Madeira, Sara C; Oliveira, Arlindo L
2009-01-01
Background The ability to monitor the change in expression patterns over time, and to observe the emergence of coherent temporal responses using gene expression time series, obtained from microarray experiments, is critical to advance our understanding of complex biological processes. In this context, biclustering algorithms have been recognized as an important tool for the discovery of local expression patterns, which are crucial to unravel potential regulatory mechanisms. Although most formulations of the biclustering problem are NP-hard, when working with time series expression data the interesting biclusters can be restricted to those with contiguous columns. This restriction leads to a tractable problem and enables the design of efficient biclustering algorithms able to identify all maximal contiguous column coherent biclusters. Methods In this work, we propose e-CCC-Biclustering, a biclustering algorithm that finds and reports all maximal contiguous column coherent biclusters with approximate expression patterns in time polynomial in the size of the time series gene expression matrix. This polynomial time complexity is achieved by manipulating a discretized version of the original matrix using efficient string processing techniques. We also propose extensions to deal with missing values, discover anticorrelated and scaled expression patterns, and different ways to compute the errors allowed in the expression patterns. We propose a scoring criterion combining the statistical significance of expression patterns with a similarity measure between overlapping biclusters. Results We present results in real data showing the effectiveness of e-CCC-Biclustering and its relevance in the discovery of regulatory modules describing the transcriptomic expression patterns occurring in Saccharomyces cerevisiae in response to heat stress. In particular, the results show the advantage of considering approximate patterns when compared to state of the art methods that require
Finding approximate gene clusters with Gecko 3
Winter, Sascha; Jahn, Katharina; Wehner, Stefanie; Kuchenbecker, Leon; Marz, Manja; Stoye, Jens; Böcker, Sebastian
2016-01-01
Gene-order-based comparison of multiple genomes provides signals for functional analysis of genes and the evolutionary process of genome organization. Gene clusters are regions of co-localized genes on genomes of different species. The rapid increase in sequenced genomes necessitates bioinformatics tools for finding gene clusters in hundreds of genomes. Existing tools are often restricted to few (in many cases, only two) genomes, and often make restrictive assumptions such as short perfect conservation, conserved gene order or monophyletic gene clusters. We present Gecko 3, an open-source software for finding gene clusters in hundreds of bacterial genomes, that comes with an easy-to-use graphical user interface. The underlying gene cluster model is intuitive, can cope with low degrees of conservation as well as misannotations and is complemented by a sound statistical evaluation. To evaluate the biological benefit of Gecko 3 and to exemplify our method, we search for gene clusters in a dataset of 678 bacterial genomes using Synechocystis sp. PCC 6803 as a reference. We confirm detected gene clusters reviewing the literature and comparing them to a database of operons; we detect two novel clusters, which were confirmed by publicly available experimental RNA-Seq data. The computational analysis is carried out on a laptop computer in <40 min. PMID:27679480
Finding the Best Quadratic Approximation of a Function
ERIC Educational Resources Information Center
Yang, Yajun; Gordon, Sheldon P.
2011-01-01
This article examines the question of finding the best quadratic function to approximate a given function on an interval. The prototypical function considered is f(x) = e[superscript x]. Two approaches are considered, one based on Taylor polynomial approximations at various points in the interval under consideration, the other based on the fact…
Finding the Best Quadratic Approximation of a Function
ERIC Educational Resources Information Center
Yang, Yajun; Gordon, Sheldon P.
2011-01-01
This article examines the question of finding the best quadratic function to approximate a given function on an interval. The prototypical function considered is f(x) = e[superscript x]. Two approaches are considered, one based on Taylor polynomial approximations at various points in the interval under consideration, the other based on the fact…
Two Efficient Techniques to Find Approximate Overlaps between Sequences
2017-01-01
The next-generation sequencing (NGS) technology outputs a huge number of sequences (reads) that require further processing. After applying prefiltering techniques in order to eliminate redundancy and to correct erroneous reads, an overlap-based assembler typically finds the longest exact suffix-prefix match between each ordered pair of the input reads. However, another trend has been evolving for the purpose of solving an approximate version of the overlap problem. The main benefit of this direction is the ability to skip time-consuming error-detecting techniques which are applied in the prefiltering stage. In this work, we present and compare two techniques to solve the approximate overlap problem. The first adapts a compact prefix tree to efficiently solve the approximate all-pairs suffix-prefix problem, while the other utilizes a well-known principle, namely, the pigeonhole principle, to identify a potential overlap match in order to ultimately solve the same problem. Our results show that our solution using the pigeonhole principle has better space and time consumption over an FM-based solution, while our solution based on prefix tree has the best space consumption between all three solutions. The number of mismatches (hamming distance) is used to define the approximate matching between strings in our work. PMID:28293632
Two Efficient Techniques to Find Approximate Overlaps between Sequences.
Haj Rachid, Maan
2017-01-01
The next-generation sequencing (NGS) technology outputs a huge number of sequences (reads) that require further processing. After applying prefiltering techniques in order to eliminate redundancy and to correct erroneous reads, an overlap-based assembler typically finds the longest exact suffix-prefix match between each ordered pair of the input reads. However, another trend has been evolving for the purpose of solving an approximate version of the overlap problem. The main benefit of this direction is the ability to skip time-consuming error-detecting techniques which are applied in the prefiltering stage. In this work, we present and compare two techniques to solve the approximate overlap problem. The first adapts a compact prefix tree to efficiently solve the approximate all-pairs suffix-prefix problem, while the other utilizes a well-known principle, namely, the pigeonhole principle, to identify a potential overlap match in order to ultimately solve the same problem. Our results show that our solution using the pigeonhole principle has better space and time consumption over an FM-based solution, while our solution based on prefix tree has the best space consumption between all three solutions. The number of mismatches (hamming distance) is used to define the approximate matching between strings in our work.
An Improved Direction Finding Algorithm Based on Toeplitz Approximation
Wang, Qing; Chen, Hua; Zhao, Guohuang; Chen, Bin; Wang, Pichao
2013-01-01
In this paper, a novel direction of arrival (DOA) estimation algorithm called the Toeplitz fourth order cumulants multiple signal classification method (TFOC-MUSIC) algorithm is proposed through combining a fast MUSIC-like algorithm termed the modified fourth order cumulants MUSIC (MFOC-MUSIC) algorithm and Toeplitz approximation. In the proposed algorithm, the redundant information in the cumulants is removed. Besides, the computational complexity is reduced due to the decreased dimension of the fourth-order cumulants matrix, which is equal to the number of the virtual array elements. That is, the effective array aperture of a physical array remains unchanged. However, due to finite sampling snapshots, there exists an estimation error of the reduced-rank FOC matrix and thus the capacity of DOA estimation degrades. In order to improve the estimation performance, Toeplitz approximation is introduced to recover the Toeplitz structure of the reduced-dimension FOC matrix just like the ideal one which has the Toeplitz structure possessing optimal estimated results. The theoretical formulas of the proposed algorithm are derived, and the simulations results are presented. From the simulations, in comparison with the MFOC-MUSIC algorithm, it is concluded that the TFOC-MUSIC algorithm yields an excellent performance in both spatially-white noise and in spatially-color noise environments. PMID:23296331
An improved direction finding algorithm based on Toeplitz approximation.
Wang, Qing; Chen, Hua; Zhao, Guohuang; Chen, Bin; Wang, Pichao
2013-01-07
In this paper, a novel direction of arrival (DOA) estimation algorithm called the Toeplitz fourth order cumulants multiple signal classification method (TFOC-MUSIC) algorithm is proposed through combining a fast MUSIC-like algorithm termed the modified fourth order cumulants MUSIC (MFOC-MUSIC) algorithm and Toeplitz approximation. In the proposed algorithm, the redundant information in the cumulants is removed. Besides, the computational complexity is reduced due to the decreased dimension of the fourth-order cumulants matrix, which is equal to the number of the virtual array elements. That is, the effective array aperture of a physical array remains unchanged. However, due to finite sampling snapshots, there exists an estimation error of the reduced-rank FOC matrix and thus the capacity of DOA estimation degrades. In order to improve the estimation performance, Toeplitz approximation is introduced to recover the Toeplitz structure of the reduced-dimension FOC matrix just like the ideal one which has the Toeplitz structure possessing optimal estimated results. The theoretical formulas of the proposed algorithm are derived, and the simulations results are presented. From the simulations, in comparison with the MFOC-MUSIC algorithm, it is concluded that the TFOC-MUSIC algorithm yields an excellent performance in both spatially-white noise and in spatially-color noise environments.
Approximate reanalysis based on the exact analytic expressions
NASA Astrophysics Data System (ADS)
Fuchs, Moshe B.; Maslovitz, Gilad
1992-06-01
Fuchs has recently given the exact analytic expressions of the inverse of the stiffness matrix, the nodal displacements, and the stress resultants in linear elastic structures composed of prismatic elements. For structures of constant geometry, the expressions are explicit in terms of the unimodal stiffnesses of the components of the structures. However, the expressions are intractable in their exact form due to their inordinate length. It all has to do with the number of statically determinate substructures embedded in common engineering structures. This paper describes some preliminary results obtained from approximate analysis models for the internal forces using truncated expressions that are similar in form to the exact analytic ones. The approach is illustrated with numerical examples.
Mars Express recent findings and future plans
NASA Astrophysics Data System (ADS)
Titov, Dmitrij; Bibring, Jean-Pierre; Cardesin, Alejandro; Duxbury, Thomas; Forget, Francois; Giuranna, Marco; González-Galindo, Francisco; Holmström, Mats; Jaumann, Ralf; Määttänen, Anni; Martin, Patrick; Montmessin, Franck; Orosei, Roberto; Pätzold, Martin; Plaut, Jeffrey; MEx SGS Team
2017-04-01
Mars Express remains one of ESA's most scientifically productive missions whose publication record now exceeds 1000 papers. Characterization of geological processes on a local-to-regional scale by HRSC, OMEGA and partner experiments on NASA spacecraft has allowed constraining land-forming processes in space and time. Recent results suggest episodic geological activity as well as the presence of large bodies of liquid water in several provinces (e.g. Eridania Planum, Terra Chimeria) in the early and middle Amazonian epoch and formation of vast sedimentary plains north of the Hellas basin. Mars Express observations and experimental teams provided an essential contribution to the selection of the Mars-2020 landing sites. More than a decade-long record of atmospheric parameters such as temperature, dust loading, water vapor and ozone abundance, water ice and CO2 clouds distribution, collected by SPICAM, PFS and OMEGA spectrometers as well as subsequent modeling have provided key contributions to our understanding of the martian climate. The ASPERA-3 observations of ion escape covering a complete solar cycle have revealed important dependencies of the atmospheric erosion rate on parameters of the solar wind and EUV flux. Structure of the ionosphere sounded by the MARSIS radar and the MaRS radio science experiment was found to be significantly affected by the solar activity, the crustal magnetic field, as well as by the influx of meteorite and cometary dust. MARSIS and ASPERA-3 observations suggest that the sunlit ionosphere over the regions with strong crustal fields is denser and extends to higher altitudes as compared to the regions with no crustal anomalies. The ionospheric plasma expands to higher altitudes where it contacts with the solar wind plasma. Reconnection of solar magnetic field lines carried by the solar wind with field lines of crustal origin opens channels through which the ionospheric plasma escapes to space, producing strong and narrow cavities in the
NASA Astrophysics Data System (ADS)
Romeu, Jordi; Jofre, Lluis; Cardama, Angel
1994-07-01
A very simple approximate expression for the process gain (PG) for the cylindrical case is derived. The different approximations and assumptions required to obtain this expression are shown. This expression might be useful for most practical cylindrical near-field measurements, providing a very simple mean to assess the near-field dynamic range requirements to obtain a desired far-field signal-to-noise ratio (SNR).
Pomelo II: finding differentially expressed genes.
Morrissey, Edward R; Diaz-Uriarte, Ramón
2009-07-01
Pomelo II (http://pomelo2.bioinfo.cnio.es) is an open-source, web-based, freely available tool for the analysis of gene (and protein) expression and tissue array data. Pomelo II implements: permutation-based tests for class comparisons (t-test, ANOVA) and regression; survival analysis using Cox model; contingency table analysis with Fisher's exact test; linear models (of which t-test and ANOVA are especial cases) that allow additional covariates for complex experimental designs and use empirical Bayes moderated statistics. Permutation-based and Cox model analysis use parallel computing, which permits taking advantage of multicore CPUs and computing clusters. Access to, and further analysis of, additional biological information and annotations (PubMed references, Gene Ontology terms, KEGG and Reactome pathways) are available either for individual genes (from clickable links in tables and figures) or sets of genes. The source code is available, allowing for extending and reusing the software. A comprehensive test suite is also available, and covers both the user interface and the numerical results. The possibility of including additional covariates, parallelization of computation, open-source availability of the code and comprehensive testing suite make Pomelo II a unique tool.
Pomelo II: finding differentially expressed genes
Morrissey, Edward R.; Diaz-Uriarte, Ramón
2009-01-01
Pomelo II (http://pomelo2.bioinfo.cnio.es) is an open-source, web-based, freely available tool for the analysis of gene (and protein) expression and tissue array data. Pomelo II implements: permutation-based tests for class comparisons (t-test, ANOVA) and regression; survival analysis using Cox model; contingency table analysis with Fisher's exact test; linear models (of which t-test and ANOVA are especial cases) that allow additional covariates for complex experimental designs and use empirical Bayes moderated statistics. Permutation-based and Cox model analysis use parallel computing, which permits taking advantage of multicore CPUs and computing clusters. Access to, and further analysis of, additional biological information and annotations (PubMed references, Gene Ontology terms, KEGG and Reactome pathways) are available either for individual genes (from clickable links in tables and figures) or sets of genes. The source code is available, allowing for extending and reusing the software. A comprehensive test suite is also available, and covers both the user interface and the numerical results. The possibility of including additional covariates, parallelization of computation, open-source availability of the code and comprehensive testing suite make Pomelo II a unique tool. PMID:19435879
Mars EXpress: status and recent findings
NASA Astrophysics Data System (ADS)
Titov, Dmitri; Bibring, Jean-Pierre; Cardesin, Alejandro; Duxbury, Tom; Forget, Francois; Giuranna, Marco; Holmstroem, Mats; Jaumann, Ralf; Martin, Patrick; Montmessin, Franck; Orosei, Roberto; Paetzold, Martin; Plaut, Jeff; MEX SGS Team
2016-04-01
Mars Express has entered its second decade in orbit in excellent health. The mission extension in 2015-2016 aims at augmenting of the surface coverage by imaging and spectral imaging instruments, continuing monitoring of the climate parameters and their variability, study of the upper atmosphere and its interaction with the solar wind in collaboration with NASA's MAVEN mission. Characterization of geological processes and landforms on Mars on a local-to-regional scale by HRSC camera constrained the martian geological activity in space and time and suggested its episodicity. Six years of spectro-imaging observations by OMEGA allowed correction of the surface albedo for presence of the atmospheric dust and revealed changes associated with the dust storm seasons. Imaging and spectral imaging of the surface shed light on past and present aqueous activity and contributed to the selection of the Mars-2018 landing sites. More than a decade long record of climatological parameters such as temperature, dust loading, water vapor, and ozone abundance was established by SPICAM and PFS spectrometers. Observed variations of HDO/H2O ratio above the subliming North polar cap suggested seasonal fractionation. The distribution of aurora was found to be related to the crustal magnetic field. ASPERA observations of ion escape covering a complete solar cycle revealed important dependences of the atmospheric erosion rate on parameters of the solar wind and EUV flux. Structure of the ionosphere sounded by MARSIS radar and MaRS radio science experiment was found to be significantly affected by the solar activity, crustal magnetic field as well as by influx of meteorite and cometary dust. The new atlas of Phobos based on the HRSC imaging was issued. The talk will give the mission status and review recent science highlights.
ERIC Educational Resources Information Center
Hummel, Thomas J.; Johnston, Charles B.
This research investigates stochastic approximation procedures of the Robbins-Monro type. Following a brief introduction to sequential experimentation, attention is focused on formal methods for selecting successive values of a single independent variable. Empirical results obtained through computer simulation are used to compare several formal…
Mattos-Silveira, Juliana; Floriano, Isabela; Ferreira, Fernanda R; Viganó, Maria Eduarda F; Mendes, Fausto M; Braga, Mariana M
2015-07-01
Longer and more complex dental procedures could negatively affect patient's acceptability of minimal invasive techniques. Therefore, this short communication aims to show the preliminary findings regarding children's discomfort reported after some minimal invasive treatments in treating initial caries lesions on approximal surfaces: flossing instruction, silver diamine fluoride (SDF) application and caries resin infiltration. Children allocated in the infiltration group showed higher levels of discomfort than those in the SDF and control groups. These findings suggest that the simplest interventions for approximal initial caries lesions cause less discomfort for children and should be applied where possible. © 2014 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
An efficient approximation algorithm for finding a maximum clique using Hopfield network learning.
Wang, Rong Long; Tang, Zheng; Cao, Qi Ping
2003-07-01
In this article, we present a solution to the maximum clique problem using a gradient-ascent learning algorithm of the Hopfield neural network. This method provides a near-optimum parallel algorithm for finding a maximum clique. To do this, we use the Hopfield neural network to generate a near-maximum clique and then modify weights in a gradient-ascent direction to allow the network to escape from the state of near-maximum clique to maximum clique or better. The proposed parallel algorithm is tested on two types of random graphs and some benchmark graphs from the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS). The simulation results show that the proposed learning algorithm can find good solutions in reasonable computation time.
Approximate Expressions for the Period of a Simple Pendulum Using a Taylor Series Expansion
ERIC Educational Resources Information Center
Belendez, Augusto; Arribas, Enrique; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi
2011-01-01
An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the…
Approximate Expressions for the Period of a Simple Pendulum Using a Taylor Series Expansion
ERIC Educational Resources Information Center
Belendez, Augusto; Arribas, Enrique; Marquez, Andres; Ortuno, Manuel; Gallego, Sergi
2011-01-01
An approximate scheme for obtaining the period of a simple pendulum for large-amplitude oscillations is analysed and discussed. When students express the exact frequency or the period of a simple pendulum as a function of the oscillation amplitude, and they are told to expand this function in a Taylor series, they always do so using the…
Analytical approximations for spatial stochastic gene expression in single cells and tissues
Smith, Stephen; Cianci, Claudia; Grima, Ramon
2016-01-01
Gene expression occurs in an environment in which both stochastic and diffusive effects are significant. Spatial stochastic simulations are computationally expensive compared with their deterministic counterparts, and hence little is currently known of the significance of intrinsic noise in a spatial setting. Starting from the reaction–diffusion master equation (RDME) describing stochastic reaction–diffusion processes, we here derive expressions for the approximate steady-state mean concentrations which are explicit functions of the dimensionality of space, rate constants and diffusion coefficients. The expressions have a simple closed form when the system consists of one effective species. These formulae show that, even for spatially homogeneous systems, mean concentrations can depend on diffusion coefficients: this contradicts the predictions of deterministic reaction–diffusion processes, thus highlighting the importance of intrinsic noise. We confirm our theory by comparison with stochastic simulations, using the RDME and Brownian dynamics, of two models of stochastic and spatial gene expression in single cells and tissues. PMID:27146686
Analytical approximations for spatial stochastic gene expression in single cells and tissues.
Smith, Stephen; Cianci, Claudia; Grima, Ramon
2016-05-01
Gene expression occurs in an environment in which both stochastic and diffusive effects are significant. Spatial stochastic simulations are computationally expensive compared with their deterministic counterparts, and hence little is currently known of the significance of intrinsic noise in a spatial setting. Starting from the reaction-diffusion master equation (RDME) describing stochastic reaction-diffusion processes, we here derive expressions for the approximate steady-state mean concentrations which are explicit functions of the dimensionality of space, rate constants and diffusion coefficients. The expressions have a simple closed form when the system consists of one effective species. These formulae show that, even for spatially homogeneous systems, mean concentrations can depend on diffusion coefficients: this contradicts the predictions of deterministic reaction-diffusion processes, thus highlighting the importance of intrinsic noise. We confirm our theory by comparison with stochastic simulations, using the RDME and Brownian dynamics, of two models of stochastic and spatial gene expression in single cells and tissues.
Drug effects on responses to emotional facial expressions: recent findings
Miller, Melissa A.; Bershad, Anya K.; de Wit, Harriet
2016-01-01
Many psychoactive drugs increase social behavior and enhance social interactions, which may, in turn, increase their attractiveness to users. Although the psychological mechanisms by which drugs affect social behavior are not fully understood, there is some evidence that drugs alter the perception of emotions in others. Drugs can affect the ability to detect, attend to, and respond to emotional facial expressions, which in turn may influence their use in social settings. Either increased reactivity to positive expressions or decreased response to negative expressions may facilitate social interaction. This article reviews evidence that psychoactive drugs alter the processing of emotional facial expressions using subjective, behavioral, and physiological measures. The findings lay the groundwork for better understanding how drugs alter social processing and social behavior more generally. PMID:26226144
Drug effects on responses to emotional facial expressions: recent findings.
Miller, Melissa A; Bershad, Anya K; de Wit, Harriet
2015-09-01
Many psychoactive drugs increase social behavior and enhance social interactions, which may, in turn, increase their attractiveness to users. Although the psychological mechanisms by which drugs affect social behavior are not fully understood, there is some evidence that drugs alter the perception of emotions in others. Drugs can affect the ability to detect, attend to, and respond to emotional facial expressions, which in turn may influence their use in social settings. Either increased reactivity to positive expressions or decreased response to negative expressions may facilitate social interaction. This article reviews evidence that psychoactive drugs alter the processing of emotional facial expressions using subjective, behavioral, and physiological measures. The findings lay the groundwork for better understanding how drugs alter social processing and social behavior more generally.
Efficiently finding regulatory elements using correlation with gene expression.
Bannai, Hideo; Inenaga, Shunsuke; Shinohara, Ayumi; Takeda, Masayuki; Miyano, Satoru
2004-06-01
We present an efficient algorithm for detecting putative regulatory elements in the upstream DNA sequences of genes, using gene expression information obtained from microarray experiments. Based on a generalized suffix tree, our algorithm looks for motif patterns whose appearance in the upstream region is most correlated with the expression levels of the genes. We are able to find the optimal pattern, in time linear in the total length of the upstream sequences. We implement and apply our algorithm to publicly available microarray gene expression data, and show that our method is able to discover biologically significant motifs, including various motifs which have been reported previously using the same data set. We further discuss applications for which the efficiency of the method is essential, as well as possible extensions to our algorithm.
Approximate expressions of mean eddy current torque acted on space debris
NASA Astrophysics Data System (ADS)
Lin, Hou-yuan; Zhao, Chang-yin
2017-02-01
Rotational state of space debris will be influenced by eddy current torque which is produced by the conducting body rotating within the geomagnetic field. Former expressions of instantaneous torque established in body-fixed coordinate system will change in space during rotation due to the variation of the coordinate system. In order to further investigate the evolution of the rotation of space debris subjected to the eddy current torque, approximate expressions of mean eddy current torque in inertial coordinate system are obtained from the average of the Euler dynamics equations under the assumption that two of the principal moments of inertia of the space debris are similar. Then the expressions are verified through numerical simulation, in which the orientation of the averaged variation of angular momentum is in agreement with the torque from the expressions, which is on an identical plane with magnetic field and the angular momentum. The torque and the averaged variation of the angular momentum have the same evolution trend during rotation in spite of minor deviations of their values.
Fast and accurate approximate inference of transcript expression from RNA-seq data
Hensman, James; Papastamoulis, Panagiotis; Glaus, Peter; Honkela, Antti; Rattray, Magnus
2015-01-01
Motivation: Assigning RNA-seq reads to their transcript of origin is a fundamental task in transcript expression estimation. Where ambiguities in assignments exist due to transcripts sharing sequence, e.g. alternative isoforms or alleles, the problem can be solved through probabilistic inference. Bayesian methods have been shown to provide accurate transcript abundance estimates compared with competing methods. However, exact Bayesian inference is intractable and approximate methods such as Markov chain Monte Carlo and Variational Bayes (VB) are typically used. While providing a high degree of accuracy and modelling flexibility, standard implementations can be prohibitively slow for large datasets and complex transcriptome annotations. Results: We propose a novel approximate inference scheme based on VB and apply it to an existing model of transcript expression inference from RNA-seq data. Recent advances in VB algorithmics are used to improve the convergence of the algorithm beyond the standard Variational Bayes Expectation Maximization algorithm. We apply our algorithm to simulated and biological datasets, demonstrating a significant increase in speed with only very small loss in accuracy of expression level estimation. We carry out a comparative study against seven popular alternative methods and demonstrate that our new algorithm provides excellent accuracy and inter-replicate consistency while remaining competitive in computation time. Availability and implementation: The methods were implemented in R and C++, and are available as part of the BitSeq project at github.com/BitSeq. The method is also available through the BitSeq Bioconductor package. The source code to reproduce all simulation results can be accessed via github.com/BitSeq/BitSeqVB_benchmarking. Contact: james.hensman@sheffield.ac.uk or panagiotis.papastamoulis@manchester.ac.uk or Magnus.Rattray@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online
Tolias, P.; Ratynskaia, S.; Angelis, U. de
2015-08-15
The soft mean spherical approximation is employed for the study of the thermodynamics of dusty plasma liquids, the latter treated as Yukawa one-component plasmas. Within this integral theory method, the only input necessary for the calculation of the reduced excess energy stems from the solution of a single non-linear algebraic equation. Consequently, thermodynamic quantities can be routinely computed without the need to determine the pair correlation function or the structure factor. The level of accuracy of the approach is quantified after an extensive comparison with numerical simulation results. The approach is solved over a million times with input spanning the whole parameter space and reliable analytic expressions are obtained for the basic thermodynamic quantities.
NASA Astrophysics Data System (ADS)
Miyatake, T.
2002-12-01
Nakamura and Miyatake (2000) proposed an approximate expression of slip velocity time function for simulation of near-field strong ground motion on the basis of the numerical solution of 2D and 3D crack simulations including a slip-weakening friction law. The approximate slip rate time functions are applied to near-source seismic waves from various fault models, (a) rectangular crack in which rupture propagate unilaterally, (b) asperity model (c) square shaped crack in which rupture start around bottom corner and propagate circularly, and then compared with those from dynamic rupture model. The approximate slip rate time functions are implemented as a double couple force systems in 3D finite difference calculation (Graves, 1998). Dynamic rupture calculation is also carried out in same staggered grid 3D FD model with stress or frictional condition imposed on the fault-ruptured area. The waveform from approximate expressed slip rate function fits well to that from dynamic crack models but there exists discrepancy between them near the starting point or first asperity. In the present paper, we also discuss an approximate expression of non-uniform slip rate time function for a propagating crack. The near-fault ground motion with slip weakening friction above mentioned (a), (b), and (c). The revised expression improves the fitting.
Goldstein, Darlene R
2006-10-01
Studies of gene expression using high-density short oligonucleotide arrays have become a standard in a variety of biological contexts. Of the expression measures that have been proposed to quantify expression in these arrays, multi-chip-based measures have been shown to perform well. As gene expression studies increase in size, however, utilizing multi-chip expression measures is more challenging in terms of computing memory requirements and time. A strategic alternative to exact multi-chip quantification on a full large chip set is to approximate expression values based on subsets of chips. This paper introduces an extrapolation method, Extrapolation Averaging (EA), and a resampling method, Partition Resampling (PR), to approximate expression in large studies. An examination of properties indicates that subset-based methods can perform well compared with exact expression quantification. The focus is on short oligonucleotide chips, but the same ideas apply equally well to any array type for which expression is quantified using an entire set of arrays, rather than for only a single array at a time. Software implementing Partition Resampling and Extrapolation Averaging is under development as an R package for the BioConductor project.
Finding Balance: T cell Regulatory Receptor Expression during Aging.
Cavanagh, Mary M; Qi, Qian; Weyand, Cornelia M; Goronzy, Jörg J
2011-10-01
Aging is associated with a variety of changes to immune responsiveness. Reduced protection against infection, reduced responses to vaccination and increased risk of autoimmunity are all hallmarks of advanced age. Here we consider how changes in the expression of regulatory receptors on the T cell surface contribute to altered immunity during aging.
Finding regulatory modules from gene expression data II
NASA Astrophysics Data System (ADS)
Tang, Chao; Kloster, Morten; Wingreen, Ned
2004-03-01
We tested the Progressive Iterative Signature Algorithm (PISA) on synthetic data and on a large gene-expression data set for the yeast Saccharomyces cerevisiae. For synthetic data, the false-positive rate for identifying transcriptional modules was extremely low. For the yeast data set of 1012 experimental conditions for 6206 genes, PISA identified a large number of modules, most of which could be readily assigned to specific biological functions. These included many small modules (with as few as five genes) that could not be easily found by ISA. We compared the set of modules we found to the Gene Ontology annotation database and found many significant overlaps. The modules identified by PISA also compare favorably to experimentally and theoretically determined sets of genes regulated by individual transcription factors.
Mars Express scientists find a different Mars underneath the surface
NASA Astrophysics Data System (ADS)
2006-12-01
Observations by MARSIS, the first subsurface sounding radar used to explore a planet, strongly suggest that ancient impact craters lie buried beneath the smooth, low plains of Mars' northern hemisphere. The technique uses echoes of radio waves that have penetrated below the surface. MARSIS found evidence that these buried impact craters - ranging from about 130 to 470 kilometres in diameter - are present under much of the northern lowlands. The findings appear in the 14 December 2006 issue of the journal Nature. With MARSIS "it's almost like having X-ray vision," said Thomas R. Watters of the National Air and Space Museum's Center for Earth and Planetary Studies, Washington, and lead author of the results. "Besides finding previously unknown impact basins, we've also confirmed that some subtle, roughly circular, topographic depressions in the lowlands are related to impact features." Studies of how Mars evolved help in understanding early Earth. Some signs of the forces at work a few thousand million years ago are harder to detect on Earth because many of them have been obliterated by tectonic activity and erosion. The new findings bring planetary scientists closer to understanding one of the most enduring mysteries about the geological evolution and history of Mars. In contrast to Earth, Mars shows a striking difference between its northern and southern hemispheres. Almost the entire southern hemisphere has rough, heavily cratered highlands, while most of the northern hemisphere is smoother and lower in elevation. Since the impacts that cause craters can happen anywhere on a planet, the areas with fewer craters are generally interpreted as younger surfaces where geological processes have erased the impact scars. The surface of Mars' northern plains is young and smooth, covered by vast amounts of volcanic lava and sediment. However, the new MARSIS data indicate that the underlying crust is extremely old. “The number of buried impact craters larger than 200
... Issue All Issues Explore Findings by Topic Cell Biology Cellular Structures, Functions, Processes, Imaging, Stress Response Chemistry ... Glycobiology, Synthesis, Natural Products, Chemical Reactions Computers in Biology Bioinformatics, Modeling, Systems Biology, Data Visualization Diseases Cancer, ...
An Approximate Analytic Expression for the Flux Density of Scintillation Light at the Photocathode
Braverman, Joshua B; Harrison, Mark J; Ziock, Klaus-Peter
2012-01-01
The flux density of light exiting scintillator crystals is an important factor affecting the performance of radiation detectors, and is of particular importance for position sensitive instruments. Recent work by T. Woldemichael developed an analytic expression for the shape of the light spot at the bottom of a single crystal [1]. However, the results are of limited utility because there is generally a light pipe and photomultiplier entrance window between the bottom of the crystal and the photocathode. In this study, we expand Woldemichael s theory to include materials each with different indices of refraction and compare the adjusted light spot shape theory to GEANT 4 simulations [2]. Additionally, light reflection losses from index of refraction changes were also taken into account. We found that the simulations closely agree with the adjusted theory.
Wu, Gang
2016-08-01
The nuclear quadrupole transverse relaxation process of half-integer spins in liquid samples is known to exhibit multi-exponential behaviors. Within the framework of Redfield's relaxation theory, exact analytical expressions for describing such a process exist only for spin-3/2 nuclei. As a result, analyses of nuclear quadrupole transverse relaxation data for half-integer quadrupolar nuclei with spin >3/2 must rely on numerical diagonalization of the Redfield relaxation matrix over the entire motional range. In this work we propose an approximate analytical expression that can be used to analyze nuclear quadrupole transverse relaxation data of any half-integer spin in liquids over the entire motional range. The proposed equation yields results that are in excellent agreement with the exact numerical calculations.
FINDING REGULATORY ELEMENTS USING JOINT LIKELIHOODS FOR SEQUENCE AND EXPRESSION PROFILE DATA.
IAN HOLMES, UC BERKELEY, CA, WILLIAM J. BRUNO, LANL
2000-08-20
A recent, popular method of finding promoter sequences is to look for conserved motifs up-stream of genes clustered on the basis of expression data. This method presupposes that the clustering is correct. Theoretically, one should be better able to find promoter sequences and create more relevant gene clusters by taking a unified approach to these two problems. We present a likelihood function for a sequence-expression model giving a joint likelihood for a promoter sequence and its corresponding expression levels. An algorithm to estimate sequence-expression model parameters using Gibbs sampling and Expectation/Maximization is described. A program, called kimono, that implements this algorithm has been developed and the source code is freely available over the internet.
Schulz, Andreas S.; Shmoys, David B.; Williamson, David P.
1997-01-01
Increasing global competition, rapidly changing markets, and greater consumer awareness have altered the way in which corporations do business. To become more efficient, many industries have sought to model some operational aspects by gigantic optimization problems. It is not atypical to encounter models that capture 106 separate “yes” or “no” decisions to be made. Although one could, in principle, try all 2106 possible solutions to find the optimal one, such a method would be impractically slow. Unfortunately, for most of these models, no algorithms are known that find optimal solutions with reasonable computation times. Typically, industry must rely on solutions of unguaranteed quality that are constructed in an ad hoc manner. Fortunately, for some of these models there are good approximation algorithms: algorithms that produce solutions quickly that are provably close to optimal. Over the past 6 years, there has been a sequence of major breakthroughs in our understanding of the design of approximation algorithms and of limits to obtaining such performance guarantees; this area has been one of the most flourishing areas of discrete mathematics and theoretical computer science. PMID:9370525
The recognition of facial expressions of emotion in Alzheimer's disease: a review of findings.
McLellan, Tracey; Johnston, Lucy; Dalrymple-Alford, John; Porter, Richard
2008-10-01
To provide a selective review of the literature on the recognition of facial expressions of emotion in Alzheimer's disease (AD), to evaluate whether these patients show variation in their ability to recognise different emotions and whether any such impairments are instead because of a general decline in cognition. A narrative review based on relevant articles identified from PubMed and PsycInfo searches from 1987 to 2007 using keywords 'Alzheimer's', 'facial expression recognition', 'dementia' and 'emotion processing'. Although the literature is as yet limited, with several methodological inconsistencies, AD patients show poorer recognition of facial expressions, with particular difficulty with sad expressions. It is unclear whether poorer performance reflects the general cognitive decline and/or verbal or spatial deficits associated with AD or whether the deficits reflect specific neuropathology. This under-represented field of study may help to extend our understanding of social functioning in AD. Future work requires more detailed analyses of ancillary cognitive measures, more ecologically valid facial displays of emotion and a reference situation that more closely approximates an actual social interaction.
Wolock, Samuel; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.
2013-01-01
Background Numerous studies have examined gene × environment interactions (G×E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here we assessed G×E interactions using two publically-available datasets to assess if DNA variation is associated with post-mortem brain gene expression changes based on smoking behavior, a biobehavioral construct that is part of a complex system of genetic and environmental influences. Methods We conducted an expression quantitative trait locus (eQTL) study on two independent human brain gene expression datasets assessing G×E for selected psychiatric genes and smoking status. We employed linear regression to model the significance of the Gene×Smoking interaction term, followed by meta-analysis across datasets. Results Overall, we observed that the effect of DNA variation on gene expression is moderated by smoking status. Expression of 16 genes were significantly associated with single nucleotide polymorphisms that demonstrated G×E effects. The strongest finding (p = 1.9×10−11) was neurexin 3-alpha (NRXN3), a synaptic cell-cell adhesion molecule involved in maintenance of neural connections (such as the maintenance of smoking behavior). Other significant G×E associations include four glutamate genes. Conclusions This is one of the first studies to demonstrate G×E effects within the human brain. In particular, this study implicated NRXN3 in the maintenance of smoking. The effect of smoking on NRXN3 expression and downstream behavior is different based upon SNP genotype, indicating that DNA profiles based on SNPs could be useful in understanding the effects of smoking behaviors. These results suggest that better measurement of psychiatric conditions, and the environment in post-mortem brain studies may yield an important avenue for understanding the biological mechanisms of G
NASA Astrophysics Data System (ADS)
Galaktionov, E. V.; Galaktionova, N. E.; Tropp, E. A.
2016-12-01
Variational formulations of the problems of sessile and pendent drops are given taking into account the force of gravity in the axially symmetric case. Approximate expressions that describe the surface profiles of these drops by the asymptotic method for small Bond numbers have been obtained by the linearization method in the case of strong wetting.
Fathi, N A; Hussein, M R; Hassan, H I; Mosad, E; Galal, H; Afifi, N A
2006-11-01
Programmed cell death (apoptosis) is involved in glomerular injuries leading to glomerulonephritis. Bcl-2 and Fas are proteins that promote cell survival and death, respectively. This study tests the hypothesis that lupus nephritis is associated with alterations of Bcl-2 and Fas protein expression. Thirty-six patients with lupus nephritis and 10 controls (normal individuals) were included in this study. Bcl-2 and Fas positive cells were examined in kidney biopsies by immunohistochemistry. Bcl-2 and Fas serum levels were evaluated by enzyme-linked immunosorbent assay (ELISA). In the glomeruli of normal kidneys, Bcl-2 and Fas proteins were completely absent. In lupus nephritis patients, glomerular expression of Bcl-2 and Fas was seen in mesangial cells (1.3 +/- 0.1 and 2.0 +/- 0.1 for Bcl-2 and Fas, respectively). Similarly, a statistically significantly higher Bcl-2 (217.1 +/- 85.9) and Fas (767.9 +/- 271) serum levels were found in lupus patients compared to controls (148.6 +/- 87, 550.3 +/- 91 for Bcl-2 and Fas, P < 0.05). A direct correlation between serum Bcl-2 and Fas and chronicity index was also found. Compared to normal controls, lupus nephritis is associated with glomerular expression and elevated serum levels of Bcl-2 and Fas proteins. These findings suggest possible roles for Bcl-2 and Fas in glomerular injury during evolution of lupus nephritis. The diagnostic, prognostic and therapeutic ramifications of our findings are open to further investigation.
Persichetti, Paolo; Segreto, Francesco; Carotti, Simone; Marangi, Giovanni Francesco; Tosi, Daniele; Morini, Sergio
2014-03-01
Myofibroblasts provide a force to decrease the surface area of breast implant capsules as the collagen matrix matures. 17-β-Oestradiol promotes myofibroblast differentiation and contraction. The aim of the study was to investigate the expression of oestrogen receptors α and β in capsular tissue. The study enrolled 70 women (80 capsules) who underwent expander or implant removal, following breast reconstruction. Specimens were stained with haematoxylin/eosin, Masson trichrome and immunohistochemistry and immunofluorescence stainings for alpha-smooth muscle actin (α-SMA), oestrogen receptor-alpha (ER-α) and oestrogen receptor-beta (ER-β). The relationship between anti-oestrogenic therapy and capsular severity was evaluated. A retrospective analysis of 233 cases of breast reconstruction was conducted. Myofibroblasts expressed ER-α, ER-β or both. In the whole sample, α-SMA score positively correlated with ER-α (p = 0.022) and ER-β expression (p < 0.004). ER-β expression negatively correlated with capsular thickness (p < 0.019). In capsules surrounding expanders α-SMA and ER-α, expressions negatively correlated with time from implantation (p = 0.002 and p = 0.016, respectively). The incidence of grade III-IV contracture was higher in patients who did not have anti-oestrogenic therapy (p < 0.036); retrospective analysis of 233 cases confirmed this finding (p < 0.0001). This study demonstrates the expression of oestrogen receptors in myofibroblasts of capsular tissue. A lower contracture severity was found in patients who underwent anti-oestrogenic therapy.
NASA Technical Reports Server (NTRS)
Schinder, Paul J.
1990-01-01
The exact expressions needed in the neutrino transport equations for scattering of all three flavors of neutrinos and antineutrinos off free protons and neutrons, and for electron neutrino absorption on neutrons and electron antineutrino absorption on protons, are derived under the assumption that nucleons are noninteracting particles. The standard approximations even with corrections for degeneracy, are found to be poor fits to the exact results. Improved approximations are constructed which are adequate for nondegenerate nucleons for neutrino energies from 1 to 160 MeV and temperatures from 1 to 50 MeV.
NASA Technical Reports Server (NTRS)
Schinder, Paul J.
1990-01-01
The exact expressions needed in the neutrino transport equations for scattering of all three flavors of neutrinos and antineutrinos off free protons and neutrons, and for electron neutrino absorption on neutrons and electron antineutrino absorption on protons, are derived under the assumption that nucleons are noninteracting particles. The standard approximations even with corrections for degeneracy, are found to be poor fits to the exact results. Improved approximations are constructed which are adequate for nondegenerate nucleons for neutrino energies from 1 to 160 MeV and temperatures from 1 to 50 MeV.
Ohshima, Hiroyuki
2010-10-01
An approximate expression for the potential energy of the double-layer interaction between two parallel similar ion-penetrable membranes in a symmetrical electrolyte solution is derived via a linearization method, in which the nonlinear Poisson-Boltzmann equations in the regions inside and outside the membranes are linearized with respect to the deviation of the electric potential from the Donnan potential. This approximation works quite well for small membrane separations h for all values of the density of fixed charges in the membranes (or the Donnan potential) and gives a correct limiting form of the interaction energy (or the interaction force) as h-->0.
Fathi, N A; Hussein, M R; Hassan, H I; Mosad, E; Galal, H; Afifi, N A
2006-01-01
Programmed cell death (apoptosis) is involved in glomerular injuries leading to glomerulonephritis. Bcl-2 and Fas are proteins that promote cell survival and death, respectively. This study tests the hypothesis that lupus nephritis is associated with alterations of Bcl-2 and Fas protein expression. Thirty-six patients with lupus nephritis and 10 controls (normal individuals) were included in this study. Bcl-2 and Fas positive cells were examined in kidney biopsies by immunohistochemistry. Bcl-2 and Fas serum levels were evaluated by enzyme-linked immunosorbent assay (ELISA). In the glomeruli of normal kidneys, Bcl-2 and Fas proteins were completely absent. In lupus nephritis patients, glomerular expression of Bcl-2 and Fas was seen in mesangial cells (1·3 ± 0·1 and 2·0 ± 0·1 for Bcl-2 and Fas, respectively). Similarly, a statistically significantly higher Bcl-2 (217·1 ± 85·9) and Fas (767·9 ± 271) serum levels were found in lupus patients compared to controls (148·6 ± 87, 550·3 ± 91 for Bcl-2 and Fas, P < 0·05). A direct correlation between serum Bcl-2 and Fas and chronicity index was also found. Compared to normal controls, lupus nephritis is associated with glomerular expression and elevated serum levels of Bcl-2 and Fas proteins. These findings suggest possible roles for Bcl-2 and Fas in glomerular injury during evolution of lupus nephritis. The diagnostic, prognostic and therapeutic ramifications of our findings are open to further investigation. PMID:17034587
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
A model for approximate spatial reasoning using fuzzy logic to represent the uncertainty in the environment is presented. Algorithms are developed which can be used to reason about spatial information expressed in the form of approximate linguistic descriptions similar to the kind of spatial information processed by humans. Particular attention is given to static spatial reasoning.
Finding Meaning in Written Emotional Expression by Family Caregivers of Persons With Dementia.
Butcher, Howard K; Gordon, Jean K; Ko, Ji Woon; Perkhounkova, Yelena; Cho, Jun Young; Rinner, Andrew; Lutgendorf, Susan
2016-12-01
This study tested the effect of written emotional expression on the ability to find meaning in caregiving and the effects of finding meaning on emotional state and psychological burden in 91 dementia family caregivers. In a pretest-posttest design, participants were randomly assigned to either an experimental or a comparison group. Experimental caregivers (n = 57) wrote about their deepest thoughts and feelings about caring for a family member with dementia, whereas those in the comparison group (n = 34) wrote about nonemotional topics. Results showed enhanced meaning-making abilities in experimental participants relative to comparison participants, particularly for those who used more positive emotion words. Improved meaning-making ability was in turn associated with psychological benefits at posttest, but experimental participants did not show significantly more benefit than comparison participants. We explore the mediating roles of the meaning-making process as well as some of the background characteristics of the individual caregivers and their caregiving environments. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Higuchi, Katsuhiko; Higuchi, Masahiko
2014-12-01
We propose approximate kinetic energy (KE) functionals of the pair-density (PD)-functional theory on the basis of the rigorous expression with the coupling-constant integration (RECCI) that has been recently derived [Phys. Rev. A 85, 062508 (2012), 10.1103/PhysRevA.85.062508]. These approximate functionals consist of the noninteracting KE and correlation energy terms. It is found that the Thomas-Fermi-Weizsäcker functional is shown to be better as the noninteracting KE term than the Thomas-Fermi and Gaussian model functionals. It is also shown that the correlation energy term is also indispensable for the reduction of the KE error, i.e., reductions of both inappropriateness of the approximate functional and error of the resultant PD. Concerning the correlation energy term, we further propose an approximate functional in addition to using the existing familiar functionals. This functional satisfies the scaling property of the KE functional, and yields a reasonable PD in a sense that the KE, electron-electron interaction, and potentials energies tend to be improved with satisfying the virial theorem. The present results not only suggest the usefulness of the RECCI but also provide the guideline for the further improvement of the RECCI-based KE functional.
LaJohn, L. A.
2010-04-15
The nonrelativistic (nr) impulse approximation (NRIA) expression for Compton-scattering doubly differential cross sections (DDCS) for inelastic photon scattering is recovered from the corresponding relativistic expression (RIA) of Ribberfors [Phys. Rev. B 12, 2067 (1975)] in the limit of low momentum transfer (q{yields}0), valid even at relativistic incident photon energies {omega}{sub 1}>m provided that the average initial momentum of the ejected electron
is not too high, that is,
NASA Astrophysics Data System (ADS)
Barry, D. A.; Parlange, J.-Y.; Li, L.; Jeng, D.-S.; Crapper, M.
2005-10-01
The solution to the Green and Ampt infiltration equation is expressible in terms of the Lambert W-1 function. Approximations for Green and Ampt infiltration are thus derivable from approximations for the W-1 function and vice versa. An infinite family of asymptotic expansions to W-1 is presented. Although these expansions do not converge near the branch point of the W function (corresponds to Green-Ampt infiltration with immediate ponding), a method is presented for approximating W-1 that is exact at the branch point and asymptotically, with interpolation between these limits. Some existing and several new simple and compact yet robust approximations applicable to Green-Ampt infiltration and flux are presented, the most accurate of which has a maximum relative error of 5 × 10 -5%. This error is orders of magnitude lower than any existing analytical approximations.
ERIC Educational Resources Information Center
Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.
2013-01-01
Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…
ERIC Educational Resources Information Center
Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.
2013-01-01
Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…
Finding the Muse: Teaching Musical Expression to Adolescents in the One-to-One Studio Environment
ERIC Educational Resources Information Center
McPhee, Eleanor A.
2011-01-01
One-to-one music lessons are a common and effective way of learning a musical instrument. This investigation into one-to-one music teaching at the secondary school level explores the teaching of musical expression by two instrumental music teachers of brass and strings. The lessons of the two teachers with two students each were video recorded…
Remo, Andrea; Pancione, Massimo; Zanella, Caterina; Manfrin, Erminia
2016-03-01
Prostatic specimens occasionally may contain proliferative foci of the small atypical acini that display some but not all features of prostate carcinoma. p504s is the only prostatic cancer (PC)-specific marker that, in combination with basal cell markers, help in the diagnosis of malignant lesions. Very little is known about the diagnostic importance of p16 in primary prostate carcinoma and nonmalignant elements. We recruited 137 of routinely diagnostic prostatic specimens (between 2009 and 2013), which consisted of 21 prostatectomy, 15 transurethral prostatic resection, and 101 needle biopsy. We evaluated p16, in comparison with p504s, in prostatic carcinoma and benign glands. In this study, both nuclear and cytoplasmatic p16 expression were considered positive. We observed p16 expression in 86% of PC specimens and 16% of benign elements (P=0.001). Interestingly, p16 alone retained a high diagnostic potential in prostatectomy (95%) and in needle biopsy (84%), exhibiting a close association with PC. p504s had a high sensitivity (97%) and predictive negative value (98%) but a low specificity (71%) and predictive positive value (63%). In contrast, p16-positive expression showed a higher specificity (84%) and predictive positive value (74%) than p504s. Two prostatic carcinoma negative for p504s were positive for p16, whereas 7 cases negative for p16 were positive for p504s, and notably none was negative for both markers. In prostatectomy, p16 showed a higher diagnostic accuracy but not on transurethral prostatic resection. In needle biopsies, both markers were complementary, indicating that their combined detection may help in performing an accurate diagnosis.In conclusion, our data suggest that p16 expression is significantly enhanced in prostate carcinoma as compared with nonmalignant elements. Our results provide evidence that p16 and p504s together could improve the diagnosis of PC in prostatectomy and needle biopsies.
Jordan, Rick; Patel, Satish; Hu, Hai; Lyons-Weiler, James
2008-01-01
In this study, we introduce and use Efficiency Analysis to compare differences in the apparent internal and external consistency of competing normalization methods and tests for identifying differentially expressed genes. Using publicly available data, two lung adenocarcinoma datasets were analyzed using caGEDA (http://bioinformatics2.pitt.edu/GE2/GEDA.html) to measure the degree of differential expression of genes existing between two populations. The datasets were randomly split into at least two subsets, each analyzed for differentially expressed genes between the two sample groups, and the gene lists compared for overlapping genes. Efficiency Analysis is an intuitive method that compares the differences in the percentage of overlap of genes from two or more data subsets, found by the same test over a range of testing methods. Tests that yield consistent gene lists across independently analyzed splits are preferred to those that yield less consistent inferences. For example, a method that exhibits 50% overlap in the 100 top genes from two studies should be preferred to a method that exhibits 5% overlap in the top 100 genes. The same procedure was performed using all available normalization and transformation methods that are available through caGEDA. The ‘best’ test was then further evaluated using internal cross-validation to estimate generalizable sample classification errors using a Naïve Bayes classification algorithm. A novel test, termed D1 (a derivative of the J5 test) was found to be the most consistent, and to exhibit the lowest overall classification error, and highest sensitivity and specificity. The D1 test relaxes the assumption that few genes are differentially expressed. Efficiency Analysis can be misleading if the tests exhibit a bias in any particular dimension (e.g. expression intensity); we therefore explored intensity-scaled and segmented J5 tests using data in which all genes are scaled to share the same intensity distribution range
Jordan, Rick; Patel, Satish; Hu, Hai; Lyons-Weiler, James
2008-01-01
In this study, we introduce and use Efficiency Analysis to compare differences in the apparent internal and external consistency of competing normalization methods and tests for identifying differentially expressed genes. Using publicly available data, two lung adenocarcinoma datasets were analyzed using caGEDA (http://bioinformatics2.pitt.edu/GE2/GEDA.html) to measure the degree of differential expression of genes existing between two populations. The datasets were randomly split into at least two subsets, each analyzed for differentially expressed genes between the two sample groups, and the gene lists compared for overlapping genes. Efficiency Analysis is an intuitive method that compares the differences in the percentage of overlap of genes from two or more data subsets, found by the same test over a range of testing methods. Tests that yield consistent gene lists across independently analyzed splits are preferred to those that yield less consistent inferences. For example, a method that exhibits 50% overlap in the 100 top genes from two studies should be preferred to a method that exhibits 5% overlap in the top 100 genes. The same procedure was performed using all available normalization and transformation methods that are available through caGEDA. The 'best' test was then further evaluated using internal cross-validation to estimate generalizable sample classification errors using a Naïve Bayes classification algorithm. A novel test, termed D1 (a derivative of the J5 test) was found to be the most consistent, and to exhibit the lowest overall classification error, and highest sensitivity and specificity. The D1 test relaxes the assumption that few genes are differentially expressed. Efficiency Analysis can be misleading if the tests exhibit a bias in any particular dimension (e.g. expression intensity); we therefore explored intensity-scaled and segmented J5 tests using data in which all genes are scaled to share the same intensity distribution range
Li, Ning; Wang, Jun C; Liang, Toong H; Zhu, Ming H; Wang, Jia Y; Fu, Xue L; Zhou, Jie R; Zheng, Song G; Chan, Paul; Han, Jie
2013-01-01
Rheumatoid arthritis (RA) is a common autoimmune disease of chronic systemic inflammatory disorder that will affect multiple tissues and organs such as skin, heart or lungs; but it principally attacks the joints, producing a nonsuppurative inflammatory and proliferative synovitis that often progresses to major damaging of articular cartilage and joint ankylosis. Although the definite etiology is still unknown, recent studies suggest that T-helper cells (Th17) may play a pivotal role in the pathogenesis of RA. And interleukin-17 (IL-17), which is a cytokine of Th17 cells, may be a key factor in the occurrence of RA. The binding of IL-17 to specific receptor results in the expression of fibroblasts, endothelial and epithelial cells and also synthesis of several major factors such as tumor necrosis factor alpha (TNF-α), IL-1β that result in the structural damage of RA joints. Though some previous studies have shown that IL-17 exists in the synovium of RA, few has definite proof quantitatively by pathology about its existence in synovial membrane. This study comprised of 30 RA patients and 10 healthy control, pathologic study of the synovial membrane showed increased expression of IL-17 in the synovial tissue of RA patients, the intensity is compatible with clinical severity of disease as validated by DAS28 score and disease duration. Northern blot study also confirmed the increased expression of IL-17 in the synovial tissues. This study sheds further light that IL-17 may be a key factor in the pathogenesis of RA and a determinant of disease severity. PMID:23826419
Lewis, E.R.; Schwartz, S.
2010-03-15
Light scattering by aerosols plays an important role in Earth’s radiative balance, and quantification of this phenomenon is important in understanding and accounting for anthropogenic influences on Earth’s climate. Light scattering by an aerosol particle is determined by its radius and index of refraction, and for aerosol particles that are hygroscopic, both of these quantities vary with relative humidity RH. Here exact expressions are derived for the dependences of the radius ratio (relative to the volume-equivalent dry radius) and index of refraction on RH for aqueous solutions of single solutes. Both of these quantities depend on the apparent molal volume of the solute in solution and on the practical osmotic coefficient of the solution, which in turn depend on concentration and thus implicitly on RH. Simple but accurate approximations are also presented for the RH dependences of both radius ratio and index of refraction for several atmospherically important inorganic solutes over the entire range of RH values for which these substances can exist as solution drops. For all substances considered, the radius ratio is accurate to within a few percent, and the index of refraction to within ~0.02, over this range of RH. Such parameterizations will be useful in radiation transfer models and climate models.
The lived experience of women with cancer: phenomenological findings expressed through poetry.
Duffy, Lynne; Aquino-Russell, Catherine
2007-01-01
Cancer rates for Canadian women between the ages of 22 and 44 are increasing. Improved survival times and more treatment choices, however create new challenges. Little research has been done to uncover the lived experience of long-term survival. This pilot study describes the meaning of living with cancer for three Canadian women who were diagnosed more than four years ago. The process of inquiry was Giorgi's descriptive phenomenological method for analysis-synthesis of a general structural description (the meaning of the experience). The findings have been interpreted creatively through poetry in an effort to enhance understanding of the experience of living with cancer Each section of the poem is discussed in relation to the literature to encourage nurses and other health professionals to consider the importance of understanding patients' lived experiences and the meanings they ascribe, in order to provide quality, holistic, and individualized care.
Witting, Nanna; Duno, Morten; Petri, Helle; Krag, Thomas; Bundgaard, Henning; Kober, Lars; Vissing, John
2013-08-01
Since the initial description in 2010 of anoctamin 5 deficiency as a cause of muscular dystrophy, a handful of papers have described this disease in cases of mixed populations. We report the first large regional study and present data on new aspects of prevalence, muscular and cardiac phenotypic characteristics, and muscle protein expression. All patients in our neuromuscular unit with genetically unclassified, recessive limb girdle muscular dystrophy (LGMD2), Miyoshi-type distal myopathy (MMD) or persistent asymptomatic hyperCK-emia (PACK) were assessed for mutations in the ANO5 gene. Genetically confirmed patients were evaluated with muscular and cardiopulmonary examination. Among 40 unclassified patients (28 LGMD2, 5 MMD, 7 PACK), 20 were homozygous or compound heterozygous for ANO5 mutations, (13 LGMD2, 5 MMD, 2 PACK). Prevalence of ANO5 deficiency in Denmark was estimated at 1:100.000 and ANO5 mutations caused 11 % of our total cohort of LGMD2 cases making it the second most common LGMD2 etiology in Denmark. Eight patients complained of dysphagia and 3 dated symptoms of onset in childhood. Cardiac examinations revealed increased frequency of premature ventricular contractions. Four novel putative pathogenic mutations were discovered. Total prevalence and distribution of phenotypes of ANO5 disease in a representative regional cohort are described for the first time. A high prevalence of ANO5 deficiency was found among patients with unclassified LGMD2 (46 %) and MMD (100 %). The high incidence of reported dysphagia is a new phenotypic feature not previously reported, and cardiac investigations revealed that ANO5-patients may have an increased risk of ventricular arrhythmia.
Diakatou, Evanthia; Alexandraki, Krystallenia I; Tsolakis, Apostolos V; Kontogeorgos, George; Chatzellis, Eleftherios; Leonti, Anastasia; Kaltsas, Gregory A
2015-09-01
The expression of somatostatin (sstr1-5) and dopamine (DR) receptors in neuroendocrine neoplasms (NENs) facilitates diagnosis by tumour visualization with somatostatin receptor scintigraphy (SRS) and directs towards specific treatment with peptide receptor radionuclide therapy (PRRT) with radiolabelled somatostatin analogues. To investigate the co-expression of sstrs, D2R in relation to pre-operative SRSs in NENs. Prospective two-centre study. We analysed pre-operative SRS of 60 patients [44 with gastrointestinal (GI) NENs and 16 with lung NENs] and compared SRS results with immunohistochemical (IHC) reactivity for sstr2, sstr3, sstr5 in sample tissues from primary (n = 54) and metastatic (n = 27) lesions and IHC reactivity for D2R in 23 samples from primary GI-NENs lesions. Sstr2 was the commonest sstr expressed (65·4%) and was co-expressed with sstr3 and sstr5 in 32·1% and 24·7% of the specimens, respectively. In 67 of 81 specimens (82·7%), there was concordance of sstr2 immunohistochemistry with SRS findings (P < 0·001). D2R was expressed in only 8 of 23 (34·8%) GI-NENs while was co-expressed with sstr2 in all cases. SRS grade, as per Krenning scale, was higher in metastatic foci, large-size (>2 cm) tumours and GI-NENs, whereas sstr2 intensity was greater in GI compared to lung NENs. SRS grade showed higher correlation with sstr2 (r = 0·6, P < 0·001) and D2R (r = 0·5, P < 0·001) IHC intensity scores than tumour size (r = 0·4, P < 0·001) and sstr3 (r = 0·4, P < 0·001) intensity score. Sstr2 IHC expression and SRS are useful tools for the diagnosis and management of NENs because they display a high concordance. IHC expression of DR2 seems to be of potential clinical significance in GI-NENs tumours. © 2015 John Wiley & Sons Ltd.
Multicriteria approximation through decomposition
Burch, C.; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E.
1998-06-01
The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of their technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. Their method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) the authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing; (2) they also show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.
Multicriteria approximation through decomposition
Burch, C. |; Krumke, S.; Marathe, M.; Phillips, C.; Sundberg, E. |
1997-12-01
The authors propose a general technique called solution decomposition to devise approximation algorithms with provable performance guarantees. The technique is applicable to a large class of combinatorial optimization problems that can be formulated as integer linear programs. Two key ingredients of the technique involve finding a decomposition of a fractional solution into a convex combination of feasible integral solutions and devising generic approximation algorithms based on calls to such decompositions as oracles. The technique is closely related to randomized rounding. The method yields as corollaries unified solutions to a number of well studied problems and it provides the first approximation algorithms with provable guarantees for a number of new problems. The particular results obtained in this paper include the following: (1) The authors demonstrate how the technique can be used to provide more understanding of previous results and new algorithms for classical problems such as Multicriteria Spanning Trees, and Suitcase Packing. (2) They show how the ideas can be extended to apply to multicriteria optimization problems, in which they wish to minimize a certain objective function subject to one or more budget constraints. As corollaries they obtain first non-trivial multicriteria approximation algorithms for problems including the k-Hurdle and the Network Inhibition problems.
Herbert, John M J; Stekel, Dov J; Mura, Manuela; Sychev, Michail; Bicknell, Roy
2011-01-01
The aim of this method is to guide a bench scientist to maximise cDNA library analyses to predict biologically relevant genes to pursue in the laboratory. Many groups have successfully utilised cDNA libraries to discover novel and/or differentially expressed genes in pathologies of interest. This is despite the high cost of cDNA library production using the Sanger method of sequencing, which produces modest numbers of expressed sequences compared to the total transcriptome. Both public and propriety cDNA libraries can be utilised in this way, and combining biologically relevant data can reveal biologically interesting genes. Pivotal to the quality of target identification are the selection of biologically relevant libraries, the accuracy of Expressed Sequence Tag to gene assignment, and the statistics used. The key steps, methods, and tools used to this end will be described using vascular targeting as an example. With the advent of next-generation sequencing, these or similar methods can be applied to find novel genes with this new source of data.
Wakabayashi, Toshihiko; Natsume, Atsushi; Hashizume, Yoshio; Fujii, Masazumi; Mizuno, Masaaki; Yoshida, Jun
2008-04-01
High-grade gliomas are highly lethal neoplasms representing approximately 20% of all intracranial tumors. Cationic liposome-mediated interferon-beta (IFN-beta) gene transfer has been found to induce regression of experimental glioma. We have previously performed a pilot clinical trial to evaluate the safety and effectiveness of this IFN-beta gene therapy in five patients with high-grade glioma. Two patients showed more than 50% reduction while others had stable disease 10 weeks after treatment initiation. To identify alterations in gene expression in brain tumors 2 weeks after the gene therapy trial, we used a microarray technology and Gene Ontology analysis. The results were validated by patients' clinical course and findings of histology and autopsy. Using hierarchical clustering and principal component analysis, five series of gene therapy trials were classified according to the response to IFN-beta gene therapy. Significant changes in gene expression related to immunoresponse and apoptosis were observed. Moreover, novel patterns of altered gene expression, such as inhibition of neovascularization, were identified, suggesting the involvement of pathways reported previously as not involved. Autopsy and histological examinations revealed dramatic changes in the tumor tissues after therapy in all patients. Many tumor cells showed necrotic changes, and immunohistochemistry identified numerous CD8-positive lymphocytes and macrophages infiltrating the tumor and surrounding tissues; these were probably the effects of therapy. Simultaneously, CD34-immunoreactive vessels were notably decreased in the vector-injected brain. This study facilitates the understanding of the antitumor mechanism and helps identify candidate target molecules for new approaches. However, additional clinical trials are warranted. (c) 2008 John Wiley & Sons, Ltd.
Optimizing the Zeldovich approximation
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Pellman, Todd F.; Shandarin, Sergei F.
1994-01-01
We have recently learned that the Zeldovich approximation can be successfully used for a far wider range of gravitational instability scenarios than formerly proposed; we study here how to extend this range. In previous work (Coles, Melott and Shandarin 1993, hereafter CMS) we studied the accuracy of several analytic approximations to gravitational clustering in the mildly nonlinear regime. We found that what we called the 'truncated Zeldovich approximation' (TZA) was better than any other (except in one case the ordinary Zeldovich approximation) over a wide range from linear to mildly nonlinear (sigma approximately 3) regimes. TZA was specified by setting Fourier amplitudes equal to zero for all wavenumbers greater than k(sub nl), where k(sub nl) marks the transition to the nonlinear regime. Here, we study the cross correlation of generalized TZA with a group of n-body simulations for three shapes of window function: sharp k-truncation (as in CMS), a tophat in coordinate space, or a Gaussian. We also study the variation in the crosscorrelation as a function of initial truncation scale within each type. We find that k-truncation, which was so much better than other things tried in CMS, is the worst of these three window shapes. We find that a Gaussian window e(exp(-k(exp 2)/2k(exp 2, sub G))) applied to the initial Fourier amplitudes is the best choice. It produces a greatly improved crosscorrelation in those cases which most needed improvement, e.g. those with more small-scale power in the initial conditions. The optimum choice of kG for the Gaussian window is (a somewhat spectrum-dependent) 1 to 1.5 times k(sub nl). Although all three windows produce similar power spectra and density distribution functions after application of the Zeldovich approximation, the agreement of the phases of the Fourier components with the n-body simulation is better for the Gaussian window. We therefore ascribe the success of the best-choice Gaussian window to its superior treatment
Takaishi, Yasuko; Hashimoto, Kiyoshi; Fujino, Osamu; Arai, Nobutaka; Mizuguchi, Masashi; Maehara, Taketoshi; Shimizu, Hiroyuki
2002-01-01
We report here a 14-year-old boy suffering from intractable epilepsy since the age of 2. Neuroimaging showed a lesion in the left temporal lobe. He underwent resection of the left temporal lobe and multiple subpial transection of the left frontal lobe at the age of 8. Histopathological findings of surgical specimens were similar to those of tubers of tuberous sclerosis (TSC), although he had no other TSC stigmata. To discriminate from cortical dysplasia grade III, we examined the immunohistochemical expression of hamartin and tuberin, the TSC1 and TSC2 gene products. Based on results, we diagnosed this case as having TSC. He has been seizure free since the operation. Although lower than preoperatively, his intelligence quotient has not been declining progressively.
1994-07-01
NOVEMBER 1993 1. PURPOSE. The oral approximate lethal dose study was conducted todetennine an approximate dosage range at which to begin the 14-day...5000 mg/Kg. The 14-day range fmding study suggested a probable compound related effect in the薘~m (high dose ) exposure groups of both sexes and a...possible compound related effect mIlle 1000 ppm (middle dose ) exposure groups of both sexes. An NOAEL was not established for the 90-day subchronic
Interpolation and Approximation Theory.
ERIC Educational Resources Information Center
Kaijser, Sten
1991-01-01
Introduced are the basic ideas of interpolation and approximation theory through a combination of theory and exercises written for extramural education at the university level. Topics treated are spline methods, Lagrange interpolation, trigonometric approximation, Fourier series, and polynomial approximation. (MDH)
Fuller, Rebecca C; Claricoates, Kristin M
2011-08-01
Light-induced shifts in cone frequency and opsin expression occur in many aquatic species. Yet little is known about how quickly animals can alter opsin expression and, thereby, track their visual environments. Similarly, little is known about whether adult animals can alter opsin expression or whether shifts in opsin expression are limited to critical developmental windows. We took adult wild-caught bluefin killifish (Lucania goodei) from three different lighting environments (spring, swamp and variable), placed them under two different lighting treatments (clear vs. tea-stained water) and monitored opsin expression over 4 weeks. We measured opsin expression for five previously described opsins (SWS1, SWS2B, SWS2A, RH2-1 and LWS) as well as RH2-2 which we discovered via 454 sequencing. We used two different metrics of opsin expression. We measured expression of each opsin relative to a housekeeping gene and the proportional expression of each opsin relative to the total pool of opsins. Population and lighting environment had large effects on opsin expression which were present at the earliest time points indicating rapid shifts in expression. The two measures of expression produced radically different patterns. Proportional measures indicated large effects of light on SWS1 expression, whereas relative measures indicated no such effect. Instead, light had large effects on the relative expression of SWS2B, RH2-2, RH2-1 and LWS. We suggest that proportional measures of opsin expression are best for making inferences about colour vision, but that measures relative to a housekeeping gene are better for making conclusions about which opsins are differentially regulated. © 2011 Blackwell Publishing Ltd.
Rasin, A.
1994-04-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A
2007-03-22
A physics-based model is proposed to derive approximate analytical expressions for the cavity component of the free energy of hydrophobic association of spherical and spheroidal solutes in water. The model is based on the difference between the number and context of the water molecules in the hydration sphere of a hydrophobic dimer and of two isolated hydrophobic solutes. It is assumed that the water molecules touching the convex part of the molecular surface of the dimer and those in the hydration spheres of the monomers contribute equally to the free energy of solvation, and those touching the saddle part of the molecular surface of the dimer result in a more pronounced increase in free energy because of their more restricted mobility (entropy loss) and fewer favorable electrostatic interactions with other water molecules. The density of water in the hydration sphere around a single solute particle is approximated by the derivative of a Gaussian centered on the solute molecule with respect to its standard deviation. On the basis of this approximation, the number of water molecules in different parts of the hydration sphere of the dimer is expressed in terms of the first and the second mixed derivatives of the two Gaussians centered on the first and second solute molecules, respectively, with respect to the standard deviations of these Gaussians, and plausible analytical expressions for the cavity component of the hydrophobic-association energy of spherical and spheroidal solutes are introduced. As opposed to earlier hydration-shell models, our expressions reproduce the desolvation maxima in the potentials of mean force of pairs of nonpolar solutes in water, and their advantage over the models based on molecular-surface area is that they have continuous gradients in the coordinates of solute centers.
NASA Astrophysics Data System (ADS)
Niiniluoto, Ilkka
2014-03-01
Approximation of laws is an important theme in the philosophy of science. If we can make sense of the idea that two scientific laws are "close" to each other, then we can also analyze such methodological notions as approximate explanation of laws, approximate reduction of theories, approximate empirical success of theories, and approximate truth of laws. Proposals for measuring the distance between quantitative scientific laws were given in Niiniluoto (1982, 1987). In this paper, these definitions are reconsidered as a response to the interesting critical remarks by Liu (1999).
Chokoeva, A A; Ananiev, J; Wollina, U; Tana, C; Lotti, T; Cardoso, J C; Tchernev, G
2015-01-01
IMP-3 is generally considered as an oncofetal protein, which plays a critical role in regulation of cell proliferation via an IGF-II-dependent pathway in K562 leukemia cells. IMP-3 expression has been detected in malignancies with various origins, while its appearance in adult tissue is generally considered abnormal, with some exceptions. IMP3 is also considered a prognostic biomarker in patients with renal cell carcinoma and clear-cell type ovarian carcinoma, hepatocellular carcinoma, pancreatic ductal adenocarcinoma and in patients with poorly differentiated thyroid carcinoma and uterine cervical carcinomas, testicular cancer and malignant melanoma. To our knowledge, no more than 4 PubMed-indexed studies have investigated the expression of IMP-3 in melanocytic lesions, namely its role in the differentiation between benign and malignant neoplasms. We investigated the expression of IMP-3 in a small series of benign melanocytic lesions, dysplastic nevi and melanomas, aiming to establish its significance as a marker for their distinction, comparing the results with those from the literature. IMP- 3 immunostaining was performed in 30 melanocytic lesions: 10 malignant melanomas, 10 dysplastic nevi and 10 benign melanocytic nevi. Our results revealed expression in 20% of dysplastic lesions and 40% of melanoma cases, while none of the benign nevi showed positive expression. These data contradict some of the results from other studies and raise some questions regarding the correlation between IMP- 3 and the degree of dysplasia of melanocytic nevi, as well as its potential relationship with prognostic parameters in melanoma, including tumor thickness and mitotic rate. Our results suggest that IMP-3 expression could be only an auxiliary marker for differentiation between dysplastic nevi and benign nevi, since although it is not expressed in all dysplastic lesions, staining correlates with the degree of dysplasia/atypia. It seems that IMP-3 expression is not a useful
Approximate symmetries of Hamiltonians
NASA Astrophysics Data System (ADS)
Chubb, Christopher T.; Flammia, Steven T.
2017-08-01
We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.
Approximation method for the kinetic Boltzmann equation
NASA Technical Reports Server (NTRS)
Shakhov, Y. M.
1972-01-01
The further development of a method for approximating the Boltzmann equation is considered and a case of pseudo-Maxwellian molecules is treated in detail. A method of approximating the collision frequency is discussed along with a method for approximating the moments of the Boltzmann collision integral. Since the return collisions integral and the collision frequency are expressed through the distribution function moments, use of the proposed methods make it possible to reduce the Boltzmann equation to a series of approximating equations.
NASA Astrophysics Data System (ADS)
Martins, E.; Queiroz, A.; Serrão Santos, R.; Bettencourt, R.
2013-02-01
The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterized by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio strains. Flavobacterium suspensions were also used as an irrelevant bacterium. Gene expression analyses were carried out using gill samples from animals dissected at 12 h and 24 h post-infection times by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h and 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the microorganism species inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly around a protein area, of 18 KDa molecular mass, where most dissimilarities were found. Multivariate analyses
NASA Astrophysics Data System (ADS)
Martins, E.; Queiroz, A.; Serrão Santos, R.; Bettencourt, R.
2013-11-01
The deep-sea hydrothermal vent mussel Bathymodiolus azoricus lives in a natural environment characterised by extreme conditions of hydrostatic pressure, temperature, pH, high concentrations of heavy metals, methane and hydrogen sulphide. The deep-sea vent biological systems represent thus the opportunity to study and provide new insights into the basic physiological principles that govern the defense mechanisms in vent animals and to understand how they cope with microbial infections. Hence, the importance of understanding this animal's innate defense mechanisms, by examining its differential immune gene expressions toward different pathogenic agents. In the present study, B. azoricus mussels were infected with single suspensions of marine bacterial pathogens, consisting of Vibrio splendidus, Vibrio alginolyticus, or Vibrio anguillarum, and a pool of these Vibrio bacteria. Flavobacterium suspensions were also used as a non-pathogenic bacterium. Gene expression analyses were carried out using gill samples from infected animals by means of quantitative-Polymerase Chain Reaction aimed at targeting several immune genes. We also performed SDS-PAGE protein analyses from the same gill tissues. We concluded that there are different levels of immune gene expression between the 12 h to 24 h exposure times to various bacterial suspensions. Our results from qPCR demonstrated a general pattern of gene expression, decreasing from 12 h over 24 h post-infection. Among the bacteria tested, Flavobacterium is the bacterium inducing the highest gene expression level in 12 h post-infections animals. The 24 h infected animals revealed, however, greater gene expression levels, using V. splendidus as the infectious agent. The SDS-PAGE analysis also pointed at protein profile differences between 12 h and 24 h, particularly evident for proteins of 18-20 KDa molecular mass, where most dissimilarity was found. Multivariate analyses demonstrated that immune genes, as well as experimental
Friedberg, Jonathan W
2011-10-01
Gene expression profiling has had a major impact on our understanding of the biology and heterogeneity of diffuse large B-cell lymphoma (DLBCL). Using this technology, investigators can identify biologic subgroups of DLBCL that provide unique targets for rational therapeutic intervention. This review summarizes these potential targets and updates the progress of clinical development of exciting novel agents for the treatment of DLBCL. Results of ongoing studies suggest that in the near future, we will be able to use gene expression profiling, or an accurate surrogate, to define the best therapeutic approach for individual patients with DLBCL. ©2011 AACR
Compressive Imaging via Approximate Message Passing
2015-09-04
We propose novel compressive imaging algorithms that employ approximate message passing (AMP), which is an iterative signal estimation algorithm that...Approved for Public Release; Distribution Unlimited Final Report: Compressive Imaging via Approximate Message Passing The views, opinions and/or findings...Research Triangle Park, NC 27709-2211 approximate message passing , compressive imaging, compressive sensing, hyperspectral imaging, signal reconstruction
Approximating random quantum optimization problems
NASA Astrophysics Data System (ADS)
Hsu, B.; Laumann, C. R.; Läuchli, A. M.; Moessner, R.; Sondhi, S. L.
2013-06-01
We report a cluster of results regarding the difficulty of finding approximate ground states to typical instances of the quantum satisfiability problem k-body quantum satisfiability (k-QSAT) on large random graphs. As an approximation strategy, we optimize the solution space over “classical” product states, which in turn introduces a novel autonomous classical optimization problem, PSAT, over a space of continuous degrees of freedom rather than discrete bits. Our central results are (i) the derivation of a set of bounds and approximations in various limits of the problem, several of which we believe may be amenable to a rigorous treatment; (ii) a demonstration that an approximation based on a greedy algorithm borrowed from the study of frustrated magnetism performs well over a wide range in parameter space, and its performance reflects the structure of the solution space of random k-QSAT. Simulated annealing exhibits metastability in similar “hard” regions of parameter space; and (iii) a generalization of belief propagation algorithms introduced for classical problems to the case of continuous spins. This yields both approximate solutions, as well as insights into the free energy “landscape” of the approximation problem, including a so-called dynamical transition near the satisfiability threshold. Taken together, these results allow us to elucidate the phase diagram of random k-QSAT in a two-dimensional energy-density-clause-density space.
Adaptive approximation models in optimization
Voronin, A.N.
1995-05-01
The paper proposes a method for optimization of functions of several variables that substantially reduces the number of objective function evaluations compared to traditional methods. The method is based on the property of iterative refinement of approximation models of the optimand function in approximation domains that contract to the extremum point. It does not require subjective specification of the starting point, step length, or other parameters of the search procedure. The method is designed for efficient optimization of unimodal functions of several (not more than 10-15) variables and can be applied to find the global extremum of polymodal functions and also for optimization of scalarized forms of vector objective functions.
Caska, Catherine M; Hendrickson, Bethany E; Wong, Michelle H; Ali, Sadia; Neylan, Thomas; Whooley, Mary A
2009-04-01
To evaluate if anger expression affects sleep quality in patients with coronary heart disease (CHD). Research has indicated that poor sleep quality independently predicts adverse outcomes in patients with CHD. Risk factors for poor sleep quality include older age, socioeconomic factors, medical comorbidities, lack of exercise, and depression. We sought to examine the association of anger expression with sleep quality in 1020 outpatients with CHD from the Heart and Soul Study. We assessed anger-in, anger-out, and anger temperament, using the Spielberger State-Trait Anger Expression Inventory 2, and measured sleep quality, using items from the Cardiovascular Health Study and Pittsburgh Sleep Quality Index. We used multivariate analysis of variance to examine the association between anger expression and sleep quality, adjusting for potential confounding variables. Each standard deviation (SD) increase in anger-in was associated with an 80% greater odds of poor sleep quality (odds ratio (OR) = 1.8, 95% Confidence Interval (CI) = 1.6-2.1; p < .0001). This association remained strong after adjusting for demographics, comorbidities, lifestyle factors, medications, cardiac function, depressive symptoms, anger-out, and anger temperament (adjusted OR = 1.4, 95% CI = 1.5-1.7; p = .001). In the same model, each SD increase in anger-out was associated with a 21% decreased odds of poor sleep quality (OR = 0.79, 95% CI = 0.64-0.98; p = .03). Anger temperament was not independently associated with sleep quality. Anger suppression is associated with poor sleep quality in patients with CHD. Whether modifying anger expression can improve sleep quality or reduce cardiovascular morbidity and mortality deserves further study.
Caska, Catherine M.; Hendrickson, Bethany E.; Wong, Michelle H.; Ali, Sadia; Neylan, Thomas; Whooley, Mary A.
2009-01-01
Objective To evaluate if anger expression affects sleep quality in patients with coronary heart disease (CHD). Research has indicated that poor sleep quality independently predicts adverse outcomes in patients with CHD. Risk factors for poor sleep quality include older age, socioeconomic factors, medical comorbidities, lack of exercise, and depression. Methods We sought to examine the association of anger expression with sleep quality in 1020 outpatients with CHD from the Heart and Soul Study. We assessed anger-in, anger-out, and anger temperament, using the Spielberger State-Trait Anger Expression Inventory 2, and measured sleep quality, using items from the Cardiovascular Health Study and Pittsburgh Sleep Quality Index. We used multivariate analysis of variance to examine the association between anger expression and sleep quality, adjusting for potential confounding variables. Results Each standard deviation (SD) increase in anger-in was associated with an 80% greater odds of poor sleep quality (odds ratio (OR) = 1.8, 95% Confidence Interval (CI) = 1.6–2.1; p < .0001). This association remained strong after adjusting for demographics, comorbidities, lifestyle factors, medications, cardiac function, depressive symptoms, anger-out, and anger temperament (adjusted OR = 1.4, 95% CI = 1.5–1.7; p = .001). In the same model, each SD increase in anger-out was associated with a 21% decreased odds of poor sleep quality (OR = 0.79, 95% CI = 0.64–0.98; p = .03). Anger temperament was not independently associated with sleep quality. Conclusions Anger suppression is associated with poor sleep quality in patients with CHD. Whether modifying anger expression can improve sleep quality or reduce cardiovascular morbidity and mortality deserves further study. PMID:19251866
Cosmic shear covariance: the log-normal approximation
NASA Astrophysics Data System (ADS)
Hilbert, S.; Hartlap, J.; Schneider, P.
2011-12-01
Context. Accurate estimates of the errors on the cosmological parameters inferred from cosmic shear surveys require accurate estimates of the covariance of the cosmic shear correlation functions. Aims: We seek approximations to the cosmic shear covariance that are as easy to use as the common approximations based on normal (Gaussian) statistics, but yield more accurate covariance matrices and parameter errors. Methods: We derive expressions for the cosmic shear covariance under the assumption that the underlying convergence field follows log-normal statistics. We also derive a simplified version of this log-normal approximation by only retaining the most important terms beyond normal statistics. We use numerical simulations of weak lensing to study how well the normal, log-normal, and simplified log-normal approximations as well as empirical corrections to the normal approximation proposed in the literature reproduce shear covariances for cosmic shear surveys. We also investigate the resulting confidence regions for cosmological parameters inferred from such surveys. Results: We find that the normal approximation substantially underestimates the cosmic shear covariances and the inferred parameter confidence regions, in particular for surveys with small fields of view and large galaxy densities, but also for very wide surveys. In contrast, the log-normal approximation yields more realistic covariances and confidence regions, but also requires evaluating slightly more complicated expressions. However, the simplified log-normal approximation, although as simple as the normal approximation, yields confidence regions that are almost as accurate as those obtained from the log-normal approximation. The empirical corrections to the normal approximation do not yield more accurate covariances and confidence regions than the (simplified) log-normal approximation. Moreover, they fail to produce positive-semidefinite data covariance matrices in certain cases, rendering them
Müller, C S L; Schmaltz, R; Vogt, T; Pföhler, C
2011-09-01
Expression of CD30 is a distinct marker of lymphocytic activation, originally described in Reed-Sternberg cells of Hodgkin's disease. Recently, the first two cases in which CD30 was expressed in tissue samples derived from superficial cutaneous fungal infections have been reported. The objective of this study was to investigate the expression of CD30 in tinea corporis and to discuss the clinical relevance of CD30. Twenty-three skin biopsies from 23 patients with mycotic infections of the skin were analysed retrospectively. The immunophenotypic expression of CD30 was investigated. In the series investigated, some large CD30-positive cells located in the upper dermal infiltrate were noted in two of 23 biopsy specimens (8.7%). The existence of CD30-positive cells was independent of the density and composition of the accompanying inflammatory infiltrate. We showed that the expression of CD30 in dermatophytoses is not a consistent finding. Instead, as a sign of lymphocytic activation, CD30 expression is observed coincidentally in cutaneous fungal infections. Our data confirm the observation that CD30 antigen is expressed in a variety of benign and malignant skin disorders, including cutaneous fungal infections, probably as an epiphenomenon without clinical relevance.
Gadgets, approximation, and linear programming
Trevisan, L.; Sudan, M.; Sorkin, G.B.; Williamson, D.P.
1996-12-31
We present a linear-programming based method for finding {open_quotes}gadgets{close_quotes}, i.e., combinatorial structures reducing constraints of one optimization problems to constraints of another. A key step in this method is a simple observation which limits the search space to a finite one. Using this new method we present a number of new, computer-constructed gadgets for several different reductions. This method also answers a question posed by on how to prove the optimality of gadgets-we show how LP duality gives such proofs. The new gadgets improve hardness results for MAX CUT and MAX DICUT, showing that approximating these problems to within factors of 60/61 and 44/45 respectively is N P-hard. We also use the gadgets to obtain an improved approximation algorithm for MAX 3SAT which guarantees an approximation ratio of .801. This improves upon the previous best bound of .7704.
Intrinsic Nilpotent Approximation.
1985-06-01
RD-A1II58 265 INTRINSIC NILPOTENT APPROXIMATION(U) MASSACHUSETTS INST 1/2 OF TECH CAMBRIDGE LAB FOR INFORMATION AND, DECISION UMCLRSSI SYSTEMS C...TYPE OF REPORT & PERIOD COVERED Intrinsic Nilpotent Approximation Technical Report 6. PERFORMING ORG. REPORT NUMBER LIDS-R-1482 7. AUTHOR(.) S...certain infinite-dimensional filtered Lie algebras L by (finite-dimensional) graded nilpotent Lie algebras or g . where x E M, (x,,Z) E T*M/O. It
Anomalous diffraction approximation limits
NASA Astrophysics Data System (ADS)
Videen, Gorden; Chýlek, Petr
It has been reported in a recent article [Liu, C., Jonas, P.R., Saunders, C.P.R., 1996. Accuracy of the anomalous diffraction approximation to light scattering by column-like ice crystals. Atmos. Res., 41, pp. 63-69] that the anomalous diffraction approximation (ADA) accuracy does not depend on particle refractive index, but instead is dependent on the particle size parameter. Since this is at odds with previous research, we thought these results warranted further discussion.
NASA Technical Reports Server (NTRS)
Dutta, Soumitra
1988-01-01
Much of human reasoning is approximate in nature. Formal models of reasoning traditionally try to be precise and reject the fuzziness of concepts in natural use and replace them with non-fuzzy scientific explicata by a process of precisiation. As an alternate to this approach, it has been suggested that rather than regard human reasoning processes as themselves approximating to some more refined and exact logical process that can be carried out with mathematical precision, the essence and power of human reasoning is in its capability to grasp and use inexact concepts directly. This view is supported by the widespread fuzziness of simple everyday terms (e.g., near tall) and the complexity of ordinary tasks (e.g., cleaning a room). Spatial reasoning is an area where humans consistently reason approximately with demonstrably good results. Consider the case of crossing a traffic intersection. We have only an approximate idea of the locations and speeds of various obstacles (e.g., persons and vehicles), but we nevertheless manage to cross such traffic intersections without any harm. The details of our mental processes which enable us to carry out such intricate tasks in such apparently simple manner are not well understood. However, it is that we try to incorporate such approximate reasoning techniques in our computer systems. Approximate spatial reasoning is very important for intelligent mobile agents (e.g., robots), specially for those operating in uncertain or unknown or dynamic domains.
Approximate kernel competitive learning.
Wu, Jian-Sheng; Zheng, Wei-Shi; Lai, Jian-Huang
2015-03-01
Kernel competitive learning has been successfully used to achieve robust clustering. However, kernel competitive learning (KCL) is not scalable for large scale data processing, because (1) it has to calculate and store the full kernel matrix that is too large to be calculated and kept in the memory and (2) it cannot be computed in parallel. In this paper we develop a framework of approximate kernel competitive learning for processing large scale dataset. The proposed framework consists of two parts. First, it derives an approximate kernel competitive learning (AKCL), which learns kernel competitive learning in a subspace via sampling. We provide solid theoretical analysis on why the proposed approximation modelling would work for kernel competitive learning, and furthermore, we show that the computational complexity of AKCL is largely reduced. Second, we propose a pseudo-parallelled approximate kernel competitive learning (PAKCL) based on a set-based kernel competitive learning strategy, which overcomes the obstacle of using parallel programming in kernel competitive learning and significantly accelerates the approximate kernel competitive learning for large scale clustering. The empirical evaluation on publicly available datasets shows that the proposed AKCL and PAKCL can perform comparably as KCL, with a large reduction on computational cost. Also, the proposed methods achieve more effective clustering performance in terms of clustering precision against related approximate clustering approaches.
Kim, Sung Eun; Park, Ji Hye; Hong, Soonwon; Koo, Ja Seung; Jeong, Joon; Jung, Woo-Hee
2012-12-01
Mucinous cystadenocarcinoma (MCA) in the breast is a rare neoplasm. There have been 13 cases of primary breast MCA reported. The MCA presents as a large, partially cystic mass in postmenopausal woman with a good prognosis. The microscopic findings resemble those of ovarian, pancreatic, or appendiceal MCA. The aspiration findings showed mucin-containing cell clusters in the background of mucin and necrotic material. The cell clusters had intracytoplasmic mucin displacing atypical nuclei to the periphery. Histologically, the tumor revealed an abundant mucin pool with small floating clusters of mucin-containing tumor cells. There were also small cysts lined by a single layer of tall columnar mucinous cells, resembling those of the uterine endocervix. The cancer cells were positive for mucin (MUC) 5 and negative for MUC2 and MUC6. This mucin profile is different from ordinary mucinous carcinoma and may be a unique characteristic of breast MCA.
NASA Astrophysics Data System (ADS)
Karakus, Dogan
2013-12-01
In mining, various estimation models are used to accurately assess the size and the grade distribution of an ore body. The estimation of the positional properties of unknown regions using random samples with known positional properties was first performed using polynomial approximations. Although the emergence of computer technologies and statistical evaluation of random variables after the 1950s rendered the polynomial approximations less important, theoretically the best surface passing through the random variables can be expressed as a polynomial approximation. In geoscience studies, in which the number of random variables is high, reliable solutions can be obtained only with high-order polynomials. Finding the coefficients of these types of high-order polynomials can be computationally intensive. In this study, the solution coefficients of high-order polynomials were calculated using a generalized inverse matrix method. A computer algorithm was developed to calculate the polynomial degree giving the best regression between the values obtained for solutions of different polynomial degrees and random observational data with known values, and this solution was tested with data derived from a practical application. In this application, the calorie values for data from 83 drilling points in a coal site located in southwestern Turkey were used, and the results are discussed in the context of this study. W górnictwie wykorzystuje się rozmaite modele estymacji do dokładnego określenia wielkości i rozkładu zawartości pierwiastka użytecznego w rudzie. Estymację położenia i właściwości skał w nieznanych obszarach z wykorzystaniem próbek losowych o znanym położeniu przeprowadzano na początku z wykorzystaniem przybliżenia wielomianowego. Pomimo tego, że rozwój technik komputerowych i statystycznych metod ewaluacji próbek losowych sprawiły, że po roku 1950 metody przybliżenia wielomianowego straciły na znaczeniu, nadal teoretyczna powierzchnia
Covariant approximation averaging
NASA Astrophysics Data System (ADS)
Shintani, Eigo; Arthur, Rudy; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph
2015-06-01
We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in Nf=2 +1 lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo calculations over conventional methods for the same cost.
Tang, Qi; Ma, Xiaojun; Mo, Changming; Wilson, Iain W; Song, Cai; Zhao, Huan; Yang, Yanfang; Fu, Wei; Qiu, Deyou
2011-07-05
Siraitia grosvenorii (Luohanguo) is an herbaceous perennial plant native to southern China and most prevalent in Guilin city. Its fruit contains a sweet, fleshy, edible pulp that is widely used in traditional Chinese medicine. The major bioactive constituents in the fruit extract are the cucurbitane-type triterpene saponins known as mogrosides. Among them, mogroside V is nearly 300 times sweeter than sucrose. However, little is known about mogrosides biosynthesis in S. grosvenorii, especially the late steps of the pathway. In this study, a cDNA library generated from of equal amount of RNA taken from S. grosvenorii fruit at 50 days after flowering (DAF) and 70 DAF were sequenced using Illumina/Solexa platform. More than 48,755,516 high-quality reads from a cDNA library were generated that was assembled into 43,891 unigenes. De novo assembly and gap-filling generated 43,891 unigenes with an average sequence length of 668 base pairs. A total of 26,308 (59.9%) unique sequences were annotated and 11,476 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. cDNA sequences for all of the known enzymes involved in mogrosides backbone synthesis were identified from our library. Additionally, a total of eighty-five cytochrome P450 (CYP450) and ninety UDP-glucosyltransferase (UDPG) unigenes were identified, some of which appear to encode enzymes responsible for the conversion of the mogroside backbone into the various mogrosides. Digital gene expression profile (DGE) analysis using Solexa sequencing was performed on three important stages of fruit development, and based on their expression pattern, seven CYP450s and five UDPGs were selected as the candidates most likely to be involved in mogrosides biosynthesis. A combination of RNA-seq and DGE analysis based on the next generation sequencing technology was shown to be a powerful method for identifying candidate genes encoding enzymes responsible for the
2011-01-01
Background Siraitia grosvenorii (Luohanguo) is an herbaceous perennial plant native to southern China and most prevalent in Guilin city. Its fruit contains a sweet, fleshy, edible pulp that is widely used in traditional Chinese medicine. The major bioactive constituents in the fruit extract are the cucurbitane-type triterpene saponins known as mogrosides. Among them, mogroside V is nearly 300 times sweeter than sucrose. However, little is known about mogrosides biosynthesis in S. grosvenorii, especially the late steps of the pathway. Results In this study, a cDNA library generated from of equal amount of RNA taken from S. grosvenorii fruit at 50 days after flowering (DAF) and 70 DAF were sequenced using Illumina/Solexa platform. More than 48,755,516 high-quality reads from a cDNA library were generated that was assembled into 43,891 unigenes. De novo assembly and gap-filling generated 43,891 unigenes with an average sequence length of 668 base pairs. A total of 26,308 (59.9%) unique sequences were annotated and 11,476 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. cDNA sequences for all of the known enzymes involved in mogrosides backbone synthesis were identified from our library. Additionally, a total of eighty-five cytochrome P450 (CYP450) and ninety UDP-glucosyltransferase (UDPG) unigenes were identified, some of which appear to encode enzymes responsible for the conversion of the mogroside backbone into the various mogrosides. Digital gene expression profile (DGE) analysis using Solexa sequencing was performed on three important stages of fruit development, and based on their expression pattern, seven CYP450s and five UDPGs were selected as the candidates most likely to be involved in mogrosides biosynthesis. Conclusion A combination of RNA-seq and DGE analysis based on the next generation sequencing technology was shown to be a powerful method for identifying candidate genes encoding
Quirks of Stirling's Approximation
ERIC Educational Resources Information Center
Macrae, Roderick M.; Allgeier, Benjamin M.
2013-01-01
Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…
Quirks of Stirling's Approximation
ERIC Educational Resources Information Center
Macrae, Roderick M.; Allgeier, Benjamin M.
2013-01-01
Stirling's approximation to ln "n"! is typically introduced to physical chemistry students as a step in the derivation of the statistical expression for the entropy. However, naive application of this approximation leads to incorrect conclusions. In this article, the problem is first illustrated using a familiar "toy…
Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Cisewski, Jessi
2015-08-01
Explicitly specifying a likelihood function is becoming increasingly difficult for many problems in astronomy. Astronomers often specify a simpler approximate likelihood - leaving out important aspects of a more realistic model. Approximate Bayesian computation (ABC) provides a framework for performing inference in cases where the likelihood is not available or intractable. I will introduce ABC and explain how it can be a useful tool for astronomers. In particular, I will focus on the eccentricity distribution for a sample of exoplanets with multiple sub-populations.
Two-peak approximation in kinetic capillary electrophoresis.
Cherney, Leonid T; Krylov, Sergey N
2012-04-07
Kinetic capillary electrophoresis (KCE) constitutes a toolset of homogeneous kinetic affinity methods for measuring rate constants of formation (k(+)) and dissociation (k(-)) of non-covalent biomolecular complexes, C, formed from two binding partners, A and B. A parameter-based approach of extracting k(+) and k(-) from KCE electropherograms relies on a small number of experimental parameters found from the electropherograms and used in explicit expressions for k(+) and k(-) derived from approximate solutions to mass transfer equations. Deriving the explicit expressions for k(+) and k(-) is challenging but it is justified as the parameter-based approach is the simplest way of finding k(+) and k(-) from KCE electropherograms. Here, we introduce a unique approximate analytical solution of mass transfer equations in KCE termed a "two-peak approximation" and a corresponding parameter-based method for finding k(+) and k(-). The two-peak approximation is applicable to any KCE method in which: (i) A* binds B to form C* (the asterisk denotes a detectable label on A), (ii) two peaks can be identified in a KCE electropherogram and (iii) the concentration of B remains constant. The last condition holds if B is present in access to A* and C* throughout the capillary. In the two-peak approximation, the labeling of A serves only for detection of A and C and, therefore, is not required if A (and thus C) can be observed with a label-free detection technique. We studied the proposed two-peak approximation, in particular, its accuracy, by using the simulated propagation patterns built with the earlier-developed exact solution of the mass-transfer equations for A* and C*. Our results prove that the obtained approximate solution of mass transfer equations is correct. They also show that the two-peak approximation facilitates finding k(+) and k(-) with a relative error of less than 10% if two peaks can be identified on a KCE electropherogram. Importantly, the condition of constant
Rough Set Approximations in Formal Concept Analysis
NASA Astrophysics Data System (ADS)
Yamaguchi, Daisuke; Murata, Atsuo; Li, Guo-Dong; Nagai, Masatake
Conventional set approximations are based on a set of attributes; however, these approximations cannot relate an object to the corresponding attribute. In this study, a new model for set approximation based on individual attributes is proposed for interval-valued data. Defining an indiscernibility relation is omitted since each attribute value itself has a set of values. Two types of approximations, single- and multiattribute approximations, are presented. A multi-attribute approximation has two solutions: a maximum and a minimum solution. A maximum solution is a set of objects that satisfy the condition of approximation for at least one attribute. A minimum solution is a set of objects that satisfy the condition for all attributes. The proposed set approximation is helpful in finding the features of objects relating to condition attributes when interval-valued data are given. The proposed model contributes to feature extraction in interval-valued information systems.
Matrix product approximations to conformal field theories
NASA Astrophysics Data System (ADS)
König, Robert; Scholz, Volkher B.
2017-07-01
We establish rigorous error bounds for approximating correlation functions of conformal field theories (CFTs) by certain finite-dimensional tensor networks. For chiral CFTs, the approximation takes the form of a matrix product state. For full CFTs consisting of a chiral and an anti-chiral part, the approximation is given by a finitely correlated state. We show that the bond dimension scales polynomially in the inverse of the approximation error and sub-exponentially in inverse of the minimal distance between insertion points. We illustrate our findings using Wess-Zumino-Witten models, and show that there is a one-to-one correspondence between group-covariant MPS and our approximation.
Marketkar, Shivali; Li, Dan; Yang, Dongfang; Cao, Weibiao
2017-01-01
AIM To examined the bile acid receptor TGR5 expression in squamous mucosa, Barrett’s mucosa, dysplasia and esophageal adenocarcinoma (EA). METHODS Slides were stained with TGR5 antibody. The staining intensity was scored as 1+, 2+ and 3+. The extent of staining (percentage of cells staining) was scored as follows: 1+, 1%-10%, 2+, 11%-50%, 3+, 51%-100%. A combined score of intensity and extent was calculated and categorized as negative, weak, moderate and strong staining. TGR5 mRNA was measured by real time PCR. RESULTS We found that levels of TGR5 mRNA were significantly increased in Barrett’s dysplastic cell line CP-D and EA cell line SK-GT-4, when compared with Barrett’s cell line CP-A. Moderate to strong TGR5 staining was significantly higher in high-grade dysplasia and EA cases than in Barrett’s esophagus (BE) or in low-grade dysplasia. Moderate to strong staining was slightly higher in low-grade dysplasia than in BE mucosa, but there is no statistical significance. TGR5 staining had no significant difference between high-grade dysplasia and EA. In addition, TGR5 staining intensity was not associated with the clinical stage, the pathological stage and the status of lymph node metastasis. CONCLUSION We conclude that TGR5 immunostaining was much stronger in high-grade dysplasia and EA than in BE mucosa or low-grade dysplasia and that its staining intensity was not associated with the clinical stage, the pathological stage and the status of lymph node metastasis. TGR5 might be a potential marker for the progression from BE to high-grade dysplasia and EA. PMID:28293080
ERIC Educational Resources Information Center
Wolff, Hans
This paper deals with a stochastic process for the approximation of the root of a regression equation. This process was first suggested by Robbins and Monro. The main result here is a necessary and sufficient condition on the iteration coefficients for convergence of the process (convergence with probability one and convergence in the quadratic…
Approximating Integrals Using Probability
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.; Caudle, Kyle A.
2005-01-01
As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…
Approximating Integrals Using Probability
ERIC Educational Resources Information Center
Maruszewski, Richard F., Jr.; Caudle, Kyle A.
2005-01-01
As part of a discussion on Monte Carlo methods, which outlines how to use probability expectations to approximate the value of a definite integral. The purpose of this paper is to elaborate on this technique and then to show several examples using visual basic as a programming tool. It is an interesting method because it combines two branches of…
NASA Technical Reports Server (NTRS)
Merrill, W. C.
1978-01-01
The Routh approximation technique for reducing the complexity of system models was applied in the frequency domain to a 16th order, state variable model of the F100 engine and to a 43d order, transfer function model of a launch vehicle boost pump pressure regulator. The results motivate extending the frequency domain formulation of the Routh method to the time domain in order to handle the state variable formulation directly. The time domain formulation was derived and a characterization that specifies all possible Routh similarity transformations was given. The characterization was computed by solving two eigenvalue-eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given. Additional computational problems are discussed, including an optimization procedure that can improve the approximation accuracy by taking advantage of the transformation characterization.
Seth, Sunaina; Lewis, Andrew James; Saffery, Richard; Lappas, Martha; Galbally, Megan
2015-11-17
High intrauterine cortisol exposure can inhibit fetal growth and have programming effects for the child's subsequent stress reactivity. Placental 11beta-hydroxysteroid dehydrogenase (11β-HSD2) limits the amount of maternal cortisol transferred to the fetus. However, the relationship between maternal psychopathology and 11β-HSD2 remains poorly defined. This study examined the effect of maternal depressive disorder, antidepressant use and symptoms of depression and anxiety in pregnancy on placental 11β-HSD2 gene (HSD11B2) expression. Drawing on data from the Mercy Pregnancy and Emotional Wellbeing Study, placental HSD11B2 expression was compared among 33 pregnant women, who were selected based on membership of three groups; depressed (untreated), taking antidepressants and controls. Furthermore, associations between placental HSD11B2 and scores on the State-Trait Anxiety Inventory (STAI) and Edinburgh Postnatal Depression Scale (EPDS) during 12-18 and 28-34 weeks gestation were examined. Findings revealed negative correlations between HSD11B2 and both the EPDS and STAI (r = -0.11 to -0.28), with associations being particularly prominent during late gestation. Depressed and antidepressant exposed groups also displayed markedly lower placental HSD11B2 expression levels than controls. These findings suggest that maternal depression and anxiety may impact on fetal programming by down-regulating HSD11B2, and antidepressant treatment alone is unlikely to protect against this effect.
Seth, Sunaina; Lewis, Andrew James; Saffery, Richard; Lappas, Martha; Galbally, Megan
2015-01-01
High intrauterine cortisol exposure can inhibit fetal growth and have programming effects for the child’s subsequent stress reactivity. Placental 11beta-hydroxysteroid dehydrogenase (11β-HSD2) limits the amount of maternal cortisol transferred to the fetus. However, the relationship between maternal psychopathology and 11β-HSD2 remains poorly defined. This study examined the effect of maternal depressive disorder, antidepressant use and symptoms of depression and anxiety in pregnancy on placental 11β-HSD2 gene (HSD11B2) expression. Drawing on data from the Mercy Pregnancy and Emotional Wellbeing Study, placental HSD11B2 expression was compared among 33 pregnant women, who were selected based on membership of three groups; depressed (untreated), taking antidepressants and controls. Furthermore, associations between placental HSD11B2 and scores on the State-Trait Anxiety Inventory (STAI) and Edinburgh Postnatal Depression Scale (EPDS) during 12–18 and 28–34 weeks gestation were examined. Findings revealed negative correlations between HSD11B2 and both the EPDS and STAI (r = −0.11 to −0.28), with associations being particularly prominent during late gestation. Depressed and antidepressant exposed groups also displayed markedly lower placental HSD11B2 expression levels than controls. These findings suggest that maternal depression and anxiety may impact on fetal programming by down-regulating HSD11B2, and antidepressant treatment alone is unlikely to protect against this effect. PMID:26593902
Topics in Metric Approximation
NASA Astrophysics Data System (ADS)
Leeb, William Edward
This thesis develops effective approximations of certain metrics that occur frequently in pure and applied mathematics. We show that distances that often arise in applications, such as the Earth Mover's Distance between two probability measures, can be approximated by easily computed formulas for a wide variety of ground distances. We develop simple and easily computed characterizations both of norms measuring a function's regularity -- such as the Lipschitz norm -- and of their duals. We are particularly concerned with the tensor product of metric spaces, where the natural notion of regularity is not the Lipschitz condition but the mixed Lipschitz condition. A theme that runs throughout this thesis is that snowflake metrics (metrics raised to a power less than 1) are often better-behaved than ordinary metrics. For example, we show that snowflake metrics on finite spaces can be approximated by the average of tree metrics with a distortion bounded by intrinsic geometric characteristics of the space and not the number of points. Many of the metrics for which we characterize the Lipschitz space and its dual are snowflake metrics. We also present applications of the characterization of certain regularity norms to the problem of recovering a matrix that has been corrupted by noise. We are able to achieve an optimal rate of recovery for certain families of matrices by exploiting the relationship between mixed-variable regularity conditions and the decay of a function's coefficients in a certain orthonormal basis.
Approximate reasoning using terminological models
NASA Technical Reports Server (NTRS)
Yen, John; Vaidya, Nitin
1992-01-01
Term Subsumption Systems (TSS) form a knowledge-representation scheme in AI that can express the defining characteristics of concepts through a formal language that has a well-defined semantics and incorporates a reasoning mechanism that can deduce whether one concept subsumes another. However, TSS's have very limited ability to deal with the issue of uncertainty in knowledge bases. The objective of this research is to address issues in combining approximate reasoning with term subsumption systems. To do this, we have extended an existing AI architecture (CLASP) that is built on the top of a term subsumption system (LOOM). First, the assertional component of LOOM has been extended for asserting and representing uncertain propositions. Second, we have extended the pattern matcher of CLASP for plausible rule-based inferences. Third, an approximate reasoning model has been added to facilitate various kinds of approximate reasoning. And finally, the issue of inconsistency in truth values due to inheritance is addressed using justification of those values. This architecture enhances the reasoning capabilities of expert systems by providing support for reasoning under uncertainty using knowledge captured in TSS. Also, as definitional knowledge is explicit and separate from heuristic knowledge for plausible inferences, the maintainability of expert systems could be improved.
Spline approximations for nonlinear hereditary control systems
NASA Technical Reports Server (NTRS)
Daniel, P. L.
1982-01-01
A sline-based approximation scheme is discussed for optimal control problems governed by nonlinear nonautonomous delay differential equations. The approximating framework reduces the original control problem to a sequence of optimization problems governed by ordinary differential equations. Convergence proofs, which appeal directly to dissipative-type estimates for the underlying nonlinear operator, are given and numerical findings are summarized.
Cosmological applications of Padé approximant
Wei, Hao; Yan, Xiao-Peng; Zhou, Ya-Nan E-mail: 764644314@qq.com
2014-01-01
As is well known, in mathematics, any function could be approximated by the Padé approximant. The Padé approximant is the best approximation of a function by a rational function of given order. In fact, the Padé approximant often gives better approximation of the function than truncating its Taylor series, and it may still work where the Taylor series does not converge. In the present work, we consider the Padé approximant in two issues. First, we obtain the analytical approximation of the luminosity distance for the flat XCDM model, and find that the relative error is fairly small. Second, we propose several parameterizations for the equation-of-state parameter (EoS) of dark energy based on the Padé approximant. They are well motivated from the mathematical and physical points of view. We confront these EoS parameterizations with the latest observational data, and find that they can work well. In these practices, we show that the Padé approximant could be an useful tool in cosmology, and it deserves further investigation.
Chalasani, P.; Saias, I.; Jha, S.
1996-04-08
As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.
Beyond the Kirchhoff approximation
NASA Technical Reports Server (NTRS)
Rodriguez, Ernesto
1989-01-01
The three most successful models for describing scattering from random rough surfaces are the Kirchhoff approximation (KA), the small-perturbation method (SPM), and the two-scale-roughness (or composite roughness) surface-scattering (TSR) models. In this paper it is shown how these three models can be derived rigorously from one perturbation expansion based on the extinction theorem for scalar waves scattering from perfectly rigid surface. It is also shown how corrections to the KA proportional to the surface curvature and higher-order derivatives may be obtained. Using these results, the scattering cross section is derived for various surface models.
Hierarchical Approximate Bayesian Computation
Turner, Brandon M.; Van Zandt, Trisha
2013-01-01
Approximate Bayesian computation (ABC) is a powerful technique for estimating the posterior distribution of a model’s parameters. It is especially important when the model to be fit has no explicit likelihood function, which happens for computational (or simulation-based) models such as those that are popular in cognitive neuroscience and other areas in psychology. However, ABC is usually applied only to models with few parameters. Extending ABC to hierarchical models has been difficult because high-dimensional hierarchical models add computational complexity that conventional ABC cannot accommodate. In this paper we summarize some current approaches for performing hierarchical ABC and introduce a new algorithm called Gibbs ABC. This new algorithm incorporates well-known Bayesian techniques to improve the accuracy and efficiency of the ABC approach for estimation of hierarchical models. We then use the Gibbs ABC algorithm to estimate the parameters of two models of signal detection, one with and one without a tractable likelihood function. PMID:24297436
Roy, Swapnoneel; Thakur, Ashok Kumar
2008-01-01
Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.
Khalyfa, Abdelnaby; Gharib, Sina A.; Kim, Jinkwan; Capdevila, Oscar Sans; Kheirandish-Gozal, Leila; Bhattacharjee, Rakesh; Hegazi, Mohamed; Gozal, David
2011-01-01
Background: Children who snore but do not have gas exchange abnormalities or alterations of sleep architecture have primary snoring (PS). Since increasing evidence suggest that PS may be associated with morbidity, we hypothesized that assessing genome-wide gene expression in peripheral blood leukocytes (PBL) will identify a distinct signature in PS children. Methods: Children (aged 4–9 years) with and without habitual snoring and a normal PSG were designated as either PS or controls. Whole genome expression profiles of PBL and metabolic parameters in 30 children with PS and 30 age-, gender-, ethnicity-, and BMI-matched controls were compared. Pathway-focused gene network analysis of the PBL transcriptome was performed. Metabolic parameters were measured in an independent follow-up cohort of 98 children (64 PS and 34 controls) to evaluate the computationally derived findings. Results: PS was not associated with a distinct transcriptional signature in PBL. Exploratory functional network analysis of enriched gene sets identified a number of putative pathways—including those mapping to insulin signaling, adipocyte differentiation, and obesity—with significant alterations in glucose metabolism and insulin sensitivity emerging in the follow-up cohort of children with PS, but no differences in lipid profiles. Conclusions: PS children do not exhibit global perturbations in their PBL transcriptional response, suggesting that current normative PSG criteria are overall valid. However, subtle differences in functionally coherent pathways involved in glycemic homeostasis were detected and confirmed in a larger independent pediatric cohort indicating that PS may carry increased risk for end-organ morbidity in susceptible children. Citation: Khalyfa A; Gharib SA; Kim J; Capdevila OS; Kheirandish-Gozal L; Bhattacharjee R; Hegazi M; Gozal D. Peripheral blood leukocyte gene expression patterns and metabolic parameters in habitually snoring and non-snoring children with normal
2014-01-01
Background The pathogenesis of caseonecrotic lesions developing in lungs and joints of calves infected with Mycoplasma bovis is not clear and attempts to prevent M. bovis-induced disease by vaccines have been largely unsuccessful. In this investigation, joint samples from 4 calves, i.e. 2 vaccinated and 2 non-vaccinated, of a vaccination experiment with intraarticular challenge were examined. The aim was to characterize the histopathological findings, the phenotypes of inflammatory cells, the expression of class II major histocompatibility complex (MHC class II) molecules, and the expression of markers for nitritative stress, i.e. inducible nitric oxide synthase (iNOS) and nitrotyrosine (NT), in synovial membrane samples from these calves. Furthermore, the samples were examined for M. bovis antigens including variable surface protein (Vsp) antigens and M. bovis organisms by cultivation techniques. Results The inoculated joints of all 4 calves had caseonecrotic and inflammatory lesions. Necrotic foci were demarcated by phagocytic cells, i.e. macrophages and neutrophilic granulocytes, and by T and B lymphocytes. The presence of M. bovis antigens in necrotic tissue lesions was associated with expression of iNOS and NT by macrophages. Only single macrophages demarcating the necrotic foci were positive for MHC class II. Microbiological results revealed that M. bovis had spread to approximately 27% of the non-inoculated joints. Differences in extent or severity between the lesions in samples from vaccinated and non-vaccinated animals were not seen. Conclusions The results suggest that nitritative injury, as in pneumonic lung tissue of M. bovis-infected calves, is involved in the development of caseonecrotic joint lesions. Only single macrophages were positive for MHC class II indicating down-regulation of antigen-presenting mechanisms possibly caused by local production of iNOS and NO by infiltrating macrophages. PMID:25162202
Approximate probability distributions of the master equation.
Thomas, Philipp; Grima, Ramon
2015-07-01
Master equations are common descriptions of mesoscopic systems. Analytical solutions to these equations can rarely be obtained. We here derive an analytical approximation of the time-dependent probability distribution of the master equation using orthogonal polynomials. The solution is given in two alternative formulations: a series with continuous and a series with discrete support, both of which can be systematically truncated. While both approximations satisfy the system size expansion of the master equation, the continuous distribution approximations become increasingly negative and tend to oscillations with increasing truncation order. In contrast, the discrete approximations rapidly converge to the underlying non-Gaussian distributions. The theory is shown to lead to particularly simple analytical expressions for the probability distributions of molecule numbers in metabolic reactions and gene expression systems.
Approximate probability distributions of the master equation
NASA Astrophysics Data System (ADS)
Thomas, Philipp; Grima, Ramon
2015-07-01
Master equations are common descriptions of mesoscopic systems. Analytical solutions to these equations can rarely be obtained. We here derive an analytical approximation of the time-dependent probability distribution of the master equation using orthogonal polynomials. The solution is given in two alternative formulations: a series with continuous and a series with discrete support, both of which can be systematically truncated. While both approximations satisfy the system size expansion of the master equation, the continuous distribution approximations become increasingly negative and tend to oscillations with increasing truncation order. In contrast, the discrete approximations rapidly converge to the underlying non-Gaussian distributions. The theory is shown to lead to particularly simple analytical expressions for the probability distributions of molecule numbers in metabolic reactions and gene expression systems.
Approximate approaches to the one-dimensional finite potential well
NASA Astrophysics Data System (ADS)
Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.
2011-11-01
The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (mi) is taken to be distinct from mass outside (mo). A relevant parameter is the mass discontinuity ratio β = mi/mo. To correctly account for the mass discontinuity, we apply the BenDaniel-Duke boundary condition. We obtain approximate solutions for two cases: when the well is shallow and when the well is deep. We compare the approximate results with the exact results and find that higher-order approximations are quite robust. For the shallow case, the approximate solution can be expressed in terms of a dimensionless parameter σl = 2moV0L2/planck2 (or σ = β2σl for the deep case). We show that the lowest-order results are related by a duality transform. We also discuss how the energy upscales with L (E~1/Lγ) and obtain the exponent γ. Exponent γ → 2 when the well is sufficiently deep and β → 1. The ratio of the masses dictates the physics. Our presentation is pedagogical and should be useful to students on a first course on elementary quantum mechanics or low-dimensional semiconductors.
Hybrid Approximate Message Passing
NASA Astrophysics Data System (ADS)
Rangan, Sundeep; Fletcher, Alyson K.; Goyal, Vivek K.; Byrne, Evan; Schniter, Philip
2017-09-01
The standard linear regression (SLR) problem is to recover a vector $\\mathbf{x}^0$ from noisy linear observations $\\mathbf{y}=\\mathbf{Ax}^0+\\mathbf{w}$. The approximate message passing (AMP) algorithm recently proposed by Donoho, Maleki, and Montanari is a computationally efficient iterative approach to SLR that has a remarkable property: for large i.i.d.\\ sub-Gaussian matrices $\\mathbf{A}$, its per-iteration behavior is rigorously characterized by a scalar state-evolution whose fixed points, when unique, are Bayes optimal. AMP, however, is fragile in that even small deviations from the i.i.d.\\ sub-Gaussian model can cause the algorithm to diverge. This paper considers a "vector AMP" (VAMP) algorithm and shows that VAMP has a rigorous scalar state-evolution that holds under a much broader class of large random matrices $\\mathbf{A}$: those that are right-rotationally invariant. After performing an initial singular value decomposition (SVD) of $\\mathbf{A}$, the per-iteration complexity of VAMP can be made similar to that of AMP. In addition, the fixed points of VAMP's state evolution are consistent with the replica prediction of the minimum mean-squared error recently derived by Tulino, Caire, Verd\\'u, and Shamai. The effectiveness and state evolution predictions of VAMP are confirmed in numerical experiments.
Countably QC-Approximating Posets
Mao, Xuxin; Xu, Luoshan
2014-01-01
As a generalization of countably C-approximating posets, the concept of countably QC-approximating posets is introduced. With the countably QC-approximating property, some characterizations of generalized completely distributive lattices and generalized countably approximating posets are given. The main results are as follows: (1) a complete lattice is generalized completely distributive if and only if it is countably QC-approximating and weakly generalized countably approximating; (2) a poset L having countably directed joins is generalized countably approximating if and only if the lattice σc(L)op of all σ-Scott-closed subsets of L is weakly generalized countably approximating. PMID:25165730
Approximate knowledge compilation: The first order case
Val, A. del
1996-12-31
Knowledge compilation procedures make a knowledge base more explicit so as make inference with respect to the compiled knowledge base tractable or at least more efficient. Most work to date in this area has been restricted to the propositional case, despite the importance of first order theories for expressing knowledge concisely. Focusing on (LUB) approximate compilation, our contribution is twofold: (1) We present a new ground algorithm for approximate compilation which can produce exponential savings with respect to the previously known algorithm. (2) We show that both ground algorithms can be lifted to the first order case preserving their correctness for approximate compilation.
Laguerre approximation of random foams
NASA Astrophysics Data System (ADS)
Liebscher, André
2015-09-01
Stochastic models for the microstructure of foams are valuable tools to study the relations between microstructure characteristics and macroscopic properties. Owing to the physical laws behind the formation of foams, Laguerre tessellations have turned out to be suitable models for foams. Laguerre tessellations are weighted generalizations of Voronoi tessellations, where polyhedral cells are formed through the interaction of weighted generator points. While both share the same topology, the cell curvature of foams allows only an approximation by Laguerre tessellations. This makes the model fitting a challenging task, especially when the preservation of the local topology is required. In this work, we propose an inversion-based approach to fit a Laguerre tessellation model to a foam. The idea is to find a set of generator points whose tessellation best fits the foam's cell system. For this purpose, we transform the model fitting into a minimization problem that can be solved by gradient descent-based optimization. The proposed algorithm restores the generators of a tessellation if it is known to be Laguerre. If, as in the case of foams, no exact solution is possible, an approximative solution is obtained that maintains the local topology.
Interplay of approximate planning strategies.
Huys, Quentin J M; Lally, Níall; Faulkner, Paul; Eshel, Neir; Seifritz, Erich; Gershman, Samuel J; Dayan, Peter; Roiser, Jonathan P
2015-03-10
Humans routinely formulate plans in domains so complex that even the most powerful computers are taxed. To do so, they seem to avail themselves of many strategies and heuristics that efficiently simplify, approximate, and hierarchically decompose hard tasks into simpler subtasks. Theoretical and cognitive research has revealed several such strategies; however, little is known about their establishment, interaction, and efficiency. Here, we use model-based behavioral analysis to provide a detailed examination of the performance of human subjects in a moderately deep planning task. We find that subjects exploit the structure of the domain to establish subgoals in a way that achieves a nearly maximal reduction in the cost of computing values of choices, but then combine partial searches with greedy local steps to solve subtasks, and maladaptively prune the decision trees of subtasks in a reflexive manner upon encountering salient losses. Subjects come idiosyncratically to favor particular sequences of actions to achieve subgoals, creating novel complex actions or "options."
Ning, Guogui; Cheng, Xu; Luo, Ping; Liang, Fan; Wang, Zhen; Yu, Guoliang; Li, Xin; Wang, Depeng; Bao, Manzhu
2017-01-01
Using second-generation sequencing (SGS) RNA-Seq strategies, extensive alterative splicing prediction is impractical and high variability of isoforms expression quantification is inevitable in organisms without true reference dataset. we report the development of a novel analysis method, termed hybrid sequencing and map finding (HySeMaFi) which combines the specific strengths of third-generation sequencing (TGS) (PacBio SMRT sequencing) and SGS (Illumina Hi-Seq/MiSeq sequencing) to effectively decipher gene splicing and to reliably estimate the isoforms abundance. Error-corrected long reads from TGS are capable of capturing full length transcripts or as large partial transcript fragments. Both true and false isoforms, from a particular gene, as well as that containing all possible exons, could be generated by employing different assembly methods in SGS. We first develop an effective method which can establish the mapping relationship between the error-corrected long reads and the longest assembled contig in every corresponding gene. According to the mapping data, the true splicing pattern of the genes was reliably detected, and quantification of the isoforms was also effectively determined. HySeMaFi is also the optimal strategy by which to decipher the full exon expression of a specific gene when the longest mapped contigs were chosen as the reference set. PMID:28272530
Fast approximate stochastic tractography.
Iglesias, Juan Eugenio; Thompson, Paul M; Liu, Cheng-Yi; Tu, Zhuowen
2012-01-01
Many different probabilistic tractography methods have been proposed in the literature to overcome the limitations of classical deterministic tractography: (i) lack of quantitative connectivity information; and (ii) robustness to noise, partial volume effects and selection of seed region. However, these methods rely on Monte Carlo sampling techniques that are computationally very demanding. This study presents an approximate stochastic tractography algorithm (FAST) that can be used interactively, as opposed to having to wait several minutes to obtain the output after marking a seed region. In FAST, tractography is formulated as a Markov chain that relies on a transition tensor. The tensor is designed to mimic the features of a well-known probabilistic tractography method based on a random walk model and Monte-Carlo sampling, but can also accommodate other propagation rules. Compared to the baseline algorithm, our method circumvents the sampling process and provides a deterministic solution at the expense of partially sacrificing sub-voxel accuracy. Therefore, the method is strictly speaking not stochastic, but provides a probabilistic output in the spirit of stochastic tractography methods. FAST was compared with the random walk model using real data from 10 patients in two different ways: 1. the probability maps produced by the two methods on five well-known fiber tracts were directly compared using metrics from the image registration literature; and 2. the connectivity measurements between different regions of the brain given by the two methods were compared using the correlation coefficient ρ. The results show that the connectivity measures provided by the two algorithms are well-correlated (ρ = 0.83), and so are the probability maps (normalized cross correlation 0.818 ± 0.081). The maps are also qualitatively (i.e., visually) very similar. The proposed method achieves a 60x speed-up (7 s vs. 7 min) over the Monte Carlo sampling scheme, therefore
Approximating maximum clique with a Hopfield network.
Jagota, A
1995-01-01
In a graph, a clique is a set of vertices such that every pair is connected by an edge. MAX-CLIQUE is the optimization problem of finding the largest clique in a given graph and is NP-hard, even to approximate well. Several real-world and theory problems can be modeled as MAX-CLIQUE. In this paper, we efficiently approximate MAX-CLIQUE in a special case of the Hopfield network whose stable states are maximal cliques. We present several energy-descent optimizing dynamics; both discrete (deterministic and stochastic) and continuous. One of these emulates, as special cases, two well-known greedy algorithms for approximating MAX-CLIQUE. We report on detailed empirical comparisons on random graphs and on harder ones. Mean-field annealing, an efficient approximation to simulated annealing, and a stochastic dynamics are the narrow but clear winners. All dynamics approximate much better than one which emulates a "naive" greedy heuristic.
Power spectra beyond the slow roll approximation in theories with non-canonical kinetic terms
De Bruck, Carsten van; Robinson, Mathew E-mail: app11mrr@sheffield.ac.uk
2014-08-01
We derive analytical expressions for the power spectra at the end of inflation in theories with two inflaton fields and non-canonical kinetic terms. We find that going beyond the slow-roll approximation is necessary and that the nature of the non-canonical terms have an important impact on the final power spectra at the end of inflation. We study five models numerically and find excellent agreement with our analytical results. Our results emphasise the fact that going beyond the slow-roll approximation is important in times of high-precision data coming from cosmological observations.
Approximate von Neumann entropy for directed graphs.
Ye, Cheng; Wilson, Richard C; Comin, César H; Costa, Luciano da F; Hancock, Edwin R
2014-05-01
In this paper, we develop an entropy measure for assessing the structural complexity of directed graphs. Although there are many existing alternative measures for quantifying the structural properties of undirected graphs, there are relatively few corresponding measures for directed graphs. To fill this gap in the literature, we explore an alternative technique that is applicable to directed graphs. We commence by using Chung's generalization of the Laplacian of a directed graph to extend the computation of von Neumann entropy from undirected to directed graphs. We provide a simplified form of the entropy which can be expressed in terms of simple node in-degree and out-degree statistics. Moreover, we find approximate forms of the von Neumann entropy that apply to both weakly and strongly directed graphs, and that can be used to characterize network structure. We illustrate the usefulness of these simplified entropy forms defined in this paper on both artificial and real-world data sets, including structures from protein databases and high energy physics theory citation networks.
Approximate analytic solutions to the NPDD: Short exposure approximations
NASA Astrophysics Data System (ADS)
Close, Ciara E.; Sheridan, John T.
2014-04-01
There have been many attempts to accurately describe the photochemical processes that take places in photopolymer materials. As the models have become more accurate, solving them has become more numerically intensive and more 'opaque'. Recent models incorporate the major photochemical reactions taking place as well as the diffusion effects resulting from the photo-polymerisation process, and have accurately described these processes in a number of different materials. It is our aim to develop accessible mathematical expressions which provide physical insights and simple quantitative predictions of practical value to material designers and users. In this paper, starting with the Non-Local Photo-Polymerisation Driven Diffusion (NPDD) model coupled integro-differential equations, we first simplify these equations and validate the accuracy of the resulting approximate model. This new set of governing equations are then used to produce accurate analytic solutions (polynomials) describing the evolution of the monomer and polymer concentrations, and the grating refractive index modulation, in the case of short low intensity sinusoidal exposures. The physical significance of the results and their consequences for holographic data storage (HDS) are then discussed.
Ideal amino acid exchange forms for approximating substitution matrices.
Pokarowski, Piotr; Kloczkowski, Andrzej; Nowakowski, Szymon; Pokarowska, Maria; Jernigan, Robert L; Kolinski, Andrzej
2007-11-01
We have analyzed 29 published substitution matrices (SMs) and five statistical protein contact potentials (CPs) for comparison. We find that popular, 'classical' SMs obtained mainly from sequence alignments of globular proteins are mostly correlated by at least a value of 0.9. The BLOSUM62 is the central element of this group. A second group includes SMs derived from alignments of remote homologs or transmembrane proteins. These matrices correlate better with classical SMs (0.8) than among themselves (0.7). A third group consists of intermediate links between SMs and CPs - matrices and potentials that exhibit mutual correlations of at least 0.8. Next, we show that SMs can be approximated with a correlation of 0.9 by expressions c(0) + x(i)x(j) + y(i)y(j) + z(i)z(j), 1
DALI: Derivative Approximation for LIkelihoods
NASA Astrophysics Data System (ADS)
Sellentin, Elena
2015-07-01
DALI (Derivative Approximation for LIkelihoods) is a fast approximation of non-Gaussian likelihoods. It extends the Fisher Matrix in a straightforward way and allows for a wider range of posterior shapes. The code is written in C/C++.
Taylor Approximations and Definite Integrals
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2007-01-01
We investigate the possibility of approximating the value of a definite integral by approximating the integrand rather than using numerical methods to approximate the value of the definite integral. Particular cases considered include examples where the integral is improper, such as an elliptic integral. (Contains 4 tables and 2 figures.)
Taylor Approximations and Definite Integrals
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2007-01-01
We investigate the possibility of approximating the value of a definite integral by approximating the integrand rather than using numerical methods to approximate the value of the definite integral. Particular cases considered include examples where the integral is improper, such as an elliptic integral. (Contains 4 tables and 2 figures.)
Approximate equilibria for Bayesian games
NASA Astrophysics Data System (ADS)
Mallozzi, Lina; Pusillo, Lucia; Tijs, Stef
2008-07-01
In this paper the problem of the existence of approximate equilibria in mixed strategies is central. Sufficient conditions are given under which approximate equilibria exist for non-finite Bayesian games. Further one possible approach is suggested to the problem of the existence of approximate equilibria for the class of multicriteria Bayesian games.
Recent advances in discrete dipole approximation
NASA Astrophysics Data System (ADS)
Flatau, P. J.
2012-12-01
I will describe recent advances and results related to Discrete Dipole Approximation. I will concentrate on Discrete Dipole Scattering (DDSCAT) code which has been jointly developed by myself and Bruce T. Draine. Discussion will concentrate on calculation of scattering and absorption by isolated particles (e.g., dust grains, ice crystals), calculations of scattering by periodic structures with applications to studies of scattering and absorption by periodic arrangement of finite cylinders, cubes, etc), very fast near field calculation, ways to display scattering targets and their composition using three dimensional graphical codes. I will discuss possible extensions. References Flatau, P. J. and Draine, B. T., 2012, Fast near field calculations in the discrete dipole approximation for regular rectilinear grids, Optics Express, 20, 1247-1252. Draine B. T. and Flatau P. J., 2008, Discrete-dipole approximation for periodic targets: theory and tests , J. Opt. Soc. Am. A., 25, 2693-2703. Draine BT and Flatau PJ, 2012, User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2, arXiv:1202.3424v3.ear field calculations (Fast near field calculations in the discrete dipole approximation for regular rectilinear grids P. J. Flatau and B. T. Draine, Optics Express, Vol. 20, Issue 2, pp. 1247-1252 (2012))
A Survey of Techniques for Approximate Computing
Mittal, Sparsh
2016-03-18
Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is to provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.
A Survey of Techniques for Approximate Computing
Mittal, Sparsh
2016-03-18
Approximate computing trades off computation quality with the effort expended and as rising performance demands confront with plateauing resource budgets, approximate computing has become, not merely attractive, but even imperative. Here, we present a survey of techniques for approximate computing (AC). We discuss strategies for finding approximable program portions and monitoring output quality, techniques for using AC in different processing units (e.g., CPU, GPU and FPGA), processor components, memory technologies etc., and programming frameworks for AC. Moreover, we classify these techniques based on several key characteristics to emphasize their similarities and differences. Finally, the aim of this paper is tomore » provide insights to researchers into working of AC techniques and inspire more efforts in this area to make AC the mainstream computing approach in future systems.« less
Frankenstein's glue: transition functions for approximate solutions
NASA Astrophysics Data System (ADS)
Yunes, Nicolás
2007-09-01
Approximations are commonly employed to find approximate solutions to the Einstein equations. These solutions, however, are usually only valid in some specific spacetime region. A global solution can be constructed by gluing approximate solutions together, but this procedure is difficult because discontinuities can arise, leading to large violations of the Einstein equations. In this paper, we provide an attempt to formalize this gluing scheme by studying transition functions that join approximate analytic solutions together. In particular, we propose certain sufficient conditions on these functions and prove that these conditions guarantee that the joined solution still satisfies the Einstein equations analytically to the same order as the approximate ones. An example is also provided for a binary system of non-spinning black holes, where the approximate solutions are taken to be given by a post-Newtonian expansion and a perturbed Schwarzschild solution. For this specific case, we show that if the transition functions satisfy the proposed conditions, then the joined solution does not contain any violations to the Einstein equations larger than those already inherent in the approximations. We further show that if these functions violate the proposed conditions, then the matter content of the spacetime is modified by the introduction of a matter shell, whose stress energy tensor depends on derivatives of these functions.
Characterizing inflationary perturbations: The uniform approximation
Habib, Salman; Heinen, Andreas; Heitmann, Katrin; Jungman, Gerard; Molina-Paris, Carmen
2004-10-15
The spectrum of primordial fluctuations from inflation can be obtained using a mathematically controlled, and systematically extendable, uniform approximation. Closed-form expressions for power spectra and spectral indices may be found without making explicit slow-roll assumptions. Here we provide details of our previous calculations, extend the results beyond leading-order in the approximation, and derive general error bounds for power spectra and spectral indices. Already at next-to-leading-order, the errors in calculating the power spectrum are less than a percent. This meets the accuracy requirement for interpreting next-generation cosmic microwave background observations.
Randomized approximate nearest neighbors algorithm
Jones, Peter Wilcox; Osipov, Andrei; Rokhlin, Vladimir
2011-01-01
We present a randomized algorithm for the approximate nearest neighbor problem in d-dimensional Euclidean space. Given N points {xj} in , the algorithm attempts to find k nearest neighbors for each of xj, where k is a user-specified integer parameter. The algorithm is iterative, and its running time requirements are proportional to T·N·(d·(log d) + k·(d + log k)·(log N)) + N·k2·(d + log k), with T the number of iterations performed. The memory requirements of the procedure are of the order N·(d + k). A by-product of the scheme is a data structure, permitting a rapid search for the k nearest neighbors among {xj} for an arbitrary point . The cost of each such query is proportional to T·(d·(log d) + log(N/k)·k·(d + log k)), and the memory requirements for the requisite data structure are of the order N·(d + k) + T·(d + N). The algorithm utilizes random rotations and a basic divide-and-conquer scheme, followed by a local graph search. We analyze the scheme’s behavior for certain types of distributions of {xj} and illustrate its performance via several numerical examples. PMID:21885738
Interplay of approximate planning strategies
Huys, Quentin J. M.; Lally, Níall; Faulkner, Paul; Eshel, Neir; Seifritz, Erich; Gershman, Samuel J.; Dayan, Peter; Roiser, Jonathan P.
2015-01-01
Humans routinely formulate plans in domains so complex that even the most powerful computers are taxed. To do so, they seem to avail themselves of many strategies and heuristics that efficiently simplify, approximate, and hierarchically decompose hard tasks into simpler subtasks. Theoretical and cognitive research has revealed several such strategies; however, little is known about their establishment, interaction, and efficiency. Here, we use model-based behavioral analysis to provide a detailed examination of the performance of human subjects in a moderately deep planning task. We find that subjects exploit the structure of the domain to establish subgoals in a way that achieves a nearly maximal reduction in the cost of computing values of choices, but then combine partial searches with greedy local steps to solve subtasks, and maladaptively prune the decision trees of subtasks in a reflexive manner upon encountering salient losses. Subjects come idiosyncratically to favor particular sequences of actions to achieve subgoals, creating novel complex actions or “options.” PMID:25675480
Femtolensing: Beyond the semiclassical approximation
NASA Technical Reports Server (NTRS)
Ulmer, Andrew; Goodman, Jeremy
1995-01-01
Femtolensoing is a gravitational lensing effect in which the magnification is a function not only of the position and sizes of the source and lens, but also of the wavelength of light. Femtolensing is the only known effect of 10(exp -13) - 10(exp -16) solar mass) dark-matter objects and may possibly be detectable in cosmological gamma-ray burst spectra. We present a new and efficient algorithm for femtolensing calculation in general potentials. The physical optics results presented here differ at low frequencies from the semiclassical approximation, in which the flux is attributed to a finite number of mutually coherent images. At higher frequencies, our results agree well with the semicalssical predictions. Applying our method to a point-mass lens with external shear, we find complex events that have structure at both large and small spectral resolution. In this way, we show that femtolensing may be observable for lenses up to 10(exp -11) solar mass, much larger than previously believed. Additionally, we discuss the possibility of a search femtolensing of white dwarfs in the Large Magellanic Cloud at optical wavelengths.
Integrated Risk Information System (IRIS)
Express ; CASRN 101200 - 48 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect
Combining global and local approximations
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.
1991-01-01
A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model.
Combining global and local approximations
Haftka, R.T. )
1991-09-01
A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model. 6 refs.
Phenomenological applications of rational approximants
NASA Astrophysics Data System (ADS)
Gonzàlez-Solís, Sergi; Masjuan, Pere
2016-08-01
We illustrate the powerfulness of Padé approximants (PAs) as a summation method and explore one of their extensions, the so-called quadratic approximant (QAs), to access both space- and (low-energy) time-like (TL) regions. As an introductory and pedagogical exercise, the function 1 zln(1 + z) is approximated by both kind of approximants. Then, PAs are applied to predict pseudoscalar meson Dalitz decays and to extract Vub from the semileptonic B → πℓνℓ decays. Finally, the π vector form factor in the TL region is explored using QAs.
Estimation of distribution algorithms with Kikuchi approximations.
Santana, Roberto
2005-01-01
The question of finding feasible ways for estimating probability distributions is one of the main challenges for Estimation of Distribution Algorithms (EDAs). To estimate the distribution of the selected solutions, EDAs use factorizations constructed according to graphical models. The class of factorizations that can be obtained from these probability models is highly constrained. Expanding the class of factorizations that could be employed for probability approximation is a necessary step for the conception of more robust EDAs. In this paper we introduce a method for learning a more general class of probability factorizations. The method combines a reformulation of a probability approximation procedure known in statistical physics as the Kikuchi approximation of energy, with a novel approach for finding graph decompositions. We present the Markov Network Estimation of Distribution Algorithm (MN-EDA), an EDA that uses Kikuchi approximations to estimate the distribution, and Gibbs Sampling (GS) to generate new points. A systematic empirical evaluation of MN-EDA is done in comparison with different Bayesian network based EDAs. From our experiments we conclude that the algorithm can outperform other EDAs that use traditional methods of probability approximation in the optimization of functions with strong interactions among their variables.
Approximate solutions of the hyperbolic Kepler equation
NASA Astrophysics Data System (ADS)
Avendano, Martín; Martín-Molina, Verónica; Ortigas-Galindo, Jorge
2015-12-01
We provide an approximate zero widetilde{S}(g,L) for the hyperbolic Kepler's equation S-g {{arcsinh}}(S)-L=0 for gin (0,1) and Lin [0,∞ ). We prove, by using Smale's α -theory, that Newton's method starting at our approximate zero produces a sequence that converges to the actual solution S( g, L) at quadratic speed, i.e. if S_n is the value obtained after n iterations, then |S_n-S|≤ 0.5^{2^n-1}|widetilde{S}-S|. The approximate zero widetilde{S}(g,L) is a piecewise-defined function involving several linear expressions and one with cubic and square roots. In bounded regions of (0,1) × [0,∞ ) that exclude a small neighborhood of g=1, L=0, we also provide a method to construct simpler starters involving only constants.
On L convergence of Neumann series approximation in missing data problems.
Chen, Hua Yun
2010-05-15
The inverse of the nonparametric information operator is key to finding doubly robust estimators and the semiparametric efficient estimator in missing data problems. It is known that no closed-form expression for the inverse of the nonparametric information operator exists when missing data form nonmonotone patterns. Neumann series is usually applied to approximate the inverse. However, Neumann series approximation is only known to converge in L(2) norm, which is not sufficient for establishing statistical properties of the estimators yielded from the approximation. In this article, we show that L(∞) convergence of the Neumann series approximations to the inverse of the non-parametric information operator and to the efficient scores in missing data problems can be obtained under very simple conditions. This paves the way to the study of the asymptotic properties of the doubly robust estimators and the locally semiparametric efficient estimator in those difficult situations.
Approximating Functions with Exponential Functions
ERIC Educational Resources Information Center
Gordon, Sheldon P.
2005-01-01
The possibility of approximating a function with a linear combination of exponential functions of the form e[superscript x], e[superscript 2x], ... is considered as a parallel development to the notion of Taylor polynomials which approximate a function with a linear combination of power function terms. The sinusoidal functions sin "x" and cos "x"…
Local density approximations from finite systems
NASA Astrophysics Data System (ADS)
Entwistle, M. T.; Hodgson, M. J. P.; Wetherell, J.; Longstaff, B.; Ramsden, J. D.; Godby, R. W.
2016-11-01
The local density approximation (LDA) constructed through quantum Monte Carlo calculations of the homogeneous electron gas (HEG) is the most common approximation to the exchange-correlation functional in density functional theory. We introduce an alternative set of LDAs constructed from slablike systems of one, two, and three electrons that resemble the HEG within a finite region, and illustrate the concept in one dimension. Comparing with the exact densities and Kohn-Sham potentials for various test systems, we find that the LDAs give a good account of the self-interaction correction, but are less reliable when correlation is stronger or currents flow.
ERIC Educational Resources Information Center
Rommel-Esham, Katie; Constable, Susan D.
2006-01-01
In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…
ERIC Educational Resources Information Center
Rommel-Esham, Katie; Constable, Susan D.
2006-01-01
In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…
Structural optimization with approximate sensitivities
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Hopkins, D. A.; Coroneos, R.
1994-01-01
Computational efficiency in structural optimization can be enhanced if the intensive computations associated with the calculation of the sensitivities, that is, gradients of the behavior constraints, are reduced. Approximation to gradients of the behavior constraints that can be generated with small amount of numerical calculations is proposed. Structural optimization with these approximate sensitivities produced correct optimum solution. Approximate gradients performed well for different nonlinear programming methods, such as the sequence of unconstrained minimization technique, method of feasible directions, sequence of quadratic programming, and sequence of linear programming. Structural optimization with approximate gradients can reduce by one third the CPU time that would otherwise be required to solve the problem with explicit closed-form gradients. The proposed gradient approximation shows potential to reduce intensive computation that has been associated with traditional structural optimization.
Approximate circuits for increased reliability
Hamlet, Jason R.; Mayo, Jackson R.
2015-12-22
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Approximate circuits for increased reliability
Hamlet, Jason R.; Mayo, Jackson R.
2015-08-18
Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.
Analytical approximations for the collapse of an empty spherical bubble.
Obreschkow, D; Bruderer, M; Farhat, M
2012-06-01
The Rayleigh equation 3/2R+RR+pρ(-1)=0 with initial conditions R(0)=R(0), R(0)=0 models the collapse of an empty spherical bubble of radius R(T) in an ideal, infinite liquid with far-field pressure p and density ρ. The solution for r≡R/R(0) as a function of time t≡T/T(c), where R(T(c))≡0, is independent of R(0), p, and ρ. While no closed-form expression for r(t) is known, we find that r(0)(t)=(1-t(2))(2/5) approximates r(t) with an error below 1%. A systematic development in orders of t(2) further yields the 0.001% approximation r(*)(t)=r(0)(t)[1-a(1)Li(2.21)(t(2))], where a(1)≈-0.01832099 is a constant and Li is the polylogarithm. The usefulness of these approximations is demonstrated by comparison to high-precision cavitation data obtained in microgravity.
Odic, Darko; Lisboa, Juan Valle; Eisinger, Robert; Olivera, Magdalena Gonzalez; Maiche, Alejandro; Halberda, Justin
2016-01-01
What is the relationship between our intuitive sense of number (e.g., when estimating how many marbles are in a jar), and our intuitive sense of other quantities, including time (e.g., when estimating how long it has been since we last ate breakfast)? Recent work in cognitive, developmental, comparative psychology, and computational neuroscience has suggested that our representations of approximate number, time, and spatial extent are fundamentally linked and constitute a "generalized magnitude system". But, the shared behavioral and neural signatures between number, time, and space may alternatively be due to similar encoding and decision-making processes, rather than due to shared domain-general representations. In this study, we investigate the relationship between approximate number and time in a large sample of 6-8 year-old children in Uruguay by examining how individual differences in the precision of number and time estimation correlate with school mathematics performance. Over four testing days, each child completed an approximate number discrimination task, an approximate time discrimination task, a digit span task, and a large battery of symbolic math tests. We replicate previous reports showing that symbolic math abilities correlate with approximate number precision and extend those findings by showing that math abilities also correlate with approximate time precision. But, contrary to approximate number and time sharing common representations, we find that each of these dimensions uniquely correlates with formal math: approximate number correlates more strongly with formal math compared to time and continues to correlate with math even when precision in time and individual differences in working memory are controlled for. These results suggest that there are important differences in the mental representations of approximate number and approximate time and further clarify the relationship between quantity representations and mathematics. Copyright
Approximating subtree distances between phylogenies.
Bonet, Maria Luisa; St John, Katherine; Mahindru, Ruchi; Amenta, Nina
2006-10-01
We give a 5-approximation algorithm to the rooted Subtree-Prune-and-Regraft (rSPR) distance between two phylogenies, which was recently shown to be NP-complete. This paper presents the first approximation result for this important tree distance. The algorithm follows a standard format for tree distances. The novel ideas are in the analysis. In the analysis, the cost of the algorithm uses a "cascading" scheme that accounts for possible wrong moves. This accounting is missing from previous analysis of tree distance approximation algorithms. Further, we show how all algorithms of this type can be implemented in linear time and give experimental results.
Counting independent sets using the Bethe approximation
Chertkov, Michael; Chandrasekaran, V; Gamarmik, D; Shah, D; Sin, J
2009-01-01
The authors consider the problem of counting the number of independent sets or the partition function of a hard-core model in a graph. The problem in general is computationally hard (P hard). They study the quality of the approximation provided by the Bethe free energy. Belief propagation (BP) is a message-passing algorithm can be used to compute fixed points of the Bethe approximation; however, BP is not always guarantee to converge. As the first result, they propose a simple message-passing algorithm that converges to a BP fixed pont for any grapy. They find that their algorithm converges within a multiplicative error 1 + {var_epsilon} of a fixed point in {Omicron}(n{sup 2}E{sup -4} log{sup 3}(nE{sup -1})) iterations for any bounded degree graph of n nodes. In a nutshell, the algorithm can be thought of as a modification of BP with 'time-varying' message-passing. Next, they analyze the resulting error to the number of independent sets provided by such a fixed point of the Bethe approximation. Using the recently developed loop calculus approach by Vhertkov and Chernyak, they establish that for any bounded graph with large enough girth, the error is {Omicron}(n{sup -{gamma}}) for some {gamma} > 0. As an application, they find that for random 3-regular graph, Bethe approximation of log-partition function (log of the number of independent sets) is within o(1) of corret log-partition - this is quite surprising as previous physics-based predictions were expecting an error of o(n). In sum, their results provide a systematic way to find Bethe fixed points for any graph quickly and allow for estimating error in Bethe approximation using novel combinatorial techniques.
Rytov approximation in electron scattering
NASA Astrophysics Data System (ADS)
Krehl, Jonas; Lubk, Axel
2017-06-01
In this work we introduce the Rytov approximation in the scope of high-energy electron scattering with the motivation of developing better linear models for electron scattering. Such linear models play an important role in tomography and similar reconstruction techniques. Conventional linear models, such as the phase grating approximation, have reached their limits in current and foreseeable applications, most importantly in achieving three-dimensional atomic resolution using electron holographic tomography. The Rytov approximation incorporates propagation effects which are the most pressing limitation of conventional models. While predominately used in the weak-scattering regime of light microscopy, we show that the Rytov approximation can give reasonable results in the inherently strong-scattering regime of transmission electron microscopy.
Dual approximations in optimal control
NASA Technical Reports Server (NTRS)
Hager, W. W.; Ianculescu, G. D.
1984-01-01
A dual approximation for the solution to an optimal control problem is analyzed. The differential equation is handled with a Lagrange multiplier while other constraints are treated explicitly. An algorithm for solving the dual problem is presented.
Fostering Formal Commutativity Knowledge with Approximate Arithmetic.
Hansen, Sonja Maria; Haider, Hilde; Eichler, Alexandra; Godau, Claudia; Frensch, Peter A; Gaschler, Robert
2015-01-01
How can we enhance the understanding of abstract mathematical principles in elementary school? Different studies found out that nonsymbolic estimation could foster subsequent exact number processing and simple arithmetic. Taking the commutativity principle as a test case, we investigated if the approximate calculation of symbolic commutative quantities can also alter the access to procedural and conceptual knowledge of a more abstract arithmetic principle. Experiment 1 tested first graders who had not been instructed about commutativity in school yet. Approximate calculation with symbolic quantities positively influenced the use of commutativity-based shortcuts in formal arithmetic. We replicated this finding with older first graders (Experiment 2) and third graders (Experiment 3). Despite the positive effect of approximation on the spontaneous application of commutativity-based shortcuts in arithmetic problems, we found no comparable impact on the application of conceptual knowledge of the commutativity principle. Overall, our results show that the usage of a specific arithmetic principle can benefit from approximation. However, the findings also suggest that the correct use of certain procedures does not always imply conceptual understanding. Rather, the conceptual understanding of commutativity seems to lag behind procedural proficiency during elementary school.
Fostering Formal Commutativity Knowledge with Approximate Arithmetic
Hansen, Sonja Maria; Haider, Hilde; Eichler, Alexandra; Godau, Claudia; Frensch, Peter A.; Gaschler, Robert
2015-01-01
How can we enhance the understanding of abstract mathematical principles in elementary school? Different studies found out that nonsymbolic estimation could foster subsequent exact number processing and simple arithmetic. Taking the commutativity principle as a test case, we investigated if the approximate calculation of symbolic commutative quantities can also alter the access to procedural and conceptual knowledge of a more abstract arithmetic principle. Experiment 1 tested first graders who had not been instructed about commutativity in school yet. Approximate calculation with symbolic quantities positively influenced the use of commutativity-based shortcuts in formal arithmetic. We replicated this finding with older first graders (Experiment 2) and third graders (Experiment 3). Despite the positive effect of approximation on the spontaneous application of commutativity-based shortcuts in arithmetic problems, we found no comparable impact on the application of conceptual knowledge of the commutativity principle. Overall, our results show that the usage of a specific arithmetic principle can benefit from approximation. However, the findings also suggest that the correct use of certain procedures does not always imply conceptual understanding. Rather, the conceptual understanding of commutativity seems to lag behind procedural proficiency during elementary school. PMID:26560311
Exponential approximations in optimal design
NASA Technical Reports Server (NTRS)
Belegundu, A. D.; Rajan, S. D.; Rajgopal, J.
1990-01-01
One-point and two-point exponential functions have been developed and proved to be very effective approximations of structural response. The exponential has been compared to the linear, reciprocal and quadratic fit methods. Four test problems in structural analysis have been selected. The use of such approximations is attractive in structural optimization to reduce the numbers of exact analyses which involve computationally expensive finite element analysis.
Mathematical algorithms for approximate reasoning
NASA Technical Reports Server (NTRS)
Murphy, John H.; Chay, Seung C.; Downs, Mary M.
1988-01-01
Most state of the art expert system environments contain a single and often ad hoc strategy for approximate reasoning. Some environments provide facilities to program the approximate reasoning algorithms. However, the next generation of expert systems should have an environment which contain a choice of several mathematical algorithms for approximate reasoning. To meet the need for validatable and verifiable coding, the expert system environment must no longer depend upon ad hoc reasoning techniques but instead must include mathematically rigorous techniques for approximate reasoning. Popular approximate reasoning techniques are reviewed, including: certainty factors, belief measures, Bayesian probabilities, fuzzy logic, and Shafer-Dempster techniques for reasoning. A group of mathematically rigorous algorithms for approximate reasoning are focused on that could form the basis of a next generation expert system environment. These algorithms are based upon the axioms of set theory and probability theory. To separate these algorithms for approximate reasoning various conditions of mutual exclusivity and independence are imposed upon the assertions. Approximate reasoning algorithms presented include: reasoning with statistically independent assertions, reasoning with mutually exclusive assertions, reasoning with assertions that exhibit minimum overlay within the state space, reasoning with assertions that exhibit maximum overlay within the state space (i.e. fuzzy logic), pessimistic reasoning (i.e. worst case analysis), optimistic reasoning (i.e. best case analysis), and reasoning with assertions with absolutely no knowledge of the possible dependency among the assertions. A robust environment for expert system construction should include the two modes of inference: modus ponens and modus tollens. Modus ponens inference is based upon reasoning towards the conclusion in a statement of logical implication, whereas modus tollens inference is based upon reasoning away
Approximation techniques for neuromimetic calculus.
Vigneron, V; Barret, C
1999-06-01
Approximation Theory plays a central part in modern statistical methods, in particular in Neural Network modeling. These models are able to approximate a large amount of metric data structures in their entire range of definition or at least piecewise. We survey most of the known results for networks of neurone-like units. The connections to classical statistical ideas such as ordinary least squares (LS) are emphasized.
Kammerer-Jacquet, Solène-Florence; Crouzet, Laurence; Brunot, Angélique; Dagher, Julien; Pladys, Adélaïde; Edeline, Julien; Laguerre, Brigitte; Peyronnet, Benoit; Mathieu, Romain; Verhoest, Grégory; Patard, Jean-Jacques; Lespagnol, Alexandra; Mosser, Jean; Denis, Marc; Messai, Yosra; Gad-Lapiteau, Sophie; Chouaib, Salem; Belaud-Rotureau, Marc-Antoine; Bensalah, Karim; Rioux-Leclercq, Nathalie
2017-01-01
Clear cell renal cell carcinoma (ccRCC) is an aggressive tumor that is characterized in most cases by inactivation of the tumor suppressor gene VHL. The VHL/HIF/VEGF pathway thus plays a major role in angiogenesis and is currently targeted by anti-angiogenic therapy. The emergence of resistance is leading to the use of targeted immunotherapy against immune checkpoint PD1/PDL1 that restores antitumor immune response. The correlation between VHL status and PD-L1 expression has been little investigated. In this study, we retrospectively reviewed 98 consecutive cases of ccRCC and correlated PD-L1 expression by immunohistochemistry (IHC) with clinical data (up to 10-year follow-up), pathological criteria, VEGF, PAR-3, CAIX and PD-1 expressions by IHC and complete VHL status (deletion, mutation and promoter hypermethylation). PD-L1 expression was observed in 69 ccRCC (70.4%) and the corresponding patients had a worse prognosis, with a median specific survival of 52 months (p = 0.03). PD-L1 expression was significantly associated with poor prognostic factors such as a higher ISUP nucleolar grade (p = 0.01), metastases at diagnosis (p = 0.01), a sarcomatoid component (p = 0.04), overexpression of VEGF (p = 0.006), and cytoplasmic PAR-3 expression (p = 0.01). PD-L1 expression was also associated with dense PD-1 expression (p = 0.007) and with ccRCC with 0 or 1 alteration(s) (non-inactivated VHL tumors; p = 0.007) that remained significant after multivariate analysis (p = 0.004 and p = 0.024, respectively). Interestingly, all wild-type VHL tumors (no VHL gene alteration, 11.2%) expressed PD-L1. In this study, we found PD-L1 expression to be associated with noninactivated VHL tumors and in particular wild-type VHL ccRCC, which may benefit from therapies inhibiting PD-L1/PD-1.
Wavelet Sparse Approximate Inverse Preconditioners
NASA Technical Reports Server (NTRS)
Chan, Tony F.; Tang, W.-P.; Wan, W. L.
1996-01-01
There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle and Chow and Saad also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that, come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact, by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm.
Hamilton's Principle and Approximate Solutions to Problems in Classical Mechanics
ERIC Educational Resources Information Center
Schlitt, D. W.
1977-01-01
Shows how to use the Ritz method for obtaining approximate solutions to problems expressed in variational form directly from the variational equation. Application of this method to classical mechanics is given. (MLH)
Hamilton's Principle and Approximate Solutions to Problems in Classical Mechanics
ERIC Educational Resources Information Center
Schlitt, D. W.
1977-01-01
Shows how to use the Ritz method for obtaining approximate solutions to problems expressed in variational form directly from the variational equation. Application of this method to classical mechanics is given. (MLH)
Is Approximate Number Precision a Stable Predictor of Math Ability?
Libertus, Melissa E.; Feigenson, Lisa; Halberda, Justin
2013-01-01
Previous research shows that children’s ability to estimate numbers of items using their Approximate Number System (ANS) predicts later math ability. To more closely examine the predictive role of early ANS acuity on later abilities, we assessed the ANS acuity, math ability, and expressive vocabulary of preschoolers twice, six months apart. We also administered attention and memory span tasks to ask whether the previously reported association between ANS acuity and math ability is ANS-specific or attributable to domain-general cognitive skills. We found that early ANS acuity predicted math ability six months later, even when controlling for individual differences in age, expressive vocabulary, and math ability at the initial testing. In addition, ANS acuity was a unique concurrent predictor of math ability above and beyond expressive vocabulary, attention, and memory span. These findings of a predictive relationship between early ANS acuity and later math ability add to the growing evidence for the importance of early numerical estimation skills. PMID:23814453
Rational approximations for tomographic reconstructions
NASA Astrophysics Data System (ADS)
Reynolds, Matthew; Beylkin, Gregory; Monzón, Lucas
2013-06-01
We use optimal rational approximations of projection data collected in x-ray tomography to improve image resolution. Under the assumption that the object of interest is described by functions with jump discontinuities, for each projection we construct its rational approximation with a small (near optimal) number of terms for a given accuracy threshold. This allows us to augment the measured data, i.e., double the number of available samples in each projection or, equivalently, extend (double) the domain of their Fourier transform. We also develop a new, fast, polar coordinate Fourier domain algorithm which uses our nonlinear approximation of projection data in a natural way. Using augmented projections of the Shepp-Logan phantom, we provide a comparison between the new algorithm and the standard filtered back-projection algorithm. We demonstrate that the reconstructed image has improved resolution without additional artifacts near sharp transitions in the image.
Approximate solutions to fractional subdiffusion equations
NASA Astrophysics Data System (ADS)
Hristov, J.
2011-03-01
The work presents integral solutions of the fractional subdiffusion equation by an integral method, as an alternative approach to the solutions employing hypergeometric functions. The integral solution suggests a preliminary defined profile with unknown coefficients and the concept of penetration (boundary layer). The prescribed profile satisfies the boundary conditions imposed by the boundary layer that allows its coefficients to be expressed through its depth as unique parameter. The integral approach to the fractional subdiffusion equation suggests a replacement of the real distribution function by the approximate profile. The solution was performed with Riemann-Liouville time-fractional derivative since the integral approach avoids the definition of the initial value of the time-derivative required by the Laplace transformed equations and leading to a transition to Caputo derivatives. The method is demonstrated by solutions to two simple fractional subdiffusion equations (Dirichlet problems): 1) Time-Fractional Diffusion Equation, and 2) Time-Fractional Drift Equation, both of them having fundamental solutions expressed through the M-Wright function. The solutions demonstrate some basic issues of the suggested integral approach, among them: a) Choice of the profile, b) Integration problem emerging when the distribution (profile) is replaced by a prescribed one with unknown coefficients; c) Optimization of the profile in view to minimize the average error of approximations; d) Numerical results allowing comparisons to the known solutions expressed to the M-Wright function and error estimations.
Approximated solutions to Born-Infeld dynamics
NASA Astrophysics Data System (ADS)
Ferraro, Rafael; Nigro, Mauro
2016-02-01
The Born-Infeld equation in the plane is usefully captured in complex language. The general exact solution can be written as a combination of holomorphic and anti-holomorphic functions. However, this solution only expresses the potential in an implicit way. We rework the formulation to obtain the complex potential in an explicit way, by means of a perturbative procedure. We take care of the secular behavior common to this kind of approach, by resorting to a symmetry the equation has at the considered order of approximation. We apply the method to build approximated solutions to Born-Infeld electrodynamics. We solve for BI electromagnetic waves traveling in opposite directions. We study the propagation at interfaces, with the aim of searching for effects susceptible to experimental detection. In particular, we show that a reflected wave is produced when a wave is incident on a semi-space containing a magnetostatic field.
Flow past a porous approximate spherical shell
NASA Astrophysics Data System (ADS)
Srinivasacharya, D.
2007-07-01
In this paper, the creeping flow of an incompressible viscous liquid past a porous approximate spherical shell is considered. The flow in the free fluid region outside the shell and in the cavity region of the shell is governed by the Navier Stokes equation. The flow within the porous annulus region of the shell is governed by Darcy’s Law. The boundary conditions used at the interface are continuity of the normal velocity, continuity of the pressure and Beavers and Joseph slip condition. An exact solution for the problem is obtained. An expression for the drag on the porous approximate spherical shell is obtained. The drag experienced by the shell is evaluated numerically for several values of the parameters governing the flow.
Heat pipe transient response approximation.
Reid, R. S.
2001-01-01
A simple and concise routine that approximates the response of an alkali metal heat pipe to changes in evaporator heat transfer rate is described. This analytically based routine is compared with data from a cylindrical heat pipe with a crescent-annular wick that undergoes gradual (quasi-steady) transitions through the viscous and condenser boundary heat transfer limits. The sonic heat transfer limit can also be incorporated into this routine for heat pipes with more closely coupled condensers. The advantages and obvious limitations of this approach are discussed. For reference, a source code listing for the approximation appears at the end of this paper.
Approximating spatially exclusive invasion processes.
Ross, Joshua V; Binder, Benjamin J
2014-05-01
A number of biological processes, such as invasive plant species and cell migration, are composed of two key mechanisms: motility and reproduction. Due to the spatially exclusive interacting behavior of these processes a cellular automata (CA) model is specified to simulate a one-dimensional invasion process. Three (independence, Poisson, and 2D-Markov chain) approximations are considered that attempt to capture the average behavior of the CA. We show that our 2D-Markov chain approximation accurately predicts the state of the CA for a wide range of motility and reproduction rates.
Galerkin approximations for dissipative magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Chen, Hudong; Shan, Xiaowen; Montgomery, David
1990-01-01
A Galerkin approximation scheme is proposed for voltage-driven, dissipative magnetohydrodynamics. The trial functions are exact eigenfunctions of the linearized continuum equations and represent helical deformations of the axisymmetric, zero-flow, driven steady state. The lowest nontrivial truncation is explored: one axisymmetric trial function and one helical trial function each for the magnetic and velocity fields. The system resembles the Lorenz approximation to Benard convection, but in the region of believed applicability, its dynamical behavior is rather different, including relaxation to a helically deformed state similar to those that have emerged in the much higher resolution computations of Dahlburg et al.
Second Approximation to Conical Flows
1950-12-01
Public Release WRIGHT AIR DEVELOPMENT CENTER AF-WP-(B)-O-29 JUL 53 100 NOTICES ’When Government drawings, specifications, or other data are used V...so that the X, the approximation always depends on the ( "/)th, etc. Here the second approximation, i.e., the terms in C and 62, are computed and...the scheme shown in Fig. 1, the isentropic equations of motion are (cV-X2) +~X~C 6 +- 4= -x- 1 It is assumed that + Ux !E . $O’/ + (8) Introducing Eqs
Exponential Approximations Using Fourier Series Partial Sums
NASA Technical Reports Server (NTRS)
Banerjee, Nana S.; Geer, James F.
1997-01-01
The problem of accurately reconstructing a piece-wise smooth, 2(pi)-periodic function f and its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f are used to approximate the locations and magnitudes of the discontinuities in f and its first M derivatives. This is accomplished by first finding initial estimates of these quantities based on certain properties of Gibbs phenomenon, and then refining these estimates by fitting the asymptotic form of the Fourier coefficients to the given coefficients using a least-squares approach. It is conjectured that the locations of the singularities are approximated to within O(N(sup -M-2), and the associated jump of the k(sup th) derivative of f is approximated to within O(N(sup -M-l+k), as N approaches infinity, and the method is robust. These estimates are then used with a class of singular basis functions, which have certain 'built-in' singularities, to construct a new sequence of approximations to f. Each of these new approximations is the sum of a piecewise smooth function and a new Fourier series partial sum. When N is proportional to M, it is shown that these new approximations, and their derivatives, converge exponentially in the maximum norm to f, and its corresponding derivatives, except in the union of a finite number of small open intervals containing the points of singularity of f. The total measure of these intervals decreases exponentially to zero as M approaches infinity. The technique is illustrated with several examples.
Pythagorean Approximations and Continued Fractions
ERIC Educational Resources Information Center
Peralta, Javier
2008-01-01
In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…
Pythagorean Approximations and Continued Fractions
ERIC Educational Resources Information Center
Peralta, Javier
2008-01-01
In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…
Singularly Perturbed Lie Bracket Approximation
Durr, Hans-Bernd; Krstic, Miroslav; Scheinker, Alexander; Ebenbauer, Christian
2015-03-27
Here, we consider the interconnection of two dynamical systems where one has an input-affine vector field. We show that by employing a singular perturbation analysis and the Lie bracket approximation technique, the stability of the overall system can be analyzed by regarding the stability properties of two reduced, uncoupled systems.
Ito, K; Sasano, H; Matsunaga, G; Sato, S; Yajima, A; Nasim, S; Garret, C T
1997-11-01
The p21 protein inhibits cyclin-dependent kinases and mediates cell-cycle arrest and cell differentiation. It is induced by wild-type p53, but not by mutant p53. This study of 75 patients with endometrial carcinoma investigates the relationship between p21 expression and the functional status of p53, and the usefulness of p21 as a prognostic marker. Correlations were determined between p21 immunoreactivity, p53 overexpression as examined by immunohistochemistry, p53 DNA mutations as examined by polymerase chain reaction-single-stranded conformation polymorphism (PCR-SSCP) analysis, and clinicopathological features, including the clinical outcome. Immunoreactivity for p21 and p53 mutations were detected in 47 (62.7 per cent), 37 (49 per cent), and 23 (31 per cent) patients, respectively. There were no significant correlations between the presence or absence of p21 immunoreactivity and p53 overexpression and DNA mutations. Survival curves revealed that patients with p53 overexpression tended to have a poorer prognosis than those without p53 overexpression (P = 0.104), that patients with p53 mutations had a significantly worse prognosis than those without mutations (P = 0.035), and that patients with p21 expression tended to have a better prognosis than those without p21 expression (P = 0.074). Immunohistochemical analysis of p21 was not useful for evaluating the functional status of p53 in patients with endometrial carcinoma. Both p21 expression and p53 abnormalities were considered as prognostic indicators in patients with endometrioid endometrial carcinoma.
Localization and stationary phase approximation on supermanifolds
NASA Astrophysics Data System (ADS)
Zakharevich, Valentin
2017-08-01
Given an odd vector field Q on a supermanifold M and a Q-invariant density μ on M, under certain compactness conditions on Q, the value of the integral ∫Mμ is determined by the value of μ on any neighborhood of the vanishing locus N of Q. We present a formula for the integral in the case where N is a subsupermanifold which is appropriately non-degenerate with respect to Q. In the process, we discuss the linear algebra necessary to express our result in a coordinate independent way. We also extend the stationary phase approximation and the Morse-Bott lemma to supermanifolds.
Curved Finite Elements and Curve Approximation
NASA Technical Reports Server (NTRS)
Baart, M. L.
1985-01-01
The approximation of parameterized curves by segments of parabolas that pass through the endpoints of each curve segment arises naturally in all quadratic isoparametric transformations. While not as popular as cubics in curve design problems, the use of parabolas allows the introduction of a geometric measure of the discrepancy between given and approximating curves. The free parameters of the parabola may be used to optimize the fit, and constraints that prevent overspill and curve degeneracy are introduced. This leads to a constrained optimization problem in two varibles that can be solved quickly and reliably by a simple method that takes advantage of the special structure of the problem. For applications in the field of computer-aided design, the given curves are often cubic polynomials, and the coefficient may be calculated in closed form in terms of polynomial coefficients by using a symbolic machine language so that families of curves can be approximated with no further integration. For general curves, numerical quadrature may be used, as in the implementation where the Romberg quadrature is applied. The coefficient functions C sub 1 (gamma) and C sub 2 (gamma) are expanded as polynomials in gamma, so that for given A(s) and B(s) the integrations need only be done once. The method was used to find optimal constrained parabolic approximation to a wide variety of given curves.
Forsyth, Ann; Lytle, Leslie; Riper, David Van
2011-01-01
A significant amount of travel is undertaken to find food. This paper examines challenges in measuring access to food using Geographic Information Systems (GIS), important in studies of both travel and eating behavior. It compares different sources of data available including fieldwork, land use and parcel data, licensing information, commercial listings, taxation data, and online street-level photographs. It proposes methods to classify different kinds of food sales places in a way that says something about their potential for delivering healthy food options. In assessing the relationship between food access and travel behavior, analysts must clearly conceptualize key variables, document measurement processes, and be clear about the strengths and weaknesses of data. PMID:21837264
NASA Astrophysics Data System (ADS)
Wu, Dongmei; Wang, Zhongcheng
2006-03-01
According to Mickens [R.E. Mickens, Comments on a Generalized Galerkin's method for non-linear oscillators, J. Sound Vib. 118 (1987) 563], the general HB (harmonic balance) method is an approximation to the convergent Fourier series representation of the periodic solution of a nonlinear oscillator and not an approximation to an expansion in terms of a small parameter. Consequently, for a nonlinear undamped Duffing equation with a driving force Bcos(ωx), to find a periodic solution when the fundamental frequency is identical to ω, the corresponding Fourier series can be written as y˜(x)=∑n=1m acos[(2n-1)ωx]. How to calculate the coefficients of the Fourier series efficiently with a computer program is still an open problem. For HB method, by substituting approximation y˜(x) into force equation, expanding the resulting expression into a trigonometric series, then letting the coefficients of the resulting lowest-order harmonic be zero, one can obtain approximate coefficients of approximation y˜(x) [R.E. Mickens, Comments on a Generalized Galerkin's method for non-linear oscillators, J. Sound Vib. 118 (1987) 563]. But for nonlinear differential equations such as Duffing equation, it is very difficult to construct higher-order analytical approximations, because the HB method requires solving a set of algebraic equations for a large number of unknowns with very complex nonlinearities. To overcome the difficulty, forty years ago, Urabe derived a computational method for Duffing equation based on Galerkin procedure [M. Urabe, A. Reiter, Numerical computation of nonlinear forced oscillations by Galerkin's procedure, J. Math. Anal. Appl. 14 (1966) 107-140]. Dooren obtained an approximate solution of the Duffing oscillator with a special set of parameters by using Urabe's method [R. van Dooren, Stabilization of Cowell's classic finite difference method for numerical integration, J. Comput. Phys. 16 (1974) 186-192]. In this paper, in the frame of the general HB method
An accurate two-phase approximate solution to the acute viral infection model
Perelson, Alan S
2009-01-01
During an acute viral infection, virus levels rise, reach a peak and then decline. Data and numerical solutions suggest the growth and decay phases are linear on a log scale. While viral dynamic models are typically nonlinear with analytical solutions difficult to obtain, the exponential nature of the solutions suggests approximations can be found. We derive a two-phase approximate solution to the target cell limited influenza model and illustrate the accuracy using data and previously established parameter values of six patients infected with influenza A. For one patient, the subsequent fall in virus concentration was not consistent with our predictions during the decay phase and an alternate approximation is derived. We find expressions for the rate and length of initial viral growth in terms of the parameters, the extent each parameter is involved in viral peaks, and the single parameter responsible for virus decay. We discuss applications of this analysis in antiviral treatments and investigating host and virus heterogeneities.
Planas, R; Carrillo, J; Sanchez, A; Ruiz de Villa, M C; Nuñez, F; Verdaguer, J; James, R F L; Pujol-Borrell, R; Vives-Pi, M
2010-01-01
Type 1 diabetes (T1D) is caused by the selective destruction of the insulin-producing β cells of the pancreas by an autoimmune response. Due to ethical and practical difficulties, the features of the destructive process are known from a small number of observations, and transcriptomic data are remarkably missing. Here we report whole genome transcript analysis validated by quantitative reverse transcription–polymerase chain reaction (qRT–PCR) and correlated with immunohistological observations for four T1D pancreases (collected 5 days, 9 months, 8 and 10 years after diagnosis) and for purified islets from two of them. Collectively, the expression profile of immune response and inflammatory genes confirmed the current views on the immunopathogenesis of diabetes and showed similarities with other autoimmune diseases; for example, an interferon signature was detected. The data also supported the concept that the autoimmune process is maintained and balanced partially by regeneration and regulatory pathway activation, e.g. non-classical class I human leucocyte antigen and leucocyte immunoglobulin-like receptor, subfamily B1 (LILRB1). Changes in gene expression in islets were confined mainly to endocrine and neural genes, some of which are T1D autoantigens. By contrast, these islets showed only a few overexpressed immune system genes, among which bioinformatic analysis pointed to chemokine (C-C motif) receptor 5 (CCR5) and chemokine (CXC motif) receptor 4) (CXCR4) chemokine pathway activation. Remarkably, the expression of genes of innate immunity, complement, chemokines, immunoglobulin and regeneration genes was maintained or even increased in the long-standing cases. Transcriptomic data favour the view that T1D is caused by a chronic inflammatory process with a strong participation of innate immunity that progresses in spite of the regulatory and regenerative mechanisms. PMID:19912253
Approximate gauge symmetry of composite vector bosons
NASA Astrophysics Data System (ADS)
Suzuki, Mahiko
2010-08-01
It can be shown in a solvable field theory model that the couplings of the composite vector bosons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector bosons made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in a more intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.
Ab initio dynamical vertex approximation
NASA Astrophysics Data System (ADS)
Galler, Anna; Thunström, Patrik; Gunacker, Patrik; Tomczak, Jan M.; Held, Karsten
2017-03-01
Diagrammatic extensions of dynamical mean-field theory (DMFT) such as the dynamical vertex approximation (DΓ A) allow us to include nonlocal correlations beyond DMFT on all length scales and proved their worth for model calculations. Here, we develop and implement an Ab initio DΓ A approach (AbinitioDΓ A ) for electronic structure calculations of materials. The starting point is the two-particle irreducible vertex in the two particle-hole channels which is approximated by the bare nonlocal Coulomb interaction and all local vertex corrections. From this, we calculate the full nonlocal vertex and the nonlocal self-energy through the Bethe-Salpeter equation. The AbinitioDΓ A approach naturally generates all local DMFT correlations and all nonlocal G W contributions, but also further nonlocal correlations beyond: mixed terms of the former two and nonlocal spin fluctuations. We apply this new methodology to the prototypical correlated metal SrVO3.
Random-Phase Approximation Methods
NASA Astrophysics Data System (ADS)
Chen, Guo P.; Voora, Vamsee K.; Agee, Matthew M.; Balasubramani, Sree Ganesh; Furche, Filipp
2017-05-01
Random-phase approximation (RPA) methods are rapidly emerging as cost-effective validation tools for semilocal density functional computations. We present the theoretical background of RPA in an intuitive rather than formal fashion, focusing on the physical picture of screening and simple diagrammatic analysis. A new decomposition of the RPA correlation energy into plasmonic modes leads to an appealing visualization of electron correlation in terms of charge density fluctuations. Recent developments in the areas of beyond-RPA methods, RPA correlation potentials, and efficient algorithms for RPA energy and property calculations are reviewed. The ability of RPA to approximately capture static correlation in molecules is quantified by an analysis of RPA natural occupation numbers. We illustrate the use of RPA methods in applications to small-gap systems such as open-shell d- and f-element compounds, radicals, and weakly bound complexes, where semilocal density functional results exhibit strong functional dependence.
Testing the frozen flow approximation
NASA Technical Reports Server (NTRS)
Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro
1993-01-01
We investigate the accuracy of the frozen-flow approximation (FFA), recently proposed by Matarrese, et al. (1992), for following the nonlinear evolution of cosmological density fluctuations under gravitational instability. We compare a number of statistics between results of the FFA and n-body simulations, including those used by Melott, Pellman & Shandarin (1993) to test the Zel'dovich approximation. The FFA performs reasonably well in a statistical sense, e.g. in reproducing the counts-in-cell distribution, at small scales, but it does poorly in the crosscorrelation with n-body which means it is generally not moving mass to the right place, especially in models with high small-scale power.
Potential of the approximation method
Amano, K.; Maruoka, A.
1996-12-31
Developing some techniques for the approximation method, we establish precise versions of the following statements concerning lower bounds for circuits that detect cliques of size s in a graph with m vertices: For 5 {le} s {le} m/4, a monotone circuit computing CLIQUE(m, s) contains at least (1/2)1.8{sup min}({radical}s-1/2,m/(4s)) gates: If a non-monotone circuit computes CLIQUE using a {open_quotes}small{close_quotes} amount of negation, then the circuit contains an exponential number of gates. The former is proved very simply using so called bottleneck counting argument within the framework of approximation, whereas the latter is verified introducing a notion of restricting negation and generalizing the sunflower contraction.
Nonlinear Filtering and Approximation Techniques
1991-09-01
Shwartz), Academic Press (1991). [191 M.Cl. ROUTBAUD, Fiting lindairc par morceaux avec petit bruit d’obserration, These. Universit6 de Provence ( 1990...Kernel System (GKS), Academic Press (1983). 181 H.J. KUSHNER, Probability methods for approximations in stochastic control and for elliptic equations... Academic Press (1977). [9] F. LE GLAND, Time discretization of nonlinear filtering equations, in: 28th. IEEE CDC, Tampa, pp. 2601-2606. IEEE Press (1989
Analytical solution approximation for bearing
NASA Astrophysics Data System (ADS)
Hanafi, Lukman; Mufid, M. Syifaul
2017-08-01
The purpose of lubrication is to separate two surfaces sliding past each other with a film of some material which can be sheared without causing any damage to the surfaces. Reynolds equation is a basic equation for fluid lubrication which is applied in the bearing problem. This equation can be derived from Navier-Stokes equation and continuity equation. In this paper Reynolds equation is solved using analytical approximation by making simplification to obtain pressure distribution.
Ultrafast approximation for phylogenetic bootstrap.
Minh, Bui Quang; Nguyen, Minh Anh Thi; von Haeseler, Arndt
2013-05-01
Nonparametric bootstrap has been a widely used tool in phylogenetic analysis to assess the clade support of phylogenetic trees. However, with the rapidly growing amount of data, this task remains a computational bottleneck. Recently, approximation methods such as the RAxML rapid bootstrap (RBS) and the Shimodaira-Hasegawa-like approximate likelihood ratio test have been introduced to speed up the bootstrap. Here, we suggest an ultrafast bootstrap approximation approach (UFBoot) to compute the support of phylogenetic groups in maximum likelihood (ML) based trees. To achieve this, we combine the resampling estimated log-likelihood method with a simple but effective collection scheme of candidate trees. We also propose a stopping rule that assesses the convergence of branch support values to automatically determine when to stop collecting candidate trees. UFBoot achieves a median speed up of 3.1 (range: 0.66-33.3) to 10.2 (range: 1.32-41.4) compared with RAxML RBS for real DNA and amino acid alignments, respectively. Moreover, our extensive simulations show that UFBoot is robust against moderate model violations and the support values obtained appear to be relatively unbiased compared with the conservative standard bootstrap. This provides a more direct interpretation of the bootstrap support. We offer an efficient and easy-to-use software (available at http://www.cibiv.at/software/iqtree) to perform the UFBoot analysis with ML tree inference.
Approximate Counting of Graphical Realizations.
Erdős, Péter L; Kiss, Sándor Z; Miklós, István; Soukup, Lajos
2015-01-01
In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations.
Approximate Counting of Graphical Realizations
2015-01-01
In 1999 Kannan, Tetali and Vempala proposed a MCMC method to uniformly sample all possible realizations of a given graphical degree sequence and conjectured its rapidly mixing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper, Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regular bipartite graphs (by Miklós, Erdős and Soukup, 2013). Several heuristics on counting the number of possible realizations exist (via sampling processes), and while they work well in practice, so far no approximation guarantees exist for such an approach. This paper is the first to develop a method for counting realizations with provable approximation guarantee. In fact, we solve a slightly more general problem; besides the graphical degree sequence a small set of forbidden edges is also given. We show that for the general problem (which contains the Greenhill problem and the Miklós, Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing. Further, we show that this new problem is self-reducible therefore it provides a fully polynomial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations. PMID:26161994
Computer Experiments for Function Approximations
Chang, A; Izmailov, I; Rizzo, S; Wynter, S; Alexandrov, O; Tong, C
2007-10-15
This research project falls in the domain of response surface methodology, which seeks cost-effective ways to accurately fit an approximate function to experimental data. Modeling and computer simulation are essential tools in modern science and engineering. A computer simulation can be viewed as a function that receives input from a given parameter space and produces an output. Running the simulation repeatedly amounts to an equivalent number of function evaluations, and for complex models, such function evaluations can be very time-consuming. It is then of paramount importance to intelligently choose a relatively small set of sample points in the parameter space at which to evaluate the given function, and then use this information to construct a surrogate function that is close to the original function and takes little time to evaluate. This study was divided into two parts. The first part consisted of comparing four sampling methods and two function approximation methods in terms of efficiency and accuracy for simple test functions. The sampling methods used were Monte Carlo, Quasi-Random LP{sub {tau}}, Maximin Latin Hypercubes, and Orthogonal-Array-Based Latin Hypercubes. The function approximation methods utilized were Multivariate Adaptive Regression Splines (MARS) and Support Vector Machines (SVM). The second part of the study concerned adaptive sampling methods with a focus on creating useful sets of sample points specifically for monotonic functions, functions with a single minimum and functions with a bounded first derivative.
CMB-lensing beyond the Born approximation
NASA Astrophysics Data System (ADS)
Marozzi, Giovanni; Fanizza, Giuseppe; Di Dio, Enea; Durrer, Ruth
2016-09-01
We investigate the weak lensing corrections to the cosmic microwave background temperature anisotropies considering effects beyond the Born approximation. To this aim, we use the small deflection angle approximation, to connect the lensed and unlensed power spectra, via expressions for the deflection angles up to third order in the gravitational potential. While the small deflection angle approximation has the drawback to be reliable only for multipoles l lesssim 2500, it allows us to consistently take into account the non-Gaussian nature of cosmological perturbation theory beyond the linear level. The contribution to the lensed temperature power spectrum coming from the non-Gaussian nature of the deflection angle at higher order is a new effect which has not been taken into account in the literature so far. It turns out to be the leading contribution among the post-Born lensing corrections. On the other hand, the effect is smaller than corrections coming from non-linearities in the matter power spectrum, and its imprint on CMB lensing is too small to be seen in present experiments.
Analytic approximate radiation effects due to Bremsstrahlung
Ben-Zvi I.
2012-02-01
The purpose of this note is to provide analytic approximate expressions that can provide quick estimates of the various effects of the Bremsstrahlung radiation produced relatively low energy electrons, such as the dumping of the beam into the beam stop at the ERL or field emission in superconducting cavities. The purpose of this work is not to replace a dependable calculation or, better yet, a measurement under real conditions, but to provide a quick but approximate estimate for guidance purposes only. These effects include dose to personnel, ozone generation in the air volume exposed to the radiation, hydrogen generation in the beam dump water cooling system and radiation damage to near-by magnets. These expressions can be used for other purposes, but one should note that the electron beam energy range is limited. In these calculations the good range is from about 0.5 MeV to 10 MeV. To help in the application of this note, calculations are presented as a worked out example for the beam dump of the R&D Energy Recovery Linac.
Variational extensions of the mean spherical approximation
NASA Astrophysics Data System (ADS)
Blum, L.; Ubriaco, M.
2000-04-01
In a previous work we have proposed a method to study complex systems with objects of arbitrary size. For certain specific forms of the atomic and molecular interactions, surprisingly simple and accurate theories (The Variational Mean Spherical Scaling Approximation, VMSSA) [(Velazquez, Blum J. Chem. Phys. 110 (1990) 10 931; Blum, Velazquez, J. Quantum Chem. (Theochem), in press)] can be obtained. The basic idea is that if the interactions can be expressed in a rapidly converging sum of (complex) exponentials, then the Ornstein-Zernike equation (OZ) has an analytical solution. This analytical solution is used to construct a robust interpolation scheme, the variation mean spherical scaling approximation (VMSSA). The Helmholtz excess free energy Δ A=Δ E- TΔ S is then written as a function of a scaling matrix Γ. Both the excess energy Δ E( Γ) and the excess entropy Δ S( Γ) will be functionals of Γ. In previous work of this series the form of this functional was found for the two- (Blum, Herrera, Mol. Phys. 96 (1999) 821) and three-exponential closures of the OZ equation (Blum, J. Stat. Phys., submitted for publication). In this paper we extend this to M Yukawas, a complete basis set: We obtain a solution for the one-component case and give a closed-form expression for the MSA excess entropy, which is also the VMSSA entropy.
Recent SFR calibrations and the constant SFR approximation
NASA Astrophysics Data System (ADS)
Cerviño, M.; Bongiovanni, A.; Hidalgo, S.
2016-05-01
Aims: Star formation rate (SFR) inferences are based on the so-called constant SFR approximation, where synthesis models are required to provide a calibration. We study the key points of such an approximation with the aim to produce accurate SFR inferences. Methods: We use the intrinsic algebra of synthesis models and explore how the SFR can be inferred from the integrated light without any assumption about the underlying star formation history (SFH). Results: We show that the constant SFR approximation is a simplified expression of deeper characteristics of synthesis models: It characterizes the evolution of single stellar populations (SSPs), from which the SSPs as a sensitivity curve over different measures of the SFH can be obtained. As results, we find that (1) the best age to calibrate SFR indices is the age of the observed system (i.e., about 13 Gyr for z = 0 systems); (2) constant SFR and steady-state luminosities are not required to calibrate the SFR; (3) it is not possible to define a single SFR timescale over which the recent SFH is averaged, and we suggest to use typical SFR indices (ionizing flux, UV fluxes) together with untypical ones (optical or IR fluxes) to correct the SFR for the contribution of the old component of the SFH. We show how to use galaxy colors to quote age ranges where the recent component of the SFH is stronger or softer than the older component. Conclusions: Despite of SFR calibrations are unaffected by this work, the meaning of results obtained by SFR inferences does. In our framework, results such as the correlation of SFR timescales with galaxy colors, or the sensitivity of different SFR indices to variations in the SFH, fit naturally. This framework provides a theoretical guide-line to optimize the available information from data and numerical experiments to improve the accuracy of SFR inferences.
Convergence to approximate solutions and perturbation resilience of iterative algorithms
NASA Astrophysics Data System (ADS)
Reich, Simeon; Zaslavski, Alexander J.
2017-04-01
We first consider nonexpansive self-mappings of a metric space and study the asymptotic behavior of their inexact orbits. We then apply our results to the analysis of iterative methods for finding approximate fixed points of nonexpansive mappings and approximate zeros of monotone operators.
Optimal Markov approximations and generalized embeddings
NASA Astrophysics Data System (ADS)
Holstein, Detlef; Kantz, Holger
2009-05-01
Based on information theory, we present a method to determine an optimal Markov approximation for modeling and prediction from time series data. The method finds a balance between minimal modeling errors by taking as much as possible memory into account and minimal statistical errors by working in embedding spaces of rather small dimension. A key ingredient is an estimate of the statistical error of entropy estimates. The method is illustrated with several examples, and the consequences for prediction are evaluated by means of the root-mean-squared prediction error for point prediction.
The monoenergetic approximation in stellarator neoclassical calculations
NASA Astrophysics Data System (ADS)
Landreman, Matt
2011-08-01
In 'monoenergetic' stellarator neoclassical calculations, to expedite computation, ad hoc changes are made to the kinetic equation so speed enters only as a parameter. Here we examine the validity of this approach by considering the effective particle trajectories in a model magnetic field. We find monoenergetic codes systematically under-predict the true trapped particle fraction. The error in the trapped ion fraction can be of order unity for large but experimentally realizable values of the radial electric field, suggesting some results of these codes may be unreliable in this regime. This inaccuracy is independent of any errors introduced by approximation of the collision operator.
Neighbourhood approximation using randomized forests.
Konukoglu, Ender; Glocker, Ben; Zikic, Darko; Criminisi, Antonio
2013-10-01
Leveraging available annotated data is an essential component of many modern methods for medical image analysis. In particular, approaches making use of the "neighbourhood" structure between images for this purpose have shown significant potential. Such techniques achieve high accuracy in analysing an image by propagating information from its immediate "neighbours" within an annotated database. Despite their success in certain applications, wide use of these methods is limited due to the challenging task of determining the neighbours for an out-of-sample image. This task is either computationally expensive due to large database sizes and costly distance evaluations, or infeasible due to distance definitions over semantic information, such as ground truth annotations, which is not available for out-of-sample images. This article introduces Neighbourhood Approximation Forests (NAFs), a supervised learning algorithm providing a general and efficient approach for the task of approximate nearest neighbour retrieval for arbitrary distances. Starting from an image training database and a user-defined distance between images, the algorithm learns to use appearance-based features to cluster images approximating the neighbourhood structured induced by the distance. NAF is able to efficiently infer nearest neighbours of an out-of-sample image, even when the original distance is based on semantic information. We perform experimental evaluation in two different scenarios: (i) age prediction from brain MRI and (ii) patch-based segmentation of unregistered, arbitrary field of view CT images. The results demonstrate the performance, computational benefits, and potential of NAF for different image analysis applications. Copyright © 2013 Elsevier B.V. All rights reserved.
Topics in Multivariate Approximation Theory.
1982-05-01
of the Bramble -Hilbert lemma (see Bramble & Hhert (13ŕ). Kergin’s scheme raises some questions. In .ontrast £.t its univar- iate antecedent, it...J. R. Rice (19791# An adaptive algorithm for multivariate approximation giving optimal convergence rates, J.Approx. Theory 25, 337-359. J. H. Bramble ...J.Numer.Anal. 7, 112-124. J. H. Bramble & S. R. Hilbert (19711, BoUnds for a class of linear functionals with applications to Hermite interpolation
Approximate transferability in conjugated polyalkenes
NASA Astrophysics Data System (ADS)
Eskandari, Keiamars; Mandado, Marcos; Mosquera, Ricardo A.
2007-03-01
QTAIM computed atomic and bond properties, as well as delocalization indices (obtained from electron densities computed at HF, MP2 and B3LYP levels) of several linear and branched conjugated polyalkenes and O- and N-containing conjugated polyenes have been employed to assess approximate transferable CH groups. The values of these properties indicate the effects of the functional group extend to four CH groups, whereas those of the terminal carbon affect up to three carbons. Ternary carbons also modify significantly the properties of atoms in α, β and γ.
Improved non-approximability results
Bellare, M.; Sudan, M.
1994-12-31
We indicate strong non-approximability factors for central problems: N{sup 1/4} for Max Clique; N{sup 1/10} for Chromatic Number; and 66/65 for Max 3SAT. Underlying the Max Clique result is a proof system in which the verifier examines only three {open_quotes}free bits{close_quotes} to attain an error of 1/2. Underlying the Chromatic Number result is a reduction from Max Clique which is more efficient than previous ones.
Approximation for Bayesian Ability Estimation.
1987-02-18
posterior pdfs of ande are given by p(-[Y) p(F) F P((y lei’ j)P )d. SiiJ i (4) a r~d p(e Iy) - p(t0) 1 J i P(Yij ei, (5) As shown in Tsutakawa and Lin...inverse A Hessian of the log of (27) with respect to , evaulatedat a Then, under regularity conditions, the marginal posterior pdf of O is...two-way contingency tables. Journal of Educational Statistics, 11, 33-56. Lindley, D.V. (1980). Approximate Bayesian methods. Trabajos Estadistica , 31
Fermion tunneling beyond semiclassical approximation
Majhi, Bibhas Ranjan
2009-02-15
Applying the Hamilton-Jacobi method beyond the semiclassical approximation prescribed in R. Banerjee and B. R. Majhi, J. High Energy Phys. 06 (2008) 095 for the scalar particle, Hawking radiation as tunneling of the Dirac particle through an event horizon is analyzed. We show that, as before, all quantum corrections in the single particle action are proportional to the usual semiclassical contribution. We also compute the modifications to the Hawking temperature and Bekenstein-Hawking entropy for the Schwarzschild black hole. Finally, the coefficient of the logarithmic correction to entropy is shown to be related with the trace anomaly.
Generalized Gradient Approximation Made Simple
Perdew, J.P.; Burke, K.; Ernzerhof, M.
1996-10-01
Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}
Risk analysis using a hybrid Bayesian-approximate reasoning methodology.
Bott, T. F.; Eisenhawer, S. W.
2001-01-01
Analysts are sometimes asked to make frequency estimates for specific accidents in which the accident frequency is determined primarily by safety controls. Under these conditions, frequency estimates use considerable expert belief in determining how the controls affect the accident frequency. To evaluate and document beliefs about control effectiveness, we have modified a traditional Bayesian approach by using approximate reasoning (AR) to develop prior distributions. Our method produces accident frequency estimates that separately express the probabilistic results produced in Bayesian analysis and possibilistic results that reflect uncertainty about the prior estimates. Based on our experience using traditional methods, we feel that the AR approach better documents beliefs about the effectiveness of controls than if the beliefs are buried in Bayesian prior distributions. We have performed numerous expert elicitations in which probabilistic information was sought from subject matter experts not trained In probability. We find it rnuch easier to elicit the linguistic variables and fuzzy set membership values used in AR than to obtain the probability distributions used in prior distributions directly from these experts because it better captures their beliefs and better expresses their uncertainties.
Gennebäck, Nina; Malm, Linus; Hellman, Urban; Waldenström, Anders; Mörner, Stellan
2013-06-10
One of the great problems facing science today lies in data mining of the vast amount of data. In this study we explore a new way of using orthogonal partial least squares-discrimination analysis (OPLS-DA) to analyze multidimensional data. Myocardial tissues from aorta ligated and control rats (sacrificed at the acute, the adaptive and the stable phases of hypertrophy) were analyzed with whole genome microarray and OPLS-DA. Five functional gene transcript groups were found to show interesting clusters associated with the aorta ligated or the control animals. Clustering of "ECM and adhesion molecules" confirmed previous results found with traditional statistics. The clustering of "Fatty acid metabolism", "Glucose metabolism", "Mitochondria" and "Atherosclerosis" which are new results is hard to interpret, thereby being possible subject to new hypothesis formation. We propose that OPLS-DA is very useful in finding new results not found with traditional statistics, thereby presenting an easy way of creating new hypotheses.
Strong washout approximation to resonant leptogenesis
NASA Astrophysics Data System (ADS)
Garbrecht, Björn; Gautier, Florian; Klaric, Juraj
2014-09-01
We show that the effective decay asymmetry for resonant Leptogenesis in the strong washout regime with two sterile neutrinos and a single active flavour can in wide regions of parameter space be approximated by its late-time limit ɛ=Xsin(2varphi)/(X2+sin2varphi), where X=8πΔ/(|Y1|2+|Y2|2), Δ=4(M1-M2)/(M1+M2), varphi=arg(Y2/Y1), and M1,2, Y1,2 are the masses and Yukawa couplings of the sterile neutrinos. This approximation in particular extends to parametric regions where |Y1,2|2gg Δ, i.e. where the width dominates the mass splitting. We generalise the formula for the effective decay asymmetry to the case of several flavours of active leptons and demonstrate how this quantity can be used to calculate the lepton asymmetry for phenomenological scenarios that are in agreement with the observed neutrino oscillations. We establish analytic criteria for the validity of the late-time approximation for the decay asymmetry and compare these with numerical results that are obtained by solving for the mixing and the oscillations of the sterile neutrinos. For phenomenologically viable models with two sterile neutrinos, we find that the flavoured effective late-time decay asymmetry can be applied throughout parameter space.
Wavelet Approximation in Data Assimilation
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Atlas, Robert (Technical Monitor)
2002-01-01
Estimation of the state of the atmosphere with the Kalman filter remains a distant goal because of high computational cost of evolving the error covariance for both linear and nonlinear systems. Wavelet approximation is presented here as a possible solution that efficiently compresses both global and local covariance information. We demonstrate the compression characteristics on the the error correlation field from a global two-dimensional chemical constituent assimilation, and implement an adaptive wavelet approximation scheme on the assimilation of the one-dimensional Burger's equation. In the former problem, we show that 99%, of the error correlation can be represented by just 3% of the wavelet coefficients, with good representation of localized features. In the Burger's equation assimilation, the discrete linearized equations (tangent linear model) and analysis covariance are projected onto a wavelet basis and truncated to just 6%, of the coefficients. A nearly optimal forecast is achieved and we show that errors due to truncation of the dynamics are no greater than the errors due to covariance truncation.
Rational approximations to fluid properties
Kincaid, J.M.
1990-05-01
The purpose of this report is to summarize some results that were presented at the Spring AIChE meeting in Orlando, Florida (20 March 1990). We report on recent attempts to develop a systematic method, based on the technique of rational approximation, for creating mathematical models of real-fluid equations of state and related properties. Equation-of-state models for real fluids are usually created by selecting a function {tilde p} (T,{rho}) that contains a set of parameters {l brace}{gamma}{sub i}{r brace}; the {l brace}{gamma}{sub i}{r brace} is chosen such that {tilde p}(T,{rho}) provides a good fit to the experimental data. (Here p is the pressure, T the temperature and {rho} is the density). In most cases a nonlinear least-squares numerical method is used to determine {l brace}{gamma}{sub i}{r brace}. There are several drawbacks to this method: one has essentially to guess what {tilde p}(T,{rho}) should be; the critical region is seldom fit very well and nonlinear numerical methods are time consuming and sometimes not very stable. The rational approximation approach we describe may eliminate all of these drawbacks. In particular it lets the data choose the function {tilde p}(T,{rho}) and its numerical implementation involves only linear algorithms. 27 refs., 5 figs.
NASA Astrophysics Data System (ADS)
Hinds, Arianne T.
2011-09-01
Spatial transformations whose kernels employ sinusoidal functions for the decorrelation of signals remain as fundamental components of image and video coding systems. Practical implementations are designed in fixed precision for which the most challenging task is to approximate these constants with values that are both efficient in terms of complexity and accurate with respect to their mathematical definitions. Scaled architectures, for example, as used in the implementations of the order-8 Discrete Cosine Transform and its corresponding inverse both specified in ISO/IEC 23002-2 (MPEG C Pt. 2), can be utilized to mitigate the complexity of these approximations. That is, the implementation of the transform can be designed such that it is completed in two stages: 1) the main transform matrix in which the sinusoidal constants are roughly approximated, and 2) a separate scaling stage to further refine the approximations. This paper describes a methodology termed the Common Factor Method, for finding fixed-point approximations of such irrational values suitable for use in scaled architectures. The order-16 Discrete Cosine Transform provides a framework in which to demonstrate the methodology, but the methodology itself can be employed to design fixed-point implementations of other linear transformations.
Solving Math Problems Approximately: A Developmental Perspective
Ganor-Stern, Dana
2016-01-01
Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults’ ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger) than the exact answer and when it was far (vs. close) from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner. PMID:27171224
Solving Math Problems Approximately: A Developmental Perspective.
Ganor-Stern, Dana
2016-01-01
Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults' ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger) than the exact answer and when it was far (vs. close) from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner.
Capacitor-Chain Successive-Approximation ADC
NASA Technical Reports Server (NTRS)
Cunningham, Thomas
2003-01-01
A proposed successive-approximation analog-to-digital converter (ADC) would contain a capacitively terminated chain of identical capacitor cells. Like a conventional successive-approximation ADC containing a bank of binary-scaled capacitors, the proposed ADC would store an input voltage on a sample-and-hold capacitor and would digitize the stored input voltage by finding the closest match between this voltage and a capacitively generated sum of binary fractions of a reference voltage (Vref). However, the proposed capacitor-chain ADC would offer two major advantages over a conventional binary-scaled-capacitor ADC: (1) In a conventional ADC that digitizes to n bits, the largest capacitor (representing the most significant bit) must have 2(exp n-1) times as much capacitance, and hence, approximately 2(exp n-1) times as much area as does the smallest capacitor (representing the least significant bit), so that the total capacitor area must be 2(exp n) times that of the smallest capacitor. In the proposed capacitor-chain ADC, there would be three capacitors per cell, each approximately equal to the smallest capacitor in the conventional ADC, and there would be one cell per bit. Therefore, the total capacitor area would be only about 3(exp n) times that of the smallest capacitor. The net result would be that the proposed ADC could be considerably smaller than the conventional ADC. (2) Because of edge effects, parasitic capacitances, and manufacturing tolerances, it is difficult to make capacitor banks in which the values of capacitance are scaled by powers of 2 to the required precision. In contrast, because all the capacitors in the proposed ADC would be identical, the problem of precise binary scaling would not arise.
Gikas, A; Sotiropoulos, A; Panagiotakos, D; Pappas, S
2004-12-01
During the 1970s and 1980s, Greece was known as a country with low prevalence and incidence of coronary heart disease, compared to Western populations. However, during the past decades, the Greek population has experienced marked but uneven socio-economic development, as well as change in lifestyle habits. We assessed the prevalence of self-reported myocardial infarction (MI) in a sample of the general population, aged 20-94 years. The overall prevalence of self-reported MI was 4.1% (6.3% in men and 1.9% in women). The age-adjusted prevalence was found to be 3.6%, showing a threefold increase compared to 1980s. Age, gender (male), low educational level, obesity/overweight, hypercholesterolemia, diabetes, hypertension, smoking and origin were strongly associated with prevalence of MI. Our findings indicate that the prevalence of MI increased dramatically during the past years, reflecting the change in lifestyle habits that have gradually given way to "Western"-type diets and a more sedentary lifestyle. Therefore, the need for urgent intervention is considered essential in order to prevent a further increase of disease burden.
Analytical approximations for spiral waves
Löber, Jakob Engel, Harald
2013-12-15
We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R{sub 0}. For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R{sub +}) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R{sub +} with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.
Indexing the approximate number system.
Inglis, Matthew; Gilmore, Camilla
2014-01-01
Much recent research attention has focused on understanding individual differences in the approximate number system, a cognitive system believed to underlie human mathematical competence. To date researchers have used four main indices of ANS acuity, and have typically assumed that they measure similar properties. Here we report a study which questions this assumption. We demonstrate that the numerical ratio effect has poor test-retest reliability and that it does not relate to either Weber fractions or accuracy on nonsymbolic comparison tasks. Furthermore, we show that Weber fractions follow a strongly skewed distribution and that they have lower test-retest reliability than a simple accuracy measure. We conclude by arguing that in the future researchers interested in indexing individual differences in ANS acuity should use accuracy figures, not Weber fractions or numerical ratio effects.
Approximating metal-insulator transitions
NASA Astrophysics Data System (ADS)
Danieli, Carlo; Rayanov, Kristian; Pavlov, Boris; Martin, Gaven; Flach, Sergej
2015-12-01
We consider quantum wave propagation in one-dimensional quasiperiodic lattices. We propose an iterative construction of quasiperiodic potentials from sequences of potentials with increasing spatial period. At each finite iteration step, the eigenstates reflect the properties of the limiting quasiperiodic potential properties up to a controlled maximum system size. We then observe approximate Metal-Insulator Transitions (MIT) at the finite iteration steps. We also report evidence on mobility edges, which are at variance to the celebrated Aubry-André model. The dynamics near the MIT shows a critical slowing down of the ballistic group velocity in the metallic phase, similar to the divergence of the localization length in the insulating phase.
Analytical approximations for spiral waves.
Löber, Jakob; Engel, Harald
2013-12-01
We propose a non-perturbative attempt to solve the kinematic equations for spiral waves in excitable media. From the eikonal equation for the wave front we derive an implicit analytical relation between rotation frequency Ω and core radius R(0). For free, rigidly rotating spiral waves our analytical prediction is in good agreement with numerical solutions of the linear eikonal equation not only for very large but also for intermediate and small values of the core radius. An equivalent Ω(R(+)) dependence improves the result by Keener and Tyson for spiral waves pinned to a circular defect of radius R(+) with Neumann boundaries at the periphery. Simultaneously, analytical approximations for the shape of free and pinned spirals are given. We discuss the reasons why the ansatz fails to correctly describe the dependence of the rotation frequency on the excitability of the medium.
Closed-Form Approximations of First-Passage Distributions for a Stochastic Decision-Making Model.
Broderick, Tamara; Wong-Lin, Kong Fatt; Holmes, Philip
2009-06-01
In free response choice tasks, decision making is often modeled as a first-passage problem for a stochastic differential equation. In particular, drift-diffusion processes with constant or time-varying drift rates and noise can reproduce behavioral data (accuracy and response-time distributions) and neuronal firing rates. However, no exact solutions are known for the first-passage problem with time-varying data. Recognizing the importance of simple closed-form expressions for modeling and inference, we show that an interrogation or cued-response protocol, appropriately interpreted, can yield approximate first-passage (response time) distributions for a specific class of time-varying processes used to model evidence accumulation. We test these against exact expressions for the constant drift case and compare them with data from a class of sigmoidal functions. We find that both the direct interrogation approximation and an error-minimizing interrogation approximation can capture a variety of distribution shapes and mode numbers but that the direct approximation, in particular, is systematically biased away from the correct free response distribution.
IONIS: Approximate atomic photoionization intensities
NASA Astrophysics Data System (ADS)
Heinäsmäki, Sami
2012-02-01
A program to compute relative atomic photoionization cross sections is presented. The code applies the output of the multiconfiguration Dirac-Fock method for atoms in the single active electron scheme, by computing the overlap of the bound electron states in the initial and final states. The contribution from the single-particle ionization matrix elements is assumed to be the same for each final state. This method gives rather accurate relative ionization probabilities provided the single-electron ionization matrix elements do not depend strongly on energy in the region considered. The method is especially suited for open shell atoms where electronic correlation in the ionic states is large. Program summaryProgram title: IONIS Catalogue identifier: AEKK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1149 No. of bytes in distributed program, including test data, etc.: 12 877 Distribution format: tar.gz Programming language: Fortran 95 Computer: Workstations Operating system: GNU/Linux, Unix Classification: 2.2, 2.5 Nature of problem: Photoionization intensities for atoms. Solution method: The code applies the output of the multiconfiguration Dirac-Fock codes Grasp92 [1] or Grasp2K [2], to compute approximate photoionization intensities. The intensity is computed within the one-electron transition approximation and by assuming that the sum of the single-particle ionization probabilities is the same for all final ionic states. Restrictions: The program gives nonzero intensities for those transitions where only one electron is removed from the initial configuration(s). Shake-type many-electron transitions are not computed. The ionized shell must be closed in the initial state. Running time: Few seconds for a
Thermodynamics of an interacting Fermi system in the static fluctuation approximation
Nigmatullin, R. R.; Khamzin, A. A. Popov, I. I.
2012-02-15
We suggest a new method of calculation of the equilibrium correlation functions of an arbitrary order for the interacting Fermi-gas model in the framework of the static fluctuation approximation method. This method based only on a single and controllable approximation allows obtaining the so-called far-distance equations. These equations connecting the quantum states of a Fermi particle with variables of the local field operator contain all necessary information related to the calculation of the desired correlation functions and basic thermodynamic parameters of the many-body system. The basic expressions for the mean energy and heat capacity for the electron gas at low temperatures in the high-density limit were obtained. All expressions are given in the units of r{sub s}, where r{sub s} determines the ratio of a mean distance between electrons to the Bohr radius a{sub 0}. In these expressions, we calculate terms of the respective order r{sub s} and r{sub s}{sup 2}. It is also shown that the static fluctuation approximation allows finding the terms related to higher orders of the decomposition with respect to the parameter r{sub s}.
An approximate compact analytical expression for the Blasius velocity profile
NASA Astrophysics Data System (ADS)
Savaş, Ö.
2012-10-01
A single-term, two-parameter, hyperbolic tangent function is presented to describe the flow profiles in the Blasius boundary layer, which reproduces the streamwise velocity profile within 0.003 (0.3% of free stream velocity) of its numerical exact solution throughout the flow. The function can be inverted for an implicit description of the velocity profile.
Network Games and Approximation Algorithms
2008-01-03
I also spend time during the last three years writing a textbook on Algorithm Design (with Jon Kleinberg) that had now been adopted by a number of...Minimum-Size Bounded-Capacity Cut (MSBCC) problem, in which we are given a graph with an identified source and seek to find a cut minimizing the number ...Distributed Computing (Special Issue PODC 05) Volume 19, Number 4, 2007, 255-266. http://www.springerlink.com/content/x 148746507861 np7/ ?p
Optimal Approximation of Quadratic Interval Functions
NASA Technical Reports Server (NTRS)
Koshelev, Misha; Taillibert, Patrick
1997-01-01
Measurements are never absolutely accurate, as a result, after each measurement, we do not get the exact value of the measured quantity; at best, we get an interval of its possible values, For dynamically changing quantities x, the additional problem is that we cannot measure them continuously; we can only measure them at certain discrete moments of time t(sub 1), t(sub 2), ... If we know that the value x(t(sub j)) at a moment t(sub j) of the last measurement was in the interval [x-(t(sub j)), x + (t(sub j))], and if we know the upper bound D on the rate with which x changes, then, for any given moment of time t, we can conclude that x(t) belongs to the interval [x-(t(sub j)) - D (t - t(sub j)), x + (t(sub j)) + D (t - t(sub j))]. This interval changes linearly with time, an is, therefore, called a linear interval function. When we process these intervals, we get an expression that is quadratic and higher order w.r.t. time t, Such "quadratic" intervals are difficult to process and therefore, it is necessary to approximate them by linear ones. In this paper, we describe an algorithm that gives the optimal approximation of quadratic interval functions by linear ones.
Nested Taylor decomposition of univariate functions under fluctuationlessness approximation
NASA Astrophysics Data System (ADS)
Gürvit, Ercan; Baykara, N. A.
2014-10-01
Taylor decomposition of an analytic function and the use of the remainder part of this decomposition expressed in integral form on which Fluctuationlessness theorem is applied was already known in the litterature, but application of Fluctuationlessness approximation twice on the remainder part adds up an amelioration to the approximation. Organisation of the decomposition in such a way that this is made possible is explained in detail in this work.
Multidimensional stochastic approximation Monte Carlo
NASA Astrophysics Data System (ADS)
Zablotskiy, Sergey V.; Ivanov, Victor A.; Paul, Wolfgang
2016-06-01
Stochastic Approximation Monte Carlo (SAMC) has been established as a mathematically founded powerful flat-histogram Monte Carlo method, used to determine the density of states, g (E ) , of a model system. We show here how it can be generalized for the determination of multidimensional probability distributions (or equivalently densities of states) of macroscopic or mesoscopic variables defined on the space of microstates of a statistical mechanical system. This establishes this method as a systematic way for coarse graining a model system, or, in other words, for performing a renormalization group step on a model. We discuss the formulation of the Kadanoff block spin transformation and the coarse-graining procedure for polymer models in this language. We also apply it to a standard case in the literature of two-dimensional densities of states, where two competing energetic effects are present g (E1,E2) . We show when and why care has to be exercised when obtaining the microcanonical density of states g (E1+E2) from g (E1,E2) .
Dodd, R J
1996-01-01
I present simple analytical methods for computing the properties of ground and excited states of Bose-Einstein condensates, and compare their results to extensive numerical simulations. I consider the effect of vortices in the condensate for both positive and negative scattering lengths, a, and find an analytical expression for the large-N0 limit of the vortex critical frequency for a > 0, by approximate solution of the time-independent nonlinear Schrödinger equation.
Dodd, R. J.
1996-01-01
I present simple analytical methods for computing the properties of ground and excited states of Bose-Einstein condensates, and compare their results to extensive numerical simulations. I consider the effect of vortices in the condensate for both positive and negative scattering lengths, a, and find an analytical expression for the large-N0 limit of the vortex critical frequency for a > 0, by approximate solution of the time-independent nonlinear Schrödinger equation. PMID:27805107
Strong washout approximation to resonant leptogenesis
Garbrecht, Björn; Gautier, Florian; Klaric, Juraj E-mail: florian.gautier@tum.de
2014-09-01
We show that the effective decay asymmetry for resonant Leptogenesis in the strong washout regime with two sterile neutrinos and a single active flavour can in wide regions of parameter space be approximated by its late-time limit ε=Xsin(2φ)/(X{sup 2}+sin{sup 2}φ), where X=8πΔ/(|Y{sub 1}|{sup 2}+|Y{sub 2}|{sup 2}), Δ=4(M{sub 1}-M{sub 2})/(M{sub 1}+M{sub 2}), φ=arg(Y{sub 2}/Y{sub 1}), and M{sub 1,2}, Y{sub 1,2} are the masses and Yukawa couplings of the sterile neutrinos. This approximation in particular extends to parametric regions where |Y{sub 1,2}|{sup 2}>> Δ, i.e. where the width dominates the mass splitting. We generalise the formula for the effective decay asymmetry to the case of several flavours of active leptons and demonstrate how this quantity can be used to calculate the lepton asymmetry for phenomenological scenarios that are in agreement with the observed neutrino oscillations. We establish analytic criteria for the validity of the late-time approximation for the decay asymmetry and compare these with numerical results that are obtained by solving for the mixing and the oscillations of the sterile neutrinos. For phenomenologically viable models with two sterile neutrinos, we find that the flavoured effective late-time decay asymmetry can be applied throughout parameter space.
Diffraction by a Hard Half-Plane Useful Approximations to AN Exact Formulation
NASA Astrophysics Data System (ADS)
OUIS, D.
2002-04-01
In this paper, the problem of diffraction of a spherical wave by a hard half-plane is considered. The starting point is the Biot-Tolstoy theory of diffraction of a spherical wave by a fluid wedge with hard boundaries. In this theory, the field at a point in the fluid is composed eventually of a geometrical part: i.e., a direct component, one or two components due to the reflections on the sides of the hard wedge, and a diffracted component due exclusively to the presence of the edge of the wedge. The mathematical expression of this latter component has originally been given in an explicit closed form for the case of a unit momentum wave incidence, but Medwin has further developed its expression for the more useful case of a Dirac delta point excitation. The expression of this form is given in the time domain, but it is quite difficult to find exactly its Fourier transform for studying the frequency behaviour of the diffracted field. It is thus the aim of this paper to present various useful approximations of the exact expression. Among the approximations treated, three are most accurate for engineering purposes, and one of them is proposed, for its simplicity, as appropriate for most occurring practical situations.
Uncertainty relations and approximate quantum error correction
NASA Astrophysics Data System (ADS)
Renes, Joseph M.
2016-09-01
The uncertainty principle can be understood as constraining the probability of winning a game in which Alice measures one of two conjugate observables, such as position or momentum, on a system provided by Bob, and he is to guess the outcome. Two variants are possible: either Alice tells Bob which observable she measured, or he has to furnish guesses for both cases. Here I derive uncertainty relations for both, formulated directly in terms of Bob's guessing probabilities. For the former these relate to the entanglement that can be recovered by action on Bob's system alone. This gives an explicit quantum circuit for approximate quantum error correction using the guessing measurements for "amplitude" and "phase" information, implicitly used in the recent construction of efficient quantum polar codes. I also find a relation on the guessing probabilities for the latter game, which has application to wave-particle duality relations.
Squashed entanglement and approximate private states
NASA Astrophysics Data System (ADS)
Wilde, Mark M.
2016-11-01
The squashed entanglement is a fundamental entanglement measure in quantum information theory, finding application as an upper bound on the distillable secret key or distillable entanglement of a quantum state or a quantum channel. This paper simplifies proofs that the squashed entanglement is an upper bound on distillable key for finite-dimensional quantum systems and solidifies such proofs for infinite-dimensional quantum systems. More specifically, this paper establishes that the logarithm of the dimension of the key system (call it log 2K) in an ɛ -approximate private state is bounded from above by the squashed entanglement of that state plus a term that depends only ɛ and log 2K. Importantly, the extra term does not depend on the dimension of the shield systems of the private state. The result holds for the bipartite squashed entanglement, and an extension of this result is established for two different flavors of the multipartite squashed entanglement.
Approximate flavor symmetries in the lepton sector
Rasin, A. ); Silva, J.P. )
1994-01-01
Approximate flavor symmetries in the quark sector have been used as a handle on physics beyond the standard model. Because of the great interest in neutrino masses and mixings and the wealth of existing and proposed neutrino experiments it is important to extend this analysis to the leptonic sector. We show that in the seesaw mechanism the neutrino masses and mixing angles do not depend on the details of the right-handed neutrino flavor symmetry breaking, and are related by a simple formula. We propose several [ital Ansa]$[ital uml]---[ital tze] which relate different flavor symmetry-breaking parameters and find that the MSW solution to the solar neutrino problem is always easily fit. Further, the [nu][sub [mu]-][nu][sub [tau
Fast Approximate Quadratic Programming for Graph Matching
Vogelstein, Joshua T.; Conroy, John M.; Lyzinski, Vince; Podrazik, Louis J.; Kratzer, Steven G.; Harley, Eric T.; Fishkind, Donniell E.; Vogelstein, R. Jacob; Priebe, Carey E.
2015-01-01
Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs), we find that it efficiently achieves performance. PMID:25886624
Fast approximate quadratic programming for graph matching.
Vogelstein, Joshua T; Conroy, John M; Lyzinski, Vince; Podrazik, Louis J; Kratzer, Steven G; Harley, Eric T; Fishkind, Donniell E; Vogelstein, R Jacob; Priebe, Carey E
2015-01-01
Quadratic assignment problems arise in a wide variety of domains, spanning operations research, graph theory, computer vision, and neuroscience, to name a few. The graph matching problem is a special case of the quadratic assignment problem, and graph matching is increasingly important as graph-valued data is becoming more prominent. With the aim of efficiently and accurately matching the large graphs common in big data, we present our graph matching algorithm, the Fast Approximate Quadratic assignment algorithm. We empirically demonstrate that our algorithm is faster and achieves a lower objective value on over 80% of the QAPLIB benchmark library, compared with the previous state-of-the-art. Applying our algorithm to our motivating example, matching C. elegans connectomes (brain-graphs), we find that it efficiently achieves performance.
Adiabatic approximation and fluctuations in exciton-polariton condensates
NASA Astrophysics Data System (ADS)
Bobrovska, Nataliya; Matuszewski, Michał
2015-07-01
We study the relation between the models commonly used to describe the dynamics of nonresonantly pumped exciton-polariton condensates, namely the ones described by the complex Ginzburg-Landau equation, and by the open-dissipative Gross-Pitaevskii equation including a separate equation for the reservoir density. In particular, we focus on the validity of the adiabatic approximation and small density fluctuations approximation that allow one to reduce the coupled condensate-reservoir dynamics to a single partial differential equation. We find that the adiabatic approximation consists of three independent analytical conditions that have to be fulfilled simultaneously. By investigating stochastic versions of the two corresponding models, we verify that the breakdown of these approximations can lead to discrepancies in correlation lengths and distributions of fluctuations. Additionally, we consider the phase diffusion and number fluctuations of a condensate in a box, and show that self-consistent description requires treatment beyond the typical Bogoliubov approximation.
Approximation algorithms for maximum two-dimensional pattern matching
Arikati, S.R.; Dessmark, A.; Lingas, A.; Marathe, M.
1996-07-01
We introduce the following optimization version of the classical pattern matching problem (referred to as the maximum pattern matching problem). Given a two-dimensional rectangular text and a 2- dimensional rectangular pattern find the maximum number of non- overlapping occurrences of the pattern in the text. Unlike the classical 2-dimensional pattern matching problem, the maximum pattern matching problem is NP - complete. We devise polynomial time approximation algorithms and approximation schemes for this problem. We also briefly discuss how the approximation algorithms can be extended to include a number of other variants of the problem.
Producing approximate answers to database queries
NASA Technical Reports Server (NTRS)
Vrbsky, Susan V.; Liu, Jane W. S.
1993-01-01
We have designed and implemented a query processor, called APPROXIMATE, that makes approximate answers available if part of the database is unavailable or if there is not enough time to produce an exact answer. The accuracy of the approximate answers produced improves monotonically with the amount of data retrieved to produce the result. The exact answer is produced if all of the needed data are available and query processing is allowed to continue until completion. The monotone query processing algorithm of APPROXIMATE works within the standard relational algebra framework and can be implemented on a relational database system with little change to the relational architecture. We describe here the approximation semantics of APPROXIMATE that serves as the basis for meaningful approximations of both set-valued and single-valued queries. We show how APPROXIMATE is implemented to make effective use of semantic information, provided by an object-oriented view of the database, and describe the additional overhead required by APPROXIMATE.
Grover's quantum search algorithm and Diophantine approximation
Dolev, Shahar; Pitowsky, Itamar; Tamir, Boaz
2006-02-15
In a fundamental paper [Phys. Rev. Lett. 78, 325 (1997)] Grover showed how a quantum computer can find a single marked object in a database of size N by using only O({radical}(N)) queries of the oracle that identifies the object. His result was generalized to the case of finding one object in a subset of marked elements. We consider the following computational problem: A subset of marked elements is given whose number of elements is either M or K, our task is to determine which is the case. We show how to solve this problem with a high probability of success using iterations of Grover's basic step only, and no other algorithm. Let m be the required number of iterations; we prove that under certain restrictions on the sizes of M and K the estimation m<2{radical}(N)/({radical}(K)-{radical}(M)) obtains. This bound reproduces previous results based on more elaborate algorithms, and is known to be optimal up to a constant factor. Our method involves simultaneous Diophantine approximations, so that Grover's algorithm is conceptualized as an orbit of an ergodic automorphism of the torus. We comment on situations where the algorithm may be slow, and note the similarity between these cases and the problem of small divisors in classical mechanics.
Approximated analytical solution to an Ebola optimal control problem
NASA Astrophysics Data System (ADS)
Hincapié-Palacio, Doracelly; Ospina, Juan; Torres, Delfim F. M.
2016-11-01
An analytical expression for the optimal control of an Ebola problem is obtained. The analytical solution is found as a first-order approximation to the Pontryagin Maximum Principle via the Euler-Lagrange equation. An implementation of the method is given using the computer algebra system Maple. Our analytical solutions confirm the results recently reported in the literature using numerical methods.
Zimmerman, R.D.; Leeds, N.E.; Danziger, A.
1984-02-01
CT scans in 49 patients with surgically proven subdural empyema were evaluated. The empyemas were crescentic or lentiform extra-axial hypodense collections (density approximating that of cerebrospinal fluid) with prominent, sharply etched medial rim enhancement. Enhancement of the adjacent cerebral cortex was identified in many cases. Mass effect was always present and in 10 cases so extensive that it overshadowed a small extra-axial collection. CT allowed for precise localization of the lesion, including contiguous or isolated involvement of the interhemispheric subdural space. Mortality was 12% (6/49 cases), a marked improvement when compared with mortality figures obtained prior to the advent of CT (40%). CT findings indicative of involvement of the adjacent parenchyma via retrograde thrombophlebitis with resultant infarction and/or abscess formation were associated with poor prognosis. Improvement in prognosis since the advent of CT is the direct result of early accurate diagnosis and timely intervention.
The Guarding Problem - Complexity and Approximation
NASA Astrophysics Data System (ADS)
Reddy, T. V. Thirumala; Krishna, D. Sai; Rangan, C. Pandu
Let G = (V, E) be the given graph and G R = (V R ,E R ) and G C = (V C ,E C ) be the sub graphs of G such that V R ∩ V C = ∅ and V R ∪ V C = V. G C is referred to as the cops region and G R is called as the robber region. Initially a robber is placed at some vertex of V R and the cops are placed at some vertices of V C . The robber and cops may move from their current vertices to one of their neighbours. While a cop can move only within the cops region, the robber may move to any neighbour. The robber and cops move alternatively. A vertex v ∈ V C is said to be attacked if the current turn is the robber's turn, the robber is at vertex u where u ∈ V R , (u,v) ∈ E and no cop is present at v. The guarding problem is to find the minimum number of cops required to guard the graph G C from the robber's attack. We first prove that the decision version of this problem when G R is an arbitrary undirected graph is PSPACE-hard. We also prove that the complexity of the decision version of the guarding problem when G R is a wheel graph is NP-hard. We then present approximation algorithms if G R is a star graph, a clique and a wheel graph with approximation ratios H(n 1), 2 H(n 1) and left( H(n1) + 3/2 right) respectively, where H(n1) = 1 + 1/2 + ... + 1/n1 and n 1 = ∣ V R ∣.
Signal Approximation with a Wavelet Neural Network
1992-12-01
specialized electronic devices like the Intel Electronically Trainable Analog Neural Network (ETANN) chip. The WNN representation allows the...accurately approximated with a WNN trained with irregularly sampled data. Signal approximation, Wavelet neural network .
New Tests of the Fixed Hotspot Approximation
NASA Astrophysics Data System (ADS)
Gordon, R. G.; Andrews, D. L.; Horner-Johnson, B. C.; Kumar, R. R.
2005-05-01
We present new methods for estimating uncertainties in plate reconstructions relative to the hotspots and new tests of the fixed hotspot approximation. We find no significant motion between Pacific hotspots, on the one hand, and Indo-Atlantic hotspots, on the other, for the past ~ 50 Myr, but large and significant apparent motion before 50 Ma. Whether this motion is truly due to motion between hotspots or alternatively due to flaws in the global plate motion circuit can be tested with paleomagnetic data. These tests give results consistent with the fixed hotspot approximation and indicate significant misfits when a relative plate motion circuit through Antarctica is employed for times before 50 Ma. If all of the misfit to the global plate motion circuit is due to motion between East and West Antarctica, then that motion is 800 ± 500 km near the Ross Sea Embayment and progressively less along the Trans-Antarctic Mountains toward the Weddell Sea. Further paleomagnetic tests of the fixed hotspot approximation can be made. Cenozoic and Cretaceous paleomagnetic data from the Pacific plate, along with reconstructions of the Pacific plate relative to the hotspots, can be used to estimate an apparent polar wander (APW) path of Pacific hotspots. An APW path of Indo-Atlantic hotspots can be similarly estimated (e.g. Besse & Courtillot 2002). If both paths diverge in similar ways from the north pole of the hotspot reference frame, it would indicate that the hotspots have moved in unison relative to the spin axis, which may be attributed to true polar wander. If the two paths diverge from one another, motion between Pacific hotspots and Indo-Atlantic hotspots would be indicated. The general agreement of the two paths shows that the former is more important than the latter. The data require little or no motion between groups of hotspots, but up to ~10 mm/yr of motion is allowed within uncertainties. The results disagree, in particular, with the recent extreme interpretation of
An approximation technique for jet impingement flow
Najafi, Mahmoud; Fincher, Donald; Rahni, Taeibi; Javadi, KH.; Massah, H.
2015-03-10
The analytical approximate solution of a non-linear jet impingement flow model will be demonstrated. We will show that this is an improvement over the series approximation obtained via the Adomian decomposition method, which is itself, a powerful method for analysing non-linear differential equations. The results of these approximations will be compared to the Runge-Kutta approximation in order to demonstrate their validity.
Energy conservation - A test for scattering approximations
NASA Technical Reports Server (NTRS)
Acquista, C.; Holland, A. C.
1980-01-01
The roles of the extinction theorem and energy conservation in obtaining the scattering and absorption cross sections for several light scattering approximations are explored. It is shown that the Rayleigh, Rayleigh-Gans, anomalous diffraction, geometrical optics, and Shifrin approximations all lead to reasonable values of the cross sections, while the modified Mie approximation does not. Further examination of the modified Mie approximation for the ensembles of nonspherical particles reveals additional problems with that method.
Energy conservation - A test for scattering approximations
NASA Technical Reports Server (NTRS)
Acquista, C.; Holland, A. C.
1980-01-01
The roles of the extinction theorem and energy conservation in obtaining the scattering and absorption cross sections for several light scattering approximations are explored. It is shown that the Rayleigh, Rayleigh-Gans, anomalous diffraction, geometrical optics, and Shifrin approximations all lead to reasonable values of the cross sections, while the modified Mie approximation does not. Further examination of the modified Mie approximation for the ensembles of nonspherical particles reveals additional problems with that method.
Approximate Model for Turbulent Stagnation Point Flow.
Dechant, Lawrence
2016-01-01
Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.
A simple, approximate model of parachute inflation
Macha, J.M.
1992-01-01
A simple, approximate model of parachute inflation is described. The model is based on the traditional, practical treatment of the fluid resistance of rigid bodies in nonsteady flow, with appropriate extensions to accommodate the change in canopy inflated shape. Correlations for the steady drag and steady radial force as functions of the inflated radius are required as input to the dynamic model. In a novel approach, the radial force is expressed in terms of easily obtainable drag and reefing fine tension measurements. A series of wind tunnel experiments provides the needed correlations. Coefficients associated with the added mass of fluid are evaluated by calibrating the model against an extensive and reliable set of flight data. A parameter is introduced which appears to universally govern the strong dependence of the axial added mass coefficient on motion history. Through comparisons with flight data, the model is shown to realistically predict inflation forces for ribbon and ringslot canopies over a wide range of sizes and deployment conditions.
A simple, approximate model of parachute inflation
Macha, J.M.
1992-11-01
A simple, approximate model of parachute inflation is described. The model is based on the traditional, practical treatment of the fluid resistance of rigid bodies in nonsteady flow, with appropriate extensions to accommodate the change in canopy inflated shape. Correlations for the steady drag and steady radial force as functions of the inflated radius are required as input to the dynamic model. In a novel approach, the radial force is expressed in terms of easily obtainable drag and reefing fine tension measurements. A series of wind tunnel experiments provides the needed correlations. Coefficients associated with the added mass of fluid are evaluated by calibrating the model against an extensive and reliable set of flight data. A parameter is introduced which appears to universally govern the strong dependence of the axial added mass coefficient on motion history. Through comparisons with flight data, the model is shown to realistically predict inflation forces for ribbon and ringslot canopies over a wide range of sizes and deployment conditions.
Fractal Trigonometric Polynomials for Restricted Range Approximation
NASA Astrophysics Data System (ADS)
Chand, A. K. B.; Navascués, M. A.; Viswanathan, P.; Katiyar, S. K.
2016-05-01
One-sided approximation tackles the problem of approximation of a prescribed function by simple traditional functions such as polynomials or trigonometric functions that lie completely above or below it. In this paper, we use the concept of fractal interpolation function (FIF), precisely of fractal trigonometric polynomials, to construct one-sided uniform approximants for some classes of continuous functions.
On Approximation of Distribution and Density Functions.
ERIC Educational Resources Information Center
Wolff, Hans
Stochastic approximation algorithms for least square error approximation to density and distribution functions are considered. The main results are necessary and sufficient parameter conditions for the convergence of the approximation processes and a generalization to some time-dependent density and distribution functions. (Author)
Traytak, Sergey D
2014-06-14
The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.
Traytak, Sergey D.
2014-06-14
The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.
NASA Astrophysics Data System (ADS)
Traytak, Sergey D.
2014-06-01
The anisotropic 3D equation describing the pointlike particles diffusion in slender impermeable tubes of revolution with cross section smoothly depending on the longitudinal coordinate is the object of our study. We use singular perturbations approach to find the rigorous asymptotic expression for the local particles concentration as an expansion in the ratio of the characteristic transversal and longitudinal diffusion relaxation times. The corresponding leading-term approximation is a generalization of well-known Fick-Jacobs approximation. This result allowed us to delineate the conditions on temporal and spatial scales under which the Fick-Jacobs approximation is valid. A striking analogy between solution of our problem and the method of inner-outer expansions for low Knudsen numbers gas kinetic theory is established. With the aid of this analogy we clarify the physical and mathematical meaning of the obtained results.
Harrison, Chris H
2010-07-01
A useful approximation to the Rayleigh reflection coefficient for two half-spaces composed of water over sediment is derived. This exhibits dependence on angle that may deviate considerably from linear in the interval between grazing and critical. It shows that the non-linearity can be expressed as a separate function that multiplies the linear loss coefficient. This non-linearity term depends only on sediment density and does not depend on sediment sound speed or volume absorption. The non-linearity term tends to unity, i.e., the reflection loss becomes effectively linear, when the density ratio is about 1.27. The reflection phase in the same approximation leads to the well-known "effective depth" and "lateral shift." A class of closed-form reverberation (and signal-to-reverberation) expressions has already been developed [C. H. Harrison, J. Acoust. Soc. Am. 114, 2744-2756 (2003); C. H. Harrison, J. Comput. Acoust. 13, 317-340 (2005); C. H. Harrison, IEEE J. Ocean. Eng. 30, 660-675 (2005)]. The findings of this paper enable one to convert these reverberation expressions from simple linear loss to more general reflecting environments. Correction curves are calculated in terms of sediment density. These curves are applied to a test case taken from a recent ONR-funded Reverberation Workshop.
Double power series method for approximating cosmological perturbations
NASA Astrophysics Data System (ADS)
Wren, Andrew J.; Malik, Karim A.
2017-04-01
We introduce a double power series method for finding approximate analytical solutions for systems of differential equations commonly found in cosmological perturbation theory. The method was set out, in a noncosmological context, by Feshchenko, Shkil' and Nikolenko (FSN) in 1966, and is applicable to cases where perturbations are on subhorizon scales. The FSN method is essentially an extension of the well known Wentzel-Kramers-Brillouin (WKB) method for finding approximate analytical solutions for ordinary differential equations. The FSN method we use is applicable well beyond perturbation theory to solve systems of ordinary differential equations, linear in the derivatives, that also depend on a small parameter, which here we take to be related to the inverse wave-number. We use the FSN method to find new approximate oscillating solutions in linear order cosmological perturbation theory for a flat radiation-matter universe. Together with this model's well-known growing and decaying Mészáros solutions, these oscillating modes provide a complete set of subhorizon approximations for the metric potential, radiation and matter perturbations. Comparison with numerical solutions of the perturbation equations shows that our approximations can be made accurate to within a typical error of 1%, or better. We also set out a heuristic method for error estimation. A Mathematica notebook which implements the double power series method is made available online.
An Approximate Approach to Automatic Kernel Selection.
Ding, Lizhong; Liao, Shizhong
2016-02-02
Kernel selection is a fundamental problem of kernel-based learning algorithms. In this paper, we propose an approximate approach to automatic kernel selection for regression from the perspective of kernel matrix approximation. We first introduce multilevel circulant matrices into automatic kernel selection, and develop two approximate kernel selection algorithms by exploiting the computational virtues of multilevel circulant matrices. The complexity of the proposed algorithms is quasi-linear in the number of data points. Then, we prove an approximation error bound to measure the effect of the approximation in kernel matrices by multilevel circulant matrices on the hypothesis and further show that the approximate hypothesis produced with multilevel circulant matrices converges to the accurate hypothesis produced with kernel matrices. Experimental evaluations on benchmark datasets demonstrate the effectiveness of approximate kernel selection.
A unified approach to the Darwin approximation
Krause, Todd B.; Apte, A.; Morrison, P. J.
2007-10-15
There are two basic approaches to the Darwin approximation. The first involves solving the Maxwell equations in Coulomb gauge and then approximating the vector potential to remove retardation effects. The second approach approximates the Coulomb gauge equations themselves, then solves these exactly for the vector potential. There is no a priori reason that these should result in the same approximation. Here, the equivalence of these two approaches is investigated and a unified framework is provided in which to view the Darwin approximation. Darwin's original treatment is variational in nature, but subsequent applications of his ideas in the context of Vlasov's theory are not. We present here action principles for the Darwin approximation in the Vlasov context, and this serves as a consistency check on the use of the approximation in this setting.
Interpolation function for approximating knee joint behavior in human gait
NASA Astrophysics Data System (ADS)
Toth-Taşcǎu, Mirela; Pater, Flavius; Stoia, Dan Ioan
2013-10-01
Starting from the importance of analyzing the kinematic data of the lower limb in gait movement, especially the angular variation of the knee joint, the paper propose an approximation function that can be used for processing the correlation among a multitude of knee cycles. The approximation of the raw knee data was done by Lagrange polynomial interpolation on a signal acquired using Zebris Gait Analysis System. The signal used in approximation belongs to a typical subject extracted from a lot of ten investigated subjects, but the function domain of definition belongs to the entire group. The study of the knee joint kinematics plays an important role in understanding the kinematics of the gait, this articulation having the largest range of motion in whole joints, in gait. The study does not propose to find an approximation function for the adduction-abduction movement of the knee, this being considered a residual movement comparing to the flexion-extension.
A coefficient average approximation towards Gutzwiller wavefunction formalism.
Liu, Jun; Yao, Yongxin; Wang, Cai-Zhuang; Ho, Kai-Ming
2015-06-24
Gutzwiller wavefunction is a physically well-motivated trial wavefunction for describing correlated electron systems. In this work, a new approximation is introduced to facilitate the evaluation of the expectation value of any operator within the Gutzwiller wavefunction formalism. The basic idea is to make use of a specially designed average over Gutzwiller wavefunction coefficients expanded in the many-body Fock space to approximate the ratio of expectation values between a Gutzwiller wavefunction and its underlying noninteracting wavefunction. To check with the standard Gutzwiller approximation (GA), we test its performance on single band systems and find quite interesting properties. On finite systems, we noticed that it gives superior performance over GA, while on infinite systems it asymptotically approaches GA. Analytic analysis together with numerical tests are provided to support this claimed asymptotical behavior. Finally, possible improvements on the approximation and its generalization towards multiband systems are illustrated and discussed.
A test of the adhesion approximation for gravitational clustering
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Shandarin, Sergei F.; Weinberg, David H.
1994-01-01
We quantitatively compare a particle implementation of the adhesion approximation to fully nonlinear, numerical 'N-body' simulations. Our primary tool, cross-correlation of N-body simulations with the adhesion approximation, indicates good agreement, better than that found by the same test performed with the Zel'dovich approximation (hereafter ZA). However, the cross-correlation is not as good as that of the truncated Zel'dovich approximation (TZA), obtained by applying the Zel'dovich approximation after smoothing the initial density field with a Gaussian filter. We confirm that the adhesion approximation produces an excessively filamentary distribution. Relative to the N-body results, we also find that: (a) the power spectrum obtained from the adhesion approximation is more accurate that that from ZA to TZA, (b) the error in the phase angle of Fourier components is worse that that from TZA, and (c) the mass distribution function is more accurate than that from ZA or TZA. It appears that adhesion performs well statistically, but that TZA is more accurate dynamically, in the sense of moving mass to the right place.
A test of the adhesion approximation for gravitational clustering
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Shandarin, Sergei F.; Weinberg, David H.
1994-01-01
We quantitatively compare a particle implementation of the adhesion approximation to fully nonlinear, numerical 'N-body' simulations. Our primary tool, cross-correlation of N-body simulations with the adhesion approximation, indicates good agreement, better than that found by the same test performed with the Zel'dovich approximation (hereafter ZA). However, the cross-correlation is not as good as that of the truncated Zel'dovich approximation (TZA), obtained by applying the Zel'dovich approximation after smoothing the initial density field with a Gaussian filter. We confirm that the adhesion approximation produces an excessively filamentary distribution. Relative to the N-body results, we also find that: (a) the power spectrum obtained from the adhesion approximation is more accurate that that from ZA to TZA, (b) the error in the phase angle of Fourier components is worse that that from TZA, and (c) the mass distribution function is more accurate than that from ZA or TZA. It appears that adhesion performs well statistically, but that TZA is more accurate dynamically, in the sense of moving mass to the right place.
A test of the adhesion approximation for gravitational clustering
NASA Technical Reports Server (NTRS)
Melott, Adrian L.; Shandarin, Sergei; Weinberg, David H.
1993-01-01
We quantitatively compare a particle implementation of the adhesion approximation to fully non-linear, numerical 'N-body' simulations. Our primary tool, cross-correlation of N-body simulations with the adhesion approximation, indicates good agreement, better than that found by the same test performed with the Zel-dovich approximation (hereafter ZA). However, the cross-correlation is not as good as that of the truncated Zel-dovich approximation (TZA), obtained by applying the Zel'dovich approximation after smoothing the initial density field with a Gaussian filter. We confirm that the adhesion approximation produces an excessively filamentary distribution. Relative to the N-body results, we also find that: (a) the power spectrum obtained from the adhesion approximation is more accurate than that from ZA or TZA, (b) the error in the phase angle of Fourier components is worse than that from TZA, and (c) the mass distribution function is more accurate than that from ZA or TZA. It appears that adhesion performs well statistically, but that TZA is more accurate dynamically, in the sense of moving mass to the right place.
Univariate approximate integration via nested Taylor multivariate function decomposition
NASA Astrophysics Data System (ADS)
Gürvit, Ercan; Baykara, N. A.
2014-12-01
This work is based on the idea of nesting one or more Taylor decompositions in the remainder term of a Taylor decomposition of a function. This provides us with a better approximation quality to the original function. In addition to this basic idea each side of the Taylor decomposition is integrated and the limits of integrations are arranged in such a way to obtain a universal [0;1] interval without losing from the generality. Thus a univariate approximate integration technique is formed at the cost of getting multivariance in the remainder term. Moreover the remainder term expressed as an integral permits us to apply Fluctuationlessness theorem to it and obtain better results.
Stopping power beyond the adiabatic approximation
Caro, M.; Correa, A. A.; Artacho, E.; ...
2017-06-01
Energetic ions traveling in solids deposit energy in a variety of ways, being nuclear and electronic stopping the two avenues in which dissipation is usually treated. This separation between electrons and ions relies on the adiabatic approximation in which ions interact via forces derived from the instantaneous electronic ground state. In a more detailed view, in which non-adiabatic effects are explicitly considered, electronic excitations alter the atomic bonding, which translates into changes in the interatomic forces. In this work, we use time dependent density functional theory and forces derived from the equations of Ehrenfest dynamics that depend instantaneously on themore » time-dependent electronic density. With them we analyze how the inter-ionic forces are affected by electronic excitations in a model of a Ni projectile interacting with a Ni target, a metallic system with strong electronic stopping and shallow core level states. We find that the electronic excitations induce substantial modifications to the inter-ionic forces, which translate into nuclear stopping power well above the adiabatic prediction. Particularly, we observe that most of the alteration of the adiabatic potential in early times comes from the ionization of the core levels of the target ions, not readily screened by the valence electrons.« less
Approximate Methods for State-Space Models.
Koyama, Shinsuke; Pérez-Bolde, Lucia Castellanos; Shalizi, Cosma Rohilla; Kass, Robert E
2010-03-01
State-space models provide an important body of techniques for analyzing time-series, but their use requires estimating unobserved states. The optimal estimate of the state is its conditional expectation given the observation histories, and computing this expectation is hard when there are nonlinearities. Existing filtering methods, including sequential Monte Carlo, tend to be either inaccurate or slow. In this paper, we study a nonlinear filter for nonlinear/non-Gaussian state-space models, which uses Laplace's method, an asymptotic series expansion, to approximate the state's conditional mean and variance, together with a Gaussian conditional distribution. This Laplace-Gaussian filter (LGF) gives fast, recursive, deterministic state estimates, with an error which is set by the stochastic characteristics of the model and is, we show, stable over time. We illustrate the estimation ability of the LGF by applying it to the problem of neural decoding and compare it to sequential Monte Carlo both in simulations and with real data. We find that the LGF can deliver superior results in a small fraction of the computing time.
Phase shift approximation for the post-critical seismic wave
NASA Astrophysics Data System (ADS)
Zhang, Xinyan; Zhang, Zhongjie; Xu, Tao; Bai, Zhiming; Harris, Jerry M.
2012-10-01
Post-critical seismic waves are widely used in crustal exploration of the seismic velocity structure, and are gaining interest in the oil/gas seismic community to image the deeper structure beneath the high velocity basalt layer. They are featured with their phase shifts and strength changes, which should be taken into account in seismic data processing, such as velocity analysis and true amplitude migration, etc. In order to simplify the exact but complicated formula of reflection and transmission coefficients, numerous approximate expressions for reflection and transmission coefficients for pre-critical incidence are obtained. In the post-critical case, there is Downton's approximation with acceptable accuracy approximation when the velocity changes smoothly. However if the velocity model changes rapidly, the error will be relatively very large, limiting the use of the approach. In order to improve the post-critical approximation, we utilize Taylor expansion of ray parameters with angle increment (compared to critical angle) in wide-angle seismic reflection and transmission coefficients. The explicit expressions for amplitude and phase shift (time shift) for the post-critical incident angle are obtained. Our results confirm that the wide-angle seismic reflection/transmission phase shifts are strongly frequency dependent; phase shifts of low frequency wide-angle seismic waves are more predominant and their correction should be considered in seismic processing and imaging. Numerical examples demonstrate that (1) the accuracies of these approximations are high compared to the classic Aki's formula and Downton's approximation, and (2) the wide-angle effect can be effectively reduced with phase-shift correction by utilizing our time-shift approximation to the seismic traveltimes.
NASA Astrophysics Data System (ADS)
Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao
2014-12-01
In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N4). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as < hat{S}2rangle are also developed and tested.
Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao
2014-12-07
In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N(4)). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as ⟨Ŝ(2)⟩ are also developed and tested.
Peng, Degao; Yang, Yang; Zhang, Peng; Yang, Weitao
2014-12-07
In this article, we develop systematically second random phase approximations (RPA) and Tamm-Dancoff approximations (TDA) of particle-hole and particle-particle channels for calculating molecular excitation energies. The second particle-hole RPA/TDA can capture double excitations missed by the particle-hole RPA/TDA and time-dependent density-functional theory (TDDFT), while the second particle-particle RPA/TDA recovers non-highest-occupied-molecular-orbital excitations missed by the particle-particle RPA/TDA. With proper orbital restrictions, these restricted second RPAs and TDAs have a formal scaling of only O(N{sup 4}). The restricted versions of second RPAs and TDAs are tested with various small molecules to show some positive results. Data suggest that the restricted second particle-hole TDA (r2ph-TDA) has the best overall performance with a correlation coefficient similar to TDDFT, but with a larger negative bias. The negative bias of the r2ph-TDA may be induced by the unaccounted ground state correlation energy to be investigated further. Overall, the r2ph-TDA is recommended to study systems with both single and some low-lying double excitations with a moderate accuracy. Some expressions on excited state property evaluations, such as 〈S{sup ^2}〉 are also developed and tested.
Low rank approximation in G0W0 calculations
Shao, MeiYue; Lin, Lin; Yang, Chao; ...
2016-06-04
The single particle energies obtained in a Kohn-Sham density functional theory (DFT) calculation are generally known to be poor approximations to electron excitation energies that are measured in tr ansport, tunneling and spectroscopic experiments such as photo-emission spectroscopy. The correction to these energies can be obtained from the poles of a single particle Green’s function derived from a many-body perturbation theory. From a computational perspective, the accuracy and efficiency of such an approach depends on how a self energy term that properly accounts for dynamic screening of electrons is approximated. The G0W0 approximation is a widely used technique in whichmore » the self energy is expressed as the convolution of a noninteracting Green’s function (G0) and a screened Coulomb interaction (W0) in the frequency domain. The computational cost associated with such a convolution is high due to the high complexity of evaluating W 0 at multiple frequencies. In this paper, we discuss how the cost of G0W0 calculation can be reduced by constructing a low rank approximation to the frequency dependent part of W 0 . In particular, we examine the effect of such a low rank approximation on the accuracy of the G0W0 approximation. We also discuss how the numerical convolution of G0 and W0 can be evaluated efficiently and accurately by using a contour deformation technique with an appropriate choice of the contour.« less
Surface expression of the Chicxulub crater
Pope, K O; Ocampo, A C; Kinsland, G L; Smith, R
1996-06-01
Analyses of geomorphic, soil, and topographic data from the northern Yucatan Peninsula, Mexico, confirm that the buried Chicxulub impact crater has a distinct surface expression and that carbonate sedimentation throughout the Cenozoic has been influenced by the crater. Late Tertiary sedimentation was mostly restricted to the region within the buried crater, and a semicircular moat existed until at least Pliocene time. The topographic expression of the crater is a series of features concentric with the crater. The most prominent is an approximately 83-km-radius trough or moat containing sinkholes (the Cenote ring). Early Tertiary surfaces rise abruptly outside the moat and form a stepped topography with an outer trough and ridge crest at radii of approximately 103 and approximately 129 km, respectively. Two discontinuous troughs lie within the moat at radii of approximately 41 and approximately 62 km. The low ridge between the inner troughs corresponds to the buried peak ring. The moat corresponds to the outer edge of the crater floor demarcated by a major ring fault. The outer trough and the approximately 62-km-radius inner trough also mark buried ring faults. The ridge crest corresponds to the topographic rim of the crater as modified by postimpact processes. These interpretations support previous findings that the principal impact basin has a diameter of approximately 180 km, but concentric, low-relief slumping extends well beyond this diameter and the eroded crater rim may extend to a diameter of approximately 260 km.
Generalized stationary phase approximations for mountain waves
NASA Astrophysics Data System (ADS)
Knight, H.; Broutman, D.; Eckermann, S. D.
2016-04-01
Large altitude asymptotic approximations are derived for vertical displacements due to mountain waves generated by hydrostatic wind flow over arbitrary topography. This leads to new asymptotic analytic expressions for wave-induced vertical displacement for mountains with an elliptical Gaussian shape and with the major axis oriented at any angle relative to the background wind. The motivation is to understand local maxima in vertical displacement amplitude at a given height for elliptical mountains aligned at oblique angles to the wind direction, as identified in Eckermann et al. ["Effects of horizontal geometrical spreading on the parameterization of orographic gravity-wave drag. Part 1: Numerical transform solutions," J. Atmos. Sci. 72, 2330-2347 (2015)]. The standard stationary phase method reproduces one type of local amplitude maximum that migrates downwind with increasing altitude. Another type of local amplitude maximum stays close to the vertical axis over the center of the mountain, and a new generalized stationary phase method is developed to describe this other type of local amplitude maximum and the horizontal variation of wave-induced vertical displacement near the vertical axis of the mountain in the large altitude limit. The new generalized stationary phase method describes the asymptotic behavior of integrals where the asymptotic parameter is raised to two different powers (1/2 and 1) rather than just one power as in the standard stationary phase method. The vertical displacement formulas are initially derived assuming a uniform background wind but are extended to accommodate both vertical shear with a fixed wind direction and vertical variations in the buoyancy frequency.
Approximate dynamic model of a turbojet engine
NASA Technical Reports Server (NTRS)
Artemov, O. A.
1978-01-01
An approximate dynamic nonlinear model of a turbojet engine is elaborated on as a tool in studying the aircraft control loop, with the turbojet engine treated as an actuating component. Approximate relationships linking the basic engine parameters and shaft speed are derived to simplify the problem, and to aid in constructing an approximate nonlinear dynamic model of turbojet engine performance useful for predicting aircraft motion.
The JWKB approximation in loop quantum cosmology
NASA Astrophysics Data System (ADS)
Craig, David; Singh, Parampreet
2017-01-01
We explore the JWKB approximation in loop quantum cosmology in a flat universe with a scalar matter source. Exact solutions of the quantum constraint are studied at small volume in the JWKB approximation in order to assess the probability of tunneling to small or zero volume. Novel features of the approximation are discussed which appear due to the fact that the model is effectively a two-dimensional dynamical system. Based on collaborative work with Parampreet Singh.
Approximation by Ridge Functions and Neural Networks
1997-01-01
univariate spaces Xn Other authors most notably Micchelli and Mhaskar MM MM and Mhaskar M have also considered approximation problems of the...type treated here The work of Micchelli and Mhaskar does not give the best order of approximation Mhaskar M has given best possible results but...function from its projections Duke Math J pp M H Mhaskar Neural networks for optimal approximation of smooth and ana lytic
Piecewise linear approximation for hereditary control problems
NASA Technical Reports Server (NTRS)
Propst, Georg
1990-01-01
This paper presents finite-dimensional approximations for linear retarded functional differential equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to optimal control problems, when a quadratic cost integral must be minimized subject to the controlled retarded system. It is shown that the approximate optimal feedback operators converge to the true ones both in the case where the cost integral ranges over a finite time interval, as well as in the case where it ranges over an infinite time interval. The arguments in the last case rely on the fact that the piecewise linear approximations to stable systems are stable in a uniform sense.
Bent approximations to synchrotron radiation optics
Heald, S.
1981-01-01
Ideal optical elements can be approximated by bending flats or cylinders. This paper considers the applications of these approximate optics to synchrotron radiation. Analytic and raytracing studies are used to compare their optical performance with the corresponding ideal elements. It is found that for many applications the performance is adequate, with the additional advantages of lower cost and greater flexibility. Particular emphasis is placed on obtaining the practical limitations on the use of the approximate elements in typical beamline configurations. Also considered are the possibilities for approximating very long length mirrors using segmented mirrors.
Massive neutrinos in cosmology: Analytic solutions and fluid approximation
Shoji, Masatoshi; Komatsu, Eiichiro
2010-06-15
We study the evolution of linear density fluctuations of free-streaming massive neutrinos at redshift of z<1000, with an explicit justification on the use of a fluid approximation. We solve the collisionless Boltzmann equation in an Einstein de-Sitter (EdS) universe, truncating the Boltzmann hierarchy at l{sub max}=1 and 2, and compare the resulting density contrast of neutrinos {delta}{sub {nu}}{sup fluid} with that of the exact solutions of the Boltzmann equation that we derive in this paper. Roughly speaking, the fluid approximation is accurate if neutrinos were already nonrelativistic when the neutrino density fluctuation of a given wave number entered the horizon. We find that the fluid approximation is accurate at subpercent levels for massive neutrinos with m{sub {nu}>}0.05 eV at the scale of k < or approx. 1.0h Mpc{sup -1} and redshift of z<100. This result validates the use of the fluid approximation, at least for the most massive species of neutrinos suggested by the neutrino oscillation experiments. We also find that the density contrast calculated from fluid equations (i.e., continuity and Euler equations) becomes a better approximation at a lower redshift, and the accuracy can be further improved by including an anisotropic stress term in the Euler equation. The anisotropic stress term effectively increases the pressure term by a factor of 9/5.
Algebraic approximations for transcendental equations with applications in nanophysics
NASA Astrophysics Data System (ADS)
Barsan, Victor
2015-09-01
Using algebraic approximations of trigonometric or hyperbolic functions, a class of transcendental equations can be transformed in tractable, algebraic equations. Studying transcendental equations this way gives the eigenvalues of Sturm-Liouville problems associated to wave equation, mainly to Schroedinger equation; these algebraic approximations provide approximate analytical expressions for the energy of electrons and phonons in quantum wells, quantum dots (QDs) and quantum wires, in the frame of one-particle models of such systems. The advantage of this approach, compared to the numerical calculations, is that the final result preserves the functional dependence on the physical parameters of the problem. The errors of this method, situated between some few percentages and ?, are carefully analysed. Several applications, for quantum wells, QDs and quantum wires, are presented.
Correlation Energies from the Two-Component Random Phase Approximation.
Kühn, Michael
2014-02-11
The correlation energy within the two-component random phase approximation accounting for spin-orbit effects is derived. The resulting plasmon equation is rewritten-analogously to the scalar relativistic case-in terms of the trace of two Hermitian matrices for (Kramers-restricted) closed-shell systems and then represented as an integral over imaginary frequency using the resolution of the identity approximation. The final expression is implemented in the TURBOMOLE program suite. The code is applied to the computation of equilibrium distances and vibrational frequencies of heavy diatomic molecules. The efficiency is demonstrated by calculation of the relative energies of the Oh-, D4h-, and C5v-symmetric isomers of Pb6. Results within the random phase approximation are obtained based on two-component Kohn-Sham reference-state calculations, using effective-core potentials. These values are finally compared to other two-component and scalar relativistic methods, as well as experimental data.
Cluster and propensity based approximation of a network
2013-01-01
Background The models in this article generalize current models for both correlation networks and multigraph networks. Correlation networks are widely applied in genomics research. In contrast to general networks, it is straightforward to test the statistical significance of an edge in a correlation network. It is also easy to decompose the underlying correlation matrix and generate informative network statistics such as the module eigenvector. However, correlation networks only capture the connections between numeric variables. An open question is whether one can find suitable decompositions of the similarity measures employed in constructing general networks. Multigraph networks are attractive because they support likelihood based inference. Unfortunately, it is unclear how to adjust current statistical methods to detect the clusters inherent in many data sets. Results Here we present an intuitive and parsimonious parametrization of a general similarity measure such as a network adjacency matrix. The cluster and propensity based approximation (CPBA) of a network not only generalizes correlation network methods but also multigraph methods. In particular, it gives rise to a novel and more realistic multigraph model that accounts for clustering and provides likelihood based tests for assessing the significance of an edge after controlling for clustering. We present a novel Majorization-Minimization (MM) algorithm for estimating the parameters of the CPBA. To illustrate the practical utility of the CPBA of a network, we apply it to gene expression data and to a bi-partite network model for diseases and disease genes from the Online Mendelian Inheritance in Man (OMIM). Conclusions The CPBA of a network is theoretically appealing since a) it generalizes correlation and multigraph network methods, b) it improves likelihood based significance tests for edge counts, c) it directly models higher-order relationships between clusters, and d) it suggests novel clustering
Approximate entropy and support vector machines for electroencephalogram signal classification
Zhang, Zhen; Zhou, Yi; Chen, Ziyi; Tian, Xianghua; Du, Shouhong; Huang, Ruimei
2013-01-01
The automatic detection and identification of electroencephalogram waves play an important role in the prediction, diagnosis and treatment of epileptic seizures. In this study, a nonlinear dynamics index–approximate entropy and a support vector machine that has strong generalization ability were applied to classify electroencephalogram signals at epileptic interictal and ictal periods. Our aim was to verify whether approximate entropy waves can be effectively applied to the automatic real-time detection of epilepsy in the electroencephalogram, and to explore its generalization ability as a classifier trained using a nonlinear dynamics index. Four patients presenting with partial epileptic seizures were included in this study. They were all diagnosed with neocortex localized epilepsy and epileptic foci were clearly observed by electroencephalogram. The electroencephalogram data form the four involved patients were segmented and the characteristic values of each segment, that is, the approximate entropy, were extracted. The support vector machine classifier was constructed with the approximate entropy extracted from one epileptic case, and then electroencephalogram waves of the other three cases were classified, reaching a 93.33% accuracy rate. Our findings suggest that the use of approximate entropy allows the automatic real-time detection of electroencephalogram data in epileptic cases. The combination of approximate entropy and support vector machines shows good generalization ability for the classification of electroencephalogram signals for epilepsy. PMID:25206493
Analytical approximations to the spectra of quark antiquark potentials
NASA Astrophysics Data System (ADS)
Amore, Paolo; DePace, Arturo; Lopez, Jorge
2006-07-01
A method recently devised to obtain analytical approximations to certain classes of integrals is used in combination with the WKB expansion to derive accurate analytical expressions for the spectrum of quantum potentials. The accuracy of our results is verified by comparing them both with the literature on the subject and with the numerical results obtained with a Fortran code. As an application of the method that we propose, we consider meson spectroscopy with various phenomenological potentials.
Inversion and approximation of Laplace transforms
NASA Technical Reports Server (NTRS)
Lear, W. M.
1980-01-01
A method of inverting Laplace transforms by using a set of orthonormal functions is reported. As a byproduct of the inversion, approximation of complicated Laplace transforms by a transform with a series of simple poles along the left half plane real axis is shown. The inversion and approximation process is simple enough to be put on a programmable hand calculator.
Approximate methods for equations of incompressible fluid
NASA Astrophysics Data System (ADS)
Galkin, V. A.; Dubovik, A. O.; Epifanov, A. A.
2017-02-01
Approximate methods on the basis of sequential approximations in the theory of functional solutions to systems of conservation laws is considered, including the model of dynamics of incompressible fluid. Test calculations are performed, and a comparison with exact solutions is carried out.
Computing Functions by Approximating the Input
ERIC Educational Resources Information Center
Goldberg, Mayer
2012-01-01
In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their…
An approximation for inverse Laplace transforms
NASA Technical Reports Server (NTRS)
Lear, W. M.
1981-01-01
Programmable calculator runs simple finite-series approximation for Laplace transform inversions. Utilizing family of orthonormal functions, approximation is used for wide range of transforms, including those encountered in feedback control problems. Method works well as long as F(t) decays to zero as it approaches infinity and so is appliable to most physical systems.
Piecewise linear approximation for hereditary control problems
NASA Technical Reports Server (NTRS)
Propst, Georg
1987-01-01
Finite dimensional approximations are presented for linear retarded functional differential equations by use of discontinuous piecewise linear functions. The approximation scheme is applied to optimal control problems when a quadratic cost integral has to be minimized subject to the controlled retarded system. It is shown that the approximate optimal feedback operators converge to the true ones both in case the cost integral ranges over a finite time interval as well as in the case it ranges over an infinite time interval. The arguments in the latter case rely on the fact that the piecewise linear approximations to stable systems are stable in a uniform sense. This feature is established using a vector-component stability criterion in the state space R(n) x L(2) and the favorable eigenvalue behavior of the piecewise linear approximations.
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Origin of Quantum Criticality in Yb-Al-Au Approximant Crystal and Quasicrystal
NASA Astrophysics Data System (ADS)
Watanabe, Shinji; Miyake, Kazumasa
2016-06-01
To get insight into the mechanism of emergence of unconventional quantum criticality observed in quasicrystal Yb15Al34Au51, the approximant crystal Yb14Al35Au51 is analyzed theoretically. By constructing a minimal model for the approximant crystal, the heavy quasiparticle band is shown to emerge near the Fermi level because of strong correlation of 4f electrons at Yb. We find that charge-transfer mode between 4f electron at Yb on the 3rd shell and 3p electron at Al on the 4th shell in Tsai-type cluster is considerably enhanced with almost flat momentum dependence. The mode-coupling theory shows that magnetic as well as valence susceptibility exhibits χ ˜ T-0.5 for zero-field limit and is expressed as a single scaling function of the ratio of temperature to magnetic field T/B over four decades even in the approximant crystal when some condition is satisfied by varying parameters, e.g., by applying pressure. The key origin is clarified to be due to strong locality of the critical Yb-valence fluctuation and small Brillouin zone reflecting the large unit cell, giving rise to the extremely-small characteristic energy scale. This also gives a natural explanation for the quantum criticality in the quasicrystal corresponding to the infinite limit of the unit-cell size.
On the validity of the adiabatic approximation in compact binary inspirals
NASA Astrophysics Data System (ADS)
Maselli, Andrea; Gualtieri, Leonardo; Pannarale, Francesco; Ferrari, Valeria
2012-08-01
Using a semianalytical approach recently developed to model the tidal deformations of neutron stars in inspiralling compact binaries, we study the dynamical evolution of the tidal tensor, which we explicitly derive at second post-Newtonian order, and of the quadrupole tensor. Since we do not assume a priori that the quadrupole tensor is proportional to the tidal tensor, i.e., the so-called “adiabatic approximation,” our approach enables us to establish to which extent such approximation is reliable. We find that the ratio between the quadrupole and tidal tensors (i.e., the Love number) increases as the inspiral progresses, but this phenomenon only marginally affects the emitted gravitational waveform. We estimate the frequency range in which the tidal component of the gravitational signal is well described using the Stationary phase approximation at next-to-leading post-Newtonian order, comparing different contributions to the tidal phase. We also derive a semianalytical expression for the Love number, which reproduces within a few percentage points the results obtained so far by numerical integrations of the relativistic equations of stellar perturbations.
The Zeeman effect in the Sobolev approximation: applications to spherical stellar winds
NASA Astrophysics Data System (ADS)
Ignace, R.; Gayley, K. G.
2003-05-01
Modern spectropolarimeters are capable of detecting subkilogauss field strengths using the Zeeman effect in line profiles from the static photosphere, but supersonic Doppler broadening makes it more difficult to detect the Zeeman effect in the wind lines of hot stars. Nevertheless, the recent advances in observational capability motivate an assessment of the potential for detecting the magnetic fields threading such winds. We incorporate the weak-field longitudinal Zeeman effect in the Sobolev approximation to yield integral expressions for the flux of circularly polarized emission. To illustrate the results, two specific wind flows are considered: (i) spherical constant expansion with v(r) =v∞ and (ii) homologous expansion with v(r) ~r. Axial and split monopole magnetic fields are used to schematically illustrate the polarized profiles. For constant expansion, optically thin lines yield the well-known `flat-topped' total intensity emission profiles and an antisymmetric circularly polarized profile. For homologous expansion, we include occultation and wind absorption to provide a more realistic observational comparison. Occultation severely reduces the circularly polarized flux in the redshifted component, and in the blueshifted component, the polarization is reduced by partially offsetting emission and absorption contributions. We find that for a surface field of approximately 100 G, the largest polarizations result for thin but strong recombination emission lines. Peak polarizations are approximately 0.05 per cent, which presents a substantial although not inconceivable sensitivity challenge for modern instrumentation.
Particle-number projection in the finite-temperature mean-field approximation
NASA Astrophysics Data System (ADS)
Fanto, P.; Alhassid, Y.; Bertsch, G. F.
2017-07-01
Finite-temperature mean-field theories, such as the Hartree-Fock (HF) and Hartree-Fock-Bogoliubov (HFB) theories, are formulated in the grand-canonical ensemble, and their applications to the calculation of statistical properties of nuclei such as level densities require a reduction to the canonical ensemble. In a previous publication [Y. Alhassid et al., Phys. Rev. C 93, 044320 (2016), 10.1103/PhysRevC.93.044320], it was found that ensemble-reduction methods based on the saddle-point approximation are not reliable in cases in which rotational symmetry or particle-number conservation is broken. In particular, the calculated HFB canonical entropy can be unphysical as a result of the inherent violation of particle-number conservation. In this work, we derive a general formula for exact particle-number projection after variation in the HFB approximation, assuming that the HFB Hamiltonian preserves time-reversal symmetry. This formula reduces to simpler known expressions in the HF and Bardeen-Cooper-Schrieffer (BCS) limits of the HFB. We apply this formula to calculate the thermodynamic quantities needed for level densities in the heavy nuclei 162Dy, 148Sm, and 150Sm. We find that the exact particle-number projection gives better physical results and is significantly more computationally efficient than the saddle-point methods. However, the fundamental limitations caused by broken symmetries in the mean-field approximation are still present.
Ponomarenko, Mikhail; Rasskazov, Dmitry; Arkova, Olga; Ponomarenko, Petr; Suslov, Valentin; Savinkova, Ludmila; Kolchanov, Nikolay
2015-01-01
The use of biomedical SNP markers of diseases can improve effectiveness of treatment. Genotyping of patients with subsequent searching for SNPs more frequent than in norm is the only commonly accepted method for identification of SNP markers within the framework of translational research. The bioinformatics applications aimed at millions of unannotated SNPs of the "1000 Genomes" can make this search for SNP markers more focused and less expensive. We used our Web service involving Fisher's Z-score for candidate SNP markers to find a significant change in a gene's expression. Here we analyzed the change caused by SNPs in the gene's promoter via a change in affinity of the TATA-binding protein for this promoter. We provide examples and discuss how to use this bioinformatics application in the course of practical analysis of unannotated SNPs from the "1000 Genomes" project. Using known biomedical SNP markers, we identified 17 novel candidate SNP markers nearby: rs549858786 (rheumatoid arthritis); rs72661131 (cardiovascular events in rheumatoid arthritis); rs562962093 (stroke); rs563558831 (cyclophosphamide bioactivation); rs55878706 (malaria resistance, leukopenia), rs572527200 (asthma, systemic sclerosis, and psoriasis), rs371045754 (hemophilia B), rs587745372 (cardiovascular events); rs372329931, rs200209906, rs367732974, and rs549591993 (all four: cancer); rs17231520 and rs569033466 (both: atherosclerosis); rs63750953, rs281864525, and rs34166473 (all three: malaria resistance, thalassemia).
Rasskazov, Dmitry; Arkova, Olga; Ponomarenko, Petr; Suslov, Valentin; Savinkova, Ludmila; Kolchanov, Nikolay
2015-01-01
The use of biomedical SNP markers of diseases can improve effectiveness of treatment. Genotyping of patients with subsequent searching for SNPs more frequent than in norm is the only commonly accepted method for identification of SNP markers within the framework of translational research. The bioinformatics applications aimed at millions of unannotated SNPs of the “1000 Genomes” can make this search for SNP markers more focused and less expensive. We used our Web service involving Fisher's Z-score for candidate SNP markers to find a significant change in a gene's expression. Here we analyzed the change caused by SNPs in the gene's promoter via a change in affinity of the TATA-binding protein for this promoter. We provide examples and discuss how to use this bioinformatics application in the course of practical analysis of unannotated SNPs from the “1000 Genomes” project. Using known biomedical SNP markers, we identified 17 novel candidate SNP markers nearby: rs549858786 (rheumatoid arthritis); rs72661131 (cardiovascular events in rheumatoid arthritis); rs562962093 (stroke); rs563558831 (cyclophosphamide bioactivation); rs55878706 (malaria resistance, leukopenia), rs572527200 (asthma, systemic sclerosis, and psoriasis), rs371045754 (hemophilia B), rs587745372 (cardiovascular events); rs372329931, rs200209906, rs367732974, and rs549591993 (all four: cancer); rs17231520 and rs569033466 (both: atherosclerosis); rs63750953, rs281864525, and rs34166473 (all three: malaria resistance, thalassemia). PMID:26516624
Semiclassical approximation for strong-laser-field processes
NASA Astrophysics Data System (ADS)
Milošević, D. B.
2017-08-01
The exact time-evolution operator of an atom in the presence of a strong laser field is expressed using the phase-space path integral. Presenting this result in the form of a perturbative expansion in the effective interaction of the electron with the rest of the atom enables straightforward derivation of the well-known strong-field approximation and its higher-order corrections. Alternatively, one can use this exact result to obtain a semiclassical approximation by expansion in powers of small fluctuations around the classical trajectories. We present a derivation of such a semiclassical approximation. The obtained result for the momentum-space matrix element of the total time-evolution operator can be useful for studying various processes in strong-field physics. Using the example of above-threshold ionization, it is shown how this approximation can be applied to laser-induced processes. More attention is devoted to the laser-assisted scattering. Using the example of few-cycle laser-pulse-assisted electron-atom potential scattering, we show similarities and differences between the semiclassical and the strong-field approximations. For low energies, the semiclassical scattering cross section is modified and there are trajectories along which the electron is temporarily captured by the atomic potential. Applying stationary-phase method to the integral over the scattering time, we clearly identified relevant semiclassical electron trajectories.
Rational trigonometric approximations using Fourier series partial sums
NASA Technical Reports Server (NTRS)
Geer, James F.
1993-01-01
A class of approximations (S(sub N,M)) to a periodic function f which uses the ideas of Pade, or rational function, approximations based on the Fourier series representation of f, rather than on the Taylor series representation of f, is introduced and studied. Each approximation S(sub N,M) is the quotient of a trigonometric polynomial of degree N and a trigonometric polynomial of degree M. The coefficients in these polynomials are determined by requiring that an appropriate number of the Fourier coefficients of S(sub N,M) agree with those of f. Explicit expressions are derived for these coefficients in terms of the Fourier coefficients of f. It is proven that these 'Fourier-Pade' approximations converge point-wise to (f(x(exp +))+f(x(exp -)))/2 more rapidly (in some cases by a factor of 1/k(exp 2M)) than the Fourier series partial sums on which they are based. The approximations are illustrated by several examples and an application to the solution of an initial, boundary value problem for the simple heat equation is presented.
Dynamical exchange-correlation potentials beyond the local density approximation
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Vignale, Giovanni
2006-03-01
Approximations for the static exchange-correlation (xc) potential of density functional theory (DFT) have reached a high level of sophistication. By contrast, time-dependent xc potentials are still being treated in a local (although velocity-dependent) approximation [G. Vignale, C. A. Ullrich and S. Conti, PRL 79, 4879 (1997)]. Unfortunately, one of the assumptions upon which the dynamical local approximation is based appears to break down in the important case of d.c. transport. Here we propose a new approximation scheme, which should allow a more accurate treatment of molecular transport problems. As a first step, we separate the exact adiabatic xc potential, which has the same form as in the static theory and can be treated by a generalized gradient approximation (GGA) or a meta-GGA. In the second step, we express the high-frequency limit of the xc stress tensor (whose divergence gives the xc force density) in terms of the exact static xc energy functional. Finally, we develop a perturbative scheme for the calculation of the frequency dependence of the xc stress tensor in terms of the ground-state Kohn-Sham orbitals and eigenvalues.
Approximate formulation of redistribution in the Ly-alpha, Ly-beta, H-alpha system
NASA Technical Reports Server (NTRS)
Cooper, J.; Ballagh, R. J.; Hubeny, I.
1989-01-01
Simple approximate formulas are given for the coupled redistribution of Ly-alpha, Ly-beta, and H-alpha, by using well-defined approximations to an essentially exact formulation. These formulas incorporate all the essential physics including Raman scattering, lower state radiative decay, and correlated terms representing emission during a collision which must be retained in order that the emission coefficients are properly behaved in the line wings. Approximate expressions for the appropriate line broadening parameters are collected. Finally, practical expressions for the source functions are given. These are formulated through newly introduced nonimpact redistribution functions, which are shown to be reasonably approximated by existing (ordinary and generalized) redistribution functions.
Stochastic population dynamics: The Poisson approximation
NASA Astrophysics Data System (ADS)
Solari, Hernán G.; Natiello, Mario A.
2003-03-01
We introduce an approximation to stochastic population dynamics based on almost independent Poisson processes whose parameters obey a set of coupled ordinary differential equations. The approximation applies to systems that evolve in terms of events such as death, birth, contagion, emission, absorption, etc., and we assume that the event-rates satisfy a generalized mass-action law. The dynamics of the populations is then the result of the projection from the space of events into the space of populations that determine the state of the system (phase space). The properties of the Poisson approximation are studied in detail. Especially, error bounds for the moment generating function and the generating function receive particular attention. The deterministic approximation for the population fractions and the Langevin-type approximation for the fluctuations around the mean value are recovered within the framework of the Poisson approximation as particular limit cases. However, the proposed framework allows to treat other limit cases and general situations with small populations that lie outside the scope of the standard approaches. The Poisson approximation can be viewed as a general (numerical) integration scheme for this family of problems in population dynamics.
Quasiadiabatic Grover search via the Wentzel-Kramers-Brillouin approximation
NASA Astrophysics Data System (ADS)
Muthukrishnan, Siddharth; Lidar, Daniel A.
2017-07-01
In various applications one is interested in quantum dynamics at intermediate evolution times, for which the adiabatic approximation is inadequate. Here we develop a quasiadiabatic approximation based on the WKB method, designed to work for such intermediate evolution times. We apply it to the problem of a single qubit in a time-varying magnetic field, and to the Hamiltonian Grover search problem, and show that already at first order the quasiadiabatic WKB captures subtle features of the dynamics that are missed by the adiabatic approximation. However, we also find that the method is sensitive to the type of interpolation schedule used in the Grover problem and can give rise to nonsensical results for the wrong schedule. Conversely, it reproduces the quadratic Grover speedup when the well-known optimal schedule is used.
Fast approximation of self-similar network traffic
Paxson, V.
1995-01-01
Recent network traffic studies argue that network arrival processes are much more faithfully modeled using statistically self-similar processes instead of traditional Poisson processes [LTWW94a, PF94]. One difficulty in dealing with self-similar models is how to efficiently synthesize traces (sample paths) corresponding to self-similar traffic. We present a fast Fourier transform method for synthesizing approximate self-similar sample paths and assess its performance and validity. We find that the method is as fast or faster than existing methods and appears to generate a closer approximation to true self-similar sample paths than the other known fast method (Random Midpoint Displacement). We then discuss issues in using such synthesized sample paths for simulating network traffic, and how an approximation used by our method can dramatically speed up evaluation of Whittle`s estimator for H, the Hurst parameter giving the strength of long-range dependence present in a self-similar time series.
Error bounded conic spline approximation for NC code
NASA Astrophysics Data System (ADS)
Shen, Liyong
2012-01-01
Curve fitting is an important preliminary work for data compression and path interpolator in numerical control (NC). The paper gives a simple conic spline approximation algorithm for G01 code. The algorithm is mainly formed by three steps: divide the G01 code to subsets by discrete curvature detection, find the polygon line segment approximation for each subset within a given error and finally, fit each polygon line segment approximation with a conic Bezier spline. Naturally, B-spline curve can be obtained by proper knots selection. The algorithm is designed straightforward and efficient without solving any global equation system or optimal problem. It is complete with the selection of curve's weight. To design the curve more suitable for NC, we present an interval for the weight selection and the error is then computed.
Error bounded conic spline approximation for NC code
NASA Astrophysics Data System (ADS)
Shen, Liyong
2011-12-01
Curve fitting is an important preliminary work for data compression and path interpolator in numerical control (NC). The paper gives a simple conic spline approximation algorithm for G01 code. The algorithm is mainly formed by three steps: divide the G01 code to subsets by discrete curvature detection, find the polygon line segment approximation for each subset within a given error and finally, fit each polygon line segment approximation with a conic Bezier spline. Naturally, B-spline curve can be obtained by proper knots selection. The algorithm is designed straightforward and efficient without solving any global equation system or optimal problem. It is complete with the selection of curve's weight. To design the curve more suitable for NC, we present an interval for the weight selection and the error is then computed.
On current sheet approximations in models of eruptive flares
NASA Technical Reports Server (NTRS)
Bungey, T. N.; Forbes, T. G.
1994-01-01
We consider an approximation sometimes used for current sheets in flux-rope models of eruptive flares. This approximation is based on a linear expansion of the background field in the vicinity of the current sheet, and it is valid when the length of the current sheet is small compared to the scale length of the coronal magnetic field. However, we find that flux-rope models which use this approximation predict the occurrence of an eruption due to a loss of ideal-MHD equilibrium even when the corresponding exact solution shows that no such eruption occurs. Determination of whether a loss of equilibrium exists can only be obtained by including higher order terms in the expansion of the field or by using the exact solution.
Approximating Light Rays in the Schwarzschild Field
NASA Astrophysics Data System (ADS)
Semerák, O.
2015-02-01
A short formula is suggested that approximates photon trajectories in the Schwarzschild field better than other simple prescriptions from the literature. We compare it with various "low-order competitors," namely, with those following from exact formulas for small M, with one of the results based on pseudo-Newtonian potentials, with a suitably adjusted hyperbola, and with the effective and often employed approximation by Beloborodov. Our main concern is the shape of the photon trajectories at finite radii, yet asymptotic behavior is also discussed, important for lensing. An example is attached indicating that the newly suggested approximation is usable—and very accurate—for practically solving the ray-deflection exercise.
Approximate Bruechner orbitals in electron propagator calculations
Ortiz, J.V.
1999-12-01
Orbitals and ground-state correlation amplitudes from the so-called Brueckner doubles approximation of coupled-cluster theory provide a useful reference state for electron propagator calculations. An operator manifold with hold, particle, two-hole-one-particle and two-particle-one-hole components is chosen. The resulting approximation, third-order algebraic diagrammatic construction [2ph-TDA, ADC (3)] and 3+ methods. The enhanced versatility of this approximation is demonstrated through calculations on valence ionization energies, core ionization energies, electron detachment energies of anions, and on a molecule with partial biradical character, ozone.
Alternative approximation concepts for space frame synthesis
NASA Technical Reports Server (NTRS)
Lust, R. V.; Schmit, L. A.
1985-01-01
A method for space frame synthesis based on the application of a full gamut of approximation concepts is presented. It is found that with the thoughtful selection of design space, objective function approximation, constraint approximation and mathematical programming problem formulation options it is possible to obtain near minimum mass designs for a significant class of space frame structural systems while requiring fewer than 10 structural analyses. Example problems are presented which demonstrate the effectiveness of the method for frame structures subjected to multiple static loading conditions with limits on structural stiffness and strength.
APPROXIMATING LIGHT RAYS IN THE SCHWARZSCHILD FIELD
Semerák, O.
2015-02-10
A short formula is suggested that approximates photon trajectories in the Schwarzschild field better than other simple prescriptions from the literature. We compare it with various ''low-order competitors'', namely, with those following from exact formulas for small M, with one of the results based on pseudo-Newtonian potentials, with a suitably adjusted hyperbola, and with the effective and often employed approximation by Beloborodov. Our main concern is the shape of the photon trajectories at finite radii, yet asymptotic behavior is also discussed, important for lensing. An example is attached indicating that the newly suggested approximation is usable—and very accurate—for practically solving the ray-deflection exercise.
Information geometry of mean-field approximation.
Tanaka, T
2000-08-01
I present a general theory of mean-field approximation based on information geometry and applicable not only to Boltzmann machines but also to wider classes of statistical models. Using perturbation expansion of the Kullback divergence (or Plefka expansion in statistical physics), a formulation of mean-field approximation of general orders is derived. It includes in a natural way the "naive" mean-field approximation and is consistent with the Thouless-Anderson-Palmer (TAP) approach and the linear response theorem in statistical physics.
McKinney, Brett A; White, Bill C; Grill, Diane E; Li, Peter W; Kennedy, Richard B; Poland, Gregory A; Oberg, Ann L
2013-01-01
Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k) for each gene to optimize the Relief-F test statistics (importance scores) for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak) Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to detect both main
McKinney, Brett A.; White, Bill C.; Grill, Diane E.; Li, Peter W.; Kennedy, Richard B.; Poland, Gregory A.; Oberg, Ann L.
2013-01-01
Relief-F is a nonparametric, nearest-neighbor machine learning method that has been successfully used to identify relevant variables that may interact in complex multivariate models to explain phenotypic variation. While several tools have been developed for assessing differential expression in sequence-based transcriptomics, the detection of statistical interactions between transcripts has received less attention in the area of RNA-seq analysis. We describe a new extension and assessment of Relief-F for feature selection in RNA-seq data. The ReliefSeq implementation adapts the number of nearest neighbors (k) for each gene to optimize the Relief-F test statistics (importance scores) for finding both main effects and interactions. We compare this gene-wise adaptive-k (gwak) Relief-F method with standard RNA-seq feature selection tools, such as DESeq and edgeR, and with the popular machine learning method Random Forests. We demonstrate performance on a panel of simulated data that have a range of distributional properties reflected in real mRNA-seq data including multiple transcripts with varying sizes of main effects and interaction effects. For simulated main effects, gwak-Relief-F feature selection performs comparably to standard tools DESeq and edgeR for ranking relevant transcripts. For gene-gene interactions, gwak-Relief-F outperforms all comparison methods at ranking relevant genes in all but the highest fold change/highest signal situations where it performs similarly. The gwak-Relief-F algorithm outperforms Random Forests for detecting relevant genes in all simulation experiments. In addition, Relief-F is comparable to the other methods based on computational time. We also apply ReliefSeq to an RNA-Seq study of smallpox vaccine to identify gene expression changes between vaccinia virus-stimulated and unstimulated samples. ReliefSeq is an attractive tool for inclusion in the suite of tools used for analysis of mRNA-Seq data; it has power to detect both main
Linear Approximation SAR Azimuth Processing Study
NASA Technical Reports Server (NTRS)
Lindquist, R. B.; Masnaghetti, R. K.; Belland, E.; Hance, H. V.; Weis, W. G.
1979-01-01
A segmented linear approximation of the quadratic phase function that is used to focus the synthetic antenna of a SAR was studied. Ideal focusing, using a quadratic varying phase focusing function during the time radar target histories are gathered, requires a large number of complex multiplications. These can be largely eliminated by using linear approximation techniques. The result is a reduced processor size and chip count relative to ideally focussed processing and a correspondingly increased feasibility for spaceworthy implementation. A preliminary design and sizing for a spaceworthy linear approximation SAR azimuth processor meeting requirements similar to those of the SEASAT-A SAR was developed. The study resulted in a design with approximately 1500 IC's, 1.2 cubic feet of volume, and 350 watts of power for a single look, 4000 range cell azimuth processor with 25 meters resolution.
AN APPROXIMATE EQUATION OF STATE OF SOLIDS.
research. By generalizing experimental data and obtaining unified relations describing the thermodynamic properties of solids, and approximate equation of state is derived which can be applied to a wide class of materials. (Author)
Approximate Controllability Results for Linear Viscoelastic Flows
NASA Astrophysics Data System (ADS)
Chowdhury, Shirshendu; Mitra, Debanjana; Ramaswamy, Mythily; Renardy, Michael
2017-09-01
We consider linear viscoelastic flow of a multimode Maxwell or Jeffreys fluid in a bounded domain with smooth boundary, with a distributed control in the momentum equation. We establish results on approximate and exact controllability.
Approximation concepts for efficient structural synthesis
NASA Technical Reports Server (NTRS)
Schmit, L. A., Jr.; Miura, H.
1976-01-01
It is shown that efficient structural synthesis capabilities can be created by using approximation concepts to mesh finite element structural analysis methods with nonlinear mathematical programming techniques. The history of the application of mathematical programming techniques to structural design optimization problems is reviewed. Several rather general approximation concepts are described along with the technical foundations of the ACCESS 1 computer program, which implements several approximation concepts. A substantial collection of structural design problems involving truss and idealized wing structures is presented. It is concluded that since the basic ideas employed in creating the ACCESS 1 program are rather general, its successful development supports the contention that the introduction of approximation concepts will lead to the emergence of a new generation of practical and efficient, large scale, structural synthesis capabilities in which finite element analysis methods and mathematical programming algorithms will play a central role.
Computational aspects of pseudospectral Laguerre approximations
NASA Technical Reports Server (NTRS)
Funaro, Daniele
1989-01-01
Pseudospectral approximations in unbounded domains by Laguerre polynomials lead to ill-conditioned algorithms. Introduced are a scaling function and appropriate numerical procedures in order to limit these unpleasant phenomena.
Polynomial approximation of functions in Sobolev spaces
Dupont, T.; Scott, R.
1980-04-01
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomical plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.
Computing functions by approximating the input
NASA Astrophysics Data System (ADS)
Goldberg, Mayer
2012-12-01
In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their output. Our approach assumes only the most rudimentary knowledge of algebra and trigonometry, and makes no use of calculus.
Approximate String Matching with Reduced Alphabet
NASA Astrophysics Data System (ADS)
Salmela, Leena; Tarhio, Jorma
We present a method to speed up approximate string matching by mapping the factual alphabet to a smaller alphabet. We apply the alphabet reduction scheme to a tuned version of the approximate Boyer-Moore algorithm utilizing the Four-Russians technique. Our experiments show that the alphabet reduction makes the algorithm faster. Especially in the k-mismatch case, the new variation is faster than earlier algorithms for English data with small values of k.
Some Recent Progress for Approximation Algorithms
NASA Astrophysics Data System (ADS)
Kawarabayashi, Ken-ichi
We survey some recent progress on approximation algorithms. Our main focus is the following two problems that have some recent breakthroughs; the edge-disjoint paths problem and the graph coloring problem. These breakthroughs involve the following three ingredients that are quite central in approximation algorithms: (1) Combinatorial (graph theoretical) approach, (2) LP based approach and (3) Semi-definite programming approach. We also sketch how they are used to obtain recent development.
Polynomial approximation of functions in Sobolev spaces
NASA Technical Reports Server (NTRS)
Dupont, T.; Scott, R.
1980-01-01
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.
Polynomial approximation of functions in Sobolev spaces
NASA Technical Reports Server (NTRS)
Dupont, T.; Scott, R.
1980-01-01
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.
Nonlinear Stochastic PDEs: Analysis and Approximations
2016-05-23
3.4.1 Nonlinear Stochastic PDEs: Analysis and Approximations We compare Wiener chaos and stochastic collocation methods for linear advection-reaction...ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 nonlinear stochastic PDEs (SPDEs), nonlocal SPDEs, Navier...3.4.1 Nonlinear Stochastic PDEs: Analysis and Approximations Report Title We compare Wiener chaos and stochastic collocation methods for linear
Approximations and Solution Estimates in Optimization
2016-04-06
Approximations and Solution Estimates in Optimization Johannes O. Royset Operations Research Department Naval Postgraduate School joroyset@nps.edu...Abstract. Approximation is central to many optimization problems and the supporting theory pro- vides insight as well as foundation for algorithms. In...functions quantifies epi-convergence, we are able to obtain estimates of optimal solutions and optimal values through estimates of that distance. In
The closure approximation in the hierarchy equations.
NASA Technical Reports Server (NTRS)
Adomian, G.
1971-01-01
The expectation of the solution process in a stochastic operator equation can be obtained from averaged equations only under very special circumstances. Conditions for validity are given and the significance and validity of the approximation in widely used hierarchy methods and the ?self-consistent field' approximation in nonequilibrium statistical mechanics are clarified. The error at any level of the hierarchy can be given and can be avoided by the use of the iterative method.
An improved proximity force approximation for electrostatics
Fosco, Cesar D.; Lombardo, Fernando C.; Mazzitelli, Francisco D.
2012-08-15
A quite straightforward approximation for the electrostatic interaction between two perfectly conducting surfaces suggests itself when the distance between them is much smaller than the characteristic lengths associated with their shapes. Indeed, in the so called 'proximity force approximation' the electrostatic force is evaluated by first dividing each surface into a set of small flat patches, and then adding up the forces due two opposite pairs, the contributions of which are approximated as due to pairs of parallel planes. This approximation has been widely and successfully applied in different contexts, ranging from nuclear physics to Casimir effect calculations. We present here an improvement on this approximation, based on a derivative expansion for the electrostatic energy contained between the surfaces. The results obtained could be useful for discussing the geometric dependence of the electrostatic force, and also as a convenient benchmark for numerical analyses of the tip-sample electrostatic interaction in atomic force microscopes. - Highlights: Black-Right-Pointing-Pointer The proximity force approximation (PFA) has been widely used in different areas. Black-Right-Pointing-Pointer The PFA can be improved using a derivative expansion in the shape of the surfaces. Black-Right-Pointing-Pointer We use the improved PFA to compute electrostatic forces between conductors. Black-Right-Pointing-Pointer The results can be used as an analytic benchmark for numerical calculations in AFM. Black-Right-Pointing-Pointer Insight is provided for people who use the PFA to compute nuclear and Casimir forces.
Approximating centrality in evolving graphs: toward sublinearity
NASA Astrophysics Data System (ADS)
Priest, Benjamin W.; Cybenko, George
2017-05-01
The identification of important nodes is a ubiquitous problem in the analysis of social networks. Centrality indices (such as degree centrality, closeness centrality, betweenness centrality, PageRank, and others) are used across many domains to accomplish this task. However, the computation of such indices is expensive on large graphs. Moreover, evolving graphs are becoming increasingly important in many applications. It is therefore desirable to develop on-line algorithms that can approximate centrality measures using memory sublinear in the size of the graph. We discuss the challenges facing the semi-streaming computation of many centrality indices. In particular, we apply recent advances in the streaming and sketching literature to provide a preliminary streaming approximation algorithm for degree centrality utilizing CountSketch and a multi-pass semi-streaming approximation algorithm for closeness centrality leveraging a spanner obtained through iteratively sketching the vertex-edge adjacency matrix. We also discuss possible ways forward for approximating betweenness centrality, as well as spectral measures of centrality. We provide a preliminary result using sketched low-rank approximations to approximate the output of the HITS algorithm.
Approximate scaling properties of RNA free energy landscapes
NASA Technical Reports Server (NTRS)
Baskaran, S.; Stadler, P. F.; Schuster, P.
1996-01-01
RNA free energy landscapes are analysed by means of "time-series" that are obtained from random walks restricted to excursion sets. The power spectra, the scaling of the jump size distribution, and the scaling of the curve length measured with different yard stick lengths are used to describe the structure of these "time series". Although they are stationary by construction, we find that their local behavior is consistent with both AR(1) and self-affine processes. Random walks confined to excursion sets (i.e., with the restriction that the fitness value exceeds a certain threshold at each step) exhibit essentially the same statistics as free random walks. We find that an AR(1) time series is in general approximately self-affine on timescales up to approximately the correlation length. We present an empirical relation between the correlation parameter rho of the AR(1) model and the exponents characterizing self-affinity.
Inverse eigenproblem for R-symmetric matrices and their approximation
NASA Astrophysics Data System (ADS)
Yuan, Yongxin
2009-11-01
Let be a nontrivial involution, i.e., R=R-1[not equal to]±In. We say that is R-symmetric if RGR=G. The set of all -symmetric matrices is denoted by . In this paper, we first give the solvability condition for the following inverse eigenproblem (IEP): given a set of vectors in and a set of complex numbers , find a matrix such that and are, respectively, the eigenvalues and eigenvectors of A. We then consider the following approximation problem: Given an n×n matrix , find such that , where is the solution set of IEP and ||[dot operator]|| is the Frobenius norm. We provide an explicit formula for the best approximation solution by means of the canonical correlation decomposition.
A Multithreaded Algorithm for Network Alignment Via Approximate Matching
Khan, Arif; Gleich, David F.; Pothen, Alex; Halappanavar, Mahantesh
2012-11-16
Network alignment is an optimization problem to find the best one-to-one map between the vertices of a pair of graphs that overlaps in as many edges as possible. It is a relaxation of the graph isomorphism problem and is closely related to the subgraph isomorphism problem. The best current approaches are entirely heuristic, and are iterative in nature. They generate real-valued heuristic approximations that must be rounded to find integer solutions. This rounding requires solving a bipartite maximum weight matching problem at each step in order to avoid missing high quality solutions. We investigate substituting a parallel, half-approximation for maximum weight matching instead of an exact computation. Our experiments show that the resulting difference in solution quality is negligible. We demonstrate almost a 20-fold speedup using 40 threads on an 8 processor Intel Xeon E7-8870 system (from 10 minutes to 36 seconds).
Dissociation between exact and approximate addition in developmental dyslexia.
Yang, Xiujie; Meng, Xiangzhi
2016-09-01
Previous research has suggested that number sense and language are involved in number representation and calculation, in which number sense supports approximate arithmetic, and language permits exact enumeration and calculation. Meanwhile, individuals with dyslexia have a core deficit in phonological processing. Based on these findings, we thus hypothesized that children with dyslexia may exhibit exact calculation impairment while doing mental arithmetic. The reaction time and accuracy while doing exact and approximate addition with symbolic Arabic digits and non-symbolic visual arrays of dots were compared between typically developing children and children with dyslexia. Reaction time analyses did not reveal any differences across two groups of children, the accuracies, interestingly, revealed a distinction of approximation and exact addition across two groups of children. Specifically, two groups of children had no differences in approximation. Children with dyslexia, however, had significantly lower accuracy in exact addition in both symbolic and non-symbolic tasks than that of typically developing children. Moreover, linguistic performances were selectively associated with exact calculation across individuals. These results suggested that children with dyslexia have a mental arithmetic deficit specifically in the realm of exact calculation, while their approximation ability is relatively intact. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ito, K.
1984-01-01
The stability and convergence properties of the Legendre-tau approximation for hereditary differential systems are analyzed. A charactristic equation is derived for the eigenvalues of the resulting approximate system. As a result of this derivation the uniform exponential stability of the solution semigroup is preserved under approximation. It is the key to obtaining the convergence of approximate solutions of the algebraic Riccati equation in trace norm.
NASA Technical Reports Server (NTRS)
Ito, K.
1985-01-01
The stability and convergence properties of the Legendre-tau approximation for hereditary differential systems are analyzed. A characteristic equation is derived for the eigenvalues of the resulting approximate system. As a result of this derivation the uniform exponential stability of the solution semigroup is preserved under approximation. It is the key to obtaining the convergence of approximate solutions of the algebraic Riccati equation in trace norm.
NASA Astrophysics Data System (ADS)
Van Mieghem, P.
2016-05-01
Based on a recent exact differential equation, the time dependence of the SIS prevalence, the average fraction of infected nodes, in any graph is first studied and then upper and lower bounded by an explicit analytic function of time. That new approximate "tanh formula" obeys a Riccati differential equation and bears resemblance to the classical expression in epidemiology of Kermack and McKendrick [Proc. R. Soc. London A 115, 700 (1927), 10.1098/rspa.1927.0118] but enhanced with graph specific properties, such as the algebraic connectivity, the second smallest eigenvalue of the Laplacian of the graph. We further revisit the challenge of finding tight upper bounds for the SIS (and SIR) epidemic threshold for all graphs. We propose two new upper bounds and show the importance of the variance of the number of infected nodes. Finally, a formula for the epidemic threshold in the cycle (or ring graph) is presented.
Lindén, Fredrik; Cederquist, Henrik; Zettergren, Henning
2016-11-21
We present exact analytical solutions for charge transfer reactions between two arbitrarily charged hard dielectric spheres. These solutions, and the corresponding exact ones for sphere-sphere interaction energies, include sums that describe polarization effects to infinite orders in the inverse of the distance between the sphere centers. In addition, we show that these exact solutions may be approximated by much simpler analytical expressions that are useful for many practical applications. This is exemplified through calculations of Langevin type cross sections for forming a compound system of two colliding spheres and through calculations of electron transfer cross sections. We find that it is important to account for dielectric properties and finite sphere sizes in such calculations, which for example may be useful for describing the evolution, growth, and dynamics of nanometer sized dielectric objects such as molecular clusters or dust grains in different environments including astrophysical ones.
Beyond the small-angle approximation for MBR anisotropy from seeds
Stebbins, A. ); Veeraraghavan, S. )
1995-02-15
In this paper we give a general expression for the energy shift of massless particles traveling through the gravitational field of an arbitrary matter distribution as calculated in the weak field limit in an asymptotically flat space-time. It is [ital not] assumed that matter is nonrelativistic. We demonstrate the surprising result that if the matter is illuminated by a uniform brightness background that the brightness pattern observed at a given point in space-time (modulo a term dependent on the observer's velocity) depends only on the matter distribution on the observer's past light cone. These results apply directly to the cosmological MBR anisotropy pattern generated in the immediate vicinity of an object such as a cosmic string or global texture. We apply these results to cosmic strings, finding a correction to previously published results in the small-angle approximation. We also derive the full-sky anisotropy pattern of a collapsing texture knot.
Montes-Perez, J; Cruz-Vera, A; Herrera, J N
2011-12-01
This work presents the full analytic expressions for the thermodynamic properties and the static structure factor for a hard sphere plus 1-Yukawa fluid within the mean spherical approximation. To obtain these properties of the fluid type Yukawa analytically it was necessary to solve an equation of fourth order for the scaling parameter on a large scale. The physical root of this equation was determined by imposing physical conditions. The results of this work are obtained from seminal papers of Blum and Høye. We show that is not necessary the use the series expansion to solve the equation for the scaling parameter. We applied our theoretical result to find the thermodynamic and the static structure factor for krypton. Our results are in good agreement with those obtained in an experimental form or by simulation using the Monte Carlo method.
Gravitational scattering of two black holes at the fourth post-Newtonian approximation
NASA Astrophysics Data System (ADS)
Bini, Donato; Damour, Thibault
2017-09-01
We compute the (center-of-mass frame) scattering angle χ of hyperboliclike encounters of two spinning black holes, at the fourth post-Newtonian approximation level for orbital effects, and at the next-to-next-to-leading order for spin-dependent effects. We find it convenient to compute the gauge-invariant scattering angle (expressed as a function of energy, orbital angular momentum and spins) by using the effective-one-body formalism. The contribution to scattering associated with nonlocal, tail effects is computed by generalizing to the case of unbound motions the method of time localization of the action introduced in the case of (small-eccentricity) bound motions by Damour et al. [Phys. Rev. D 91, 084024 (2015), 10.1103/PhysRevD.91.084024].
The tendon approximator device in traumatic injuries.
Forootan, Kamal S; Karimi, Hamid; Forootan, Nazilla-Sadat S
2015-01-01
Precise and tension-free approximation of two tendon endings is the key predictor of outcomes following tendon lacerations and repairs. We evaluate the efficacy of a new tendon approximator device in tendon laceration repairs. In a comparative study, we used our new tendon approximator device in 99 consecutive patients with laceration of 266 tendons who attend a university hospital and evaluated the operative time to repair the tendons, surgeons' satisfaction as well as patient's outcomes in a long-term follow-up. Data were compared with the data of control patients undergoing tendon repair by conventional method. Totally 266 tendons were repaired by approximator device and 199 tendons by conventional technique. 78.7% of patients in first group were male and 21.2% were female. In approximator group 38% of patients had secondary repair of cut tendons and 62% had primary repair. Patients were followed for a mean period of 3years (14-60 months). Time required for repair of each tendon was significantly reduced with the approximator device (2 min vs. 5.5 min, p<0.0001). After 3-4 weeks of immobilization, passive and active physiotherapy was started. Functional Results of tendon repair were identical in the two groups and were not significantly different. 1% of tendons in group A and 1.2% in group B had rupture that was not significantly different. The new nerve approximator device is cheap, feasible to use and reduces the time of tendon repair with sustained outcomes comparable to the conventional methods.
Revised Thomas-Fermi approximation for singular potentials
NASA Astrophysics Data System (ADS)
Dufty, James W.; Trickey, S. B.
2016-08-01
Approximations for the many-fermion free-energy density functional that include the Thomas-Fermi (TF) form for the noninteracting part lead to singular densities for singular external potentials (e.g., attractive Coulomb). This limitation of the TF approximation is addressed here by a formal map of the exact Euler equation for the density onto an equivalent TF form characterized by a modified Kohn-Sham potential. It is shown to be a "regularized" version of the Kohn-Sham potential, tempered by convolution with a finite-temperature response function. The resulting density is nonsingular, with the equilibrium properties obtained from the total free-energy functional evaluated at this density. This new representation is formally exact. Approximate expressions for the regularized potential are given to leading order in a nonlocality parameter, and the limiting behavior at high and low temperatures is described. The noninteracting part of the free energy in this approximation is the usual Thomas-Fermi functional. These results generalize and extend to finite temperatures the ground-state regularization by R. G. Parr and S. Ghosh [Proc. Natl. Acad. Sci. U.S.A. 83, 3577 (1986), 10.1073/pnas.83.11.3577] and by L. R. Pratt, G. G. Hoffman, and R. A. Harris [J. Chem. Phys. 88, 1818 (1988), 10.1063/1.454105] and formally systematize the finite-temperature regularization given by the latter authors.
On uniform approximation of elliptic functions by Padé approximants
NASA Astrophysics Data System (ADS)
Khristoforov, Denis V.
2009-06-01
Diagonal Padé approximants of elliptic functions are studied. It is known that the absence of uniform convergence of such approximants is related to them having spurious poles that do not correspond to any singularities of the function being approximated. A sequence of piecewise rational functions is proposed, which is constructed from two neighbouring Padé approximants and approximates an elliptic function locally uniformly in the Stahl domain. The proof of the convergence of this sequence is based on deriving strong asymptotic formulae for the remainder function and Padé polynomials and on the analysis of the behaviour of a spurious pole. Bibliography: 23 titles.
Approximation of Bivariate Functions via Smooth Extensions
Zhang, Zhihua
2014-01-01
For a smooth bivariate function defined on a general domain with arbitrary shape, it is difficult to do Fourier approximation or wavelet approximation. In order to solve these problems, in this paper, we give an extension of the bivariate function on a general domain with arbitrary shape to a smooth, periodic function in the whole space or to a smooth, compactly supported function in the whole space. These smooth extensions have simple and clear representations which are determined by this bivariate function and some polynomials. After that, we expand the smooth, periodic function into a Fourier series or a periodic wavelet series or we expand the smooth, compactly supported function into a wavelet series. Since our extensions are smooth, the obtained Fourier coefficients or wavelet coefficients decay very fast. Since our extension tools are polynomials, the moment theorem shows that a lot of wavelet coefficients vanish. From this, with the help of well-known approximation theorems, using our extension methods, the Fourier approximation and the wavelet approximation of the bivariate function on the general domain with small error are obtained. PMID:24683316
Why criteria for impulse approximation in Compton scattering fail in relativistic regimes
NASA Astrophysics Data System (ADS)
Lajohn, L. A.; Pratt, R. H.
2014-05-01
The assumption behind impulse approximation (IA) for Compton scattering is that the momentum transfer q is much greater than the average < p > of the initial bound state momentum distribution p. Comparing with S-matrix results, we find that at relativistic incident photon energies (ωi) and for high Z elements, one requires information beyond < p > / q to predict the accuracy of relativistic IA (RIA) diferential cross sections. The IA expression is proportional to the product of a kinematic factor Xnr and the symmetrical Compton profile J, where Xnr = 1 + cos2 θ (θ is the photon scattering angle). In the RIA case, Xnr, independent of p, is replaced by Xrel (ω , θ , p) in the integrand which determines J. At nr energies there is virtually no RIA error in the position of the Compton peak maximum (ωfpk) in the scattered photon energy (ωf), while RIA error in the peak magnitude can be characterized by < p > / q . This is because at low ωi, the kinematic effects described by S-matrix (also RIA) expressions behave like Xnr, while in relativistic regimes (high ωi and Z), kinematic factors treated accurately by S-matrix but not RIA expressions become significant and do not factor out.
Structural Reliability Analysis and Optimization: Use of Approximations
NASA Technical Reports Server (NTRS)
Grandhi, Ramana V.; Wang, Liping
1999-01-01
This report is intended for the demonstration of function approximation concepts and their applicability in reliability analysis and design. Particularly, approximations in the calculation of the safety index, failure probability and structural optimization (modification of design variables) are developed. With this scope in mind, extensive details on probability theory are avoided. Definitions relevant to the stated objectives have been taken from standard text books. The idea of function approximations is to minimize the repetitive use of computationally intensive calculations by replacing them with simpler closed-form equations, which could be nonlinear. Typically, the approximations provide good accuracy around the points where they are constructed, and they need to be periodically updated to extend their utility. There are approximations in calculating the failure probability of a limit state function. The first one, which is most commonly discussed, is how the limit state is approximated at the design point. Most of the time this could be a first-order Taylor series expansion, also known as the First Order Reliability Method (FORM), or a second-order Taylor series expansion (paraboloid), also known as the Second Order Reliability Method (SORM). From the computational procedure point of view, this step comes after the design point identification; however, the order of approximation for the probability of failure calculation is discussed first, and it is denoted by either FORM or SORM. The other approximation of interest is how the design point, or the most probable failure point (MPP), is identified. For iteratively finding this point, again the limit state is approximated. The accuracy and efficiency of the approximations make the search process quite practical for analysis intensive approaches such as the finite element methods; therefore, the crux of this research is to develop excellent approximations for MPP identification and also different
Partially Coherent Scattering in Stellar Chromospheres. Part 4; Analytic Wing Approximations
NASA Technical Reports Server (NTRS)
Gayley, K. G.
1993-01-01
Simple analytic expressions are derived to understand resonance-line wings in stellar chromospheres and similar astrophysical plasmas. The results are approximate, but compare well with accurate numerical simulations. The redistribution is modeled using an extension of the partially coherent scattering approximation (PCS) which we term the comoving-frame partially coherent scattering approximation (CPCS). The distinction is made here because Doppler diffusion is included in the coherent/noncoherent decomposition, in a form slightly improved from the earlier papers in this series.
Fourier Analysis of the Approximation Power of Principal Shift-Invariant Spaces
1991-07-01
finite, and hence arbitrary linear combinations are allowed in this sum. Approximation properties are primarily studied via approximation orders: for the...approximation order (and hopes of course to match them). The standard approach to lower bounds is via the quasi-interpolation argument: first, a space H C...crux of all the analysis here is the linkage between the Fourier transform and Fourier series via the periodization argument, and which is best expressed
Expectation values of single-particle operators in the random phase approximation ground state.
Kosov, D S
2017-02-07
We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.
Amore, Paolo; Fernández, Francisco M
2013-02-28
We analyze the Rayleigh equation for the collapse of an empty bubble and provide an explanation for some recent analytical approximations to the model. We derive the form of the singularity at the second boundary point and discuss the convergence of the approximants. We also give a rigorous proof of the asymptotic behavior of the coefficients of the power series that are the basis for the approximate expressions.
Expectation values of single-particle operators in the random phase approximation ground state
NASA Astrophysics Data System (ADS)
Kosov, D. S.
2017-02-01
We developed a method for computing matrix elements of single-particle operators in the correlated random phase approximation ground state. Working with the explicit random phase approximation ground state wavefunction, we derived a practically useful and simple expression for a molecular property in terms of random phase approximation amplitudes. The theory is illustrated by the calculation of molecular dipole moments for a set of representative molecules.
The Cell Cycle Switch Computes Approximate Majority
NASA Astrophysics Data System (ADS)
Cardelli, Luca; Csikász-Nagy, Attila
2012-09-01
Both computational and biological systems have to make decisions about switching from one state to another. The `Approximate Majority' computational algorithm provides the asymptotically fastest way to reach a common decision by all members of a population between two possible outcomes, where the decision approximately matches the initial relative majority. The network that regulates the mitotic entry of the cell-cycle in eukaryotes also makes a decision before it induces early mitotic processes. Here we show that the switch from inactive to active forms of the mitosis promoting Cyclin Dependent Kinases is driven by a system that is related to both the structure and the dynamics of the Approximate Majority computation. We investigate the behavior of these two switches by deterministic, stochastic and probabilistic methods and show that the steady states and temporal dynamics of the two systems are similar and they are exchangeable as components of oscillatory networks.
Ancilla-approximable quantum state transformations
Blass, Andreas; Gurevich, Yuri
2015-04-15
We consider the transformations of quantum states obtainable by a process of the following sort. Combine the given input state with a specially prepared initial state of an auxiliary system. Apply a unitary transformation to the combined system. Measure the state of the auxiliary subsystem. If (and only if) it is in a specified final state, consider the process successful, and take the resulting state of the original (principal) system as the result of the process. We review known information about exact realization of transformations by such a process. Then we present results about approximate realization of finite partial transformations. We not only consider primarily the issue of approximation to within a specified positive ε, but also address the question of arbitrarily close approximation.
Separable approximations of two-body interactions
NASA Astrophysics Data System (ADS)
Haidenbauer, J.; Plessas, W.
1983-01-01
We perform a critical discussion of the efficiency of the Ernst-Shakin-Thaler method for a separable approximation of arbitrary two-body interactions by a careful examination of separable 3S1-3D1 N-N potentials that were constructed via this method by Pieper. Not only the on-shell properties of these potentials are considered, but also a comparison is made of their off-shell characteristics relative to the Reid soft-core potential. We point out a peculiarity in Pieper's application of the Ernst-Shakin-Thaler method, which leads to a resonant-like behavior of his potential 3SD1D. It is indicated where care has to be taken in order to circumvent drawbacks inherent in the Ernst-Shakin-Thaler separable approximation scheme. NUCLEAR REACTIONS Critical discussion of the Ernst-Shakin-Thaler separable approximation method. Pieper's separable N-N potentials examined on shell and off shell.
Fast wavelet based sparse approximate inverse preconditioner
Wan, W.L.
1996-12-31
Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.
Approximation methods in gravitational-radiation theory
NASA Technical Reports Server (NTRS)
Will, C. M.
1986-01-01
The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.
Approximation methods in gravitational-radiation theory
NASA Technical Reports Server (NTRS)
Will, C. M.
1986-01-01
The observation of gravitational-radiation damping in the binary pulsar PSR 1913 + 16 and the ongoing experimental search for gravitational waves of extraterrestrial origin have made the theory of gravitational radiation an active branch of classical general relativity. In calculations of gravitational radiation, approximation methods play a crucial role. Recent developments are summarized in two areas in which approximations are important: (a) the quadrupole approxiamtion, which determines the energy flux and the radiation reaction forces in weak-field, slow-motion, source-within-the-near-zone systems such as the binary pulsar; and (b) the normal modes of oscillation of black holes, where the Wentzel-Kramers-Brillouin approximation gives accurate estimates of the complex frequencies of the modes.
Dynamical eikonal approximation in breakup reactions of {sup 11}Be
Goldstein, G.; Baye, D.
2006-02-15
The dynamical eikonal approximation is a quantal method unifying the semiclassical time-dependent and eikonal methods by taking into account interference effects. The principle of the calculation is described and expressions for different types of cross sections are established for two variants of the method, differing by a phase choice. The 'coherent' variant respects rotational symmetry around the beam axis and is therefore prefered. A good agreement is obtained with experimental differential and integrated cross sections for the elastic breakup of the {sup 11}Be halo nucleus on {sup 12}C and {sup 208}Pb near 70 MeV/nucleon, without any parameter adjustment. The dynamical approximation is compared with the traditional eikonal method. Differences are analyzed and the respective merits of both methods are discussed.
Functional approximation and optimal specification of the mechanical risk index.
Kaiser, Mark J; Pulsipher, Allan G
2005-10-01
The mechanical risk index (MRI) is a numerical measure that quantifies the complexity of drilling a well. The purpose of this article is to examine the role of the component factors of the MRI and its structural and parametric assumptions. A meta-modeling methodology is applied to derive functional expressions of the MRI, and it is shown that the MRI can be approximated in terms of a linear functional. The variation between the MRI measure and its functional specification is determined empirically, and for a reasonable design space, the functional specification is shown to a good approximating representation. A drilling risk index is introduced to quantify the uncertainty in the time and cost associated with drilling a well. A general methodology is outlined to create an optimal MRI specification.
Post-Newtonian approximation in Maxwell-like form
Kaplan, Jeffrey D.; Nichols, David A.; Thorne, Kip S.
2009-12-15
The equations of the linearized first post-Newtonian approximation to general relativity are often written in 'gravitoelectromagnetic' Maxwell-like form, since that facilitates physical intuition. Damour, Soffel, and Xu (DSX) (as a side issue in their complex but elegant papers on relativistic celestial mechanics) have expressed the first post-Newtonian approximation, including all nonlinearities, in Maxwell-like form. This paper summarizes that DSX Maxwell-like formalism (which is not easily extracted from their celestial mechanics papers), and then extends it to include the post-Newtonian (Landau-Lifshitz-based) gravitational momentum density, momentum flux (i.e. gravitational stress tensor), and law of momentum conservation in Maxwell-like form. The authors and their colleagues have found these Maxwell-like momentum tools useful for developing physical intuition into numerical-relativity simulations of compact binaries with spin.
An approximate solution for the free vibrations of rotating uniform cantilever beams
NASA Technical Reports Server (NTRS)
Peters, D. A.
1973-01-01
Approximate solutions are obtained for the uncoupled frequencies and modes of rotating uniform cantilever beams. The frequency approximations for flab bending, lead-lag bending, and torsion are simple expressions having errors of less than a few percent over the entire frequency range. These expressions provide a simple way of determining the relations between mass and stiffness parameters and the resultant frequencies and mode shapes of rotating uniform beams.
Nadarajah, Saralees
2007-04-15
M. Kostoglou and A.J. Karabelas [J. Colloid Interface Sci. 303 (2006) 419-429] proposed using a gamma distribution approximation to study a collisional fragmentation problem. This approximation involved two types of integrals and the use of continued fraction expansions for their computation. In this Comment, explicit expressions are derived for computing the integrals.
Marrow cell kinetics model: Equivalent prompt dose approximations for two special cases
Morris, M.D.; Jones, T.D.
1992-11-01
Two simple algebraic expressions are described for approximating the ``equivalent prompt dose`` as defined in the model of Jones et al. (1991). These approximations apply to two specific radiation exposure patterns: (1) a pulsed dose immediately followed by a protracted exposure at relatively low, constant dose rate and (2) an exponentially decreasing exposure field.
Marrow cell kinetics model: Equivalent prompt dose approximations for two special cases
Morris, M.D.; Jones, T.D.
1992-11-01
Two simple algebraic expressions are described for approximating the equivalent prompt dose'' as defined in the model of Jones et al. (1991). These approximations apply to two specific radiation exposure patterns: (1) a pulsed dose immediately followed by a protracted exposure at relatively low, constant dose rate and (2) an exponentially decreasing exposure field.
Impulse formalism for atom-molecule collisions: Inadequacy of the peaking approximation
Sharma, R. D.; Bakshi, P. M.; Sindoni, J. M.
1989-08-01
Expressions for differential and total cross sections for atom-diatomscattering are derived using the impulse formalism without any approximations.Results for the rotational-vibrational scattering are obtained without usingthe peaking approximation (PA). For the specific case of a hard-core potential,it is shown that, except for elastic scattering, PA results are substantiallydifferent from the true impulse results.
Approximating W projection as a separable kernel
NASA Astrophysics Data System (ADS)
Merry, Bruce
2016-02-01
W projection is a commonly used approach to allow interferometric imaging to be accelerated by fast Fourier transforms, but it can require a huge amount of storage for convolution kernels. The kernels are not separable, but we show that they can be closely approximated by separable kernels. The error scales with the fourth power of the field of view, and so is small enough to be ignored at mid- to high frequencies. We also show that hybrid imaging algorithms combining W projection with either faceting, snapshotting, or W stacking allow the error to be made arbitrarily small, making the approximation suitable even for high-resolution wide-field instruments.
Approximate convective heating equations for hypersonic flows
NASA Technical Reports Server (NTRS)
Zoby, E. V.; Moss, J. N.; Sutton, K.
1979-01-01
Laminar and turbulent heating-rate equations appropriate for engineering predictions of the convective heating rates about blunt reentry spacecraft at hypersonic conditions are developed. The approximate methods are applicable to both nonreacting and reacting gas mixtures for either constant or variable-entropy edge conditions. A procedure which accounts for variable-entropy effects and is not based on mass balancing is presented. Results of the approximate heating methods are in good agreement with existing experimental results as well as boundary-layer and viscous-shock-layer solutions.
Bronchopulmonary segments approximation using anatomical atlas
NASA Astrophysics Data System (ADS)
Busayarat, Sata; Zrimec, Tatjana
2007-03-01
Bronchopulmonary segments are valuable as they give more accurate localization than lung lobes. Traditionally, determining the segments requires segmentation and identification of segmental bronchi, which, in turn, require volumetric imaging data. In this paper, we present a method for approximating the bronchopulmonary segments for sparse data by effectively using an anatomical atlas. The atlas is constructed from a volumetric data and contains accurate information about bronchopulmonary segments. A new ray-tracing based image registration is used for transferring the information from the atlas to a query image. Results show that the method is able to approximate the segments on sparse HRCT data with slice gap up to 25 millimeters.
Congruence Approximations for Entrophy Endowed Hyperbolic Systems
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Saini, Subhash (Technical Monitor)
1998-01-01
Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.
Very fast approximate reconstruction of MR images.
Angelidis, P A
1998-11-01
The ultra fast Fourier transform (UFFT) provides the means for a very fast computation of a magnetic resonance (MR) image, because it is implemented using only additions and no multiplications at all. It achieves this by approximating the complex exponential functions involved in the Fourier transform (FT) sum with computationally simpler periodic functions. This approximation introduces erroneous spectrum peaks of small magnitude. We examine the performance of this transform in some typical MRI signals. The results show that this transform can very quickly provide an MR image. It is proposed to be used as a replacement of the classically used FFT whenever a fast general overview of an image is required.
An Approximation Scheme for Delay Equations.
1980-06-16
AD-Am" 155 BtO~i UNkIV PROVIDENCE RI LEFSCI4ETZ CENTER FOR DYNAMI-flO F/f 12/ 1 AN APPROXIMATION SCIEME FOR DELAY EQUATIONS (U) JUN 80 F KAPPEL DAA629...for publ.ic release IAM 19.. and 1s aftnaotaton in unhi tea.0 ( f) 1 DDC UtB Distwifeaton A_._il .rd/or 1 . Introduction. In recent years one can see...Banach spaces. Fundamental for our approach is the following approximation theorem for semigroups of type W: Theorem 1 ([10]). Let AN, N - 1,2,..., and A
Approximate learning algorithm in Boltzmann machines.
Yasuda, Muneki; Tanaka, Kazuyuki
2009-11-01
Boltzmann machines can be regarded as Markov random fields. For binary cases, they are equivalent to the Ising spin model in statistical mechanics. Learning systems in Boltzmann machines are one of the NP-hard problems. Thus, in general we have to use approximate methods to construct practical learning algorithms in this context. In this letter, we propose new and practical learning algorithms for Boltzmann machines by using the belief propagation algorithm and the linear response approximation, which are often referred as advanced mean field methods. Finally, we show the validity of our algorithm using numerical experiments.
Gaussian streaming with the truncated Zel'dovich approximation
NASA Astrophysics Data System (ADS)
Kopp, Michael; Uhlemann, Cora; Achitouv, Ixandra
2016-12-01
We calculate the halo correlation function in redshift space using the Gaussian streaming model (GSM). To determine the scale-dependent functions entering the GSM, we use local Lagrangian bias together with convolution Lagrangian perturbation theory (CLPT), which constitutes an approximation to the Post-Zel'dovich approximation. On the basis of N -body simulations, we demonstrate that a smoothing of the initial conditions with the Lagrangian radius improves the Zel'dovich approximation and its ability to predict the displacement field of protohalos. Based on this observation, we implement a "truncated" CLPT by smoothing the initial power spectrum and investigate the dependence of the streaming model ingredients on the smoothing scale. We find that the real space correlation functions of halos and their mean pairwise velocity are optimized if the coarse graining scale is chosen to be 1 Mpc /h at z =0 , while the pairwise velocity dispersion is optimized if the smoothing scale is chosen to be the Lagrangian size of the halo. We compare theoretical results for the halo correlation function in redshift space to measurements within the Horizon run 2 N -body simulation halo catalog. We find that this simple two-filter smoothing procedure in the spirit of the truncated Zel'dovich approximation significantly improves the GSM +CLPT prediction of the redshift space halo correlation function over the whole mass range from large galaxy to galaxy cluster-sized halos. We expect that the necessity for two filter scales is an artifact of our local bias model, and that once a more physical bias model is implemented in CLPT, the only physically relevant smoothing scale will be related to the Lagrangian radius, in accord with our findings based on N -body simulations.
Homotopic approximate solutions for the perturbed CKdV equation with variable coefficients.
Lu, Dianchen; Chen, Tingting; Hong, Baojian
2014-01-01
This work concerns how to find the double periodic form of approximate solutions of the perturbed combined KdV (CKdV) equation with variable coefficients by using the homotopic mapping method. The obtained solutions may degenerate into the approximate solutions of hyperbolic function form and the approximate solutions of trigonometric function form in the limit cases. Moreover, the first order approximate solutions and the second order approximate solutions of the variable coefficients CKdV equation in perturbation εu (n) are also induced.
Homotopic Approximate Solutions for the Perturbed CKdV Equation with Variable Coefficients
Lu, Dianchen; Chen, Tingting
2014-01-01
This work concerns how to find the double periodic form of approximate solutions of the perturbed combined KdV (CKdV) equation with variable coefficients by using the homotopic mapping method. The obtained solutions may degenerate into the approximate solutions of hyperbolic function form and the approximate solutions of trigonometric function form in the limit cases. Moreover, the first order approximate solutions and the second order approximate solutions of the variable coefficients CKdV equation in perturbation εu n are also induced. PMID:24737983
... Finding Dental Care Where can I find low-cost dental care? Dental schools often have clinics that allow dental ... can I find more information? See Finding Low Cost Dental Care . WWNRightboxRadEditor2 Contact Us 1-866-232-4528 nidcrinfo@ ...
An approximate classical unimolecular reaction rate theory
NASA Astrophysics Data System (ADS)
Zhao, Meishan; Rice, Stuart A.
1992-05-01
We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.
Alternative approximation concepts for space frame synthesis
NASA Technical Reports Server (NTRS)
Lust, R. V.; Schmit, L. A.
1985-01-01
A structural synthesis methodology for the minimum mass design of 3-dimensionall frame-truss structures under multiple static loading conditions and subject to limits on displacements, rotations, stresses, local buckling, and element cross-sectional dimensions is presented. A variety of approximation concept options are employed to yield near optimum designs after no more than 10 structural analyses. Available options include: (A) formulation of the nonlinear mathematcal programming problem in either reciprocal section property (RSP) or cross-sectional dimension (CSD) space; (B) two alternative approximate problem structures in each design space; and (C) three distinct assumptions about element end-force variations. Fixed element, design element linking, and temporary constraint deletion features are also included. The solution of each approximate problem, in either its primal or dual form, is obtained using CONMIN, a feasible directions program. The frame-truss synthesis methodology is implemented in the COMPASS computer program and is used to solve a variety of problems. These problems were chosen so that, in addition to exercising the various approximation concepts options, the results could be compared with previously published work.
Approximations For Controls Of Hereditary Systems
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1988-01-01
Convergence properties of controls, trajectories, and feedback kernels analyzed. Report discusses use of factorization techniques to approximate optimal feedback gains in finite-time, linear-regulator/quadratic-cost-function problem of system governed by retarded-functional-difference equations RFDE's with control delays. Presents approach to factorization based on discretization of state penalty leading to simple structure for feedback control law.
Progressive Image Coding by Hierarchical Linear Approximation.
ERIC Educational Resources Information Center
Wu, Xiaolin; Fang, Yonggang
1994-01-01
Proposes a scheme of hierarchical piecewise linear approximation as an adaptive image pyramid. A progressive image coder comes naturally from the proposed image pyramid. The new pyramid is semantically more powerful than regular tessellation but syntactically simpler than free segmentation. This compromise between adaptability and complexity…
Quickly Approximating the Distance Between Two Objects
NASA Technical Reports Server (NTRS)
Hammen, David
2009-01-01
A method of quickly approximating the distance between two objects (one smaller, regarded as a point; the other larger and complexly shaped) has been devised for use in computationally simulating motions of the objects for the purpose of planning the motions to prevent collisions.
Approximate Solution to the Generalized Boussinesq Equation
NASA Astrophysics Data System (ADS)
Telyakovskiy, A. S.; Mortensen, J.
2010-12-01
The traditional Boussinesq equation describes motion of water in groundwater flows. It models unconfined groundwater flow under the Dupuit assumption that the equipotential lines are vertical, making the flowlines horizontal. The Boussinesq equation is a nonlinear diffusion equation with diffusivity depending linearly on water head. Here we analyze a generalization of the Boussinesq equation, when the diffusivity is a power law function of water head. For example polytropic gases moving through porous media obey this equation. Solving this equation usually requires numerical approximations, but for certain classes of initial and boundary conditions an approximate analytical solution can be constructed. This work focuses on the latter approach, using the scaling properties of the equation. We consider one-dimensional semi-infinite initially empty aquifer with boundary conditions at the inlet in case of cylindrical symmetry. Such situation represents the case of an injection well. Solutions would propagate with the finite speed. We construct an approximate scaling function, and we compare the approximate solution with the direct numerical solutions obtained by using the scaling properties of the equations.
Semiclassical Approximations and Predictability in Ocean Acoustics
1999-09-30
the ONR-funded work being performed by P. Worcester (SIO), J. Colosi (WHOI), M. Wolfson (WSU), J. Spiesberger (UPenn), S. 2 Tomsovic (WSU), G...Acoust. Soc. Am. 103, 2232-2235. Tappert, F. D., Spiesberger , J. L., and L. Boden (1995) New full-wave approximation for ocean acoustic travel time
Approximated integrability of the Dicke model
NASA Astrophysics Data System (ADS)
Relaño, A.; Bastarrachea-Magnani, M. A.; Lerma-Hernández, S.
2016-12-01
A very approximate second integral of motion of the Dicke model is identified within a broad energy region above the ground state, and for a wide range of values of the external parameters. This second integral, obtained from a Born-Oppenheimer approximation, classifies the whole regular part of the spectrum in bands, coming from different semi-classical energy surfaces, and labelled by its corresponding eigenvalues. Results obtained from this approximation are compared with exact numerical diagonalization for finite systems in the superradiant phase, obtaining a remarkable accord. The region of validity of our approach in the parameter space, which includes the resonant case, is unveiled. The energy range of validity goes from the ground state up to a certain upper energy where chaos sets in, and extends far beyond the range of applicability of a simple harmonic approximation around the minimal energy configuration. The upper energy validity limit increases for larger values of the coupling constant and the ratio between the level splitting and the frequency of the field. These results show that the Dicke model behaves like a two-degree-of-freedom integrable model for a wide range of energies and values of the external parameters.
Can Distributional Approximations Give Exact Answers?
ERIC Educational Resources Information Center
Griffiths, Martin
2013-01-01
Some mathematical activities and investigations for the classroom or the lecture theatre can appear rather contrived. This cannot, however, be levelled at the idea given here, since it is based on a perfectly sensible question concerning distributional approximations that was posed by an undergraduate student. Out of this simple question, and…
Local discontinuous Galerkin approximations to Richards’ equation
NASA Astrophysics Data System (ADS)
Li, H.; Farthing, M. W.; Dawson, C. N.; Miller, C. T.
2007-03-01
We consider the numerical approximation to Richards' equation because of its hydrological significance and intrinsic merit as a nonlinear parabolic model that admits sharp fronts in space and time that pose a special challenge to conventional numerical methods. We combine a robust and established variable order, variable step-size backward difference method for time integration with an evolving spatial discretization approach based upon the local discontinuous Galerkin (LDG) method. We formulate the approximation using a method of lines approach to uncouple the time integration from the spatial discretization. The spatial discretization is formulated as a set of four differential algebraic equations, which includes a mass conservation constraint. We demonstrate how this system of equations can be reduced to the solution of a single coupled unknown in space and time and a series of local constraint equations. We examine a variety of approximations at discontinuous element boundaries, permeability approximations, and numerical quadrature schemes. We demonstrate an optimal rate of convergence for smooth problems, and compare accuracy and efficiency for a wide variety of approaches applied to a set of common test problems. We obtain robust and efficient results that improve upon existing methods, and we recommend a future path that should yield significant additional improvements.
Approximating a nonlinear MTFDE from physiology
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena
2016-12-01
This paper describes a numerical scheme which approximates the solution of a nonlinear mixed type functional differential equation from nerve conduction theory. The solution of such equation is defined in all the entire real axis and tends to known values at ±∞. A numerical method extended from linear case is developed and applied to solve a nonlinear equation.
Large Hierarchies from Approximate R Symmetries
Kappl, Rolf; Ratz, Michael; Schmidt-Hoberg, Kai; Nilles, Hans Peter; Ramos-Sanchez, Saul; Vaudrevange, Patrick K. S.
2009-03-27
We show that hierarchically small vacuum expectation values of the superpotential in supersymmetric theories can be a consequence of an approximate R symmetry. We briefly discuss the role of such small constants in moduli stabilization and understanding the huge hierarchy between the Planck and electroweak scales.
Block Addressing Indices for Approximate Text Retrieval.
ERIC Educational Resources Information Center
Baeza-Yates, Ricardo; Navarro, Gonzalo
2000-01-01
Discusses indexing in large text databases, approximate text searching, and space-time tradeoffs for indexed text searching. Studies the space overhead and retrieval times as functions of the text block size, concludes that an index can be sublinear in space overhead and query time, and applies the analysis to the Web. (Author/LRW)
Approximating Confidence Intervals for Factor Loadings.
ERIC Educational Resources Information Center
Lambert, Zarrel V.; And Others
1991-01-01
A method is presented that eliminates some interpretational limitations arising from assumptions implicit in the use of arbitrary rules of thumb to interpret exploratory factor analytic results. The bootstrap method is presented as a way of approximating sampling distributions of estimated factor loadings. Simulated datasets illustrate the…
Inhomogeneous random phase approximation: A solvable model
Lemm, J.C.
1995-11-15
A recently developed method to include particle-hole correlations into the time-independent mean field theory for scattering (TIMF) by an inhomogeneous random phase approximation (IRPA) is applied to a numerically solvable model. Having adapted the procedure according to numerical requirements, IRPA calculations turn out to be tractable. The obtained results improve TIMF results. 8 refs., 28 figs., 3 tabs.
Block Addressing Indices for Approximate Text Retrieval.
ERIC Educational Resources Information Center
Baeza-Yates, Ricardo; Navarro, Gonzalo
2000-01-01
Discusses indexing in large text databases, approximate text searching, and space-time tradeoffs for indexed text searching. Studies the space overhead and retrieval times as functions of the text block size, concludes that an index can be sublinear in space overhead and query time, and applies the analysis to the Web. (Author/LRW)
Sensing Position With Approximately Constant Contact Force
NASA Technical Reports Server (NTRS)
Sturdevant, Jay
1996-01-01
Computer-controlled electromechanical system uses number of linear variable-differential transformers (LVDTs) to measure axial positions of selected points on surface of lens, mirror, or other precise optical component with high finish. Pressures applied to pneumatically driven LVDTs adjusted to maintain small, approximately constant contact forces as positions of LVDT tips vary.
Padé approximations and diophantine geometry
Chudnovsky, D. V.; Chudnovsky, G. V.
1985-01-01
Using methods of Padé approximations we prove a converse to Eisenstein's theorem on the boundedness of denominators of coefficients in the expansion of an algebraic function, for classes of functions, parametrized by meromorphic functions. This result is applied to the Tate conjecture on the effective description of isogenies for elliptic curves. PMID:16593552
Can Distributional Approximations Give Exact Answers?
ERIC Educational Resources Information Center
Griffiths, Martin
2013-01-01
Some mathematical activities and investigations for the classroom or the lecture theatre can appear rather contrived. This cannot, however, be levelled at the idea given here, since it is based on a perfectly sensible question concerning distributional approximations that was posed by an undergraduate student. Out of this simple question, and…
Approximate model for laser ablation of carbon
NASA Astrophysics Data System (ADS)
Shusser, Michael
2010-08-01
The paper presents an approximate kinetic theory model of ablation of carbon by a nanosecond laser pulse. The model approximates the process as sublimation and combines conduction heat transfer in the target with the gas dynamics of the ablated plume which are coupled through the boundary conditions at the interface. The ablated mass flux and the temperature of the ablating material are obtained from the assumption that the ablation rate is restricted by the kinetic theory limitation on the maximum mass flux that can be attained in a phase-change process. To account for non-uniform distribution of the laser intensity while keeping the calculation simple the quasi-one-dimensional approximation is used in both gas and solid phases. The results are compared with the predictions of the exact axisymmetric model that uses the conservation relations at the interface derived from the momentum solution of the Boltzmann equation for arbitrary strong evaporation. It is seen that the simpler approximate model provides good accuracy.
Kravchuk functions for the finite oscillator approximation
NASA Technical Reports Server (NTRS)
Atakishiyev, Natig M.; Wolf, Kurt Bernardo
1995-01-01
Kravchuk orthogonal functions - Kravchuk polynomials multiplied by the square root of the weight function - simplify the inversion algorithm for the analysis of discrete, finite signals in harmonic oscillator components. They can be regarded as the best approximation set. As the number of sampling points increases, the Kravchuk expansion becomes the standard oscillator expansion.
Variance approximations for assessments of classification accuracy
R. L. Czaplewski
1994-01-01
Variance approximations are derived for the weighted and unweighted kappa statistics, the conditional kappa statistic, and conditional probabilities. These statistics are useful to assess classification accuracy, such as accuracy of remotely sensed classifications in thematic maps when compared to a sample of reference classifications made in the field. Published...
Multidimensional stochastic approximation using locally contractive functions
NASA Technical Reports Server (NTRS)
Lawton, W. M.
1975-01-01
A Robbins-Monro type multidimensional stochastic approximation algorithm which converges in mean square and with probability one to the fixed point of a locally contractive regression function is developed. The algorithm is applied to obtain maximum likelihood estimates of the parameters for a mixture of multivariate normal distributions.
Approximation algorithms for planning and control
NASA Technical Reports Server (NTRS)
Boddy, Mark; Dean, Thomas
1989-01-01
A control system operating in a complex environment will encounter a variety of different situations, with varying amounts of time available to respond to critical events. Ideally, such a control system will do the best possible with the time available. In other words, its responses should approximate those that would result from having unlimited time for computation, where the degree of the approximation depends on the amount of time it actually has. There exist approximation algorithms for a wide variety of problems. Unfortunately, the solution to any reasonably complex control problem will require solving several computationally intensive problems. Algorithms for successive approximation are a subclass of the class of anytime algorithms, algorithms that return answers for any amount of computation time, where the answers improve as more time is allotted. An architecture is described for allocating computation time to a set of anytime algorithms, based on expectations regarding the value of the answers they return. The architecture described is quite general, producing optimal schedules for a set of algorithms under widely varying conditions.
Approximating the efficiency characteristics of blade pumps
NASA Astrophysics Data System (ADS)
Shekun, G. D.
2007-11-01
Results from a statistical investigation into the experimental efficiency characteristics of commercial type SD centrifugal pumps and type SDS swirl flow pumps are presented. An exponential function for approximating the efficiency characteristics of blade pumps is given. The versatile nature of this characteristic is confirmed by the fact that the use of different systems of relative units gives identical results.
Theory of Casimir Forces without the Proximity-Force Approximation.
Lapas, Luciano C; Pérez-Madrid, Agustín; Rubí, J Miguel
2016-03-18
We analyze both the attractive and repulsive Casimir-Lifshitz forces recently reported in experimental investigations. By using a kinetic approach, we obtain the Casimir forces from the power absorbed by the materials. We consider collective material excitations through a set of relaxation times distributed in frequency according to a log-normal function. A generalized expression for these forces for arbitrary values of temperature is obtained. We compare our results with experimental measurements and conclude that the model goes beyond the proximity-force approximation.
Probabilistic conflict detection algorithm based on saddlepoint approximation
NASA Astrophysics Data System (ADS)
Liu, Jianliang; Yang, Yihuang; Xu, Yang
2017-04-01
With the development of the air transport industry, air traffic flow increased significantly, conflict detection becomes an important part of the Next Generation Air Transportation System (NextGen). This paper is proposed a probabilistic conflict detection algorithm based on the 4D trajectory prediction. The relative distance of two aircraft can be represented by a Gaussian random variable and the problem of conflict probability calculation is express as tail probability of the quadratic form of Gaussian random variables, and solved by saddlepoint approximation. The efficiency and accuracy of the proposed method is demonstrated through a pairwise aircraft encounter scenario.
Corrections to the thin wall approximation in general relativity
NASA Technical Reports Server (NTRS)
Garfinkle, David; Gregory, Ruth
1989-01-01
The question is considered whether the thin wall formalism of Israel applies to the gravitating domain walls of a lambda phi(exp 4) theory. The coupled Einstein-scalar equations that describe the thick gravitating wall are expanded in powers of the thickness of the wall. The solutions of the zeroth order equations reproduce the results of the usual Israel thin wall approximation for domain walls. The solutions of the first order equations provide corrections to the expressions for the stress-energy of the wall and to the Israel thin wall equations. The modified thin wall equations are then used to treat the motion of spherical and planar domain walls.
Cosmic-ray streaming in the Born approximation
NASA Technical Reports Server (NTRS)
Bieber, J. W.; Burger, R. A.
1990-01-01
The present work invokes the Born approximation to derive a more accurate expression for the streaming of cosmic rays parallel to the mean magnetic field. While all prior results pertaining to the helicity dependence of the diffusion coefficient and convection speed can be recovered as special cases from this streaming equation, it is concluded that a new set of transport parameters presented here is more appropriate for the solar modulation of galactic cosmic rays. In addition, a new parameter related to time variability, which may be a dominant cause of charge sign-dependent transport of solar particles, is introduced.
Relaxation approximation in the theory of shear turbulence
NASA Technical Reports Server (NTRS)
Rubinstein, Robert
1995-01-01
Leslie's perturbative treatment of the direct interaction approximation for shear turbulence (Modern Developments in the Theory of Turbulence, 1972) is applied to derive a time dependent model for the Reynolds stresses. The stresses are decomposed into tensor components which satisfy coupled linear relaxation equations; the present theory therefore differs from phenomenological Reynolds stress closures in which the time derivatives of the stresses are expressed in terms of the stresses themselves. The theory accounts naturally for the time dependence of the Reynolds normal stress ratios in simple shear flow. The distortion of wavenumber space by the mean shear plays a crucial role in this theory.
Cosmic-ray streaming in the Born approximation
NASA Technical Reports Server (NTRS)
Bieber, J. W.; Burger, R. A.
1990-01-01
The present work invokes the Born approximation to derive a more accurate expression for the streaming of cosmic rays parallel to the mean magnetic field. While all prior results pertaining to the helicity dependence of the diffusion coefficient and convection speed can be recovered as special cases from this streaming equation, it is concluded that a new set of transport parameters presented here is more appropriate for the solar modulation of galactic cosmic rays. In addition, a new parameter related to time variability, which may be a dominant cause of charge sign-dependent transport of solar particles, is introduced.
Systematic Approximations to Susceptible-Infectious-Susceptible Dynamics on Networks
Cooper, Alison J.
2016-01-01
Network-based infectious disease models have been highly effective in elucidating the role of contact structure in the spread of infection. As such, pair- and neighbourhood-based approximation models have played a key role in linking findings from network simulations to standard (random-mixing) results. Recently, for SIR-type infections (that produce one epidemic in a closed population) on locally tree-like networks, these approximations have been shown to be exact. However, network models are ideally suited for Sexually Transmitted Infections (STIs) due to the greater level of detail available for sexual contact networks, and these diseases often possess SIS-type dynamics. Here, we consider the accuracy of three systematic approximations that can be applied to arbitrary disease dynamics, including SIS behaviour. We focus in particular on low degree networks, in which the small number of neighbours causes build-up of local correlations between the state of adjacent nodes that are challenging to capture. By examining how and when these approximation models converge to simulation results, we generate insights into the role of network structure in the infection dynamics of SIS-type infections. PMID:27997542
How Good Are Statistical Models at Approximating Complex Fitness Landscapes?
du Plessis, Louis; Leventhal, Gabriel E.; Bonhoeffer, Sebastian
2016-01-01
Fitness landscapes determine the course of adaptation by constraining and shaping evolutionary trajectories. Knowledge of the structure of a fitness landscape can thus predict evolutionary outcomes. Empirical fitness landscapes, however, have so far only offered limited insight into real-world questions, as the high dimensionality of sequence spaces makes it impossible to exhaustively measure the fitness of all variants of biologically meaningful sequences. We must therefore revert to statistical descriptions of fitness landscapes that are based on a sparse sample of fitness measurements. It remains unclear, however, how much data are required for such statistical descriptions to be useful. Here, we assess the ability of regression models accounting for single and pairwise mutations to correctly approximate a complex quasi-empirical fitness landscape. We compare approximations based on various sampling regimes of an RNA landscape and find that the sampling regime strongly influences the quality of the regression. On the one hand it is generally impossible to generate sufficient samples to achieve a good approximation of the complete fitness landscape, and on the other hand systematic sampling schemes can only provide a good description of the immediate neighborhood of a sequence of interest. Nevertheless, we obtain a remarkably good and unbiased fit to the local landscape when using sequences from a population that has evolved under strong selection. Thus, current statistical methods can provide a good approximation to the landscape of naturally evolving populations. PMID:27189564
How Good Are Statistical Models at Approximating Complex Fitness Landscapes?
du Plessis, Louis; Leventhal, Gabriel E; Bonhoeffer, Sebastian
2016-09-01
Fitness landscapes determine the course of adaptation by constraining and shaping evolutionary trajectories. Knowledge of the structure of a fitness landscape can thus predict evolutionary outcomes. Empirical fitness landscapes, however, have so far only offered limited insight into real-world questions, as the high dimensionality of sequence spaces makes it impossible to exhaustively measure the fitness of all variants of biologically meaningful sequences. We must therefore revert to statistical descriptions of fitness landscapes that are based on a sparse sample of fitness measurements. It remains unclear, however, how much data are required for such statistical descriptions to be useful. Here, we assess the ability of regression models accounting for single and pairwise mutations to correctly approximate a complex quasi-empirical fitness landscape. We compare approximations based on various sampling regimes of an RNA landscape and find that the sampling regime strongly influences the quality of the regression. On the one hand it is generally impossible to generate sufficient samples to achieve a good approximation of the complete fitness landscape, and on the other hand systematic sampling schemes can only provide a good description of the immediate neighborhood of a sequence of interest. Nevertheless, we obtain a remarkably good and unbiased fit to the local landscape when using sequences from a population that has evolved under strong selection. Thus, current statistical methods can provide a good approximation to the landscape of naturally evolving populations. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
The coupled states approximation for scattering of two diatoms
NASA Technical Reports Server (NTRS)
Heil, T. G.; Kouri, D. J.; Green, S.
1978-01-01
The paper presents a detailed development of the coupled-states approximation for the general case of two colliding diatomic molecules. The high-energy limit of the exact Lippman-Schwinger equation is applied, and the analysis follows the Shimoni and Kouri (1977) treatment of atom-diatom collisions where the coupled rotor angular momentum and projection replace the single diatom angular momentum and projection. Parallels to the expression for the differential scattering amplitude, the opacity function, and the nondiagonality of the T matrix are reported. Symmetrized expressions and symmetrized coupled equations are derived. The present correctly labeled coupled-states theory is tested by comparing its calculated results with other computed results for three cases: H2-H2 collisions, ortho-para H2-H2 scattering, and H2-HCl.
The coupled states approximation for scattering of two diatoms
NASA Technical Reports Server (NTRS)
Heil, T. G.; Kouri, D. J.; Green, S.
1978-01-01
The paper presents a detailed development of the coupled-states approximation for the general case of two colliding diatomic molecules. The high-energy limit of the exact Lippman-Schwinger equation is applied, and the analysis follows the Shimoni and Kouri (1977) treatment of atom-diatom collisions where the coupled rotor angular momentum and projection replace the single diatom angular momentum and projection. Parallels to the expression for the differential scattering amplitude, the opacity function, and the nondiagonality of the T matrix are reported. Symmetrized expressions and symmetrized coupled equations are derived. The present correctly labeled coupled-states theory is tested by comparing its calculated results with other computed results for three cases: H2-H2 collisions, ortho-para H2-H2 scattering, and H2-HCl.
Finite difference methods for approximating Heaviside functions
NASA Astrophysics Data System (ADS)
Towers, John D.
2009-05-01
We present a finite difference method for discretizing a Heaviside function H(u(x→)), where u is a level set function u:Rn ↦ R that is positive on a bounded region Ω⊂Rn. There are two variants of our algorithm, both of which are adapted from finite difference methods that we proposed for discretizing delta functions in [J.D. Towers, Two methods for discretizing a delta function supported on a level set, J. Comput. Phys. 220 (2007) 915-931; J.D. Towers, Discretizing delta functions via finite differences and gradient normalization, Preprint at http://www.miracosta.edu/home/jtowers/; J.D. Towers, A convergence rate theorem for finite difference approximations to delta functions, J. Comput. Phys. 227 (2008) 6591-6597]. We consider our approximate Heaviside functions as they are used to approximate integrals over Ω. We prove that our first approximate Heaviside function leads to second order accurate quadrature algorithms. Numerical experiments verify this second order accuracy. For our second algorithm, numerical experiments indicate at least third order accuracy if the integrand f and ∂Ω are sufficiently smooth. Numerical experiments also indicate that our approximations are effective when used to discretize certain singular source terms in partial differential equations. We mostly focus on smooth f and u. By this we mean that f is smooth in a neighborhood of Ω, u is smooth in a neighborhood of ∂Ω, and the level set u(x)=0 is a manifold of codimension one. However, our algorithms still give reasonable results if either f or u has jumps in its derivatives. Numerical experiments indicate approximately second order accuracy for both algorithms if the regularity of the data is reduced in this way, assuming that the level set u(x)=0 is a manifold. Numerical experiments indicate that dependence on the placement of Ω with respect to the grid is quite small for our algorithms. Specifically, a grid shift results in an O(hp) change in the computed solution
Typical performance of approximation algorithms for NP-hard problems
NASA Astrophysics Data System (ADS)
Takabe, Satoshi; Hukushima, Koji
2016-11-01
Typical performance of approximation algorithms is studied for randomized minimum vertex cover problems. A wide class of random graph ensembles characterized by an arbitrary degree distribution is discussed with the presentation of a theoretical framework. Herein, three approximation algorithms are examined: linear-programming relaxation, loopy-belief propagation, and the leaf-removal algorithm. The former two algorithms are analyzed using a statistical-mechanical technique, whereas the average-case analysis of the last one is conducted using the generating function method. These algorithms have a threshold in the typical performance with increasing average degree of the random graph, below which they find true optimal solutions with high probability. Our study reveals that there exist only three cases, determined by the order of the typical performance thresholds. In addition, we provide some conditions for classification of the graph ensembles and demonstrate explicitly some examples for the difference in thresholds.
Training the Approximate Number System Improves Math Proficiency
Park, Joonkoo; Brannon, Elizabeth M.
2013-01-01
Humans share with nonhuman animals an approximate number system (ANS) that permits estimation and rough calculation of number without symbols. Recent studies show a correlation between the acuity of the ANS and symbolic math performance throughout development and into adulthood, suggesting that the ANS may serve as a cognitive foundation for the uniquely human capacity for symbolic mathematics. Such a proposition leads to the untested prediction that training aimed at improving ANS performance will transfer to improvement in symbolic mathematics. Here, in two experiments, we show that ANS training on approximate addition and subtraction of arrays of dots, selectively improves symbolic addition and subtraction. This finding strongly supports the hypothesis that complex math skills are fundamentally linked to rudimentary preverbal quantitative abilities, provides the first direct evidence that ANS and symbolic math may be causally related, and raises the possibility that interventions aimed at the ANS could benefit children and adults who struggle with math. PMID:23921769
Adiabatic approximation for the Rabi model with broken inversion symmetry
NASA Astrophysics Data System (ADS)
Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi
2017-01-01
We study the properties and behavior of the Rabi model with broken inversion symmetry. Using an adiabatic approximation approach, we explore the high-frequency qubit and oscillator regimes, and obtain analytical solutions for the qubit-oscillator system. We demonstrate that, due to broken inversion symmetry, the positions of two potentials and zero-point energies in the oscillators become asymmetric and have a quadratic dependence on the mean dipole moments within the high-frequency oscillator regime. Furthermore, we find that there is a critical point above which the qubit-oscillator system becomes unstable, and the position of this critical point has a quadratic dependence on the mean dipole moments within the high-frequency qubit regime. Finally, we verify this critical point based on the method of semiclassical approximation.
Weak impedance difference approximations of thin-bed PP-wave reflection responses
NASA Astrophysics Data System (ADS)
Yang, Chun; Wang, Yun; Lu, Jun
2017-08-01
Under the assumptions of weak impedance differences and small incident angles, the PP-wave reflections approximation of a single thin bed is studied. Three analytical equations, defined as weak impedance difference approximation, the fourth-order power series approximation and the second-order power series approximation, are given as functions of incident angle, bed thickness, frequency and elastic parameters (density, P-wave and S-wave velocities) differences of the thin bed; in particular, the latter two approximations are expressed in the power series form of the incident angle’s sine value. Two kinds of thin-bed models and a well log are used to test the approximation equations’ precision and acceptability. Numerical simulations show that these three approximations are not suitable in the case of thin-bed models with strong impedance differences. For thin-bed models with unequal-magnitude reflectivity, weak impedance difference approximation has high approximation accuracy (errors <12%) in pre-critical angle, the fourth-order and the second-order power series approximations are acceptable as the maximum incident angles are about 10 degrees less than the critical angles (if available). For thin-bed models with opposite-polarity and equal-magnitude reflectivity, the three approximations are more suitable for a thin bed with polarities (-, +) than with (+, -). The second-order power series approximation has similar approximation accuracy (errors <10%) with the other two approximation equations with small incident angles. PP-wave synthetic seismograms comparisons of exact and approximate reflections in the case of the well log show that the approximation equations are applicable in the actual sand-shale inter-bedding reservoirs.
Approximation techniques of a selective ARQ protocol
NASA Astrophysics Data System (ADS)
Kim, B. G.
Approximations to the performance of selective automatic repeat request (ARQ) protocol with lengthy acknowledgement delays are presented. The discussion is limited to packet-switched communication systems in a single-hop environment such as found with satellite systems. It is noted that retransmission of errors after ARQ is a common situation. ARQ techniques, e.g., stop-and-wait and continuous, are outlined. A simplified queueing analysis of the selective ARQ protocol shows that exact solutions with long delays are not feasible. Two approximation models are formulated, based on known exact behavior of a system with short delays. The buffer size requirements at both ends of a communication channel are cited as significant factor for accurate analysis, and further examinations of buffer overflow and buffer lock-out probability and avoidance are recommended.
Approximate inverse preconditioners for general sparse matrices
Chow, E.; Saad, Y.
1994-12-31
Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.
Multiwavelet neural network and its approximation properties.
Jiao, L; Pan, J; Fang, Y
2001-01-01
A model of multiwavelet-based neural networks is proposed. Its universal and L(2) approximation properties, together with its consistency are proved, and the convergence rates associated with these properties are estimated. The structure of this network is similar to that of the wavelet network, except that the orthonormal scaling functions are replaced by orthonormal multiscaling functions. The theoretical analyses show that the multiwavelet network converges more rapidly than the wavelet network, especially for smooth functions. To make a comparison between both networks, experiments are carried out with the Lemarie-Meyer wavelet network, the Daubechies2 wavelet network and the GHM multiwavelet network, and the results support the theoretical analysis well. In addition, the results also illustrate that at the jump discontinuities, the approximation performance of the two networks are about the same.
A Varifold Approach to Surface Approximation
NASA Astrophysics Data System (ADS)
Buet, Blanche; Leonardi, Gian Paolo; Masnou, Simon
2017-06-01
We show that the theory of varifolds can be suitably enriched to open the way to applications in the field of discrete and computational geometry. Using appropriate regularizations of the mass and of the first variation of a varifold we introduce the notion of approximate mean curvature and show various convergence results that hold, in particular, for sequences of discrete varifolds associated with point clouds or pixel/voxel-type discretizations of d-surfaces in the Euclidean n-space, without restrictions on dimension and codimension. The variational nature of the approach also allows us to consider surfaces with singularities, and in that case the approximate mean curvature is consistent with the generalized mean curvature of the limit surface. A series of numerical tests are provided in order to illustrate the effectiveness and generality of the method.
Planetary ephemerides approximation for radar astronomy
NASA Technical Reports Server (NTRS)
Sadr, R.; Shahshahani, M.
1991-01-01
The planetary ephemerides approximation for radar astronomy is discussed, and, in particular, the effect of this approximation on the performance of the programmable local oscillator (PLO) used in Goldstone Solar System Radar is presented. Four different approaches are considered and it is shown that the Gram polynomials outperform the commonly used technique based on Chebyshev polynomials. These methods are used to analyze the mean square, the phase error, and the frequency tracking error in the presence of the worst case Doppler shift that one may encounter within the solar system. It is shown that in the worst case the phase error is under one degree and the frequency tracking error less than one hertz when the frequency to the PLO is updated every millisecond.
Smooth polynomial approximation of spiral arcs
NASA Astrophysics Data System (ADS)
Cripps, R. J.; Hussain, M. Z.; Zhu, S.
2010-03-01
Constructing fair curve segments using parametric polynomials is difficult due to the oscillatory nature of polynomials. Even NURBS curves can exhibit unsatisfactory curvature profiles. Curve segments with monotonic curvature profiles, for example spiral arcs, exist but are intrinsically non-polynomial in nature and thus difficult to integrate into existing CAD systems. A method of constructing an approximation to a generalised Cornu spiral (GCS) arc using non-rational quintic Bézier curves matching end points, end slopes and end curvatures is presented. By defining an objective function based on the relative error between the curvature profiles of the GCS and its Bézier approximation, a curve segment is constructed that has a monotonic curvature profile within a specified tolerance.
Flexible least squares for approximately linear systems
NASA Astrophysics Data System (ADS)
Kalaba, Robert; Tesfatsion, Leigh
1990-10-01
A probability-free multicriteria approach is presented to the problem of filtering and smoothing when prior beliefs concerning dynamics and measurements take an approximately linear form. Consideration is given to applications in the social and biological sciences, where obtaining agreement among researchers regarding probability relations for discrepancy terms is difficult. The essence of the proposed flexible-least-squares (FLS) procedure is the cost-efficient frontier, a curve in a two-dimensional cost plane which provides an explicit and systematic way to determine the efficient trade-offs between the separate costs incurred for dynamic and measurement specification errors. The FLS estimates show how the state vector could have evolved over time in a manner minimally incompatible with the prior dynamic and measurement specifications. A FORTRAN program for implementing the FLS filtering and smoothing procedure for approximately linear systems is provided.
Quantum fluctuations beyond the Gutzwiller approximation
NASA Astrophysics Data System (ADS)
Fabrizio, Michele
2017-02-01
We present a simple scheme to evaluate linear response functions including quantum fluctuation corrections on top of the Gutzwiller approximation. The method is derived for a generic multiband lattice Hamiltonian without any assumption about the dynamics of the variational correlation parameters that define the Gutzwiller wave function, and which thus behave as genuine dynamical degrees of freedom that add on those of the variational uncorrelated Slater determinant. We apply the method to the standard half-filled single-band Hubbard model. We are able to recover known results, but, as a by-product, we also obtain a few other results. In particular, we show that quantum fluctuations can reproduce, almost quantitatively, the behavior of the uniform magnetic susceptibility uncovered by dynamical mean-field theory, which, though enhanced by correlations, is found to be smooth across the paramagnetic Mott transition. By contrast, the simple Gutzwiller approximation predicts that susceptibility to diverge at the transition.
Approximate maximum likelihood estimation of scanning observer templates
NASA Astrophysics Data System (ADS)
Abbey, Craig K.; Samuelson, Frank W.; Wunderlich, Adam; Popescu, Lucretiu M.; Eckstein, Miguel P.; Boone, John M.
2015-03-01
In localization tasks, an observer is asked to give the location of some target or feature of interest in an image. Scanning linear observer models incorporate the search implicit in this task through convolution of an observer template with the image being evaluated. Such models are becoming increasingly popular as predictors of human performance for validating medical imaging methodology. In addition to convolution, scanning models may utilize internal noise components to model inconsistencies in human observer responses. In this work, we build a probabilistic mathematical model of this process and show how it can, in principle, be used to obtain estimates of the observer template using maximum likelihood methods. The main difficulty of this approach is that a closed form probability distribution for a maximal location response is not generally available in the presence of internal noise. However, for a given image we can generate an empirical distribution of maximal locations using Monte-Carlo sampling. We show that this probability is well approximated by applying an exponential function to the scanning template output. We also evaluate log-likelihood functions on the basis of this approximate distribution. Using 1,000 trials of simulated data as a validation test set, we find that a plot of the approximate log-likelihood function along a single parameter related to the template profile achieves its maximum value near the true value used in the simulation. This finding holds regardless of whether the trials are correctly localized or not. In a second validation study evaluating a parameter related to the relative magnitude of internal noise, only the incorrect localization images produces a maximum in the approximate log-likelihood function that is near the true value of the parameter.
JIMWLK evolution in the Gaussian approximation
NASA Astrophysics Data System (ADS)
Iancu, E.; Triantafyllopoulos, D. N.
2012-04-01
We demonstrate that the Balitsky-JIMWLK equations describing the high-energy evolution of the n-point functions of the Wilson lines (the QCD scattering amplitudes in the eikonal approximation) admit a controlled mean field approximation of the Gaussian type, for any value of the number of colors N c . This approximation is strictly correct in the weak scattering regime at relatively large transverse momenta, where it re-produces the BFKL dynamics, and in the strong scattering regime deeply at saturation, where it properly describes the evolution of the scattering amplitudes towards the respective black disk limits. The approximation scheme is fully specified by giving the 2-point function (the S-matrix for a color dipole), which in turn can be related to the solution to the Balitsky-Kovchegov equation, including at finite N c . Any higher n-point function with n ≥ 4 can be computed in terms of the dipole S-matrix by solving a closed system of evolution equations (a simplified version of the respective Balitsky-JIMWLK equations) which are local in the transverse coordinates. For simple configurations of the projectile in the transverse plane, our new results for the 4-point and the 6-point functions coincide with the high-energy extrapolations of the respective results in the McLerran-Venugopalan model. One cornerstone of our construction is a symmetry property of the JIMWLK evolution, that we notice here for the first time: the fact that, with increasing energy, a hadron is expanding its longitudinal support symmetrically around the light-cone. This corresponds to invariance under time reversal for the scattering amplitudes.
Barycentric approximation in financial decision making
Frauendorfer, K.
1994-12-31
We consider dynamic portfolio selection problems which are exposed to interest rate risk and credit risk caused by stochastic cash-flows and interest rates. For maximizing the expected net present value, we apply the barycentric approximation scheme of stochastic programming and discuss its features to be utilized in financial decision making. In particular, we focus on the martingale property, the term structure of interest rates, cash-flow dynamics, and correlations of the later two.
Beyond the Kirchhoff approximation. II - Electromagnetic scattering
NASA Technical Reports Server (NTRS)
Rodriguez, Ernesto
1991-01-01
In a paper by Rodriguez (1981), the momentum transfer expansion was introduced for scalar wave scattering. It was shown that this expansion can be used to obtain wavelength-dependent curvature corrections to the Kirchhoff approximation. This paper extends the momentum transfer perturbation expansion to electromagnetic waves. Curvature corrections to the surface current are obtained. Using these results, the specular field and the backscatter cross section are calculated.
Stochastic approximation boosting for incomplete data problems.
Sexton, Joseph; Laake, Petter
2009-12-01
Boosting is a powerful approach to fitting regression models. This article describes a boosting algorithm for likelihood-based estimation with incomplete data. The algorithm combines boosting with a variant of stochastic approximation that uses Markov chain Monte Carlo to deal with the missing data. Applications to fitting generalized linear and additive models with missing covariates are given. The method is applied to the Pima Indians Diabetes Data where over half of the cases contain missing values.
Nonlinear amplitude approximation for bilinear systems
NASA Astrophysics Data System (ADS)
Jung, Chulwoo; D'Souza, Kiran; Epureanu, Bogdan I.
2014-06-01
An efficient method to predict vibration amplitudes at the resonant frequencies of dynamical systems with piecewise-linear nonlinearity is developed. This technique is referred to as bilinear amplitude approximation (BAA). BAA constructs a single vibration cycle at each resonant frequency to approximate the periodic steady-state response of the system. It is postulated that the steady-state response is piece-wise linear and can be approximated by analyzing the response over two time intervals during which the system behaves linearly. Overall the dynamics is nonlinear, but the system is in a distinct linear state during each of the two time intervals. Thus, the approximated vibration cycle is constructed using linear analyses. The equation of motion for analyzing the vibration of each state is projected along the overlapping space spanned by the linear mode shapes active in each of the states. This overlapping space is where the vibratory energy is transferred from one state to the other when the system switches from one state to the other. The overlapping space can be obtained using singular value decomposition. The space where the energy is transferred is used together with transition conditions of displacement and velocity compatibility to construct a single vibration cycle and to compute the amplitude of the dynamics. Since the BAA method does not require numerical integration of nonlinear models, computational costs are very low. In this paper, the BAA method is first applied to a single-degree-of-freedom system. Then, a three-degree-of-freedom system is introduced to demonstrate a more general application of BAA. Finally, the BAA method is applied to a full bladed disk with a crack. Results comparing numerical solutions from full-order nonlinear analysis and results obtained using BAA are presented for all systems.
Development of New Density Functional Approximations
NASA Astrophysics Data System (ADS)
Su, Neil Qiang; Xu, Xin
2017-05-01
Kohn-Sham density functional theory has become the leading electronic structure method for atoms, molecules, and extended systems. It is in principle exact, but any practical application must rely on density functional approximations (DFAs) for the exchange-correlation energy. Here we emphasize four aspects of the subject: (a) philosophies and strategies for developing DFAs; (b) classification of DFAs; (c) major sources of error in existing DFAs; and (d) some recent developments and future directions.
Oscillation of boson star in Newtonian approximation
NASA Astrophysics Data System (ADS)
Jarwal, Bharti; Singh, S. Somorendro
2017-03-01
Boson star (BS) rotation is studied under Newtonian approximation. A Coulombian potential term is added as perturbation to the radial potential of the system without disturbing the angular momentum. The results of the stationary states of these ground state, first and second excited state are analyzed with the correction of Coulombian potential. It is found that the results with correction increased in the amplitude of oscillation of BS in comparison to potential without perturbation correction.
Approximation methods for stochastic petri nets
NASA Technical Reports Server (NTRS)
Jungnitz, Hauke Joerg
1992-01-01
Stochastic Marked Graphs are a concurrent decision free formalism provided with a powerful synchronization mechanism generalizing conventional Fork Join Queueing Networks. In some particular cases the analysis of the throughput can be done analytically. Otherwise the analysis suffers from the classical state explosion problem. Embedded in the divide and conquer paradigm, approximation techniques are introduced for the analysis of stochastic marked graphs and Macroplace/Macrotransition-nets (MPMT-nets), a new subclass introduced herein. MPMT-nets are a subclass of Petri nets that allow limited choice, concurrency and sharing of resources. The modeling power of MPMT is much larger than that of marked graphs, e.g., MPMT-nets can model manufacturing flow lines with unreliable machines and dataflow graphs where choice and synchronization occur. The basic idea leads to the notion of a cut to split the original net system into two subnets. The cuts lead to two aggregated net systems where one of the subnets is reduced to a single transition. A further reduction leads to a basic skeleton. The generalization of the idea leads to multiple cuts, where single cuts can be applied recursively leading to a hierarchical decomposition. Based on the decomposition, a response time approximation technique for the performance analysis is introduced. Also, delay equivalence, which has previously been introduced in the context of marked graphs by Woodside et al., Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's method and flow equivalent aggregation are applied to the aggregated net systems. The experimental results show that response time approximation converges quickly and shows reasonable accuracy in most cases. The convergence of Marie's is slower, but the accuracy is generally better. Delay
Empirical progress and nomic truth approximation revisited.
Kuipers, Theo A F
2014-06-01
In my From Instrumentalism to Constructive Realism (2000) I have shown how an instrumentalist account of empirical progress can be related to nomic truth approximation. However, it was assumed that a strong notion of nomic theories was needed for that analysis. In this paper it is shown, in terms of truth and falsity content, that the analysis already applies when, in line with scientific common sense, nomic theories are merely assumed to exclude certain conceptual possibilities as nomic possibilities.
Numerical quadratures for approximate computation of ERBS
NASA Astrophysics Data System (ADS)
Zanaty, Peter
2013-12-01
In the ground-laying paper [3] on expo-rational B-splines (ERBS), the default numerical method for approximate computation of the integral with C∞-smooth integrand in the definition of ERBS is Romberg integration. In the present work, a variety of alternative numerical quadrature methods for computation of ERBS and other integrals with smooth integrands are studied, and their performance is compared on several benchmark examples.
Numerical Approximation to the Thermodynamic Integrals
NASA Astrophysics Data System (ADS)
Johns, S. M.; Ellis, P. J.; Lattimer, J. M.
1996-12-01
We approximate boson thermodynamic integrals as polynomials in two variables chosen to give the correct limiting expansion and to smoothly interpolate into other regimes. With 10 free parameters, an accuracy of better than 0.009% is achieved for the pressure, internal energy density, and number density. We also revisit the fermion case, originally addressed by Eggleton, Faulkner, & Flannery (1973), and substantially improve the accuracy of their fits.
Coherent population transfer beyond rotating wave approximation
NASA Astrophysics Data System (ADS)
Rhee, Yongjoo; Kwon, Duck-Hee; Han, Jaemin; Park, Hyunmin; Kim, Sunkook
2002-05-01
The mechanism of coherent population transfer in a three-level system of lamda type interacting with strong and ultra-short laser pulses is investigated beyond the rotating wave approximation (RWA). The characteristics of population transfer arising from the consideration without RWA are numerically shown and interpreted in the point of view of dressed states both for the typical Stimulated Raman Adiabatic Passage(STIRAP) and for Optimal Detuning Method(ODM) which uses large wavelength-detuned lasers without time delay.
Three Definitions of Best Linear Approximation
1976-04-01
Three definitions of best (in the least squares sense) linear approximation to given data points are presented. The relationships between these three area discussed along with their relationship to basic statistics such as mean values, the covariance matrix, and the (linear) correlation coefficient . For each of the three definitions, and best line is solved in closed form in terms of the data centroid and the covariance matrix.
Approximate active fault detection and control
NASA Astrophysics Data System (ADS)
Škach, Jan; Punčochář, Ivo; Šimandl, Miroslav
2014-12-01
This paper deals with approximate active fault detection and control for nonlinear discrete-time stochastic systems over an infinite time horizon. Multiple model framework is used to represent fault-free and finitely many faulty models. An imperfect state information problem is reformulated using a hyper-state and dynamic programming is applied to solve the problem numerically. The proposed active fault detector and controller is illustrated in a numerical example of an air handling unit.
Microscopic justification of the equal filling approximation
Perez-Martin, Sara; Robledo, L. M.
2008-07-15
The equal filling approximation, a procedure widely used in mean-field calculations to treat the dynamics of odd nuclei in a time-reversal invariant way, is justified as the consequence of a variational principle over an average energy functional. The ideas of statistical quantum mechanics are employed in the justification. As an illustration of the method, the ground and lowest-lying states of some octupole deformed radium isotopes are computed.
Variational Bayesian Approximation methods for inverse problems
NASA Astrophysics Data System (ADS)
Mohammad-Djafari, Ali
2012-09-01
Variational Bayesian Approximation (VBA) methods are recent tools for effective Bayesian computations. In this paper, these tools are used for inverse problems where the prior models include hidden variables and where where the estimation of the hyper parameters has also to be addressed. In particular two specific prior models (Student-t and mixture of Gaussian models) are considered and details of the algorithms are given.
Parameter Biases Introduced by Approximate Gravitational Waveforms
NASA Astrophysics Data System (ADS)
Farr, Benjamin; Coughlin, Scott; Le, John; Skeehan, Connor; Kalogera, Vicky
2013-04-01
The production of the most accurate gravitational waveforms from compact binary mergers require Einstein's equations to be solved numerically, a process far too expensive to produce the ˜10^7 waveforms necessary to estimate the parameters of a measured gravitational wave signal. Instead, parameter estimation depends on approximate or phenomenological waveforms to characterize measured signals. As part of the Ninja collaboration, we study the biases introduced by these methods when estimating the parameters of numerically produced waveforms.
NASA Technical Reports Server (NTRS)
Fymat, A. L.
1978-01-01
Consideration is given to analytical inversions in the remote sensing of particle size distributions, noting multispectral extinctions in anomalous diffraction approximation and angular and spectral scattering in diffraction approximation. A closed-form analytical inverse solution is derived in order to reconstruct the size distribution of atmospheric aerosols. The anomalous diffraction approximation to Mie's solution is used to describe the particles. Experimental data yield the geometrical area of aerosol polydispersion. Size distribution is thus found from a set of multispectral extinction measurements. In terms of the angular and spectral scattering of light in a narrow forward cone, it is shown that an analytical inverse solution may also be found for the Fraunhofer approximation to the Kirchhoff diffraction, and for an improved expression of this approximation due to Penndorf (1962) and Shifrin-Punina (1968).
Green-Ampt approximations: A comprehensive analysis
NASA Astrophysics Data System (ADS)
Ali, Shakir; Islam, Adlul; Mishra, P. K.; Sikka, Alok K.
2016-04-01
Green-Ampt (GA) model and its modifications are widely used for simulating infiltration process. Several explicit approximate solutions to the implicit GA model have been developed with varying degree of accuracy. In this study, performance of nine explicit approximations to the GA model is compared with the implicit GA model using the published data for broad range of soil classes and infiltration time. The explicit GA models considered are Li et al. (1976) (LI), Stone et al. (1994) (ST), Salvucci and Entekhabi (1994) (SE), Parlange et al. (2002) (PA), Barry et al. (2005) (BA), Swamee et al. (2012) (SW), Ali et al. (2013) (AL), Almedeij and Esen (2014) (AE), and Vatankhah (2015) (VA). Six statistical indicators (e.g., percent relative error, maximum absolute percent relative error, average absolute percent relative errors, percent bias, index of agreement, and Nash-Sutcliffe efficiency) and relative computer computation time are used for assessing the model performance. Models are ranked based on the overall performance index (OPI). The BA model is found to be the most accurate followed by the PA and VA models for variety of soil classes and infiltration periods. The AE, SW, SE, and LI model also performed comparatively better. Based on the overall performance index, the explicit models are ranked as BA > PA > VA > LI > AE > SE > SW > ST > AL. Results of this study will be helpful in selection of accurate and simple explicit approximate GA models for solving variety of hydrological problems.
A coastal ocean model with subgrid approximation
NASA Astrophysics Data System (ADS)
Walters, Roy A.
2016-06-01
A wide variety of coastal ocean models exist, each having attributes that reflect specific application areas. The model presented here is based on finite element methods with unstructured grids containing triangular and quadrilateral elements. The model optimizes robustness, accuracy, and efficiency by using semi-implicit methods in time in order to remove the most restrictive stability constraints, by using a semi-Lagrangian advection approximation to remove Courant number constraints, and by solving a wave equation at the discrete level for enhanced efficiency. An added feature is the approximation of the effects of subgrid objects. Here, the Reynolds-averaged Navier-Stokes equations and the incompressibility constraint are volume averaged over one or more computational cells. This procedure gives rise to new terms which must be approximated as a closure problem. A study of tidal power generation is presented as an example of this method. A problem that arises is specifying appropriate thrust and power coefficients for the volume averaged velocity when they are usually referenced to free stream velocity. A new contribution here is the evaluation of three approaches to this problem: an iteration procedure and two mapping formulations. All three sets of results for thrust (form drag) and power are in reasonable agreement.
Approximation abilities of neuro-fuzzy networks
NASA Astrophysics Data System (ADS)
Mrówczyńska, Maria
2010-01-01
The paper presents the operation of two neuro-fuzzy systems of an adaptive type, intended for solving problems of the approximation of multi-variable functions in the domain of real numbers. Neuro-fuzzy systems being a combination of the methodology of artificial neural networks and fuzzy sets operate on the basis of a set of fuzzy rules "if-then", generated by means of the self-organization of data grouping and the estimation of relations between fuzzy experiment results. The article includes a description of neuro-fuzzy systems by Takaga-Sugeno-Kang (TSK) and Wang-Mendel (WM), and in order to complement the problem in question, a hierarchical structural self-organizing method of teaching a fuzzy network. A multi-layer structure of the systems is a structure analogous to the structure of "classic" neural networks. In its final part the article presents selected areas of application of neuro-fuzzy systems in the field of geodesy and surveying engineering. Numerical examples showing how the systems work concerned: the approximation of functions of several variables to be used as algorithms in the Geographic Information Systems (the approximation of a terrain model), the transformation of coordinates, and the prediction of a time series. The accuracy characteristics of the results obtained have been taken into consideration.
An Origami Approximation to the Cosmic Web
NASA Astrophysics Data System (ADS)
Neyrinck, Mark C.
2016-10-01
The powerful Lagrangian view of structure formation was essentially introduced to cosmology by Zel'dovich. In the current cosmological paradigm, a dark-matter-sheet 3D manifold, inhabiting 6D position-velocity phase space, was flat (with vanishing velocity) at the big bang. Afterward, gravity stretched and bunched the sheet together in different places, forming a cosmic web when projected to the position coordinates. Here, I explain some properties of an origami approximation, in which the sheet does not stretch or contract (an assumption that is false in general), but is allowed to fold. Even without stretching, the sheet can form an idealized cosmic web, with convex polyhedral voids separated by straight walls and filaments, joined by convex polyhedral nodes. The nodes form in `polygonal' or `polyhedral' collapse, somewhat like spherical/ellipsoidal collapse, except incorporating simultaneous filament and wall formation. The origami approximation allows phase-space geometries of nodes, filaments, and walls to be more easily understood, and may aid in understanding spin correlations between nearby galaxies. This contribution explores kinematic origami-approximation models giving velocity fields for the first time.
Approximate Graph Edit Distance in Quadratic Time.
Riesen, Kaspar; Ferrer, Miquel; Bunke, Horst
2015-09-14
Graph edit distance is one of the most flexible and general graph matching models available. The major drawback of graph edit distance, however, is its computational complexity that restricts its applicability to graphs of rather small size. Recently the authors of the present paper introduced a general approximation framework for the graph edit distance problem. The basic idea of this specific algorithm is to first compute an optimal assignment of independent local graph structures (including substitutions, deletions, and insertions of nodes and edges). This optimal assignment is complete and consistent with respect to the involved nodes of both graphs and can thus be used to instantly derive an admissible (yet suboptimal) solution for the original graph edit distance problem in O(n3) time. For large scale graphs or graph sets, however, the cubic time complexity may still be too high. Therefore, we propose to use suboptimal algorithms with quadratic rather than cubic time for solving the basic assignment problem. In particular, the present paper introduces five different greedy assignment algorithms in the context of graph edit distance approximation. In an experimental evaluation we show that these methods have great potential for further speeding up the computation of graph edit distance while the approximated distances remain sufficiently accurate for graph based pattern classification.
Ranking Support Vector Machine with Kernel Approximation
Dou, Yong
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms. PMID:28293256
Ranking Support Vector Machine with Kernel Approximation.
Chen, Kai; Li, Rongchun; Dou, Yong; Liang, Zhengfa; Lv, Qi
2017-01-01
Learning to rank algorithm has become important in recent years due to its successful application in information retrieval, recommender system, and computational biology, and so forth. Ranking support vector machine (RankSVM) is one of the state-of-art ranking models and has been favorably used. Nonlinear RankSVM (RankSVM with nonlinear kernels) can give higher accuracy than linear RankSVM (RankSVM with a linear kernel) for complex nonlinear ranking problem. However, the learning methods for nonlinear RankSVM are still time-consuming because of the calculation of kernel matrix. In this paper, we propose a fast ranking algorithm based on kernel approximation to avoid computing the kernel matrix. We explore two types of kernel approximation methods, namely, the Nyström method and random Fourier features. Primal truncated Newton method is used to optimize the pairwise L2-loss (squared Hinge-loss) objective function of the ranking model after the nonlinear kernel approximation. Experimental results demonstrate that our proposed method gets a much faster training speed than kernel RankSVM and achieves comparable or better performance over state-of-the-art ranking algorithms.
Using Approximations to Accelerate Engineering Design Optimization
NASA Technical Reports Server (NTRS)
Torczon, Virginia; Trosset, Michael W.
1998-01-01
Optimization problems that arise in engineering design are often characterized by several features that hinder the use of standard nonlinear optimization techniques. Foremost among these features is that the functions used to define the engineering optimization problem often are computationally intensive. Within a standard nonlinear optimization algorithm, the computational expense of evaluating the functions that define the problem would necessarily be incurred for each iteration of the optimization algorithm. Faced with such prohibitive computational costs, an attractive alternative is to make use of surrogates within an optimization context since surrogates can be chosen or constructed so that they are typically much less expensive to compute. For the purposes of this paper, we will focus on the use of algebraic approximations as surrogates for the objective. In this paper we introduce the use of so-called merit functions that explicitly recognize the desirability of improving the current approximation to the objective during the course of the optimization. We define and experiment with the use of merit functions chosen to simultaneously improve both the solution to the optimization problem (the objective) and the quality of the approximation. Our goal is to further improve the effectiveness of our general approach without sacrificing any of its rigor.
Jacobian transformed and detailed balance approximations for photon induced scattering
NASA Astrophysics Data System (ADS)
Wienke, B. R.; Budge, K. G.; Chang, J. H.; Dahl, J. A.; Hungerford, A. L.
2012-01-01
Photon emission and scattering are enhanced by the number of photons in the final state, and the photon transport equation reflects this in scattering-emission kernels and source terms. This is often a complication in both theoretical and numerical analyzes, requiring approximations and assumptions about background and material temperatures, incident and exiting photon energies, local thermodynamic equilibrium, plus other related aspects of photon scattering and emission. We review earlier schemes parameterizing photon scattering-emission processes, and suggest two alternative schemes. One links the product of photon and electron distributions in the final state to the product in the initial state by Jacobian transformation of kinematical variables (energy and angle), and the other links integrands of scattering kernels in a detailed balance requirement for overall (integrated) induced effects. Compton and inverse Compton differential scattering cross sections are detailed in appropriate limits, numerical integrations are performed over the induced scattering kernel, and for tabulation induced scattering terms are incorporated into effective cross sections for comparisons and numerical estimates. Relativistic electron distributions are assumed for calculations. Both Wien and Planckian distributions are contrasted for impact on induced scattering as LTE limit points. We find that both transformed and balanced approximations suggest larger induced scattering effects at high photon energies and low electron temperatures, and smaller effects in the opposite limits, compared to previous analyzes, with 10-20% increases in effective cross sections. We also note that both approximations can be simply implemented within existing transport modules or opacity processors as an additional term in the effective scattering cross section. Applications and comparisons include effective cross sections, kernel approximations, and impacts on radiative transport solutions in 1D
Analyzing the errors of DFT approximations for compressed water systems.
Alfè, D; Bartók, A P; Csányi, G; Gillan, M J
2014-07-07
We report an extensive study of the errors of density functional theory (DFT) approximations for compressed water systems. The approximations studied are based on the widely used PBE and BLYP exchange-correlation functionals, and we characterize their errors before and after correction for 1- and 2-body errors, the corrections being performed using the methods of Gaussian approximation potentials. The errors of the uncorrected and corrected approximations are investigated for two related types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm(3) where the experimental pressure is 15 kilobars; second, thermal samples of compressed water clusters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics simulations, two generated with the uncorrected PBE and BLYP approximations and a further two with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by comparing with experimental data for the pressure, with neutron-diffraction data for the three radial distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration samples of compressed water clusters are computed using QMC benchmarks. We find that the 2-body and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters. For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfactory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for beyond-2-body errors, after which the remaining errors are typically 0.5 mE(h) ≃ 15 meV/monomer for the liquid and the
... find out more. Head, Neck and Oral Pathology Head, Neck and Oral Pathology Close to 49,750 Americans ... find out more. Head, Neck and Oral Pathology Head, Neck and Oral Pathology Close to 49,750 Americans ...
... Newsletter Student Experience Newsletter AMTA News Find a Massage Therapist Find a qualified massage therapist near you ... massage therapy school Proprietary Information and Legal Notice Massage is Good Medicine 25 Reasons to Get a ...
Approximations for column effect in airplane wing spars
NASA Technical Reports Server (NTRS)
Warner, Edward P; Short, Mac
1927-01-01
The significance attaching to "column effect" in airplane wing spars has been increasingly realized with the passage of time, but exact computations of the corrections to bending moment curves resulting from the existence of end loads are frequently omitted because of the additional labor involved in an analysis by rigorously correct methods. The present report represents an attempt to provide for approximate column effect corrections that can be graphically or otherwise expressed so as to be applied with a minimum of labor. Curves are plotted giving approximate values of the correction factors for single and two bay trusses of varying proportions and with various relationships between axial and lateral loads. It is further shown from an analysis of those curves that rough but useful approximations can be obtained from Perry's formula for corrected bending moment, with the assumed distance between points of inflection arbitrarily modified in accordance with rules given in the report. The discussion of general rules of variation of bending stress with axial load is accompanied by a study of the best distribution of the points of support along a spar for various conditions of loading.
A Surface Approximation Method for Image and Video Correspondences.
Huang, Jingwei; Wang, Bin; Wang, Wenping; Sen, Pradeep
2015-12-01
Although finding correspondences between similar images is an important problem in image processing, the existing algorithms cannot find accurate and dense correspondences in images with significant changes in lighting/transformation or with the non-rigid objects. This paper proposes a novel method for finding accurate and dense correspondences between images even in these difficult situations. Starting with the non-rigid dense correspondence algorithm [1] to generate an initial correspondence map, we propose a new geometric filter that uses cubic B-Spline surfaces to approximate the correspondence mapping functions for shared objects in both images, thereby eliminating outliers and noise. We then propose an iterative algorithm which enlarges the region containing valid correspondences. Compared with the existing methods, our method is more robust to significant changes in lighting, color, or viewpoint. Furthermore, we demonstrate how to extend our surface approximation method to video editing by first generating a reliable correspondence map between a given source frame and each frame of a video. The user can then edit the source frame, and the changes are automatically propagated through the entire video using the correspondence map. To evaluate our approach, we examine applications of unsupervised image recognition and video texture editing, and show that our algorithm produces better results than those from state-of-the-art approaches.
Significant Inter-Test Reliability across Approximate Number System Assessments
DeWind, Nicholas K.; Brannon, Elizabeth M.
2016-01-01
The approximate number system (ANS) is the hypothesized cognitive mechanism that allows adults, infants, and animals to enumerate large sets of items approximately. Researchers usually assess the ANS by having subjects compare two sets and indicate which is larger. Accuracy or Weber fraction is taken as an index of the acuity of the system. However, as Clayton et al. (2015) have highlighted, the stimulus parameters used when assessing the ANS vary widely. In particular, the numerical ratio between the pairs, and the way in which non-numerical features are varied often differ radically between studies. Recently, Clayton et al. (2015) found that accuracy measures derived from two commonly used stimulus sets are not significantly correlated. They argue that a lack of inter-test reliability threatens the validity of the ANS construct. Here we apply a recently developed modeling technique to the same data set. The model, by explicitly accounting for the effect of numerical ratio and non-numerical features, produces dependent measures that are less perturbed by stimulus protocol. Contrary to their conclusion we find a significant correlation in Weber fraction across the two stimulus sets. Nevertheless, in agreement with Clayton et al. (2015) we find that different protocols do indeed induce differences in numerical acuity and the degree of influence of non-numerical stimulus features. These findings highlight the need for a systematic investigation of how protocol idiosyncrasies affect ANS assessments. PMID:27014126
Direct application of Padé approximant for solving nonlinear differential equations.
Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Garcia-Gervacio, Jose Luis; Huerta-Chua, Jesus; Morales-Mendoza, Luis Javier; Gonzalez-Lee, Mario
2014-01-01
This work presents a direct procedure to apply Padé method to find approximate solutions for nonlinear differential equations. Moreover, we present some cases study showing the strength of the method to generate highly accurate rational approximate solutions compared to other semi-analytical methods. The type of tested nonlinear equations are: a highly nonlinear boundary value problem, a differential-algebraic oscillator problem, and an asymptotic problem. The high accurate handy approximations obtained by the direct application of Padé method shows the high potential if the proposed scheme to approximate a wide variety of problems. What is more, the direct application of the Padé approximant aids to avoid the previous application of an approximative method like Taylor series method, homotopy perturbation method, Adomian Decomposition method, homotopy analysis method, variational iteration method, among others, as tools to obtain a power series solutions to post-treat with the Padé approximant. 34L30.
Local Approximations to the Gravitational Collapse of Cold Matter
NASA Astrophysics Data System (ADS)
Hui, Lam; Bertschinger, Edmund
1996-11-01
We investigate three different local approximations for nonlinear gravitational instability in the framework of cosmological Lagrangian fluid dynamics of cold dust By local we mean that the evolution is described by a set of ordinary differential equations in time for each mass element, with no coupling to other mass elements aside from those implied by the initial conditions. We first show that the Zel'dovich approximation (ZA) can be cast in this form. Next, we consider extensions involving the evolution of the Newtonian tidal tensor. We show that two approximations can be found that are exact for plane-parallel and spherical perturbations. The first one ("nonmagnetic" approximation, or NMA) neglects the Newtonian counterpart of the magnetic part of the Weyl tensor in the fluid frame and was investigated previously by Bertschinger & Jain. A new approximation ("local tidal," or LTA) involves neglecting still more terms in the tidal evolution equation. It is motivated by the analytic demonstration that it is exact for any perturbations whose gravitational and velocity equipotentials have the same constant shape with time. Thus, the LTA is exact for spherical, cylindrical, and plane-parallel perturbations. It corresponds physically to neglecting the curl of the magnetic part of the Weyl tensor in the comoving threading as well as an advection term in the tidal evolution equation. All three approximations can be applied up to the point of orbit crossing. We tested them in the case of the collapse of a homogeneous triaxial ellipsoid, for which an exact solution exists for an ellipsoid embedded in empty space and an excellent approximation is known in the cosmological context. We find that the LTA is significantly more accurate in general than the ZA and the NMA. Like the ZA, but unlike the NMA, the LTA generically leads to pancake collapse. For a randomly chosen mass element in an Sitter universe, assuming a Gaussian random field of initial density fluctuations, the
Approximating nonlinear forces with phase-space decoupling
NASA Astrophysics Data System (ADS)
Folsom, B.; Laface, E.
2017-07-01
Beam tracking software for accelerators typically falls into two categories: fast envelope simulations limited to linear beam optics, and slower multiparticle simulations that can model nonlinear effects. To find a middle ground between these approaches, we introduce virtual coordinates in position and momentum which have a cross-dependency (i.e. p* = f (x 0) where x 0 is an initial position and p* is a virtual projection of momentum onto the position axis). This technique approximates multiparticle simulations with a significant reduction in calculation cost.
Validity of the local approximation in iron pnictides and chalcogenides
NASA Astrophysics Data System (ADS)
Sémon, Patrick; Haule, Kristjan; Kotliar, Gabriel
2017-05-01
We introduce a methodology to treat different degrees of freedom at different levels of approximation. We use cluster DMFT (dynamical mean field theory) for the t2 g electrons and single site DMFT for the eg electrons to study the normal state of the iron pnictides and chalcogenides. In the regime of moderate mass renormalizations, the self-energy is very local, justifying the success of single site DMFT for these materials and for other Hunds metals. We solve the corresponding impurity model with CTQMC (continuous time quantum Monte Carlo) and find that the minus sign problem is not severe in regimes of moderate mass renormalization.
The Zeldovich & Adhesion approximations and applications to the local universe
NASA Astrophysics Data System (ADS)
Hidding, Johan; van de Weygaert, Rien; Shandarin, Sergei
2016-10-01
The Zeldovich approximation (ZA) predicts the formation of a web of singularities. While these singularities may only exist in the most formal interpretation of the ZA, they provide a powerful tool for the analysis of initial conditions. We present a novel method to find the skeleton of the resulting cosmic web based on singularities in the primordial deformation tensor and its higher order derivatives. We show that the A 3 lines predict the formation of filaments in a two-dimensional model. We continue with applications of the adhesion model to visualise structures in the local (z < 0.03) universe.
Isotropic polarizability of ozone from double-hybrid approximations
NASA Astrophysics Data System (ADS)
Alipour, Mojtaba
2016-01-01
Literature survey on the electric response properties of ozone reveals that the accurate prediction of its dipole polarizability and resolving the discrepancies in this context is a challenging case to current structure theories. In this Letter, we report the results of approximations from the highest rung of Jacob's ladder, double-hybrid (DH) functionals, for dipole polarizability of ozone. Benchmarking the two families of DHs, parameterized and parameter-free models, we find that the functionals B2Ͽ-PLYP and PBE0-DH as empirical and nonempirical DHs, respectively, provide the results in line with those obtained from the high correlated ab initio approaches.
Convergence of finite element approximations of large eddy motion.
Iliescu, T.; John, V.; Layton, W. J.; Mathematics and Computer Science; Otto-von-Guericke Univ.; Univ. of Pittsburgh
2002-11-01
This report considers 'numerical errors' in LES. Specifically, for one family of space filtered flow models, we show convergence of the finite element approximation of the model and give an estimate of the error. Keywords: Navier Stokes equations, large eddy simulation, finite element method I. INTRODUCTION Consider the (turbulent) flow of an incompressible fluid. One promising and common approach to the simulation of the motion of the large fluid structures is Large Eddy Simulation (LES). Various models are used in LES; a common one is to find (w, q), where w : {Omega}
Polynomial approximations of a class of stochastic multiscale elasticity problems
NASA Astrophysics Data System (ADS)
Hoang, Viet Ha; Nguyen, Thanh Chung; Xia, Bingxing
2016-06-01
We consider a class of elasticity equations in {mathbb{R}^d} whose elastic moduli depend on n separated microscopic scales. The moduli are random and expressed as a linear expansion of a countable sequence of random variables which are independently and identically uniformly distributed in a compact interval. The multiscale Hellinger-Reissner mixed problem that allows for computing the stress directly and the multiscale mixed problem with a penalty term for nearly incompressible isotropic materials are considered. The stochastic problems are studied via deterministic problems that depend on a countable number of real parameters which represent the probabilistic law of the stochastic equations. We study the multiscale homogenized problems that contain all the macroscopic and microscopic information. The solutions of these multiscale homogenized problems are written as generalized polynomial chaos (gpc) expansions. We approximate these solutions by semidiscrete Galerkin approximating problems that project into the spaces of functions with only a finite number of N gpc modes. Assuming summability properties for the coefficients of the elastic moduli's expansion, we deduce bounds and summability properties for the solutions' gpc expansion coefficients. These bounds imply explicit rates of convergence in terms of N when the gpc modes used for the Galerkin approximation are chosen to correspond to the best N terms in the gpc expansion. For the mixed problem with a penalty term for nearly incompressible materials, we show that the rate of convergence for the best N term approximation is independent of the Lamé constants' ratio when it goes to {infty}. Correctors for the homogenization problem are deduced. From these we establish correctors for the solutions of the parametric multiscale problems in terms of the semidiscrete Galerkin approximations. For two-scale problems, an explicit homogenization error which is uniform with respect to the parameters is deduced. Together
Photoelectron spectroscopy and the dipole approximation
Hemmers, O.; Hansen, D.L.; Wang, H.
1997-04-01
Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.
Product-State Approximations to Quantum States
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Harrow, Aram W.
2016-02-01
We show that for any many-body quantum state there exists an unentangled quantum state such that most of the two-body reduced density matrices are close to those of the original state. This is a statement about the monogamy of entanglement, which cannot be shared without limit in the same way as classical correlation. Our main application is to Hamiltonians that are sums of two-body terms. For such Hamiltonians we show that there exist product states with energy that is close to the ground-state energy whenever the interaction graph of the Hamiltonian has high degree. This proves the validity of mean-field theory and gives an explicitly bounded approximation error. If we allow states that are entangled within small clusters of systems but product across clusters then good approximations exist when the Hamiltonian satisfies one or more of the following properties: (1) high degree, (2) small expansion, or (3) a ground state where the blocks in the partition have sublinear entanglement. Previously this was known only in the case of small expansion or in the regime where the entanglement was close to zero. Our approximations allow an extensive error in energy, which is the scale considered by the quantum PCP (probabilistically checkable proof) and NLTS (no low-energy trivial-state) conjectures. Thus our results put restrictions on the possible Hamiltonians that could be used for a possible proof of the qPCP or NLTS conjectures. By contrast the classical PCP constructions are often based on constraint graphs with high degree. Likewise we show that the parallel repetition that is possible with classical constraint satisfaction problems cannot also be possible for quantum Hamiltonians, unless qPCP is false. The main technical tool behind our results is a collection of new classical and quantum de Finetti theorems which do not make any symmetry assumptions on the underlying states.
An approximate projection method for incompressible flow
NASA Astrophysics Data System (ADS)
Stevens, David E.; Chan, Stevens T.; Gresho, Phil
2002-12-01
This paper presents an approximate projection method for incompressible flows. This method is derived from Galerkin orthogonality conditions using equal-order piecewise linear elements for both velocity and pressure, hereafter Q1Q1. By combining an approximate projection for the velocities with a variational discretization of the continuum pressure Poisson equation, one eliminates the need to filter either the velocity or pressure fields as is often needed with equal-order element formulations. This variational approach extends to multiple types of elements; examples and results for triangular and quadrilateral elements are provided. This method is related to the method of Almgren et al. (SIAM J. Sci. Comput. 2000; 22: 1139-1159) and the PISO method of Issa (J. Comput. Phys. 1985; 62: 40-65). These methods use a combination of two elliptic solves, one to reduce the divergence of the velocities and another to approximate the pressure Poisson equation. Both Q1Q1 and the method of Almgren et al. solve the second Poisson equation with a weak error tolerance to achieve more computational efficiency.A Fourier analysis of Q1Q1 shows that a consistent mass matrix has a positive effect on both accuracy and mass conservation. A numerical comparison with the widely used Q1Q0 (piecewise linear velocities, piecewise constant pressures) on a periodic test case with an analytic solution verifies this analysis. Q1Q1 is shown to have comparable accuracy as Q1Q0 and good agreement with experiment for flow over an isolated cubic obstacle and dispersion of a point source in its wake.
Approximate protein structural alignment in polynomial time
Kolodny, Rachel; Linial, Nathan
2004-01-01
Alignment of protein structures is a fundamental task in computational molecular biology. Good structural alignments can help detect distant evolutionary relationships that are hard or impossible to discern from protein sequences alone. Here, we study the structural alignment problem as a family of optimization problems and develop an approximate polynomial-time algorithm to solve them. For a commonly used scoring function, the algorithm runs in O(n10/ε6) time, for globular protein of length n, and it detects alignments that score within an additive error of ε from all optima. Thus, we prove that this task is computationally feasible, although the method that we introduce is too slow to be a useful everyday tool. We argue that such approximate solutions are, in fact, of greater interest than exact ones because of the noisy nature of experimentally determined protein coordinates. The measurement of similarity between a pair of protein structures used by our algorithm involves the Euclidean distance between the structures (appropriately rigidly transformed). We show that an alternative approach, which relies on internal distance matrices, must incorporate sophisticated geometric ingredients if it is to guarantee optimality and run in polynomial time. We use these observations to visualize the scoring function for several real instances of the problem. Our investigations yield insights on the computational complexity of protein alignment under various scoring functions. These insights can be used in the design of scoring functions for which the optimum can be approximated efficiently and perhaps in the development of efficient algorithms for the multiple structural alignment problem. PMID:15304646
Relativistic Random Phase Approximation At Finite Temperature
Niu, Y. F.; Paar, N.; Vretenar, D.; Meng, J.
2009-08-26
The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.
Analytic Approximation to Randomly Oriented Spheroid Extinction
1993-12-01
104 times faster than by the T - matrix code . Since the T-matrix scales as at least the cube of the optical size whereas the analytic approximation is...coefficient estimate, and with the Rayleigh formula. Since it is difficult estimate the accuracy near the limit of stability of the T - matrix code some...additional error due to the T - matrix code could be present. UNCLASSIFIED 30 Max Ret Error, Analytic vs T-Mat, r= 1/5 0.0 20 25 10 ~ 0.5 100 . 7.5 S-1.0
Relativistic mean field approximation to baryons
Dmitri Diakonov
2005-02-01
We stress the importance of the spontaneous chiral symmetry breaking for understanding the low-energy structure of baryons. The Mean Field Approximation to baryons is formulated, which solves several outstanding paradoxes of the naive quark models, and which allows to compute parton distributions at low virtuality in a consistent way. We explain why this approach to baryons leads to the prediction of relatively light exotic pentaquark baryons, in contrast to the constituent models which do not take seriously the importance of chiral symmetry breaking. We briefly discuss why, to our mind, it is easier to produce exotic pentaquarks at low than at high energies.
Approximation of Dynamical System's Separatrix Curves
NASA Astrophysics Data System (ADS)
Cavoretto, Roberto; Chaudhuri, Sanjay; De Rossi, Alessandra; Menduni, Eleonora; Moretti, Francesca; Rodi, Maria Caterina; Venturino, Ezio
2011-09-01
In dynamical systems saddle points partition the domain into basins of attractions of the remaining locally stable equilibria. This problem is rather common especially in population dynamics models, like prey-predator or competition systems. In this paper we construct programs for the detection of points lying on the separatrix curve, i.e. the curve which partitions the domain. Finally, an efficient algorithm, which is based on the Partition of Unity method with local approximants given by Wendland's functions, is used for reconstructing the separatrix curve.
Approximation concepts for numerical airfoil optimization
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.
1979-01-01
An efficient algorithm for airfoil optimization is presented. The algorithm utilizes approximation concepts to reduce the number of aerodynamic analyses required to reach the optimum design. Examples are presented and compared with previous results. Optimization efficiency improvements of more than a factor of 2 are demonstrated. Improvements in efficiency are demonstrated when analysis data obtained in previous designs are utilized. The method is a general optimization procedure and is not limited to this application. The method is intended for application to a wide range of engineering design problems.
Semiclassical approximations to quantum time correlation functions
NASA Astrophysics Data System (ADS)
Egorov, S. A.; Skinner, J. L.
1998-09-01
Over the last 40 years several ad hoc semiclassical approaches have been developed in order to obtain approximate quantum time correlation functions, using as input only the corresponding classical time correlation functions. The accuracy of these approaches has been tested for several exactly solvable gas-phase models. In this paper we test the accuracy of these approaches by comparing to an exactly solvable many-body condensed-phase model. We show that in the frequency domain the Egelstaff approach is the most accurate, especially at high frequencies, while in the time domain one of the other approaches is more accurate.
Approximation Algorithms for Free-Label Maximization
NASA Astrophysics Data System (ADS)
de Berg, Mark; Gerrits, Dirk H. P.
Inspired by air traffic control and other applications where moving objects have to be labeled, we consider the following (static) point labeling problem: given a set P of n points in the plane and labels that are unit squares, place a label with each point in P in such a way that the number of free labels (labels not intersecting any other label) is maximized. We develop efficient constant-factor approximation algorithms for this problem, as well as PTASs, for various label-placement models.
Shear viscosity in the postquasistatic approximation
Peralta, C.; Rosales, L.; Rodriguez-Mueller, B.; Barreto, W.
2010-05-15
We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of anisotropic nonadiabatic radiating and dissipative distributions in general relativity. Dissipation is described by viscosity and free-streaming radiation, assuming an equation of state to model anisotropy induced by the shear viscosity. We match the interior solution, in noncomoving coordinates, with the Vaidya exterior solution. Two simple models are presented, based on the Schwarzschild and Tolman VI solutions, in the nonadiabatic and adiabatic limit. In both cases, the eventual collapse or expansion of the distribution is mainly controlled by the anisotropy induced by the viscosity.
Approximations of nonlinear systems having outputs
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Su, R.
1985-01-01
For a nonlinear system with output derivative x = f(x) and y = h(x), two types of linearizations about a point x(0) in state space are considered. One is the usual Taylor series approximation, and the other is defined by linearizing the appropriate Lie derivatives of the output with respect to f about x(0). The latter is called the obvservation model and appears to be quite natural for observation. It is noted that there is a coordinate system in which these two kinds of linearizations agree. In this coordinate system, a technique to construct an observer is introduced.
Approximating rational triangular Bézier surfaces by polynomial triangular Bézier surfaces
NASA Astrophysics Data System (ADS)
Xu, Hui-Xia; Wang, Guo-Jin
2009-06-01
An attractive method for approximating rational triangular Bézier surfaces by polynomial triangular Bézier surfaces is introduced. The main result is that the arbitrary given order derived vectors of a polynomial triangular surface converge uniformly to those of the approximated rational triangular Bézier surface as the elevated degree tends to infinity. The polynomial triangular surface is constructed as follows. Firstly, we elevate the degree of the approximated rational triangular Bézier surface, then a polynomial triangular Bézier surface is produced, which has the same order and new control points of the degree-elevated rational surface. The approximation method has theoretical significance and application value: it solves two shortcomings-fussy expression and uninsured convergence of the approximation-of Hybrid algorithms for rational polynomial curves and surfaces approximation.