construction ergonomics, and design practices should include a category 'mass and density of materials' in their practice libraries.
Does Looking at the Positive Mean Feeling Good? Age and Individual Differences Matter.
Isaacowitz, Derek M; Noh, Soo Rim
2011-08-01
In this paper, we link age differences in gaze patterns toward emotional stimuli to later mood outcomes. While one might think that looking at more positive emotional material leads to better moods, and looking at more negative material leads to worse moods, it turns out that links between emotional looking and mood depend on age as well as individual differences. Though older people can feel good by looking more at positive material, in some cases young adults actually feel better by engaging visually with the negative. These age effects are further moderated by attentional abilities. Such findings suggest that different age groups may use looking differently, and this may reflect their preferences for using distinct emotion regulatory strategies. This work also serves as a reminder that regulatory efforts are not always successful at improving mood.
Material Selection for Cable Gland to Improved Reliability of the High-hazard Industries
NASA Astrophysics Data System (ADS)
Vashchuk, S. P.; Slobodyan, S. M.; Deeva, V. S.; Vashchuk, D. S.
2018-01-01
The sealed cable glands (SCG) are available to ensure safest connection sheathed single wire for the hazard production facility (nuclear power plant and others) the same as pilot cable, control cables, radio-frequency cables et al. In this paper, we investigate the specifics of the material selection of SCG with the express aim of hazardous man-made facility. We discuss the safe working conditions for cable glands. The research indicates the sintering powdered metals cables provide the reliability growth due to their properties. A number of studies have demonstrated the verification of material selection. On the face of it, we make findings indicating that double glazed sealed units could enhance reliability. We had evaluated sample reliability under fire conditions, seismic load, and pressure containment failure. We used the samples mineral insulated thermocouple cable.
NASA Astrophysics Data System (ADS)
Czán, Andrej; Kubala, Ondrej; Danis, Igor; Czánová, Tatiana; Holubják, Jozef; Mikloš, Matej
2017-12-01
The ever-increasing production and the usage of hard-to-machine progressive materials are the main cause of continual finding of new ways and methods of machining. One of these ways is the ceramic milling tool, which combines the pros of conventional ceramic cutting materials and pros of conventional coating steel-based insert. These properties allow to improve cutting conditions and so increase the productivity with preserved quality known from conventional tools usage. In this paper, there is made the identification of properties and possibilities of this tool when machining of hard-to-machine materials such as nickel alloys using in airplanes engines. This article is focused on the analysis and evaluation ordinary technological parameters and surface quality, mainly roughness of surface and quality of machined surface and tool wearing.
Worm, Bjarne Skjødt; Jensen, Kenneth
2013-01-01
Background and aims The fast development of e-learning and social forums demands us to update our understanding of e-learning and peer learning. We aimed to investigate if higher, pre-defined levels of e-learning or social interaction in web forums improved students’ learning ability. Methods One hundred and twenty Danish medical students were randomized to six groups all with 20 students (eCases level 1, eCases level 2, eCases level 2+, eTextbook level 1, eTextbook level 2, and eTextbook level 2+). All students participated in a pre-test, Group 1 participated in an interactive case-based e-learning program, while Group 2 was presented with textbook material electronically. The 2+ groups were able to discuss the material between themselves in a web forum. The subject was head injury and associated treatment and observation guidelines in the emergency room. Following the e-learning, all students completed a post-test. Pre- and post-tests both consisted of 25 questions randomly chosen from a pool of 50 different questions. Results All students concluded the study with comparable pre-test results. Students at Level 2 (in both groups) improved statistically significant compared to students at level 1 (p>0.05). There was no statistically significant difference between level 2 and level 2+. However, level 2+ was associated with statistically significant greater student's satisfaction than the rest of the students (p>0.05). Conclusions This study applies a new way of comparing different types of e-learning using a pre-defined level division and the possibility of peer learning. Our findings show that higher levels of e-learning does in fact provide better results when compared with the same type of e-learning at lower levels. While social interaction in web forums increase student satisfaction, learning ability does not seem to change. Both findings are relevant when designing new e-learning materials. PMID:24229729
Worm, Bjarne Skjødt; Jensen, Kenneth
2013-01-01
Background and aims The fast development of e-learning and social forums demands us to update our understanding of e-learning and peer learning. We aimed to investigate if higher, pre-defined levels of e-learning or social interaction in web forums improved students' learning ability. Methods One hundred and twenty Danish medical students were randomized to six groups all with 20 students (eCases level 1, eCases level 2, eCases level 2+, eTextbook level 1, eTextbook level 2, and eTextbook level 2+). All students participated in a pre-test, Group 1 participated in an interactive case-based e-learning program, while Group 2 was presented with textbook material electronically. The 2+ groups were able to discuss the material between themselves in a web forum. The subject was head injury and associated treatment and observation guidelines in the emergency room. Following the e-learning, all students completed a post-test. Pre- and post-tests both consisted of 25 questions randomly chosen from a pool of 50 different questions. Results All students concluded the study with comparable pre-test results. Students at Level 2 (in both groups) improved statistically significant compared to students at level 1 (p>0.05). There was no statistically significant difference between level 2 and level 2+. However, level 2+ was associated with statistically significant greater student's satisfaction than the rest of the students (p>0.05). Conclusions This study applies a new way of comparing different types of e-learning using a pre-defined level division and the possibility of peer learning. Our findings show that higher levels of e-learning does in fact provide better results when compared with the same type of e-learning at lower levels. While social interaction in web forums increase student satisfaction, learning ability does not seem to change. Both findings are relevant when designing new e-learning materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; ...
2015-03-11
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less
Improved model for the angular dependence of excimer laser ablation rates in polymer materials
NASA Astrophysics Data System (ADS)
Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.
2009-10-01
Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.
Characterization of CdTe and (CdZn)Te detectors with different metal contacts
NASA Astrophysics Data System (ADS)
Pekárek, J.; Belas, E.; Grill, R.; Uxa, Å.; James, R. B.
2013-09-01
In the present work we studied an influence of different types of surface etching and surface passivation of high resistivity CdZnTe-based semiconductor detector material. The aim was to find the optimal conditions to improve the properties of metal-semiconductor contact. The main effort was to reduce the leakage current and thus get better X-ray and gamma-ray spectrum, i.e. to create a detector operating at room temperature based on this semiconductor material with sufficient energy resolution and the maximum charge collection efficiency. Individual surface treatments were characterized by I-V characteristics, spectral analysis and by determination of the profile of the internal electric field.
Ultrasonic Spectroscopy of Stainless Steel Sandwich Panels
NASA Technical Reports Server (NTRS)
Cosgriff, Laura M.; Lerch, Bradley A.; Hebsur, Mohan G.; Baaklini, George Y.; Ghosn, Louis J.
2003-01-01
Enhanced, lightweight material systems, such as 17-4PH stainless steel sandwich panels are being developed for use as fan blades and fan containment material systems for next generation engines. In order to improve the production for these systems, nondestructive evaluation (NDE) techniques, such as ultrasonic spectroscopy, are being utilized to evaluate the brazing quality between the 17-4PH stainless steel face plates and the 17-4PH stainless steel foam core. Based on NDE data, shear tests are performed on sections representing various levels of brazing quality from an initial batch of these sandwich structures. Metallographic characterization of brazing is done to corroborate NDE findings and the observed shear failure mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Ina; French, Roger H.
Our project objective in the first and only Budget Period was to demonstrate the potential of nm-scale organofunctional silane coatings as a method of extending the lifetime of PV materials and devices. Specifically, the target was to double the lifetime performance of a laminated Cu(In,Ga)Se2 (CIGS) cell under real-world and accelerated aging exposure conditions. Key findings are that modification of aluminum-doped zinc oxide (AZO) films (materials used as transparent conductive oxide (TCO) top contacts) resulted in decreased degradation of optical and electrical properties under damp heat (DH) exposure compared to un-modified AZO. The most significant finding is that modification ofmore » the AZO top contact of full CIGS devices resulted in significantly improved properties under DH exposure compared to un-modified devices, by a factor of 4 after 1000 h. Results of this one-year project have demonstrated that surface functionalization is a viable pathway for extending the lifetime of state-of-the-art CIGS devices.« less
States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit.
Gruber, Matthias J; Gelman, Bernard D; Ranganath, Charan
2014-10-22
People find it easier to learn about topics that interest them, but little is known about the mechanisms by which intrinsic motivational states affect learning. We used functional magnetic resonance imaging to investigate how curiosity (intrinsic motivation to learn) influences memory. In both immediate and one-day-delayed memory tests, participants showed improved memory for information that they were curious about and for incidental material learned during states of high curiosity. Functional magnetic resonance imaging results revealed that activity in the midbrain and the nucleus accumbens was enhanced during states of high curiosity. Importantly, individual variability in curiosity-driven memory benefits for incidental material was supported by anticipatory activity in the midbrain and hippocampus and by functional connectivity between these regions. These findings suggest a link between the mechanisms supporting extrinsic reward motivation and intrinsic curiosity and highlight the importance of stimulating curiosity to create more effective learning experiences. Copyright © 2014 Elsevier Inc. All rights reserved.
He, Zhong-Hua; Yin, Wen-Gang
2016-09-01
There is increasing evidence that inadequate family environments (family material environment and family psychosocial environment) are not only social problems but also factors contributing to adverse neurocognitive outcomes. In the present study, the authors investigated the relationship among family environments, children's naturalistic affective state, self-reported stress, and executive functions in a sample of 157 Chinese families. These findings revealed that in inadequate family material environments, reduced children's cognitive flexibility is associated with increased naturalistic negative affectivity and self-reported stress. In addition, naturalistic negative affectivity mediated the association between family expressiveness and children's cognitive flexibility. The authors used a structural equation model to examine the mediation model hypothesis, and the results confirmed the mediating roles of naturalistic negative affectivity and self-reported stress between family environments and the cognitive flexibility of Chinese children. These findings indicate the importance of reducing stress and negative emotional state for improving cognitive functions in children of low socioeconomic status.
Integrated infrared detector arrays for low-background astronomy
NASA Technical Reports Server (NTRS)
Mccreight, C. R.
1979-01-01
Existing integrated infrared detector array technology is being evaluated under low-background conditions to determine its applicability in orbiting astronomical applications where extended integration times and photometric accuracy are of interest. Preliminary performance results of a 1 x 20 elements InSb CCD array under simulated astronomical conditions are presented. Using the findings of these tests, improved linear- and area-array technology will be developed for use in NASA programs such as the Shuttle Infrared Telescope Facility. For wavelengths less than 30 microns, extrinsic silicon and intrinsic arrays with CCD readout will be evaluated and improved as required, while multiplexed arrays of Ge:Ga for wavelengths in the range 30 to 120 microns will be developed as fundamental understanding of this material improves. Future efforts will include development of improved drive and readout circuitry, and consideration of alternate multiplexing schemes.
Sparking Curiosity: How Do You Know What Your Students Are Thinking?
NASA Astrophysics Data System (ADS)
Adams, Wendy K.; Willis, Courtney
2015-11-01
People find it easier to learn about topics that interest them. Recent neuroscience research has demonstrated that memory is improved when learning material about which we are curious. Therefore teaching in the context of what students are interested in should result in improved learning. How do we figure out what our students are curious about? What are they thinking? In this paper we will share techniques that we use in our teaching to determine what our students are highly motivated to learn. Data demonstrating increased interest in physics over the course of the term as well as student learning will also be shared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, X. G., E-mail: wang2006@mail.ustc.edu.cn; Wang, L., E-mail: sqtb@mail.ustc.edu.cn; Liu, J., E-mail: jingliu@mail.ustc.edu.cn
2014-03-31
Band structures of PbTe can be abnormally bended via dual-doping on both the cationic and anionic sites to form camel-back multivalley energy band structures near the band edge. As a result, additional carrier pockets and strong intervalley scattering of carriers are introduced. Boltzmann transport calculations indicate that their contradictory effects yield remarkably enhanced power factor due to the improved thermopower and almost unchanged electrical conductivity in low temperature and high carrier concentration ranges. These findings prove dual-doping-induced band bending as an effective approach to improve the thermoelectric properties of PbTe and other similar materials.
Low-Arousal Speech Noise Improves Performance in N-Back Task: An ERP Study
Zhang, Dandan; Jin, Yi; Luo, Yuejia
2013-01-01
The relationship between noise and human performance is a crucial topic in ergonomic research. However, the brain dynamics of the emotional arousal effects of background noises are still unclear. The current study employed meaningless speech noises in the n-back working memory task to explore the changes of event-related potentials (ERPs) elicited by the noises with low arousal level vs. high arousal level. We found that the memory performance in low arousal condition were improved compared with the silent and the high arousal conditions; participants responded more quickly and had larger P2 and P3 amplitudes in low arousal condition while the performance and ERP components showed no significant difference between high arousal and silent conditions. These findings suggested that the emotional arousal dimension of background noises had a significant influence on human working memory performance, and that this effect was independent of the acoustic characteristics of noises (e.g., intensity) and the meaning of speech materials. The current findings improve our understanding of background noise effects on human performance and lay the ground for the investigation of patients with attention deficits. PMID:24204607
A review of mechanical and tribological behaviour of polymer composite materials
NASA Astrophysics Data System (ADS)
Prabhakar, K.; Debnath, S.; Ganesan, R.; Palanikumar, K.
2018-04-01
Composite materials are finding increased applications in many industrial applications. A nano-composite is a matrix to which nanosized particles have been incorporated to drastically improve the mechanical performance of the original material. The structural components produced using nano-composites will exhibit a high strength-to-weight ratio. The properties of nano-composites have caused researchers and industries to consider using this material in several fields. Polymer nanocomposites consists of a polymer material having nano-particles or nano-fillers dispersed in the polymer matrix which may be of different shapes with at least one of the dimensions less than 100nm. In this paper, comprehensive review of polymer nanocomposites was done majorly in three different areas. First, mechanical behaviour of polymer nanocomposites which focuses on the mechanical property evaluation such as tensile strength, impact strength and modulus of elasticity based on the different combination of filler materials and nanoparticle inclusion. Second, wear behavior of Polymer composite materials with respect to different impingement angles and variation of filler composition using different processing techniques. Third, tribological (Friction and Wear) behaviour of nanocomposites using various combination of nanoparticle inclusion and time. Finally, it summarized the challenges and prospects of polymer nanocomposites.
Achieving reversibility of ultra-high mechanical stress by hydrogen loading of thin films
NASA Astrophysics Data System (ADS)
Hamm, M.; Burlaka, V.; Wagner, S.; Pundt, A.
2015-06-01
Nano-materials are commonly stabilized by supports to maintain their desired shape and size. When these nano-materials take up interstitial atoms, this attachment to the support induces mechanical stresses. These stresses can be high when the support is rigid. High stress in the nano-material is typically released by delamination from the support or by the generation of defects, e.g., dislocations. As high mechanical stress can be beneficial for tuning the nano-materials properties, it is of general interest to deduce how real high mechanical stress can be gained. Here, we show that below a threshold nano-material size, dislocation formation can be completely suppressed and, when delamination is inhibited, even the ultrahigh stress values of the linear elastic limit can be reached. Specifically, for hydrogen solved in epitaxial niobium films on sapphire substrate supports a threshold film thickness of 6 nm was found and mechanical stress of up to (-10 ± 1) GPa was reached. This finding is of basic interest for hydrogen energy applications, as the hydride stability in metals itself is affected by mechanical stress. Thus, tuning of the mechanical stress-state in nano-materials may lead to improved storage properties of nano-sized materials.
Fabrication of metal matrix composites by powder metallurgy: A review
NASA Astrophysics Data System (ADS)
Manohar, Guttikonda; Dey, Abhijit; Pandey, K. M.; Maity, S. R.
2018-04-01
Now a day's metal matrix components are used in may industries and it finds the applications in many fields so, to make it as better performable materials. So, the need to increase the mechanical properties of the composites is there. As seen from previous studies major problem faced by the MMC's are wetting, interface bonding between reinforcement and matrix material while they are prepared by conventional methods like stir casting, squeeze casting and other techniques which uses liquid molten metals. So many researchers adopt PM to eliminate these defects and to increase the mechanical properties of the composites. Powder metallurgy is one of the better ways to prepare composites and Nano composites. And the major problem faced by the conventional methods are uniform distribution of the reinforcement particles in the matrix alloy, many researchers tried to homogeneously dispersion of reinforcements in matrix but they find it difficult through conventional methods, among all they find ultrasonic dispersion is efficient. This review article is mainly concentrated on importance of powder metallurgy in homogeneous distribution of reinforcement in matrix by ball milling or mechanical milling and how powder metallurgy improves the mechanical properties of the composites.
Review of electronic transport models for thermoelectric materials
NASA Astrophysics Data System (ADS)
Bulusu, A.; Walker, D. G.
2008-07-01
Thermoelectric devices have gained importance in recent years as viable solutions for applications such as spot cooling of electronic components, remote power generation in space stations and satellites etc. These solid-state devices have long been known for their reliability rather than their efficiency; they contain no moving parts, and their performance relies primarily on material selection, which has not generated many excellent candidates. Research in recent years has been focused on developing both thermoelectric structures and materials that have high efficiency. In general, thermoelectric research is two-pronged with (1) experiments focused on finding new materials and structures with enhanced thermoelectric performance and (2) analytical models that predict thermoelectric behavior to enable better design and optimization of materials and structures. While numerous reviews have discussed the importance of and dependence on materials for thermoelectric performance, an overview of how to predict the performance of various materials and structures based on fundamental quantities is lacking. In this paper we present a review of the theoretical models that were developed since thermoelectricity was first observed in 1821 by Seebeck and how these models have guided experimental material search for improved thermoelectric devices. A new quantum model is also presented, which provides opportunities for the optimization of nanoscale materials to enhance thermoelectric performance.
Mechanochemically Reduced SiO2 by Ti Incorporation as Lithium Storage Materials.
Kim, Kyungbae; Moon, Janghyuk; Lee, Jaewoo; Yu, Ji-Sang; Cho, Maenghyo; Cho, Kyeongjae; Park, Min-Sik; Kim, Jae-Hun; Kim, Young-Jun
2015-09-21
This study presents a simple and effective method of reducing amorphous silica (a-SiO2 ) with Ti metal through high-energy mechanical milling for improving its reactivity when used as an anode material in lithium-ion batteries. Through thermodynamic calculations, it is determined that Ti metal can easily take oxygen atoms from a-SiO2 by forming a thermodynamically stable SiO2-x /TiOx composite, meaning that electrochemically inactive a-SiO2 is partially reduced by the addition of Ti metal powder during milling. This mechanically reduced SiO2-x /TiOx composite anode exhibits a greatly improved electrochemical reactivity, with a reversible capacity of more than 700 mAh g(-1) and excellent cycle performance over 100 cycles. Furthermore, an enhancement in the mechanical and thermal stability of the composite during cycling can be mainly attributed to the in situ formation of the SiO2-x /TiOx phase. These findings provide new insight into the rational design of robust, high-capacity, Si-based anode materials, as well as their reaction mechanism. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Singh, Jagdeep; Sharma, Rajiv Kumar
2016-12-01
Electrical discharge machining (EDM) is a well-known nontraditional manufacturing process to machine the difficult-to-machine (DTM) materials which have unique hardness properties. Researchers have successfully performed hybridization to improve this process by incorporating powders into the EDM process known as powder-mixed EDM process. This process drastically improves process efficiency by increasing material removal rate, micro-hardness, as well as reducing the tool wear rate and surface roughness. EDM also has some input parameters, including pulse-on time, dielectric levels and its type, current setting, flushing pressure, and so on, which have a significant effect on EDM performance. However, despite their positive influence, investigating the effects of these parameters on environmental conditions is necessary. Most studies demonstrate the use of kerosene oil as dielectric fluid. Nevertheless, in this work, the authors highlight the findings with respect to three different dielectric fluids, including kerosene oil, EDM oil, and distilled water using one-variable-at-a-time approach for machining as well as environmental aspects. The hazard and operability analysis is employed to identify the inherent safety factors associated with powder-mixed EDM of WC-Co.
Si-Sb-Te materials for phase change memory applications.
Rao, Feng; Song, Zhitang; Ren, Kun; Zhou, Xilin; Cheng, Yan; Wu, Liangcai; Liu, Bo
2011-04-08
Si-Sb-Te materials including Te-rich Si₂Sb₂Te₆ and Si(x)Sb₂Te₃ with different Si contents have been systemically studied with the aim of finding the most suitable Si-Sb-Te composition for phase change random access memory (PCRAM) use. Si(x)Sb₂Te₃ shows better thermal stability than Ge₂Sb₂Te₅ or Si₂Sb₂Te₆ in that Si(x)Sb₂Te₃ does not have serious Te separation under high annealing temperature. As Si content increases, the data retention ability of Si(x)Sb₂Te₃ improves. The 10 years retention temperature for Si₃Sb₂Te₃ film is ~393 K, which meets the long-term data storage requirements of automotive electronics. In addition, Si richer Si(x)Sb₂Te₃ films also show improvement on thickness change upon annealing and adhesion on SiO₂ substrate compared to those of Ge₂Sb₂Te₅ or Si₂Sb₂Te₆ films. However, the electrical performance of PCRAM cells based on Si(x)Sb₂Te₃ films with x > 3.5 becomes worse in terms of stable and long-term operations. Si(x)Sb₂Te₃ materials with 3 < x < 3.5 are proved to be suitable for PCRAM use to ensure good overall performance.
Polymorphism and Elastic Response of Molecular Materials from First Principles: How Hard Can it Be?
NASA Astrophysics Data System (ADS)
Reilly, Anthony; Tkatchenko, Alexandre
2014-03-01
Molecular materials are of great fundamental and applied importance in science and industry, with numerous applications in pharmaceuticals, electronics, sensing, and catalysis. A key challenge for theory has been the prediction of their stability, polymorphism and response to perturbations. While pairwise models of van der Waals (vdW) interactions have improved the ability of density functional theory (DFT) to model these systems, substantial quantitative and even qualitative failures remain. In this contribution we show how a many-body description of vdW interactions can dramatically improve the accuracy of DFT for molecular materials, yielding quantitative description of stabilities and polymorphism for these challenging systems. Moreover, the role of many-body vdW interactions goes beyond stabilities to response properties. In particular, we have studied the elastic properties of a series of molecular crystals, finding that many-body vdW interactions can account for up to 30% of the elastic response, leading to quantitative and qualitative changes in elastic behavior. We will illustrate these crucial effects with the challenging case of the polymorphs of aspirin, leading to a better understanding of the conflicting experimental and theoretical studies of this system.
Sorting it out: bedding particle size and nesting material processing method affect nest complexity.
Robinson-Junker, Amy; Morin, Amelia; Pritchett-Corning, Kathleen; Gaskill, Brianna N
2017-04-01
As part of routine husbandry, an increasing number of laboratory mice receive nesting material in addition to standard bedding material in their cages. Nesting material improves health outcomes and physiological performance in mice that receive it. Providing usable nesting material uniformly and efficiently to various strains of mice remains a challenge. The aim of this study was to determine how bedding particle size, method of nesting material delivery, and processing of the nesting material before delivery affected nest building in mice of strong (BALB/cAnNCrl) and weak (C3H/HeNCrl) gathering abilities. Our data suggest that processing nesting material through a grinder in conjunction with bedding material, although convenient for provision of bedding with nesting material 'built-in', negatively affects the integrity of the nesting material and subsequent nest-building outcomes. We also found that C3H mice, previously thought to be poor nest builders, built similarly scored nests to those of BALB/c mice when provided with unprocessed nesting material. This was true even when nesting material was mixed into the bedding substrate. We also observed that when nesting material was mixed into the bedding substrate, mice of both strains would sort their bedding by particle size more often than if it were not mixed in. Our findings support the utility of the practice of distributing nesting material mixed in with bedding substrate, but not that of processing the nesting material with the bedding in order to mix them.
NASA Astrophysics Data System (ADS)
Taffa, Dereje H.; Dillert, Ralf; Ulpe, Anna C.; Bauerfeind, Katharina C. L.; Bredow, Thomas; Bahnemann, Detlef W.; Wark, Michael
2017-01-01
Solar-assisted water splitting using photoelectrochemical cells (PECs) is one of the promising pathways for the production of hydrogen for renewable energy storage. The nature of the semiconductor material is the primary factor that controls the overall energy conversion efficiency. Finding semiconductor materials with appropriate semiconducting properties (stability, efficient charge separation and transport, abundant, visible light absorption) is still a challenge for developing materials for solar water splitting. Owing to the suitable bandgap for visible light harvesting and the abundance of iron-based oxide semiconductors, they are promising candidates for PECs and have received much research attention. Spinel ferrites are subclasses of iron oxides derived from the classical magnetite (FeIIFe2IIIO4) in which the FeII is replaced by one (some cases two) additional divalent metals. They are generally denoted as MxFe3-xO4 (M=Ca, Mg, Zn, Co, Ni, Mn, and so on) and mostly crystallize in spinel or inverse spinel structures. In this mini review, we present the current state of research in spinel ferrites as photoelectrode materials for PECs application. Strategies to improve energy conversion efficiency (nanostructuring, surface modification, and heterostructuring) will be presented. Furthermore, theoretical findings related to the electronic structure, bandgap, and magnetic properties will be presented and compared with experimental results.
NASA Astrophysics Data System (ADS)
Zhou, T.; Zhu, J. B.
2018-03-01
Three-dimensional printing (3DP) is a computer-controlled additive manufacturing technique which is able to repeatedly and accurately fabricate objects with complicated geometry and internal structures. After 30 years of fast development, 3DP has become a mainstream manufacturing process in various fields. This study focuses on identifying the most suitable 3DP material from five targeted available 3DP materials, i.e. ceramics, gypsum, PMMA (poly(methyl methacrylate)), SR20 (acrylic copolymer) and resin (Accura® 60), to simulate brittle and hard rocks. Firstly, uniaxial compression tests were performed to determine the mechanical properties and failure patterns of the 3DP samples fabricated by those five materials. Experimental results indicate that among current 3DP techniques, the resin produced via stereolithography (SLA) is the most suitable 3DP material for mimicking brittle and hard rocks, although its brittleness needs to be improved. Subsequently, three methods including freezing, incorporation of internal macro-crack and addition of micro-defects were adopted to enhance the brittleness of the 3DP resin, followed by uniaxial compression tests on the treated samples. Experimental results reveal that 3DP resin samples with the suggested treatments exhibited brittle properties and behaved similarly to natural rocks. Finally, some prospective improvements which can be used to facilitate the application of 3DP techniques to rock mechanics were also discussed. The findings of this paper could contribute to promoting the application of 3DP technique in rock mechanics.
Polymer-cement interactions towards improved wellbore cement fracture sealants
NASA Astrophysics Data System (ADS)
Beckingham, B. S.; Iloejesi, C.; Minkler, M. J.; Schindler, A. K.; Beckingham, L. E.
2017-12-01
Carbon capture, utilization, and storage (CCUS) in deep geologic formations is a promising means of reducing point source emissions of CO2. In these systems, CO2 is captured at the source and then injected to be utilized (eg. in enhanced oil recovery or as a working fluid in enhanced geothermal energy plants) or stored in geologic formations such as depleted oil and gas reservoirs or saline aquifers. While CCUS in subsurface systems could aid in reducing atmospheric CO2 emissions, the potential for CO2 leakage from these systems to overlying formations remains a major limitation and poses a significant risk to the security of injected CO2. Thus, improved materials for both initial wellbore isolation and repairing leakage pathways that develop over time are sought. One approach for the repair of cement fractures in wellbore (and other) systems is the injection of polymer materials into the fracture with a subsequent environmentally dependent (temperature, pressure, pH, etc.) densification or solidification. Here, we aim to investigate novel polymer materials for use to repair leaking wellbores in the context of CCUS. We synthesize and fully characterize a series of novel polymer materials and utilize a suite of analysis techniques to examine polymer-cement interactions at a range of conditions (namely temperature, pressure and pH). Initial findings will be leveraged to design novel polymer materials for further evaluation in polymer-cement composite cores, cement fracture healing, and the aging behavior of healed cements.
NASA Astrophysics Data System (ADS)
Mudhivarthi, Vamsi K.
Enzyme stability is of intense interest in bio-materials science as biocatalysts, and as sensing platforms. This is essentially because the unique properties of DNA, RNA, PAA can be coupled with the interesting and novel properties of proteins to produce systems with unprecedented control over their properties. In this article, the very first examples of enzyme/NA/inorganic hybrid nanomaterials and enzyme-Polyacrylic acid conjugates will be presented. The basic principles of design, synthesis and control of properties of these hybrid materials will be presented first, and this will be followed by a discussion of selected examples from our recent research findings. Data show that key properties of biological catalysts are improved by the inorganic framework especially when the catalyst is co-embedded with DNA. Several examples of such studies with various enzymes and proteins, including horseradish peroxidase (HRP), glucose oxidase (GO), cytochrome c (Cyt c), met-hemoglobin (Hb) and met-myoglobin (Mb) will be discussed. Additionally, key insights obtained by the standard methods of materials science including XRD, SEM and TEM as well as biochemical, calorimetric and spectroscopic methods will be discussed. Furthermore, improved structure and enhanced activities of the biocatalysts in specific cases will be demonstrated along with the potential stabilization mechanisms. Our hypothesis is that nucleic acids provide an excellent control over the enzyme-solid interactions as well as rational assembly of nanomaterials. These novel nanobiohybrid materials may aid in engineering more effective synthetic materials for gene-delivery, RNA-delivery and drug delivery applications.
Biologically inspired crack delocalization in a high strain-rate environment.
Knipprath, Christian; Bond, Ian P; Trask, Richard S
2012-04-07
Biological materials possess unique and desirable energy-absorbing mechanisms and structural characteristics worthy of consideration by engineers. For example, high levels of energy dissipation at low strain rates via triggering of crack delocalization combined with interfacial hardening by platelet interlocking are observed in brittle materials such as nacre, the iridescent material in seashells. Such behaviours find no analogy in current engineering materials. The potential to mimic such toughening mechanisms on different length scales now exists, but the question concerning their suitability under dynamic loading conditions and whether these mechanisms retain their energy-absorbing potential is unclear. This paper investigates the kinematic behaviour of an 'engineered' nacre-like structure within a high strain-rate environment. A finite-element (FE) model was developed which incorporates the pertinent biological design features. A parametric study was carried out focusing on (i) the use of an overlapping discontinuous tile arrangement for crack delocalization and (ii) application of tile waviness (interfacial hardening) for improved post-damage behaviour. With respect to the material properties, the model allows the permutation and combination of a variety of different material datasets. The advantage of such a discontinuous material shows notable improvements in sustaining high strain-rate deformation relative to an equivalent continuous morphology. In the case of the continuous material, the shockwaves propagating through the material lead to localized failure while complex shockwave patterns are observed in the discontinuous flat tile arrangement, arising from platelet interlocking. The influence of the matrix properties on impact performance is investigated by varying the dominant material parameters. The results indicate a deceleration of the impactor velocity, thus delaying back face nodal displacement. A final series of FE models considered the identification of an optimized configuration as a function of tile waviness and matrix properties. In the combined model, the optimized configuration was capable of stopping the ballistic threat, thus indicating the potential for bioinspired toughened synthetic systems to defeat high strain-rate threats.
Biologically inspired crack delocalization in a high strain-rate environment
Knipprath, Christian; Bond, Ian P.; Trask, Richard S.
2012-01-01
Biological materials possess unique and desirable energy-absorbing mechanisms and structural characteristics worthy of consideration by engineers. For example, high levels of energy dissipation at low strain rates via triggering of crack delocalization combined with interfacial hardening by platelet interlocking are observed in brittle materials such as nacre, the iridescent material in seashells. Such behaviours find no analogy in current engineering materials. The potential to mimic such toughening mechanisms on different length scales now exists, but the question concerning their suitability under dynamic loading conditions and whether these mechanisms retain their energy-absorbing potential is unclear. This paper investigates the kinematic behaviour of an ‘engineered’ nacre-like structure within a high strain-rate environment. A finite-element (FE) model was developed which incorporates the pertinent biological design features. A parametric study was carried out focusing on (i) the use of an overlapping discontinuous tile arrangement for crack delocalization and (ii) application of tile waviness (interfacial hardening) for improved post-damage behaviour. With respect to the material properties, the model allows the permutation and combination of a variety of different material datasets. The advantage of such a discontinuous material shows notable improvements in sustaining high strain-rate deformation relative to an equivalent continuous morphology. In the case of the continuous material, the shockwaves propagating through the material lead to localized failure while complex shockwave patterns are observed in the discontinuous flat tile arrangement, arising from platelet interlocking. The influence of the matrix properties on impact performance is investigated by varying the dominant material parameters. The results indicate a deceleration of the impactor velocity, thus delaying back face nodal displacement. A final series of FE models considered the identification of an optimized configuration as a function of tile waviness and matrix properties. In the combined model, the optimized configuration was capable of stopping the ballistic threat, thus indicating the potential for bioinspired toughened synthetic systems to defeat high strain-rate threats. PMID:21880614
Park, Sung-Jin; Park, Jong-Myong; Kim, Wha-Jung; Ghim, Sa-Youl
2012-11-01
Microbiological calcium carbonate precipitation (MCCP) has been investigated for its ability to improve the durability of cement mortar. However, very few strains have been applied to crack remediation and strengthening of cementitious materials. In this study, we report the biodeposition of Bacillus subtilis 168 and its ability to enhance the durability of cement material. B. subtilis 168 was applied to the surface of cement specimens. The results showed a new layer of deposited organic-inorganic composites on the surface of the cement paste. In addition, the water permeability of the cement paste treated with B. subtilis 168 was lower than that of non-treated specimens. Furthermore, artificial cracks in the cement paste were completely remediated by the biodeposition of B. subtilis 168. The compressive strength of cement mortar treated with B. subtilis 168 increased by about 19.5% when compared with samples completed with only B4 medium. Taken together, these findings suggest that the biodeposition of B. subtilis 168 could be used as a sealing and coating agent to improve the strength and water resistance of concrete. This is the first paper to report the application of Bacillus subtilis 168 for its ability to improve the durability of cement mortar through calcium carbonate precipitation.
NASA Astrophysics Data System (ADS)
Munir; Sutarno, H.; Aisyah, N. S.
2018-05-01
This research aims to find out how the development of interactive multimedia based on auditory, intellectually, and repetition can improve student learning outcomes. This interactive multimedia is developed through 5 stages. Analysis stages include the study of literature, questionnaire, interviews and observations. The design phase is done by the database design, flowchart, storyboards and repetition algorithm material while the development phase is done by the creation of web-based framework. Presentation material is adapted to the model of learning such as auditory, intellectually, repetition. Auditory points are obtained by recording the narrative material that presented by a variety of intellectual points. Multimedia as a product is validated by material and media experts. Implementation phase conducted on grade XI-TKJ2 SMKN 1 Garut. Based on index’s gain, an increasing of student learning outcomes in this study is 0.46 which is fair due to interest of student in using interactive multimedia. While the multimedia assessment earned 84.36% which is categorized as very well.
Mechanics of fragmentation of crocodile skin and other thin films.
Qin, Zhao; Pugno, Nicola M; Buehler, Markus J
2014-05-27
Fragmentation of thin layers of materials is mediated by a network of cracks on its surface. It is commonly seen in dehydrated paintings or asphalt pavements and even in graphene or other two-dimensional materials, but is also observed in the characteristic polygonal pattern on a crocodile's head. Here, we build a simple mechanical model of a thin film and investigate the generation and development of fragmentation patterns as the material is exposed to various modes of deformation. We find that the characteristic size of fragmentation, defined by the mean diameter of polygons, is strictly governed by mechanical properties of the film material. Our result demonstrates that skin fragmentation on the head of crocodiles is dominated by that it features a small ratio between the fracture energy and Young's modulus, and the patterns agree well with experimental observations. Understanding this mechanics-driven process could be applied to improve the lifetime and reliability of thin film coatings by mimicking crocodile skin.
Lakhan, Calvin
2016-11-01
This study highlights the economic and environmental challenges of recycling in Ontario, specifically examining the effect of attempting to increase the emissions target for the province's household recycling programme. The findings from the cost model analysis found that Ontario's Blue Box programme reduces overall carbon emissions by approximately 1.8 million tonnes every year. This study also found that targeting specific materials for recovery could result in a scenario where the province could improve both overall diversion and emissions offsets while reducing material management costs. Under our modelled scenario, as the tonnes of greenhouse gases (GHGs) avoided increases, the system cost per tonne of GHG avoided initial declines. However, after avoiding 2.05 million tonnes of GHGs, the system cost/tonne GHG avoided increases. To achieve an emissions target in excess of 2.05 million tonnes, the province will have to start recycling higher cost non-core materials (composite materials, other plastics, etc.). © The Author(s) 2016.
Mechanics of fragmentation of crocodile skin and other thin films
Qin, Zhao; Pugno, Nicola M.; Buehler, Markus J.
2014-01-01
Fragmentation of thin layers of materials is mediated by a network of cracks on its surface. It is commonly seen in dehydrated paintings or asphalt pavements and even in graphene or other two-dimensional materials, but is also observed in the characteristic polygonal pattern on a crocodile's head. Here, we build a simple mechanical model of a thin film and investigate the generation and development of fragmentation patterns as the material is exposed to various modes of deformation. We find that the characteristic size of fragmentation, defined by the mean diameter of polygons, is strictly governed by mechanical properties of the film material. Our result demonstrates that skin fragmentation on the head of crocodiles is dominated by that it features a small ratio between the fracture energy and Young's modulus, and the patterns agree well with experimental observations. Understanding this mechanics-driven process could be applied to improve the lifetime and reliability of thin film coatings by mimicking crocodile skin. PMID:24862190
Mechanics of fragmentation of crocodile skin and other thin films
NASA Astrophysics Data System (ADS)
Qin, Zhao; Pugno, Nicola M.; Buehler, Markus J.
2014-05-01
Fragmentation of thin layers of materials is mediated by a network of cracks on its surface. It is commonly seen in dehydrated paintings or asphalt pavements and even in graphene or other two-dimensional materials, but is also observed in the characteristic polygonal pattern on a crocodile's head. Here, we build a simple mechanical model of a thin film and investigate the generation and development of fragmentation patterns as the material is exposed to various modes of deformation. We find that the characteristic size of fragmentation, defined by the mean diameter of polygons, is strictly governed by mechanical properties of the film material. Our result demonstrates that skin fragmentation on the head of crocodiles is dominated by that it features a small ratio between the fracture energy and Young's modulus, and the patterns agree well with experimental observations. Understanding this mechanics-driven process could be applied to improve the lifetime and reliability of thin film coatings by mimicking crocodile skin.
Recent Advances in Neural Electrode-Tissue Interfaces.
Woeppel, Kevin; Yang, Qianru; Cui, Xinyan Tracy
2017-12-01
Neurotechnology is facing an exponential growth in the recent decades. Neural electrode-tissue interface research has been well recognized as an instrumental component of neurotechnology development. While satisfactory long-term performance was demonstrated in some applications, such as cochlear implants and deep brain stimulators, more advanced neural electrode devices requiring higher resolution for single unit recording or microstimulation still face significant challenges in reliability and longevity. In this article, we review the most recent findings that contribute to our current understanding of the sources of poor reliability and longevity in neural recording or stimulation, including the material failure, biological tissue response and the interplay between the two. The newly developed characterization tools are introduced from electrophysiology models, molecular and biochemical analysis, material characterization to live imaging. The effective strategies that have been applied to improve the interface are also highlighted. Finally, we discuss the challenges and opportunities in improving the interface and achieving seamless integration between the implanted electrodes and neural tissue both anatomically and functionally.
Optical Relaxation Time Enhancement in Graphene-Passivated Metal Films
NASA Astrophysics Data System (ADS)
Chugh, Sunny; Mehta, Ruchit; Man, Mengren; Chen, Zhihong
2016-07-01
Due to the small skin depth in metals at optical frequencies, their plasmonic response is strongly dictated by their surface properties. Copper (Cu) is one of the standard materials of choice for plasmonic applications, because of its high conductivity and CMOS compatibility. However, being a chemically active material, it gets easily oxidized when left in ambient environment, causing an inevitable degradation in its plasmonic resonance. Here, for the first time, we report a strong enhancement in the optical relaxation time in Cu by direct growth of few-layer graphene that is shown to act as an excellent passivation layer protecting Cu surface from any deterioration. Spectroscopic ellipsometry measurements reveal a 40-50% reduction in the total scattering rate in Cu itself, which is attributed to an improvement in its surface properties. We also study the impact of graphene quality and show that high quality graphene leads to an even larger improvement in electron scattering rate. These findings are expected to provide a big push towards graphene-protected Cu plasmonics.
Yosipof, Abraham; Nahum, Oren E; Anderson, Assaf Y; Barad, Hannah-Noa; Zaban, Arie; Senderowitz, Hanoch
2015-06-01
Growth in energy demands, coupled with the need for clean energy, are likely to make solar cells an important part of future energy resources. In particular, cells entirely made of metal oxides (MOs) have the potential to provide clean and affordable energy if their power conversion efficiencies are improved. Such improvements require the development of new MOs which could benefit from combining combinatorial material sciences for producing solar cells libraries with data mining tools to direct synthesis efforts. In this work we developed a data mining workflow and applied it to the analysis of two recently reported solar cell libraries based on Titanium and Copper oxides. Our results demonstrate that QSAR models with good prediction statistics for multiple solar cells properties could be developed and that these models highlight important factors affecting these properties in accord with experimental findings. The resulting models are therefore suitable for designing better solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reducing graphene device variability with yttrium sacrificial layers
NASA Astrophysics Data System (ADS)
Wang, Ning C.; Carrion, Enrique A.; Tung, Maryann C.; Pop, Eric
2017-05-01
Graphene technology has made great strides since the material was isolated more than a decade ago. However, despite improvements in growth quality and numerous "hero" devices, challenges of uniformity remain, restricting the large-scale development of graphene-based technologies. Here, we investigate and reduce the variability of graphene transistors by studying the effects of contact metals (with and without a Ti layer), resist, and yttrium (Y) sacrificial layers during the fabrication of hundreds of devices. We find that with optical photolithography, residual resist and process contamination are unavoidable, ultimately limiting the device performance and yield. However, using Y sacrificial layers to isolate the graphene from processing conditions improves the yield (from 73% to 97%), the average device performance (three-fold increase of mobility and 58% lower contact resistance), and the device-to-device variability (standard deviation of Dirac voltage reduced by 20%). In contrast to other sacrificial layer techniques, the removal of the Y sacrificial layer with dilute HCl does not harm surrounding materials, simplifying large-scale graphene fabrication.
Enhanced paramagnetism of mesoscopic graphdiyne by doping with nitrogen.
Zhang, Mingjia; Wang, Xiaoxiong; Sun, Huijuan; Wang, Ning; Lv, Qing; Cui, Weiwei; Long, Yunze; Huang, Changshui
2017-09-14
The new two-dimensional graphitic material, graphdiyne, has attracted great interest recently due to the superior intrinsic semiconductor properties. Here we investigate the magnetism of pure graphdiyne material and find it demonstrating a remarkable paramagnetic characteristic, which can be attributed to the appearance of special sp-hybridized carbon atoms. On this basis, we further introduce nitrogen with 5.29% N/C ratio into graphdiyne followed by simply annealing in a dopant source and realize a twofold enhancement of saturation moment at 2 K. Associate with the density of states calculation, we investigate the influence of the nitrogen atom doping sites on paramagnetism, and further reveal the important role of doped nitrogen atom on benzene ring in improving local magnetic moment. These results can not only help us deeply understand the intrinsic magnetism of graphdiyne, but also open an efficient way to improve magnetism of graphdiyne by hetero atom doping, like nitrogen doping, which may promote the potential application of graphdiyne in spintronics.
Management of cataract in uveitis patients.
Conway, Mandi D; Stern, Ethan; Enfield, David B; Peyman, Gholam A
2018-01-01
This review is timely because the outcomes of surgical invention in uveitic eyes with cataract can be optimized with adherence to strict anti-inflammatory principles. All eyes should be free of any cell/ flare for a minimum of 3 months preoperatively. Another helpful maneuver is to place dexamethasone in the infusion fluid or triamcinolone intracamerally at the end of surgery. Recent reports about the choice of intraocular lens material or lens design are germane to the best surgical outcome. Integrating these findings will promote better visual outcomes and allow advancement in research to further refine these surgical interventions in high-risk uveitic eyes. Control of inflammation has been shown to greatly improve postoperative outcomes in patients with uveitis. Despite better outcomes, more scientific research needs to be done regarding lens placement and materials and further research needs to adhere to the standardized reporting of uveitis nomenclature. Future studies should improve postoperative outcomes in eyes with uveitis so that they approach those of eyes undergoing routine cataract procedures.
NASA Astrophysics Data System (ADS)
Yazdanbakhsh, Ardavan
Carbon nanotubes (CNTs) and carbon nanofirbers (CNFs) have excellent properties (mechanical, electrical, magnetic, etc.), which can make them effective nanoreinforcements for improving the properties of materials. The incorporation of CNT/Fs in a wide variety of materials has been researched extensively in the past decade. However, the past study on the reinforcement of cementitious materials with these nanofilaments has been limited. The findings from those studies indicate that CNT/Fs did not significantly improve the mechanical properties of cementitious materials. Two major parameters influence the effectiveness of any discrete inclusion in composite material: The dispersion quality of the inclusions and the interfacial bond between the inclusions and matrix. The main focus of this dissertation is on the dispersion factor, and consists of three main tasks: First a novel thermodynamic-based method for dispersion quantification was developed. Second, a new method, incorporating the utilization of silica fume, was devised to improve and stabilize the dispersion of CNFs in cement paste. And third, the dispersion quantification method and mechanical testing were employed to measure, compare, and correlate the dispersion and mechanical properties of CNF-incorporated cement paste produced with the conventional and new methods. Finally, the main benefits, including the increase in strength and resistance to shrinkage cracking, obtained from the utilization of CNFs in cement paste will be presented. The investigations and the corresponding results show that the novel dispersion quantification method can be implemented easily to perform a wide variety of tasks ranging from measuring dispersion of nanofilaments in composites using their optical/SEM micrographs as input, to measuring the effect of cement particle/clump size on the dispersion of nano inclusions in cement paste. It was found that cement particles do not affect the dispersion of nano inclusions in cement paste significantly while the dispersion of nano inclusions can notably degenerates if the cement particles are agglomerated. The novel dispersion quantification method shows that, the dispersion of CNFs in cement paste significantly improves by utilizing silica fume. However, it was found that the dispersion of silica fume particles is an important parameter and poorly dispersed silica fume cannot enhance the overall dispersion of nano inclusions in cementitious materials. Finally, the mechanical testing and experimentations showed that CNFs, in absence of moist curing, even if poorly dispersed, can provide important benefits in terms of strength and crack resistance.
Ceramics Technology Project database: September 1991 summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keyes, B.L.P.
1992-06-01
The piston ring-cylinder liner area of the internal combustion engine must withstand very-high-temperature gradients, highly-corrosive environments, and constant friction. Improving the efficiency in the engine requires ring and cylinder liner materials that can survive this abusive environment and lubricants that resist decomposition at elevated temperatures. Wear and friction tests have been done on many material combinations in environments similar to actual use to find the right materials for the situation. This report covers tribology information produced from 1986 through July 1991 by Battelle columbus Laboratories, Caterpillar Inc., and Cummins Engine Company, Inc. for the Ceramic Technology Project (CTP). All datamore » in this report were taken from the project`s semiannual and bimonthly progress reports and cover base materials, coatings, and lubricants. The data, including test rig descriptions and material characterizations, are stored in the CTP database and are available to all project participants on request. Objective of this report is to make available the test results from these studies, but not to draw conclusions from these data.« less
Minimizing magnetic fields for precision experiments
NASA Astrophysics Data System (ADS)
Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S.; Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.
2015-06-01
An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.
Influence of fibre and filler reinforcement of plastic brackets: an in vitro study.
Faltermeier, Andreas; Rosentritt, Martin; Faltermeier, Rupert; Müssig, Dieter
2007-06-01
In spite of their popularity in fulfilling aesthetic requirements, plastic brackets still present some disadvantages because of their low elastic modulus, decreased fracture toughness, and reduced wear resistance. Fibre-reinforced composites are well established in dentistry and consist of a polymer matrix in which reinforcing fibres are embedded. Stress is transferred from the polymer matrix to the fibres which present a high tensile strength. Hence, the mechanical properties of polymers could be improved. The purpose of this study was to compare fracture strength, fracture toughness and flexural strength of an experimental fibre-reinforced bracket material, an SiO(2) filler-reinforced bracket and an unfilled plastic bracket material (control group). Experimental brackets and specialized bars were manufactured. Tests were performed after thermal cycling (5 degrees C/55 degrees C) the samples in an artificial oral environment of a device to simulate mastication. Statistical evaluation was undertaken. The median, 25th and 75th percentiles were calculated and a Mann-Whitney U-test was performed. In this study two findings were obvious. (1) Filler reinforcement of plastic brackets improved fracture strength and fracture toughness in comparison with the unfilled bracket material. (2) Glass fibre reinforcement of orthodontic bracket materials resulted in the greatest enhancement of the mechanical properties in comparison with the other test groups. Therefore, the application of glass fibres in plastic brackets is a successful method to enhance fracture strength.
Control of interior surface materials for speech privacy in high-speed train cabins.
Jang, H S; Lim, H; Jeon, J Y
2017-05-01
The effect of interior materials with various absorption coefficients on speech privacy was investigated in a 1:10 scale model of one high-speed train cabin geometry. The speech transmission index (STI) and privacy distance (r P ) were measured in the train cabin to quantify speech privacy. Measurement cases were selected for the ceiling, sidewall, and front and back walls and were classified as high-, medium- and low-absorption coefficient cases. Interior materials with high absorption coefficients yielded a low r P , and the ceiling had the largest impact on both the STI and r P among the interior elements. Combinations of the three cases were measured, and the maximum reduction in r P by the absorptive surfaces was 2.4 m, which exceeds the space between two rows of chairs in the high-speed train. Additionally, the contribution of the interior elements to speech privacy was analyzed using recorded impulse responses and a multiple regression model for r P using the equivalent absorption area. The analysis confirmed that the ceiling was the most important interior element for improving speech privacy. These results can be used to find the relative decrease in r P in the acoustic design of interior materials to improve speech privacy in train cabins. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
High-Quality TiS2 For Li/TiS2 Cells
NASA Technical Reports Server (NTRS)
Huang, Chen-Kuo; Surampudi, Subbarao; Shen, David H.; Delgiannis, Fotios; Halpert, Gerald
1992-01-01
Modified process for synthesis of battery-grade titanium sulfide (TiS2) yields substantially improved material for Li/TiS2 electrochemical cells. Includes all-vapor-phase reaction between sulfur and titanium. Product less dense and more homogeneous, consists of smaller particles of higher crystalline quality, and purer. Cells have high cathode utilization and long cycle life performance. Expected to find applications in rechargeable lithium batteries for spacecraft, military equipment, telecommunication systems, automobiles, and consumer products.
ARL Summer Student Research Symposium. Volume 1: Select Papers
2012-08-01
deploying Android smart phones and tablets on the battlefield, which may be a target for malware. In our research, we attempt to improve static...network. (a) The T1 and MRI images are (b) segmented into different material components. The segmented geometry is then used to create (c) a finite element...towards finding a method to detect mTBI non-invasively. One method in particular includes the use of a magnetic resonance image ( MRI )-based imaging
1987-06-15
GENERAL DYNAMICS FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY00 N MODERNIZATION PROGRAM Phase 2 Final Project Report DT C JUNO 7 1989J1K PROJECT 20...CLASSIFICATION O THIS PAGE All other editions are obsolete. unclassified Honeywell JUNE 15, 1987 GENERAL DYNAMICS FORT WORTH DIVISION INDUSTRIAL ...SYSTEMIEQUIPMENT/MACHINING SPECIFICATIONS 33 9 VENDOR/ INDUSTRY ANALYSIS FINDING 39 10 MIS REQUIREMENTS/IMPROVEMENTS 45 11 COST BENEFIT ANALYSIS 48 12 IMPLEMENTATION
Zeng, Rong; Wang, Wei; Zhao, Haijian; Fei, Yang; Wang, Zhiguo
2015-01-01
The narrow gap of HbA1 value of mass fraction between "normal" (< 6.0%) and "diabetes" (≥ 6.5%) necessitates tight control of inter-assay standardization, assay precision, and trueness. This survey was initiated to obtain knowledge of the current situation of internal quality control (IQC) practice for HbA(1c) in China and find out the most appropriate quality specifications. Data of IQC for HbA(1c) in 331 institutions participating in the national proficiency testing (PT) programs in China were evaluated using four levels of quality specifications, and the percentages of laboratories meeting the quality requirement were calculated to find out the most appropriate quality specifications for control materials of HbA(1c) in China. The IQC data varied vastly among 331 clinical laboratories in China. The measurement of control materials covered a wide range from 4.52% to 12.24% (inter-quartile range) and there were significant differences among the CVs of different methods, including LPLC, CE-HPLC, AC-HPLC, immunoturbidimetry, and others. Among the four main methods, CE-HPLC and AC-HPLC achieved a better precision. As we can see, the performance of laboratories for HbA(1c) has yet to be improved. Clinical laboratories in China should improve their performance with a stricter imprecision criteria.
Application of Knowledge Management: Pressing questions and practical answers
DOE Office of Scientific and Technical Information (OSTI.GOV)
FROMM-LEWIS,MICHELLE
2000-02-11
Sandia National Laboratory are working on ways to increase production using Knowledge Management. Knowledge Management is: finding ways to create, identify, capture, and distribute organizational knowledge to the people who need it; to help information and knowledge flow to the right people at the right time so they can act more efficiently and effectively; recognizing, documenting and distributing explicit knowledge (explicit knowledge is quantifiable and definable, it makes up reports, manuals, instructional materials, etc.) and tacit knowledge (tacit knowledge is doing and performing, it is a combination of experience, hunches, intuition, emotions, and beliefs) in order to improve organizational performancemore » and a systematic approach to find, understand and use knowledge to create value.« less
NASA Astrophysics Data System (ADS)
Hakim, A. A.; Rajagukguk, T. O.; Sumardi, S.
2018-01-01
Along with developing necessities of metal materials, these rise demands of quality improvements and material protections especially the mechanical properties of the material. This research used hot dip galvanizing coating method. The objectives of this research were to find out Rockwell hardness (HRb), layer thickness, micro structure and observation with Scanning Electron Microscope (SEM) from result of coating by using Hot Dip Galvanizing coating method with immersion time of 3, 6, 9, and 12 minutes at 460°C. The result shows that Highest Rockwell hardness test (HRb) was at 3 minutes immersion time with 76.012 HRb. Highest thickness result was 217.3 μm at 12 minutes immersion. Microstructure test result showed that coating was formed at eta, zeta, delta and gamma phases, while Scanning Electron Microscope (SEM) showed Fe, Zn, Mn, Si and S elements at the specimens after coating.
Biomaterials and their applications
NASA Astrophysics Data System (ADS)
Sharma, Anu; Sharma, Gayatri
2018-05-01
There is a growing demand for novel biomaterials for the replacement and repairing of soft and hard tissues such as bones, cartilage and blood vessels, decaying teeth, arthritic hips, injured tissues or even entire organs. The main aim of biomaterial research is to find the appropriate combination of chemical and physical properties matched with tissues replaced in the host. It improves the quality of life. On increasing number of people each year with increasing demands on these materials with higher expectations related to quality of life arising from an aging population. Now a day there is an ever-increasing search for novel biomaterials as the material requirements for complex biomedical devices increases with time. Many materials such as metals, ceramics, polymers, and glasses are being investigated as biomaterials. They are very useful in various fields due to their excellent bioactivity and biocompatibility. This paper includes various eco-friendly biomaterials and their application in various fields.
Bergman cyclization in polymer chemistry and material science.
Xiao, Yuli; Hu, Aiguo
2011-11-01
Bergman cyclization of enediynes, regarded as a promising strategy for anticancer drugs, now finds its own niche in the area of polymer chemistry and material science. The highly reactive aromatic diradicals generated from Bergman cyclization can undergo polymerization acting as either monomers or initiators of other vinyl monomers. The former, namely homopolymerization, leads to polyphenylenes and polynaphthalenes with excellent thermal stability, good solubility, and processability. The many remarkable properties of these aromatic polymers have further endowed them to be manufactured into carbon-rich materials, e.g., glassy carbons and carbon nanotubes. Whereas used as initiators, enediynes provide a novel resource for high molecular weight polymers with narrow polydispersities. The aromatic diradicals are also useful for introducing oligomers or polymers onto pristine carbonous nanomaterials, such as carbon nano-onions and carbon nanotubes, to improve their dispersibility in organic solvents and polymer solutions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tailoring Heterovalent Interface Formation with Light
Park, Kwangwook; Alberi, Kirstin
2017-08-17
Integrating different semiconductor materials into an epitaxial device structure offers additional degrees of freedom to select for optimal material properties in each layer. However, interface between materials with different valences (i.e. III-V, II-VI and IV semiconductors) can be difficult to form with high quality. Using ZnSe/GaAs as a model system, we explore the use of UV illumination during heterovalent interface growth by molecular beam epitaxy as a way to modify the interface properties. We find that UV illumination alters the mixture of chemical bonds at the interface, permitting the formation of Ga-Se bonds that help to passivate the underlying GaAsmore » layer. Illumination also helps to reduce defects in the ZnSe epilayer. Furthermore, these results suggest that moderate UV illumination during growth may be used as a way to improve the optical properties of both the GaAs and ZnSe layers on either side of the interface.« less
How mobile are protons in the structure of dental glass ionomer cements?
Benetti, Ana R.; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C. R.; Okhrimenko, Denis V.; Telling, Mark T. F.; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N.
2015-01-01
The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements. PMID:25754555
NASA Astrophysics Data System (ADS)
Li, Yi; Xu, Yanlong
2017-09-01
Considering uncertain geometrical and material parameters, the lower and upper bounds of the band gap of an undulated beam with periodically arched shape are studied by the Monte Carlo Simulation (MCS) and interval analysis based on the Taylor series. Given the random variations of the overall uncertain variables, scatter plots from the MCS are used to analyze the qualitative sensitivities of the band gap respect to these uncertainties. We find that the influence of uncertainty of the geometrical parameter on the band gap of the undulated beam is stronger than that of the material parameter. And this conclusion is also proved by the interval analysis based on the Taylor series. Our methodology can give a strategy to reduce the errors between the design and practical values of the band gaps by improving the accuracy of the specially selected uncertain design variables of the periodical structures.
Poly-paper: a sustainable material for packaging, based on recycled paper and recyclable with paper.
Del Curto, Barbara; Barelli, Nadia; Profaizer, Mauro; Farè, Silvia; Tanzi, Maria Cristina; Cigada, Alberto; Ognibene, Giulia; Recca, Giuseppe; Cicala, Gianluca
2016-11-02
Until now, environmental sustainability issues are almost entirely unsolved for packaging materials. With the final aim of finding materials with a single recycling channel, cellulose fiber/poly(vinyl)alcohol composites were investigated. After extrusion and injection molding, samples of composite with different cellulose fiber content (30%, 50% and 70% w/w) were tested. Tensile mechanical tests exhibited an improvement in composite stiffness when the reinforcement content was increased together with a decrease in composite elongation. Solubility tests performed at room temperature and 45°C showed different behavior depending on the water-resistant film applied on the composite (50% cellulose fiber content). In particular, the uncoated composite showed complete solubility after 2 hours, whereas at the same time point, no solubility occurred when a non-water-soluble varnish was used. The proposed composites, named Poly-paper, appear to warrant further investigation as highly sustainable packaging.
Wang, Junfeng; Song, Xinshan; Wang, Yuhui; Abayneh, Befkadu; Ding, Yi; Yan, Denghua; Bai, Junhong
2016-12-01
The microbial fuel cell coupled with constructed wetland (CW-MFC) microcosms were operated under fed-batch mode for evaluating the effect of electrode materials on bioelectricity generation and microbial community composition. Experimental results indicated that the bioenergy output in CW-MFC increased with the substrate concentration; maximum average voltage (177mV) was observed in CW-MFC with carbon fiber felt (CFF). In addition, the four different materials resulted in the formation of significantly different microbial community distribution around the anode electrode. The relative abundance of Proteobacteria in CFF and foamed nickel (FN) was significantly higher than that in stainless steel mesh (SSM) and graphite rod (GR) samples. Notably, the findings indicate that CW-MFC utilizing FN anode electrode could apparently improve relative abundance of Dechloromonas, which has been regarded as a denitrifying and phosphate accumulating microorganism. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Backofen, Joseph E.
2005-07-01
This paper will describe both the scientific findings and the model developed in order to quantfy a material's instantaneous velocity versus position, time, or the expansion ratio of an explosive's gaseous products while its gas pressure is accelerating the material. The formula derived to represent this gas-push process for the 2nd stage of the BRIGS Two-Step Detonation Propulsion Model was found to fit very well the published experimental data available for twenty explosives. When the formula's two key parameters (the ratio Vinitial / Vfinal and ExpansionRatioFinal) were adjusted slightly from the average values describing closely many explosives to values representing measured data for a particular explosive, the formula's representation of that explosive's gas-push process was improved. The time derivative of the velocity formula representing acceleration and/or pressure compares favorably to Jones-Wilkins-Lee equation-of-state model calculations performed using published JWL parameters.
How mobile are protons in the structure of dental glass ionomer cements?
NASA Astrophysics Data System (ADS)
Benetti, Ana R.; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C. R.; Okhrimenko, Denis V.; Telling, Mark T. F.; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N.
2015-03-01
The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements.
NASA Astrophysics Data System (ADS)
van Setten, M. J.; Giantomassi, M.; Gonze, X.; Rignanese, G.-M.; Hautier, G.
2017-10-01
The search for new materials based on computational screening relies on methods that accurately predict, in an automatic manner, total energy, atomic-scale geometries, and other fundamental characteristics of materials. Many technologically important material properties directly stem from the electronic structure of a material, but the usual workhorse for total energies, namely density-functional theory, is plagued by fundamental shortcomings and errors from approximate exchange-correlation functionals in its prediction of the electronic structure. At variance, the G W method is currently the state-of-the-art ab initio approach for accurate electronic structure. It is mostly used to perturbatively correct density-functional theory results, but is, however, computationally demanding and also requires expert knowledge to give accurate results. Accordingly, it is not presently used in high-throughput screening: fully automatized algorithms for setting up the calculations and determining convergence are lacking. In this paper, we develop such a method and, as a first application, use it to validate the accuracy of G0W0 using the PBE starting point and the Godby-Needs plasmon-pole model (G0W0GN @PBE) on a set of about 80 solids. The results of the automatic convergence study utilized provide valuable insights. Indeed, we find correlations between computational parameters that can be used to further improve the automatization of G W calculations. Moreover, we find that G0W0GN @PBE shows a correlation between the PBE and the G0W0GN @PBE gaps that is much stronger than that between G W and experimental gaps. However, the G0W0GN @PBE gaps still describe the experimental gaps more accurately than a linear model based on the PBE gaps. With this paper, we hence show that G W can be made automatic and is more accurate than using an empirical correction of the PBE gap, but that, for accurate predictive results for a broad class of materials, an improved starting point or some type of self-consistency is necessary.
NASA Astrophysics Data System (ADS)
Shu, Haibo; Li, Feng; Hu, Chenli; Liang, Pei; Cao, Dan; Chen, Xiaoshuang
2016-01-01
Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (~0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance.Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (~0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance. Electronic supplementary information (ESI) available: Models and energetics of Li adsorption/intercalation onto MoS2 sheets, details of the phase diagram calculations, schematic illustration for the structural evolution of lithiated MoS2 nanosheets, AIMD trajectories for lithiated silicene/MoS2/silicene composites, and movies for recording the AIMD simulation results. See DOI: 10.1039/c5nr07909h
Improving adolescent contraceptive use: evaluation of a theory-driven classroom-based intervention.
Brown, Katherine E; Hurst, Keith M; Arden, Madelynne A
2011-03-01
The aim of the research was to evaluate the impact of intervention materials, designed to enhance self-efficacy and anticipated regret, on contraceptive behaviour and antecedents of contraceptive use in a sample of adolescents. It was hypothesised that materials designed to enhance self-efficacy and anticipated regret would lead to improvements in outcome measures compared with controls. A 4(intervention condition) × 3(time) mixed design was used to assess the impact of intervention materials. Participants (N = 414) were recruited from five secondary schools in the north of England. They were assigned to an active control group, an anticipated regret (AR) manipulation, a self-efficacy (SE) manipulation or both AR and SE manipulations. Outcome measures included psychological antecedents of contraceptive behaviour change, intentions and behaviour. Multivariate analysis of variance (MANOVA) revealed increases across several outcome measures over time (F[14,287] = 8.99, P < 0.001, η(p)(2) = 0.305) including intentions, but these did not differ by condition (F[42,852] = 1.35, P = 0.07, η(p)(2) = 0.062). There was evidence that the questionnaires may have caused reactivity in participants. Amongst sexually active participants with relatively low levels of intention to use contraception at the outset, increases in several outcome measures including intention and behaviour were observed (F[3,35] = 10.359, P < 0.001, η(p)(2) = 0.47). Findings support the potential for effective delivery of behaviour change theory-driven interventions in classroom settings. The possibility that the questionnaires may have acted as a form of intervention contributes to recent discussion of this issue in the literature, and the findings also strengthen the case for post-decisional and behavioural skills interventions to enhance behaviour amongst those already motivated to use contraception.
Xu, Zhanwen; Lin, Jiaping; Zhang, Liangshun; Wang, Liquan; Wang, Gengchao; Tian, Xiaohui; Jiang, Tao
2018-06-14
We applied a multi-scale approach coupling dissipative particle dynamics method with a drift-diffusion model to elucidate the photovoltaic properties of multiblock copolymers consisting of alternating electron donor and acceptor blocks. A series of hierarchical lamellae-in-lamellar structures were obtained from the self-assembly of the multiblock copolymers. A distinct improvement in photovoltaic performance upon the morphology transformation from lamella to lamellae-in-lamella was observed. The hierarchical lamellae-in-lamellar structures significantly enhanced exciton dissociation and charge carrier transport, which consequently contributed to the improved photovoltaic performance. Based on our theoretical calculations, the hierarchical nanostructures can achieve a much enhanced energy conversion efficiency, improved by around 25% compared with that of general ones, through structure modulation on number and size of the small-length-scale domains. Our findings are supported by recent experimental evidence and yield guidelines for designing hierarchical materials with improved photovoltaic properties.
Strong emission from nano-iron using laser-induced breakdown spectroscopy technique
NASA Astrophysics Data System (ADS)
Rashid, F. F.; ELSherbini, A. M.; Al-Muhamady, A.
2014-06-01
In this paper, we report a strong enhanced emission from laser produced plasma in air from iron oxide nano-material in comparison with the corresponding bulk samples. The enhancement strength differs with different Nd:YAG laser harmonics wavelengths. The analysis showed that such enhancement increased exponentially with the plasma evolution time, while it declines as the laser fluence increased. Experimental data analysis clearly showed that the observed enhancement is mainly associated with the change in the plasma electron density. We claim that this strong enhanced optical emission from laser produced plasma is due to the surface plasmon resonant excitation preferably on nano-oxide materials. Such experimental findings could improve the laser-induced breakdown spectroscopy sensitivity down to extremely low concentrations.
NASA Astrophysics Data System (ADS)
Lonergan, Jeffrey M.
1992-04-01
As legal and societal pressures against the use of hazardous waste generating materials has increased, so has the motivation to find safe, effective, and permanent replacements. Dry ice blasting is a technology which uses CO2 pellets as a blasting medium. The use of CO2 for cleaning and stripping operations offers potential for significant environmental, safety, and productivity improvements over grit blasting, plastic media blasting, and chemical solvent cleaning. Because CO2 pellets break up and sublime upon impact, there is no expended media to dispose of. Unlike grit or plastic media blasting which produce large quantities of expended media, the only waste produced by CO2 blasting is the material removed. The quantity of hazardous waste produced, and thus the cost of hazardous waste disposal is significantly reduced.
Methods of parallel computation applied on granular simulations
NASA Astrophysics Data System (ADS)
Martins, Gustavo H. B.; Atman, Allbens P. F.
2017-06-01
Every year, parallel computing has becoming cheaper and more accessible. As consequence, applications were spreading over all research areas. Granular materials is a promising area for parallel computing. To prove this statement we study the impact of parallel computing in simulations of the BNE (Brazil Nut Effect). This property is due the remarkable arising of an intruder confined to a granular media when vertically shaken against gravity. By means of DEM (Discrete Element Methods) simulations, we study the code performance testing different methods to improve clock time. A comparison between serial and parallel algorithms, using OpenMP® is also shown. The best improvement was obtained by optimizing the function that find contacts using Verlet's cells.
Bodner, Danielle; LaDeau, Shannon L; Biehler, Dawn; Kirchoff, Nicole; Leisnham, Paul T
2016-01-01
Improving resident-based management and knowledge of mosquitoes is often an integral component of integrated mosquito management, especially in urban landscapes with considerable mosquito habitat on privately owned lands. This study tested the effectiveness of print education materials at reducing urban mosquito exposure through improving resident knowledge of, and attitudes towards, mosquitoes and mosquito management in Washington DC, USA. There was a specific focus on the removal of water-filled containers that are utilized by the developmental stages of the two most common vector species in the region, Aedes albopictus and Culex pipiens. Households in six neighborhoods that varied in socio-economic status were administered knowledge, attitude, and practice (KAP) surveys in 2010 and 2012, and had their yards surveyed for container habitats and immature mosquitoes (larvae and pupae) in 2010, 2011, and 2012. Half the households (intervention, n = 120) received education materials in 2011 and 2012 to yield a before-after control-intervention (BACI) design. Unexpectedly, residents in intervention households were more likely to show decreased concern for mosquito-borne illnesses than residents in control households, which did not receive materials. Moreover, there was a greater probability that control households reduced containers in 2012 than intervention households, particularly when they had low numbers of baseline (2010) containers. Irrespective of control, reductions in containers were associated with decreased abundances of immature mosquitoes. Overall, our findings suggest that print education materials may have unintended negative effects on resident attitudes and household management of mosquito production. We recommend that mosquito control agencies need to carefully consider their content of print messages and the effectiveness of strategies that passively convey information with little or no engagement with control professionals.
Bodner, Danielle; LaDeau, Shannon L.; Biehler, Dawn; Kirchoff, Nicole; Leisnham, Paul T.
2016-01-01
Improving resident-based management and knowledge of mosquitoes is often an integral component of integrated mosquito management, especially in urban landscapes with considerable mosquito habitat on privately owned lands. This study tested the effectiveness of print education materials at reducing urban mosquito exposure through improving resident knowledge of, and attitudes towards, mosquitoes and mosquito management in Washington DC, USA. There was a specific focus on the removal of water-filled containers that are utilized by the developmental stages of the two most common vector species in the region, Aedes albopictus and Culex pipiens. Households in six neighborhoods that varied in socio-economic status were administered knowledge, attitude, and practice (KAP) surveys in 2010 and 2012, and had their yards surveyed for container habitats and immature mosquitoes (larvae and pupae) in 2010, 2011, and 2012. Half the households (intervention, n = 120) received education materials in 2011 and 2012 to yield a before-after control-intervention (BACI) design. Unexpectedly, residents in intervention households were more likely to show decreased concern for mosquito-borne illnesses than residents in control households, which did not receive materials. Moreover, there was a greater probability that control households reduced containers in 2012 than intervention households, particularly when they had low numbers of baseline (2010) containers. Irrespective of control, reductions in containers were associated with decreased abundances of immature mosquitoes. Overall, our findings suggest that print education materials may have unintended negative effects on resident attitudes and household management of mosquito production. We recommend that mosquito control agencies need to carefully consider their content of print messages and the effectiveness of strategies that passively convey information with little or no engagement with control professionals. PMID:27171195
Nonlinear bleaching, absorption, and scattering of 532-nm-irradiated plasmonic nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liberman, V.; Sworin, M.; Kingsborough, R. P.
2013-02-07
Single-pulse irradiation of Au and Ag suspensions of nanospheres and nanodisks with 532-nm 4-ns pulses has identified complex optical nonlinearities while minimizing material damage. For all materials tested, we observe competition between saturable absorption (SA) and reverse SA (RSA), with RSA behavior dominating for intensities above {approx}50 MW/cm{sup 2}. Due to reduced laser damage in single-pulse experiments, the observed intrinsic nonlinear absorption coefficients are the highest reported to date for Au nanoparticles. We find size dependence to the nonlinear absorption enhancement for Au nanoparticles, peaking in magnitude for 80-nm nanospheres and falling off at larger sizes. The nonlinear absorption coefficientsmore » for Au and Ag spheres are comparable in magnitude. On the other hand, the nonlinear absorption for Ag disks, when corrected for volume fraction, is several times higher. These trends in nonlinear absorption are correlated to local electric field enhancement through quasi-static mean-field theory. Through variable size aperture measurements, we also separate nonlinear scattering from nonlinear absorption. For all materials tested, we find that nonlinear scattering is highly directional and that its magnitude is comparable to that of nonlinear absorption. These results indicate methods to improve the efficacy of plasmonic nanoparticles as optical limiters in pulsed laser systems.« less
State-of-the-Art Highly Insulating Window Frames - Research and Market Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush
2007-01-01
This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethanemore » (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The review shows that the current knowledge gives the basis for improving the calculation procedures in the calculation standards. At the same time it is room for improvement within some areas, e.g. to fully understand the natural convection effects inside irregular vertical frame cavities (jambs) and ventilated frame cavities.« less
Potential for natural evaporation as a reliable renewable energy resource
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre
About 50% of the solar energy absorbed at the Earth’s surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here in this paper we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. Wemore » estimate up to 325 GW of power is potentially available in the United States. Strikingly, water’s large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.« less
Preparation of pure chitosan film using ternary solvents and its super absorbency.
Wang, Xuejun; Lou, Tao; Zhao, Wenhua; Song, Guojun
2016-11-20
Chemical modification and graft copolymerization were commonly adopted to prepare super absorbent materials. However, physical microstructure of pure chitosan film was optimized to improve the water uptake capacity in this study. Chitosan films with micro-nanostructure were prepared by a ternary solvent system. The optimal process parameters are 1% acetic acid water solution: dioxane: dimethyl sulfoxide=90: 2.5: 7.5 (v/v/v) with chitosan concentration at 1.25% (w/v). The water uptake capacity of the chitosan film prepared under the optimal process parameters was 896g/g. The prepared chitosan films also exhibited high water uptake capacity in response to external stimuli such as temperature, pH and salt. This finding may provide another way for improving the water absorbency. The pure chitosan film may find potential applications especially in the fields of hygienic products and biomedicine due to its super water absorbency and nontoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mechanism for rapid growth of organic–inorganic halide perovskite crystals
Nayak, Pabitra K.; Moore, David T.; Wenger, Bernard; ...
2016-11-10
Optoelectronic devices based on hybrid halide perovskites have shown remarkable progress to high performance. However, despite their apparent success, there remain many open questions about their intrinsic properties. Single crystals are often seen as the ideal platform for understanding the limits of crystalline materials, and recent reports of rapid, high-temperature crystallization of single crystals should enable a variety of studies. Here we explore the mechanism of this crystallization and find that it is due to reversible changes in the solution where breaking up of colloids, and a change in the solvent strength, leads to supersaturation and subsequent crystallization. Here, wemore » use this knowledge to demonstrate a broader range of processing parameters and show that these can lead to improved crystal quality. Lastly, our findings are therefore of central importance to enable the continued advancement of perovskite optoelectronics and to the improved reproducibility through a better understanding of factors influencing and controlling crystallization.« less
Potential for natural evaporation as a reliable renewable energy resource
Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; ...
2017-09-26
About 50% of the solar energy absorbed at the Earth’s surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here in this paper we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. Wemore » estimate up to 325 GW of power is potentially available in the United States. Strikingly, water’s large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.« less
NASA Astrophysics Data System (ADS)
Tewolde, Mahder
Thermoelectric generators (TEGs) are solid-state devices that convert heat directly into electricity. They are well suited for waste-heat energy harvesting applications as opposed to primary energy generation. Commercially available thermoelectric modules are flat, inflexible and have limited sizes available. State-of-art manufacturing of TEG devices relies on assembling prefabricated parts with soldering, epoxy bonding, and mechanical clamping. Furthermore, efforts to incorporate them onto curved surfaces such as exhaust pipes, pump housings, steam lines, mixing containers, reaction chambers, etc. require custom-built heat exchangers. This is costly and labor-intensive, in addition to presenting challenges in terms of space, thermal coupling, added weight and long-term reliability. Additive manufacturing technologies are beginning to address many of these issues by reducing part count in complex designs and the elimination of sub-assembly requirements. This work investigates the feasibility of utilizing such novel manufacturing routes for improving the manufacturing process of thermoelectric devices. Much of the research in thermoelectricity is primarily focused on improving thermoelectric material properties by developing of novel materials or finding ways to improve existing ones. Secondary to material development is improving the manufacturing process of TEGs to provide significant cost benefits. To improve the device fabrication process, this work explores additive manufacturing technologies to provide an integrated and scalable approach for TE device manufacturing directly onto engineering component surfaces. Additive manufacturing techniques like thermal spray and ink-dispenser printing are developed with the aim of improving the manufacturing process of TEGs. Subtractive manufacturing techniques like laser micromachining are also studied in detail. This includes the laser processing parameters for cutting the thermal spray materials efficiently by optimizing cutting speed and power while maintaining surface quality and interface properties. Key parameters are obtained from these experiments and used to develop a process that can be used to fabricate a working TEG directly onto the waste-heat component surface. A TEG module has been fabricated for the first time entirely by using thermal spray technology and laser micromachining. The target applications include automotive exhaust systems and other high-volume industrial waste heat sources. The application of TEGs for thermoelectrically powered sensors for Small Modular Reactors (SMRs) is presented. In conclusion, more ways to improve the fabrication process of TEGs are suggested.
Microdensitometer errors: Their effect on photometric data reduction
NASA Technical Reports Server (NTRS)
Bozyan, E. P.; Opal, C. B.
1984-01-01
The performance of densitometers used for photometric data reduction of high dynamic range electrographic plate material is analyzed. Densitometer repeatability is tested by comparing two scans of one plate. Internal densitometer errors are examined by constructing histograms of digitized densities and finding inoperative bits and differential nonlinearity in the analog to digital converter. Such problems appear common to the four densitometers used in this investigation and introduce systematic algorithm dependent errors in the results. Strategies to improve densitometer performance are suggested.
Mars and Venus: unequal planets.
Zimmerman, T S; Haddock, S A; McGeorge, C R
2001-01-01
Self-help books, a pervasive and influential aspect of society, can have a beneficial or detrimental effect on the therapeutic process. This article describes a thematic analysis and feminist critique of the best-selling self-help book, Men are from Mars, Women are from Venus. This analysis revealed that the author's materials are inconsistent with significant family therapy research findings and key principles of feminist theories. His descriptions of each gender and his recommendations for improving relationships serve to endorse and encourage power differentials between women and men.
2014-09-29
In response to this finding, AMC is initiating a Depot Material Requirements Planning ( MRP ) Integrated Process Team (IPT) from which one objective...methodologies for DOF reviews and corrective actions by AMC and its component organizations. The target completion date for the Depot MRP IPT is June...implemented a matrix for MRP SOW where the aviation programs were updated in Production LMP 1QFY14. Army Materiel Command (cont’d) Management
Materials processing threshold report: 2. Use of low gravity for cast iron process development
NASA Technical Reports Server (NTRS)
Frankhouser, W. L.
1980-01-01
Potential applications of a low gravity environment of interest to the commercial producers of cast iron were assessed to determine whether low gravity conditions offer potential opportunities to producers for improving cast iron properties and expanding the use of cast irons. The assessment is limited to the gray and nodular types of iron, however, the findings are applicable to all cast irons. The potential advantages accrued through low gravity experiments with cast irons are described.
Overview of the Machine-Tool Task Force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, G.P.
1981-06-08
The Machine Tool Task Force, (MTTF) surveyed the state of the art of machine tool technology for material removal for two and one-half years. This overview gives a brief summary of the approach, specific subjects covered, principal conclusions and some of the key recommendations aimed at improving the technology and advancing the productivity of machine tools. The Task Force consisted of 123 experts from the US and other countries. Their findings are documented in a five-volume report, Technology of Machine Tools.
Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.
Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie
2016-12-01
To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Achieving reversibility of ultra-high mechanical stress by hydrogen loading of thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, M.; Burlaka, V.; Wagner, S.
2015-06-15
Nano-materials are commonly stabilized by supports to maintain their desired shape and size. When these nano-materials take up interstitial atoms, this attachment to the support induces mechanical stresses. These stresses can be high when the support is rigid. High stress in the nano-material is typically released by delamination from the support or by the generation of defects, e.g., dislocations. As high mechanical stress can be beneficial for tuning the nano-materials properties, it is of general interest to deduce how real high mechanical stress can be gained. Here, we show that below a threshold nano-material size, dislocation formation can be completelymore » suppressed and, when delamination is inhibited, even the ultrahigh stress values of the linear elastic limit can be reached. Specifically, for hydrogen solved in epitaxial niobium films on sapphire substrate supports a threshold film thickness of 6 nm was found and mechanical stress of up to (−10 ± 1) GPa was reached. This finding is of basic interest for hydrogen energy applications, as the hydride stability in metals itself is affected by mechanical stress. Thus, tuning of the mechanical stress-state in nano-materials may lead to improved storage properties of nano-sized materials.« less
NASA Astrophysics Data System (ADS)
Santosh, R.; Das, G.; Kumar, S.; Singh, P. K.; Ghosh, M.
2018-03-01
The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.
NASA Astrophysics Data System (ADS)
Santosh, R.; Das, G.; Kumar, S.; Singh, P. K.; Ghosh, M.
2018-06-01
The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.
Modified fabrication techniques lead to improved centrifugal blood pump performance.
Pacella, J J; Goldstein, A H; Magovern, G J; Clark, R F
1994-01-01
The authors are developing an implantable centrifugal blood pump for short- and medium-term (1-6 months) left ventricular assist. They hypothesized that the application of result dependent modifications to this pump would lead to overall improved performance in long-term implantation studies. Essential requirements for pump operation, such as durability and resistance to clot formation, have been achieved through specialized fabrication techniques. The antithrombogenic character of the pump has been improved through coating at the cannula-housing interfaces and the baffle seal, and through changing the impeller blade material from polysulfone to pyrolytic carbon. The electronic components of the pump have been sealed for implantable use through specialized processes of dipping and potting, and the surfaces of the internal pump components have been treated to increase durability. The device has demonstrated efficacy in five chronic sheep implantation studies of 14, 10, 28, 35, and 154 day duration. Post mortem findings from the 14 day experiment showed stable fibrin entangled around the impeller shaft and blades. After pump modification, autopsy findings of the 10 day study showed no evidence of clot. Additionally, the results of the 28 day experiment showed only a small (2.0 mm) ring of fibrin at the shaft-seal interface. In the 35 and 154 day experiments, redesign of the stators have resulted in improved motor corrosion resistance. The 35 day study showed a small, 0.5 mm wide fibrin deposit at the lip seal, but no motor failure. In the 154 day experiment, the motor failed because of stator fluid corrosion, while the explanted pump was devoid of thrombus. Based on these findings, the authors believe that these pump refinements have contributed significantly to improvements in durability and resistance to clot formation.
The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials
Witman, Matthew; Ling, Sanliang; Jawahery, Sudi; ...
2017-03-30
For applications of metal–organic frameworks (MOFs) such as gas storage and separation, flexibility is often seen as a parameter that can tune material performance. In this work we aim to determine the optimal flexibility for the shape selective separation of similarly sized molecules (e.g., Xe/Kr mixtures). To obtain systematic insight into how the flexibility impacts this type of separation, we develop a simple analytical model that predicts a material’s Henry regime adsorption and selectivity as a function of flexibility. We elucidate the complex dependence of selectivity on a framework’s intrinsic flexibility whereby performance is either improved or reduced with increasingmore » flexibility, depending on the material’s pore size characteristics. However, the selectivity of a material with the pore size and chemistry that already maximizes selectivity in the rigid approximation is continuously diminished with increasing flexibility, demonstrating that the globally optimal separation exists within an entirely rigid pore. Molecular simulations show that our simple model predicts performance trends that are observed when screening the adsorption behavior of flexible MOFs. These flexible simulations provide better agreement with experimental adsorption data in a high-performance material that is not captured when modeling this framework as rigid, an approximation typically made in high-throughput screening studies. We conclude that, for shape selective adsorption applications, the globally optimal material will have the optimal pore size/chemistry and minimal intrinsic flexibility even though other nonoptimal materials’ selectivity can actually be improved by flexibility. In conclusion, equally important, we find that flexible simulations can be critical for correctly modeling adsorption in these types of systems.« less
The Influence of Intrinsic Framework Flexibility on Adsorption in Nanoporous Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witman, Matthew; Ling, Sanliang; Jawahery, Sudi
For applications of metal–organic frameworks (MOFs) such as gas storage and separation, flexibility is often seen as a parameter that can tune material performance. In this work we aim to determine the optimal flexibility for the shape selective separation of similarly sized molecules (e.g., Xe/Kr mixtures). To obtain systematic insight into how the flexibility impacts this type of separation, we develop a simple analytical model that predicts a material’s Henry regime adsorption and selectivity as a function of flexibility. We elucidate the complex dependence of selectivity on a framework’s intrinsic flexibility whereby performance is either improved or reduced with increasingmore » flexibility, depending on the material’s pore size characteristics. However, the selectivity of a material with the pore size and chemistry that already maximizes selectivity in the rigid approximation is continuously diminished with increasing flexibility, demonstrating that the globally optimal separation exists within an entirely rigid pore. Molecular simulations show that our simple model predicts performance trends that are observed when screening the adsorption behavior of flexible MOFs. These flexible simulations provide better agreement with experimental adsorption data in a high-performance material that is not captured when modeling this framework as rigid, an approximation typically made in high-throughput screening studies. We conclude that, for shape selective adsorption applications, the globally optimal material will have the optimal pore size/chemistry and minimal intrinsic flexibility even though other nonoptimal materials’ selectivity can actually be improved by flexibility. In conclusion, equally important, we find that flexible simulations can be critical for correctly modeling adsorption in these types of systems.« less
LDEF materials: An overview of the interim findings
NASA Technical Reports Server (NTRS)
Stein, Bland A.
1992-01-01
The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effect (SEE) on materials that are unparalleled in the history of the U.S. space program. The 5.8-year flight of LDEF greatly enhanced the potential value of materials data from LDEF to the international SEE community, compared to that of the original 1-year flight plan. The remarkable flight attitude stability of LDEF enables specific analyses of various individual and combined effects of LEO environmental parameters on identical materials of the same space vehicle. NASA recognized the potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) to address the greatly expanded materials and LEO space environment parameter analysis opportunities available in the LDEF structure, experiment trays, and corollary measurements, so that the combined value of all LDEF materials data to current and future space missions will be assessed and documented. This paper provides an overview of the interim LDEF materials findings of the Principal Investigators and the Materials Special Investigation Group. These revelations are based on observations of LEO environmental effects on materials made in-space during LDEF retrieval and during LDEF tray deintegration at the Kennedy Space Center, and on findings of approximately 1.5 years of laboratory analyses of LDEF materials by the LDEF materials scientists. These findings were extensively reviewed and discussed at the MSIG-sponsored LDEF Materials Workshop '91. The results are presented in a format which categorizes the revelations as 'clear findings' or 'confusing/unexplained findings' and resultant needs for new space materials developments and ground simulation testing/analytical modeling in seven categories: environmental parameters and data bases; LDEF contamination; thermal control coatings and protective treatments; polymers and films; polymer-matrix composites; metals, ceramics, and optical materials; and systems-related materials. General outlines of findings of the other LDEF Special Investigation Groups (Ionizing Radiation, Meteoroid and Debris, and Systems) are also included. The utilization of LDEF materials data for future low-earth orbit missions is also discussed, concentrating on Space Station Freedom. Some directions for continuing studies of LDEF materials are outlined. In general, the LDEF data is remarkable consistent; LDEF will provide a 'benchmark' for materials design data bases for satellites in low-Earth orbit. Some materials were identified to be encouragingly resistant to LEO SEE for 5.8-years; other 'space qualified' materials displayed significant environmental degradation. Molecular contamination was widespread; LDEF offers an unprecedented opportunity to provide a unified perspective of unmanned LEO spacecraft contamination mechanisms. New material development requirements for long-term LEO missions have been identified and current ground simulation testing methods/data for new, durable materials concepts can be validated with LDEF results. LDEF findings are already being integrated into the design of Space Station Freedom.
Mehdizadeh, Mahsa; Rezaei, Omid
2016-01-01
Objectives: According to the previous findings, the third-person technique improved the clinical insight of psychotic patients, therefore the present study aims to examine the effect of a third-person interview compared to a first-person interview on the level of cognitive insight of psychotic patients with an insight at the denial level. Materials and Methods: In this study, using interviews and questionnaires, a total number of 44 patients of Razi Psychiatric Educational and Treatment Center with an insight at the denial level being assessed using diagnostic interviews were divided randomly into two groups. Then, the two groups of patients' cognitive insights were evaluated using Beck Cognitive Insight Scale. Results: The findings indicated that in psychotic patients with an insight at the denial level, the third-person technique of interview compared to the first-person had little effect on the improvement of overall cognitive insight and its components, including self-reflection and self-assurance; however, this effect was not strong enough to make a significant difference between the two groups of patients. Conclusion: According to the study findings, we can conclude that the third-person interview compared to the first-person interview has no effect on the improvement of the cognitive insight of psychotic patients with an insight at the denial level. This finding is consistent with the previous studies indicating that although the theory of mind has some correlations with the clinical insight of patients, it has no effect on their cognitive insight. PMID:27335517
The development of the Nucleus Freedom Cochlear implant system.
Patrick, James F; Busby, Peter A; Gibson, Peter J
2006-12-01
Cochlear Limited (Cochlear) released the fourth-generation cochlear implant system, Nucleus Freedom, in 2005. Freedom is based on 25 years of experience in cochlear implant research and development and incorporates advances in medicine, implantable materials, electronic technology, and sound coding. This article presents the development of Cochlear's implant systems, with an overview of the first 3 generations, and details of the Freedom system: the CI24RE receiver-stimulator, the Contour Advance electrode, the modular Freedom processor, the available speech coding strategies, the input processing options of Smart Sound to improve the signal before coding as electrical signals, and the programming software. Preliminary results from multicenter studies with the Freedom system are reported, demonstrating better levels of performance compared with the previous systems. The final section presents the most recent implant reliability data, with the early findings at 18 months showing improved reliability of the Freedom implant compared with the earlier Nucleus 3 System. Also reported are some of the findings of Cochlear's collaborative research programs to improve recipient outcomes. Included are studies showing the benefits from bilateral implants, electroacoustic stimulation using an ipsilateral and/or contralateral hearing aid, advanced speech coding, and streamlined speech processor programming.
NASA Astrophysics Data System (ADS)
Ramos, A.; Moreno, E.; Rubio, B.; Calas, H.; Galarza, N.; Rubio, J.; Diez, L.; Castellanos, L.; Gómez, T.
Some technical aspects of two Spanish cooperation projects, funded by DPI and Innpacto Programs of the R&D National Plan, are discussed. The objective is to analyze the common belief about than the ultrasonic testing in MHz range is not a tool utilizable to detect internal flaws in highly attenuating pieces made of coarse-grained steel. In fact high-strength steels, used in some safe industrial infrastructures of energy & transport sectors, are difficult to be inspected using the conventional "state of the art" in ultrasonic technology, due to their internal microstructures are very attenuating and coarse-grained. It is studied if this inspection difficulty could be overcome by finding intense interrogating pulses and advanced signal processing of the acquired echoes. A possible solution would depend on drastically improving signal-to-noise-ratios, by applying new advances on: ultrasonic transduction, HV electronics for intense pulsed driving of the testing probes, and an "ad-hoc" digital processing or focusing of the received noisy signals, in function of each material to be inspected. To attain this challenging aim on robust steel pieces would open the possibility of obtaining improvements in inspecting critical industrial components made of highly attenuating & dispersive materials, as new composites in aeronautic and motorway bridges, or new metallic alloys in nuclear area, where additional testing limitations often appear.
Colvin, Arthur E; Jiang, Hui
2013-05-01
Understanding and improving in vivo materials related to signal stability and preservation for active chemical sensor and biosensor transduction systems is critical in achieving implantable medical sensors for long-term in vivo applications. During human in vivo clinical testing of an implantable glucose sensor based on a glucose sensitive hydrogel, post-explant analysis showed that the boronate recognition element had been oxidized from the fluorescent indicator, causing a rapid loss of signal within hours after implant. Additional wet-bench analytical evidence and reproduction in vitro suggests reactive oxygen species, particularly hydrogen peroxide (H2O2), stemming from natural inflammatory response to the material, to be the cause of the observed oxidative de-boronation. A 3-nm thick deposition of metallic platinum (Pt) placed by plasma sputtering onto the porous surface of the hydrogel, showed immediate protection from sensor signal loss due to oxidation both in vitro and in vivo, greatly extending the useful lifetime of the implantable glucose sensor from 1 day to an expected ≥6 months. This finding may represent a new strategy to protect an implanted material and/or device from in vivo oxidative damage, leading to much improved overall stability and reliability for long-term applications. Copyright © 2012 Wiley Periodicals, Inc.
Big Thinking: The Power of Nanoscience (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milliron, Delia; Sanili, Babak; Weber-Bargioni, Alex
2011-06-06
Science at the Theater, June 6th, 2011: Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Alex Weber-Bargioni: How can we see things at the nanoscale? Alex is pioneering new methods that provide unprecedented insight into nanoscale materials and molecular interactions. The goal is to create rules for building nanoscale materials. Babak Sanii: Nature is an expert at making nanoscale devices such as proteins. Babak is developing ways to see these biological widgets, which could help scientists develop synthetic devices that mimic the best that nature has to offer. Ting Xu: How aremore » we going to make nanoscale devices? A future in which materials and devices are able to assemble themselves may not be that far down the road. Ting is finding ways to induce a wide range of nanoscopic building blocks to assemble into complex structures. Delia Milliron: The dividends of nanoscience could reshape the way we live, from smart windows and solar cells to artificial photosynthesis and improved medical diagnosis. Delia is at the forefront of converting fundamental research into nanotechnology. Moderated by Jim DeYoreo, interim director of the Molecular Foundry, a facility located at Berkeley Lab where scientists from around the world address the myriad challenges in nanoscience.« less
Improvements in estimating proportions of objects from multispectral data
NASA Technical Reports Server (NTRS)
Horwitz, H. M.; Hyde, P. D.; Richardson, W.
1974-01-01
Methods for estimating proportions of objects and materials imaged within the instantaneous field of view of a multispectral sensor were developed further. Improvements in the basic proportion estimation algorithm were devised as well as improved alien object detection procedures. Also, a simplified signature set analysis scheme was introduced for determining the adequacy of signature set geometry for satisfactory proportion estimation. Averaging procedures used in conjunction with the mixtures algorithm were examined theoretically and applied to artificially generated multispectral data. A computationally simpler estimator was considered and found unsatisfactory. Experiments conducted to find a suitable procedure for setting the alien object threshold yielded little definitive result. Mixtures procedures were used on a limited amount of ERTS data to estimate wheat proportion in selected areas. Results were unsatisfactory, partly because of the ill-conditioned nature of the pure signature set.
Lee, Tae Wha; Lee, Seon Heui; Kim, Hye Hyun; Kang, Soo Jin
2012-12-01
Systematic studies on the relationship between health literacy and health outcomes demonstrate that as health literacy declines, patients engage in fewer preventive health and self-care behaviors and have worse disease-related knowledge. The purpose of this study was to identify effective intervention strategies to improve health outcomes in patients with cardiovascular disease and low literacy skills. This study employs the following criteria recommended by Khan Kunz, Keijnen, and Antes (2003) for systematic review: framing question, identifying relevant literature, assessing quality of the literature, summarizing the evidence, and interpreting the finding. A total of 235 articles were reviewed by the research team, and 9 articles met inclusion criteria. Although nine studies were reviewed for their health outcomes, only six studies, which had a positive quality grade evaluation were used to recommend effective intervention strategies. Interventions were categorized into three groups: tailored counseling, self-monitoring, and periodic reminder. The main strategies used to improve health outcomes of low literacy patients included tailored counseling, improved provider-patient interactions, organizing information by patient preference, self-care algorithms, and self-directed learning. Specific strategies included written materials tailored to appropriate reading levels, materials using plain language, emphasizing key points with large font size, and using visual items such as icons or color codes. With evidence-driven strategies, health care professionals can use tailored interventions to provide better health education and counseling that meets patient needs and improves health outcomes. Copyright © 2012. Published by Elsevier B.V.
Science Laboratory Environment and Academic Performance
NASA Astrophysics Data System (ADS)
Aladejana, Francisca; Aderibigbe, Oluyemisi
2007-12-01
The study determined how students assess the various components of their science laboratory environment. It also identified how the laboratory environment affects students' learning outcomes. The modified ex-post facto design was used. A sample of 328 randomly selected students was taken from a population of all Senior Secondary School chemistry students in a state in Nigeria. The research instrument, Science Laboratory Environment Inventory (SLEI) designed and validated by Fraser et al. (Sci Educ 77:1-24, 1993) was administered on the selected students. Data analysis was done using descriptive statistics and Product Moment Correlation. Findings revealed that students could assess the five components (Student cohesiveness, Open-endedness, Integration, Rule clarity, and Material Environment) of the laboratory environment. Student cohesiveness has the highest assessment while material environment has the least. The results also showed that the five components of the science laboratory environment are positively correlated with students' academic performance. The findings are discussed with a view to improving the quality of the laboratory environment, subsequent academic performance in science and ultimately the enrolment and retaining of learners in science.
Convergence of separate orbits for enhanced thermoelectric performance of layered ZrS2
NASA Astrophysics Data System (ADS)
Ding, Guangqian; Chen, Jinfeng; Yao, Kailun; Gao, Guoying
2017-07-01
Minimizing the band splitting energy to approach orbital degeneracy has been shown as a route to improved thermoelectric performance. This represents an open opportunity in some promising layered materials where there is a separation of p orbitals at the valence band edge due to the crystal field splitting. In this work, using ab initio calculations and semiclassical Boltzmann transport theory, we try to figure out how orbital degeneracy influences the thermoelectric properties of layered transition-metal dichalcogenide ZrS2. We tune the splitting energy by applying compressive biaxial strain, and find out that near-degeneration at the {{Γ }} point can be achieved for around 3% strain. As expected, the enhanced density-of-states effective mass results in an increased power factor. Interestingly, we also find a marked decline in the lattice thermal conductivity due to the effect of strain on phonon velocities and scattering. The two effects synergetically enhance the figure of merit. Our results highlight the convenience of exploring this optimization route in layered thermoelectric materials with band structures similar to that of ZrS2.
Reduction of Convection in Closed Tube Vapor Transport Experiments
NASA Technical Reports Server (NTRS)
Naumann, R. J.; Tan, Sarwa Bakti; Shin, In-Seok; Kim, Joo Soo
2002-01-01
The primary objective of this effort was to develop a method for suppressing convective flows during the growth of mercurous chloride crystals by vapor transport in closed tubes to levels approaching those obtained in the microgravity environment. Mercurous chloride was chosen because it is a technologically interesting acoustical optical material whose optical properties are believed to be affected by convective flows. Since the Grashof number scales as the cube of the smallest dimension in the flow system, reduction of the size scale can be extremely effective in reducing unwanted convective flows. However, since materials of practical interest must be grown at least on the cm scale, reduction of the overall growth system is not feasible. But if the region just above the growing crystal could be restricted to a few mm, considerable reduction in flow velocity would result. By suspending an effusive barrier in the growth ampoule just above the growth interface, it should be possible to reduce the convective velocity in this vicinity to levels approaching flows in microgravity. If successful, this growth technique will offer a screening test for proposed space experiments that involve vapor transport to see if reduction of convection will result in improved material and will set a new standard against which the improvements obtained in microgravity may be judged. In addition, it may provide an improved method for preparing materials on Earth whose growth is affected adversely by convection. If the properties of this material can be improved there is a potential commercial interest from Brimrose Inc., who has agreed to fabricate and test devices from the crystals we have grown. This report describes the development of the growth facility, the purification processes developed for preparing the starting material, and the results from growth experiments with and without the effusive baffle. Mercurous chloride turned out to be a more difficult material to deal with than originally anticipated. At growth temperatures, it is extremely sensitive to practically any impurity which causes it to form oxychlorides and/or to decompose into elemental mercury and bichloride of mercury. We were unable to find a suitable method for protecting the magnetic material used to suspend the effusion barrier from the attack of mercurous chloride vapor. Although we were successful in growing single crystals of mercurous chloride without the effusion baffle, they exhibited severe microcracking which we attribute to wall-induced thermal stresses. This leads us to believe that uncontrolled convection may not be the most important problem in the development of this material and a new growth process was attempted that eliminates the wall-induced stress. Unfortunately, the grant ran out before this new method could be adequately tested.
NASA Astrophysics Data System (ADS)
Backhaus-Ricoult, M.; Rustad, J.; Moore, L.; Smith, C.; Brown, J.
2014-08-01
Semiconducting large bandgap oxides are considered as interesting candidates for high-temperature thermoelectric power generation (700-1,200 °C) due to their stability, lack of toxicity and low cost, but so far they have not reached sufficient performance for extended application. In this review, we summarize recent progress on thermoelectric oxides, analyze concepts for tuning semiconductor thermoelectric properties with view of their applicability to oxides and determine key drivers and limitations for electrical and thermal transport properties in oxides based on our own experimental work and literature results. For our experimental assessment, we have selected representative multicomponent oxides that range from materials with highly symmetric crystal structure (SrTiO3 perovskite) over oxides with large densities of planar crystallographic defects (Ti n O2 n-1 Magnéli phases with a single type of shear plane, NbO x block structures with intersecting shear planes and WO3- x with more defective block and channel structures) to layered superstructures (Ca3Co4O9 and double perovskites) and also include a wide range of their composites with a variety of second phases. Crystallographic or microstructural features of these oxides are in 0.3-2 nm size range, so that oxide phonons can efficiently interact with them. We explore in our experiments the effects of doping, grain size, crystallographic defects, superstructures, second phases, texturing and (to a limited extend) processing on electric conductivity, Seebeck coefficient, thermal conductivity and figure of merit. Jonker and lattice-versus-electrical conductivity plots are used to compare specific materials and material families and extract levers for future improvement of oxide thermoelectrics. We show in our work that oxygen vacancy doping (reduction) is a more powerful driver for improving the power factor for SrTiO3, TiO2 and NbO x than heterovalent doping. Based on our Seebeck-conductivity plots, we derived a set of highest achievable power factors. We met these best values in our own experiments for our titanium oxide- and niobium oxide-based materials. For strontium titanate-based materials, the estimated highest power factor was not reached; further material improvement is possible and can be reached for materials with higher carrier densities. Our results show that periodic crystallographic defects and superstructures are most efficient in reducing the lattice thermal conductivity in oxides, followed by hetero- and homovalent doping. Due to the small phonon mean free path in oxides, grain boundary scattering in nanoceramics or materials with nanodispersions is much less efficient. We investigated the impact of texturing in Ca3Co4O9 ceramics on thermoelectric performance; we did not find any improvement in the overall in-plane performance of a textured ceramic compared to the corresponding random ceramic.
Koshi, Kimiko; Mouri, Tetuo; Sugimori, Hiroki; Numano, Takashi; Ashida, Toshifumi; Hiro, Hisanori; Miyake, Hitoshi; Fukushima, Michiko; Ishiwata, Kouichi
2002-09-01
Kanagawa Occupational Health Promotion Center conducted a survey on how the MSDS is utilized at workplaces with more than 50 employees handling chemical substances, and what measures are taken to help employees to thoroughly understand information in the Material Safety Data Sheet (MSDS). Questionnaires were sent out to 265 enterprises in Kanagawa prefecture, putting questions to industrial physicians and industrial hygiene supervisors. The objective of the survey was to find out how MSDS is adopted in the system to manage occupational health, what improvements the survey respondents want in MSDS and what expectations the respondents have of our center. 193 enterprises (72.8%) returned answers to the questionnaire. The major findings are as follows. (1) In many companies, information on hazardous/toxic materials is "controlled by a division using such materials", and roughly half of the companies have compiled a common list shared throughout the company. (2) For the most part suppliers submit to the MSDS. Larger companies have a higher rate of posting up or filing the MSDS at their workplaces. Only 25.8% of the companies "rewrite the MSDS so that workers can understand it." (3) Companies that carry out a hazard/toxicity assessment before introducing a new chemical substance account for 72.1%, which is higher than we expected. It indicates that even though the companies don't manage the MSDS adequately, they are highly concerned about hazard control of chemical substances. (4) The rate of answering that "the current MSDS is not easy to understand" is higher among large-sized enterprises and lower among enterprises with fewer than 300 employees. (5) Asked what improvement needs to be made on the MSDS, the industrial physicians and industrial hygiene supervisors gave same answers such as "Workers find the terminology difficult to understand." and "Levels of toxicity can't be clearly identified." (6) The respondents expect our center to provide information for the MSDS. In conclusion, it is considered that in order to prepare understandable MSDSs to workers in enterprises, the role of our center to provide information and education on the MSDS to respondents was important.
Improved composite material and method for production of improved composite material
NASA Technical Reports Server (NTRS)
Farley, Gary L. (Inventor)
1994-01-01
A laminated composite material with improved interlaminar strength and damage tolerance having short rods distributed evenly throughout the composite material perpendicular to the laminae is introduced. Each rod is shorter than the thickness of the finished laminate, but several times as long as the thickness of each lamina. The laminate is made by inserting short rods in layers of prepreg material, and then stacking and curing prepreg material with rods inserted therethrough.
Cognitive Training for Improving Executive Function in Chemotherapy-Treated Breast Cancer Survivors
Kesler, Shelli; Hosseini, S. M. Hadi; Heckler, Charles; Janelsins, Michelle; Palesh, Oxana; Mustian, Karen; Morrow, Gary
2013-01-01
Difficulties with thinking and problem solving are very common among breast cancer survivors. We tested a computerized cognitive training program for 41 breast cancer survivors. The training program was associated with significant improvements in thinking and problem-solving skills. Our findings demonstrate potential for our online, home-based cognitive training program to improve cognitive difficulties among breast cancer survivors. Background A majority of breast cancer (BC) survivors, particularly those treated with chemotherapy, experience long-term cognitive deficits that significantly reduce quality of life. Among the cognitive domains most commonly affected include executive functions (EF), such as working memory, cognitive flexibility, multitasking, planning, and attention. Previous studies in other populations have shown that cognitive training, a behavioral method for treating cognitive deficits, can result in significant improvements in a number of cognitive skills, including EF. Materials and Methods In this study, we conducted a randomized controlled trial to investigate the feasibility and preliminary effectiveness of a novel, online EF training program in long-term BC survivors. A total of 41 BC survivors (21 active, 20 wait list) completed the 48 session training program over 12 weeks. The participants were, on average, 6 years after therapy. Results Cognitive training led to significant improvements in cognitive flexibility, verbal fluency and processing speed, with marginally significant downstream improvements in verbal memory as assessed via standardized measures. Self-ratings of EF skills, including planning, organizing, and task monitoring, also were improved in the active group compared with the wait list group. Conclusions Our findings suggest that EF skills may be improved even in long-term survivors by using a computerized, home-based intervention program. These improvements may potentially include subjective EF skills, which suggest a transfer of the training program to real-world behaviors. PMID:23647804
Design of Experiments for the Thermal Characterization of Metallic Foam
NASA Technical Reports Server (NTRS)
Crittenden, Paul E.; Cole, Kevin D.
2003-01-01
Metallic foams are being investigated for possible use in the thermal protection systems of reusable launch vehicles. As a result, the performance of these materials needs to be characterized over a wide range of temperatures and pressures. In this paper a radiation/conduction model is presented for heat transfer in metallic foams. Candidates for the optimal transient experiment to determine the intrinsic properties of the model are found by two methods. First, an optimality criterion is used to find an experiment to find all of the parameters using one heating event. Second, a pair of heating events is used to determine the parameters in which one heating event is optimal for finding the parameters related to conduction, while the other heating event is optimal for finding the parameters associated with radiation. Simulated data containing random noise was analyzed to determine the parameters using both methods. In all cases the parameter estimates could be improved by analyzing a larger data record than suggested by the optimality criterion.
Material Characterization of Microsphere-Based Scaffolds with Encapsulated Raw Materials
Sridharan, BanuPriya; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.
2016-01-01
“Raw materials,” or materials capable of serving both as building blocks and as signals, which are often but not always natural materials, are taking center stage in biomaterials for contemporary regenerative medicine. In osteochondral tissue engineering, a field leveraging the underlying bone to facilitate cartilage regeneration, common raw materials include chondroitin sulfate (CS) for cartilage and β-tricalcium phosphate (TCP) for bone. Building on our previous work with gradient scaffolds based on microspheres, here we delved deeper into the characterization of individual components. In the current study, the release of CS and TCP from poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds was evaluated over a time period of 4 weeks. Raw material encapsulated groups were compared to ‘blank’ groups and evaluated for surface topology, molecular weight, and mechanical performance as a function of time. The CS group may have led to increased surface porosity, and the addition of CS improved the mechanical performance of the scaffold. The finding that CS was completely released into the surrounding media by 4 weeks has a significant impact on future in vivo studies, given rapid bioavailability. The addition of TCP seemed to contribute to the rough external appearance of the scaffold. The current study provides an introduction to degradation patterns of homogenous raw material encapsulated scaffolds, providing characterization data to advance the field of microsphere-based scaffolds in tissue engineering. PMID:27040236
Running exercise strengthens the intervertebral disc
Belavý, Daniel L.; Quittner, Matthew J.; Ridgers, Nicola; Ling, Yuan; Connell, David; Rantalainen, Timo
2017-01-01
There is currently no evidence that the intervertebral discs (IVDs) can respond positively to exercise in humans. Some authors have argued that IVD metabolism in humans is too slow to respond anabolically to exercise within the human lifespan. Here we show that chronic running exercise in men and women is associated with better IVD composition (hydration and proteoglycan content) and with IVD hypertrophy. Via quantitative assessment of physical activity we further find that accelerations at fast walking and slow running (2 m/s), but not high-impact tasks, lower intensity walking or static positions, correlated to positive IVD characteristics. These findings represent the first evidence in humans that exercise can be beneficial for the IVD and provide support for the notion that specific exercise protocols may improve IVD material properties in the spine. We anticipate that our findings will be a starting point to better define exercise protocols and physical activity profiles for IVD anabolism in humans. PMID:28422125
NASA Astrophysics Data System (ADS)
Mehdizadeh Dehkordi, Arash
The direct energy conversion between heat and electricity based on thermoelectric effects is a topic of long-standing interest in condensed matter materials science. Experimental and theoretical investigations in order to understand the mechanisms involved and to improve the materials properties and conversion efficiency have been ongoing for more than half a century. While significant achievements have been accomplished in improving the properties of conventional heavy element based materials (such as Bi2Te 3 and PbTe) as well as the discovery of new materials systems for the close-to-room temperature and intermediate temperatures, high-temperature applications of thermoelectrics is still limited to one materials system, namely SiGe. Recently, oxides have exhibited great potential to be investigated for high-temperature thermoelectric power generation. The objective of this dissertation is to synthesize and investigate both electronic and thermal transport in strontium titanate (SrTiO3) ceramics in order to experimentally realize its potential and to ultimately investigate the possibility of further improvement of the thermoelectric performance of this perovskite oxide for mid- to high temperature applications. Developing a synthesis strategy and tuning various synthesis parameters to benefit the thermoelectric transport form the foundation of this study. It is worth mentioning that the results of this study has been employed to prepare targets for pulsed-laser deposition (PLD) to study the thermoelectric properties of corresponding thin films and superlattice structures at Dr. Husam Alshareef's group at King Abdullah University of Science and Technology (KAUST), Saudi Arabia. Considering the broad range of functionality of SrTiO3, the findings of this work will surely benefit other fields of research and application of this functional oxide such as photoluminescence, ferroelectricity or mixed-ionic electronic conductivity. This dissertation will ultimately attempt to answer the question, "Is it possible to further improve the thermoelectric properties of SrTiO 3-based ceramics?". The organization of the dissertation is as follows: In Chapter 1, the fundamental concepts in the thermoelectric theory is explained. Second, we briefly review the characteristics of "good" thermoelectric materials and highlight the differences exist between SrTiO3 and conventional thermoelectric materials. In Chapter 2, SrTiO3 is introduced and the electronic and thermal properties arising from its crystal structure are discussed. Chapter 3 is dedicated to the fundamentals of measurements of the electronic and thermal transport properties which are the backbone of the current work. Our experimental results are presented in Chapter 4 and 5. The synthesis and processing techniques to prepare doped SrTiO3 powder and bulk polycrystalline ceramic are presented in Chapter 3. The optimizations of the synthesis and densification parameters involved are presented and discussed in this chapter as well. Significant improvement achieved in the thermoelectric figure of merit of Pr-doped SrTiO3 and the studies performed to understand the results are presented in Chapter 5. Concluding remarks and future work are discussed in Chapter 6.
Improving comfort of shoe sole through experiments based on CAD-FEM modeling.
Franciosa, Pasquale; Gerbino, Salvatore; Lanzotti, Antonio; Silvestri, Luca
2013-01-01
It was reported that next to style, comfort is the second key aspect in purchasing footwear. One of the most important components of footwear is the shoe sole, whose design is based on many factors such as foot shape/size, perceived comfort and materials. The present paper focuses on the parametric analysis of a shoe sole to improve the perceived comfort. The sensitivity of geometric and material design factors on comfort degree was investigated by combining real experimental tests and CAD-FEM simulations. The correlation between perceived comfort and physical responses, such as plantar pressures, was estimated by conducting real tests. Four different conditions were analyzed: subjects wearing three commercially available shoes and in a barefoot condition. For each condition, subjects expressed their perceived comfort score. By adopting plantar sensors, the plantar pressures were also monitored. Once given such a correlation, a parametric FEM model of the footwear was developed. In order to better simulate contact at the plantar surface, a detailed FEM model of the foot was also generated from CT scan images. Lastly, a fractional factorial design array was applied to study the sensitivity of different sets of design factors on comfort degree. The findings of this research showed that the sole thickness and its material highly influence perceived comfort. In particular, softer materials and thicker soles contribute to increasing the degree of comfort. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Dinakaran, Shiji
2015-01-01
Background: Cervical lesions of anterior and posterior teeth are a common finding in routine dental practice. They are of much concern to the patient, if present in esthetically sensitive regions. Adhesive tooth-colored restorative materials are generally recommended for treating such lesions. The aim of the present study was to evaluate and compare the effect of various food media (lime juice, tea, coffee, and Coca-Cola) on the marginal integrity of Class V compomer (Dyract®), conventional glass-ionomer (Fuji II) and resin-modified glass-ionomer (Fuji II LC improved) restorations along their cemental and enamel margins with saline as control media. Materials and Methods: After restoration of prepared Class V cavities in human premolars with the three different materials (n = 8), they were immersed in the test media for 7 days and then stained with methylene blue dye. Buccolingual sections were prepared and examined under stereomicroscope and scores (0-2) were given. Results: Data were analyzed statistically using one-way analysis of variance in SPSS version 16.0. P < 0.05 were considered statistically significant. Conclusions: Among the three tested materials Compomer (Dyract®) showed more marginal integrity than the other two. Micro leakage values of Fuji II and Fuji II LC improved were statistically significant in acidic media (lime juice and Coca-Cola) compared to saline. Enamel margins showed more marginal adaptation than cemental margins. PMID:25878480
Parametric Study on the Tensile Properties of Ni-Based Alloy for a VHTR
NASA Astrophysics Data System (ADS)
Kim, Dong-Jin; Jung, Su Jin; Mun, Byung Hak; Kim, Sung Woo; Lim, Yun Soo
2015-01-01
A very high-temperature reactor (VHTR) has been studied among generation IV nuclear power plants owing to its many advantages such as high-electric efficiency and massive hydrogen production. The material used for the heat exchanger should sustain structural integrity for its life even though the material is exposed to a harsh environment at 1223 K (950 °C) in an impure helium coolant. Therefore, an enhancement of the material performance at high temperature gives a margin in determining the operating temperature and life time. This work is an effort to find an optimum combination of alloying elements and processing parameters to improve the material performance. The tensile property and microstructure for nickel-based alloys fabricated in a laboratory were evaluated as a function of the heat treatment, cold working, and grain boundary strengthener using a tension test at 1223 K (950 °C), scanning electron microscopy, and transmission electron microscopy. Elongation to rupture was increased by additional heat treatment and cold working, followed by additional heat treatment in the temperature range from 1293 K to 1383 K (1020 °C to 1110 °C) implying that the intergranular carbide contributes to grain boundary strengthening. The temperature at which the grain boundary is improved by carbide decoration was higher for a cold-worked specimen, which was described by the difference in carbide stability and carbide formation kinetics between no cold-worked and cold-worked specimens. Zr and Hf played a scavenging effect of harmful elements causing an increase in ductility.
NASA Astrophysics Data System (ADS)
Protim Das, Partha; Gupta, P.; Das, S.; Pradhan, B. B.; Chakraborty, S.
2018-01-01
Maraging steel (MDN 300) find its application in many industries as it exhibits high hardness which are very difficult to machine material. Electro discharge machining (EDM) is an extensively popular machining process which can be used in machining of such materials. Optimization of response parameters are essential for effective machining of these materials. Past researchers have already used Taguchi for obtaining the optimal responses of EDM process for this material with responses such as material removal rate (MRR), tool wear rate (TWR), relative wear ratio (RWR), and surface roughness (SR) considering discharge current, pulse on time, pulse off time, arc gap, and duty cycle as process parameters. In this paper, grey relation analysis (GRA) with fuzzy logic is applied to this multi objective optimization problem to check the responses by an implementation of the derived parametric setting. It was found that the parametric setting derived by the proposed method results in better a response than those reported by the past researchers. Obtained results are also verified using the technique for order of preference by similarity to ideal solution (TOPSIS). The predicted result also shows that there is a significant improvement in comparison to the results of past researchers.
Bacteriological analysis of indoor and outdoor water parks in Wisconsin.
Davis, Tracynda L; Standridge, Jon H; Degnan, Alan J
2009-09-01
Water parks are a rapidly growing element of the United States tourist industry. To reduce incidence of abrasion and impact injuries in such parks, designers are searching for padding materials that can withstand the harsh oxidative environments of chlorinated water. Although padded features help reduce physical injuries, they may also compromise the microbiological safety of water attractions. This study describes bacteriological testing performed on 31 different pad materials, play features and pools from 10 Wisconsin water parks. Materials and surrounding pool waters were sampled and tested quantitatively for total coliforms, Escherichia coli, E. coli 0157:H7, enterococci, staphylococci, heterotrophic bacteria, and Pseudomonas aeruginosa, using standard methods. Each location was sampled during three visits, and results were averaged. Pool waters were within acceptable levels of target organisms and disinfectant residuals, but target organisms were found on water features, even those submerged in chlorinated water. Bacteria were detected more frequently in pools using pad materials compared with pools without. These findings provide data that will help the public health community understand the relations between designs, materials and maintenance of water features. Additionally, the information will help state regulators and owner/operators develop guidelines to improve public health and safety at water parks.
Diffusion-weighted imaging of the breast: principles and clinical applications.
Woodhams, Reiko; Ramadan, Saadallah; Stanwell, Peter; Sakamoto, Satoko; Hata, Hirofumi; Ozaki, Masanori; Kan, Shinichi; Inoue, Yusuke
2011-01-01
Diffusion-weighted imaging provides a novel contrast mechanism in magnetic resonance (MR) imaging and has a high sensitivity in the detection of changes in the local biologic environment. A significant advantage of diffusion-weighted MR imaging over conventional contrast material-enhanced MR imaging is its high sensitivity to change in the microscopic cellular environment without the need for intravenous contrast material injection. Approaches to the assessment of diffusion-weighted breast imaging findings include assessment of these data alone and interpretation of the data in conjunction with T2-weighted imaging findings. In addition, the analysis of apparent diffusion coefficient (ADC) value can be undertaken either in isolation or in combination with diffusion-weighted and T2-weighted imaging. Most previous studies have evaluated ADC value alone; however, overlap in the ADC values of malignant and benign disease has been observed. This overlap may be partly due to selection of b value, which can influence the concomitant effect of perfusion and emphasize the contribution of multicomponent model influences. The simultaneous assessment of diffusion-weighted and T2-weighted imaging data and ADC value has the potential to improve specificity. In addition, the use of diffusion-weighted imaging in a standard breast MR imaging protocol may heighten sensitivity and thereby improve diagnostic accuracy. Standardization of diffusion-weighted imaging parameters is needed to allow comparison of multicenter studies and assessment of the clinical utility of diffusion-weighted imaging and ADC values in breast evaluation.
Proposed Standards for Medical Education Submissions to the Journal of General Internal Medicine
Bowen, Judith L.; Gerrity, Martha S.; Kalet, Adina L.; Kogan, Jennifer R.; Spickard, Anderson; Wayne, Diane B.
2008-01-01
To help authors design rigorous studies and prepare clear and informative manuscripts, improve the transparency of editorial decisions, and raise the bar on educational scholarship, the Deputy Editors of the Journal of General Internal Medicine articulate standards for medical education submissions to the Journal. General standards include: (1) quality questions, (2) quality methods to match the questions, (3) insightful interpretation of findings, (4) transparent, unbiased reporting, and (5) attention to human subjects’ protection and ethical research conduct. Additional standards for specific study types are described. We hope these proposed standards will generate discussion that will foster their continued evolution. Electronic supplementary material The online version of this article (doi:10.1007/s11606-008-0676-z) contains supplementary material, which is available to authorized users. PMID:18612716
Epoxy Monomers Cured by High Cellulosic Nanocrystal Loading.
Khelifa, Farid; Habibi, Youssef; Bonnaud, Leila; Dubois, Philippe
2016-04-27
The present study focuses on the use of cellulose nanocrystals (CNC) as the main constituent of a nanocomposite material and takes advantage of hydroxyl groups, characteristic of the CNC chemical structure, to thermally cross-link an epoxy resin. An original and simple approach is proposed, based on the collective sticking of CNC building blocks with the help of a DGEBA/TGPAP-based epoxy resin. Scientific findings suggest that hydroxyl groups act as a toxic-free cross-linking agent of the resin. The enhanced protection against water degradation as compared to neat CNC film and the improvement of mechanical properties of the synthesized films are attributed to a good compatibility between the CNC and the resin. Moreover, the preservation of CNC optical properties at high concentrations opens the way to applying these materials in photonic devices.
The Impact of Incentives on Exercise Behavior: A Systematic Review of Randomized Controlled Trials
Strohacker, Kelley; Galarraga, Omar; Williams, David M.
2015-01-01
Background The effectiveness of reinforcing exercise behavior with material incentives is unclear. Purpose Conduct a systematic review of existing research on material incentives for exercise, organized by incentive strategy. Methods Ten studies conducted between January 1965 and June 2013 assessed the impact of incentivizing exercise compared to a non-incentivized control. Results There was significant heterogeneity between studies regarding reinforcement procedures and outcomes. Incentives tended to improve behavior during the intervention while findings were mixed regarding sustained behavior after incentives were removed. Conclusions The most effective incentive procedure is unclear given the limitations of existing research. The effectiveness of various incentive procedures in promoting initial behavior change and habit formation, as well as the use of sustainable incentive procedures should be explored in future research. PMID:24307474
NASA Astrophysics Data System (ADS)
Gomez-Bueso, Jose; Haupt, Robert
The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.
Performance limiting processes in room temperature thallium bromide radiation detectors
NASA Astrophysics Data System (ADS)
Datta, Amlan; Becla, Piotr; Moed, Demi; Motakef, Shariar
2015-09-01
Thallium Bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. However, several critical issues are needed to be addressed before deployment of this material for long-term field applications. In this paper, the relevance and, scientific and technological progress made towards solving these challenges for TlBr have been discussed. The possible research pathways to mitigate the concerns related to this material have been analyzed and clearly established. Findings from novel experiments performed at CapeSym have revealed that the most significant factors for achieving long-term performance stability for TlBr devices involve physical and chemical conditions of the surface, residual stress, and choice of metal contacts. Palladium electrodes on TlBr devices resulted in a 20-fold improvement in the device lifetime when compared to its Br-etched Pt counterpart. Electron and hole contributions towards the spectroscopic response of the TlBr detector significantly depend on the interaction position of the incoming radiation and was clearly observed in this study. TlBr device fabrication techniques need significant improvement in order to attain reliable, repeatable, and stable, long-term performance.
NASA Astrophysics Data System (ADS)
Yin, Shaohua; Lin, Guo; Li, Shiwei; Peng, Jinhui; Zhang, Libo
2016-09-01
Microwave heating has been applied in the field of drying rare earth carbonates to improve drying efficiency and reduce energy consumption. The effects of power density, material thickness and drying time on the weight reduction (WR) are studied using response surface methodology (RSM). The results show that RSM is feasible to describe the relationship between the independent variables and weight reduction. Based on the analysis of variance (ANOVA), the model is in accordance with the experimental data. The optimum experiment conditions are power density 6 w/g, material thickness 15 mm and drying time 15 min, resulting in an experimental weight reduction of 73%. Comparative experiments show that microwave drying has the advantages of rapid dehydration and energy conservation. Particle analysis shows that the size distribution of rare earth carbonates after microwave drying is more even than those in an oven. Based on these findings, microwave heating technology has an important meaning to energy-saving and improvement of production efficiency for rare earth smelting enterprises and is a green heating process.
Shahbazi, Yasser
2017-06-01
The aim of this study was to improve different characteristics including antibacterial, antioxidant, physical and mechanical properties of chitosan (Ch) and gelatin (Ge) films by incorporating Ziziphora clinopodioides essential oil (ZEO; 0 and 1% v/w) and ethanolic grape seed extract (GSE; 0 and 1% v/w). The main compounds of the ZEO were carvacrol (65.22%) and thymol (19.51%). According to our findings, addition of aforementioned materials could improve total phenolic content, antibacterial and antioxidant activities, thickness and also water vapor barrier property. ZEO and GSE reduces swelling index, tensile strength, puncture force and puncture deformation of Ch and Ge films. Pure Ch and Ge films had slightly yellow and white appearances, respectively, while films incorporated with GSE in combination with ZEO had grey appearances. This study indicated the some benefits of addition of ZEO and GSE into Ch and Ge films and their potentials for application as biodegradable active packaging. Copyright © 2017 Elsevier B.V. All rights reserved.
Culture through Comparison: Creating Audio-Visual Listening Materials for a CLIL Course
ERIC Educational Resources Information Center
Zhyrun, Iryna
2016-01-01
Authentic listening has become a part of CLIL materials, but it can be difficult to find listening materials that perfectly match the language level, length requirements, content, and cultural context of a course. The difficulty of finding appropriate materials online, financial limitations posed by copyright fees, and necessity to produce…
Revolutionary opportunities for materials and structures study
NASA Technical Reports Server (NTRS)
Schweiger, F. A.
1987-01-01
The revolutionary opportunities for materials and structures study was performed to provide Government and Industry focus for advanced materials technology. Both subsonic and supersonic engine studies and aircraft fuel burn and DOC evaluation are examined. Year 2010 goal materials were used in the advanced engine studies. These goal materials and improved component aero yielded subsonic fuel burn and DOC improvements of 13.4 percent and 5 percent, respectively and supersonic fuel burn and DOC improvements of 21.5 percent and 18 percent, respectively. Conclusions are that the supersonic study engine yielded fuel burn and DOC improvements well beyond the program goals; therefore, it is appropriate that advanced material programs be considered.
Role of Hydrogen in Defining the n-Type Character of BiVO 4 Photoanodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Jason K.; Scott, Soren B.; Ling, Yichuan
The roles of hydrogen impurity and oxygen vacancy defects on defining the conductivity, and hence photoelectrochemical (PEC) performance characteristics, of monoclinic scheelite bismuth vanadate (BiVO 4) are investigated using a combination of experiment and theory. We find that elemental hydrogen is present as an impurity in as-synthesized BiVO 4 and that increasing its concentration by annealing in H 2 at temperatures up to 290°C leads to near-complete elimination of majority carrier transport limitations, a beneficial shift in the photoanodic current onset potential, and improved fill factor. Magnetic resonance measurements reveal that hydrogen can be incorporated in at least two differentmore » chemical environments, which are assigned to interstitial and substitutional sites. Incorporation of hydrogen leads to a shift of the Fermi level toward the conduction band edge, indicating that n-type character is correlated with increased hydrogen content. This finding is in agreement with theory and reveals that hydrogen acts as a donor in BiVO 4. Sub-bandgap photoluminescence is observed from as-synthesized material and is consistent with deep electronic states associated with oxygen vacancies. Hydrogen treatment leads to reduced emission from these states. These findings support the conclusion that hydrogen, rather than oxygen vacancies, is dominant in determining the n-type conductivity of BiVO 4. These findings have important implications for controlling the electronic properties and functional characteristics of this promising photoanode material.« less
Role of Hydrogen in Defining the n-Type Character of BiVO 4 Photoanodes
Cooper, Jason K.; Scott, Soren B.; Ling, Yichuan; ...
2016-07-19
The roles of hydrogen impurity and oxygen vacancy defects on defining the conductivity, and hence photoelectrochemical (PEC) performance characteristics, of monoclinic scheelite bismuth vanadate (BiVO 4) are investigated using a combination of experiment and theory. We find that elemental hydrogen is present as an impurity in as-synthesized BiVO 4 and that increasing its concentration by annealing in H 2 at temperatures up to 290°C leads to near-complete elimination of majority carrier transport limitations, a beneficial shift in the photoanodic current onset potential, and improved fill factor. Magnetic resonance measurements reveal that hydrogen can be incorporated in at least two differentmore » chemical environments, which are assigned to interstitial and substitutional sites. Incorporation of hydrogen leads to a shift of the Fermi level toward the conduction band edge, indicating that n-type character is correlated with increased hydrogen content. This finding is in agreement with theory and reveals that hydrogen acts as a donor in BiVO 4. Sub-bandgap photoluminescence is observed from as-synthesized material and is consistent with deep electronic states associated with oxygen vacancies. Hydrogen treatment leads to reduced emission from these states. These findings support the conclusion that hydrogen, rather than oxygen vacancies, is dominant in determining the n-type conductivity of BiVO 4. These findings have important implications for controlling the electronic properties and functional characteristics of this promising photoanode material.« less
Gronau, Greta; Krishnaji, Sreevidhya T.; Kinahan, Michelle E.; Giesa, Tristan; Wong, Joyce Y.; Kaplan, David L.; Buehler, Markus J.
2013-01-01
Tailored biomaterials with tunable functional properties are desirable for many applications ranging from drug delivery to regenerative medicine. To improve the predictability of biopolymer materials functionality, multiple design parameters need to be considered, along with appropriate models. In this article we review the state of the art of synthesis and processing related to the design of biopolymers, with an emphasis on the integration of bottom-up computational modeling in the design process. We consider three prominent examples of well-studied biopolymer materials – elastin, silk, and collagen – and assess their hierarchical structure, intriguing functional properties and categorize existing approaches to study these materials. We find that an integrated design approach in which both experiments and computational modeling are used has rarely been applied for these materials due to difficulties in relating insights gained on different length- and time-scales. In this context, multiscale engineering offers a powerful means to accelerate the biomaterials design process for the development of tailored materials that suit the needs posed by the various applications. The combined use of experimental and computational tools has a very broad applicability not only in the field of biopolymers, but can be exploited to tailor the properties of other polymers and composite materials in general. PMID:22938765
Gronau, Greta; Krishnaji, Sreevidhya T; Kinahan, Michelle E; Giesa, Tristan; Wong, Joyce Y; Kaplan, David L; Buehler, Markus J
2012-11-01
Tailored biomaterials with tunable functional properties are desirable for many applications ranging from drug delivery to regenerative medicine. To improve the predictability of biopolymer materials functionality, multiple design parameters need to be considered, along with appropriate models. In this article we review the state of the art of synthesis and processing related to the design of biopolymers, with an emphasis on the integration of bottom-up computational modeling in the design process. We consider three prominent examples of well-studied biopolymer materials - elastin, silk, and collagen - and assess their hierarchical structure, intriguing functional properties and categorize existing approaches to study these materials. We find that an integrated design approach in which both experiments and computational modeling are used has rarely been applied for these materials due to difficulties in relating insights gained on different length- and time-scales. In this context, multiscale engineering offers a powerful means to accelerate the biomaterials design process for the development of tailored materials that suit the needs posed by the various applications. The combined use of experimental and computational tools has a very broad applicability not only in the field of biopolymers, but can be exploited to tailor the properties of other polymers and composite materials in general. Copyright © 2012 Elsevier Ltd. All rights reserved.
Combes, Gill; Sein, Kim; Allen, Kerry
2017-11-23
Pre-dialysis education (PDE) is provided to thousands of patients every year, helping them decide which renal replacement therapy (RRT) to choose. However, its effectiveness is largely unknown, with relatively little previous research into patients' views about PDE, and no research into staff views. This study reports findings relevant to PDE from a larger mixed methods study, providing insights into what staff and patients think needs to improve. Semi-structured interviews in four hospitals with 96 clinical and managerial staff and 93 dialysis patients, exploring experiences of and views about PDE, and analysed using thematic framework analysis. Most patients found PDE helpful and staff valued its role in supporting patient decision-making. However, patients wanted to see teaching methods and materials improve and biases eliminated. Staff were less aware than patients of how informal staff-patient conversations can influence patients' treatment decision-making. Many staff felt ill equipped to talk about all treatment options in a balanced and unbiased way. Patient decision-making was found to be complex and patients' abilities to make treatment decisions were adversely affected in the pre-dialysis period by emotional distress. Suggested improvements to teaching methods and educational materials are in line with previous studies and current clinical guidelines. All staff, irrespective of their role, need to be trained about all treatment options so that informal conversations with patients are not biased. The study argues for a more individualised approach to PDE which is more like counselling than education and would demand a higher level of skill and training for specialist PDE staff. The study concludes that even if these improvements are made to PDE, not all patients will benefit, because some find decision-making in the pre-dialysis period too complex or are unable to engage with education due to illness or emotional distress. It is therefore recommended that pre-dialysis treatment decisions are temporary, and that PDE is replaced with on-going RRT education which provides opportunities for personalised education and on-going review of patients' treatment choices. Emotional support to help overcome the distress of the transition to end-stage renal disease will also be essential to ensure all patients can benefit from RRT education.
Sawant, Sandesh Y.; Han, Thi Hiep; Cho, Moo Hwan
2016-01-01
Microbial fuel cells (MFCs) are a promising green approach for wastewater treatment with the simultaneous advantage of energy production. Among the various limiting factors, the cathodic limitation, with respect to performance and cost, is one of the main obstacles to the practical applications of MFCs. Despite the high performance of platinum and other metal-based cathodes, their practical use is limited by their high cost, low stability, and environmental toxicity. Oxygen is the most favorable electron acceptor in the case of MFCs, which reduces to water through a complicated oxygen reduction reaction (ORR). Carbon-based ORR catalysts possessing high surface area and good electrical conductivity improve the ORR kinetics by lowering the cathodic overpotential. Recently, a range of carbon-based materials have attracted attention for their exceptional ORR catalytic activity and high stability. Doping the carbon texture with a heteroatom improved their ORR activity remarkably through the favorable adsorption of oxygen and weaker molecular bonding. This review provides better insight into ORR catalysis for MFCs and the properties, performance, and applicability of various metal-free carbon-based electrocatalysts in MFCs to find the most appropriate cathodic catalyst for the practical applications. The approaches for improvement, key challenges, and future opportunities in this field are also explored. PMID:28029116
Todorov, Teodor K; Singh, Saurabh; Bishop, Douglas M; Gunawan, Oki; Lee, Yun Seog; Gershon, Talia S; Brew, Kevin W; Antunez, Priscilla D; Haight, Richard
2017-09-25
Selenium was used in the first solid state solar cell in 1883 and gave early insights into the photoelectric effect that inspired Einstein's Nobel Prize work; however, the latest efficiency milestone of 5.0% was more than 30 years ago. The recent surge of interest towards high-band gap absorbers for tandem applications led us to reconsider this attractive 1.95 eV material. Here, we show completely redesigned selenium devices with improved back and front interfaces optimized through combinatorial studies and demonstrate record open-circuit voltage (V OC ) of 970 mV and efficiency of 6.5% under 1 Sun. In addition, Se devices are air-stable, non-toxic, and extremely simple to fabricate. The absorber layer is only 100 nm thick, and can be processed at 200 ˚C, allowing temperature compatibility with most bottom substrates or sub-cells. We analyze device limitations and find significant potential for further improvement making selenium an attractive high-band-gap absorber for multi-junction device applications.Wide band gap semiconductors are important for the development of tandem photovoltaics. By introducing buffer layers at the front and rear side of solar cells based on selenium; Todorov et al., reduce interface recombination losses to achieve photoconversion efficiencies of 6.5%.
Wang, Jin-Sook; Kee, Mee-Kyung; Choi, Byeong-Sun; Kim, Chan-Wha; Kim, Hyon-Suk; Kim, Sung Soon
2012-01-01
The external quality assessment schemes (EQAS) organizer provides a suitable program to monitor and improve the quality of human immunodeficiency virus (HIV) testing laboratories with EQAS panels prepared under various conditions. The aim of the current study was to investigate the effects of human plasma samples on the EQAS results of HIV obtained from hospital-based clinical laboratories. From 2007 to 2009, HIV EQAS panels consisted of four to six samples that consisted of undiluted positive and negative samples and were provided to laboratories twice per year. Up until the first half EQAS in 2008, EQAS panel materials were obtained by converting acid citrate dextrose treated plasma to serum via chemical treatment with CaCl2. Beginning with the second EQAS in 2008, all materials were prepared without the defibrination process. Approximately 300 HIV clinical laboratories participated in this program. The overall performance of clinical laboratories was shown to be improved when using unrecalcified plasma panels compared with recalcified panels. Significant differences were observed in EIA analyses of plasma for both positive (p<0.001) and negative (p<0.001) samples between the recalcified and unrecalcified groups. Our finding suggested that defibrination status of EQAS panels might affect the results of anti-HIV EQAS of Korean HIV testing laboratories.
NASA Technical Reports Server (NTRS)
Weiner, S.; Beerman, H. P.
1971-01-01
The object of this program is to improve the detectivity of the pyroelectric detector with the ultimate goal of operation at or near the temperature-noise limit. Two general areas of investigation are undertaken. The first is to improve responsivity through the use of new materials. The second is directed toward reduction of noise and will be effected with improved field effect transistor characteristics, and improved electroding of the pyroelectric material. The search for new materials has begun with a review of the literature on pyroelectric materials in several languages. The compiled data includes an extensive list of references. From this, several materials have already been selected for investigation. FETs are being obtained from various manufacturers, evaluated, and selected units will be tested with pyroelectric elements as complete detectors.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
...-0004] Hazardous Materials: Improving the Safety of Railroad Transportation of Hazardous Materials... hazardous materials program. DATES: The public meeting will be held on Tuesday, February 22, 2011, starting...--Hazardous Materials, FRA Office of Safety Assurance and Compliance, at least 4 business days before the date...
Development of improved ablative materials for ASRM. [Advanced Solid Rocket Motor
NASA Technical Reports Server (NTRS)
Canfield, A.; Armour, W.; Clinton, R.
1991-01-01
A program to improve ablative materials for the Advanced Solid Rocket Motor (ASRM) is briefly discussed. The main concerns with the baseline material are summarized along with the measures being undertaken to obtain improvements. The materials involved in the program, all of which have been manufactured and are now being evaluated, are mentioned.
Heroic Reliability Improvement in Manned Space Systems
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2017-01-01
System reliability can be significantly improved by a strong continued effort to identify and remove all the causes of actual failures. Newly designed systems often have unexpected high failure rates which can be reduced by successive design improvements until the final operational system has an acceptable failure rate. There are many causes of failures and many ways to remove them. New systems may have poor specifications, design errors, or mistaken operations concepts. Correcting unexpected problems as they occur can produce large early gains in reliability. Improved technology in materials, components, and design approaches can increase reliability. The reliability growth is achieved by repeatedly operating the system until it fails, identifying the failure cause, and fixing the problem. The failure rate reduction that can be obtained depends on the number and the failure rates of the correctable failures. Under the strong assumption that the failure causes can be removed, the decline in overall failure rate can be predicted. If a failure occurs at the rate of lambda per unit time, the expected time before the failure occurs and can be corrected is 1/lambda, the Mean Time Before Failure (MTBF). Finding and fixing a less frequent failure with the rate of lambda/2 per unit time requires twice as long, time of 1/(2 lambda). Cutting the failure rate in half requires doubling the test and redesign time and finding and eliminating the failure causes.Reducing the failure rate significantly requires a heroic reliability improvement effort.
ERIC Educational Resources Information Center
Kennedy, Mary Ann Rhoads
2004-01-01
Testing materials for high school students whose reading is below grade level might not be age-appropriate or sufficiently motivating. The first step in finding appropriate material would be to talk with the student to learn his or her interests. To find age-appropriate material the author searched Internet resources and then used Microsoft Word…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortes, Francisco Javier Quintero; Boebinger, Matthew G.; Xu, Michael
Alloying anode materials offer high capacity for next-generation batteries, but the performance of these materials often decays rapidly with cycling because of volume changes and associated mechanical degradation or fracture. The direct measurement of crystallographic strain evolution in individual particles has not been reported, however, and this level of insight is critical for designing mechanically resilient materials. Here, we use operando X-ray diffraction to investigate strain evolution in individual germanium microparticles during electrochemical reaction with lithium. The diffraction peak was observed to shift in position and diminish in intensity during reaction because of the disappearance of the crystalline Ge phase.more » The compressive strain along the [111] direction was found to increase monotonically to a value of -0.21%. This finding is in agreement with a mechanical model that considers expansion and plastic deformation during reaction. This new insight into the mechanics of large-volume-change transformations in alloying anodes is important for improving the durability of high-capacity batteries.« less
Almasi, Davood; Sadeghi, Maliheh; Lau, Woei Jye; Roozbahani, Fatemeh; Iqbal, Nida
2016-07-01
The present work reviews the current fabrication methods of the functionally graded polymeric material (FGPM) and introduces a novel fabrication method that is versatile in applications as compared to those of existing used methods. For the first time electrophoresis was used to control the distribution of the tetracycline hydrochloride (TC) in a film made of polylactic acid (PLA), aiming to induce antimicrobial effect on the film prepared. The elemental analysis on the film surface showed that by employing electrophoresis force, higher amount of TC was detected near the top surface of the film. Results also showed that the FGPM samples with higher percentage of the TC on the film surface were highly effective to minimize the growth of Escherichia coli. These findings are useful and important to improve dispersion quality of the particles in the composite material and further enhance its antibacterial property. Copyright © 2016 Elsevier B.V. All rights reserved.
Marques, Paula A A P; Gonçalves, Gil; Singh, Manoj K; Grácio, José
2012-08-01
Graphene and its derivatives have attracted great research interest for their potential applications in electronics, energy, materials and biomedical areas. When incorporated appropriately, these atomically thin carbon sheets are expected to improve physical properties of host polymers at extremely small loading. Herein, we report a novel two-step method for the preparation of PLLA/Hap/graphene oxide nanocomposites with augmented mechanical properties when compared to PLLA/Hap and neat PLLA. The presence of graphene oxide (GO) had a positive effect on the dispersion of hydroxyapatite particles on the polymeric matrix contributing for a good homogeneity of the final nanocomposite. PLLA nanocomposites prepared with 30% (w/w) of Hap and 1% (w/w) of GO showed the highest hardness and storage modulus values indicating an efficient load transfer between the fillers and the PLLA matrix. These materials may find interesting biomedical applications as for example bone screws. The following step on the study of these materials will be in vitro tests to access the biocompatibility of these new nanocomposites.
NASA Astrophysics Data System (ADS)
Popa, Ioan-Dan; Dobriţa, Florin
2017-12-01
Tremendous amount of funds and other resorces were invested in studying the response of ceramic materials under ballistic impact, the main goal being to find a way to increase the protection of soldiers and the vehicles used in the modern battlespace. Using of ceramic materials especially carbon based (carbides), nitrogen based (nitrides) and oxygen based (oxides) ceramics in order to increase the protection level of ballistic equipment could be, sometimes, a big challenge when trying to use the proper test in order to evaluate and compare their performances. The role of the tests is to provide a better understanding of their response in different situations and, as a consequence, to make them more efficient as armour components through future improvements. The paper presents shortly the main tests which are used and eventually standardised for evaluating the ballistic behaviour of the ceramics and other armour components, with a special focus to DOP (Depth of Penetration) Tests.
Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System
Shrivastav, Anupama; Kim, Hae-Yeong; Kim, Young-Rok
2013-01-01
Drug delivery technology is emerging as an interdisciplinary science aimed at improving human health. The controlled delivery of pharmacologically active agents to the specific site of action at the therapeutically optimal rate and dose regimen has been a major goal in designing drug delivery systems. Over the past few decades, there has been considerable interest in developing biodegradable drug carriers as effective drug delivery systems. Polymeric materials from natural sources play an important role in controlled release of drug at a particular site. Polyhydroxyalkanoates, due to their origin from natural sources, are given attention as candidates for drug delivery materials. Biodegradable and biocompatible polyhydroxyalkanoates are linear polyesters produced by microorganisms under unbalanced growth conditions, which have emerged as potential polymers for use as biomedical materials for drug delivery due to their unique physiochemical and mechanical properties. This review summarizes many of the key findings in the applications of polyhydroxyalkanoates and polyhydroxyalkanoate nanoparticles for drug delivery system. PMID:23984383
High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers
NASA Astrophysics Data System (ADS)
Cai, Jie; Niu, Haitao; Wang, Hongxia; Shao, Hao; Fang, Jian; He, Jingren; Xiong, Hanguo; Ma, Chengjie; Lin, Tong
2016-08-01
Carbon nanofibers with inter-bonded fibrous structure show high supercapacitor performance when being used as electrode materials. Their preparation is highly desirable from cellulose through a pyrolysis technique, because cellulose is an abundant, low cost natural material and its carbonization does not emit toxic substance. However, interconnected carbon nanofibers prepared from electrospun cellulose nanofibers and their capacitive behaviors have not been reported in the research literature. Here we report a facile one-step strategy to prepare inter-bonded carbon nanofibers from partially hydrolyzed cellulose acetate nanofibers, for making high-performance supercapacitors as electrode materials. The inter-fiber connection shows considerable improvement in electrode electrochemical performances. The supercapacitor electrode has a specific capacitance of ∼241.4 F g-1 at 1 A g-1 current density. It maintains high cycling stability (negligible 0.1% capacitance reduction after 10,000 cycles) with a maximum power density of ∼84.1 kW kg-1. They may find applications in the development of efficient supercapacitor electrodes for energy storage applications.
Murphy, D A; O'Keefe, Z H; Kaufman, A H
1999-10-01
A simplified version of the prototype HIV vaccine material was developed through (a) reducing reading grade level, (b) restructuring of the organization and categorization of the material, (c) adding pictures designed to emphasize key concepts, and (d) obtaining feedback on the simplified version through focus groups with the target population. Low-income women at risk for HIV (N = 141) recruited from a primary care clinic were randomly assigned to be presented the standard or the simplified version. There were no significant differences between the groups in terms of education or Vocabulary, Block Design, and Passage Comprehension scores. Women who received the simplified version had significantly higher comprehension scores immediately following presentation of the material than did women who received the standard version and were also significantly more likely to recall study benefits and risks. These findings were maintained at 3-month follow-up. Implications for informed consent are discussed.
Recall and recognition hypermnesia for Socratic stimuli.
Kazén, Miguel; Solís-Macías, Víctor M
2016-01-01
In two experiments, we investigate hypermnesia, net memory improvements with repeated testing of the same material after a single study trial. In the first experiment, we found hypermnesia across three trials for the recall of word solutions to Socratic stimuli (dictionary-like definitions of concepts) replicating Erdelyi, Buschke, and Finkelstein and, for the first time using these materials, for their recognition. In the second experiment, we had two "yes/no" recognition groups, a Socratic stimuli group presented with concrete and abstract verbal materials and a word-only control group. Using signal detection measures, we found hypermnesia for concrete Socratic stimuli-and stable performance for abstract stimuli across three recognition tests. The control group showed memory decrements across tests. We interpret these findings with the alternative retrieval pathways (ARP) hypothesis, contrasting it with alternative theories of hypermnesia, such as depth of processing, generation and retrieve-recognise. We conclude that recognition hypermnesia for concrete Socratic stimuli is a reliable phenomenon, which we found in two experiments involving both forced-choice and yes/no recognition procedures.
NASA Astrophysics Data System (ADS)
Veiseh, Omid; Doloff, Joshua C.; Ma, Minglin; Vegas, Arturo J.; Tam, Hok Hei; Bader, Andrew R.; Li, Jie; Langan, Erin; Wyckoff, Jeffrey; Loo, Whitney S.; Jhunjhunwala, Siddharth; Chiu, Alan; Siebert, Sean; Tang, Katherine; Hollister-Lock, Jennifer; Aresta-Dasilva, Stephanie; Bochenek, Matthew; Mendoza-Elias, Joshua; Wang, Yong; Qi, Merigeng; Lavin, Danya M.; Chen, Michael; Dholakia, Nimit; Thakrar, Raj; Lacík, Igor; Weir, Gordon C.; Oberholzer, Jose; Greiner, Dale L.; Langer, Robert; Anderson, Daniel G.
2015-06-01
The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of materials, including hydrogels, ceramics, metals and plastics, significantly abrogated foreign body reactions and fibrosis when compared with smaller spheres. We also show that for encapsulated rat pancreatic islet cells transplanted into streptozotocin-treated diabetic C57BL/6 mice, islets prepared in 1.5-mm alginate capsules were able to restore blood-glucose control for up to 180 days, a period more than five times longer than for transplanted grafts encapsulated within conventionally sized 0.5-mm alginate capsules. Our findings suggest that the in vivo biocompatibility of biomedical devices can be significantly improved simply by tuning their spherical dimensions.
On the impact of water activity on reversal tolerant fuel cell anode performance and durability
NASA Astrophysics Data System (ADS)
Hong, Bo Ki; Mandal, Pratiti; Oh, Jong-Gil; Litster, Shawn
2016-10-01
Durability of polymer electrolyte fuel cells in automotive applications can be severely affected by hydrogen starvation arising due to transients during the drive-cycle. It causes individual cell voltage reversal, yielding water electrolysis and carbon corrosion reactions at the anode, ultimately leading to catastrophic cell failure. A popular material-based mitigation strategy is to employ a reversal tolerant anode (RTA) that includes oxygen evolution reaction (OER) catalyst (e.g., IrO2) to promote water electrolysis over carbon corrosion. Here we report that RTA performance surprisingly drops under not only water-deficient but also water-excess conditions. This presents a significant technical challenge since the most common triggers for cell reversal involve excess liquid water. Our findings from detailed electrochemical diagnostics and nano-scale X-ray computed tomography provide insight into how automotive fuel cells can overcome critical vulnerabilities using material-based solutions. Our work also highlights the need for improved materials, electrode designs, and operation strategies for robust RTAs.
Quero, Franck; Padilla, Cristina; Campos, Vanessa; Luengo, Jorge; Caballero, Leonardo; Melo, Francisco; Li, Qiang; Eichhorn, Stephen J; Enrione, Javier
2018-09-01
Microfibrillated cellulose (MFC) obtained from eucalyptus was embedded in gelatin from two sources; namely bovine and salmon gelatin. Raman spectroscopy revealed that stress is transferred more efficiently from bovine gelatin to the MFC when compared to salmon gelatin. Young's modulus, tensile strength, strain at failure and work of fracture of the nanocomposite films were improved by ∼67, 131, 43 y 243% respectively when using salmon gelatin as matrix material instead of bovine gelatin. Imaging of the tensile fracture surface of the MFC-gelatin nanocomposites revealed that crack formation occurs predominantly within bovine and salmon gelatin matrices rather than within the MFC or at the MFC/gelatin interface. This suggests that the mechanical failure mechanism in these nanocomposite materials is predominantly governed by a matrix-cohesive fracture mechanism. Both strength and flexibility are desirable properties for composite coatings made from gelatin-based materials, and so the findings of this study could assist in their utilization in the food and pharmaceutical industry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Assessing Density Functionals Using Many Body Theory for Hybrid Perovskites
NASA Astrophysics Data System (ADS)
Bokdam, Menno; Lahnsteiner, Jonathan; Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg
2017-10-01
Which density functional is the "best" for structure simulations of a particular material? A concise, first principles, approach to answer this question is presented. The random phase approximation (RPA)—an accurate many body theory—is used to evaluate various density functionals. To demonstrate and verify the method, we apply it to the hybrid perovskite MAPbI3 , a promising new solar cell material. The evaluation is done by first creating finite temperature ensembles for small supercells using RPA molecular dynamics, and then evaluating the variance between the RPA and various approximate density functionals for these ensembles. We find that, contrary to recent suggestions, van der Waals functionals do not improve the description of the material, whereas hybrid functionals and the strongly constrained appropriately normed (SCAN) density functional yield very good agreement with the RPA. Finally, our study shows that in the room temperature tetragonal phase of MAPbI3 , the molecules are preferentially parallel to the shorter lattice vectors but reorientation on ps time scales is still possible.
Sintered Cathodes for All-Solid-State Structural Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Huddleston, William; Dynys, Frederick; Sehirlioglu, Alp
2017-01-01
All-solid-state structural lithium ion batteries serve as both structural load-bearing components and as electrical energy storage devices to achieve system level weight savings in aerospace and other transportation applications. This multifunctional design goal is critical for the realization of next generation hybrid or all-electric propulsion systems. Additionally, transitioning to solid state technology improves upon battery safety from previous volatile architectures. This research established baseline solid state processing conditions and performance benchmarks for intercalation-type layered oxide materials for multifunctional application. Under consideration were lithium cobalt oxide and lithium nickel manganese cobalt oxide. Pertinent characteristics such as electrical conductivity, strength, chemical stability, and microstructure were characterized for future application in all-solid-state structural battery cathodes. The study includes characterization by XRD, ICP, SEM, ring-on-ring mechanical testing, and electrical impedance spectroscopy to elucidate optimal processing parameters, material characteristics, and multifunctional performance benchmarks. These findings provide initial conditions for implementing existing cathode materials in load bearing applications.
Jet engine applications for materials with nanometer-scale dimensions
NASA Technical Reports Server (NTRS)
Appleby, J. W., Jr.
1995-01-01
The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and materials with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.
Jet engine applications for materials with nanometer-scale dimensions
NASA Technical Reports Server (NTRS)
Appleby, J. W., Jr.
1995-01-01
The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and material with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.
Symmetry and defects in rhombohedral single-crystalline Na0.5Bi0.5TiO3
NASA Astrophysics Data System (ADS)
Beanland, Richard; Thomas, Pam A.
2014-05-01
Recent work has indicated that the symmetry of the lead-free piezoelectric perovskite Na0.5Bi0.5TiO3 can be changed from monoclinic to rhombohedral through the application of an electric field, which may have implications for the study and design of piezoelectric materials close to a morphotropic phase boundary. We have examined high-quality, single-crystal Na0.5Bi0.5TiO3 using transmission electron microscopy and have used digital electron diffraction to observe the symmetry of defect-free regions of material on length scales of a few nanometers. This unequivocally demonstrates that the material is rhombohedral with space group R3c on this length scale. We find that a model that allows disordered displacements of Bi atoms from their nominal sites in the R3c symmetry, while retaining this symmetry on average, gives a very significant improvement in fit to simulations. We use conventional transmission electron microscopy to enumerate the different types of defects that are observed in other regions of the crystal and find a complex microstructure of antiphase boundaries, domain walls, and tetragonal platelets. Their interaction leads to the formation of very high densities of nanotwins. We show that these are expected to have a variable monoclinic Cc symmetry that is driven by the constraint of continuity of the crystal across a domain wall.
Design and Analysis of Drive Shaft using Kevlar/Epoxy and Glass/Epoxy as a Composite Material
NASA Astrophysics Data System (ADS)
Karthikeyan, P.; Gobinath, R.; Kumar, L. Ajith; Jenish, D. Xavier
2017-05-01
In automobile industry drive shaft is one of the most important components to transmit power form the engine to rear wheel through the differential gear. Generally steel drive shaft is used in automobile industry, nowadays they are more interested to replace steel drive shaft with that of composite drive shaft. The overall objective of this paper is to analyze the composite drive shaft using to find out the best replacement for conventional steel drive shaft. The uses of advanced composite materials such as Kevlar, Graphite, Carbon and Glass with proper resins ware resulted in remarkable achievements in automobile industry because of its greater specific strength and specific modulus, improved fatigue and corrosion resistances and reduction in energy requirements due to reduction in weight as compared to steel shaft. This paper is to presents, the modeling and analysis of drive shaft using Kevlar/Epoxy and Glass/Epoxy as a composite material and to find best replacement for conventional steel drive shafts with an Kevlar/epoxy or Glass/Epoxy resin composite drive shaft. Modeling is done using CATIA software and Analysis is carried out by using ANSYS 10.0 software for easy understanding. The composite drive shaft reduces the weight by 81.67 % for Kevlar/Epoxy and 72.66% for Glass/Epoxy when compared with conventional steel drive shaft.
Improvement of the conductive network of positive electrodes and the performance of Ni-MH battery
NASA Astrophysics Data System (ADS)
Morimoto, Katsuya; Nakayama, Kousuke; Maki, Hideshi; Inoue, Hiroshi; Mizuhata, Minoru
2017-06-01
The pretreatment to modify the valence of cobalt by discharging at 0.2 C rate for 7.5 h before the first initial activation charge process is effective in improving the surface electronic conductivity among fine particles of positive electrode active materials. The discharge curves indicate the same locus within 1800 cycles, and the capacity of the pretreated battery is stable for over 4000 cycles. However, in-situ cell pretreatment with constant current has negative influence on other components. During the constant current pretreatment, the cell voltage rapidly falls to -0.5 V in the first 10 s of in-situ pretreatment. Therefore, we investigate the pretreatment by supplying a constant voltage to the battery instead of a constant current, and find the effective condition to improve the electrochemical performance and not to have any influence on other components of the battery.
NASA Astrophysics Data System (ADS)
Chang, Caiyun; Huang, Zhipeng; Tian, Runsai; Jiang, Xinyu; Li, Chunsheng; Feng, Jijun
2017-10-01
Tuning whole/partial surface modification on cathode material with oxide material is a sought-after method to enhance the electrochemical performance in power storage field. Herein, nano-SiO2 targeted partial surface modified high voltage cathode material Li2CoPO4F has been successfully fabricated via a facile self-assembly process in silica dispersion at ambient temperature. With the aid of polar -OH groups attracted on the surface of SiO2 micelles, the nano-SiO2 preferentially nestle up along the borders and boundaries of Li2CoPO4F particles, where protection should be deployed with emphasis against the undesirable interactions between materials and electrolytes. Compared with pristine Li2CoPO4F, the SiO2 selectively modified Li2CoPO4F cathode materials, especially LCPF-3S, exhibit desirable electrochemical performances with higher discharge capacity, more outstanding cycle stability and favorable rate capability without any additional carbon involved. The greatly enhanced electrochemical properties can be attributed to the improved lithium-ion diffusion kinetics and structure tolerance during repeated lithiation/delithiation process. Such findings reveal a great potential of nano-SiO2 modified Li2CoPO4F as high energy cathode material for lithium ion batteries.
Thermophysical properties of hydrophobised lime plaster - Experimental analysis of moisture effect
NASA Astrophysics Data System (ADS)
Pavlíková, Milena; Pernicová, Radka; Pavlík, Zbyšek
2016-07-01
Lime plasters are the most popular finishing materials in renewal of historical buildings and culture monuments. Because of their limited durability, new materials and design solutions are investigated in order to improve plasters performance in harmful environmental conditions. For the practical use, the plasters mechanical resistivity and the compatibility with substrate are the most decisive material parameters. However, also plasters hygric and thermal parameters affecting the overall hygrothermal function of the renovated structures are of the particular importance. On this account, the effect of moisture content on the thermophysical properties of a newly designed lime plasters containing hydrophobic admixture is analysed in the paper. For the comparative purposes, the reference lime and cement-lime plasters are tested as well. Basic characterization of the tested materials is done using bulk density, matrix density, and porosity measurements. Thermal conductivity and volumetric heat capacity in the broad range of moisture content are experimentally accessed using a transient impulse method. The obtained data reveals the significant increase of the both studied thermal parameters with increasing moisture content and gives information on plasters behaviour in a highly humid environment and/or in the case of their possible direct contact with liquid water. The accessed material parameters will be stored in a material database, where can find use as an input data for computational modelling of coupled heat and moisture transport in this type of porous building materials.
Erueti, Chrissy; Glasziou, Paul P
2013-01-01
Objectives To evaluate the completeness of descriptions of non-pharmacological interventions in randomised trials, identify which elements are most frequently missing, and assess whether authors can provide missing details. Design Analysis of consecutive sample of randomised trials of non-pharmacological interventions. Data sources and study selection All reports of randomised trials of non-pharmacological interventions published in 2009 in six leading general medical journals; 133 trial reports, with 137 interventions, met the inclusion criteria. Data collection Using an eight item checklist, two raters assessed the primary full trial report, plus any reference materials, appendices, or websites. Questions about missing details were emailed to corresponding authors, and relevant items were then reassessed. Results Of 137 interventions, only 53 (39%) were adequately described; this was increased to 81 (59%) by using 63 responses from 88 contacted authors. The most frequently missing item was the “intervention materials” (47% complete), but it also improved the most after author response (92% complete). Whereas some authors (27/70) provided materials or further information, other authors (21/70) could not; their reasons included copyright or intellectual property concerns, not having the materials or intervention details, or being unaware of their importance. Although 46 (34%) trial interventions had further information or materials readily available on a website, many were not mentioned in the report, were not freely accessible, or the URL was no longer functioning. Conclusions Missing essential information about interventions is a frequent, yet remediable, contributor to the worldwide waste in research funding. If trial reports do not have a sufficient description of interventions, other researchers cannot build on the findings, and clinicians and patients cannot reliably implement useful interventions. Improvement will require action by funders, researchers, and publishers, aided by long term repositories of materials linked to publications. PMID:24021722
HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness
Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.; ...
2016-05-26
Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less
HBM Mice Have Altered Bone Matrix Composition And Improved Material Toughness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, Ryan D.; Mashiatulla, Maleeha; Acerbo, Alvin S.
Here, the G171V mutation in the low density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using an HBM transgenic mouse model have consistently found increased bone mass and whole-bone strength, but little attention has been paid to bone matrix quality. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bendingmore » stiffness, and energy to failure than wild-type animals. Interestingly, the increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity and carbonate substitution, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls. The largest difference in material properties was a 2-fold increase in the modulus of toughness in HBM mice. Step-wise regression analyses found weak correlations between matrix composition and material properties, and interestingly, the matrix compositional parameters associated with the material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build greater bone quantity, but also to improve bone quality.« less
Chong, Alexander Cm; Prohaska, Daniel J; Bye, Brian P
2017-05-01
With arthroscopic techniques being used, the importance of knot tying has been examined. Previous literature has examined the use of reversing half-hitches on alternating posts (RHAPs) on knot security. Separately, there has been research regarding different suture materials commonly used in the operating room. The specific aim of this study was to validate the effect of different stacked half-hitch configuration and different braided suture materials on arthroscopic knot integrity. Three different suture materials tied with five different RHAPs in arthroscopic knots were compared. A single load-to-failure test was performed and the mean ultimate clinical failure load was obtained. Significant knot holding strength improvement was found when one half-hitch was reversed as compared to baseline knot. When two of the half-hitches were reversed, there was a greater improvement with all knots having a mean ultimate clinical failure load greater than 150 newtons (N). Comparison of the suture materials demonstrated a higher mean ultimate clinical failure load when Force Fiber ® was used and at least one half-hitch was reversed. Knots tied with either Force Fiber ® or Orthocord ® showed 0% chance of knot slippage while knots tied with FiberWire ® or braided fishing line had about 10 and 30% knot slippage chances, respectively. A significant effect was observed in regards to both stacked half-hitch configuration and suture materials used on knot loop and knot security. Caution should be used with tying three RHAPs in arthroscopic surgery, particularly with a standard knot pusher and arthroscopic cannulas. The findings of this study indicated the importance of three RHAPs in performing arthroscopic knot tying and provided evidence regarding discrepancies of maximum clinical failure loads observed between orthopaedic surgeons, thereby leading to better surgical outcomes in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolverton, Christopher; Ozolins, Vidvuds; Kung, Harold H.
The objective of the proposed program is to discover novel mixed hydrides for hydrogen storage, which enable the DOE 2010 system-level goals. Our goal is to find a material that desorbs 8.5 wt.% H 2 or more at temperatures below 85°C. The research program will combine first-principles calculations of reaction thermodynamics and kinetics with material and catalyst synthesis, testing, and characterization. We will combine materials from distinct categories (e.g., chemical and complex hydrides) to form novel multicomponent reactions. Systems to be studied include mixtures of complex hydrides and chemical hydrides [e.g. LiNH 2+NH 3BH 3] and nitrogen-hydrogen based borohydrides [e.g.more » Al(BH 4) 3(NH 3) 3]. The 2010 and 2015 FreedomCAR/DOE targets for hydrogen storage systems are very challenging, and cannot be met with existing materials. The vast majority of the work to date has delineated materials into various classes, e.g., complex and metal hydrides, chemical hydrides, and sorbents. However, very recent studies indicate that mixtures of storage materials, particularly mixtures between various classes, hold promise to achieve technological attributes that materials within an individual class cannot reach. Our project involves a systematic, rational approach to designing novel multicomponent mixtures of materials with fast hydrogenation/dehydrogenation kinetics and favorable thermodynamics using a combination of state-of-the-art scientific computing and experimentation. We will use the accurate predictive power of first-principles modeling to understand the thermodynamic and microscopic kinetic processes involved in hydrogen release and uptake and to design new material/catalyst systems with improved properties. Detailed characterization and atomic-scale catalysis experiments will elucidate the effect of dopants and nanoscale catalysts in achieving fast kinetics and reversibility. And, state-of-the-art storage experiments will give key storage attributes of the investigated reactions, validate computational predictions, and help guide and improve computational methods. In sum, our approach involves a powerful blend of: 1) H2 Storage measurements and characterization, 2) State-of-the-art computational modeling, 3) Detailed catalysis experiments, 4) In-depth automotive perspective.« less
NASA Astrophysics Data System (ADS)
Wu, Weibin; Dai, Yifan; Zhou, Lin; Xu, Mingjin
2016-09-01
Material removal accuracy has a direct impact on the machining precision and efficiency of ion beam figuring. By analyzing the factors suppressing the improvement of material removal accuracy, we conclude that correcting the removal function deviation and reducing the removal material amount during each iterative process could help to improve material removal accuracy. Removal function correcting principle can effectively compensate removal function deviation between actual figuring and simulated processes, while experiments indicate that material removal accuracy decreases with a long machining time, so a small amount of removal material in each iterative process is suggested. However, more clamping and measuring steps will be introduced in this way, which will also generate machining errors and suppress the improvement of material removal accuracy. On this account, a free-measurement iterative process method is put forward to improve material removal accuracy and figuring efficiency by using less measuring and clamping steps. Finally, an experiment on a φ 100-mm Zerodur planar is preformed, which shows that, in similar figuring time, three free-measurement iterative processes could improve the material removal accuracy and the surface error convergence rate by 62.5% and 17.6%, respectively, compared with a single iterative process.
Further improvements in program to calculate electronic properties of narrow band gap materials
NASA Technical Reports Server (NTRS)
Patterson, James D.
1992-01-01
The tasks that we have accomplished are discussed. An extra task was a calculation comparing electron mobilities in Mercury Manganese Telluride with Mercury Cadmium Telluride given in 1H. We then list the reports and papers produced and follow that with either abstracts or the papers themselves. In one key paper we obtain good results between experiment and theory in Mercury Zinc Telluride and also find it typically has mobilities competitive with Mercury Cadmium Telluride. In the Appendix we have a relatively complete set of references.
Blackboard Overview by a Technology Coordinator
NASA Astrophysics Data System (ADS)
Rodgers, Sue
2000-06-01
Have you ever wished you could find an easier way to get course materials and other information to your students? Would you be interested in improving communication between you and your students? Over 1600 colleges, universities, and K-12 schools have discovered and adopted a software package that can do just that: Blackboard's CourseInfo, a Web-based course delivery system (http://www.blackboard.com). At San Jacinto College we are using CourseInfo to facilitate classes taught in a distance learning format and to support classroom-based classes through web-enhanced learning activities.
Analysis Thermal Comfort Condition in Complex Residential Building, Case Study: Chiangmai, Thailand
NASA Astrophysics Data System (ADS)
Juangjandee, Warangkana
2017-10-01
Due to the increasing need for complex residential buildings, it appears that people migrate into the high-density urban areas because the infrastructural facilities can be easily found in the modern metropolitan areas. Such rapid growth of urbanization creates congested residential buildings obstructing solar radiation and wind flow, whereas most urban residents spend 80-90% of their time indoor. Furthermore, the buildings were mostly built with average materials and construction detail. This causes high humidity condition for tenants that could promote mould growth. This study aims to analyse thermal comfort condition in complex residential building, Thailand for finding the passive solution to improve indoor air quality and respond to local conditions. The research methodology will be in two folds: 1) surveying on case study 2) analysis for finding the passive solution of reducing humidity indoor air The result of the survey indicated that the building need to find passive solution for solving humidity problem, that can be divided into two ways which raising ventilation and indoor temperature including increasing wind-flow ventilation and adjusting thermal temperature, for example; improving building design and stack driven ventilation. For raising indoor temperature or increasing mean radiant temperature, daylight can be passive solution for complex residential design for reducing humidity and enhance illumination indoor space simultaneous.
Improved ablative materials for the ASRM nozzle
NASA Technical Reports Server (NTRS)
Canfield, A.; Clinton, R. G.; Armour, W.; Koenig, J.
1992-01-01
Rayon precursor carbon-cloth phenolic was developed more than 30 years ago and is used in most nozzles today including the Poseidon, Trident, Peacekeeper, Small ICBM, Space Shuttle, and numerous tactical and space systems. Specifications and manufacturing controls were placed on these materials and, once qualified, a no-change policy was instituted. The current material is acceptable; however, prepreg variability does not always accommodate the requirements of automation. The advanced solid rocket motor requires material with less variability for automated manufacturing. An advanced solid rocket motor materials team, composed of NASA, Thiokol, Aerojet, SRI, and Lockheed specialists, along with materials suppliers ICI Fiberite/Polycarbon, BP Chemicals/Hitco, and Amoco, embarked on a program to improve the current materials. The program consisted of heat treatment studies and standard and low-density material improvements evaluation. Improvements evaluated included fiber/fabric heat treatments, weave variations, resin application methods, process controls, and monitors.
NASA Technical Reports Server (NTRS)
Stein, Bland A.
1993-01-01
The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effects (SEE) on materials that is unparalleled in the history of the U.S. Space Program. The 5-year, 9-month flight of LDEF greatly enhanced the potential value of all materials on LDEF to the international SEE community, compared to that of the original 1-year flight plan. The remarkable flight attitude stability of LDEF enables specific analyses of individual and combined effects of LEO environmental parameters on identical materials on the same space vehicle. NASA recognized this potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) to address the greatly expanded materials and LEO space environment analysis opportunities available in the LDEF structure, experiment trays, and corollary measurements so that the combined value of all LDEF materials data to current and future space missions will be addressed and documented. An overview of the interim LDEF materials findings of the principal investigators and the Materials Special Investigation Group is provided. These revelations are based on observations of LEO environmental effects on materials made in space during LDEF retrieval and during LDEF tray deintegration at the Kennedy Space Center, and on findings of approximately 1.5 years of laboratory analyses of LDEF materials by the LDEF materials scientists. These findings were extensively reviewed and discussed at the MSIG-sponsored LDEF Materials Workshop '91. The results are presented in a format that categorizes the revelations as 'clear findings' or 'obscure preliminary findings' (and progress toward their resolution), plus resultant needs for new space materials developments and ground simulation testing/analytical modeling, in seven categories: materials/environmental parameters and data bases; LDEF contamination; thermal control coatings and protective treatments; polymers and films; polymer-matrix composites; metals, ceramics, and optical materials; and systems-related materials. The utilization of LDEF materials data for future low-Earth orbit missions is also discussed, concentrating on Space Station Freedom. In general, the LDEF data is remarkably consistent; LDEF will provide a 'benchmark' for materials design data bases for satellites in low-Earth orbit. Some materials were identified to be encouragingly resistant to LEO SEE for 5.8-years; other 'space qualified' materials displayed significant environmental degradation. General contamination levels on LDEF were low, but molecular contamination was widespread; LDEF offers an unprecedented opportunity to provide a unified perspective of unmanned LEO spacecraft contamination mechanisms. New material development requirements for long-term LEO missions were identified and current ground simulation testing methods/data for new, durable materials concepts can be validated with LDEF results. LDEF findings are already being integrated into the design of Space Station Freedom.
The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication.
Eperon, Giles E; Habisreutinger, Severin N; Leijtens, Tomas; Bruijnaers, Bardo J; van Franeker, Jacobus J; deQuilettes, Dane W; Pathak, Sandeep; Sutton, Rebecca J; Grancini, Giulia; Ginger, David S; Janssen, Rene A J; Petrozza, Annamaria; Snaith, Henry J
2015-09-22
Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood and neither has the impact of moisture on the physical properties of resultant films. Herein, we carry out a comprehensive and well-controlled study of the effect of moisture exposure on methylammonium lead halide perovskite film formation and properties. We find that films formed in higher humidity atmospheres have a less continuous morphology but significantly improved photoluminescence, and that film formation is faster. In photovoltaic devices, we find that exposure to moisture, either in the precursor solution or in the atmosphere during formation, results in significantly improved open-circuit voltages and hence overall device performance. We then find that by post-treating dry films with moisture exposure, we can enhance photovoltaic performance and photoluminescence in a similar way. The enhanced photoluminescence and open-circuit voltage imply that the material quality is improved in films that have been exposed to moisture. We determine that this improvement stems from a reduction in trap density in the films, which we postulate to be due to the partial solvation of the methylammonium component and "self-healing" of the perovskite lattice. This work highlights the importance of controlled moisture exposure when fabricating high-performance perovskite devices and provides guidelines for the optimum environment for fabrication. Moreover, we note that often an unintentional water exposure is likely responsible for the high performance of solar cells produced in some laboratories, whereas careful synthesis and fabrication in a dry environment will lead to lower-performing devices.
Directions for Development of the Field of Electroactive Polymer (EAP)
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
2011-01-01
In last few years, the rate of development and advances in the field of EAP has accelerated significantly and it is increasingly getting closer to the point of finding them used in commercial products. Substantial development has been reported in the understanding of their drive mechanisms and the parameters that control their electro-activation behavior. Further, efforts are being made to develop mass production techniques with greatly improved actuation capability and operation durability. The recent efforts to develop energy harvesting techniques, haptic interfacing (including refreshable braille displays), and toys are further increasing the likelihood of finding niches for these materials. In this paper, the author sought to examine the potential directions for the future development of the field of EAP in relation to the state-of-the-art.
Directions for development of the field of electroactive polymer (EAP)
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph
2011-04-01
In last few years, the rate of development and advances in the field of EAP has accelerated significantly and it is increasingly getting closer to the point of finding them used in commercial products. Substantial development has been reported in the understanding of their drive mechanisms and the parameters that control their electro-activation behavior. Further, efforts are being made to develop mass production techniques with greatly improved actuation capability and operation durability. The recent efforts to develop energy harvesting techniques, haptic interfacing (including refreshable braille displays), and toys are further increasing the likelihood of finding niches for these materials. In this paper, the author sought to examine the potential directions for the future development of the field of EAP in relation to the state-of-the-art.
Use of Pressure Activation in Food Quality Improvement.
Shigematsu, Toru
2015-01-01
Beside intensive studies on inactivation microorganisms by high hydrostatic pressure (HP) for food storage, pressure effects on property of food materials have also been studied based on knowledge in pressure effect on biomolecules. Pressure effects on biological membranes and mass transfer in cellular biological materials and on enzyme activity would give an idea that HP treatment can introduce two types of activations into food materials: improved mass transfer and enzyme activity. Studies focusing on these pressure activations on food materials were then reviewed. Rice flour with an exclusively fine mean particle size and small starch damage was obtained due to improved water absorption properties and/or enzyme activity by HP. HP treatment increased of free amino acids and γ-aminobutyric acid (GABA) in rice and soybeans due to improved proteolysis and amino acid metabolism. Improvement of antioxidant activity and alteration of polyphenolic-compounds composition in food materials were also demonstrated by HP treatment. The HP-induced activations on food materials could contribute towards processing technologies for food quality improvement.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-18
... Materials: Improving the Safety of Railroad Transportation of Hazardous Materials AGENCY: Pipeline and... that affect the safety of the transportation of hazardous materials by rail and are seeking input from... authority to FRA. 49 CFR 1.89(a) through (q). The Federal hazardous materials transportation laws, 49 U.S.C...
The PATH project in eight European countries: an evaluation.
Veillard, Jeremy Henri Maurice; Schiøtz, Michaela Louise; Guisset, Ann-Lise; Brown, Adalsteinn Davidson; Klazinga, Niek S
2013-01-01
This paper's aim is to evaluate the perceived impact and the enabling factors and barriers experienced by hospital staff participating in an international hospital performance measurement project focused on internal quality improvement. Semi-structured interviews involving international hospital performance measurement project coordinators, including 140 hospitals from eight European countries (Belgium, Estonia, France, Germany, Hungary, Poland, Slovakia and Slovenia). Inductively analyzing the interview transcripts was carried out using the grounded theory approach. Even when public reporting is absent, the project was perceived as having stimulated performance measurement and quality improvement initiatives in participating hospitals. Attention should be paid to leadership/ownership, context, content (project intrinsic features) and processes supporting elements. Generalizing the findings is limited by the study's small sample size. Possible implications for the WHO European Regional Office and for participating hospitals would be to assess hospital preparedness to participate in the PATH project, depending on context, process and structural elements; and enhance performance and practice benchmarking through suggested approaches. This research gathered rich and unique material related to an international performance measurement project. It derived actionable findings.
NASA Astrophysics Data System (ADS)
Merwade, V.; Ruddell, B. L.
2012-08-01
In this opinion paper, we review recent literature related to data and modeling driven instruction in hydrology, and present our findings from surveying the hydrology education community in the United States. This paper presents an argument that that data and modeling driven geoscience cybereducation (DMDGC) approaches are essential for teaching the conceptual and applied aspects of hydrology, as a part of the broader effort to improve science, technology, engineering, and mathematics (STEM) education at the university level. The authors have undertaken a series of surveys and a workshop involving university hydrology educators to determine the state of the practice of DMDGC approaches to hydrology. We identify the most common tools and approaches currently utilized, quantify the extent of the adoption of DMDGC approaches in the university hydrology classroom, and explain the community's views on the challenges and barriers preventing DMDGC approaches from wider use. DMDGC approaches are currently emphasized at the graduate level of the curriculum, and only the most basic modeling and visualization tools are in widespread use. The community identifies the greatest barriers to greater adoption as a lack of access to easily adoptable curriculum materials and a lack of time and training to learn constantly changing tools and methods. The community's current consensus is that DMDGC approaches should emphasize conceptual learning, and should be used to complement rather than replace lecture-based pedagogies. Inadequate online material publication and sharing systems, and a lack of incentives for faculty to develop and publish materials via such systems, is also identified as a challenge. Based on these findings, we suggest that a number of steps should be taken by the community to develop the potential of DMDGC in university hydrology education, including formal development and assessment of curriculum materials, integrating lecture-format and DMDGC approaches, incentivizing the publication by faculty of excellent DMDGC curriculum materials, and implementing the publication and dissemination cyberinfrastructure necessary to support the unique DMDGC digital curriculum materials.
Moving university hydrology education forward with geoinformatics, data and modeling approaches
NASA Astrophysics Data System (ADS)
Merwade, V.; Ruddell, B. L.
2012-02-01
In this opinion paper, we review recent literature related to data and modeling driven instruction in hydrology, and present our findings from surveying the hydrology education community in the United States. This paper presents an argument that that Data and Modeling Driven Geoscience Cybereducation (DMDGC) approaches are valuable for teaching the conceptual and applied aspects of hydrology, as a part of the broader effort to improve Science, Technology, Engineering, and Mathematics (STEM) education at the university level. The authors have undertaken a series of surveys and a workshop involving the community of university hydrology educators to determine the state of the practice of DMDGC approaches to hydrology. We identify the most common tools and approaches currently utilized, quantify the extent of the adoption of DMDGC approaches in the university hydrology classroom, and explain the community's views on the challenges and barriers preventing DMDGC approaches from wider use. DMDGC approaches are currently emphasized at the graduate level of the curriculum, and only the most basic modeling and visualization tools are in widespread use. The community identifies the greatest barriers to greater adoption as a lack of access to easily adoptable curriculum materials and a lack of time and training to learn constantly changing tools and methods. The community's current consensus is that DMDGC approaches should emphasize conceptual learning, and should be used to complement rather than replace lecture-based pedagogies. Inadequate online material-publication and sharing systems, and a lack of incentives for faculty to develop and publish materials via such systems, is also identified as a challenge. Based on these findings, we suggest that a number of steps should be taken by the community to develop the potential of DMDGC in university hydrology education, including formal development and assessment of curriculum materials integrating lecture-format and DMDGC approaches, incentivizing the publication by faculty of excellent DMDGC curriculum materials, and implementing the publication and dissemination cyberinfrastructure necessary to support the unique DMDGC digital curriculum materials.
New Pedagogical Approaches to Improve Production of Materials in Distance Education.
ERIC Educational Resources Information Center
Mena, Marta
1992-01-01
Analyzes problems involved in the production of instructional materials for distance education and offers new pedagogical approaches to improve production of materials for distance education. Discusses past, present, and future methods used to design instructional materials, proposes models to aid in the production of instructional materials, and…
Materialism across the life span: An age-period-cohort analysis.
Jaspers, Esther D T; Pieters, Rik G M
2016-09-01
This research examined the development of materialism across the life span. Two initial studies revealed that (a) lay beliefs were that materialism declines with age and (b) previous research findings also implied a modest, negative relationship between age and materialism. Yet, previous research has considered age only as a linear control variable, thereby precluding the possibility of more intricate relationships between age and materialism. Moreover, prior studies have relied on cross-sectional data and thus confound age and cohort effects. To improve on this, the main study used longitudinal data from 8 waves spanning 9 years of over 4,200 individuals (16 to 90 years) to examine age effects on materialism while controlling for cohort and period effects. Using a multivariate multilevel latent growth model, it found that materialism followed a curvilinear trajectory across the life span, with the lowest levels at middle age and higher levels before and after that. Thus, in contrast to lay beliefs, materialism increased in older age. Moreover, age effects on materialism differed markedly between 3 core themes of materialism: acquisition centrality, possession-defined success, and acquisition as the pursuit of happiness. In particular, acquisition centrality and possession-defined success were higher at younger and older age. Independent of these age effects, older birth cohorts were oriented more toward possession-defined success, whereas younger birth cohorts were oriented more toward acquisition centrality. The economic downturn since 2008 led to a decrease in acquisition as the pursuit of happiness and in desires for personal growth, but to an increase in desires for achievement. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Schmied, Emily; Parada, Humberto; Horton, Lucy; Ibarra, Leticia; Ayala, Guadalupe
2015-10-01
Entre Familia: Reflejos de Salud was a successful family-based randomized controlled trial designed to improve dietary behaviors and intake among U.S. Latino families, specifically fruit and vegetable intake. The novel intervention design merged a community health worker (promotora) model with an entertainment-education component. This process evaluation examined intervention implementation and assessed relationships between implementation factors and dietary change. Participants included 180 mothers randomized to an intervention condition. Process evaluation measures were obtained from participant interviews and promotora notes and included fidelity, dose delivered (i.e., minutes of promotora in-person contact with families, number of promotora home visits), and dose received (i.e., participant use of and satisfaction with intervention materials). Outcome variables included changes in vegetable intake and the use of behavioral strategies to increase dietary fiber and decrease dietary fat intake. Participant satisfaction was high, and fidelity was achieved; 87.5% of families received the planned number of promotora home visits. In the multivariable model, satisfaction with intervention materials predicted more frequent use of strategies to increase dietary fiber (p ≤ .01). Trends suggested that keeping families in the prescribed intervention timeline and obtaining support from other social network members through sharing of program materials may improve changes. Study findings elucidate the relationship between specific intervention processes and dietary changes. © 2015 Society for Public Health Education.
Rotor vibration reduction with polymeric sectors
NASA Astrophysics Data System (ADS)
Dutt, J. K.; Toi, T.
2003-05-01
This work has been undertaken principally with an idea to improving the dynamic performance of rotor-shaft systems, which often suffer from two major problems (a) resonance and (b) loss of stability, resulting in excessive vibration of such systems. Polymeric material in the form of sectors has been considered in this work as bearing supports. Polymeric material has been considered in this work as both stiffness and loss factor of such materials varies with the frequency of excitation. Stiffness and loss factor have been found out for the proposed support system comprising of polymeric sectors. Depending upon the frequency of excitation the system matrix, in this case, changes and dynamic performance of the rotor-shaft system also changes accordingly. Here in this work avoidance of resonance and application of optimum damping in the support have been investigated by finding out the optimum dimension, i.e., the optimum thickness and optimum length of the sectors. It has been theoretically found that use of such sectors reduces the rotor unbalanced response, increases the stability limit speed for simple rotor-shaft systems and thus improves the dynamic characteristics. Parameters of the system have been presented in terms of non-dimensional quantities. Many examples have been presented in support of the conclusion. The life of such supports, particularly in the presence of chemicals and other reagents has not been investigated.
NASA Astrophysics Data System (ADS)
Longo, Roberto; Kong, Fantai; Kc, Santosh; Yeon, Dong-Hee; Yoon, Jaegu; Park, Jin-Hwan; Doo, Seok-Kwang; Cho, Kyeongjae; MSL Team; SAIT Team
2015-03-01
Current Li-ion batteries use layered oxides as cathode materials, specially LiCoO2 or LiNi1 - y - xCoyMnxO2(NCM), and graphite as anode. Co layered oxides suffer from the high cost and toxicity of cobalt, together with certain instability at high operational temperatures. To overcome these difficulties, the synthesis of novel materials composed of layered oxides with different sets of Transition Metals (TM) has become the most successful way to solve the particular drawbacks of every single-oxide family. Although layered materials can deliver larger capacity than other families of cathode materials, the energy density has yet to be increased in order to match the expectations deposited on the NCM oxides. To acquire a high capacity, they need to be cycled at high operational voltages, resulting in voltage and capacity fading over a large number of cycles. In this work, we examine the phase diagram of the Li-Ni-Co-Mn-O system and the effect of TM ordering on the electronic properties of NCM cathode materials, using density-functional theory. Our findings will provide conceptual guidance in the experimental search for the mechanisms driving the voltage and capacity fading of the NCM family of cathode materials, in an attempt to solve such structural instability problems and, thus, improving the performance of the NCM cathode materials. This work was supported by Samsung GRO project.
Mechanical properties of cement concrete composites containing nano-metakaolin
NASA Astrophysics Data System (ADS)
Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana
2017-11-01
The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.
Hydrogen Supplementation of Preservation Solution Improves Viability of Osteochondral Grafts
Yamada, Takuya; Onuma, Kenji; Kuzuno, Jun; Ujihira, Masanobu; Kurokawa, Ryosuke; Sakai, Rina; Takaso, Masashi
2014-01-01
Allogenic osteochondral tissue (OCT) is used for the treatment of large cartilage defects. Typically, OCTs collected during the disease-screening period are preserved at 4°C; however, the gradual reduction in cell viability during cold preservation adversely affects transplantation outcomes. Therefore, improved storage methods that maintain the cell viability of OCTs are needed to increase the availability of high-quality OCTs and improve treatment outcomes. Here, we evaluated whether long-term hydrogen delivery to preservation solution improved the viability of rat OCTs during cold preservation. Hydrogen-supplemented Dulbecco's Modified Eagles Medium (DMEM) and University of Wisconsin (UW) solution both significantly improved the cell viability of OCTs during preservation at 4°C for 21 days compared to nonsupplemented media. However, the long-term cold preservation of OCTs in DMEM containing hydrogen was associated with the most optimal maintenance of chondrocytes with respect to viability and morphology. Our findings demonstrate that OCTs preserved in DMEM supplemented with hydrogen are a promising material for the repair of large cartilage defects in the clinical setting. PMID:25506061
High performance polymer development
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M.
1991-01-01
The term high performance as applied to polymers is generally associated with polymers that operate at high temperatures. High performance is used to describe polymers that perform at temperatures of 177 C or higher. In addition to temperature, other factors obviously influence the performance of polymers such as thermal cycling, stress level, and environmental effects. Some recent developments at NASA Langley in polyimides, poly(arylene ethers), and acetylenic terminated materials are discussed. The high performance/high temperature polymers discussed are representative of the type of work underway at NASA Langley Research Center. Further improvement in these materials as well as the development of new polymers will provide technology to help meet NASA future needs in high performance/high temperature applications. In addition, because of the combination of properties offered by many of these polymers, they should find use in many other applications.
NASA Astrophysics Data System (ADS)
Gorwade, Chandragupt V.; Ashcroft, Ian A.; Silberschmidt, Vadim V.; Hughes, Foz T. R.; Swallowe, Gerry M.
2012-12-01
Advanced polymeric materials are finding an increasing range of industrial and defence applications. These materials have the potential to improve combat survivability, whilst reducing the cost and weight of armour systems. In this paper the results from a split Hopkinson pressure bar (SHPB) test of a high density polyethylene (HDPE) sample involving multiple stress waves is discussed with aid of a finite element model of the test. It is seen that the phenomenon of impedance mismatch at interfaces plays an important role in the levels of stress and deformation seen in the sample. A multi-layer armour system is then investigated using the finite element model. This case study illustrates the role of impedance mismatch and interface engineering in the design and optimisation of armour solutions.
Precipitate statistics in an Al-Mg-Si-Cu alloy from scanning precession electron diffraction data
NASA Astrophysics Data System (ADS)
Sunde, J. K.; Paulsen, Ø.; Wenner, S.; Holmestad, R.
2017-09-01
The key microstructural feature providing strength to age-hardenable Al alloys is nanoscale precipitates. Alloy development requires a reliable statistical assessment of these precipitates, in order to link the microstructure with material properties. Here, it is demonstrated that scanning precession electron diffraction combined with computational analysis enable the semi-automated extraction of precipitate statistics in an Al-Mg-Si-Cu alloy. Among the main findings is the precipitate number density, which agrees well with a conventional method based on manual counting and measurements. By virtue of its data analysis objectivity, our methodology is therefore seen as an advantageous alternative to existing routines, offering reproducibility and efficiency in alloy statistics. Additional results include improved qualitative information on phase distributions. The developed procedure is generic and applicable to any material containing nanoscale precipitates.
GW Calculations of Materials on the Intel Xeon-Phi Architecture
NASA Astrophysics Data System (ADS)
Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek; Biller, Ariel; Chelikowsky, James R.; Louie, Steven G.
Intel Xeon-Phi processors are expected to power a large number of High-Performance Computing (HPC) systems around the United States and the world in the near future. We evaluate the ability of GW and pre-requisite Density Functional Theory (DFT) calculations for materials on utilizing the Xeon-Phi architecture. We describe the optimization process and performance improvements achieved. We find that the GW method, like other higher level Many-Body methods beyond standard local/semilocal approximations to Kohn-Sham DFT, is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-waves, band-pairs and frequencies. Support provided by the SCIDAC program, Department of Energy, Office of Science, Advanced Scientic Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-AC02-05CH11231 (LBNL).
Electrochemical activity of Fe-MIL-100 as a positive electrode for Na-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sava Gallis, Dorina F.; Pratt III, Harry D.; Anderson, Travis M.
2016-01-01
Here we investigate the electrochemical activity of metal-organic frameworks (MOFs) as positive electrodes for Na-ion batteries in coin cell configurations. The performance of Fe-MIL-100 material is highly dependent on the choice of sodium salt source, and electrolyte system. The overall capacity fades over many cycles, however the high Coulombic efficiency is maintained. This can be correlated with inaccessibility of active sites for Na intercalation, due to the increase of extra carbonaceous material inside the pores. High resolution synchrotron powder X-ray and pair distribution function analyses of the as-made and cycled electrodes reveal the structure maintains the long-range order with progressivemore » cycling. This finding suggests that careful consideration of all variables in battery components, and especially electrolyte selection can lead to greatly improved performances.« less
NASA Astrophysics Data System (ADS)
Semenov, A. P.; Smirnyagina, N. N.; Tsyrenov, B. O.; Dasheev, D. E.; Khaltarov, Z. M.
2017-05-01
This paper considers a method of synthesis fullerenes and carbon nanotubes at atmospheric pressure. Carbon evaporates into the plasma arc. The paper discusses the method of synthesis of helium at a pressure of 105 Pa. We show the dependence yield of fullerenes and carbon nanotubes from the buffer gas pressure. It has been found that the fullerene yield increased with increasing pressure. The obtained fullerenes and nanotubes find their application in the modification of construction materials. The use of carbon nanomodifiers in the modification of the construction is promising since their introduction significantly improves the physico-mechanical properties using a small quantity of additives. With the introduction of the carbon nanomodifier decrease the porosity of cement stone, which leads to high strength and frost-resistant indicators of the modified cement.
The use of biochar substrates for soil reclamation - results of experiments in Northeastern Germany
NASA Astrophysics Data System (ADS)
Lukas, Stefan; Haubold-Rosar, Michael
2017-04-01
After the model of the very fertile "Terra preta do Indio" in Amazonia, the joint project "LaTerra" has been taken up a new technology for the production of organic substrates using biochar as admixture to the composting and fermentation of biomass to test its application for soil improvement, reclamation and remediation purposes. Processing organic materials or residues and the creation of high quality organic soil improving materials will close material cycles and contribute to the value added on a regional scale. This should be an essential part of a sustainable material flow management. The presentation will focus on the application of biochar substrates for the reclamation of sandy soils in Northeastern Germany. Lignite mining activities leave raw soils without humus on dumps and tips. The rapid formation and maintenance of a balanced humus and nutrient budget is of great importance. Field, lysimeter and pot experiments were part of the research program in order to find out the impact of biochar substrate application on soil functions and plant growth and to derive quality criteria and recommendations for practice. The results of the experiments show that application of biochar substrates (BCS) improved soil properties like nutrient supply, organic carbon content, water storage and cation exchange capacity. However, crop yields did not increase in the year of BCS application on the test sites or even decreased on the dumped soil with rising amounts of BCS. This is a consequence of nitrogen immobilization and sorption in the soils treated with BCS. Therefore, BCS applications should be combined with mineral fertilization of nitrogen and BCS production should be modified aiming to improve contents and release of plant available nitrogen. In the third year after BCS application variants treated with 60 t BCS ha-1 (15 Vol.-% biochar) showed highest yields, exceeding the variants with mineral fertilization. On the dumped soil, in the fourth and fifth year after application all variants exceeded yields of mineral fertilization by 5 to 15 % with maximum in variants treated with 90 t BCS (15 Vol.-% biochar) ha-1.
[Creation and Evaluation of Educational Programs for Additional Delayed Scan of FDG-PET/CT].
Wada, Ryota; Kamiya, Takashi; Fujino, Kouichi; Ueda, Junpei; Isohashi, Kayako; Tatsumi, Mitsuaki; Hatazawa, Jun
Generally, FDG-PET/CT image is acquired at the 60th minute after tracer administration. Depending on the clinical case, additional delayed scans may be useful. However, it is difficult to judge whether additional delayed scan is useful or not. The purposes of this study were creation and evaluation of educational programs to help radiological technologists to decide the usefulness of additional delayed scan of FDG-PET/CT. Educational programs consisted of the instructional materials and the judgment test of clinical cases. The instructional materials provided the valuable findings for differentiation between uptake in the wall of the colon and colon content, distinction between uptake in the lymph node and urinary tract, and evaluation of malignancy. The judgment test of clinical cases consisted of 10 cases selected by a nuclear medicine physician (for 5 of that cases additional delayed scan was decided to be useful). Five experienced technologists and five inexperienced technologists scored the volubility of additional delayed scan pre- and post-training using the instructional materials (the full marks of score is 5). After the educational programs using the instructional materials, the score was improved with the significant difference in both experienced (pre: 3.6±1.4, post: 4.0±1.2) and inexperienced (pre: 2.8±1.5, post: 3.7±1.5) groups (p<0.05). According to the educational programs, technologist might be able to decide whether the additional delayed scan is useful or not. The successful results of this study may improve the interpretation or reduce the total exposure dose of the PET/CT scan.
Improvement of reusable surface insulation material
NASA Technical Reports Server (NTRS)
1972-01-01
The results are presented of a program to improve the reusable surface insulation (RSI) system through the improvement of the LI-1500 material properties and the simplification of the RSI system. The improvements made include: 2500 F-capability RSI systems, water-impervious surface coatings, establishment of a high-emittance coating constituent, development of a secondary water-reduction system, and achievement of a lower density (9 pcf) RSI material.
Electron-phonon scattering rates in complex polar crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prange, M. P.; Campbell, L. W.; Kerisit, S.
2017-09-01
The thermalization of fast electrons by phonons is studied in CsI, NaI, SrI2, and YAP. This numerical study uses an improvement to a recently developed ab initio method based on a density functional perturbation theoretical description of the phonon modes that provides a way to go beyond widely used phonon models based on binary crystals. Improvements to this method are described, and scattering rates are presented and discussed. The results here treat polar and nonpolar scattering on equal footing and allow an assessment of the relative importance of the two types of scattering. The relative activity of the numerous phononmore » modes in materials with complicated structures is discussed, and a simple criterion for finding the modes that scatter strongly is presented.« less
The Georgians Experience Astronomy Research in Schools (GEARS) High School Galaxy Unit
NASA Astrophysics Data System (ADS)
Higdon, Sarah; Higdon, J.; Aguilar, J.
2012-01-01
The Georgians Experience Astronomy Research in Schools (GEARS) project aims to provide a rigorous and inquiry-based astronomy curriculum to GA's public schools. Exposure to data mining and research activities using the astronomy archives can be the trigger for the next generation of scientists, and it improves a student's ability to solve problems. Students then consolidate their findings and improve their communication skills by writing scientific reports and creating video presentations. The GEARS curriculum has units on the solar system, life in the Universe, stars, galaxies and cosmology. Here we present some of the activities in the Galaxy Unit. The GEARS material is freely available. Please email shigdon_AT_georgiasouthern.edu if you would like more details. NASA Grant NNX09AH83A through the GADOE funds this project.
Participatory design in the development of an early therapy intervention for perinatal stroke.
Basu, Anna Purna; Pearse, Janice Elizabeth; Baggaley, Jessica; Watson, Rose Mary; Rapley, Tim
2017-01-23
Perinatal stroke is the leading cause of unilateral (hemiparetic) cerebral palsy, with life-long personal, social and financial consequences. Translational research findings indicate that early therapy intervention has the potential for significant improvements in long-term outcome in terms of motor function. By involving families and health professionals in the development and design stage, we aimed to produce a therapy intervention which they would engage with. Nine parents of children with hemiparesis and fourteen health professionals involved in the care of infants with perinatal stroke took part in peer review and focus groups to discuss evolving therapy materials, with revisions made iteratively. The materials and approach were also discussed at a meeting of the London Child Stroke Research Reference Group. Focus group data were coded using Normalisation Process Theory constructs to explore potential barriers and facilitators to routine uptake of the intervention. We developed the Early Therapy in Perinatal Stroke (eTIPS) program - a parent-delivered, home-based complex intervention addressing a current gap in practice for infants in the first 6 months of life after unilateral perinatal stroke and with the aim of improving motor outcome. Parents and health professionals saw the intervention as different from usual practice, and valuable (high coherence). They were keen to engage (high cognitive participation). They considered the tasks for parents to be achievable (high collective action). They demonstrated trust in the approach and felt that parents would undertake the recommended activities (high collective action). They saw the approach as flexible and adaptable (high reflexive monitoring). Following suggestions made, we added a section on involving the extended family, and obtained funding for a website and videos to supplement written materials. Focus groups with parents and health professionals provided meaningful feedback to iteratively improve the intervention materials prior to embarking on a pilot study. The intervention has a high potential to normalize and become a routine part of parents' interactions with their child following unilateral perinatal stroke.
Influence of defect distribution on the thermoelectric properties of FeNbSb based materials.
Guo, Shuping; Yang, Kaishuai; Zeng, Zhi; Zhang, Yongsheng
2018-05-21
Doping and alloying are important methodologies to improve the thermoelectric performance of FeNbSb based materials. To fully understand the influence of point defects on the thermoelectric properties, we have used density functional calculations in combination with the cluster expansion and Monte Carlo methods to examine the defect distribution behaviors in the mesoscopic FeNb1-xVxSb and FeNb1-xTixSb systems. We find that V and Ti exhibit different distribution behaviors in FeNbSb at low temperature: forming the FeNbSb-FeVSb phase separations in the FeNb1-xVxSb system but two thermodynamically stable phases in FeNb1-xTixSb. Based on the calculated effective mass and band degeneracy, it seems the doping concentration of V or Ti in FeNbSb has little effect on the electrical properties, except for one of the theoretically predicted stable Ti phases (Fe6Nb5Ti1Sb6). Thus, an essential methodology to improve the thermoelectric performance of FeNbSb should rely on phonon scattering to decrease the thermal conductivity. According to the theoretically determined phase diagrams of Fe(Nb,V)Sb and Fe(Nb,Ti)Sb, we propose the (composition, temperature) conditions for the experimental synthesis to improve the thermoelectric performance of FeNbSb based materials: lowering the experimental preparation temperature to around the phase boundary to form a mixture of the solid solution and phase separation. The point defects in the solid solution effectively scatter the short-wavelength phonons and the (coherent or incoherent) interfaces introduced by the phase separation can additionally scatter the middle-wavelength phonons to further decrease the thermal conductivity. Moreover, the induced interfaces could enhance the Seebeck coefficient as well, through the energy filtering effect. Our results give insight into the understanding of the impact of the defect distribution on the thermoelectric performance of materials and strengthen the connection between theoretical predictions and experimental measurements.
Gwede, Clement K; Davis, Stacy N; Quinn, Gwendolyn P; Koskan, Alexis M; Ealey, Jamila; Abdulla, Rania; Vadaparampil, Susan T; Elliott, Gloria; Lopez, Diana; Shibata, David; Roetzheim, Richard G; Meade, Cathy D
2013-12-01
Colorectal cancer screening (CRCS) rates are low among men and women who seek health care at federally qualified health centers (FQHCs). This study explores health care providers' perspectives about their patient's motivators and impediments to CRCS and receptivity to preparatory education. A mixed methods design consisting of in-depth interviews, focus groups, and a short survey is used in this study. The participants of this study are 17 health care providers practicing in FQHCs in the Tampa Bay area. Test-specific patient impediments and motivations were identified including fear of abnormal findings, importance of offering less invasive fecal occult blood tests, and need for patient-centered test-specific educational materials in clinics. Opportunities to improve provider practices were identified including providers' reliance on patients' report of symptoms as a cue to recommend CRCS and overemphasis of clinic-based guaiac stool tests. This study adds to the literature on CRCS test-specific motivators and impediments. Providers offered unique approaches for motivating patients to follow through with recommended CRCS and were receptive to in-clinic patient education. Findings readily inform the design of educational materials and interventions to increase CRCS in FQHCs.
Materials discovery through crystal growth
NASA Astrophysics Data System (ADS)
zur Loye, Hans-Conrad
2016-04-01
The discovery of new materials and associated desirable properties has been a driving force behind chemical innovation for centuries. When we look at some of the many recent technological advances, and how widespread and significant their impact has been, we appreciate how much they have relied on new materials. The increase in hard drive storage capacity due to new giant magneto-resistive materials, the ever-shrinking cell phone due to improved microwave dielectric materials, the enhancement in lithium battery storage capacity due to new intercalation materials, or the improved capacitor due to new ferroelectric materials are all excellent examples. How were these materials discovered? While there is no single answer, in all cases there was a First-Material, the archetype in which the phenomenon was first observed, the one that led to further investigations and the subsequent preparation of improved 2nd or 3rd generation materials. It is this First-Material, the archetype, that was discovered - often via crystal growth.
Develop Improved Materials to Support the Hydrogen Economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Michael C. Martin
The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects withmore » near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.« less
Measuring charge carrier diffusion in coupled colloidal quantum dot solids.
Zhitomirsky, David; Voznyy, Oleksandr; Hoogland, Sjoerd; Sargent, Edward H
2013-06-25
Colloidal quantum dots (CQDs) are attractive materials for inexpensive, room-temperature-, and solution-processed optoelectronic devices. A high carrier diffusion length is desirable for many CQD device applications. In this work we develop two new experimental methods to investigate charge carrier diffusion in coupled CQD solids under charge-neutral, i.e., undepleted, conditions. The methods take advantage of the quantum-size-effect tunability of our materials, utilizing a smaller-bandgap population of quantum dots as a reporter system. We develop analytical models of diffusion in 1D and 3D structures that allow direct extraction of diffusion length from convenient parametric plots and purely optical measurements. We measure several CQD solids fabricated using a number of distinct methods and having significantly different doping and surface ligand treatments. We find that CQD materials recently reported to achieve a certified power conversion efficiency of 7% with hybrid organic-inorganic passivation have a diffusion length of 80 ± 10 nm. The model further allows us to extract the lifetime, trap density, mobility, and diffusion coefficient independently in each material system. This work will facilitate further progress in extending the diffusion length, ultimately leading to high-quality CQD solid semiconducting materials and improved CQD optoelectronic devices, including CQD solar cells.
Improved Photoactivity of Pyroxene Silicates by Cation Substitutions.
Legesse, Merid; Park, Heesoo; El Mellouhi, Fedwa; Rashkeev, Sergey N; Kais, Sabre; Alharbi, Fahhad H
2018-04-17
We investigated the possibility of band structure engineering of pyroxene silicates with chemical formula A +1 B +3 Si 2 O 6 by proper cation substitution. Typically, band gaps of naturally formed pyroxene silicates such as NaAlSi 2 O 6 are quite high (≈5 eV). Therefore, it is important to find a way to reduce band gaps for these materials below 3 eV to make them usable for optoelectronic applications operating at visible light range of the spectrum. Using first-principles calculations, we found that appropriate substitutions of both A + and B 3+ cations can reduce the band gaps of these materials to as low as 1.31 eV. We also discuss how the band gap in this class of materials is affected by cation radii, electronegativity of constituent elements, spin-orbit coupling, and structural modifications. In particular, the replacement of Al 3+ in NaAlSi 2 O 6 by another trivalent cation Tl 3+ results in the largest band-gap reduction and emergence of intermediate bands. We also found that all considered materials are still thermodynamically stable. This work provides a design approach for new environmentally benign and abundant materials for use in photovoltaics and optoelectronic devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anomaly detection of microstructural defects in continuous fiber reinforced composites
NASA Astrophysics Data System (ADS)
Bricker, Stephen; Simmons, J. P.; Przybyla, Craig; Hardie, Russell
2015-03-01
Ceramic matrix composites (CMC) with continuous fiber reinforcements have the potential to enable the next generation of high speed hypersonic vehicles and/or significant improvements in gas turbine engine performance due to their exhibited toughness when subjected to high mechanical loads at extreme temperatures (2200F+). Reinforced fiber composites (RFC) provide increased fracture toughness, crack growth resistance, and strength, though little is known about how stochastic variation and imperfections in the material effect material properties. In this work, tools are developed for quantifying anomalies within the microstructure at several scales. The detection and characterization of anomalous microstructure is a critical step in linking production techniques to properties, as well as in accurate material simulation and property prediction for the integrated computation materials engineering (ICME) of RFC based components. It is desired to find statistical outliers for any number of material characteristics such as fibers, fiber coatings, and pores. Here, fiber orientation, or `velocity', and `velocity' gradient are developed and examined for anomalous behavior. Categorizing anomalous behavior in the CMC is approached by multivariate Gaussian mixture modeling. A Gaussian mixture is employed to estimate the probability density function (PDF) of the features in question, and anomalies are classified by their likelihood of belonging to the statistical normal behavior for that feature.
Sustainable Materials Management (SMM) Food Recovery Challenge (FRC) Data
As part of EPA's Food Recovery Challenge (FRC), organizations pledge to improve their sustainable food management practices and report their results. The FRC is part of EPA's Sustainable Materials Management Program (SMM). SMM seeks to reduce the environmental impact of materials through their entire life cycle. This includes how they are extracted, manufactured, distributed, used, reused, recycled, and disposed. Organizations are encouraged to follow the Food Recovery Hierarchy (https://www.epa.gov/sustainable-management-food/food-recovery-hierarchy) to prioritize their actions to prevent and divert wasted food. Each tier of the Food Recovery Hierarchy focuses on different management strategies for your wasted food. The program started in 2011 and the first data were made available in 2012. The FRC is part of EPA's larger SMM program (https://www.epa.gov/smm). Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources and environmental protection. By looking at a product's entire lifecycle we can find new opportunities to reduce environmental impacts, conserve resources, and reduce costs. There are multiple challenge programs available as part of the SMM program, including the Food Recovery Challenge, the Electronics Challenge, the Federal Green Challenge, and the WasteWise program.
Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic–Inorganic Perovskites
Sutter-Fella, Carolin M.; Ngo, Quynh P.; Cefarin, Nicola; ...
2018-04-30
Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. In this paper, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2) 2CsPb-halide (FACsPb-) and CH 3NH 3Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials.more » However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Finally, because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.« less
Improvements on a non-invasive, parameter-free approach to inverse form finding
NASA Astrophysics Data System (ADS)
Landkammer, P.; Caspari, M.; Steinmann, P.
2017-08-01
Our objective is to determine the optimal undeformed workpiece geometry (material configuration) within forming processes when the prescribed deformed geometry (spatial configuration) is given. For solving the resulting shape optimization problem—also denoted as inverse form finding—we use a novel parameter-free approach, which relocates in each iteration the material nodal positions as design variables. The spatial nodal positions computed by an elasto-plastic finite element (FE) forming simulation are compared with their prescribed values. The objective function expresses a least-squares summation of the differences between the computed and the prescribed nodal positions. Here, a recently developed shape optimization approach (Landkammer and Steinmann in Comput Mech 57(2):169-191, 2016) is investigated with a view to enhance its stability and efficiency. Motivated by nonlinear optimization theory a detailed justification of the algorithm is given. Furthermore, a classification according to shape changing design, fixed and controlled nodal coordinates is introduced. Two examples with large elasto-plastic strains demonstrate that using a superconvergent patch recovery technique instead of a least-squares (L2 )-smoothing improves the efficiency. Updating the interior discretization nodes by solving a fictitious elastic problem also reduces the number of required FE iterations and avoids severe mesh distortions. Furthermore, the impact of the inclusion of the second deformation gradient in the Hessian of the Quasi-Newton approach is analyzed. Inverse form finding is a crucial issue in metal forming applications. As a special feature, the approach is designed to be coupled in a non-invasive fashion to arbitrary FE software.
Improvements on a non-invasive, parameter-free approach to inverse form finding
NASA Astrophysics Data System (ADS)
Landkammer, P.; Caspari, M.; Steinmann, P.
2018-04-01
Our objective is to determine the optimal undeformed workpiece geometry (material configuration) within forming processes when the prescribed deformed geometry (spatial configuration) is given. For solving the resulting shape optimization problem—also denoted as inverse form finding—we use a novel parameter-free approach, which relocates in each iteration the material nodal positions as design variables. The spatial nodal positions computed by an elasto-plastic finite element (FE) forming simulation are compared with their prescribed values. The objective function expresses a least-squares summation of the differences between the computed and the prescribed nodal positions. Here, a recently developed shape optimization approach (Landkammer and Steinmann in Comput Mech 57(2):169-191, 2016) is investigated with a view to enhance its stability and efficiency. Motivated by nonlinear optimization theory a detailed justification of the algorithm is given. Furthermore, a classification according to shape changing design, fixed and controlled nodal coordinates is introduced. Two examples with large elasto-plastic strains demonstrate that using a superconvergent patch recovery technique instead of a least-squares (L2)-smoothing improves the efficiency. Updating the interior discretization nodes by solving a fictitious elastic problem also reduces the number of required FE iterations and avoids severe mesh distortions. Furthermore, the impact of the inclusion of the second deformation gradient in the Hessian of the Quasi-Newton approach is analyzed. Inverse form finding is a crucial issue in metal forming applications. As a special feature, the approach is designed to be coupled in a non-invasive fashion to arbitrary FE software.
Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites.
Sutter-Fella, Carolin M; Ngo, Quynh P; Cefarin, Nicola; Gardner, Kira L; Tamura, Nobumichi; Stan, Camelia V; Drisdell, Walter S; Javey, Ali; Toma, Francesca M; Sharp, Ian D
2018-06-13
Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2 ) 2 CsPb-halide (FACsPb-) and CH 3 NH 3 Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials. However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.
Bäuml, Karl-Heinz T; Holterman, Christoph; Abel, Magdalena
2014-11-01
The testing effect refers to the finding that retrieval practice in comparison to restudy of previously encoded contents can improve memory performance and reduce time-dependent forgetting. Naturally, long retention intervals include both wake and sleep delay, which can influence memory contents differently. In fact, sleep immediately after encoding can induce a mnemonic benefit, stabilizing and strengthening the encoded contents. We investigated in a series of 5 experiments whether sleep influences the testing effect. After initial study of categorized item material (Experiments 1, 2, and 4A), paired associates (Experiment 3), or educational text material (Experiment 4B), subjects were asked to restudy encoded contents or engage in active retrieval practice. A final recall test was conducted after a 12-hr delay that included diurnal wakefulness or nocturnal sleep. The results consistently showed typical testing effects after the wake delay. However, these testing effects were reduced or even eliminated after sleep, because sleep benefited recall of restudied items but left recall of retrieved items unaffected. The findings are consistent with the bifurcation model of the testing effect (Kornell, Bjork, & Garcia, 2011), according to which the distribution of memory strengths across items is shifted differentially by retrieving and restudying, with retrieval strengthening items to a much higher degree than restudy does. On the basis of this model, most of the retrieved items already fall above recall threshold in the absence of sleep, so additional sleep-induced strengthening may not improve recall of retrieved items any further. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic–Inorganic Perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutter-Fella, Carolin M.; Ngo, Quynh P.; Cefarin, Nicola
Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. In this paper, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2) 2CsPb-halide (FACsPb-) and CH 3NH 3Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials.more » However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Finally, because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.« less
NASA Technical Reports Server (NTRS)
Dhooge, P. M.; Nimitz, J. S.
2001-01-01
Process analysis can identify opportunities for efficiency improvement including cost reduction, increased safety, improved quality, and decreased environmental impact. A thorough, systematic approach to materials and process selection is valuable in any analysis. New operations and facilities design offer the best opportunities for proactive cost reduction and environmental improvement, but existing operations and facilities can also benefit greatly. Materials and processes that have been used for many years may be sources of excessive resource use, waste generation, pollution, and cost burden that should be replaced. Operational and purchasing personnel may not recognize some materials and processes as problems. Reasons for materials or process replacement may include quality and efficiency improvements, excessive resource use and waste generation, materials and operational costs, safety (flammability or toxicity), pollution prevention, compatibility with new processes or materials, and new or anticipated regulations.
Hill, Sophie J; Sofra, Tanya A
2017-03-07
Objective Health literacy is on the policy agenda. Accessible, high-quality health information is a major component of health literacy. Health information materials include print, electronic or other media-based information enabling people to understand health and make health-related decisions. The aim of the present study was to present the findings and recommended actions as they relate to health information of the Victorian Consultation on Health Literacy. Methods Notes and submissions from the 2014 Victorian Consultation workshops and submissions were analysed thematically and a report prepared with input from an advisory committee. Results Health information needs to improve and recommendations are grouped into two overarching themes. First, the quality of information needs to be increased and this can be done by developing a principle-based framework to inform updating guidance for information production, formulating standards to raise quality and improving the systems for delivering information to people. Second, there needs to be a focus on users of health information. Recommendation actions were for information that promoted active participation in health encounters, resources to encourage critical users of health information and increased availability of information tailored to population diversity. Conclusion A framework to improve health information would underpin the efforts to meet literacy needs in a more consistent way, improving standards and ultimately increasing the participation by consumers and carers in health decision making and self-management. What is known about the topic? Health information is a critical component of the concept of health literacy. Poorer health literacy is associated with poorer health outcomes across a range of measures. Improving access to and the use of quality sources of health information is an important strategy for meeting the health literacy needs of the population. In recent years, health services and governments have taken a critical interest in improving health literacy. What does this paper add? This article presents the findings of the Victorian Consultation on Health Literacy as they relate to needs, priorities and potential actions for improving health information. In the context of the National Statement for Health Literacy, health information should be a priority, given its centrality to the public's management of its own health and effective, standards-based, patient-centred clinical care. A framework to improve health information would underpin the efforts of government, services and consumer organisations to meet literacy needs in a more consistent way, improving standards and ultimately increasing the participation by consumers and carers in health decision making and self-management. What are the implications for practitioners? The development and provision of health information materials needs to be systematised and supported by infrastructure, requiring leadership, cultural change, standards and skills development.
Thermoelectric materials and methods for synthesis thereof
Ren, Zhifeng; Zhang, Qinyong; Zhang, Qian; Chen, Gang
2015-08-04
Materials having improved thermoelectric properties are disclosed. In some embodiments, lead telluride/selenide based materials with improved figure of merit and mechanical properties are disclosed. In some embodiments, the lead telluride/selenide based materials of the present disclosure are p-type thermoelectric materials formed by adding sodium (Na), silicon (Si) or both to thallium doped lead telluride materials. In some embodiments, the lead telluride/selenide based materials are formed by doping lead telluride/selenides with potassium.
Replacing critical rare earth materials in high energy density magnets
NASA Astrophysics Data System (ADS)
McCallum, R. William
2012-02-01
High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.
Ho, Evelyn Y; Tran, Henrietta; Chesla, Catherine A
2015-01-01
Type 2 diabetes affects Chinese Americans at an alarming rate. To address this health disparity, research in the area of cultural sensitivity and health literacy provides useful guidelines for creating culturally appropriate health education. In this article, we use discourse analysis to examine a group of locally available, Chinese- and English-language diabetes print documents from a surface level and deep structure level of culture. First, we compared these documents to research findings about printed health information to determine whether and how these documents apply current best practices for health literacy and culturally appropriate health communication. Second, we examined how diabetes as a disease and diabetes management is being constructed. The printed materials addressed surface level culture through the use of Chinese language, pictures, foods, and exercises. From a deeper cultural level, the materials constructed diabetes management as a matter of measurement and control that contrasted with previous research suggesting an alternative construction of balance. A nuanced assessment of both surface and deeper levels of culture is essential for creating health education materials that are more culturally appropriate and can lead to increased health literacy and improved health outcomes.
Power system applications of high temperature superconductors
NASA Astrophysics Data System (ADS)
Garlick, W. G.
This paper presents an overview of potential applications for high temperature superconductors (HTSs) in the field of power engineering. For almost 10 years material scientists, chemists and physicists have had the freedom to find, explore and characterize the properties of new HTS materials. 10 years is not a long time in the development of a revolutionary technology, but it seems like an age to the engineer who has recognized its potential and waits impatiently for the technology to stabilize in order to apply it. Largely due to Government and Industry partnerships, only a few years after the discovery of HTS, electrical power applications based on HTS are now being designed and tested. These applications offer many benefits to the resident electrical system: increased energy efficiency, smaller equipment, reduced emissions, increased stability and reliability, deferred expansion and flexible transmission and distribution. They have a common focus: lower electricity costs, improved environmental quality and more competitive products for a global market. For HTS to become a commercial success, the development of materials technologies is necessary but not sufficient on its own; the development of a capability to design and manufacture products that use the materials is also fundamental to a viable and successful industrial base.
NASA Astrophysics Data System (ADS)
Kanai, Yosuke
2009-03-01
Charge separation is a crucial process that must be understood in order to make substantial improvements in nano-materials based PV cells. In our work, first principles quantum mechanical calculations are employed to shed light on this process for some important nano-material heterojunctions. I will first present our work on the interfacial charge separation in Fullerene/P3HT and CNT/P3HT heterojunctions. Our findings indicate that in the fullerene system a two-step process is operative, involving an adiabatic electron transfer and an exciton dissociation via quasi-degenerate states localized on the fullerene. For the nanotubes, on the other hand, while such a two-step process is not necessary for efficient charge separation, the presence of metallic nanotubes lead to undesirable charge traps. Secondly, I will discuss how we are addressing the difficulty in employing standard DFT approaches for investigating inorganic-organic PV interfaces, which are composed of two distinct materials with very different electronic environments. I will discuss a QMC scheme for obtaining many-body corrections to the Kohn-Sham level alignments and its application to a CdSe/Oligothiophene hybrid PV interface, with the aim of tailoring its behavior by controlling the conjugation length.
[Which hip articulation bearing for which patient? : Tribology of the future].
Morlock, M M; Bishop, N; Kaddick, C
2011-12-01
Replacement of the hip joint has become an exceptionally successful procedure since the inauguration of the low friction principle by Charnley. Aseptic osteolysis and joint dislocation have been addressed by the development of wear-optimized materials and the introduction of larger heads. As an increase in head diameter against polyethylene causes wear increase, larger hard-on-hard bearings were introduced, which exhibit reduced wear and reduced dislocation risk with increasing head diameter. These findings were derived from standard simulator testing, not sufficiently considering the risk of fluid film breakdown under adverse conditions, which can cause a dramatic increase in wear and friction proportional to the head diameter. Such adverse conditions can occur clinically in patients due to several factors and have caused the presently observed unexpected problems with these new designs. Standardized preclinical testing has to be viewed as a minimum requirement but certainly not as a guarantee for the clinical success of new materials and designs even if the testing is adapted to the current patient requirements, which is presently not the case. The future of tribology lies in the prevention of adverse conditions in patients, the improvement and optimized use of proven existing materials and not in the use of new materials.
NASA Astrophysics Data System (ADS)
Samsudin, Sarah Hanim; Shafri, Helmi Z. M.; Hamedianfar, Alireza
2016-04-01
Status observations of roofing material degradation are constantly evolving due to urban feature heterogeneities. Although advanced classification techniques have been introduced to improve within-class impervious surface classifications, these techniques involve complex processing and high computation times. This study integrates field spectroscopy and satellite multispectral remote sensing data to generate degradation status maps of concrete and metal roofing materials. Field spectroscopy data were used as bases for selecting suitable bands for spectral index development because of the limited number of multispectral bands. Mapping methods for roof degradation status were established for metal and concrete roofing materials by developing the normalized difference concrete condition index (NDCCI) and the normalized difference metal condition index (NDMCI). Results indicate that the accuracies achieved using the spectral indices are higher than those obtained using supervised pixel-based classification. The NDCCI generated an accuracy of 84.44%, whereas the support vector machine (SVM) approach yielded an accuracy of 73.06%. The NDMCI obtained an accuracy of 94.17% compared with 62.5% for the SVM approach. These findings support the suitability of the developed spectral index methods for determining roof degradation statuses from satellite observations in heterogeneous urban environments.
NASA Astrophysics Data System (ADS)
Hastuty, Ika Puji; Sofyan, Tri Alby; Roesyanto
2017-11-01
The condition of the soil in Indonesia in varied, viewed from its bearing capacity. The soil is one of the materials which plays a very important role in a construction or foundation so that it is very necessary to have soil with its adequate technical properties. In reality, often founding inadequate soil properties such as in its compressibility, permeability, and plasticity. The objective of the research was to find out the physical properties, technical properties, CBR value, and stabilization of clay by adding quicklime and volcanic ash as stabilizing materials. The mixing combination is 2%, 4% quicklime, and 2%-24% volcanic ash. The value of Water Content for original soil was 34.33% and Specific Gravity original soil was 2.65. The result of the research showed that the stabilizing materials from quicklime and volcanic ash could improve the physical and mechanical properties of clay. The value of Atterberg Limits decreased from 29.88% to 11.33% in the variation of 4% Q+24% VA, while the most maximal value of CBR was found in the variation of 4% Q+8% VA at 9.01%.
Sustainable Materials Management Challenge Data
Sustainable Materials Management (SMM) is a systemic approach to using and reusing materials more productively over their entire lifecycles. It represents a change in how our society thinks about the use of natural resources and environmental protection. By looking at a product's entire lifecycle we can find new opportunities to reduce environmental impacts, conserve resources, and reduce costs. There are multiple challenge programs available as part of the SMM program, including the Food Recovery Challenge, the Electronics Challenge, the Federal Green Challenge, and the WasteWise program. As part of EPA's Food Recovery Challenge, organizations pledge to improve their sustainable food management practices and report their results. The SMM Electronics Challenge encourages electronics manufacturers, brand owners and retailers to strive to send 100 percent of the used electronics they collect from the public, businesses and within their own organizations to third-party certified electronics refurbishers and recyclers. The Federal Green Challenge, a national effort under the EPA??s Sustainable Materials Management Program, challenges EPA and other federal agencies throughout the country to lead by example in reducing the federal government's environmental impact. EPA??s WasteWise encourages organizations and businesses to achieve sustainability in their practices and reduce select industrial wastes. WasteWise is part of EPA??s sustaina
Ho, Evelyn Y.; Tran, Henrietta; Chesla, Catherine A.
2014-01-01
Type 2 diabetes affects Chinese Americans at an alarming rate. To address this health disparity, research in the area of cultural sensitivity and health literacy provide useful guidelines for creating culturally appropriate health education. In this article, we use discourse analysis to examine a group of locally-available, Chinese and English language diabetes print documents from a surface and deep structure level of culture. First, we compared these documents to research findings about printed health information to determine if and how these documents apply current best practices for health literacy and culturally appropriate health communication. Second, we examined how diabetes as a disease and diabetes management is being constructed. The printed materials addressed surface level culture through the use of Chinese language, pictures, foods and exercises. From a deeper cultural level, the materials constructed diabetes management as a matter of measurement and control that contrasted with previous research suggesting an alternative construction of balance. A nuanced assessment of both surface and deeper levels of culture is essential for creating health education materials that are more culturally appropriate and can lead to increase health literacy and improved health outcomes. PMID:24446839
Study to develop improved fire resistant aircraft passenger seat materials
NASA Technical Reports Server (NTRS)
Duskin, F. E.; Schutter, K. J.; Sieth, H. H.; Trabold, E. L.
1980-01-01
The Phase 3 study of the NASA 'Improved Fire Resistant Aircraft Seat Materials' involved fire tests of improved materials in multilayered combinations representative of cushion configurations. Tests were conducted to determine their thermal, smoke, and fire resistance characteristics. Additionally, a 'Design Guideline' for Fire Resistant Passenger Seats was written outlining general seat design considerations. Finally, a three-abreast 'Tourist Class' passenger seat assembly fabricated from the most advanced fire-resistant materials was delivered.
Powell, C; Bamber, D; Long, J; Garratt, R; Brown, J; Rudge, S; Morris, T; Bhupendra Jaicim, N; Plachcinski, R; Dyson, S; Boyle, E M; St James-Roberts, I
2018-04-17
During the first 4 months of age, approximately 20% of infants cry a lot without an apparent reason. Most research has targeted the crying, but the impact of the crying on parents, and subsequent outcomes, need to receive equal attention. This study reports the findings from a prospective evaluation of a package of materials designed to support the well-being and mental health of parents who judge their infant to be crying excessively. The resulting "Surviving Crying" package comprised a website, printed materials, and programme of Cognitive Behaviour Therapy-based support sessions delivered to parents by a qualified practitioner. It was designed to be suitable for United Kingdom (UK) National Health Service (NHS) use. Parents were referred to the study by 12 NHS Health Visitor/Community Public Health Nurse teams in one UK East Midlands NHS Trust. Fifty-two of 57 parents of excessively crying babies received the support package and completed the Edinburgh Postnatal Depression Scale and Generalized Anxiety Disorder-7 anxiety questionnaire, as well as other measures, before receiving the support package and afterwards. Significant reductions in depression and anxiety were found, with numbers of parents meeting clinical criteria for depression or anxiety halving between baseline and outcome. These improvements were not explained by reductions in infant crying. Reductions also occurred in the number of parents reporting the crying to be a large or severe problem (from 28 to 3 parents) or feeling very or extremely frustrated by the crying (from 31 to 1 parent). Other findings included increases in parents' confidence, knowledge of infant crying, and improvements in parents' sleep. The findings suggest that the Surviving Crying package may be effective in supporting the well-being and mental health of parents of excessively crying babies. Further, large-scale controlled trials of the package in NHS settings are warranted. © 2018 John Wiley & Sons Ltd.
Materialism and life satisfaction: the role of religion.
Rakrachakarn, Varapa; Moschis, George P; Ong, Fon Sim; Shannon, Randall
2015-04-01
This study examines the role of religion and religiosity in the relationship between materialism and life satisfaction. The findings suggests that religion may be a key factor in understanding differences in findings of previous studies regarding the inverserelationship found in the vast majority of previous studies. Based on a large-scale study in Malaysia—a country comprised of several religious subcultures (mainly Muslims, Buddhists, and Hindus), the findings suggest that the influence of religiosity on materialism and life satisfaction is stronger among Malays than among Chinese and Indians, and life satisfaction partially mediates the relationship between religiosity and materialism. The paper discusses implications for theory development and further research.
Methods and apparatus for handling or treating particulate material
NASA Technical Reports Server (NTRS)
Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)
2009-01-01
An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.
Radiation shielding materials and containers incorporating same
Mirsky, Steven M.; Krill, Stephen J.; Murray, Alexander P.
2005-11-01
An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.
Radiation Shielding Materials and Containers Incorporating Same
Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.
2005-11-01
An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.
Effects of a two-school-year multifactorial back education program in elementary schoolchildren.
Geldhof, Elisabeth; Cardon, Greet; De Bourdeaudhuij, Ilse; De Clercq, Dirk
2006-08-01
A quasi-experimental pre/post design. To investigate effects of a 2-school-year multifactorial back education program on back posture knowledge and postural behavior in elementary schoolchildren. Additionally, self-reported back or neck pain and fear-avoidance beliefs were evaluated. Epidemiologic studies report mounting nonspecific back pain prevalence among youngsters, characterized by multifactorial risk factors. Study findings of school-based interventions are promising. Furthermore, biomechanical discomfort is found in the school environment. The study sample included 193 intervention children and 172 controls (baseline, 9-to-11-year-olds). The multifactorial intervention consisted of a back education program and the stimulation of postural dynamism in the class through support and environmental changes. Evaluation consisted of a questionnaire, an observation of postural behavior in the classroom, and an observation of material handling during a movement session. The intervention resulted in increased back posture knowledge (P < 0.001), improved postural behavior during material handling (P < 0.001), and decreased duration of trunk flexion (P < 0.05) and neck torsion (P < 0.05) during lesson time. The intervention did not change fear-avoidance beliefs. There was a trend for decreased pain reports in boys of the intervention group (P < 0.09). The intervention resulted in improved postural aspects related to spinal loading. The long-term effect of improved postural behavior at young age on back pain prevalence later in life is of interest for future research.
Investigation on Mechanical Properties of Graphene Oxide reinforced GFRP
NASA Astrophysics Data System (ADS)
Arun, G. K.; Sreenivas, Nikhil; Brahma Reddy, Kesari; Sai Krishna Reddy, K.; Shashi Kumar, M. E.; Pramod, R.
2018-02-01
Graphene and E-glass fibres individually find a very wide field of applications because of their various mechanical and chemical properties. Recently graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. The primary interest of this venture is to investigate on Graphene reinforced polymer matrix nanocomposites and finding the mechanical properties. The composites were fabricated by Hand Lay Process and have been evaluated by the addition of Graphene with 1, 1.5, 2, 2.5 and 3 by weight% as reinforcement in composites. The theoretical and experimental results validate the increase in properties such as tensile strength, hardness and flexural strength with increase in weight proportions from 1% to 3% of graphene powder. It was observed that the composite material with 2.5% weight fraction of graphene yielded superior properties over other weight percentages. Graphene reinforced polymer matrix nanocomposites finds its major applications in the manufacture of aircraft bodies, ballistic missiles, sporting equipment, marine applications and extraterrestrial ventures.
Symmetric Electrodes for Electrochemical Energy-Storage Devices.
Zhang, Lei; Dou, Shi Xue; Liu, Hua Kun; Huang, Yunhui; Hu, Xianluo
2016-12-01
Increasing environmental problems and energy challenges have so far attracted urgent demand for developing green and efficient energy-storage systems. Among various energy-storage technologies, sodium-ion batteries (SIBs), electrochemical capacitors (ECs) and especially the already commercialized lithium-ion batteries (LIBs) are playing very important roles in the portable electronic devices or the next-generation electric vehicles. Therefore, the research for finding new electrode materials with reduced cost, improved safety, and high-energy density in these energy storage systems has been an important way to satisfy the ever-growing demands. Symmetric electrodes have recently become a research focus because they employ the same active materials as both the cathode and anode in the same energy-storage system, leading to the reduced manufacturing cost and simplified fabrication process. Most importantly, this feature also endows the symmetric energy-storage system with improved safety, longer lifetime, and ability of charging in both directions. In this Progress Report, we provide the comprehensive summary and comment on different symmetric electrodes and focus on the research about the applications of symmetric electrodes in different energy-storage systems, such as the above mentioned SIBs, ECs and LIBs. Further considerations on the possibility of mass production have also been presented.
Dammeier, Sascha; Nahnsen, Sven; Veit, Johannes; Wehner, Frank; Ueffing, Marius; Kohlbacher, Oliver
2016-01-04
Standard forensic procedures to examine bullets after an exchange of fire include a mechanical or ballistic reconstruction of the event. While this is routine to identify which projectile hit a subject by DNA analysis of biological material on the surface of the projectile, it is rather difficult to determine which projectile caused the lethal injury--often the crucial point with regard to legal proceedings. With respect to fundamental law it is the duty of the public authority to make every endeavor to solve every homicide case. To improve forensic examinations, we present a forensic proteomic method to investigate biological material from a projectile's surface and determine the tissues traversed by it. To obtain a range of relevant samples, different major bovine organs were penetrated with projectiles experimentally. After tryptic "on-surface" digestion, mass-spectrometry-based proteome analysis, and statistical data analysis, we were able to achieve a cross-validated organ classification accuracy of >99%. Different types of anticipated external variables exhibited no prominent influence on the findings. In addition, shooting experiments were performed to validate the results. Finally, we show that these concepts could be applied to a real case of murder to substantially improve the forensic reconstruction.
Plendl, J; Bahramsoltani, M; Gemeinhardt, O; Hünigen, H; Kässmeyer, S; Janczyk, P
2009-10-01
Teaching morphology, a fundamental part of medicine curricula is traditionally based on lectures and practical trainings. We introduced peer-assisted learning (PAL) and student expert teams to the courses to give the students the possibility to improve their free speech and self-confidence. We involved students in active preparation of online materials such as labelled e-slides and e-pics. We offered online digital microscopy (Zoomify) and dissection (CyberPrep) allowing repeating the learned material and studying veterinary morphology outside the dissection theatre. Over 60% of first and third semester students profited from being a peer or being taught by a peer and 50% said the expert teams were an excellent method to learn the topographic anatomy. Almost all students applied Zoomify and CyberPrep and 75% of them found the digital microscopy and dissection to be a helpful or very helpful learning tool. In face of reduced contact hours, these forms of education compensated in part the lost teaching time. We observed improvement of rhetoric and presentation skills and self-confidence. The approaches should therefore find their constant place in the veterinary medicine curricula.
Thin co-radial bipolar leads: technology and clinical performance.
Fahraeus, T; Israel, C W; Wöllenstein, M
2001-09-01
While bipolar leads offer advantages such as better sensing performance than unipolar leads, their use has been limited by a larger lead diameter and reports about a high failure rate of several bipolar lead models. This has led to the development of thin bipolar leads using a special technology which aims at improving lead safety. Leads with monofilar thin conductors (drawn filled tube) which are individually coated with a very resistant material (ETFE) have been developed. Using a co-radial instead of co-axial bipolar conductor design, the lead diameter could be reduced to 4.5 F compared to 6-7 F of conventional bipolar leads. Bench testing demonstrated a significant improvement of this lead technology with respect to degradation of insulation material by biochemically reactive solutions. Also mechanical characteristics such as resistance to tearing forces and compression showed a high lead durability. From our own experience, co-radial bipolar leads show a favorable electrical performance with the exception of a relatively low pacing impedance. Also during long-term follow-up, the rate of lead failure was very low. These findings are corroborated by other clinical studies which also demonstrated good handling characteristics of thin bipolar leads during implantation.
Feasibility of microelectrode array (MEA) based on silicone-polyimide hybrid for retina prosthesis.
Kim, Eui Tae; Kim, Cinoo; Lee, Seung Woo; Seo, Jong-Mo; Chung, Hum; Kim, Sung June
2009-09-01
To adopt micropatterning technology in manufacturing silicone elastomer-based microelectrode arrays for retinal stimulation, a silicone-polyimide hybrid microelectrode array was proposed and tested in vivo. Gold microelectrodes were created by semiconductor manufacturing technology based on polyimide and were hybridized with silicone elastomer by spin coating. The stability of the hybrid between the two materials was flex and blister tested. The feasibility of the hybrid electrode was evaluated in the rabbit eye by reviewing optical coherence tomography (OCT) findings after suprachoroidal implantation. The flex test showed no dehiscence between the two materials for 24 hours of alternative flexion and extension from -45.0 degrees to +45.0 degrees . During the blister test, delamination was observed at 8.33 +/- 1.36 psi of pressure stress; however, this property was improved to 11.50 +/- 1.04 psi by oxygen plasma treatment before hybridization. OCT examination revealed that the implanted electrodes were safely located in the suprachoroidal space during the 4-week follow-up period. The silicone-polyimide hybrid microelectrode array showed moderate physical properties, which are suitable for in vivo application. Appropriate pretreatment before hybridization improved electrode stability. In vivo testing indicated that this electrode is suitable as a stimulation electrode in artificial retina.
Use of Iba Techniques to Characterize High Velocity Thermal Spray Coatings
NASA Astrophysics Data System (ADS)
Trompetter, W.; Markwitz, A.; Hyland, M.
Spray coatings are being used in an increasingly wide range of industries to improve the abrasive, erosive and sliding wear of machine components. Over the past decade industries have moved to the application of supersonic high velocity thermal spray techniques. These coating techniques produce superior coating quality in comparison to other traditional techniques such as plasma spraying. To date the knowledge of the bonding processes and the structure of the particles within thermal spray coatings is very subjective. The aim of this research is to improve our understanding of these materials through the use of IBA techniques in conjunction with other materials analysis techniques. Samples were prepared by spraying a widely used commercial NiCr powder onto substrates using a HVAF (high velocity air fuel) thermal spraying technique. Detailed analysis of the composition and structure of the power particles revealed two distinct types of particles. The majority was NiCr particles with a significant minority of particles composing of SiO2/CrO3. When the particles were investigated both as raw powder and in the sprayed coating, it was surprising to find that the composition of the coating meterial remained unchanged during the coating process despite the high velocity application.
Cuy, Janet L; Beckstead, Benjamin L; Brown, Chad D; Hoffman, Allan S; Giachelli, Cecilia M
2003-11-01
Stable endothelialization of a tissue-engineered heart valve is essential for proper valve function, although adhesive characteristics of the native valve endothelial cell (VEC) have rarely been explored. This research evaluated VEC adhesive qualities and attempted to enhance VEC growth on the biopolymer chitosan, a novel tissue-engineering scaffold material with promising biological and chemical properties. Aortic VEC cultures were isolated and found to preferentially adhere to fibronectin, collagen types IV and I over laminin and osteopontin in a dose-dependent manner. Seeding of VEC onto comparison substrates revealed VEC growth and morphology to be preferential in the order: tissue culture polystyrene > gelatin, poly(DL-lactide-co-glycolide), chitosan > poly(hydroxy alkanoate). Adhesive protein precoating of chitosan did not significantly enhance VEC growth, despite equivalent protein adsorption as to polystyrene. Initial cell adhesion to protein-precoated chitosan, however, was higher than for polystyrene. Composite chitosan/collagen type IV films were investigated as an alternative to simple protein precoatings, and were shown to improve VEC growth and morphology over chitosan alone. These findings suggest potential manipulation of chitosan properties to improve amenability to valve tissue-engineering applications. Copyright 2003 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Syukri, Yandi; Nugroho, Bambang Hernawan
2017-03-01
The course of Drug Delivery Systems is an elective that supports the development of new products in pharmaceutical industry. The existing learning process has been in the form of one-direction face-to-face lecturing. During the lecture, students find it difficult to follow or understand the materials, so they become passive. Also, class effectiveness is low because it cannot develop students' active participation during the learning process. To improve the learning outcomes and to achieve the desired competence, innovations in the learning process should be attempted. This learning model aimed to improve students' understanding of and soft skills in the course of Drug Delivery Systems through a cooperative learning method and collaboration with foreign lecturers. The order of cooperative learning included explaining the desired learning outcomes of each topic, providing reading materials for students to learn when preparing their papers, instructing students to work on group assignments and to help each other to master the lesson through question-answer sessions and discussions among group members, encouraging group presentations, and evaluating through quizzes. The foreign lecturers played a role in enriching teaching materials and providing an international class atmosphere. The students' hard skills assessed from the quiz, midterm exam, and final semester exam showed a minimum score of 70 > 80% in the quiz and final semester exam components, while the midterm exam value with a minimum of 70 > 80% was only 6%. The assessment of soft skills obtained from the students' independence in constructing knowledge to complete assignments and resolve problems indicated such outcomes as each group's better ability to access relevant journals, their active participation in group discussions, discipline to submit assignments, discipline to be punctual, and good communication skills. It can be concluded that cooperative learning method could improve the soft skills of students, and the role of foreign lecturers was successful in providing an international class atmosphere.
Gao, C; Kuklane, K; Wang, F; Holmér, I
2012-12-01
The impact of heat waves arising from climate change on human health is predicted to be profound. It is important to be prepared with various preventive measures for such impacts on society. The objective of this study was to investigate whether personal cooling with phase change materials (PCM) could improve thermal comfort in simulated office work at 34°C. Cooling vests with PCM were measured on a thermal manikin before studies on human subjects. Eight male subjects participated in the study in a climatic chamber (T(a) = 34°C, RH = 60%, and ν(a) = 0.4 m/s). Results showed that the cooling effect on the manikin torso was 29.1 W/m(2) in the isothermal condition. The results on the manikin using a constant heating power mode reflect directly the local cooling effect on subjects. The results on the subjects showed that the torso skin temperature decreased by about 2-3°C and remained at 33.3°C. Both whole body and torso thermal sensations were improved. The findings indicate that the personal cooling with PCM can be used as an option to improve thermal comfort for office workers without air conditioning and may be used for vulnerable groups, such as elderly people, when confronted with heat waves. Wearable personal cooling integrated with phase change materials has the advantage of cooling human body's micro-environment in contrast to stationary personalized cooling and entire room or building cooling, thus providing greater mobility and helping to save energy. In places where air conditioning is not usually used, this personal cooling method can be used as a preventive measure when confronted with heat waves for office workers, vulnerable populations such as the elderly and disabled people, people with chronic diseases, and for use at home. © 2012 John Wiley & Sons A/S.
Improving impact resistance of ceramic materials by energy absorbing surface layers
NASA Technical Reports Server (NTRS)
Kirchner, H. P.; Seretsky, J.
1974-01-01
Energy absorbing surface layers were used to improve the impact resistance of silicon nitride and silicon carbide ceramics. Low elastic modulus materials were used. In some cases, the low elastic modulus was achieved using materials that form localized microcracks as a result of thermal expansion anisotropy, thermal expansion differences between phases, or phase transformations. In other cases, semi-vitreous or vitreous materials were used. Substantial improvements in impact resistance were observed at room and elevated temperatures.
Gill, Preetinder S; Gill, Tejkaran S; Kamath, Ashwini; Whisnant, Billy
2012-01-01
Health literacy is associated with a person’s capacity to find, access, contextualize, and understand information needed for health care-related decisions. The level of health literacy thus has an influence on an individual’s health status. It can be argued that low health literacy is associated with poor health status. Health care literature (eg, pamphlets, brochures, postcards, posters, forms) are published by public and private organizations worldwide to provide information to the general public. The ability to read, use, and understand is critical to the successful application of knowledge disseminated by this literature. This study assessed the readability, suitability, and usability of health care literature associated with concussion and traumatic brain injury published by the United States Centers for Disease Control and Prevention. The Flesch–Kincaid Grade Level, Flesch Reading Ease, Gunning Fog, Simple Measure of Gobbledygook, and Suitability Assessment of Materials indices were used to assess 40 documents obtained from the Centers for Disease Control and Prevention website. The documents analyzed were targeted towards the general public. It was found that in order to be read properly, on average, these documents needed more than an eleventh grade/high school level education. This was consistent with the findings of other similar studies. However, the qualitative Suitability Assessment of Materials index showed that, on average, usability and suitability of these documents was superior. Hence, it was concluded that formatting, illustrations, layout, and graphics play a pivotal role in improving health care-related literature and, in turn, promoting health literacy. Based on the comprehensive literature review and assessment of the 40 documents associated with concussion and traumatic brain injury, recommendations have been made for improving the readability, suitability, and usability of health care-related documents. The recommendations are presented in the form of an incremental improvement process cycle and a list of dos and don’ts. PMID:23204856
Estudio tribologico de nuevos nanofluidos ionicos y nanomateriales
NASA Astrophysics Data System (ADS)
Saurin Serrano, Noelia
The present work has focused on tribology and surface engineering of materials and interfaces. In the first place, four new halogen-free ionic liquids have been studied as boundary lubricants in reciprocating steel-sapphire and steel-epoxy resin contacts. Two different steel surface roughness have been compared, finding not only low friction, but also non-measurable wear, in the case of higher roughness. New ionic nanofluids have been obtained by dispersion of two commercial graphene grades in the ionic liquid 1-octyl-3-methylimidazlium tetrafluoroborate, finding the best friction reducing and antiwear performance in pin-on-disc sapphire-steel and steel-epoxy resin contacts. New aqueous lubricants have been developed by addition of new dispersions of graphene in a protic ionic liquid free from contaminant elements, as it is an ammonium cation citrate anion derivative. Controlled water evaporation leads to new self-lubricating surfaces. In the present work, the tribological performance of a fragile low wear-resistance materials such as epoxy resin has been improved by addition of variables concentrations of the ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate or carbon nanophases such as singlewalled carbon nanotubes or graphene. Blended with the ionic liquid or previously modified by it. The first epoxy resin materials with ability of self-healing the abrasion surface damage, due to the addition of ionic liquid, are described. New epoxy resin matrix nanocomposites, obtained by combination of carbon nanophases and ionic liquid, show better tribological behavior than the materials containing any of the additives separately. Finally, a new research line on the cure of the new epoxy matrix nanocomoposites as protective coatings on steel substrates has been initiated.
Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S.; Katman, Herdayati; Husain, Nadiah Md
2014-01-01
Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout. PMID:24526911
Carbon Nanotubes for Supercapacitor
2010-01-01
As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage. PMID:20672061
Koting, Suhana; Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S; Ibrahim, Mohd Rasdan; Katman, Herdayati; Husain, Nadiah Md
2014-01-01
Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.
Improving the readability of online foot and ankle patient education materials.
Sheppard, Evan D; Hyde, Zane; Florence, Mason N; McGwin, Gerald; Kirchner, John S; Ponce, Brent A
2014-12-01
Previous studies have shown the need for improving the readability of many patient education materials to increase patient comprehension. This study's purpose was to determine the readability of foot and ankle patient education materials and to determine the extent readability can be improved. We hypothesized that the reading levels would be above the recommended guidelines and that decreasing the sentence length would also decrease the reading level of these patient educational materials. Patient education materials from online public sources were collected. The readability of these articles was assessed by a readability software program. The detailed instructions provided by the National Institutes of Health (NIH) were then used as a guideline for performing edits to help improve the readability of selected articles. The most quantitative guideline, lowering all sentences to less than 15 words, was chosen to show the effect of following the NIH recommendations. The reading levels of the sampled articles were above the sixth to seventh grade recommendations of the NIH. The MedlinePlus website, which is a part of the NIH website, had the lowest reading level (8.1). The articles edited had an average reduction of 1.41 grade levels, with the lowest reduction in the Medline articles of 0.65. Providing detailed instructions to the authors writing these patient education articles and implementing editing techniques based on previous recommendations could lead to an improvement in the readability of patient education materials. This study provides authors of patient education materials with simple editing techniques that will allow for the improvement in the readability of online patient educational materials. The improvement in readability will provide patients with more comprehendible education materials that can strengthen patient awareness of medical problems and treatments. © The Author(s) 2014.
Composite Silica Aerogels Opacified with Titania
NASA Technical Reports Server (NTRS)
Paik, Jon-Ah; Sakamoto, Jeffrey; Jones, Steven; Fleurial, Jean-Pierre; DiStefano, Salvador; Nesmith, Bill
2009-01-01
A further improvement has been made to reduce the high-temperature thermal conductivities of the aerogel-matrix composite materials described in Improved Silica Aerogel Composite Materials (NPO-44287), NASA Tech Briefs, Vol. 32, No. 9 (September 2008), page 50. Because the contribution of infrared radiation to heat transfer increases sharply with temperature, the effective high-temperature thermal conductivity of a thermal-insulation material can be reduced by opacifying the material to reduce the radiative contribution. Therefore, the essence of the present improvement is to add an opacifying constituent material (specifically, TiO2 powder) to the aerogel-matrix composites.
NASA Technical Reports Server (NTRS)
Weiner, S.; Beerman, H. P.; Schwarz, F. C.
1990-01-01
Research was undertaken to improve the detectivity of the pyroelectric detector with the ultimate goal of operation at or near the temperature-noise limit. Two general areas of investigation were undertaken: (1) to improve responsivity through the use of new materials; and (2) to reduce noise through improved field effect transistor characteristics, and improved electroding of the pyroelectric material. FET's are being obtained from various manufacturers, evaulated, and selected units tested for evaluation of characteristics critical to their use as preamplifiers with pyroelectric detectors.
NASA Technical Reports Server (NTRS)
Elliot, James L.
1997-01-01
The goal of this research was to determine whether Pluto has a haze layer through observations (with the Kuiper Airborne Observatory) of a stellar occultation by Pluto that was originally predicted to occur on 1993 October 3. As described in the attached material, our extensive astrometric measurements determined that this occultation would not be visible from Earth, and we canceled plans to observe it with the KAO. Efforts were then directed toward improving our astrometric techniques so that we could find future occultations with which we could satisfy the original goals of the research proposed for this grant.
Waste Water Treatment Apparatus and Methods
NASA Technical Reports Server (NTRS)
Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor); Littman, Howard (Inventor)
2014-01-01
An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.
Rudasingwa, Martin; Soeters, Robert; Bossuyt, Michel
2015-01-01
To strengthen the health care delivery, the Burundian Government in collaboration with international NGOs piloted performance-based financing (PBF) in 2006. The health facilities were assigned - by using a simple matching method - to begin PBF scheme or to continue with the traditional input-based funding. Our objective was to analyse the effect of that PBF scheme on the quality of health services between 2006 and 2008. We conducted the analysis in 16 health facilities with PBF scheme and 13 health facilities without PBF scheme. We analysed the PBF effect by using 58 composite quality indicators of eight health services: Care management, outpatient care, maternity care, prenatal care, family planning, laboratory services, medicines management and materials management. The differences in quality improvement in the two groups of health facilities were performed applying descriptive statistics, a paired non-parametric Wilcoxon Signed Ranks test and a simple difference-in-difference approach at a significance level of 5%. We found an improvement of the quality of care in the PBF group and a significant deterioration in the non-PBF group in the same four health services: care management, outpatient care, maternity care, and prenatal care. The findings suggest a PBF effect of between 38 and 66 percentage points (p<0.001) in the quality scores of care management, outpatient care, prenatal care, and maternal care. We found no PBF effect on clinical support services: laboratory services, medicines management, and material management. The PBF scheme in Burundi contributed to the improvement of the health services that were strongly under the control of medical personnel (physicians and nurses) in a short time of two years. The clinical support services that did not significantly improved were strongly under the control of laboratory technicians, pharmacists and non-medical personnel. PMID:25948432
Choudhury, Payel; Prasad Uday, Uma Shankar; Bandyopadhyay, Tarun Kanti; Ray, Rup Narayan
2017-01-01
ABSTRACT There is an urgent need to find an environment friendly and sustainable technology for alternative energy due to rapid depletion of fossil fuel and industrialization. Microbial Fuel Cells (MFCs) have operational and functional advantages over the current technologies for energy generation from organic matter as it directly converts electricity from substrate at ambient temperature. However, MFCs are still unsuitable for high energy demands due to practical limitations. The overall performance of an MFC depends on microorganism, appropriate electrode materials, suitable MFC designs, and optimizing process parameters which would accelerate commercialization of this technology in near future. In this review, we put forth the recent developments on microorganism and electrode material that are critical for the generation of bioelectricity generation. This would give a comprehensive insight into the characteristics, options, modifications, and evaluations of these parameters and their effects on process development of MFCs. PMID:28453385
Implementing Google Apps for Education as Learning Management System in Math Education
NASA Astrophysics Data System (ADS)
Widodo, S.
2017-09-01
This study aims to find the effectiveness of math education using Google Apps for Education (GAFE) as learning management system to improve mathematical communication skill primary school preservice teacher. This research used quasi-experimental approach, utilizing the control group pre-test - post-test design of two group of primary school preservice teachers at UPI Kampus Purwakarta. The result of this study showed that mathematical communication skill of primary school preservice teacher in the experiment group is better than the control group. This is because the primary school preservice teacher in the experiment group used GAFE as a tool to communicate their idea. The students can communicate their idea because they have read the learning material on the learning management system using GAFE. All in all, it can be concluded that the communication tool is very important, beside the learning material, and also the options to choose the learning model to achieve the better result.
Design and synthesis of the superionic conductor Na10SnP2S12
NASA Astrophysics Data System (ADS)
Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand
2016-03-01
Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm-1 rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.
Group investigation with scientific approach in mathematics learning
NASA Astrophysics Data System (ADS)
Indarti, D.; Mardiyana; Pramudya, I.
2018-03-01
The aim of this research is to find out the effect of learning model toward mathematics achievement. This research is quasi-experimental research. The population of research is all VII grade students of Karanganyar regency in the academic year of 2016/2017. The sample of this research was taken using stratified cluster random sampling technique. Data collection was done based on mathematics achievement test. The data analysis technique used one-way ANOVA following the normality test with liliefors method and homogeneity test with Bartlett method. The results of this research is the mathematics learning using Group Investigation learning model with scientific approach produces the better mathematics learning achievement than learning with conventional model on material of quadrilateral. Group Investigation learning model with scientific approach can be used by the teachers in mathematics learning, especially in the material of quadrilateral, which is can improve the mathematics achievement.
Effects of (Oxy-)Fluorination on Various High-Performance Yarns.
Kruppke, Iris; Bartusch, Matthias; Hickmann, Rico; Hund, Rolf-Dieter; Cherif, Chokri
2016-08-26
In this work, typical high-performance yarns are oxy-fluorinated, such as carbon fibers, ultra-high-molecular-weight polyethylene, poly(p-phenylene sulfide) and poly(p-phenylene terephthalamide). The focus is on the property changes of the fiber surface, especially the wetting behavior, structure and chemical composition. Therefore, contact angle, XPS and tensile strength measurements are performed on treated and untreated fibers, while SEM is utilized to evaluate the surface structure. Different results for the fiber materials are observed. While polyethylene exhibits a relevant impact on both surface and bulk properties, polyphenylene terephthalamide and polyphenylene sulfide are only affected slightly by (oxy-)fluorination. The wetting of carbon fiber needs higher treatment intensities, but in contrast to the organic fibers, even its textile-physical properties are enhanced by the treatment. Based on these findings, the capability of (oxy-)fluorination to improve the adhesion of textiles in fiber-reinforced composite materials can be derived.
Plaut, Roger D; Staab, Andrea B; Munson, Mark A; Gebhardt, Joan S; Klimko, Christopher P; Quirk, Avery V; Cote, Christopher K; Buhr, Tony L; Rossmaier, Rebecca D; Bernhards, Robert C; Love, Courtney E; Berk, Kimberly L; Abshire, Teresa G; Rozak, David A; Beck, Linda C; Stibitz, Scott; Goodwin, Bruce G; Smith, Michael A; Sozhamannan, Shanmuga
2018-04-01
The revelation in May 2015 of the shipment of γ irradiation-inactivated wild-type Bacillus anthracis spore preparations containing a small number of live spores raised concern about the safety and security of these materials. The finding also raised doubts about the validity of the protocols and procedures used to prepare them. Such inactivated reference materials were used as positive controls in assays to detect suspected B. anthracis in samples because live agent cannot be shipped for use in field settings, in improvement of currently deployed detection methods or development of new methods, or for quality assurance and training activities. Hence, risk-mitigated B. anthracis strains are needed to fulfill these requirements. We constructed a genetically inactivated or attenuated strain containing relevant molecular assay targets and tested to compare assay performance using this strain to the historical data obtained using irradiation-inactivated virulent spores.
Kapitza resistance at segregated boundaries in β-SiC
NASA Astrophysics Data System (ADS)
Goel, Nipun; Webb, Edmund, III; Oztekin, Alparslan; Rickman, Jeffrey; Neti, Sudhakar
Silicon Carbide is a candidate material for high-temperature thermoelectric applications for harvesting waste heat associated with exhaust from automotive and furnaces as well hot surfaces in solar towers and power electronics. However, for SiC to be a viable thermoelectric material, its thermoelectric figure of merit must be improved significantly. In this talk we examine the role of grain-boundary segregation on phononic thermal transport, an important factor in determining the figure of merit, via non-equilibrium molecular dynamics simulations. In particular, we consider the role of dopant concentration and dopant/matrix interactions on the enhancement of the Kapitza resistance of symmetric tilt grain boundaries. We find that the calculated resistance depends on the segregation profile, with increases of more than a factor of 50 (relative to an unsegregated boundary) at the highest dopant concentrations. Finally, we relate the calculated phonon density of states to changes in the Kapitza resistance.
Natural energy and vernacular architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fathy, H.
1986-01-01
This volume presents insights into the indigenous architectural forms in hot arid climates. The author presents his extensive research on climate control, particularly in the Middle East, to demonstrate the advantages of many locally available building materials and traditional building methods. He suggests improved uses of natural energy that can bridge the gap between traditional achievements and modern needs. He argues that various architectural forms in these climates have evolved intuitively from scientifically valid concepts. Such forms combine comfort and beauty, social and physical functionality. He discusses that in substituting modern materials, architects sometimes have ignored the environmental context ofmore » traditional architecture. As a result, individuals may find themselves physically and psychologically uncomfortable in modern structures. His approach, informed by a sensitive humanism, demonstrates the ways in which traditional architectural forms can be of use in solving problems facing contemporary architecture, in particular the critical housing situation in the Third World.« less
Insects as model systems in cell biology.
Keil, Thomas A; Steinbrecht, R Alexander
2010-01-01
For almost 100 years, insects have been favorable "model systems" in biology. Just to mention a few examples: fruit flies in genetics and developmental biology; bugs and caterpillars in hormone research; houseflies, blowflies, and locusts in neurobiology; silk moths in pheromone research; honeybees and crickets in neuroethology. For more than 50 years the electron microscope (EM) has been a valuable tool in analyzing the structure of cells and organs of these creatures. However, progress in specimen preparation was relatively slow compared with mammalian material and, in 1970, it was taken for granted that insects were much more difficult to fix than mammals. Since then, methods have dramatically improved, and satisfactory results can now be obtained routinely with chemical as well as cryofixation. In this chapter we briefly demonstrate what can be achieved with insect material, and help the researcher to find the most appropriate method for her/his systems and scientific questions. Copyright © 2010 Elsevier Inc. All rights reserved.
Design and synthesis of the superionic conductor Na10SnP2S12.
Richards, William D; Tsujimura, Tomoyuki; Miara, Lincoln J; Wang, Yan; Kim, Jae Chul; Ong, Shyue Ping; Uechi, Ichiro; Suzuki, Naoki; Ceder, Gerbrand
2016-03-17
Sodium-ion batteries are emerging as candidates for large-scale energy storage due to their low cost and the wide variety of cathode materials available. As battery size and adoption in critical applications increases, safety concerns are resurfacing due to the inherent flammability of organic electrolytes currently in use in both lithium and sodium battery chemistries. Development of solid-state batteries with ionic electrolytes eliminates this concern, while also allowing novel device architectures and potentially improving cycle life. Here we report the computation-assisted discovery and synthesis of a high-performance solid-state electrolyte material: Na10SnP2S12, with room temperature ionic conductivity of 0.4 mS cm(-1) rivalling the conductivity of the best sodium sulfide solid electrolytes to date. We also computationally investigate the variants of this compound where tin is substituted by germanium or silicon and find that the latter may achieve even higher conductivity.
Choudhury, Payel; Prasad Uday, Uma Shankar; Bandyopadhyay, Tarun Kanti; Ray, Rup Narayan; Bhunia, Biswanath
2017-09-03
There is an urgent need to find an environment friendly and sustainable technology for alternative energy due to rapid depletion of fossil fuel and industrialization. Microbial Fuel Cells (MFCs) have operational and functional advantages over the current technologies for energy generation from organic matter as it directly converts electricity from substrate at ambient temperature. However, MFCs are still unsuitable for high energy demands due to practical limitations. The overall performance of an MFC depends on microorganism, appropriate electrode materials, suitable MFC designs, and optimizing process parameters which would accelerate commercialization of this technology in near future. In this review, we put forth the recent developments on microorganism and electrode material that are critical for the generation of bioelectricity generation. This would give a comprehensive insight into the characteristics, options, modifications, and evaluations of these parameters and their effects on process development of MFCs.
Tuning the piezoelectric and mechanical properties of the AlN system via alloying with YN and BN
NASA Astrophysics Data System (ADS)
Manna, Sukriti; Brennecka, Geoff L.; Stevanović, Vladan; Ciobanu, Cristian V.
2017-09-01
Recent advances in microelectromechanical systems often require multifunctional materials, which are designed so as to optimize more than one property. Using density functional theory calculations for alloyed nitride systems, we illustrate how co-alloying a piezoelectric material (AlN) with different nitrides helps tune both its piezoelectric and mechanical properties simultaneously. Wurtzite AlN-YN alloys display increased piezoelectric response with YN concentration, accompanied by mechanical softening along the crystallographic c direction. Both effects increase the electromechanical coupling coefficients relevant for transducers and actuators. Resonator applications, however, require superior stiffness, thus leading to the need to decouple the increased piezoelectric response from the softened lattice. We show that co-alloying of AlN with YN and BN results in improved elastic properties while retaining some of the piezoelectric enhancements from YN alloying. This finding may lead to new avenues for tuning the design properties of piezoelectrics through composition-property maps.
Hagen, C K; Diemoz, P C; Endrizzi, M; Rigon, L; Dreossi, D; Arfelli, F; Lopez, F C M; Longo, R; Olivo, A
2014-04-07
X-ray phase contrast imaging (XPCi) methods are sensitive to phase in addition to attenuation effects and, therefore, can achieve improved image contrast for weakly attenuating materials, such as often encountered in biomedical applications. Several XPCi methods exist, most of which have already been implemented in computed tomographic (CT) modality, thus allowing volumetric imaging. The Edge Illumination (EI) XPCi method had, until now, not been implemented as a CT modality. This article provides indications that quantitative 3D maps of an object's phase and attenuation can be reconstructed from EI XPCi measurements. Moreover, a theory for the reconstruction of combined phase and attenuation maps is presented. Both reconstruction strategies find applications in tissue characterisation and the identification of faint, weakly attenuating details. Experimental results for wires of known materials and for a biological object validate the theory and confirm the superiority of the phase over conventional, attenuation-based image contrast.
Tiwari, Avinash; Shubin, Sergey N; Alcock, Ben; Freidin, Alexander B; Thorkildsen, Brede; Echtermeyer, Andreas T
2017-11-01
The feasibility of a novel composite rubber sealing material to improve sealing under transient cooling (in a so-called blowdown scenario) is investigated here. A composite of hydrogenated nitrile butadiene rubber (HNBR) filled with Micro Encapsulated Phase Change Materials (MEPCM) is described. The fillers contain phase change materials that release heat during the phase transformation from liquid to solid while cooling. This exotherm locally heats the rubber and may improve the function of the seal during a blowdown event. A representative HNBR-MEPCM composite was made and the critical thermal and mechanical properties were obtained by simulating the temperature distribution during a blowdown event. Simulations predict that the MEPCM composites can delay the temperature decrease in a region of the seal during the transient blowdown. A sensitivity analysis of material properties is also presented which highlights possible avenues of improvement of the MEPCMs for sealing applications.
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.
1987-01-01
This is the second annual technical report entitled, Improved Silicon Carbide for Advanced Heat Engines, and includes work performed during the period February 16, 1986 to February 15, 1987. The program is conducted for NASA under contract NAS3-24384. The objective is the development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines. The fabrication methods used are to be adaptable for mass production of such parts on an economically sound basis. Injection molding is the forming method selected. This objective is to be accomplished in a two-phase program: (1) to achieve a 20 percent improvement in strength and a 100 percent increase in Weibull modulus of the baseline material; and (2) to produce a complex shaped part, a gas turbine rotor, for example, with the improved mechanical properties attained in the first phase. Eight tasks are included in the first phase covering the characterization of the properties of a baseline material, the improvement of those properties and the fabrication of complex shaped parts. Activities during the first contract year concentrated on two of these areas: fabrication and characterization of the baseline material (Task 1) and improvement of material and processes (Task 7). Activities during the second contract year included an MOR bar matrix study to improve mechanical properties (Task 2), materials and process improvements (Task 7), and a Ford-funded task to mold a turbocharger rotor with an improved material (Task 8).
ERIC Educational Resources Information Center
Burkholder, Barry L.
1981-01-01
This study conducted to determine the effectiveness of using the Instructional Strategy Diagnostic Profile to revise self-instructional materials that teach abstract concepts examined three sets of materials: the original set, the set with improved consistency rating, and the set with improved consistency and adequacy ratings. Forty-six references…
Synthetic thermoelectric materials comprising phononic crystals
El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang
2013-08-13
Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.
ERIC Educational Resources Information Center
Educational Products Information Exchange Inst., Stony Brook, NY.
Learner Verification and Revision (LVR) Process of Instructional Materials is an ongoing effort for the improvement of instructional materials based on systematic feedback from learners who have used the materials. This evaluation gives publishers a method of identifying instructional strengths and weaknesses of a product and provides an…
Direct methanol feed fuel cell and system
NASA Technical Reports Server (NTRS)
Kindler, Andrew (Inventor); Halpert, Gerald (Inventor); Frank, Harvey A. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor)
2008-01-01
Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.
Direct methanol feed fuel cell and system
NASA Technical Reports Server (NTRS)
Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Halpert, Gerald (Inventor); Surampudi, Subbarao (Inventor); Kindler, Andrew (Inventor)
2004-01-01
Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.
Direct methanol feed fuel cell and system
NASA Technical Reports Server (NTRS)
Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Halpert, Gerald (Inventor); Surampudi, Subbarao (Inventor); Kindler, Andrew (Inventor)
2000-01-01
Improvements to non-acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.
Direct methanol feed fuel cell and system
NASA Technical Reports Server (NTRS)
Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Halpert, Gerald (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor)
2001-01-01
Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous.
Think Pair Share with Formative Assessment for Junior High School Student
NASA Astrophysics Data System (ADS)
Pradana, O. R. Y.; Sujadi, I.; Pramudya, I.
2017-09-01
Geometry is a science related to abstract thinking ability so that not many students are able to understand this material well. In this case, the learning model plays a crucial role in improving student achievement. This means that a less precise learning model will cause difficulties for students. Therefore, this study provides a quantitative explanation of the Think Pair Share learning model combined with the formative assessment. This study aims to test the Think Pair Share with the formative assessment on junior high school students. This research uses a quantitative approach of Pretest-Posttest in control group and experiment group. ANOVA test and Scheffe test used to analyse the effectiveness this learning. Findings in this study are student achievement on the material geometry with Think Pair Share using formative assessment has increased significantly. This happens probably because this learning makes students become more active during learning. Hope in the future, Think Pair Share with formative assessment be a useful learning for teachers and this learning applied by the teacher around the world especially on the material geometry.
Recent advances in modeling Hugoniots with Cheetah
NASA Astrophysics Data System (ADS)
Glaesemann, Kurt
2005-07-01
The detonation of an energetic material is the result of a complex interaction between kinetic chemical reactions and thermodynamic chemical equilibrium. Unfortunately, little is known concerning the detailed chemical kinetics of reacting energetic materials. Cheetah uses rate laws to treat species with the slowest chemical reactions, while assuming other chemical species are in equilibrium. Cheetah supports a wide range of elements and condensed detonation products and can also be applied to gas phase reactions. Improvements have been made to Cheetah's equilibrium solver, that allow it to find a wider range of thermodynamic states. Many of the difficulties experienced by users in earlier versions of Cheetah have been fixed. New capabilities have also been added. The ultimate result is a code that can be applied to a wide range of shock problems involving both energetic and non-energetic materials. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
McGlone, Matthew S; Bell, Robert A; Zaitchik, Sarah T; McGlynn, Joseph
2013-01-01
In English and in other languages, the agency for viral transmission can be grammatically assigned to people (e.g., Thousands may contract H1N1) or to the virus itself (e.g., H1N1 may infect thousands). These assignment options shape different conceptions of transmission as attributable either to social contact within one's control or to pursuit of an active predator. The authors tested the effect of agency assignment and agentic images on young adults' (N = 246) reactions to educational materials about H1N1 influenza. The authors hypothesized that assigning agency to the virus would heighten perceived severity and personal susceptibility relative to human agency assignment. Results were consistent with this hypothesis, indicating that virus agency increased perceptions of severity, personal susceptibility, and reported intentions to seek vaccination relative to human agency. The image manipulation did not directly affect these factors. The findings suggest that strategic agency assignment can improve the effectiveness of educational materials about influenza and other health threats.
Du, Zhijia; Wood, David L.; Daniel, Claus; ...
2017-02-09
We present that increasing electrode thickness, thus increasing the volume ratio of active materials, is one effective method to enable the development of high energy density Li-ion batteries. In this study, an energy density versus power density optimization of LiNi 0.8Co 0.15Al 0.05O 2 (NCA)/graphite cell stack was conducted via mathematical modeling. The energy density was found to have a maximum point versus electrode thickness (critical thickness) at given discharging C rates. The physics-based factors that limit the energy/power density of thick electrodes were found to be increased cell polarization and underutilization of active materials. The latter is affected bymore » Li-ion diffusion in active materials and Li-ion depletion in the electrolyte phase. Based on those findings, possible approaches were derived to surmount the limiting factors. Finally, the improvement of the energy–power relationship in an 18,650 cell was used to demonstrate how to optimize the thick electrode parameters in cell engineering.« less
Explosively generated shock wave processing of metal powders by instrumented detonics
NASA Astrophysics Data System (ADS)
Sharma, A. D.; Sharma, A. K.; Thakur, N.
2013-06-01
The highest pressures generated by dynamic processes resulting either from high velocity impact or by spontaneous release of high energy rate substances in direct contact with a metal find superior applications over normal mechanical means. The special feature of explosive loading to the powder materials over traditional methods is its controlled detonation pressure which directly transmits shock energy to the materials which remain entrapped inside powder resulting into several micro-structural changes and hence improved mechanical properties. superalloy powders have been compacted nearer to the theoretical density by shock wave consolidation. In a single experimental set-up, compaction of metal powder and measurement of detonation velocity have been achieved successfully by using instrumented detonics. The thrust on the work is to obtain uniform, crack-free and fracture-less compacts of superalloys having intact crystalline structure as has been examined from FE-SEM, XRD and mechanical studies. Shock wave processing is an emerging technique and receiving much attention of the materials scientists and engineers owing to its excellent advantages over traditional metallurgical methods due to short processing time, scaleup advantage and controlled detonation pressure.
Garbers, Samantha; Heck, Craig J; Gold, Melanie A; Santelli, John S; Bersamin, Melina
2017-01-01
School-based health centers (SBHCs) can take specific steps to provide culturally competent care for lesbian, gay, bisexual, transgender, and queer (LGBTQ) youth, potentially impacting well-being. A needs assessment survey was conducted among a convenience sample of SBHC administrators and medical directors to assess climates and actions supportive of LGBTQ quality medical care. Half (53%) of the SBHCs surveyed ( N = 66) reviewed print materials for negative LGBTQ stereotypes, and 27.3% conducted exhaustive materials review. Regional differences were detected: 46.2% of Southern SBHCs conducted any materials review compared to 91.3% in the West and all in the East and Midwest (χ 2 , p < .001). In the last academic year, 45.5% conducted no medical provider trainings, and 54.5% conducted no general staff trainings on providing care for LGBTQ youth. On intake forms, 85.4% included preferred names, but only 23.5% included preferred pronoun. There are significant gaps in the extent to which SBHCs provide culturally competent care. These findings can guide future training and advocacy.
Zhou, Yuan; Wan, Juanyong; Li, Qi; Chen, Lei; Zhou, Jiyang; Wang, Heao; He, Dunren; Li, Xiaorui; Yang, Yaocheng; Huang, Huihui
2017-12-13
Solution-based processing of two-dimensional (2D) materials provides the possibility of allowing these materials to be incorporated into large-area thin films, which can translate the interesting fundamental properties of 2D materials into available devices. Here, we report for the first time a novel chemical-welding method to achieve high-performance flexible n-type thermoelectric films using 2D semimetallic TiS 2 nanosheets. We employ chemically exfoliated TiS 2 nanosheets bridged with multivalent cationic metal Al 3+ to cross-link the nearby sheets during the film deposition process. We find that such a treatment can greatly enhance the stability of the film and can improve the power factor by simultaneously increasing the Seebeck coefficient and electrical conductivity. The resulting TiS 2 nanosheet-based flexible film shows a room temperature power factor of ∼216.7 μW m -1 K -2 , which is among the highest chemically exfoliated 2D transition-metal dichalcogenide nanosheet-based films and comparable to the best flexible n-type thermoelectric films, to our knowledge, indicating its potential applications in wearable electronics.
End-user satisfaction of a patient education tool manual versus computer-generated tool.
Tronni, C; Welebob, E
1996-01-01
This article reports a nonexperimental comparative study of end-user satisfaction before and after implementation of a vendor supplied computerized system (Micromedex, Inc) for providing up-to-date patient instructions regarding diseases, injuries, procedures, and medications. The purpose of this research was to measure the satisfaction of nurses who directly interact with a specific patient educational software application and to compare user satisfaction with manual versus computer generated materials. A computing satisfaction questionnaire that uses a scale of 1 to 5 (1 being the lowest) was used to measure end-user computing satisfaction in five constructs: content, accuracy, format, ease of use, and timeliness. Summary statistics were used to calculate mean ratings for each of the questionnaire's 12 items and for each of the five constructs. Mean differences between the ratings before and after implementation of the five constructs were significant by paired t test. Total user satisfaction improved with the computerized system, and the computer generated materials were given a higher rating than were the manual materials. Implications of these findings are discussed.
A spatial-temporal method for assessing the energy balance dynamics of partially sealed surfaces.
NASA Astrophysics Data System (ADS)
Pipkins, Kyle; Kleinschmit, Birgit; Wessolek, Gerd
2017-04-01
The effects of different types of sealed surfaces on the surface energy balance have been well-studied in the past. However, these field studies typically aggregate these surfaces into continuous units. The proposed method seeks to disaggregate such surfaces into paving and seam areas using spatial methods, and to consider the temperature dynamics under wet and dry conditions between these two components. This experimental work is undertaken using a thermal camera to record a time series of images over two lysimeters with differing levels of surface sealing. The images are subsequently decomposed into component materials using object-based image analysis and compared on the basis of both the surface materials as well as the spatial configuration of materials. Finally, a surface energy balance method is used to estimate evaporation rates from the surfaces, both separately for the different surface components as well as using the total surface mean. Results are validated using the output of the weighing lysimeter. Our findings will determine whether the explicitly spatial method is an improvement over the mean aggregate method.
A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3.
Li, Ming; Pietrowski, Martha J; De Souza, Roger A; Zhang, Huairuo; Reaney, Ian M; Cook, Stuart N; Kilner, John A; Sinclair, Derek C
2014-01-01
Oxide ion conductors find important technical applications in electrochemical devices such as solid-oxide fuel cells (SOFCs), oxygen separation membranes and sensors. Na0.5Bi0.5TiO3 (NBT) is a well-known lead-free piezoelectric material; however, it is often reported to possess high leakage conductivity that is problematic for its piezo- and ferroelectric applications. Here we report this high leakage to be oxide ion conduction due to Bi-deficiency and oxygen vacancies induced during materials processing. Mg-doping on the Ti-site increases the ionic conductivity to ~0.01 S cm(-1) at 600 °C, improves the electrolyte stability in reducing atmospheres and lowers the sintering temperature. This study not only demonstrates how to adjust the nominal NBT composition for dielectric-based applications, but also, more importantly, gives NBT-based materials an unexpected role as a completely new family of oxide ion conductors with potential applications in intermediate-temperature SOFCs and opens up a new direction to design oxide ion conductors in perovskite oxides.
NASA Astrophysics Data System (ADS)
Joost, William J.
2012-09-01
Transportation accounts for approximately 28% of U.S. energy consumption with the majority of transportation energy derived from petroleum sources. Many technologies such as vehicle electrification, advanced combustion, and advanced fuels can reduce transportation energy consumption by improving the efficiency of cars and trucks. Lightweight materials are another important technology that can improve passenger vehicle fuel efficiency by 6-8% for each 10% reduction in weight while also making electric and alternative vehicles more competitive. Despite the opportunities for improved efficiency, widespread deployment of lightweight materials for automotive structures is hampered by technology gaps most often associated with performance, manufacturability, and cost. In this report, the impact of reduced vehicle weight on energy efficiency is discussed with a particular emphasis on quantitative relationships determined by several researchers. The most promising lightweight materials systems are described along with a brief review of the most significant technical barriers to their implementation. For each material system, the development of accurate material models is critical to support simulation-intensive processing and structural design for vehicles; improved models also contribute to an integrated computational materials engineering (ICME) approach for addressing technical barriers and accelerating deployment. The value of computational techniques is described by considering recent ICME and computational materials science success stories with an emphasis on applying problem-specific methods.
Improved silicon carbide for advanced heat engines
NASA Technical Reports Server (NTRS)
Whalen, Thomas J.; Mangels, J. A.
1986-01-01
The development of silicon carbide materials of high strength was initiated and components of complex shape and high reliability were formed. The approach was to adapt a beta-SiC powder and binder system to the injection molding process and to develop procedures and process parameters capable of providing a sintered silicon carbide material with improved properties. The initial effort was to characterize the baseline precursor materials, develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures were performed in order to distinguish process routes for improving material properties. A total of 276 modulus-of-rupture (MOR) bars of the baseline material was molded, and 122 bars were fully processed to a sinter density of approximately 95 percent. Fluid mixing techniques were developed which significantly reduced flaw size and improved the strength of the material. Initial MOR tests indicated that strength of the fluid-mixed material exceeds the baseline property by more than 33 percent. the baseline property by more than 33 percent.
Development of seal ring carbon-graphite materials (tasks 8, 9, and 10)
NASA Technical Reports Server (NTRS)
Fechter, N. J.; Petrunich, P. S.
1973-01-01
A screening study was conducted to develop improved carbon-graphite materials for use in self-acting seals at air temperatures to 1300 F (704 C). Property measurements on materials prepared during this study have shown that: (1) The mechanical properties of a carbon-graphite material were significantly improved by using a fine milled artificial graphite filler material and including intensive mixing, warm molding, and pitch impregnation in the processing; and (2) the oxidation resistance of a carbon-graphite material was improved by including fine milled boron carbide as an oxidation-inhibiting additive. These techniques were employed to develop a material that has 10 times more oxidation resistance than that of a widely used commercial grade and mechanical properties that approach those of the commercial grade.
Kim, Jeongil; Kwon, Miyoung
2018-01-01
Task performance is a critical factor for learning in individuals with intellectual disabilities. This study aimed to examine mindfulness-based intervention (MBI) to improve task performance for children with intellectual disability (ID). Three elementary school children with ID participated in the study. A multiple baseline design across subjects was used. The intervention was consisted of "understanding the necessary concept of mindfulness, practice of awareness and attention, and practice focusing on mindful behaviours." Mediating materials including expressive arts supplies were used to help each subject to understand the content and the progress of the intervention programme. The results showed that all of the three subjects showed an improvement in task performance and a decrease in task-avoidance behaviours. The mothers reported that her children's daily life behaviours were distinctively improved as he/she participated in the intervention. The finding suggests that MBI would be a valuable adjunct to a wide range of applications to support individuals with ID to learn a variety of adaptive behaviour. © 2017 John Wiley & Sons Ltd.
Tools for Scientist Engagement in E/PO: NASA SMD Community Workspace and Online Resources
NASA Astrophysics Data System (ADS)
Dalton, H.; Shipp, S. S.; Grier, J.; Gross, N. A.; Buxner, S.; Bartolone, L.; Peticolas, L. M.; Woroner, M.; Schwerin, T. G.
2014-12-01
The Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) Forums are here to help you get involved in E/PO! The Forums have been developing several online resources to support scientists who are - or who are interested in becoming - involved in E/PO. These include NASA Wavelength, EarthSpace, and the SMD E/PO online community workspace. NASA Wavelength is the one-stop shop of all peer-reviewed NASA education resources to find materials you - or your audiences - can use. Browse by audience (pre-K through 12, higher education, and informal education) or topic, or choose to search for something specific by keyword and audience. http://nasawavelength.org. EarthSpace, an online clearinghouse of Earth and space materials for use in the higher education classroom, is driven by a powerful search engine that allows you to browse the collection of resources by science topic, audience, type of material or key terms. All materials are peer-reviewed before posting, and because all submissions receive a digital object identifier (doi), submitted materials can be listed as publications. http://www.lpi.usra.edu/earthspace. The SMD E/PO online community workspace contains many resources for scientists. These include one-page guides on how to get involved, tips on how to make the most of your time spent on E/PO, and sample activities, as well as news on funding, policy, and what's happening in the E/PO community. The workspace also provides scientists and the public pathways to find opportunities for participation in E/PO, to learn about SMD E/PO projects and their impacts, to connect with SMD E/PO practitioners, and to explore resources to improve professional E/PO practice, including literature reviews, information about the Next Generation Science Standards, and best practices in evaluation and engaging diverse audiences. http://smdepo.org.
Redox States of Initial Atmospheres Outgassed on Rocky Planets and Planetesimals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Laura; Fegley, Bruce Jr., E-mail: lschaefer@asu.edu
2017-07-10
The Earth and other rocky planets and planetesimals in the solar system formed through the mixing of materials from various radial locations in the solar nebula. This primordial material likely had a range of oxidation states as well as bulk compositions and volatile abundances. We investigate the oxygen fugacity produced by the outgassing of mixtures of solid meteoritic material, which approximate the primitive nebular materials. We find that the gas composition and oxygen fugacity of binary and ternary mixtures of meteoritic materials vary depending on the proportion of reduced versus oxidized material, and also find that mixtures using differentiated materialsmore » do not show the same oxygen fugacity trends as those using similarly reduced but undifferentiated materials. We also find that simply mixing the gases produced by individual meteoritic materials together does not correctly reproduce the gas composition or oxygen fugacity of the binary and ternary mixtures. We provide tabulated fits for the oxygen fugacities of all of the individual materials and binary mixtures that we investigate. These values may be useful in planetary formation models, models of volatile transport on planetesimals or meteorite parent bodies, or models of trace element partitioning during metal-silicate fractionation.« less
Risk communication and radiological/nuclear terrorism: a strategic view.
Becker, Steven M
2011-11-01
It is now widely recognized that effective communication is a crucial element in radiological/nuclear terrorism preparedness. Whereas in the past, communication and information issues were sometimes viewed as secondary in comparison with technical concerns, today the need to improve risk communication, public information, and emergency messaging is seen as a high priority. The process of improving radiological/nuclear terrorism risk communication can be conceptualized as occurring in four overlapping phases. The first phase involves the recognition that communication and information issues will be pivotal in shaping how a radiological/nuclear terrorism incident unfolds and in determining its outcome. This recognition has helped shape the second phase, in which various research initiatives have been undertaken to provide an empirical basis for improved communication. In the third and most recent phase, government agencies, professional organizations and others have worked to translate research findings into better messages and informational materials. Like the first and second phases, the third phase is still unfolding. The fourth phase in risk communication for radiological/nuclear terrorism-a mature phase-is only now just beginning. Central to this phase is a developing understanding that for radiological/nuclear terrorism risk communication to be fully effective, it must go beyond crafting better messages and materials (as essential as that may be). This emerging fourth phase seeks to anchor radiological/nuclear communication in a broader approach: one that actively engages and partners with the public. In this article, each of the four stages is discussed, and future directions for improving radiological/nuclear terrorism risk communication are explored.
Combining Radiography and Passive Measurements for Radiological Threat Localization in Cargo
NASA Astrophysics Data System (ADS)
Miller, Erin A.; White, Timothy A.; Jarman, Kenneth D.; Kouzes, Richard T.; Kulisek, Jonathan A.; Robinson, Sean M.; Wittman, Richard A.
2015-10-01
Detecting shielded special nuclear material (SNM) in a cargo container is a difficult problem, since shielding reduces the amount of radiation escaping the container. Radiography provides information that is complementary to that provided by passive gamma-ray detection systems: while not directly sensitive to radiological materials, radiography can reveal highly shielded regions that may mask a passive radiological signal. Combining these measurements has the potential to improve SNM detection, either through improved sensitivity or by providing a solution to the inverse problem to estimate source properties (strength and location). We present a data-fusion method that uses a radiograph to provide an estimate of the radiation-transport environment for gamma rays from potential sources. This approach makes quantitative use of radiographic images without relying on image interpretation, and results in a probabilistic description of likely source locations and strengths. We present results for this method for a modeled test case of a cargo container passing through a plastic-scintillator-based radiation portal monitor and a transmission-radiography system. We find that a radiograph-based inversion scheme allows for localization of a low-noise source placed randomly within the test container to within 40 cm, compared to 70 cm for triangulation alone, while strength estimation accuracy is improved by a factor of six. Improvements are seen in regions of both high and low shielding, but are most pronounced in highly shielded regions. The approach proposed here combines transmission and emission data in a manner that has not been explored in the cargo-screening literature, advancing the ability to accurately describe a hidden source based on currently-available instrumentation.
Wang, Kun; Tang, Rong-Yu; Zhao, Xiao-Bo; Li, Jun-Jie; Lang, Yi-Ran; Jiang, Xiao-Xia; Sun, Hong-Ji; Lin, Qiu-Xia; Wang, Chang-Yong
2015-11-28
The development of coating materials for neural interfaces has been a pursued to improve the electrical, mechanical and biological performances. For these goals, a bioactive coating was developed in this work featuring a poly(3,4-ethylenedioxythiophene) (PEDOT)/carbon nanotube (CNT) composite and covalently bonded YIGSR and RGD. Its biological effect and electrical characteristics were assessed in vivo on microwire arrays (MWA). The coated electrodes exhibited a significantly higher charge storage capacity (CSC) and lower electrochemical impedance at 1 kHz which are desired to improve the stimulating and recording performances, respectively. Acute neural recording experiments revealed that coated MWA possess a higher signal/noise ratio capturing spikes undetected by uncoated electrodes. Moreover, coated MWA possessed more active sites and single units, and the noise floor of coated electrodes was lower than that of uncoated electrodes. There is little information in the literature concerning the chronic performance of bioactively modified neural interfaces in vivo. Therefore in this work, chronic in vivo tests were conducted and the PEDOT/PSS/MWCNT-polypeptide coated arrays exhibited excellent performances with the highest mean maximal amplitude from day 4 to day 12 during which the acute response severely compromised the performance of the electrodes. In brief, we developed a simple method of covalently bonding YIGSR and RGD to a PEDOT/PSS/MWCNT-COOH composite improving both the biocompatibility and electrical performance of the neural interface. Our findings suggest that YIGSR and RGD modified PEDOT/PSS/MWCNT is a promising bioactivated composite coating for neural recording and stimulating.
2006-04-01
3-21 TPA060050033/TYNDALLINRMPEAFINAL.DOC VI Acronyms and Abbreviations ACM asbestos-containing materials ...Inventory FONPA Finding of No Practicable Alternative FONSI Finding of No Significant Impact HAZMO Hazardous Materials Management Office ICRMP...land surface (bls) by unconsolidated sands and clayey sands deposited since the Pliocene age. This material is relatively permeable and is underlain
Improved growth method of (SN) x single crystals
NASA Astrophysics Data System (ADS)
Nakada, Ichiroh
1981-12-01
The crystal growth of pure and sizable single crystals of polysulfur nitride (SN) x was improved by adopting a monitor system with a quadrapole mass spectrometer and a Pirani gauge. The mass spectrometer helped to find a temperature appropriate for trapping (SN) 2 selectively on a cold finger and removing other unnecessary or harmful materials produced by the thermal decomposition of (SN) 4 as well as out-gassing water vapour from the glass wall. Leakage of gasses in the vessel was monitored with the Pirani gauge. With a heat pipe the crystal tube is cooled locally so that only a small number of nuclei start to grow. (SN) x single crystals with dimensions of 1 to 6 mm in edge size have been obtained. The relation between the crystal habit and the crystallographic axes has also been determined.
Tackling misconceptions in geometrical optics
NASA Astrophysics Data System (ADS)
Ceuppens, S.; Deprez, J.; Dehaene, W.; De Cock, M.
2018-07-01
To improve the teaching and learning materials for a curriculum it is important to incorporate the findings from educational research. In light of this, we present creative exercises and experiments to elicit, confront and resolve misconceptions in geometrical optics. Since ray diagrams can be both the cause and the solution for many misconceptions we focus strongly on improving understanding of this tool to solve and understand optical phenomena. Through a combination of a conceptual understanding programme (CUP) and provocative exercises with ray diagrams we aim to elicit conceptual or cognitive conflict and exploit this to tackle misconceptions and increase students’ conceptual understanding through inquiry. We describe exercises for image formation by a plane mirror, image formation by a convex lens and indirect and direct observation of a real image formed by a convex lens as examples of our approach.
Thermo-cured glass ionomer cements in restorative dentistry.
Gorseta, Kristina; Glavina, Domagoj
2017-01-01
Numerous positive properties of glass ionomer cements including biocompatibility, bioactivity, releasing of fluoride and good adhesion to hard dental tissue even under wet conditions and easy of handling are reasons for their wide use in paediatric and restorative dentistry. Their biggest drawbacks are the weaker mechanical properties. An important step forward in improving GIC's features is thermo-curing with the dental polymerization unit during setting of the material. Due to their slow setting characteristics the GIC is vulnerable to early exposure to moisture. After thermo curing, cements retain all the benefits of GIC with developed better mechanical properties, improved marginal adaptation, increased microhardness and shear bond strength. Adding external energy through thermocuring or ultrasound during the setting of conventional GIC is crucial to achieve faster and better initial mechanical properties. Further clinical studies are needed to confirm these findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurence, Ted A.
2016-12-14
Laser-induced damage with ps pulse widths straddles the transition from intrinsic, multiphoton ionization- and avalanche ionization-based ablation with fs pulses to defectdominated, thermal-based damage with ns pulses. We investigated the morphology and scaling of damage for commonly used silica and hafnia coatings as well as fused silica. Using carefully calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we showed that defects play an important role in laser-induced damage for pulse durations as short as 1 ps. Three damage morphologies were observed: standard material ablation, ultra-high density pits, and isolated absorbers.more » For 10 ps and longer, the isolated absorbers limited the damage performance of the coating materials. We showed that damage resulting from the isolated absorbers grows dramatically with subsequent pulses for sufficient fluences. For hafnia coatings, we used electric field modeling and experiments to show that isolated absorbers near the surface were affected by the chemical environment (vacuum vs. air) for pulses as short as 10 ps. Coupled with the silica results, these results suggested that improvements in the performance in the 10 -60 ps range have not reached fundamental limits. These findings motivate new efforts, including a new SI LDRD in improving the laser-damage performance of multi-layer dielectric coatings. A damage test facility for ps pulses was developed and automated, and was used for testing production optics for ARC. The resulting software was transferred to other laser test facilities for fs pulses and multiple wavelengths with 30 ps pulses. Additionally, the LDRD supported the retention and promotion of an important staff scientist in high-resolution dynamic microscopy and laser-damage testing.« less
Flexible high-temperature dielectric materials from polymer nanocomposites.
Li, Qi; Chen, Lei; Gadinski, Matthew R; Zhang, Shihai; Zhang, Guangzu; Li, Haoyu; Iagodkine, Elissei; Haque, Aman; Chen, Long-Qing; Jackson, Tom; Wang, Qing
2015-07-30
Dielectric materials, which store energy electrostatically, are ubiquitous in advanced electronics and electric power systems. Compared to their ceramic counterparts, polymer dielectrics have higher breakdown strengths and greater reliability, are scalable, lightweight and can be shaped into intricate configurations, and are therefore an ideal choice for many power electronics, power conditioning, and pulsed power applications. However, polymer dielectrics are limited to relatively low working temperatures, and thus fail to meet the rising demand for electricity under the extreme conditions present in applications such as hybrid and electric vehicles, aerospace power electronics, and underground oil and gas exploration. Here we describe crosslinked polymer nanocomposites that contain boron nitride nanosheets, the dielectric properties of which are stable over a broad temperature and frequency range. The nanocomposites have outstanding high-voltage capacitive energy storage capabilities at record temperatures (a Weibull breakdown strength of 403 megavolts per metre and a discharged energy density of 1.8 joules per cubic centimetre at 250 degrees Celsius). Their electrical conduction is several orders of magnitude lower than that of existing polymers and their high operating temperatures are attributed to greatly improved thermal conductivity, owing to the presence of the boron nitride nanosheets, which improve heat dissipation compared to pristine polymers (which are inherently susceptible to thermal runaway). Moreover, the polymer nanocomposites are lightweight, photopatternable and mechanically flexible, and have been demonstrated to preserve excellent dielectric and capacitive performance after intensive bending cycles. These findings enable broader applications of organic materials in high-temperature electronics and energy storage devices.
Customization of Curriculum Materials in Science: Motives, Challenges, and Opportunities
NASA Astrophysics Data System (ADS)
Romine, William L.; Banerjee, Tanvi
2012-02-01
Exemplary science instructors use inquiry to tailor content to student's learning needs; traditional textbooks treat science as a set of facts and a rigid curriculum. Publishers now allow instructors to compile pieces of published and/or self-authored text to make custom textbooks. This brings numerous advantages, including the ability to produce smaller, cheaper text and added flexibility on the teaching models used. Moreover, the internet allows instructors to decentralize textbooks through easy access to educational objects such as audiovisual simulations, individual textbook chapters, and scholarly research articles. However, these new opportunities bring with them new problems. With educational materials easy to access, manipulate and duplicate, it is necessary to define intellectual property boundaries, and the need to secure documents against unlawful copying and use is paramount. Engineers are developing and enhancing information embedding technologies, including steganography, cryptography, watermarking, and fingerprinting, to label and protect intellectual property. While these are showing their utility in securing information, hackers continue to find loop holes in these protection schemes, forcing engineers to constantly assess the algorithms to make them as secure as possible. As newer technologies rise, people still question whether custom publishing is desirable. Many instructors see the process as complex, costly, and substandard in comparison to using traditional text. Publishing companies are working to improve attitudes through advertising. What lacks is peer reviewed evidence showing that custom publishing improves learning. Studies exploring the effect of custom course materials on student attitude and learning outcomes are a necessary next step.