Sample records for finding optimal solutions

  1. Sensitivity Analysis of Genetic Algorithm Parameters for Optimal Groundwater Monitoring Network Design

    NASA Astrophysics Data System (ADS)

    Abdeh-Kolahchi, A.; Satish, M.; Datta, B.

    2004-05-01

    A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.

  2. Using Animal Instincts to Design Efficient Biomedical Studies via Particle Swarm Optimization.

    PubMed

    Qiu, Jiaheng; Chen, Ray-Bing; Wang, Weichung; Wong, Weng Kee

    2014-10-01

    Particle swarm optimization (PSO) is an increasingly popular metaheuristic algorithm for solving complex optimization problems. Its popularity is due to its repeated successes in finding an optimum or a near optimal solution for problems in many applied disciplines. The algorithm makes no assumption of the function to be optimized and for biomedical experiments like those presented here, PSO typically finds the optimal solutions in a few seconds of CPU time on a garden-variety laptop. We apply PSO to find various types of optimal designs for several problems in the biological sciences and compare PSO performance relative to the differential evolution algorithm, another popular metaheuristic algorithm in the engineering literature.

  3. Enhancing Polyhedral Relaxations for Global Optimization

    ERIC Educational Resources Information Center

    Bao, Xiaowei

    2009-01-01

    During the last decade, global optimization has attracted a lot of attention due to the increased practical need for obtaining global solutions and the success in solving many global optimization problems that were previously considered intractable. In general, the central question of global optimization is to find an optimal solution to a given…

  4. An efficient and practical approach to obtain a better optimum solution for structural optimization

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Yu; Huang, Jyun-Hao

    2013-08-01

    For many structural optimization problems, it is hard or even impossible to find the global optimum solution owing to unaffordable computational cost. An alternative and practical way of thinking is thus proposed in this research to obtain an optimum design which may not be global but is better than most local optimum solutions that can be found by gradient-based search methods. The way to reach this goal is to find a smaller search space for gradient-based search methods. It is found in this research that data mining can accomplish this goal easily. The activities of classification, association and clustering in data mining are employed to reduce the original design space. For unconstrained optimization problems, the data mining activities are used to find a smaller search region which contains the global or better local solutions. For constrained optimization problems, it is used to find the feasible region or the feasible region with better objective values. Numerical examples show that the optimum solutions found in the reduced design space by sequential quadratic programming (SQP) are indeed much better than those found by SQP in the original design space. The optimum solutions found in a reduced space by SQP sometimes are even better than the solution found using a hybrid global search method with approximate structural analyses.

  5. Ranked solutions to a class of combinatorial optimizations - with applications in mass spectrometry based peptide sequencing

    NASA Astrophysics Data System (ADS)

    Doerr, Timothy; Alves, Gelio; Yu, Yi-Kuo

    2006-03-01

    Typical combinatorial optimizations are NP-hard; however, for a particular class of cost functions the corresponding combinatorial optimizations can be solved in polynomial time. This suggests a way to efficiently find approximate solutions - - find a transformation that makes the cost function as similar as possible to that of the solvable class. After keeping many high-ranking solutions using the approximate cost function, one may then re-assess these solutions with the full cost function to find the best approximate solution. Under this approach, it is important to be able to assess the quality of the solutions obtained, e.g., by finding the true ranking of kth best approximate solution when all possible solutions are considered exhaustively. To tackle this statistical issue, we provide a systematic method starting with a scaling function generated from the fininte number of high- ranking solutions followed by a convergent iterative mapping. This method, useful in a variant of the directed paths in random media problem proposed here, can also provide a statistical significance assessment for one of the most important proteomic tasks - - peptide sequencing using tandem mass spectrometry data.

  6. Optimal percolation on multiplex networks.

    PubMed

    Osat, Saeed; Faqeeh, Ali; Radicchi, Filippo

    2017-11-16

    Optimal percolation is the problem of finding the minimal set of nodes whose removal from a network fragments the system into non-extensive disconnected clusters. The solution to this problem is important for strategies of immunization in disease spreading, and influence maximization in opinion dynamics. Optimal percolation has received considerable attention in the context of isolated networks. However, its generalization to multiplex networks has not yet been considered. Here we show that approximating the solution of the optimal percolation problem on a multiplex network with solutions valid for single-layer networks extracted from the multiplex may have serious consequences in the characterization of the true robustness of the system. We reach this conclusion by extending many of the methods for finding approximate solutions of the optimal percolation problem from single-layer to multiplex networks, and performing a systematic analysis on synthetic and real-world multiplex networks.

  7. LDRD Final Report: Global Optimization for Engineering Science Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HART,WILLIAM E.

    1999-12-01

    For a wide variety of scientific and engineering problems the desired solution corresponds to an optimal set of objective function parameters, where the objective function measures a solution's quality. The main goal of the LDRD ''Global Optimization for Engineering Science Problems'' was the development of new robust and efficient optimization algorithms that can be used to find globally optimal solutions to complex optimization problems. This SAND report summarizes the technical accomplishments of this LDRD, discusses lessons learned and describes open research issues.

  8. A Novel Consensus-Based Particle Swarm Optimization-Assisted Trust-Tech Methodology for Large-Scale Global Optimization.

    PubMed

    Zhang, Yong-Feng; Chiang, Hsiao-Dong

    2017-09-01

    A novel three-stage methodology, termed the "consensus-based particle swarm optimization (PSO)-assisted Trust-Tech methodology," to find global optimal solutions for nonlinear optimization problems is presented. It is composed of Trust-Tech methods, consensus-based PSO, and local optimization methods that are integrated to compute a set of high-quality local optimal solutions that can contain the global optimal solution. The proposed methodology compares very favorably with several recently developed PSO algorithms based on a set of small-dimension benchmark optimization problems and 20 large-dimension test functions from the CEC 2010 competition. The analytical basis for the proposed methodology is also provided. Experimental results demonstrate that the proposed methodology can rapidly obtain high-quality optimal solutions that can contain the global optimal solution. The scalability of the proposed methodology is promising.

  9. Product Mix Selection Using AN Evolutionary Technique

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Vasant, Pandian

    2009-08-01

    This paper proposes an evolutionary technique for the solution of a real—life industrial problem and particular for the product mix selection problem. The evolutionary technique is a combination of a genetic algorithm that preserves the feasibility of the trial solutions with penalties and some local optimization method. The goal of this paper has been achieved in finding the best near optimal solution for the profit fitness function respect to vagueness factor and level of satisfaction. The findings of the profit values will be very useful for the decision makers in the industrial engineering sector for the implementation purpose. It's possible to improve the solutions obtained in this study by employing other meta-heuristic methods such as simulated annealing, tabu Search, ant colony optimization, particle swarm optimization and artificial immune systems.

  10. Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm.

    PubMed

    Chang, Joshua; Paydarfar, David

    2014-12-01

    Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of problems in neuroscience. Analytical techniques from optimal control theory can identify such stimuli; however, solutions to the optimization problem using indirect variational approaches can be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: (1) enables automated exploration of a wide solution space, using stochastically generated initial waveforms that converge to multiple locally optimal solutions; and (2) finds optimal stimulus waveforms that achieve a physiological outcome condition, without a priori knowledge of the optimal terminal condition of all state variables. Analysis of biological systems using stochastically-seeded gradient methods can reveal salient dynamical mechanisms underlying the optimal control of system behavior. The gradient algorithm may also have practical applications in future work, for example, finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage and diminishes off-target effects and damage to neighboring tissue.

  11. Solving Single Machine Total Weighted Tardiness Problem with Unequal Release Date Using Neurohybrid Particle Swarm Optimization Approach.

    PubMed

    Cakar, Tarik; Koker, Rasit

    2015-01-01

    A particle swarm optimization algorithm (PSO) has been used to solve the single machine total weighted tardiness problem (SMTWT) with unequal release date. To find the best solutions three different solution approaches have been used. To prepare subhybrid solution system, genetic algorithms (GA) and simulated annealing (SA) have been used. In the subhybrid system (GA and SA), GA obtains a solution in any stage, that solution is taken by SA and used as an initial solution. When SA finds better solution than this solution, it stops working and gives this solution to GA again. After GA finishes working the obtained solution is given to PSO. PSO searches for better solution than this solution. Later it again sends the obtained solution to GA. Three different solution systems worked together. Neurohybrid system uses PSO as the main optimizer and SA and GA have been used as local search tools. For each stage, local optimizers are used to perform exploitation to the best particle. In addition to local search tools, neurodominance rule (NDR) has been used to improve performance of last solution of hybrid-PSO system. NDR checked sequential jobs according to total weighted tardiness factor. All system is named as neurohybrid-PSO solution system.

  12. Optimized positioning of autonomous surgical lamps

    NASA Astrophysics Data System (ADS)

    Teuber, Jörn; Weller, Rene; Kikinis, Ron; Oldhafer, Karl-Jürgen; Lipp, Michael J.; Zachmann, Gabriel

    2017-03-01

    We consider the problem of finding automatically optimal positions of surgical lamps throughout the whole surgical procedure, where we assume that future lamps could be robotized. We propose a two-tiered optimization technique for the real-time autonomous positioning of those robotized surgical lamps. Typically, finding optimal positions for surgical lamps is a multi-dimensional problem with several, in part conflicting, objectives, such as optimal lighting conditions at every point in time while minimizing the movement of the lamps in order to avoid distractions of the surgeon. Consequently, we use multi-objective optimization (MOO) to find optimal positions in real-time during the entire surgery. Due to the conflicting objectives, there is usually not a single optimal solution for such kinds of problems, but a set of solutions that realizes a Pareto-front. When our algorithm selects a solution from this set it additionally has to consider the individual preferences of the surgeon. This is a highly non-trivial task because the relationship between the solution and the parameters is not obvious. We have developed a novel meta-optimization that considers exactly this challenge. It delivers an easy to understand set of presets for the parameters and allows a balance between the lamp movement and lamp obstruction. This metaoptimization can be pre-computed for different kinds of operations and it then used by our online optimization for the selection of the appropriate Pareto solution. Both optimization approaches use data obtained by a depth camera that captures the surgical site but also the environment around the operating table. We have evaluated our algorithms with data recorded during a real open abdominal surgery. It is available for use for scientific purposes. The results show that our meta-optimization produces viable parameter sets for different parts of an intervention even when trained on a small portion of it.

  13. A preliminary study to metaheuristic approach in multilayer radiation shielding optimization

    NASA Astrophysics Data System (ADS)

    Arif Sazali, Muhammad; Rashid, Nahrul Khair Alang Md; Hamzah, Khaidzir

    2018-01-01

    Metaheuristics are high-level algorithmic concepts that can be used to develop heuristic optimization algorithms. One of their applications is to find optimal or near optimal solutions to combinatorial optimization problems (COPs) such as scheduling, vehicle routing, and timetabling. Combinatorial optimization deals with finding optimal combinations or permutations in a given set of problem components when exhaustive search is not feasible. A radiation shield made of several layers of different materials can be regarded as a COP. The time taken to optimize the shield may be too high when several parameters are involved such as the number of materials, the thickness of layers, and the arrangement of materials. Metaheuristics can be applied to reduce the optimization time, trading guaranteed optimal solutions for near-optimal solutions in comparably short amount of time. The application of metaheuristics for radiation shield optimization is lacking. In this paper, we present a review on the suitability of using metaheuristics in multilayer shielding design, specifically the genetic algorithm and ant colony optimization algorithm (ACO). We would also like to propose an optimization model based on the ACO method.

  14. Genetic Algorithm Optimizes Q-LAW Control Parameters

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  15. Generalized bipartite quantum state discrimination problems with sequential measurements

    NASA Astrophysics Data System (ADS)

    Nakahira, Kenji; Kato, Kentaro; Usuda, Tsuyoshi Sasaki

    2018-02-01

    We investigate an optimization problem of finding quantum sequential measurements, which forms a wide class of state discrimination problems with the restriction that only local operations and one-way classical communication are allowed. Sequential measurements from Alice to Bob on a bipartite system are considered. Using the fact that the optimization problem can be formulated as a problem with only Alice's measurement and is convex programming, we derive its dual problem and necessary and sufficient conditions for an optimal solution. Our results are applicable to various practical optimization criteria, including the Bayes criterion, the Neyman-Pearson criterion, and the minimax criterion. In the setting of the problem of finding an optimal global measurement, its dual problem and necessary and sufficient conditions for an optimal solution have been widely used to obtain analytical and numerical expressions for optimal solutions. Similarly, our results are useful to obtain analytical and numerical expressions for optimal sequential measurements. Examples in which our results can be used to obtain an analytical expression for an optimal sequential measurement are provided.

  16. Joint global optimization of tomographic data based on particle swarm optimization and decision theory

    NASA Astrophysics Data System (ADS)

    Paasche, H.; Tronicke, J.

    2012-04-01

    In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto optimality of the found solutions can be made. Identification of the leading particle traditionally requires a costly combination of ranking and niching techniques. In our approach, we use a decision rule under uncertainty to identify the currently leading particle of the swarm. In doing so, we consider the different objectives of our optimization problem as competing agents with partially conflicting interests. Analysis of the maximin fitness function allows for robust and cheap identification of the currently leading particle. The final optimization result comprises a set of possible models spread along the Pareto front. For convex Pareto fronts, solution density is expected to be maximal in the region ideally compromising all objectives, i.e. the region of highest curvature.

  17. Sensitivity-Based Guided Model Calibration

    NASA Astrophysics Data System (ADS)

    Semnani, M.; Asadzadeh, M.

    2017-12-01

    A common practice in automatic calibration of hydrologic models is applying the sensitivity analysis prior to the global optimization to reduce the number of decision variables (DVs) by identifying the most sensitive ones. This two-stage process aims to improve the optimization efficiency. However, Parameter sensitivity information can be used to enhance the ability of the optimization algorithms to find good quality solutions in a fewer number of solution evaluations. This improvement can be achieved by increasing the focus of optimization on sampling from the most sensitive parameters in each iteration. In this study, the selection process of the dynamically dimensioned search (DDS) optimization algorithm is enhanced by utilizing a sensitivity analysis method to put more emphasis on the most sensitive decision variables for perturbation. The performance of DDS with the sensitivity information is compared to the original version of DDS for different mathematical test functions and a model calibration case study. Overall, the results show that DDS with sensitivity information finds nearly the same solutions as original DDS, however, in a significantly fewer number of solution evaluations.

  18. Global Search Capabilities of Indirect Methods for Impulsive Transfers

    NASA Astrophysics Data System (ADS)

    Shen, Hong-Xin; Casalino, Lorenzo; Luo, Ya-Zhong

    2015-09-01

    An optimization method which combines an indirect method with homotopic approach is proposed and applied to impulsive trajectories. Minimum-fuel, multiple-impulse solutions, with either fixed or open time are obtained. The homotopic approach at hand is relatively straightforward to implement and does not require an initial guess of adjoints, unlike previous adjoints estimation methods. A multiple-revolution Lambert solver is used to find multiple starting solutions for the homotopic procedure; this approach can guarantee to obtain multiple local solutions without relying on the user's intuition, thus efficiently exploring the solution space to find the global optimum. The indirect/homotopic approach proves to be quite effective and efficient in finding optimal solutions, and outperforms the joint use of evolutionary algorithms and deterministic methods in the test cases.

  19. Optimal solution and optimality condition of the Hunter-Saxton equation

    NASA Astrophysics Data System (ADS)

    Shen, Chunyu

    2018-02-01

    This paper is devoted to the optimal distributed control problem governed by the Hunter-Saxton equation with constraints on the control. We first investigate the existence and uniqueness of weak solution for the controlled system with appropriate initial value and boundary conditions. In contrast with our previous research, the proof of solution mapping is local Lipschitz continuous, which is one big improvement. Second, based on the well-posedness result, we find a unique optimal control and optimal solution for the controlled system with the quadratic cost functional. Moreover, we establish the sufficient and necessary optimality condition of an optimal control by means of the optimal control theory, not limited to the necessary condition, which is another major novelty of this paper. We also discuss the optimality conditions corresponding to two physical meaningful distributed observation cases.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.

    This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed unicycle. The time optimal paths consist of sequences of arcs of circles and straight lines. The maximum principle introduced concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. 10 refs., 6 figs.

  1. Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization

    NASA Technical Reports Server (NTRS)

    Lohn, Jason D.; Kraus, William F.; Haith, Gary L.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We present results from a study comparing a recently developed coevolutionary genetic algorithm (CGA) against a set of evolutionary algorithms using a suite of multiobjective optimization benchmarks. The CGA embodies competitive coevolution and employs a simple, straightforward target population representation and fitness calculation based on developmental theory of learning. Because of these properties, setting up the additional population is trivial making implementation no more difficult than using a standard GA. Empirical results using a suite of two-objective test functions indicate that this CGA performs well at finding solutions on convex, nonconvex, discrete, and deceptive Pareto-optimal fronts, while giving respectable results on a nonuniform optimization. On a multimodal Pareto front, the CGA finds a solution that dominates solutions produced by eight other algorithms, yet the CGA has poor coverage across the Pareto front.

  2. Solving fuel-optimal low-thrust orbital transfers with bang-bang control using a novel continuation technique

    NASA Astrophysics Data System (ADS)

    Zhu, Zhengfan; Gan, Qingbo; Yang, Xin; Gao, Yang

    2017-08-01

    We have developed a novel continuation technique to solve optimal bang-bang control for low-thrust orbital transfers considering the first-order necessary optimality conditions derived from Lawden's primer vector theory. Continuation on the thrust amplitude is mainly described in this paper. Firstly, a finite-thrust transfer with an ;On-Off-On; thrusting sequence is modeled using a two-impulse transfer as initial solution, and then the thrust amplitude is decreased gradually to find an optimal solution with minimum thrust. Secondly, the thrust amplitude is continued from its minimum value to positive infinity to find the optimal bang-bang control, and a thrust switching principle is employed to determine the control structure by monitoring the variation of the switching function. In the continuation process, a bifurcation of bang-bang control is revealed and the concept of critical thrust is proposed to illustrate this phenomenon. The same thrust switching principle is also applicable to the continuation on other parameters, such as transfer time, orbital phase angle, etc. By this continuation technique, fuel-optimal orbital transfers with variable mission parameters can be found via an automated algorithm, and there is no need to provide an initial guess for the costate variables. Moreover, continuation is implemented in the solution space of bang-bang control that is either optimal or non-optimal, which shows that a desired solution of bang-bang control is obtained via continuation on a single parameter starting from an existing solution of bang-bang control. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed continuation technique. Specifically, this continuation technique provides an approach to find multiple solutions satisfying the first-order necessary optimality conditions to the same orbital transfer problem, and a continuation strategy is presented as a preliminary approach for solving the bang-bang control of many-revolution orbital transfers.

  3. The Shortlist Method for fast computation of the Earth Mover's Distance and finding optimal solutions to transportation problems.

    PubMed

    Gottschlich, Carsten; Schuhmacher, Dominic

    2014-01-01

    Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method.

  4. The Shortlist Method for Fast Computation of the Earth Mover's Distance and Finding Optimal Solutions to Transportation Problems

    PubMed Central

    Gottschlich, Carsten; Schuhmacher, Dominic

    2014-01-01

    Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method. PMID:25310106

  5. The modification of hybrid method of ant colony optimization, particle swarm optimization and 3-OPT algorithm in traveling salesman problem

    NASA Astrophysics Data System (ADS)

    Hertono, G. F.; Ubadah; Handari, B. D.

    2018-03-01

    The traveling salesman problem (TSP) is a famous problem in finding the shortest tour to visit every vertex exactly once, except the first vertex, given a set of vertices. This paper discusses three modification methods to solve TSP by combining Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and 3-Opt Algorithm. The ACO is used to find the solution of TSP, in which the PSO is implemented to find the best value of parameters α and β that are used in ACO.In order to reduce the total of tour length from the feasible solution obtained by ACO, then the 3-Opt will be used. In the first modification, the 3-Opt is used to reduce the total tour length from the feasible solutions obtained at each iteration, meanwhile, as the second modification, 3-Opt is used to reduce the total tour length from the entire solution obtained at every iteration. In the third modification, 3-Opt is used to reduce the total tour length from different solutions obtained at each iteration. Results are tested using 6 benchmark problems taken from TSPLIB by calculating the relative error to the best known solution as well as the running time. Among those modifications, only the second and third modification give satisfactory results except the second one needs more execution time compare to the third modifications.

  6. Extremal Optimization: Methods Derived from Co-Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettcher, S.; Percus, A.G.

    1999-07-13

    We describe a general-purpose method for finding high-quality solutions to hard optimization problems, inspired by self-organized critical models of co-evolution such as the Bak-Sneppen model. The method, called Extremal Optimization, successively eliminates extremely undesirable components of sub-optimal solutions, rather than ''breeding'' better components. In contrast to Genetic Algorithms which operate on an entire ''gene-pool'' of possible solutions, Extremal Optimization improves on a single candidate solution by treating each of its components as species co-evolving according to Darwinian principles. Unlike Simulated Annealing, its non-equilibrium approach effects an algorithm requiring few parameters to tune. With only one adjustable parameter, its performance provesmore » competitive with, and often superior to, more elaborate stochastic optimization procedures. We demonstrate it here on two classic hard optimization problems: graph partitioning and the traveling salesman problem.« less

  7. GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING

    PubMed Central

    Liu, Hongcheng; Yao, Tao; Li, Runze

    2015-01-01

    This paper is concerned with solving nonconvex learning problems with folded concave penalty. Despite that their global solutions entail desirable statistical properties, there lack optimization techniques that guarantee global optimality in a general setting. In this paper, we show that a class of nonconvex learning problems are equivalent to general quadratic programs. This equivalence facilitates us in developing mixed integer linear programming reformulations, which admit finite algorithms that find a provably global optimal solution. We refer to this reformulation-based technique as the mixed integer programming-based global optimization (MIPGO). To our knowledge, this is the first global optimization scheme with a theoretical guarantee for folded concave penalized nonconvex learning with the SCAD penalty (Fan and Li, 2001) and the MCP penalty (Zhang, 2010). Numerical results indicate a significant outperformance of MIPGO over the state-of-the-art solution scheme, local linear approximation, and other alternative solution techniques in literature in terms of solution quality. PMID:27141126

  8. Optimality versus stability in water resource allocation.

    PubMed

    Read, Laura; Madani, Kaveh; Inanloo, Bahareh

    2014-01-15

    Water allocation is a growing concern in a developing world where limited resources like fresh water are in greater demand by more parties. Negotiations over allocations often involve multiple groups with disparate social, economic, and political status and needs, who are seeking a management solution for a wide range of demands. Optimization techniques for identifying the Pareto-optimal (social planner solution) to multi-criteria multi-participant problems are commonly implemented, although often reaching agreement for this solution is difficult. In negotiations with multiple-decision makers, parties who base decisions on individual rationality may find the social planner solution to be unfair, thus creating a need to evaluate the willingness to cooperate and practicality of a cooperative allocation solution, i.e., the solution's stability. This paper suggests seeking solutions for multi-participant resource allocation problems through an economics-based power index allocation method. This method can inform on allocation schemes that quantify a party's willingness to participate in a negotiation rather than opt for no agreement. Through comparison of the suggested method with a range of distance-based multi-criteria decision making rules, namely, least squares, MAXIMIN, MINIMAX, and compromise programming, this paper shows that optimality and stability can produce different allocation solutions. The mismatch between the socially-optimal alternative and the most stable alternative can potentially result in parties leaving the negotiation as they may be too dissatisfied with their resource share. This finding has important policy implications as it justifies why stakeholders may not accept the socially optimal solution in practice, and underlies the necessity of considering stability where it may be more appropriate to give up an unstable Pareto-optimal solution for an inferior stable one. Authors suggest assessing the stability of an allocation solution as an additional component to an analysis that seeks to distribute water in a negotiated process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Application of cellular automatons and ant algorithms in avionics

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.; Selvesiuk, N. I.; Platoshin, G. A.; Semenova, E. V.

    2018-03-01

    The paper considers two algorithms for searching quasi-optimal solutions of discrete optimization problems with regard to the tasks of avionics placing. The first one solves the problem of optimal placement of devices by installation locations, the second one is for the problem of finding the shortest route between devices. Solutions are constructed using a cellular automaton and the ant colony algorithm.

  10. Design of an Aircrew Scheduling Decision Aid for the 6916th Electronic Security Squadron.

    DTIC Science & Technology

    1987-06-01

    Security Classification) Design of an Aircrew Scheduling Decision Aid for the 6916th Electronic Security Squadron 12. PERSONAL AUTHOR(S) Thomas J. Kopf...Because of the great number of possible scheduling alternatives, it is difficult to find an optimal solution to-the scheduling problem. Additionally...changes to the original schedule make it even more difficult to find an optimal solution. The emergence of capable microcompu- ters, decision support

  11. Social interaction as a heuristic for combinatorial optimization problems

    NASA Astrophysics Data System (ADS)

    Fontanari, José F.

    2010-11-01

    We investigate the performance of a variant of Axelrod’s model for dissemination of culture—the Adaptive Culture Heuristic (ACH)—on solving an NP-Complete optimization problem, namely, the classification of binary input patterns of size F by a Boolean Binary Perceptron. In this heuristic, N agents, characterized by binary strings of length F which represent possible solutions to the optimization problem, are fixed at the sites of a square lattice and interact with their nearest neighbors only. The interactions are such that the agents’ strings (or cultures) become more similar to the low-cost strings of their neighbors resulting in the dissemination of these strings across the lattice. Eventually the dynamics freezes into a homogeneous absorbing configuration in which all agents exhibit identical solutions to the optimization problem. We find through extensive simulations that the probability of finding the optimal solution is a function of the reduced variable F/N1/4 so that the number of agents must increase with the fourth power of the problem size, N∝F4 , to guarantee a fixed probability of success. In this case, we find that the relaxation time to reach an absorbing configuration scales with F6 which can be interpreted as the overall computational cost of the ACH to find an optimal set of weights for a Boolean binary perceptron, given a fixed probability of success.

  12. Better Decomposition Heuristics for the Maximum-Weight Connected Graph Problem Using Betweenness Centrality

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takanori; Bannai, Hideo; Nagasaki, Masao; Miyano, Satoru

    We present new decomposition heuristics for finding the optimal solution for the maximum-weight connected graph problem, which is known to be NP-hard. Previous optimal algorithms for solving the problem decompose the input graph into subgraphs using heuristics based on node degree. We propose new heuristics based on betweenness centrality measures, and show through computational experiments that our new heuristics tend to reduce the number of subgraphs in the decomposition, and therefore could lead to the reduction in computational time for finding the optimal solution. The method is further applied to analysis of biological pathway data.

  13. Cocontraction of pairs of antagonistic muscles: analytical solution for planar static nonlinear optimization approaches.

    PubMed

    Herzog, W; Binding, P

    1993-11-01

    It has been stated in the literature that static, nonlinear optimization approaches cannot predict coactivation of pairs of antagonistic muscles; however, numerical solutions of such approaches have predicted coactivation of pairs of one-joint and multijoint antagonists. Analytical support for either finding is not available in the literature for systems containing more than one degree of freedom. The purpose of this study was to investigate analytically the possibility of cocontraction of pairs of antagonistic muscles using a static nonlinear optimization approach for a multidegree-of-freedom, two-dimensional system. Analytical solutions were found using the Karush-Kuhn-Tucker conditions, which were necessary and sufficient for optimality in this problem. The results show that cocontraction of pairs of one-joint antagonistic muscles is not possible, whereas cocontraction of pairs of multijoint antagonists is. These findings suggest that cocontraction of pairs of antagonistic muscles may be an "efficient" way to accomplish many movement tasks.

  14. Evolutionary algorithms for the optimization of advective control of contaminated aquifer zones

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Finkel, Michael

    2004-06-01

    Simple genetic algorithms (SGAs) and derandomized evolution strategies (DESs) are employed to adapt well capture zones for the hydraulic optimization of pump-and-treat systems. A hypothetical contaminant site in a heterogeneous aquifer serves as an application template. On the basis of the results from numerical flow modeling, particle tracking is applied to delineate the pathways of the contaminants. The objective is to find the minimum pumping rate of up to eight recharge wells within a downgradient well placement area. Both the well coordinates and the pumping rates are subject to optimization, leading to a mixed discrete-continuous problem. This article discusses the ideal formulation of the objective function for which the number of particles and the total pumping rate are used as decision criteria. Boundary updating is introduced, which enables the reorganization of the decision space limits by the incorporation of experience from previous optimization runs. Throughout the study the algorithms' capabilities are evaluated in terms of the number of model runs which are needed to identify optimal and suboptimal solutions. Despite the complexity of the problem both evolutionary algorithm variants prove to be suitable for finding suboptimal solutions. The DES with weighted recombination reveals to be the ideal algorithm to find optimal solutions. Though it works with real-coded decision parameters, it proves to be suitable for adjusting discrete well positions. Principally, the representation of well positions as binary strings in the SGA is ideal. However, even if the SGA takes advantage of bookkeeping, the vital high discretization of pumping rates results in long binary strings, which escalates the model runs that are needed to find an optimal solution. Since the SGA string lengths increase with the number of wells, the DES gains superiority, particularly for an increasing number of wells. As the DES is a self-adaptive algorithm, it proves to be the more robust optimization method for the selected advective control problem than the SGA variants of this study, exhibiting a less stochastic search which is reflected in the minor variability of the found solutions.

  15. Genetic algorithms for multicriteria shape optimization of induction furnace

    NASA Astrophysics Data System (ADS)

    Kůs, Pavel; Mach, František; Karban, Pavel; Doležel, Ivo

    2012-09-01

    In this contribution we deal with a multi-criteria shape optimization of an induction furnace. We want to find shape parameters of the furnace in such a way, that two different criteria are optimized. Since they cannot be optimized simultaneously, instead of one optimum we find set of partially optimal designs, so called Pareto front. We compare two different approaches to the optimization, one using nonlinear conjugate gradient method and second using variation of genetic algorithm. As can be seen from the numerical results, genetic algorithm seems to be the right choice for this problem. Solution of direct problem (coupled problem consisting of magnetic and heat field) is done using our own code Agros2D. It uses finite elements of higher order leading to fast and accurate solution of relatively complicated coupled problem. It also provides advanced scripting support, allowing us to prepare parametric model of the furnace and simply incorporate various types of optimization algorithms.

  16. Computing the optimal path in stochastic dynamical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauver, Martha; Forgoston, Eric, E-mail: eric.forgoston@montclair.edu; Billings, Lora

    2016-08-15

    In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensionalmore » system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.« less

  17. Walking the Filament of Feasibility: Global Optimization of Highly-Constrained, Multi-Modal Interplanetary Trajectories Using a Novel Stochastic Search Technique

    NASA Technical Reports Server (NTRS)

    Englander, Arnold C.; Englander, Jacob A.

    2017-01-01

    Interplanetary trajectory optimization problems are highly complex and are characterized by a large number of decision variables and equality and inequality constraints as well as many locally optimal solutions. Stochastic global search techniques, coupled with a large-scale NLP solver, have been shown to solve such problems but are inadequately robust when the problem constraints become very complex. In this work, we present a novel search algorithm that takes advantage of the fact that equality constraints effectively collapse the solution space to lower dimensionality. This new approach walks the filament'' of feasibility to efficiently find the global optimal solution.

  18. Assessment of Masonry Buildings Subjected to Landslide-Induced Settlements: From Load Path Method to Evolutionary Optimization Method

    NASA Astrophysics Data System (ADS)

    Palmisano, Fabrizio; Elia, Angelo

    2017-10-01

    One of the main difficulties, when dealing with landslide structural vulnerability, is the diagnosis of the causes of crack patterns. This is also due to the excessive complexity of models based on classical structural mechanics that makes them inappropriate especially when there is the necessity to perform a rapid vulnerability assessment at the territorial scale. This is why, a new approach, based on a ‘simple model’ (i.e. the Load Path Method, LPM), has been proposed by Palmisano and Elia for the interpretation of the behaviour of masonry buildings subjected to landslide-induced settlements. However, the LPM is very useful for rapidly finding the 'most plausible solution' instead of the exact solution. To find the solution, optimization algorithms are necessary. In this scenario, this article aims to show how the Bidirectional Evolutionary Structural Optimization method by Huang and Xie, can be very useful to optimize the strut-and-tie models obtained by using the Load Path Method.

  19. Quantum Heterogeneous Computing for Satellite Positioning Optimization

    NASA Astrophysics Data System (ADS)

    Bass, G.; Kumar, V.; Dulny, J., III

    2016-12-01

    Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any field.

  20. Optimal control, optimization and asymptotic analysis of Purcell's microswimmer model

    NASA Astrophysics Data System (ADS)

    Wiezel, Oren; Or, Yizhar

    2016-11-01

    Purcell's swimmer (1977) is a classic model of a three-link microswimmer that moves by performing periodic shape changes. Becker et al. (2003) showed that the swimmer's direction of net motion is reversed upon increasing the stroke amplitude of joint angles. Tam and Hosoi (2007) used numerical optimization in order to find optimal gaits for maximizing either net displacement or Lighthill's energetic efficiency. In our work, we analytically derive leading-order expressions as well as next-order corrections for both net displacement and energetic efficiency of Purcell's microswimmer. Using these expressions enables us to explicitly show the reversal in direction of motion, as well as obtaining an estimate for the optimal stroke amplitude. We also find the optimal swimmer's geometry for maximizing either displacement or energetic efficiency. Additionally, the gait optimization problem is revisited and analytically formulated as an optimal control system with only two state variables, which can be solved using Pontryagin's maximum principle. It can be shown that the optimal solution must follow a "singular arc". Numerical solution of the boundary value problem is obtained, which exactly reproduces Tam and Hosoi's optimal gait.

  1. A hybrid binary particle swarm optimization for large capacitated multi item multi level lot sizing (CMIMLLS) problem

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Sahithi, V. V. D.; Rao, C. S. P.

    2016-09-01

    The lot sizing problem deals with finding optimal order quantities which minimizes the ordering and holding cost of product mix. when multiple items at multiple levels with all capacity restrictions are considered, the lot sizing problem become NP hard. Many heuristics were developed in the past have inevitably failed due to size, computational complexity and time. However the authors were successful in the development of PSO based technique namely iterative improvement binary particles swarm technique to address very large capacitated multi-item multi level lot sizing (CMIMLLS) problem. First binary particle Swarm Optimization algorithm is used to find a solution in a reasonable time and iterative improvement local search mechanism is employed to improvise the solution obtained by BPSO algorithm. This hybrid mechanism of using local search on the global solution is found to improve the quality of solutions with respect to time thus IIBPSO method is found best and show excellent results.

  2. OPTRAN- OPTIMAL LOW THRUST ORBIT TRANSFERS

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.

    1994-01-01

    OPTRAN is a collection of programs that solve the problem of optimal low thrust orbit transfers between non-coplanar circular orbits for spacecraft with chemical propulsion systems. The programs are set up to find Hohmann-type solutions, with burns near the perigee and apogee of the transfer orbit. They will solve both fairly long burn-arc transfers and "divided-burn" transfers. Program modeling includes a spherical earth gravity model and propulsion system models for either constant thrust or constant acceleration. The solutions obtained are optimal with respect to fuel use: i.e., final mass of the spacecraft is maximized with respect to the controls. The controls are the direction of thrust and the thrust on/off times. Two basic types of programs are provided in OPTRAN. The first type is for "exact solution" which results in complete, exact tkme-histories. The exact spacecraft position, velocity, and optimal thrust direction are given throughout the maneuver, as are the optimal thrust switch points, the transfer time, and the fuel costs. Exact solution programs are provided in two versions for non-coplanar transfers and in a fast version for coplanar transfers. The second basic type is for "approximate solutions" which results in approximate information on the transfer time and fuel costs. The approximate solution is used to estimate initial conditions for the exact solution. It can be used in divided-burn transfers to find the best number of burns with respect to time. The approximate solution is useful by itself in relatively efficient, short burn-arc transfers. These programs are written in FORTRAN 77 for batch execution and have been implemented on a DEC VAX series computer with the largest program having a central memory requirement of approximately 54K of 8 bit bytes. The OPTRAN program were developed in 1983.

  3. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification.

    PubMed

    Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan

    2017-07-01

    Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Maximizing algebraic connectivity in air transportation networks

    NASA Astrophysics Data System (ADS)

    Wei, Peng

    In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the weight assignment can not be studied separately for the problem with operating cost constraint. Therefore a relaxed SDP method with golden section search is developed to solve both at the same time. The cluster decomposition is utilized to solve large scale networks.

  5. Minimum deltaV Burn Planning for the International Space Station Using a Hybrid Optimization Technique, Level 1

    NASA Technical Reports Server (NTRS)

    Brown, Aaron J.

    2015-01-01

    The International Space Station's (ISS) trajectory is coordinated and executed by the Trajectory Operations and Planning (TOPO) group at NASA's Johnson Space Center. TOPO group personnel routinely generate look-ahead trajectories for the ISS that incorporate translation burns needed to maintain its orbit over the next three to twelve months. The burns are modeled as in-plane, horizontal burns, and must meet operational trajectory constraints imposed by both NASA and the Russian Space Agency. In generating these trajectories, TOPO personnel must determine the number of burns to model, each burn's Time of Ignition (TIG), and magnitude (i.e. deltaV) that meet these constraints. The current process for targeting these burns is manually intensive, and does not take advantage of more modern techniques that can reduce the workload needed to find feasible burn solutions, i.e. solutions that simply meet the constraints, or provide optimal burn solutions that minimize the total DeltaV while simultaneously meeting the constraints. A two-level, hybrid optimization technique is proposed to find both feasible and globally optimal burn solutions for ISS trajectory planning. For optimal solutions, the technique breaks the optimization problem into two distinct sub-problems, one for choosing the optimal number of burns and each burn's optimal TIG, and the other for computing the minimum total deltaV burn solution that satisfies the trajectory constraints. Each of the two aforementioned levels uses a different optimization algorithm to solve one of the sub-problems, giving rise to a hybrid technique. Level 2, or the outer level, uses a genetic algorithm to select the number of burns and each burn's TIG. Level 1, or the inner level, uses the burn TIGs from Level 2 in a sequential quadratic programming (SQP) algorithm to compute a minimum total deltaV burn solution subject to the trajectory constraints. The total deltaV from Level 1 is then used as a fitness function by the genetic algorithm in Level 2 to select the number of burns and their TIGs for the next generation. In this manner, the two levels solve their respective sub-problems separately but collaboratively until a burn solution is found that globally minimizes the deltaV across the entire trajectory. Feasible solutions can also be found by simply using the SQP algorithm in Level 1 with a zero cost function. This paper discusses the formulation of the Level 1 sub-problem and the development of a prototype software tool to solve it. The Level 2 sub-problem will be discussed in a future work. Following the Level 1 formulation and solution, several look-ahead trajectory examples for the ISS are explored. In each case, the burn targeting results using the current process are compared against a feasible solution found using Level 1 in the proposed technique. Level 1 is then used to find a minimum deltaV solution given the fixed number of burns and burn TIGs. The optimal solution is compared with the previously found feasible solution to determine the deltaV (and therefore propellant) savings. The proposed technique seeks to both improve the current process for targeting ISS burns, and to add the capability to optimize ISS burns in a novel fashion. The optimal solutions found using this technique can potentially save hundreds of kilograms of propellant over the course of the ISS mission compared to feasible solutions alone. While the software tool being developed to implement this technique is specific to ISS, the concept is extensible to other long-duration, central-body orbiting missions that must perform orbit maintenance burns to meet operational trajectory constraints.

  6. Optimal design of an alignment-free two-DOF rehabilitation robot for the shoulder complex.

    PubMed

    Galinski, Daniel; Sapin, Julien; Dehez, Bruno

    2013-06-01

    This paper presents the optimal design of an alignment-free exoskeleton for the rehabilitation of the shoulder complex. This robot structure is constituted of two actuated joints and is linked to the arm through passive degrees of freedom (DOFs) to drive the flexion-extension and abduction-adduction movements of the upper arm. The optimal design of this structure is performed through two steps. The first step is a multi-objective optimization process aiming to find the best parameters characterizing the robot and its position relative to the patient. The second step is a comparison process aiming to select the best solution from the optimization results on the basis of several criteria related to practical considerations. The optimal design process leads to a solution outperforming an existing solution on aspects as kinematics or ergonomics while being more simple.

  7. PDE Nozzle Optimization Using a Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Billings, Dana; Turner, James E. (Technical Monitor)

    2000-01-01

    Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.

  8. A novel method for overlapping community detection using Multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Morteza; Shahmoradi, Mohammad Reza; Heshmati, Zainabolhoda; Salehi, Mostafa

    2018-09-01

    The problem of community detection as one of the most important applications of network science can be addressed effectively by multi-objective optimization. In this paper, we aim to present a novel efficient method based on this approach. Also, in this study the idea of using all Pareto fronts to detect overlapping communities is introduced. The proposed method has two main advantages compared to other multi-objective optimization based approaches. The first advantage is scalability, and the second is the ability to find overlapping communities. Despite most of the works, the proposed method is able to find overlapping communities effectively. The new algorithm works by extracting appropriate communities from all the Pareto optimal solutions, instead of choosing the one optimal solution. Empirical experiments on different features of separated and overlapping communities, on both synthetic and real networks show that the proposed method performs better in comparison with other methods.

  9. Design Tool Using a New Optimization Method Based on a Stochastic Process

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroaki; Yamaguchi, Katsuhito; Ishikawa, Yoshio

    Conventional optimization methods are based on a deterministic approach since their purpose is to find out an exact solution. However, such methods have initial condition dependence and the risk of falling into local solution. In this paper, we propose a new optimization method based on the concept of path integrals used in quantum mechanics. The method obtains a solution as an expected value (stochastic average) using a stochastic process. The advantages of this method are that it is not affected by initial conditions and does not require techniques based on experiences. We applied the new optimization method to a hang glider design. In this problem, both the hang glider design and its flight trajectory were optimized. The numerical calculation results prove that performance of the method is sufficient for practical use.

  10. Symmetry Analysis and Exact Solutions of the 2D Unsteady Incompressible Boundary-Layer Equations

    NASA Astrophysics Data System (ADS)

    Han, Zhong; Chen, Yong

    2017-01-01

    To find intrinsically different symmetry reductions and inequivalent group invariant solutions of the 2D unsteady incompressible boundary-layer equations, a two-dimensional optimal system is constructed which attributed to the classification of the corresponding Lie subalgebras. The comprehensiveness and inequivalence of the optimal system are shown clearly under different values of invariants. Then by virtue of the optimal system obtained, the boundary-layer equations are directly reduced to a system of ordinary differential equations (ODEs) by only one step. It has been shown that not only do we recover many of the known results but also find some new reductions and explicit solutions, which may be previously unknown. Supported by the Global Change Research Program of China under Grant No. 2015CB953904, National Natural Science Foundation of China under Grant Nos. 11275072, 11435005, 11675054, and Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No. ZF1213

  11. Optimizing energy growth as a tool for finding exact coherent structures

    NASA Astrophysics Data System (ADS)

    Olvera, D.; Kerswell, R. R.

    2017-08-01

    We discuss how searching for finite-amplitude disturbances of a given energy that maximize their subsequent energy growth after a certain later time T can be used to probe the phase space around a reference state and ultimately to find other nearby solutions. The procedure relies on the fact that of all the initial disturbances on a constant-energy hypersphere, the optimization procedure will naturally select the one that lies closest to the stable manifold of a nearby solution in phase space if T is large enough. Then, when in its subsequent evolution the optimal disturbance transiently approaches the new solution, a flow state at this point can be used as an initial guess to converge the solution to machine precision. We illustrate this approach in plane Couette flow by rediscovering the spanwise-localized "snake" solutions of Schneider et al. [Phys. Rev. Lett. 104, 104501 (2010), 10.1103/PhysRevLett.104.104501], probing phase space at very low Reynolds numbers (less than 127.7 ) where the constant-shear solution is believed to be the global attractor and examining how the edge between laminar and turbulent flow evolves when stable stratification eliminates the turbulence. We also show that the steady snake solution smoothly delocalizes as unstable stratification is gradually turned on until it connects (via an intermediary global three-dimensional solution) to two-dimensional Rayleigh-Bénard roll solutions.

  12. Combining constraint satisfaction and local improvement algorithms to construct anaesthetists' rotas

    NASA Technical Reports Server (NTRS)

    Smith, Barbara M.; Bennett, Sean

    1992-01-01

    A system is described which was built to compile weekly rotas for the anaesthetists in a large hospital. The rota compilation problem is an optimization problem (the number of tasks which cannot be assigned to an anaesthetist must be minimized) and was formulated as a constraint satisfaction problem (CSP). The forward checking algorithm is used to find a feasible rota, but because of the size of the problem, it cannot find an optimal (or even a good enough) solution in an acceptable time. Instead, an algorithm was devised which makes local improvements to a feasible solution. The algorithm makes use of the constraints as expressed in the CSP to ensure that feasibility is maintained, and produces very good rotas which are being used by the hospital involved in the project. It is argued that formulation as a constraint satisfaction problem may be a good approach to solving discrete optimization problems, even if the resulting CSP is too large to be solved exactly in an acceptable time. A CSP algorithm may be able to produce a feasible solution which can then be improved, giving a good, if not provably optimal, solution.

  13. Ranked solutions to a class of combinatorial optimizations—with applications in mass spectrometry based peptide sequencing and a variant of directed paths in random media

    NASA Astrophysics Data System (ADS)

    Doerr, Timothy P.; Alves, Gelio; Yu, Yi-Kuo

    2005-08-01

    Typical combinatorial optimizations are NP-hard; however, for a particular class of cost functions the corresponding combinatorial optimizations can be solved in polynomial time using the transfer matrix technique or, equivalently, the dynamic programming approach. This suggests a way to efficiently find approximate solutions-find a transformation that makes the cost function as similar as possible to that of the solvable class. After keeping many high-ranking solutions using the approximate cost function, one may then re-assess these solutions with the full cost function to find the best approximate solution. Under this approach, it is important to be able to assess the quality of the solutions obtained, e.g., by finding the true ranking of the kth best approximate solution when all possible solutions are considered exhaustively. To tackle this statistical issue, we provide a systematic method starting with a scaling function generated from the finite number of high-ranking solutions followed by a convergent iterative mapping. This method, useful in a variant of the directed paths in random media problem proposed here, can also provide a statistical significance assessment for one of the most important proteomic tasks-peptide sequencing using tandem mass spectrometry data. For directed paths in random media, the scaling function depends on the particular realization of randomness; in the mass spectrometry case, the scaling function is spectrum-specific.

  14. Multiobjective optimization in a pseudometric objective space as applied to a general model of business activities

    NASA Astrophysics Data System (ADS)

    Khachaturov, R. V.

    2016-09-01

    It is shown that finding the equivalence set for solving multiobjective discrete optimization problems is advantageous over finding the set of Pareto optimal decisions. An example of a set of key parameters characterizing the economic efficiency of a commercial firm is proposed, and a mathematical model of its activities is constructed. In contrast to the classical problem of finding the maximum profit for any business, this study deals with a multiobjective optimization problem. A method for solving inverse multiobjective problems in a multidimensional pseudometric space is proposed for finding the best project of firm's activities. The solution of a particular problem of this type is presented.

  15. The Tool for Designing Engineering Systems Using a New Optimization Method Based on a Stochastic Process

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroaki; Yamaguchi, Katsuhito; Ishikawa, Yoshio

    The conventional optimization methods were based on a deterministic approach, since their purpose is to find out an exact solution. However, these methods have initial condition dependence and risk of falling into local solution. In this paper, we propose a new optimization method based on a concept of path integral method used in quantum mechanics. The method obtains a solutions as an expected value (stochastic average) using a stochastic process. The advantages of this method are not to be affected by initial conditions and not to need techniques based on experiences. We applied the new optimization method to a design of the hang glider. In this problem, not only the hang glider design but also its flight trajectory were optimized. The numerical calculation results showed that the method has a sufficient performance.

  16. Towards improving searches for optimal phylogenies.

    PubMed

    Ford, Eric; St John, Katherine; Wheeler, Ward C

    2015-01-01

    Finding the optimal evolutionary history for a set of taxa is a challenging computational problem, even when restricting possible solutions to be "tree-like" and focusing on the maximum-parsimony optimality criterion. This has led to much work on using heuristic tree searches to find approximate solutions. We present an approach for finding exact optimal solutions that employs and complements the current heuristic methods for finding optimal trees. Given a set of taxa and a set of aligned sequences of characters, there may be subsets of characters that are compatible, and for each such subset there is an associated (possibly partially resolved) phylogeny with edges corresponding to each character state change. These perfect phylogenies serve as anchor trees for our constrained search space. We show that, for sequences with compatible sites, the parsimony score of any tree [Formula: see text] is at least the parsimony score of the anchor trees plus the number of inferred changes between [Formula: see text] and the anchor trees. As the maximum-parsimony optimality score is additive, the sum of the lower bounds on compatible character partitions provides a lower bound on the complete alignment of characters. This yields a region in the space of trees within which the best tree is guaranteed to be found; limiting the search for the optimal tree to this region can significantly reduce the number of trees that must be examined in a search of the space of trees. We analyze this method empirically using four different biological data sets as well as surveying 400 data sets from the TreeBASE repository, demonstrating the effectiveness of our technique in reducing the number of steps in exact heuristic searches for trees under the maximum-parsimony optimality criterion. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Automatic design of synthetic gene circuits through mixed integer non-linear programming.

    PubMed

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.

  18. Global optimization methods for engineering design

    NASA Technical Reports Server (NTRS)

    Arora, Jasbir S.

    1990-01-01

    The problem is to find a global minimum for the Problem P. Necessary and sufficient conditions are available for local optimality. However, global solution can be assured only under the assumption of convexity of the problem. If the constraint set S is compact and the cost function is continuous on it, existence of a global minimum is guaranteed. However, in view of the fact that no global optimality conditions are available, a global solution can be found only by an exhaustive search to satisfy Inequality. The exhaustive search can be organized in such a way that the entire design space need not be searched for the solution. This way the computational burden is reduced somewhat. It is concluded that zooming algorithm for global optimizations appears to be a good alternative to stochastic methods. More testing is needed; a general, robust, and efficient local minimizer is required. IDESIGN was used in all numerical calculations which is based on a sequential quadratic programming algorithm, and since feasible set keeps on shrinking, a good algorithm to find an initial feasible point is required. Such algorithms need to be developed and evaluated.

  19. Discrete particle swarm optimization to solve multi-objective limited-wait hybrid flow shop scheduling problem

    NASA Astrophysics Data System (ADS)

    Santosa, B.; Siswanto, N.; Fiqihesa

    2018-04-01

    This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution

  20. Efficient QoS-aware Service Composition

    NASA Astrophysics Data System (ADS)

    Alrifai, Mohammad; Risse, Thomas

    Web service composition requests are usually combined with endto-end QoS requirements, which are specified in terms of non-functional properties (e.g. response time, throughput and price). The goal of QoS-aware service composition is to find the best combination of services such that their aggregated QoS values meet these end-to-end requirements. Local selection techniques are very efficient but fail short in handling global QoS constraints. Global optimization techniques, on the other hand, can handle global constraints, but their poor performance render them inappropriate for applications with dynamic and real-time requirements. In this paper we address this problem and propose a solution that combines global optimization with local selection techniques for achieving a better performance. The proposed solution consists of two steps: first we use mixed integer linear programming (MILP) to find the optimal decomposition of global QoS constraints into local constraints. Second, we use local search to find the best web services that satisfy these local constraints. Unlike existing MILP-based global planning solutions, the size of the MILP model in our case is much smaller and independent on the number of available services, yields faster computation and more scalability. Preliminary experiments have been conducted to evaluate the performance of the proposed solution.

  1. The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization.

    PubMed

    Błażej, Paweł; Wnȩtrzak, Małgorzata; Mackiewicz, Paweł

    2016-12-01

    One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure minimize the costs about 2.7 times better than the canonical genetic code. Interestingly, the optimal codes are dominated by amino acids characterized by polarity close to its average value for all amino acids. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Parameterized Algorithmics for Finding Exact Solutions of NP-Hard Biological Problems.

    PubMed

    Hüffner, Falk; Komusiewicz, Christian; Niedermeier, Rolf; Wernicke, Sebastian

    2017-01-01

    Fixed-parameter algorithms are designed to efficiently find optimal solutions to some computationally hard (NP-hard) problems by identifying and exploiting "small" problem-specific parameters. We survey practical techniques to develop such algorithms. Each technique is introduced and supported by case studies of applications to biological problems, with additional pointers to experimental results.

  3. Perspective: Stochastic magnetic devices for cognitive computing

    NASA Astrophysics Data System (ADS)

    Roy, Kaushik; Sengupta, Abhronil; Shim, Yong

    2018-06-01

    Stochastic switching of nanomagnets can potentially enable probabilistic cognitive hardware consisting of noisy neural and synaptic components. Furthermore, computational paradigms inspired from the Ising computing model require stochasticity for achieving near-optimality in solutions to various types of combinatorial optimization problems such as the Graph Coloring Problem or the Travelling Salesman Problem. Achieving optimal solutions in such problems are computationally exhaustive and requires natural annealing to arrive at the near-optimal solutions. Stochastic switching of devices also finds use in applications involving Deep Belief Networks and Bayesian Inference. In this article, we provide a multi-disciplinary perspective across the stack of devices, circuits, and algorithms to illustrate how the stochastic switching dynamics of spintronic devices in the presence of thermal noise can provide a direct mapping to the computational units of such probabilistic intelligent systems.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Lenhart, S.M.

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less

  5. Design and implementation of intelligent electronic warfare decision making algorithm

    NASA Astrophysics Data System (ADS)

    Peng, Hsin-Hsien; Chen, Chang-Kuo; Hsueh, Chi-Shun

    2017-05-01

    Electromagnetic signals and the requirements of timely response have been a rapid growth in modern electronic warfare. Although jammers are limited resources, it is possible to achieve the best electronic warfare efficiency by tactical decisions. This paper proposes the intelligent electronic warfare decision support system. In this work, we develop a novel hybrid algorithm, Digital Pheromone Particle Swarm Optimization, based on Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Shuffled Frog Leaping Algorithm (SFLA). We use PSO to solve the problem and combine the concept of pheromones in ACO to accumulate more useful information in spatial solving process and speed up finding the optimal solution. The proposed algorithm finds the optimal solution in reasonable computation time by using the method of matrix conversion in SFLA. The results indicated that jammer allocation was more effective. The system based on the hybrid algorithm provides electronic warfare commanders with critical information to assist commanders in effectively managing the complex electromagnetic battlefield.

  6. Hierarchical optimal control of large-scale nonlinear chemical processes.

    PubMed

    Ramezani, Mohammad Hossein; Sadati, Nasser

    2009-01-01

    In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.

  7. Time optimal paths for high speed maneuvering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Lenhart, S.M.

    1993-01-01

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less

  8. Integrated Network Decompositions and Dynamic Programming for Graph Optimization (INDDGO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The INDDGO software package offers a set of tools for finding exact solutions to graph optimization problems via tree decompositions and dynamic programming algorithms. Currently the framework offers serial and parallel (distributed memory) algorithms for finding tree decompositions and solving the maximum weighted independent set problem. The parallel dynamic programming algorithm is implemented on top of the MADNESS task-based runtime.

  9. OPTIMIZING THROUGH CO-EVOLUTIONARY AVALANCHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. BOETTCHER; A. PERCUS

    2000-08-01

    We explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problems. The method, called extremal optimization, is inspired by ''self-organized critically,'' a concept introduced to describe emergent complexity in many physical systems. In contrast to Genetic Algorithms which operate on an entire ''gene-pool'' of possible solutions, extremal optimization successively replaces extremely undesirable elements of a sub-optimal solution with new, random ones. Large fluctuations, called ''avalanches,'' ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements approximation methods inspired by equilibrium statistical physics, such as simulated annealing. With only onemore » adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Those phase transitions are found in the parameter space of most optimization problems, and have recently been conjectured to be the origin of some of the hardest instances in computational complexity. We will demonstrate how extremal optimization can be implemented for a variety of combinatorial optimization problems. We believe that extremal optimization will be a useful tool in the investigation of phase transitions in combinatorial optimization problems, hence valuable in elucidating the origin of computational complexity.« less

  10. A Multiuser Manufacturing Resource Service Composition Method Based on the Bees Algorithm

    PubMed Central

    Xie, Yongquan; Zhou, Zude; Pham, Duc Truong; Xu, Wenjun; Ji, Chunqian

    2015-01-01

    In order to realize an optimal resource service allocation in current open and service-oriented manufacturing model, multiuser resource service composition (RSC) is modeled as a combinational and constrained multiobjective problem. The model takes into account both subjective and objective quality of service (QoS) properties as representatives to evaluate a solution. The QoS properties aggregation and evaluation techniques are based on existing researches. The basic Bees Algorithm is tailored for finding a near optimal solution to the model, since the basic version is only proposed to find a desired solution in continuous domain and thus not suitable for solving the problem modeled in our study. Particular rules are designed for handling the constraints and finding Pareto optimality. In addition, the established model introduces a trusted service set to each user so that the algorithm could start by searching in the neighbor of more reliable service chains (known as seeds) than those randomly generated. The advantages of these techniques are validated by experiments in terms of success rate, searching speed, ability of avoiding ingenuity, and so forth. The results demonstrate the effectiveness of the proposed method in handling multiuser RSC problems. PMID:26339232

  11. Honey Bees Inspired Optimization Method: The Bees Algorithm.

    PubMed

    Yuce, Baris; Packianather, Michael S; Mastrocinque, Ernesto; Pham, Duc Truong; Lambiase, Alfredo

    2013-11-06

    Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.

  12. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem

    PubMed Central

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585

  13. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem.

    PubMed

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.

  14. Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks

    NASA Astrophysics Data System (ADS)

    Niknam, Taher; Kavousifard, Abdollah; Tabatabaei, Sajad; Aghaei, Jamshid

    2011-10-01

    In this paper a new multiobjective modified honey bee mating optimization (MHBMO) algorithm is presented to investigate the distribution feeder reconfiguration (DFR) problem considering renewable energy sources (RESs) (photovoltaics, fuel cell and wind energy) connected to the distribution network. The objective functions of the problem to be minimized are the electrical active power losses, the voltage deviations, the total electrical energy costs and the total emissions of RESs and substations. During the optimization process, the proposed algorithm finds a set of non-dominated (Pareto) optimal solutions which are stored in an external memory called repository. Since the objective functions investigated are not the same, a fuzzy clustering algorithm is utilized to handle the size of the repository in the specified limits. Moreover, a fuzzy-based decision maker is adopted to select the 'best' compromised solution among the non-dominated optimal solutions of multiobjective optimization problem. In order to see the feasibility and effectiveness of the proposed algorithm, two standard distribution test systems are used as case studies.

  15. Exploring the quantum speed limit with computer games

    NASA Astrophysics Data System (ADS)

    Sørensen, Jens Jakob W. H.; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F.

    2016-04-01

    Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. ‘Gamification’—the application of game elements in a non-game context—is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.

  16. Exploring the quantum speed limit with computer games.

    PubMed

    Sørensen, Jens Jakob W H; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F

    2016-04-14

    Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. 'Gamification'--the application of game elements in a non-game context--is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.

  17. Species tree inference by minimizing deep coalescences.

    PubMed

    Than, Cuong; Nakhleh, Luay

    2009-09-01

    In a 1997 seminal paper, W. Maddison proposed minimizing deep coalescences, or MDC, as an optimization criterion for inferring the species tree from a set of incongruent gene trees, assuming the incongruence is exclusively due to lineage sorting. In a subsequent paper, Maddison and Knowles provided and implemented a search heuristic for optimizing the MDC criterion, given a set of gene trees. However, the heuristic is not guaranteed to compute optimal solutions, and its hill-climbing search makes it slow in practice. In this paper, we provide two exact solutions to the problem of inferring the species tree from a set of gene trees under the MDC criterion. In other words, our solutions are guaranteed to find the tree that minimizes the total number of deep coalescences from a set of gene trees. One solution is based on a novel integer linear programming (ILP) formulation, and another is based on a simple dynamic programming (DP) approach. Powerful ILP solvers, such as CPLEX, make the first solution appealing, particularly for very large-scale instances of the problem, whereas the DP-based solution eliminates dependence on proprietary tools, and its simplicity makes it easy to integrate with other genomic events that may cause gene tree incongruence. Using the exact solutions, we analyze a data set of 106 loci from eight yeast species, a data set of 268 loci from eight Apicomplexan species, and several simulated data sets. We show that the MDC criterion provides very accurate estimates of the species tree topologies, and that our solutions are very fast, thus allowing for the accurate analysis of genome-scale data sets. Further, the efficiency of the solutions allow for quick exploration of sub-optimal solutions, which is important for a parsimony-based criterion such as MDC, as we show. We show that searching for the species tree in the compatibility graph of the clusters induced by the gene trees may be sufficient in practice, a finding that helps ameliorate the computational requirements of optimization solutions. Further, we study the statistical consistency and convergence rate of the MDC criterion, as well as its optimality in inferring the species tree. Finally, we show how our solutions can be used to identify potential horizontal gene transfer events that may have caused some of the incongruence in the data, thus augmenting Maddison's original framework. We have implemented our solutions in the PhyloNet software package, which is freely available at: http://bioinfo.cs.rice.edu/phylonet.

  18. Neural dynamic programming and its application to control systems

    NASA Astrophysics Data System (ADS)

    Seong, Chang-Yun

    There are few general practical feedback control methods for nonlinear MIMO (multi-input-multi-output) systems, although such methods exist for their linear counterparts. Neural Dynamic Programming (NDP) is proposed as a practical design method of optimal feedback controllers for nonlinear MIMO systems. NDP is an offspring of both neural networks and optimal control theory. In optimal control theory, the optimal solution to any nonlinear MIMO control problem may be obtained from the Hamilton-Jacobi-Bellman equation (HJB) or the Euler-Lagrange equations (EL). The two sets of equations provide the same solution in different forms: EL leads to a sequence of optimal control vectors, called Feedforward Optimal Control (FOC); HJB yields a nonlinear optimal feedback controller, called Dynamic Programming (DP). DP produces an optimal solution that can reject disturbances and uncertainties as a result of feedback. Unfortunately, computation and storage requirements associated with DP solutions can be problematic, especially for high-order nonlinear systems. This dissertation presents an approximate technique for solving the DP problem based on neural network techniques that provides many of the performance benefits (e.g., optimality and feedback) of DP and benefits from the numerical properties of neural networks. We formulate neural networks to approximate optimal feedback solutions whose existence DP justifies. We show the conditions under which NDP closely approximates the optimal solution. Finally, we introduce the learning operator characterizing the learning process of the neural network in searching the optimal solution. The analysis of the learning operator provides not only a fundamental understanding of the learning process in neural networks but also useful guidelines for selecting the number of weights of the neural network. As a result, NDP finds---with a reasonable amount of computation and storage---the optimal feedback solutions to nonlinear MIMO control problems that would be very difficult to solve with DP. NDP was demonstrated on several applications such as the lateral autopilot logic for a Boeing 747, the minimum fuel control of a double-integrator plant with bounded control, the backward steering of a two-trailer truck, and the set-point control of a two-link robot arm.

  19. Distributed Generation Planning using Peer Enhanced Multi-objective Teaching-Learning based Optimization in Distribution Networks

    NASA Astrophysics Data System (ADS)

    Selvam, Kayalvizhi; Vinod Kumar, D. M.; Siripuram, Ramakanth

    2017-04-01

    In this paper, an optimization technique called peer enhanced teaching learning based optimization (PeTLBO) algorithm is used in multi-objective problem domain. The PeTLBO algorithm is parameter less so it reduced the computational burden. The proposed peer enhanced multi-objective based TLBO (PeMOTLBO) algorithm has been utilized to find a set of non-dominated optimal solutions [distributed generation (DG) location and sizing in distribution network]. The objectives considered are: real power loss and the voltage deviation subjected to voltage limits and maximum penetration level of DG in distribution network. Since the DG considered is capable of injecting real and reactive power to the distribution network the power factor is considered as 0.85 lead. The proposed peer enhanced multi-objective optimization technique provides different trade-off solutions in order to find the best compromise solution a fuzzy set theory approach has been used. The effectiveness of this proposed PeMOTLBO is tested on IEEE 33-bus and Indian 85-bus distribution system. The performance is validated with Pareto fronts and two performance metrics (C-metric and S-metric) by comparing with robust multi-objective technique called non-dominated sorting genetic algorithm-II and also with the basic TLBO.

  20. Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming

    PubMed Central

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398

  1. Generating subtour elimination constraints for the TSP from pure integer solutions.

    PubMed

    Pferschy, Ulrich; Staněk, Rostislav

    2017-01-01

    The traveling salesman problem ( TSP ) is one of the most prominent combinatorial optimization problems. Given a complete graph [Formula: see text] and non-negative distances d for every edge, the TSP asks for a shortest tour through all vertices with respect to the distances d. The method of choice for solving the TSP to optimality is a branch and cut approach . Usually the integrality constraints are relaxed first and all separation processes to identify violated inequalities are done on fractional solutions . In our approach we try to exploit the impressive performance of current ILP-solvers and work only with integer solutions without ever interfering with fractional solutions. We stick to a very simple ILP-model and relax the subtour elimination constraints only. The resulting problem is solved to integer optimality, violated constraints (which are trivial to find) are added and the process is repeated until a feasible solution is found. In order to speed up the algorithm we pursue several attempts to find as many relevant subtours as possible. These attempts are based on the clustering of vertices with additional insights gained from empirical observations and random graph theory. Computational results are performed on test instances taken from the TSPLIB95 and on random Euclidean graphs .

  2. Considering Decision Variable Diversity in Multi-Objective Optimization: Application in Hydrologic Model Calibration

    NASA Astrophysics Data System (ADS)

    Sahraei, S.; Asadzadeh, M.

    2017-12-01

    Any modern multi-objective global optimization algorithm should be able to archive a well-distributed set of solutions. While the solution diversity in the objective space has been explored extensively in the literature, little attention has been given to the solution diversity in the decision space. Selection metrics such as the hypervolume contribution and crowding distance calculated in the objective space would guide the search toward solutions that are well-distributed across the objective space. In this study, the diversity of solutions in the decision-space is used as the main selection criteria beside the dominance check in multi-objective optimization. To this end, currently archived solutions are clustered in the decision space and the ones in less crowded clusters are given more chance to be selected for generating new solution. The proposed approach is first tested on benchmark mathematical test problems. Second, it is applied to a hydrologic model calibration problem with more than three objective functions. Results show that the chance of finding more sparse set of high-quality solutions increases, and therefore the analyst would receive a well-diverse set of options with maximum amount of information. Pareto Archived-Dynamically Dimensioned Search, which is an efficient and parsimonious multi-objective optimization algorithm for model calibration, is utilized in this study.

  3. Optimizing highly noncoplanar VMAT trajectories: the NoVo method.

    PubMed

    Langhans, Marco; Unkelbach, Jan; Bortfeld, Thomas; Craft, David

    2018-01-16

    We introduce a new method called NoVo (Noncoplanar VMAT Optimization) to produce volumetric modulated arc therapy (VMAT) treatment plans with noncoplanar trajectories. While the use of noncoplanar beam arrangements for intensity modulated radiation therapy (IMRT), and in particular high fraction stereotactic radiosurgery (SRS), is common, noncoplanar beam trajectories for VMAT are less common as the availability of treatment machines handling these is limited. For both IMRT and VMAT, the beam angle selection problem is highly nonconvex in nature, which is why automated beam angle selection procedures have not entered mainstream clinical usage. NoVo determines a noncoplanar VMAT solution (i.e. the simultaneous trajectories of the gantry and the couch) by first computing a [Formula: see text] solution (beams from every possible direction, suitably discretized) and then eliminating beams by examing fluence contributions. Also all beam angles are scored via geometrical considerations only to find out the usefulness of the whole beam space in a very short time. A custom path finding algorithm is applied to find an optimized, continuous trajectory through the most promising beam angles using the calculated score of the beam space. Finally, using this trajectory a VMAT plan is optimized. For three clinical cases, a lung, brain, and liver case, we compare NoVo to the ideal [Formula: see text] solution, nine beam noncoplanar IMRT, coplanar VMAT, and a recently published noncoplanar VMAT algorithm. NoVo comes closest to the [Formula: see text] solution considering the lung case (brain and liver case: second), as well as improving the solution time by using geometrical considerations, followed by a time effective iterative process reducing the [Formula: see text] solution. Compared to a recently published noncoplanar VMAT algorithm, using NoVo the computation time is reduced by a factor of 2-3 (depending on the case). Compared to coplanar VMAT, NoVo reduces the objective function value by 24%, 49% and 6% for the lung, brain and liver cases, respectively.

  4. Optimizing highly noncoplanar VMAT trajectories: the NoVo method

    NASA Astrophysics Data System (ADS)

    Langhans, Marco; Unkelbach, Jan; Bortfeld, Thomas; Craft, David

    2018-01-01

    We introduce a new method called NoVo (Noncoplanar VMAT Optimization) to produce volumetric modulated arc therapy (VMAT) treatment plans with noncoplanar trajectories. While the use of noncoplanar beam arrangements for intensity modulated radiation therapy (IMRT), and in particular high fraction stereotactic radiosurgery (SRS), is common, noncoplanar beam trajectories for VMAT are less common as the availability of treatment machines handling these is limited. For both IMRT and VMAT, the beam angle selection problem is highly nonconvex in nature, which is why automated beam angle selection procedures have not entered mainstream clinical usage. NoVo determines a noncoplanar VMAT solution (i.e. the simultaneous trajectories of the gantry and the couch) by first computing a 4π solution (beams from every possible direction, suitably discretized) and then eliminating beams by examing fluence contributions. Also all beam angles are scored via geometrical considerations only to find out the usefulness of the whole beam space in a very short time. A custom path finding algorithm is applied to find an optimized, continuous trajectory through the most promising beam angles using the calculated score of the beam space. Finally, using this trajectory a VMAT plan is optimized. For three clinical cases, a lung, brain, and liver case, we compare NoVo to the ideal 4π solution, nine beam noncoplanar IMRT, coplanar VMAT, and a recently published noncoplanar VMAT algorithm. NoVo comes closest to the 4π solution considering the lung case (brain and liver case: second), as well as improving the solution time by using geometrical considerations, followed by a time effective iterative process reducing the 4π solution. Compared to a recently published noncoplanar VMAT algorithm, using NoVo the computation time is reduced by a factor of 2-3 (depending on the case). Compared to coplanar VMAT, NoVo reduces the objective function value by 24%, 49% and 6% for the lung, brain and liver cases, respectively.

  5. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.

    PubMed

    Klamt, Steffen; Müller, Stefan; Regensburger, Georg; Zanghellini, Jürgen

    2018-05-01

    The optimization of metabolic rates (as linear objective functions) represents the methodical core of flux-balance analysis techniques which have become a standard tool for the study of genome-scale metabolic models. Besides (growth and synthesis) rates, metabolic yields are key parameters for the characterization of biochemical transformation processes, especially in the context of biotechnological applications. However, yields are ratios of rates, and hence the optimization of yields (as nonlinear objective functions) under arbitrary linear constraints is not possible with current flux-balance analysis techniques. Despite the fundamental importance of yields in constraint-based modeling, a comprehensive mathematical framework for yield optimization is still missing. We present a mathematical theory that allows one to systematically compute and analyze yield-optimal solutions of metabolic models under arbitrary linear constraints. In particular, we formulate yield optimization as a linear-fractional program. For practical computations, we transform the linear-fractional yield optimization problem to a (higher-dimensional) linear problem. Its solutions determine the solutions of the original problem and can be used to predict yield-optimal flux distributions in genome-scale metabolic models. For the theoretical analysis, we consider the linear-fractional problem directly. Most importantly, we show that the yield-optimal solution set (like the rate-optimal solution set) is determined by (yield-optimal) elementary flux vectors of the underlying metabolic model. However, yield- and rate-optimal solutions may differ from each other, and hence optimal (biomass or product) yields are not necessarily obtained at solutions with optimal (growth or synthesis) rates. Moreover, we discuss phase planes/production envelopes and yield spaces, in particular, we prove that yield spaces are convex and provide algorithms for their computation. We illustrate our findings by a small example and demonstrate their relevance for metabolic engineering with realistic models of E. coli. We develop a comprehensive mathematical framework for yield optimization in metabolic models. Our theory is particularly useful for the study and rational modification of cell factories designed under given yield and/or rate requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Replica approach to mean-variance portfolio optimization

    NASA Astrophysics Data System (ADS)

    Varga-Haszonits, Istvan; Caccioli, Fabio; Kondor, Imre

    2016-12-01

    We consider the problem of mean-variance portfolio optimization for a generic covariance matrix subject to the budget constraint and the constraint for the expected return, with the application of the replica method borrowed from the statistical physics of disordered systems. We find that the replica symmetry of the solution does not need to be assumed, but emerges as the unique solution of the optimization problem. We also check the stability of this solution and find that the eigenvalues of the Hessian are positive for r  =  N/T  <  1, where N is the dimension of the portfolio and T the length of the time series used to estimate the covariance matrix. At the critical point r  =  1 a phase transition is taking place. The out of sample estimation error blows up at this point as 1/(1  -  r), independently of the covariance matrix or the expected return, displaying the universality not only of the critical exponent, but also the critical point. As a conspicuous illustration of the dangers of in-sample estimates, the optimal in-sample variance is found to vanish at the critical point inversely proportional to the divergent estimation error.

  7. Optimal recombination in genetic algorithms for flowshop scheduling problems

    NASA Astrophysics Data System (ADS)

    Kovalenko, Julia

    2016-10-01

    The optimal recombination problem consists in finding the best possible offspring as a result of a recombination operator in a genetic algorithm, given two parent solutions. We prove NP-hardness of the optimal recombination for various variants of the flowshop scheduling problem with makespan criterion and criterion of maximum lateness. An algorithm for solving the optimal recombination problem for permutation flowshop problems is built, using enumeration of prefect matchings in a special bipartite graph. The algorithm is adopted for the classical flowshop scheduling problem and for the no-wait flowshop problem. It is shown that the optimal recombination problem for the permutation flowshop scheduling problem is solvable in polynomial time for almost all pairs of parent solutions as the number of jobs tends to infinity.

  8. New methods versus the smart application of existing tools in the design of water distribution network

    NASA Astrophysics Data System (ADS)

    Cisty, Milan; Bajtek, Zbynek; Celar, Lubomir; Soldanova, Veronika

    2017-04-01

    Finding effective ways to build irrigation systems which meet irrigation demands and also achieve positive environmental and economic outcomes requires, among other activities, the development of new modelling tools. Due to the high costs associated with the necessary material and the installation of an irrigation water distribution system (WDS), it is essential to optimize the design of the WDS, while the hydraulic requirements (e.g., the required pressure on irrigation machines) of the network are gratified. In this work an optimal design of a water distribution network is proposed for large irrigation networks. In the present work, a multi-step optimization approach is proposed in such a way that the optimization is accomplished in two phases. In the first phase suboptimal solutions are searched for; in the second phase, the optimization problem is solved with a reduced search space based on these solutions, which significantly supports the finding of an optimal solution. The first phase of the optimization consists of several runs of the NSGA-II, which is applied in this phase by varying its parameters for every run, i.e., changing the population size, the number of generations, and the crossover and mutation parameters. This is done with the aim of obtaining different sub-optimal solutions which have a relatively low cost. These sub-optimal solutions are subsequently used in the second phase of the proposed methodology, in which the final optimization run is built on sub-optimal solutions from the previous phase. The purpose of the second phase is to improve the results of the first phase by searching through the reduced search space. The reduction is based on the minimum and maximum diameters for each pipe from all the networks from the first stage. In this phase, NSGA-II do not consider diameters which are outside of this range. After the NSGA-II second phase computations, the best result published so far for the Balerma benchmark network which was used for methodology testing was achieved in the presented work. The knowledge gained from these computational experiments lies not in offering a new advanced heuristic or hybrid optimization methods of a water distribution network, but in the fact that it is possible to obtain very good results with simple, known methods if they are properly used methodologically. ACKNOWLEDGEMENT This work was supported by the Slovak Research and Development Agency under Contract No. APVV-15-0489 and by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences, Grant No. 1/0665/15.

  9. Introducing the MCHF/OVRP/SDMP: Multicapacitated/Heterogeneous Fleet/Open Vehicle Routing Problems with Split Deliveries and Multiproducts

    PubMed Central

    Yilmaz Eroglu, Duygu; Caglar Gencosman, Burcu; Cavdur, Fatih; Ozmutlu, H. Cenk

    2014-01-01

    In this paper, we analyze a real-world OVRP problem for a production company. Considering real-world constrains, we classify our problem as multicapacitated/heterogeneous fleet/open vehicle routing problem with split deliveries and multiproduct (MCHF/OVRP/SDMP) which is a novel classification of an OVRP. We have developed a mixed integer programming (MIP) model for the problem and generated test problems in different size (10–90 customers) considering real-world parameters. Although MIP is able to find optimal solutions of small size (10 customers) problems, when the number of customers increases, the problem gets harder to solve, and thus MIP could not find optimal solutions for problems that contain more than 10 customers. Moreover, MIP fails to find any feasible solution of large-scale problems (50–90 customers) within time limits (7200 seconds). Therefore, we have developed a genetic algorithm (GA) based solution approach for large-scale problems. The experimental results show that the GA based approach reaches successful solutions with 9.66% gap in 392.8 s on average instead of 7200 s for the problems that contain 10–50 customers. For large-scale problems (50–90 customers), GA reaches feasible solutions of problems within time limits. In conclusion, for the real-world applications, GA is preferable rather than MIP to reach feasible solutions in short time periods. PMID:25045735

  10. Theory and computation of optimal low- and medium-thrust transfers

    NASA Technical Reports Server (NTRS)

    Chuang, C.-H.

    1994-01-01

    This report presents two numerical methods considered for the computation of fuel-optimal, low-thrust orbit transfers in large numbers of burns. The origins of these methods are observations made with the extremal solutions of transfers in small numbers of burns; there seems to exist a trend such that the longer the time allowed to perform an optimal transfer the less fuel that is used. These longer transfers are obviously of interest since they require a motor of low thrust; however, we also find a trend that the longer the time allowed to perform the optimal transfer the more burns are required to satisfy optimality. Unfortunately, this usually increases the difficulty of computation. Both of the methods described use small-numbered burn solutions to determine solutions in large numbers of burns. One method is a homotopy method that corrects for problems that arise when a solution requires a new burn or coast arc for optimality. The other method is to simply patch together long transfers from smaller ones. An orbit correction problem is solved to develop this method. This method may also lead to a good guidance law for transfer orbits with long transfer times.

  11. Replica Analysis for Portfolio Optimization with Single-Factor Model

    NASA Astrophysics Data System (ADS)

    Shinzato, Takashi

    2017-06-01

    In this paper, we use replica analysis to investigate the influence of correlation among the return rates of assets on the solution of the portfolio optimization problem. We consider the behavior of an optimal solution for the case where the return rate is described with a single-factor model and compare the findings obtained from our proposed methods with correlated return rates with those obtained with independent return rates. We then analytically assess the increase in the investment risk when correlation is included. Furthermore, we also compare our approach with analytical procedures for minimizing the investment risk from operations research.

  12. Fundamental resource-allocating model in colleges and universities based on Immune Clone Algorithms

    NASA Astrophysics Data System (ADS)

    Ye, Mengdie

    2017-05-01

    In this thesis we will seek the combination of antibodies and antigens converted from the optimal course arrangement and make an analogy with Immune Clone Algorithms. According to the character of the Algorithms, we apply clone, clone gene and clone selection to arrange courses. Clone operator can combine evolutionary search and random search, global search and local search. By cloning and clone mutating candidate solutions, we can find the global optimal solution quickly.

  13. Optimal Artificial Boundary Condition Configurations for Sensitivity-Based Model Updating and Damage Detection

    DTIC Science & Technology

    2010-09-01

    matrix is used in many methods, like Jacobi or Gauss Seidel , for solving linear systems. Also, no partial pivoting is necessary for a strictly column...problems that arise during the procedure, which in general, converges to the solving of a linear system. The most common issue with the solution is the... iterative procedure to find an appropriate subset of parameters that produce an optimal solution commonly known as forward selection. Then, the

  14. Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    Ruotsalainen, Henri; Miettinen, Kaisa; Palmgren, Jan-Erik; Lahtinen, Tapani

    2010-08-01

    In this paper, we present an anatomy-based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization (IMOO). In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other will suffer, and the solution is a compromise between them. IMOO is capable of handling multiple and strongly conflicting objectives in a convenient way. With the IMOO approach, a treatment planner's knowledge is used to direct the optimization process. Thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided, planning times can be shortened and the number of solutions to be calculated is small. Further, plan quality can be improved by finding advantageous trade-offs between the solutions. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans). When considering a simulation model of clinical 3D HDR brachytherapy, the number of variables is significantly smaller compared to IMRT, for example. Thus, when solving the model, the CPU time is relatively short. This makes it possible to exploit IMOO to solve a 3D HDR brachytherapy optimization problem. To demonstrate the advantages of IMOO, two clinical examples of optimizing a gynecologic cervix cancer treatment plan are presented.

  15. Efficient Optimization of Low-Thrust Spacecraft Trajectories

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Fink, Wolfgang; Russell, Ryan; Terrile, Richard; Petropoulos, Anastassios; vonAllmen, Paul

    2007-01-01

    A paper describes a computationally efficient method of optimizing trajectories of spacecraft driven by propulsion systems that generate low thrusts and, hence, must be operated for long times. A common goal in trajectory-optimization problems is to find minimum-time, minimum-fuel, or Pareto-optimal trajectories (here, Pareto-optimality signifies that no other solutions are superior with respect to both flight time and fuel consumption). The present method utilizes genetic and simulated-annealing algorithms to search for globally Pareto-optimal solutions. These algorithms are implemented in parallel form to reduce computation time. These algorithms are coupled with either of two traditional trajectory- design approaches called "direct" and "indirect." In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. The indirect approach involves the primer-vector theory (introduced in 1963), in which the thrust control problem is transformed into a co-state control problem and the initial values of the co-state vector are optimized. In application to two example orbit-transfer problems, this method was found to generate solutions comparable to those of other state-of-the-art trajectory-optimization methods while requiring much less computation time.

  16. Combining local search with co-evolution in a remarkably simple way

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettcher, S.; Percus, A.

    2000-05-01

    The authors explore a new general-purpose heuristic for finding high-quality solutions to hard optimization problem. The method, called extremal optimization, is inspired by self-organized criticality, a concept introduced to describe emergent complexity in physical systems. In contrast to genetic algorithms, which operate on an entire gene-pool of possible solutions, extremal optimization successively replaces extremely undesirable elements of a single sub-optimal solution with new, random ones. Large fluctuations, or avalanches, ensue that efficiently explore many local optima. Drawing upon models used to simulate far-from-equilibrium dynamics, extremal optimization complements heuristics inspired by equilibrium statistical physics, such as simulated annealing. With only onemore » adjustable parameter, its performance has proved competitive with more elaborate methods, especially near phase transitions. Phase transitions are found in many combinatorial optimization problems, and have been conjectured to occur in the region of parameter space containing the hardest instances. We demonstrate how extremal optimization can be implemented for a variety of hard optimization problems. We believe that this will be a useful tool in the investigation of phase transitions in combinatorial optimization, thereby helping to elucidate the origin of computational complexity.« less

  17. An optimal diagnostic strategy for finding malfunctioning components in systems

    NASA Technical Reports Server (NTRS)

    Wong, J. T.

    1983-01-01

    A solution to the following problem is presented: Given that an n-component functional system is down, it is required to find a malfunctioning component of the system such that the expected expenditure is minimum.

  18. Transcranial Electrical Neuromodulation Based on the Reciprocity Principle

    PubMed Central

    Fernández-Corazza, Mariano; Turovets, Sergei; Luu, Phan; Anderson, Erik; Tucker, Don

    2016-01-01

    A key challenge in multi-electrode transcranial electrical stimulation (TES) or transcranial direct current stimulation (tDCS) is to find a current injection pattern that delivers the necessary current density at a target and minimizes it in the rest of the head, which is mathematically modeled as an optimization problem. Such an optimization with the Least Squares (LS) or Linearly Constrained Minimum Variance (LCMV) algorithms is generally computationally expensive and requires multiple independent current sources. Based on the reciprocity principle in electroencephalography (EEG) and TES, it could be possible to find the optimal TES patterns quickly whenever the solution of the forward EEG problem is available for a brain region of interest. Here, we investigate the reciprocity principle as a guideline for finding optimal current injection patterns in TES that comply with safety constraints. We define four different trial cortical targets in a detailed seven-tissue finite element head model, and analyze the performance of the reciprocity family of TES methods in terms of electrode density, targeting error, focality, intensity, and directionality using the LS and LCMV solutions as the reference standards. It is found that the reciprocity algorithms show good performance comparable to the LCMV and LS solutions. Comparing the 128 and 256 electrode cases, we found that use of greater electrode density improves focality, directionality, and intensity parameters. The results show that reciprocity principle can be used to quickly determine optimal current injection patterns in TES and help to simplify TES protocols that are consistent with hardware and software availability and with safety constraints. PMID:27303311

  19. Transcranial Electrical Neuromodulation Based on the Reciprocity Principle.

    PubMed

    Fernández-Corazza, Mariano; Turovets, Sergei; Luu, Phan; Anderson, Erik; Tucker, Don

    2016-01-01

    A key challenge in multi-electrode transcranial electrical stimulation (TES) or transcranial direct current stimulation (tDCS) is to find a current injection pattern that delivers the necessary current density at a target and minimizes it in the rest of the head, which is mathematically modeled as an optimization problem. Such an optimization with the Least Squares (LS) or Linearly Constrained Minimum Variance (LCMV) algorithms is generally computationally expensive and requires multiple independent current sources. Based on the reciprocity principle in electroencephalography (EEG) and TES, it could be possible to find the optimal TES patterns quickly whenever the solution of the forward EEG problem is available for a brain region of interest. Here, we investigate the reciprocity principle as a guideline for finding optimal current injection patterns in TES that comply with safety constraints. We define four different trial cortical targets in a detailed seven-tissue finite element head model, and analyze the performance of the reciprocity family of TES methods in terms of electrode density, targeting error, focality, intensity, and directionality using the LS and LCMV solutions as the reference standards. It is found that the reciprocity algorithms show good performance comparable to the LCMV and LS solutions. Comparing the 128 and 256 electrode cases, we found that use of greater electrode density improves focality, directionality, and intensity parameters. The results show that reciprocity principle can be used to quickly determine optimal current injection patterns in TES and help to simplify TES protocols that are consistent with hardware and software availability and with safety constraints.

  20. Hybrid protection algorithms based on game theory in multi-domain optical networks

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Wu, Jingjing; Hou, Weigang; Liu, Yejun; Zhang, Lincong; Li, Hongming

    2011-12-01

    With the network size increasing, the optical backbone is divided into multiple domains and each domain has its own network operator and management policy. At the same time, the failures in optical network may lead to a huge data loss since each wavelength carries a lot of traffic. Therefore, the survivability in multi-domain optical network is very important. However, existing survivable algorithms can achieve only the unilateral optimization for profit of either users or network operators. Then, they cannot well find the double-win optimal solution with considering economic factors for both users and network operators. Thus, in this paper we develop the multi-domain network model with involving multiple Quality of Service (QoS) parameters. After presenting the link evaluation approach based on fuzzy mathematics, we propose the game model to find the optimal solution to maximize the user's utility, the network operator's utility, and the joint utility of user and network operator. Since the problem of finding double-win optimal solution is NP-complete, we propose two new hybrid protection algorithms, Intra-domain Sub-path Protection (ISP) algorithm and Inter-domain End-to-end Protection (IEP) algorithm. In ISP and IEP, the hybrid protection means that the intelligent algorithm based on Bacterial Colony Optimization (BCO) and the heuristic algorithm are used to solve the survivability in intra-domain routing and inter-domain routing, respectively. Simulation results show that ISP and IEP have the similar comprehensive utility. In addition, ISP has better resource utilization efficiency, lower blocking probability, and higher network operator's utility, while IEP has better user's utility.

  1. Discrete homotopy analysis for optimal trading execution with nonlinear transient market impact

    NASA Astrophysics Data System (ADS)

    Curato, Gianbiagio; Gatheral, Jim; Lillo, Fabrizio

    2016-10-01

    Optimal execution in financial markets is the problem of how to trade a large quantity of shares incrementally in time in order to minimize the expected cost. In this paper, we study the problem of the optimal execution in the presence of nonlinear transient market impact. Mathematically such problem is equivalent to solve a strongly nonlinear integral equation, which in our model is a weakly singular Urysohn equation of the first kind. We propose an approach based on Homotopy Analysis Method (HAM), whereby a well behaved initial trading strategy is continuously deformed to lower the expected execution cost. Specifically, we propose a discrete version of the HAM, i.e. the DHAM approach, in order to use the method when the integrals to compute have no closed form solution. We find that the optimal solution is front loaded for concave instantaneous impact even when the investor is risk neutral. More important we find that the expected cost of the DHAM strategy is significantly smaller than the cost of conventional strategies.

  2. Using a derivative-free optimization method for multiple solutions of inverse transport problems

    DOE PAGES

    Armstrong, Jerawan C.; Favorite, Jeffrey A.

    2016-01-14

    Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less

  3. Exploring quantum computing application to satellite data assimilation

    NASA Astrophysics Data System (ADS)

    Cheung, S.; Zhang, S. Q.

    2015-12-01

    This is an exploring work on potential application of quantum computing to a scientific data optimization problem. On classical computational platforms, the physical domain of a satellite data assimilation problem is represented by a discrete variable transform, and classical minimization algorithms are employed to find optimal solution of the analysis cost function. The computation becomes intensive and time-consuming when the problem involves large number of variables and data. The new quantum computer opens a very different approach both in conceptual programming and in hardware architecture for solving optimization problem. In order to explore if we can utilize the quantum computing machine architecture, we formulate a satellite data assimilation experimental case in the form of quadratic programming optimization problem. We find a transformation of the problem to map it into Quadratic Unconstrained Binary Optimization (QUBO) framework. Binary Wavelet Transform (BWT) will be applied to the data assimilation variables for its invertible decomposition and all calculations in BWT are performed by Boolean operations. The transformed problem will be experimented as to solve for a solution of QUBO instances defined on Chimera graphs of the quantum computer.

  4. Optimal platform design using non-dominated sorting genetic algorithm II and technique for order of preference by similarity to ideal solution; application to automotive suspension system

    NASA Astrophysics Data System (ADS)

    Shojaeefard, Mohammad Hassan; Khalkhali, Abolfazl; Faghihian, Hamed; Dahmardeh, Masoud

    2018-03-01

    Unlike conventional approaches where optimization is performed on a unique component of a specific product, optimum design of a set of components for employing in a product family can cause significant reduction in costs. Increasing commonality and performance of the product platform simultaneously is a multi-objective optimization problem (MOP). Several optimization methods are reported to solve these MOPs. However, what is less discussed is how to find the trade-off points among the obtained non-dominated optimum points. This article investigates the optimal design of a product family using non-dominated sorting genetic algorithm II (NSGA-II) and proposes the employment of technique for order of preference by similarity to ideal solution (TOPSIS) method to find the trade-off points among the obtained non-dominated results while compromising all objective functions together. A case study for a family of suspension systems is presented, considering performance and commonality. The results indicate the effectiveness of the proposed method to obtain the trade-off points with the best possible performance while maximizing the common parts.

  5. Approaches to eliminate waste and reduce cost for recycling glass.

    PubMed

    Chao, Chien-Wen; Liao, Ching-Jong

    2011-12-01

    In recent years, the issue of environmental protection has received considerable attention. This paper adds to the literature by investigating a scheduling problem in the manufacturing of a glass recycling factory in Taiwan. The objective is to minimize the sum of the total holding cost and loss cost. We first represent the problem as an integer programming (IP) model, and then develop two heuristics based on the IP model to find near-optimal solutions for the problem. To validate the proposed heuristics, comparisons between optimal solutions from the IP model and solutions from the current method are conducted. The comparisons involve two problem sizes, small and large, where the small problems range from 15 to 45 jobs, and the large problems from 50 to 100 jobs. Finally, a genetic algorithm is applied to evaluate the proposed heuristics. Computational experiments show that the proposed heuristics can find good solutions in a reasonable time for the considered problem. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization.

    PubMed

    Nair, Govind; Jungreuthmayer, Christian; Zanghellini, Jürgen

    2017-02-01

    Knockout strategies, particularly the concept of constrained minimal cut sets (cMCSs), are an important part of the arsenal of tools used in manipulating metabolic networks. Given a specific design, cMCSs can be calculated even in genome-scale networks. We would however like to find not only the optimal intervention strategy for a given design but the best possible design too. Our solution (PSOMCS) is to use particle swarm optimization (PSO) along with the direct calculation of cMCSs from the stoichiometric matrix to obtain optimal designs satisfying multiple objectives. To illustrate the working of PSOMCS, we apply it to a toy network. Next we show its superiority by comparing its performance against other comparable methods on a medium sized E. coli core metabolic network. PSOMCS not only finds solutions comparable to previously published results but also it is orders of magnitude faster. Finally, we use PSOMCS to predict knockouts satisfying multiple objectives in a genome-scale metabolic model of E. coli and compare it with OptKnock and RobustKnock. PSOMCS finds competitive knockout strategies and designs compared to other current methods and is in some cases significantly faster. It can be used in identifying knockouts which will force optimal desired behaviors in large and genome scale metabolic networks. It will be even more useful as larger metabolic models of industrially relevant organisms become available.

  7. Belief Propagation Algorithm for Portfolio Optimization Problems

    PubMed Central

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm. PMID:26305462

  8. Belief Propagation Algorithm for Portfolio Optimization Problems.

    PubMed

    Shinzato, Takashi; Yasuda, Muneki

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.

  9. A tight upper bound for quadratic knapsack problems in grid-based wind farm layout optimization

    NASA Astrophysics Data System (ADS)

    Quan, Ning; Kim, Harrison M.

    2018-03-01

    The 0-1 quadratic knapsack problem (QKP) in wind farm layout optimization models possible turbine locations as nodes, and power loss due to wake effects between pairs of turbines as edges in a complete graph. The goal is to select up to a certain number of turbine locations such that the sum of selected node and edge coefficients is maximized. Finding the optimal solution to the QKP is difficult in general, but it is possible to obtain a tight upper bound on the QKP's optimal value which facilitates the use of heuristics to solve QKPs by giving a good estimate of the optimality gap of any feasible solution. This article applies an upper bound method that is especially well-suited to QKPs in wind farm layout optimization due to certain features of the formulation that reduce the computational complexity of calculating the upper bound. The usefulness of the upper bound was demonstrated by assessing the performance of the greedy algorithm for solving QKPs in wind farm layout optimization. The results show that the greedy algorithm produces good solutions within 4% of the optimal value for small to medium sized problems considered in this article.

  10. Optimal Filling of Shapes

    NASA Astrophysics Data System (ADS)

    Phillips, Carolyn L.; Anderson, Joshua A.; Huber, Greg; Glotzer, Sharon C.

    2012-05-01

    We present filling as a type of spatial subdivision problem similar to covering and packing. Filling addresses the optimal placement of overlapping objects lying entirely inside an arbitrary shape so as to cover the most interior volume. In n-dimensional space, if the objects are polydisperse n-balls, we show that solutions correspond to sets of maximal n-balls. For polygons, we provide a heuristic for finding solutions of maximal disks. We consider the properties of ideal distributions of N disks as N→∞. We note an analogy with energy landscapes.

  11. Exact solution for the optimal neuronal layout problem.

    PubMed

    Chklovskii, Dmitri B

    2004-10-01

    Evolution perfected brain design by maximizing its functionality while minimizing costs associated with building and maintaining it. Assumption that brain functionality is specified by neuronal connectivity, implemented by costly biological wiring, leads to the following optimal design problem. For a given neuronal connectivity, find a spatial layout of neurons that minimizes the wiring cost. Unfortunately, this problem is difficult to solve because the number of possible layouts is often astronomically large. We argue that the wiring cost may scale as wire length squared, reducing the optimal layout problem to a constrained minimization of a quadratic form. For biologically plausible constraints, this problem has exact analytical solutions, which give reasonable approximations to actual layouts in the brain. These solutions make the inverse problem of inferring neuronal connectivity from neuronal layout more tractable.

  12. Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems.

    PubMed

    Hu, Xiao-Bing; Wang, Ming; Di Paolo, Ezequiel

    2013-06-01

    Searching the Pareto front for multiobjective optimization problems usually involves the use of a population-based search algorithm or of a deterministic method with a set of different single aggregate objective functions. The results are, in fact, only approximations of the real Pareto front. In this paper, we propose a new deterministic approach capable of fully determining the real Pareto front for those discrete problems for which it is possible to construct optimization algorithms to find the k best solutions to each of the single-objective problems. To this end, two theoretical conditions are given to guarantee the finding of the actual Pareto front rather than its approximation. Then, a general methodology for designing a deterministic search procedure is proposed. A case study is conducted, where by following the general methodology, a ripple-spreading algorithm is designed to calculate the complete exact Pareto front for multiobjective route optimization. When compared with traditional Pareto front search methods, the obvious advantage of the proposed approach is its unique capability of finding the complete Pareto front. This is illustrated by the simulation results in terms of both solution quality and computational efficiency.

  13. A Convex Formulation for Learning a Shared Predictive Structure from Multiple Tasks

    PubMed Central

    Chen, Jianhui; Tang, Lei; Liu, Jun; Ye, Jieping

    2013-01-01

    In this paper, we consider the problem of learning from multiple related tasks for improved generalization performance by extracting their shared structures. The alternating structure optimization (ASO) algorithm, which couples all tasks using a shared feature representation, has been successfully applied in various multitask learning problems. However, ASO is nonconvex and the alternating algorithm only finds a local solution. We first present an improved ASO formulation (iASO) for multitask learning based on a new regularizer. We then convert iASO, a nonconvex formulation, into a relaxed convex one (rASO). Interestingly, our theoretical analysis reveals that rASO finds a globally optimal solution to its nonconvex counterpart iASO under certain conditions. rASO can be equivalently reformulated as a semidefinite program (SDP), which is, however, not scalable to large datasets. We propose to employ the block coordinate descent (BCD) method and the accelerated projected gradient (APG) algorithm separately to find the globally optimal solution to rASO; we also develop efficient algorithms for solving the key subproblems involved in BCD and APG. The experiments on the Yahoo webpages datasets and the Drosophila gene expression pattern images datasets demonstrate the effectiveness and efficiency of the proposed algorithms and confirm our theoretical analysis. PMID:23520249

  14. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.

    PubMed

    Goto, Hayato

    2016-02-22

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  15. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2016-02-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  16. Combinatorial optimization games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, X.; Ibaraki, Toshihide; Nagamochi, Hiroshi

    1997-06-01

    We introduce a general integer programming formulation for a class of combinatorial optimization games, which immediately allows us to improve the algorithmic result for finding amputations in the core (an important solution concept in cooperative game theory) of the network flow game on simple networks by Kalai and Zemel. An interesting result is a general theorem that the core for this class of games is nonempty if and only if a related linear program has an integer optimal solution. We study the properties for this mathematical condition to hold for several interesting problems, and apply them to resolve algorithmic andmore » complexity issues for their cores along the line as put forward in: decide whether the core is empty; if the core is empty, find an imputation in the core; given an imputation x, test whether x is in the core. We also explore the properties of totally balanced games in this succinct formulation of cooperative games.« less

  17. Optimal matching for prostate brachytherapy seed localization with dimension reduction.

    PubMed

    Lee, Junghoon; Labat, Christian; Jain, Ameet K; Song, Danny Y; Burdette, Everette C; Fichtinger, Gabor; Prince, Jerry L

    2009-01-01

    In prostate brachytherapy, x-ray fluoroscopy has been used for intra-operative dosimetry to provide qualitative assessment of implant quality. More recent developments have made possible 3D localization of the implanted radioactive seeds. This is usually modeled as an assignment problem and solved by resolving the correspondence of seeds. It is, however, NP-hard, and the problem is even harder in practice due to the significant number of hidden seeds. In this paper, we propose an algorithm that can find an optimal solution from multiple projection images with hidden seeds. It solves an equivalent problem with reduced dimensional complexity, thus allowing us to find an optimal solution in polynomial time. Simulation results show the robustness of the algorithm. It was validated on 5 phantom and 18 patient datasets, successfully localizing the seeds with detection rate of > or = 97.6% and reconstruction error of < or = 1.2 mm. This is considered to be clinically excellent performance.

  18. A new effective operator for the hybrid algorithm for solving global optimisation problems

    NASA Astrophysics Data System (ADS)

    Duc, Le Anh; Li, Kenli; Nguyen, Tien Trong; Yen, Vu Minh; Truong, Tung Khac

    2018-04-01

    Hybrid algorithms have been recently used to solve complex single-objective optimisation problems. The ultimate goal is to find an optimised global solution by using these algorithms. Based on the existing algorithms (HP_CRO, PSO, RCCRO), this study proposes a new hybrid algorithm called MPC (Mean-PSO-CRO), which utilises a new Mean-Search Operator. By employing this new operator, the proposed algorithm improves the search ability on areas of the solution space that the other operators of previous algorithms do not explore. Specifically, the Mean-Search Operator helps find the better solutions in comparison with other algorithms. Moreover, the authors have proposed two parameters for balancing local and global search and between various types of local search, as well. In addition, three versions of this operator, which use different constraints, are introduced. The experimental results on 23 benchmark functions, which are used in previous works, show that our framework can find better optimal or close-to-optimal solutions with faster convergence speed for most of the benchmark functions, especially the high-dimensional functions. Thus, the proposed algorithm is more effective in solving single-objective optimisation problems than the other existing algorithms.

  19. Adaptive adjustment of interval predictive control based on combined model and application in shell brand petroleum distillation tower

    NASA Astrophysics Data System (ADS)

    Sun, Chao; Zhang, Chunran; Gu, Xinfeng; Liu, Bin

    2017-10-01

    Constraints of the optimization objective are often unable to be met when predictive control is applied to industrial production process. Then, online predictive controller will not find a feasible solution or a global optimal solution. To solve this problem, based on Back Propagation-Auto Regressive with exogenous inputs (BP-ARX) combined control model, nonlinear programming method is used to discuss the feasibility of constrained predictive control, feasibility decision theorem of the optimization objective is proposed, and the solution method of soft constraint slack variables is given when the optimization objective is not feasible. Based on this, for the interval control requirements of the controlled variables, the slack variables that have been solved are introduced, the adaptive weighted interval predictive control algorithm is proposed, achieving adaptive regulation of the optimization objective and automatically adjust of the infeasible interval range, expanding the scope of the feasible region, and ensuring the feasibility of the interval optimization objective. Finally, feasibility and effectiveness of the algorithm is validated through the simulation comparative experiments.

  20. Tuning Parameters in Heuristics by Using Design of Experiments Methods

    NASA Technical Reports Server (NTRS)

    Arin, Arif; Rabadi, Ghaith; Unal, Resit

    2010-01-01

    With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.

  1. Sparse Reconstruction of Regional Gravity Signal Based on Stabilized Orthogonal Matching Pursuit (SOMP)

    NASA Astrophysics Data System (ADS)

    Saadat, S. A.; Safari, A.; Needell, D.

    2016-06-01

    The main role of gravity field recovery is the study of dynamic processes in the interior of the Earth especially in exploration geophysics. In this paper, the Stabilized Orthogonal Matching Pursuit (SOMP) algorithm is introduced for sparse reconstruction of regional gravity signals of the Earth. In practical applications, ill-posed problems may be encountered regarding unknown parameters that are sensitive to the data perturbations. Therefore, an appropriate regularization method needs to be applied to find a stabilized solution. The SOMP algorithm aims to regularize the norm of the solution vector, while also minimizing the norm of the corresponding residual vector. In this procedure, a convergence point of the algorithm that specifies optimal sparsity-level of the problem is determined. The results show that the SOMP algorithm finds the stabilized solution for the ill-posed problem at the optimal sparsity-level, improving upon existing sparsity based approaches.

  2. Spatial optimization of watershed management practices for nitrogen load reduction using a modeling-optimization framework.

    PubMed

    Yang, Guoxiang; Best, Elly P H

    2015-09-15

    Best management practices (BMPs) can be used effectively to reduce nutrient loads transported from non-point sources to receiving water bodies. However, methodologies of BMP selection and placement in a cost-effective way are needed to assist watershed management planners and stakeholders. We developed a novel modeling-optimization framework that can be used to find cost-effective solutions of BMP placement to attain nutrient load reduction targets. This was accomplished by integrating a GIS-based BMP siting method, a WQM-TMDL-N modeling approach to estimate total nitrogen (TN) loading, and a multi-objective optimization algorithm. Wetland restoration and buffer strip implementation were the two BMP categories used to explore the performance of this framework, both differing greatly in complexity of spatial analysis for site identification. Minimizing TN load and BMP cost were the two objective functions for the optimization process. The performance of this framework was demonstrated in the Tippecanoe River watershed, Indiana, USA. Optimized scenario-based load reduction indicated that the wetland subset selected by the minimum scenario had the greatest N removal efficiency. Buffer strips were more effective for load removal than wetlands. The optimized solutions provided a range of trade-offs between the two objective functions for both BMPs. This framework can be expanded conveniently to a regional scale because the NHDPlus catchment serves as its spatial computational unit. The present study demonstrated the potential of this framework to find cost-effective solutions to meet a water quality target, such as a 20% TN load reduction, under different conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem.

    PubMed

    Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing

    2015-01-01

    Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA.

  4. Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem

    PubMed Central

    Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing

    2015-01-01

    Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA. PMID:26167171

  5. Chemical Compound Design Using Nuclear Charge Distributions

    DTIC Science & Technology

    2012-03-01

    Finding optimal solutions to design problems in chemistry is hampered by the combinatorially large search space. We develop a general theoretical ... framework for finding chemical compounds with prescribed properties using nuclear charge distributions. The key is the reformulation of the design

  6. Development of the PEBLebl Traveling Salesman Problem Computerized Testbed

    ERIC Educational Resources Information Center

    Mueller, Shane T.; Perelman, Brandon S.; Tan, Yin Yin; Thanasuan, Kejkaew

    2015-01-01

    The traveling salesman problem (TSP) is a combinatorial optimization problem that requires finding the shortest path through a set of points ("cities") that returns to the starting point. Because humans provide heuristic near-optimal solutions to Euclidean versions of the problem, it has sometimes been used to investigate human visual…

  7. Optimal spacecraft attitude control using collocation and nonlinear programming

    NASA Astrophysics Data System (ADS)

    Herman, A. L.; Conway, B. A.

    1992-10-01

    Direct collocation with nonlinear programming (DCNLP) is employed to find the optimal open-loop control histories for detumbling a disabled satellite. The controls are torques and forces applied to the docking arm and joint and torques applied about the body axes of the OMV. Solutions are obtained for cases in which various constraints are placed on the controls and in which the number of controls is reduced or increased from that considered in Conway and Widhalm (1986). DCLNP works well when applied to the optimal control problem of satellite attitude control. The formulation is straightforward and produces good results in a relatively small amount of time on a Cray X/MP with no a priori information about the optimal solution. The addition of joint acceleration to the controls significantly reduces the control magnitudes and optimal cost. In all cases, the torques and acclerations are modest and the optimal cost is very modest.

  8. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2004-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  9. Genetic algorithms for protein threading.

    PubMed

    Yadgari, J; Amir, A; Unger, R

    1998-01-01

    Despite many years of efforts, a direct prediction of protein structure from sequence is still not possible. As a result, in the last few years researchers have started to address the "inverse folding problem": Identifying and aligning a sequence to the fold with which it is most compatible, a process known as "threading". In two meetings in which protein folding predictions were objectively evaluated, it became clear that threading as a concept promises a real breakthrough, but that much improvement is still needed in the technique itself. Threading is a NP-hard problem, and thus no general polynomial solution can be expected. Still a practical approach with demonstrated ability to find optimal solutions in many cases, and acceptable solutions in other cases, is needed. We applied the technique of Genetic Algorithms in order to significantly improve the ability of threading algorithms to find the optimal alignment of a sequence to a structure, i.e. the alignment with the minimum free energy. A major progress reported here is the design of a representation of the threading alignment as a string of fixed length. With this representation validation of alignments and genetic operators are effectively implemented. Appropriate data structure and parameters have been selected. It is shown that Genetic Algorithm threading is effective and is able to find the optimal alignment in a few test cases. Furthermore, the described algorithm is shown to perform well even without pre-definition of core elements. Existing threading methods are dependent on such constraints to make their calculations feasible. But the concept of core elements is inherently arbitrary and should be avoided if possible. While a rigorous proof is hard to submit yet an, we present indications that indeed Genetic Algorithm threading is capable of finding consistently good solutions of full alignments in search spaces of size up to 10(70).

  10. Helping the decision maker effectively promote various experts' views into various optimal solutions to China's institutional problem of health care provider selection through the organization of a pilot health care provider research system.

    PubMed

    Tang, Liyang

    2013-04-04

    The main aim of China's Health Care System Reform was to help the decision maker find the optimal solution to China's institutional problem of health care provider selection. A pilot health care provider research system was recently organized in China's health care system, and it could efficiently collect the data for determining the optimal solution to China's institutional problem of health care provider selection from various experts, then the purpose of this study was to apply the optimal implementation methodology to help the decision maker effectively promote various experts' views into various optimal solutions to this problem under the support of this pilot system. After the general framework of China's institutional problem of health care provider selection was established, this study collaborated with the National Bureau of Statistics of China to commission a large-scale 2009 to 2010 national expert survey (n = 3,914) through the organization of a pilot health care provider research system for the first time in China, and the analytic network process (ANP) implementation methodology was adopted to analyze the dataset from this survey. The market-oriented health care provider approach was the optimal solution to China's institutional problem of health care provider selection from the doctors' point of view; the traditional government's regulation-oriented health care provider approach was the optimal solution to China's institutional problem of health care provider selection from the pharmacists' point of view, the hospital administrators' point of view, and the point of view of health officials in health administration departments; the public private partnership (PPP) approach was the optimal solution to China's institutional problem of health care provider selection from the nurses' point of view, the point of view of officials in medical insurance agencies, and the health care researchers' point of view. The data collected through a pilot health care provider research system in the 2009 to 2010 national expert survey could help the decision maker effectively promote various experts' views into various optimal solutions to China's institutional problem of health care provider selection.

  11. Optimization Under Uncertainty for Electronics Cooling Design

    NASA Astrophysics Data System (ADS)

    Bodla, Karthik K.; Murthy, Jayathi Y.; Garimella, Suresh V.

    Optimization under uncertainty is a powerful methodology used in design and optimization to produce robust, reliable designs. Such an optimization methodology, employed when the input quantities of interest are uncertain, produces output uncertainties, helping the designer choose input parameters that would result in satisfactory thermal solutions. Apart from providing basic statistical information such as mean and standard deviation in the output quantities, auxiliary data from an uncertainty based optimization, such as local and global sensitivities, help the designer decide the input parameter(s) to which the output quantity of interest is most sensitive. This helps the design of experiments based on the most sensitive input parameter(s). A further crucial output of such a methodology is the solution to the inverse problem - finding the allowable uncertainty range in the input parameter(s), given an acceptable uncertainty range in the output quantity of interest...

  12. Continued research on selected parameters to minimize community annoyance from airplane noise

    NASA Technical Reports Server (NTRS)

    Frair, L.

    1981-01-01

    Results from continued research on selected parameters to minimize community annoyance from airport noise are reported. First, a review of the initial work on this problem is presented. Then the research focus is expanded by considering multiobjective optimization approaches for this problem. A multiobjective optimization algorithm review from the open literature is presented. This is followed by the multiobjective mathematical formulation for the problem of interest. A discussion of the appropriate solution algorithm for the multiobjective formulation is conducted. Alternate formulations and associated solution algorithms are discussed and evaluated for this airport noise problem. Selected solution algorithms that have been implemented are then used to produce computational results for example airports. These computations involved finding the optimal operating scenario for a moderate size airport and a series of sensitivity analyses for a smaller example airport.

  13. Mathematical Optimization Algorithm for Minimizing the Cost Function of GHG Emission in AS/RS Using Positive Selection Based Clonal Selection Principle

    NASA Astrophysics Data System (ADS)

    Mahalakshmi; Murugesan, R.

    2018-04-01

    This paper regards with the minimization of total cost of Greenhouse Gas (GHG) efficiency in Automated Storage and Retrieval System (AS/RS). A mathematical model is constructed based on tax cost, penalty cost and discount cost of GHG emission of AS/RS. A two stage algorithm namely positive selection based clonal selection principle (PSBCSP) is used to find the optimal solution of the constructed model. In the first stage positive selection principle is used to reduce the search space of the optimal solution by fixing a threshold value. In the later stage clonal selection principle is used to generate best solutions. The obtained results are compared with other existing algorithms in the literature, which shows that the proposed algorithm yields a better result compared to others.

  14. Experimental test of an online ion-optics optimizer

    NASA Astrophysics Data System (ADS)

    Amthor, A. M.; Schillaci, Z. M.; Morrissey, D. J.; Portillo, M.; Schwarz, S.; Steiner, M.; Sumithrarachchi, Ch.

    2018-07-01

    A technique has been developed and tested to automatically adjust multiple electrostatic or magnetic multipoles on an ion optical beam line - according to a defined optimization algorithm - until an optimal tune is found. This approach simplifies the process of determining high-performance optical tunes, satisfying a given set of optical properties, for an ion optical system. The optimization approach is based on the particle swarm method and is entirely model independent, thus the success of the optimization does not depend on the accuracy of an extant ion optical model of the system to be optimized. Initial test runs of a first order optimization of a low-energy (<60 keV) all-electrostatic beamline at the NSCL show reliable convergence of nine quadrupole degrees of freedom to well-performing tunes within a reasonable number of trial solutions, roughly 500, with full beam optimization run times of roughly two hours. Improved tunes were found both for quasi-local optimizations and for quasi-global optimizations, indicating a good ability of the optimizer to find a solution with or without a well defined set of initial multipole settings.

  15. Local search heuristic for the discrete leader-follower problem with multiple follower objectives

    NASA Astrophysics Data System (ADS)

    Kochetov, Yury; Alekseeva, Ekaterina; Mezmaz, Mohand

    2016-10-01

    We study a discrete bilevel problem, called as well as leader-follower problem, with multiple objectives at the lower level. It is assumed that constraints at the upper level can include variables of both levels. For such ill-posed problem we define feasible and optimal solutions for pessimistic case. A central point of this work is a two stage method to get a feasible solution under the pessimistic case, given a leader decision. The target of the first stage is a follower solution that violates the leader constraints. The target of the second stage is a pessimistic feasible solution. Each stage calls a heuristic and a solver for a series of particular mixed integer programs. The method is integrated inside a local search based heuristic that is designed to find near-optimal leader solutions.

  16. Design and Optimization of New Metallic Materials (Metal Foams) for the Reduction of the Noise of the Aeronautical Turbo Engines

    DTIC Science & Technology

    2005-02-01

    AApproved for Public Release Distribution Unlimited SANS MENTION DE PROTECTION MATERIALS AND STRUCTURES -1- ONERA BP 72 - 29. avenue de la Division Leclerc...reduction. Finding the best solution in terns balancing structural strength and acoustic properties was the main thrust of this project. Acoustic...material system for noise reduction. Finding the best solution in terms balancing structural strength and acoustic properties was the main thrust of this

  17. A new strategy of glucose supply in a microbial fermentation model

    NASA Astrophysics Data System (ADS)

    Kasbawati, Gunawan, A. Y.; Sidarto, K. A.; Hertadi, R.

    2015-09-01

    Strategy of glucose supply to achieve an optimal productivity of ethanol production of a yeast cell is one of the main features in a microbial fermentation process. Beside a known continuous glucose supply, in this study we consider a new supply strategy so called the on-off supply. An optimal control theory is applied to the fermentation system to find the optimal rate of glucose supply and time of supply. The optimization problem is solved numerically using Differential Evolutionary algorithm. We find two alternative solutions that we can choose to get the similar result: either long period process with low supply or short period process with high glucose supply.

  18. Optimization in the utility maximization framework for conservation planning: a comparison of solution procedures in a study of multifunctional agriculture

    PubMed Central

    Stoms, David M.; Davis, Frank W.

    2014-01-01

    Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management. PMID:25538868

  19. Optimization in the utility maximization framework for conservation planning: a comparison of solution procedures in a study of multifunctional agriculture

    USGS Publications Warehouse

    Kreitler, Jason R.; Stoms, David M.; Davis, Frank W.

    2014-01-01

    Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management.

  20. Human Performance on Hard Non-Euclidean Graph Problems: Vertex Cover

    ERIC Educational Resources Information Center

    Carruthers, Sarah; Masson, Michael E. J.; Stege, Ulrike

    2012-01-01

    Recent studies on a computationally hard visual optimization problem, the Traveling Salesperson Problem (TSP), indicate that humans are capable of finding close to optimal solutions in near-linear time. The current study is a preliminary step in investigating human performance on another hard problem, the Minimum Vertex Cover Problem, in which…

  1. Optimizing Teleportation Cost in Distributed Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Zomorodi-Moghadam, Mariam; Houshmand, Mahboobeh; Houshmand, Monireh

    2018-03-01

    The presented work provides a procedure for optimizing the communication cost of a distributed quantum circuit (DQC) in terms of the number of qubit teleportations. Because of technology limitations which do not allow large quantum computers to work as a single processing element, distributed quantum computation is an appropriate solution to overcome this difficulty. Previous studies have applied ad-hoc solutions to distribute a quantum system for special cases and applications. In this study, a general approach is proposed to optimize the number of teleportations for a DQC consisting of two spatially separated and long-distance quantum subsystems. To this end, different configurations of locations for executing gates whose qubits are in distinct subsystems are considered and for each of these configurations, the proposed algorithm is run to find the minimum number of required teleportations. Finally, the configuration which leads to the minimum number of teleportations is reported. The proposed method can be used as an automated procedure to find the configuration with the optimal communication cost for the DQC. This cost can be used as a basic measure of the communication cost for future works in the distributed quantum circuits.

  2. A New Model for a Carpool Matching Service.

    PubMed

    Xia, Jizhe; Curtin, Kevin M; Li, Weihong; Zhao, Yonglong

    2015-01-01

    Carpooling is an effective means of reducing traffic. A carpool team shares a vehicle for their commute, which reduces the number of vehicles on the road during rush hour periods. Carpooling is officially sanctioned by most governments, and is supported by the construction of high-occupancy vehicle lanes. A number of carpooling services have been designed in order to match commuters into carpool teams, but it known that the determination of optimal carpool teams is a combinatorially complex problem, and therefore technological solutions are difficult to achieve. In this paper, a model for carpool matching services is proposed, and both optimal and heuristic approaches are tested to find solutions for that model. The results show that different solution approaches are preferred over different ranges of problem instances. Most importantly, it is demonstrated that a new formulation and associated solution procedures can permit the determination of optimal carpool teams and routes. An instantiation of the model is presented (using the street network of Guangzhou city, China) to demonstrate how carpool teams can be determined.

  3. A New Model for a Carpool Matching Service

    PubMed Central

    Xia, Jizhe; Curtin, Kevin M.; Li, Weihong; Zhao, Yonglong

    2015-01-01

    Carpooling is an effective means of reducing traffic. A carpool team shares a vehicle for their commute, which reduces the number of vehicles on the road during rush hour periods. Carpooling is officially sanctioned by most governments, and is supported by the construction of high-occupancy vehicle lanes. A number of carpooling services have been designed in order to match commuters into carpool teams, but it known that the determination of optimal carpool teams is a combinatorially complex problem, and therefore technological solutions are difficult to achieve. In this paper, a model for carpool matching services is proposed, and both optimal and heuristic approaches are tested to find solutions for that model. The results show that different solution approaches are preferred over different ranges of problem instances. Most importantly, it is demonstrated that a new formulation and associated solution procedures can permit the determination of optimal carpool teams and routes. An instantiation of the model is presented (using the street network of Guangzhou city, China) to demonstrate how carpool teams can be determined. PMID:26125552

  4. Optimal mapping of irregular finite element domains to parallel processors

    NASA Technical Reports Server (NTRS)

    Flower, J.; Otto, S.; Salama, M.

    1987-01-01

    Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.

  5. Exact and heuristic algorithms for Space Information Flow.

    PubMed

    Uwitonze, Alfred; Huang, Jiaqing; Ye, Yuanqing; Cheng, Wenqing; Li, Zongpeng

    2018-01-01

    Space Information Flow (SIF) is a new promising research area that studies network coding in geometric space, such as Euclidean space. The design of algorithms that compute the optimal SIF solutions remains one of the key open problems in SIF. This work proposes the first exact SIF algorithm and a heuristic SIF algorithm that compute min-cost multicast network coding for N (N ≥ 3) given terminal nodes in 2-D Euclidean space. Furthermore, we find that the Butterfly network in Euclidean space is the second example besides the Pentagram network where SIF is strictly better than Euclidean Steiner minimal tree. The exact algorithm design is based on two key techniques: Delaunay triangulation and linear programming. Delaunay triangulation technique helps to find practically good candidate relay nodes, after which a min-cost multicast linear programming model is solved over the terminal nodes and the candidate relay nodes, to compute the optimal multicast network topology, including the optimal relay nodes selected by linear programming from all the candidate relay nodes and the flow rates on the connection links. The heuristic algorithm design is also based on Delaunay triangulation and linear programming techniques. The exact algorithm can achieve the optimal SIF solution with an exponential computational complexity, while the heuristic algorithm can achieve the sub-optimal SIF solution with a polynomial computational complexity. We prove the correctness of the exact SIF algorithm. The simulation results show the effectiveness of the heuristic SIF algorithm.

  6. Multiobjective genetic algorithm conjunctive use optimization for production, cost, and energy with dynamic return flow

    NASA Astrophysics Data System (ADS)

    Peralta, Richard C.; Forghani, Ali; Fayad, Hala

    2014-04-01

    Many real water resources optimization problems involve conflicting objectives for which the main goal is to find a set of optimal solutions on, or near to the Pareto front. E-constraint and weighting multiobjective optimization techniques have shortcomings, especially as the number of objectives increases. Multiobjective Genetic Algorithms (MGA) have been previously proposed to overcome these difficulties. Here, an MGA derives a set of optimal solutions for multiobjective multiuser conjunctive use of reservoir, stream, and (un)confined groundwater resources. The proposed methodology is applied to a hydraulically and economically nonlinear system in which all significant flows, including stream-aquifer-reservoir-diversion-return flow interactions, are simulated and optimized simultaneously for multiple periods. Neural networks represent constrained state variables. The addressed objectives that can be optimized simultaneously in the coupled simulation-optimization model are: (1) maximizing water provided from sources, (2) maximizing hydropower production, and (3) minimizing operation costs of transporting water from sources to destinations. Results show the efficiency of multiobjective genetic algorithms for generating Pareto optimal sets for complex nonlinear multiobjective optimization problems.

  7. The solution space of sorting by DCJ.

    PubMed

    Braga, Marília D V; Stoye, Jens

    2010-09-01

    In genome rearrangements, the double cut and join (DCJ) operation, introduced by Yancopoulos et al. in 2005, allows one to represent most rearrangement events that could happen in multichromosomal genomes, such as inversions, translocations, fusions, and fissions. No restriction on the genome structure considering linear and circular chromosomes is imposed. An advantage of this general model is that it leads to considerable algorithmic simplifications compared to other genome rearrangement models. Recently, several works concerning the DCJ operation have been published, and in particular, an algorithm was proposed to find an optimal DCJ sequence for sorting one genome into another one. Here we study the solution space of this problem and give an easy-to-compute formula that corresponds to the exact number of optimal DCJ sorting sequences for a particular subset of instances of the problem. We also give an algorithm to count the number of optimal sorting sequences for any instance of the problem. Another interesting result is the demonstration of the possibility of obtaining one optimal sorting sequence by properly replacing any pair of consecutive operations in another optimal sequence. As a consequence, any optimal sorting sequence can be obtained from one other by applying such replacements successively, but the problem of finding the shortest number of replacements between two sorting sequences is still open.

  8. Conservation of high-flux backbone in alternate optimal and near-optimal flux distributions of metabolic networks.

    PubMed

    Samal, Areejit

    2008-12-01

    Constraint-based flux balance analysis (FBA) has proven successful in predicting the flux distribution of metabolic networks in diverse environmental conditions. FBA finds one of the alternate optimal solutions that maximizes the biomass production rate. Almaas et al. have shown that the flux distribution follows a power law, and it is possible to associate with most metabolites two reactions which maximally produce and consume a given metabolite, respectively. This observation led to the concept of high-flux backbone (HFB) in metabolic networks. In previous work, the HFB has been computed using a particular optima obtained using FBA. In this paper, we investigate the conservation of HFB of a particular solution for a given medium across different alternate optima and near-optima in metabolic networks of E. coli and S. cerevisiae. Using flux variability analysis (FVA), we propose a method to determine reactions that are guaranteed to be in HFB regardless of alternate solutions. We find that the HFB of a particular optima is largely conserved across alternate optima in E. coli, while it is only moderately conserved in S. cerevisiae. However, the HFB of a particular near-optima shows a large variation across alternate near-optima in both organisms. We show that the conserved set of reactions in HFB across alternate near-optima has a large overlap with essential reactions and reactions which are both uniquely consuming (UC) and uniquely producing (UP). Our findings suggest that the structure of the metabolic network admits a high degree of redundancy and plasticity in near-optimal flow patterns enhancing system robustness for a given environmental condition.

  9. Development and applications of various optimization algorithms for diesel engine combustion and emissions optimization

    NASA Astrophysics Data System (ADS)

    Ogren, Ryan M.

    For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) algorithms are applied to the optimization of experimental diesel engine performance, to meet Environmental Protection Agency, off-road, diesel engine standards. This work is the first to apply ABC optimization to experimental engine testing. All trials were conducted at partial load on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and regular pump diesel for ABC. Key variables were altered throughout the experiments, including, fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for two injections, pilot injection timing and main injection timing. Both forms of optimization proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a superior solution to that of ABC within fewer engine runs. Both solutions call for high exhaust gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main fuel injections to near top dead center for improved tradeoffs between NOx and particulate matter.

  10. A study of optical design and optimization of laser optics

    NASA Astrophysics Data System (ADS)

    Tsai, C.-M.; Fang, Yi-Chin

    2013-09-01

    This paper propose a study of optical design of laser beam shaping optics with aspheric surface and application of genetic algorithm (GA) to find the optimal results. Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using collimated laser beam light, aspheric lenses in order to achieve best results.

  11. Exploring the Pareto frontier using multisexual evolutionary algorithms: an application to a flexible manufacturing problem

    NASA Astrophysics Data System (ADS)

    Bonissone, Stefano R.; Subbu, Raj

    2002-12-01

    In multi-objective optimization (MOO) problems we need to optimize many possibly conflicting objectives. For instance, in manufacturing planning we might want to minimize the cost and production time while maximizing the product's quality. We propose the use of evolutionary algorithms (EAs) to solve these problems. Solutions are represented as individuals in a population and are assigned scores according to a fitness function that determines their relative quality. Strong solutions are selected for reproduction, and pass their genetic material to the next generation. Weak solutions are removed from the population. The fitness function evaluates each solution and returns a related score. In MOO problems, this fitness function is vector-valued, i.e. it returns a value for each objective. Therefore, instead of a global optimum, we try to find the Pareto-optimal or non-dominated frontier. We use multi-sexual EAs with as many genders as optimization criteria. We have created new crossover and gender assignment functions, and experimented with various parameters to determine the best setting (yielding the highest number of non-dominated solutions.) These experiments are conducted using a variety of fitness functions, and the algorithms are later evaluated on a flexible manufacturing problem with total cost and time minimization objectives.

  12. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    2005-01-01

    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  13. Multi-Objective Ant Colony Optimization Based on the Physarum-Inspired Mathematical Model for Bi-Objective Traveling Salesman Problems

    PubMed Central

    Zhang, Zili; Gao, Chao; Lu, Yuxiao; Liu, Yuxin; Liang, Mingxin

    2016-01-01

    Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs. PMID:26751562

  14. Multi-Objective Ant Colony Optimization Based on the Physarum-Inspired Mathematical Model for Bi-Objective Traveling Salesman Problems.

    PubMed

    Zhang, Zili; Gao, Chao; Lu, Yuxiao; Liu, Yuxin; Liang, Mingxin

    2016-01-01

    Bi-objective Traveling Salesman Problem (bTSP) is an important field in the operations research, its solutions can be widely applied in the real world. Many researches of Multi-objective Ant Colony Optimization (MOACOs) have been proposed to solve bTSPs. However, most of MOACOs suffer premature convergence. This paper proposes an optimization strategy for MOACOs by optimizing the initialization of pheromone matrix with the prior knowledge of Physarum-inspired Mathematical Model (PMM). PMM can find the shortest route between two nodes based on the positive feedback mechanism. The optimized algorithms, named as iPM-MOACOs, can enhance the pheromone in the short paths and promote the search ability of ants. A series of experiments are conducted and experimental results show that the proposed strategy can achieve a better compromise solution than the original MOACOs for solving bTSPs.

  15. Simultaneous Intrinsic and Extrinsic Parameter Identification of a Hand-Mounted Laser-Vision Sensor

    PubMed Central

    Lee, Jong Kwang; Kim, Kiho; Lee, Yongseok; Jeong, Taikyeong

    2011-01-01

    In this paper, we propose a simultaneous intrinsic and extrinsic parameter identification of a hand-mounted laser-vision sensor (HMLVS). A laser-vision sensor (LVS), consisting of a camera and a laser stripe projector, is used as a sensor component of the robotic measurement system, and it measures the range data with respect to the robot base frame using the robot forward kinematics and the optical triangulation principle. For the optimal estimation of the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. Best-fit parameters, including both the intrinsic and extrinsic parameters of the HMLVS, are simultaneously obtained based on the least-squares criterion. From the simulation and experimental results, it is shown that the parameter identification problem considered was characterized by a highly multimodal landscape; thus, the global optimization technique such as a particle swarm optimization can be a promising tool to identify the model parameters for a HMLVS, while the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum. The proposed optimization method does not require good initial guesses of the system parameters to converge at a very stable solution and it could be applied to a kinematically dissimilar robot system without loss of generality. PMID:22164104

  16. A learning approach to the bandwidth multicolouring problem

    NASA Astrophysics Data System (ADS)

    Akbari Torkestani, Javad

    2016-05-01

    In this article, a generalisation of the vertex colouring problem known as bandwidth multicolouring problem (BMCP), in which a set of colours is assigned to each vertex such that the difference between the colours, assigned to each vertex and its neighbours, is by no means less than a predefined threshold, is considered. It is shown that the proposed method can be applied to solve the bandwidth colouring problem (BCP) as well. BMCP is known to be NP-hard in graph theory, and so a large number of approximation solutions, as well as exact algorithms, have been proposed to solve it. In this article, two learning automata-based approximation algorithms are proposed for estimating a near-optimal solution to the BMCP. We show, for the first proposed algorithm, that by choosing a proper learning rate, the algorithm finds the optimal solution with a probability close enough to unity. Moreover, we compute the worst-case time complexity of the first algorithm for finding a 1/(1-ɛ) optimal solution to the given problem. The main advantage of this method is that a trade-off between the running time of algorithm and the colour set size (colouring optimality) can be made, by a proper choice of the learning rate also. Finally, it is shown that the running time of the proposed algorithm is independent of the graph size, and so it is a scalable algorithm for large graphs. The second proposed algorithm is compared with some well-known colouring algorithms and the results show the efficiency of the proposed algorithm in terms of the colour set size and running time of algorithm.

  17. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    PubMed Central

    Goto, Hayato

    2016-01-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997

  18. Adaptive particle swarm optimization for optimal orbital elements of binary stars

    NASA Astrophysics Data System (ADS)

    Attia, Abdel-Fattah

    2016-12-01

    The paper presents an adaptive particle swarm optimization (APSO) as an alternative method to determine the optimal orbital elements of the star η Bootis of MK type G0 IV. The proposed algorithm transforms the problem of finding periodic orbits into the problem of detecting global minimizers as a function, to get a best fit of Keplerian and Phase curves. The experimental results demonstrate that the proposed approach of APSO generally more accurate than the standard particle swarm optimization (PSO) and other published optimization algorithms, in terms of solution accuracy, convergence speed and algorithm reliability.

  19. Performance comparison of genetic algorithms and particle swarm optimization for model integer programming bus timetabling problem

    NASA Astrophysics Data System (ADS)

    Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.

    2018-03-01

    Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.

  20. A Study of Penalty Function Methods for Constraint Handling with Genetic Algorithm

    NASA Technical Reports Server (NTRS)

    Ortiz, Francisco

    2004-01-01

    COMETBOARDS (Comparative Evaluation Testbed of Optimization and Analysis Routines for Design of Structures) is a design optimization test bed that can evaluate the performance of several different optimization algorithms. A few of these optimization algorithms are the sequence of unconstrained minimization techniques (SUMT), sequential linear programming (SLP) and the sequential quadratic programming techniques (SQP). A genetic algorithm (GA) is a search technique that is based on the principles of natural selection or "survival of the fittest". Instead of using gradient information, the GA uses the objective function directly in the search. The GA searches the solution space by maintaining a population of potential solutions. Then, using evolving operations such as recombination, mutation and selection, the GA creates successive generations of solutions that will evolve and take on the positive characteristics of their parents and thus gradually approach optimal or near-optimal solutions. By using the objective function directly in the search, genetic algorithms can be effectively applied in non-convex, highly nonlinear, complex problems. The genetic algorithm is not guaranteed to find the global optimum, but it is less likely to get trapped at a local optimum than traditional gradient-based search methods when the objective function is not smooth and generally well behaved. The purpose of this research is to assist in the integration of genetic algorithm (GA) into COMETBOARDS. COMETBOARDS cast the design of structures as a constrained nonlinear optimization problem. One method used to solve constrained optimization problem with a GA to convert the constrained optimization problem into an unconstrained optimization problem by developing a penalty function that penalizes infeasible solutions. There have been several suggested penalty function in the literature each with there own strengths and weaknesses. A statistical analysis of some suggested penalty functions is performed in this study. Also, a response surface approach to robust design is used to develop a new penalty function approach. This new penalty function approach is then compared with the other existing penalty functions.

  1. Optimal Spatial Design of Capacity and Quantity of Rainwater Catchment Systems for Urban Flood Mitigation

    NASA Astrophysics Data System (ADS)

    Huang, C.; Hsu, N.

    2013-12-01

    This study imports Low-Impact Development (LID) technology of rainwater catchment systems into a Storm-Water runoff Management Model (SWMM) to design the spatial capacity and quantity of rain barrel for urban flood mitigation. This study proposes a simulation-optimization model for effectively searching the optimal design. In simulation method, we design a series of regular spatial distributions of capacity and quantity of rainwater catchment facilities, and thus the reduced flooding circumstances using a variety of design forms could be simulated by SWMM. Moreover, we further calculate the net benefit that is equal to subtract facility cost from decreasing inundation loss and the best solution of simulation method would be the initial searching solution of the optimization model. In optimizing method, first we apply the outcome of simulation method and Back-Propagation Neural Network (BPNN) for developing a water level simulation model of urban drainage system in order to replace SWMM which the operating is based on a graphical user interface and is hard to combine with optimization model and method. After that we embed the BPNN-based simulation model into the developed optimization model which the objective function is minimizing the negative net benefit. Finally, we establish a tabu search-based algorithm to optimize the planning solution. This study applies the developed method in Zhonghe Dist., Taiwan. Results showed that application of tabu search and BPNN-based simulation model into the optimization model not only can find better solutions than simulation method in 12.75%, but also can resolve the limitations of previous studies. Furthermore, the optimized spatial rain barrel design can reduce 72% of inundation loss according to historical flood events.

  2. Use of a Colony of Cooperating Agents and MAPLE To Solve the Traveling Salesman Problem.

    ERIC Educational Resources Information Center

    Guerrieri, Bruno

    This paper reviews an approach for finding optimal solutions to the traveling salesman problem, a well-known problem in combinational optimization, and describes implementing the approach using the MAPLE computer algebra system. The method employed in this approach to the problem is similar to the way ant colonies manage to establish shortest…

  3. Fitting Nonlinear Curves by use of Optimization Techniques

    NASA Technical Reports Server (NTRS)

    Hill, Scott A.

    2005-01-01

    MULTIVAR is a FORTRAN 77 computer program that fits one of the members of a set of six multivariable mathematical models (five of which are nonlinear) to a multivariable set of data. The inputs to MULTIVAR include the data for the independent and dependent variables plus the user s choice of one of the models, one of the three optimization engines, and convergence criteria. By use of the chosen optimization engine, MULTIVAR finds values for the parameters of the chosen model so as to minimize the sum of squares of the residuals. One of the optimization engines implements a routine, developed in 1982, that utilizes the Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable-metric method for unconstrained minimization in conjunction with a one-dimensional search technique that finds the minimum of an unconstrained function by polynomial interpolation and extrapolation without first finding bounds on the solution. The second optimization engine is a faster and more robust commercially available code, denoted Design Optimization Tool, that also uses the BFGS method. The third optimization engine is a robust and relatively fast routine that implements the Levenberg-Marquardt algorithm.

  4. a Comparison of Simulated Annealing, Genetic Algorithm and Particle Swarm Optimization in Optimal First-Order Design of Indoor Tls Networks

    NASA Astrophysics Data System (ADS)

    Jia, F.; Lichti, D.

    2017-09-01

    The optimal network design problem has been well addressed in geodesy and photogrammetry but has not received the same attention for terrestrial laser scanner (TLS) networks. The goal of this research is to develop a complete design system that can automatically provide an optimal plan for high-accuracy, large-volume scanning networks. The aim in this paper is to use three heuristic optimization methods, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO), to solve the first-order design (FOD) problem for a small-volume indoor network and make a comparison of their performances. The room is simplified as discretized wall segments and possible viewpoints. Each possible viewpoint is evaluated with a score table representing the wall segments visible from each viewpoint based on scanning geometry constraints. The goal is to find a minimum number of viewpoints that can obtain complete coverage of all wall segments with a minimal sum of incidence angles. The different methods have been implemented and compared in terms of the quality of the solutions, runtime and repeatability. The experiment environment was simulated from a room located on University of Calgary campus where multiple scans are required due to occlusions from interior walls. The results obtained in this research show that PSO and GA provide similar solutions while SA doesn't guarantee an optimal solution within limited iterations. Overall, GA is considered as the best choice for this problem based on its capability of providing an optimal solution and fewer parameters to tune.

  5. It looks easy! Heuristics for combinatorial optimization problems.

    PubMed

    Chronicle, Edward P; MacGregor, James N; Ormerod, Thomas C; Burr, Alistair

    2006-04-01

    Human performance on instances of computationally intractable optimization problems, such as the travelling salesperson problem (TSP), can be excellent. We have proposed a boundary-following heuristic to account for this finding. We report three experiments with TSPs where the capacity to employ this heuristic was varied. In Experiment 1, participants free to use the heuristic produced solutions significantly closer to optimal than did those prevented from doing so. Experiments 2 and 3 together replicated this finding in larger problems and demonstrated that a potential confound had no effect. In all three experiments, performance was closely matched by a boundary-following model. The results implicate global rather than purely local processes. Humans may have access to simple, perceptually based, heuristics that are suited to some combinatorial optimization tasks.

  6. An impatient evolutionary algorithm with probabilistic tabu search for unified solution of some NP-hard problems in graph and set theory via clique finding.

    PubMed

    Guturu, Parthasarathy; Dantu, Ram

    2008-06-01

    Many graph- and set-theoretic problems, because of their tremendous application potential and theoretical appeal, have been well investigated by the researchers in complexity theory and were found to be NP-hard. Since the combinatorial complexity of these problems does not permit exhaustive searches for optimal solutions, only near-optimal solutions can be explored using either various problem-specific heuristic strategies or metaheuristic global-optimization methods, such as simulated annealing, genetic algorithms, etc. In this paper, we propose a unified evolutionary algorithm (EA) to the problems of maximum clique finding, maximum independent set, minimum vertex cover, subgraph and double subgraph isomorphism, set packing, set partitioning, and set cover. In the proposed approach, we first map these problems onto the maximum clique-finding problem (MCP), which is later solved using an evolutionary strategy. The proposed impatient EA with probabilistic tabu search (IEA-PTS) for the MCP integrates the best features of earlier successful approaches with a number of new heuristics that we developed to yield a performance that advances the state of the art in EAs for the exploration of the maximum cliques in a graph. Results of experimentation with the 37 DIMACS benchmark graphs and comparative analyses with six state-of-the-art algorithms, including two from the smaller EA community and four from the larger metaheuristics community, indicate that the IEA-PTS outperforms the EAs with respect to a Pareto-lexicographic ranking criterion and offers competitive performance on some graph instances when individually compared to the other heuristic algorithms. It has also successfully set a new benchmark on one graph instance. On another benchmark suite called Benchmarks with Hidden Optimal Solutions, IEA-PTS ranks second, after a very recent algorithm called COVER, among its peers that have experimented with this suite.

  7. Helping the decision maker effectively promote various experts’ views into various optimal solutions to China’s institutional problem of health care provider selection through the organization of a pilot health care provider research system

    PubMed Central

    2013-01-01

    Background The main aim of China’s Health Care System Reform was to help the decision maker find the optimal solution to China’s institutional problem of health care provider selection. A pilot health care provider research system was recently organized in China’s health care system, and it could efficiently collect the data for determining the optimal solution to China’s institutional problem of health care provider selection from various experts, then the purpose of this study was to apply the optimal implementation methodology to help the decision maker effectively promote various experts’ views into various optimal solutions to this problem under the support of this pilot system. Methods After the general framework of China’s institutional problem of health care provider selection was established, this study collaborated with the National Bureau of Statistics of China to commission a large-scale 2009 to 2010 national expert survey (n = 3,914) through the organization of a pilot health care provider research system for the first time in China, and the analytic network process (ANP) implementation methodology was adopted to analyze the dataset from this survey. Results The market-oriented health care provider approach was the optimal solution to China’s institutional problem of health care provider selection from the doctors’ point of view; the traditional government’s regulation-oriented health care provider approach was the optimal solution to China’s institutional problem of health care provider selection from the pharmacists’ point of view, the hospital administrators’ point of view, and the point of view of health officials in health administration departments; the public private partnership (PPP) approach was the optimal solution to China’s institutional problem of health care provider selection from the nurses’ point of view, the point of view of officials in medical insurance agencies, and the health care researchers’ point of view. Conclusions The data collected through a pilot health care provider research system in the 2009 to 2010 national expert survey could help the decision maker effectively promote various experts’ views into various optimal solutions to China’s institutional problem of health care provider selection. PMID:23557082

  8. Approximate approach for optimization space flights with a low thrust on the basis of sufficient optimality conditions

    NASA Astrophysics Data System (ADS)

    Salmin, Vadim V.

    2017-01-01

    Flight mechanics with a low-thrust is a new chapter of mechanics of space flight, considered plurality of all problems trajectory optimization and movement control laws and the design parameters of spacecraft. Thus tasks associated with taking into account the additional factors in mathematical models of the motion of spacecraft becomes increasingly important, as well as additional restrictions on the possibilities of the thrust vector control. The complication of the mathematical models of controlled motion leads to difficulties in solving optimization problems. Author proposed methods of finding approximate optimal control and evaluating their optimality based on analytical solutions. These methods are based on the principle of extending the class of admissible states and controls and sufficient conditions for the absolute minimum. Developed procedures of the estimation enabling to determine how close to the optimal founded solution, and indicate ways to improve them. Authors describes procedures of estimate for approximately optimal control laws for space flight mechanics problems, in particular for optimization flight low-thrust between the circular non-coplanar orbits, optimization the control angle and trajectory movement of the spacecraft during interorbital flights, optimization flights with low-thrust between arbitrary elliptical orbits Earth satellites.

  9. Application of the advanced engineering environment for optimization energy consumption in designed vehicles

    NASA Astrophysics Data System (ADS)

    Monica, Z.; Sękala, A.; Gwiazda, A.; Banaś, W.

    2016-08-01

    Nowadays a key issue is to reduce the energy consumption of road vehicles. In particular solution one could find different strategies of energy optimization. The most popular but not sophisticated is so called eco-driving. In this strategy emphasized is particular behavior of drivers. In more sophisticated solution behavior of drivers is supported by control system measuring driving parameters and suggesting proper operation of the driver. The other strategy is concerned with application of different engineering solutions that aid optimization the process of energy consumption. Such systems take into consideration different parameters measured in real time and next take proper action according to procedures loaded to the control computer of a vehicle. The third strategy bases on optimization of the designed vehicle taking into account especially main sub-systems of a technical mean. In this approach the optimal level of energy consumption by a vehicle is obtained by synergetic results of individual optimization of particular constructional sub-systems of a vehicle. It is possible to distinguish three main sub-systems: the structural one the drive one and the control one. In the case of the structural sub-system optimization of the energy consumption level is related with the optimization or the weight parameter and optimization the aerodynamic parameter. The result is optimized body of a vehicle. Regarding the drive sub-system the optimization of the energy consumption level is related with the fuel or power consumption using the previously elaborated physical models. Finally the optimization of the control sub-system consists in determining optimal control parameters.

  10. Automatic design optimization tool for passive structural control systems

    NASA Astrophysics Data System (ADS)

    Mojolic, Cristian; Hulea, Radu; Parv, Bianca Roxana

    2017-07-01

    The present paper proposes an automatic dynamic process in order to find the parameters of the seismic isolation systems applied to large span structures. Three seismic isolation solutions are proposed for the model of the new Slatina Sport Hall. The first case uses friction pendulum system (FP), the second one uses High Damping Rubber Bearing (HDRB) and Lead Rubber Bearings, while (LRB) are used for the last case of isolation. The placement of the isolation level is at the top end of the roof supporting columns. The aim is to calculate the parameters of each isolation system so that the whole's structure first vibration periods is the one desired by the user. The model is computed with the use of SAP2000 software. In order to find the best solution for the optimization problem, an optimization process based on Genetic Algorithms (GA) has been developed in Matlab. With the use of the API (Application Programming Interface) libraries a two way link is created between the two programs in order to exchange results and link parameters. The main goal is to find the best seismic isolation method for each desired modal period so that the bending moment on the supporting columns should be minimum.

  11. An Exploration Of Fuel Optimal Two-impulse Transfers To Cyclers in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Hosseinisianaki, Saghar

    2011-12-01

    This research explores the optimum two-impulse transfers between a low Earth orbit and cycler orbits in the Earth-Moon circular restricted three-body framework, emphasizing the optimization strategy. Cyclers are those types of periodic orbits that meet both the Earth and the Moon periodically. A spacecraft on such trajectories are under the influence of both the Earth and the Moon gravitational fields. Cyclers have gained recent interest as baseline orbits for several Earth-Moon mission concepts, notably in relation to human exploration. In this thesis it is shown that a direct optimization starting from the classic lambert initial guess may not be adequate for these problems and propose a three-step optimization solver to improve the domain of convergence toward an optimal solution. The first step consists of finding feasible trajectories with a given transfer time. I employ Lambert's problem to provide initial guess to optimize the error in arrival position. This includes the analysis of the liability of Lambert's solution as an initial guess. Once a feasible trajectory is found, the velocity impulse is only a function of transfer time, departure, and arrival points' phases. The second step consists of the optimization of impulse over transfer time which results in the minimum impulse transfer for fixed end points. Finally, the third step is mapping the optimal solutions as the end points are varied.

  12. An Exploration Of Fuel Optimal Two-impulse Transfers To Cyclers in the Earth-Moon System

    NASA Astrophysics Data System (ADS)

    Hosseinisianaki, Saghar

    This research explores the optimum two-impulse transfers between a low Earth orbit and cycler orbits in the Earth-Moon circular restricted three-body framework, emphasizing the optimization strategy. Cyclers are those types of periodic orbits that meet both the Earth and the Moon periodically. A spacecraft on such trajectories are under the influence of both the Earth and the Moon gravitational fields. Cyclers have gained recent interest as baseline orbits for several Earth-Moon mission concepts, notably in relation to human exploration. In this thesis it is shown that a direct optimization starting from the classic lambert initial guess may not be adequate for these problems and propose a three-step optimization solver to improve the domain of convergence toward an optimal solution. The first step consists of finding feasible trajectories with a given transfer time. I employ Lambert's problem to provide initial guess to optimize the error in arrival position. This includes the analysis of the liability of Lambert's solution as an initial guess. Once a feasible trajectory is found, the velocity impulse is only a function of transfer time, departure, and arrival points' phases. The second step consists of the optimization of impulse over transfer time which results in the minimum impulse transfer for fixed end points. Finally, the third step is mapping the optimal solutions as the end points are varied.

  13. Optimal radiotherapy dose schedules under parametric uncertainty

    NASA Astrophysics Data System (ADS)

    Badri, Hamidreza; Watanabe, Yoichi; Leder, Kevin

    2016-01-01

    We consider the effects of parameter uncertainty on the optimal radiation schedule in the context of the linear-quadratic model. Our interest arises from the observation that if inter-patient variability in normal and tumor tissue radiosensitivity or sparing factor of the organs-at-risk (OAR) are not accounted for during radiation scheduling, the performance of the therapy may be strongly degraded or the OAR may receive a substantially larger dose than the allowable threshold. This paper proposes a stochastic radiation scheduling concept to incorporate inter-patient variability into the scheduling optimization problem. Our method is based on a probabilistic approach, where the model parameters are given by a set of random variables. Our probabilistic formulation ensures that our constraints are satisfied with a given probability, and that our objective function achieves a desired level with a stated probability. We used a variable transformation to reduce the resulting optimization problem to two dimensions. We showed that the optimal solution lies on the boundary of the feasible region and we implemented a branch and bound algorithm to find the global optimal solution. We demonstrated how the configuration of optimal schedules in the presence of uncertainty compares to optimal schedules in the absence of uncertainty (conventional schedule). We observed that in order to protect against the possibility of the model parameters falling into a region where the conventional schedule is no longer feasible, it is required to avoid extremal solutions, i.e. a single large dose or very large total dose delivered over a long period. Finally, we performed numerical experiments in the setting of head and neck tumors including several normal tissues to reveal the effect of parameter uncertainty on optimal schedules and to evaluate the sensitivity of the solutions to the choice of key model parameters.

  14. Spatial multiobjective optimization of agricultural conservation practices using a SWAT model and an evolutionary algorithm.

    PubMed

    Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine

    2012-12-09

    Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a multiobjective evolutionary algorithm SPEA2(26), and user-specified set of conservation practices and their costs to search for the complete tradeoff frontiers between costs of conservation practices and user-specified water quality objectives. The frontiers quantify the tradeoffs faced by the watershed managers by presenting the full range of costs associated with various water quality improvement goals. The program allows for a selection of watershed configurations achieving specified water quality improvement goals and a production of maps of optimized placement of conservation practices.

  15. A policy iteration approach to online optimal control of continuous-time constrained-input systems.

    PubMed

    Modares, Hamidreza; Naghibi Sistani, Mohammad-Bagher; Lewis, Frank L

    2013-09-01

    This paper is an effort towards developing an online learning algorithm to find the optimal control solution for continuous-time (CT) systems subject to input constraints. The proposed method is based on the policy iteration (PI) technique which has recently evolved as a major technique for solving optimal control problems. Although a number of online PI algorithms have been developed for CT systems, none of them take into account the input constraints caused by actuator saturation. In practice, however, ignoring these constraints leads to performance degradation or even system instability. In this paper, to deal with the input constraints, a suitable nonquadratic functional is employed to encode the constraints into the optimization formulation. Then, the proposed PI algorithm is implemented on an actor-critic structure to solve the Hamilton-Jacobi-Bellman (HJB) equation associated with this nonquadratic cost functional in an online fashion. That is, two coupled neural network (NN) approximators, namely an actor and a critic are tuned online and simultaneously for approximating the associated HJB solution and computing the optimal control policy. The critic is used to evaluate the cost associated with the current policy, while the actor is used to find an improved policy based on information provided by the critic. Convergence to a close approximation of the HJB solution as well as stability of the proposed feedback control law are shown. Simulation results of the proposed method on a nonlinear CT system illustrate the effectiveness of the proposed approach. Copyright © 2013 ISA. All rights reserved.

  16. System design and improvement of an emergency department using Simulation-Based Multi-Objective Optimization

    NASA Astrophysics Data System (ADS)

    Goienetxea Uriarte, A.; Ruiz Zúñiga, E.; Urenda Moris, M.; Ng, A. H. C.

    2015-05-01

    Discrete Event Simulation (DES) is nowadays widely used to support decision makers in system analysis and improvement. However, the use of simulation for improving stochastic logistic processes is not common among healthcare providers. The process of improving healthcare systems involves the necessity to deal with trade-off optimal solutions that take into consideration a multiple number of variables and objectives. Complementing DES with Multi-Objective Optimization (SMO) creates a superior base for finding these solutions and in consequence, facilitates the decision-making process. This paper presents how SMO has been applied for system improvement analysis in a Swedish Emergency Department (ED). A significant number of input variables, constraints and objectives were considered when defining the optimization problem. As a result of the project, the decision makers were provided with a range of optimal solutions which reduces considerably the length of stay and waiting times for the ED patients. SMO has proved to be an appropriate technique to support healthcare system design and improvement processes. A key factor for the success of this project has been the involvement and engagement of the stakeholders during the whole process.

  17. Modelling and Optimization of Polycaprolactone Ultrafine-Fibres Electrospinning Process Using Response Surface Methodology

    PubMed Central

    Ruys, Andrew J.

    2018-01-01

    Electrospun fibres have gained broad interest in biomedical applications, including tissue engineering scaffolds, due to their potential in mimicking extracellular matrix and producing structures favourable for cell and tissue growth. The development of scaffolds often involves multivariate production parameters and multiple output characteristics to define product quality. In this study on electrospinning of polycaprolactone (PCL), response surface methodology (RSM) was applied to investigate the determining parameters and find optimal settings to achieve the desired properties of fibrous scaffold for acetabular labrum implant. The results showed that solution concentration influenced fibre diameter, while elastic modulus was determined by solution concentration, flow rate, temperature, collector rotation speed, and interaction between concentration and temperature. Relationships between these variables and outputs were modelled, followed by an optimization procedure. Using the optimized setting (solution concentration of 10% w/v, flow rate of 4.5 mL/h, temperature of 45 °C, and collector rotation speed of 1500 RPM), a target elastic modulus of 25 MPa could be achieved at a minimum possible fibre diameter (1.39 ± 0.20 µm). This work demonstrated that multivariate factors of production parameters and multiple responses can be investigated, modelled, and optimized using RSM. PMID:29562614

  18. Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems.

    PubMed

    Kiumarsi, Bahare; Lewis, Frank L

    2015-01-01

    This paper presents a partially model-free adaptive optimal control solution to the deterministic nonlinear discrete-time (DT) tracking control problem in the presence of input constraints. The tracking error dynamics and reference trajectory dynamics are first combined to form an augmented system. Then, a new discounted performance function based on the augmented system is presented for the optimal nonlinear tracking problem. In contrast to the standard solution, which finds the feedforward and feedback terms of the control input separately, the minimization of the proposed discounted performance function gives both feedback and feedforward parts of the control input simultaneously. This enables us to encode the input constraints into the optimization problem using a nonquadratic performance function. The DT tracking Bellman equation and tracking Hamilton-Jacobi-Bellman (HJB) are derived. An actor-critic-based reinforcement learning algorithm is used to learn the solution to the tracking HJB equation online without requiring knowledge of the system drift dynamics. That is, two neural networks (NNs), namely, actor NN and critic NN, are tuned online and simultaneously to generate the optimal bounded control policy. A simulation example is given to show the effectiveness of the proposed method.

  19. Seven-spot ladybird optimization: a novel and efficient metaheuristic algorithm for numerical optimization.

    PubMed

    Wang, Peng; Zhu, Zhouquan; Huang, Shuai

    2013-01-01

    This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.

  20. Seven-Spot Ladybird Optimization: A Novel and Efficient Metaheuristic Algorithm for Numerical Optimization

    PubMed Central

    Zhu, Zhouquan

    2013-01-01

    This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions. PMID:24385879

  1. Swarm intelligence applied to the risk evaluation for congenital heart surgery.

    PubMed

    Zapata-Impata, Brayan S; Ruiz-Fernandez, Daniel; Monsalve-Torra, Ana

    2015-01-01

    Particle Swarm Optimization is an optimization technique based on the positions of several particles created to find the best solution to a problem. In this work we analyze the accuracy of a modification of this algorithm to classify the levels of risk for a surgery, used as a treatment to correct children malformations that imply congenital heart diseases.

  2. A Novel Particle Swarm Optimization Approach for Grid Job Scheduling

    NASA Astrophysics Data System (ADS)

    Izakian, Hesam; Tork Ladani, Behrouz; Zamanifar, Kamran; Abraham, Ajith

    This paper represents a Particle Swarm Optimization (PSO) algorithm, for grid job scheduling. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. In this paper we used a PSO approach for grid job scheduling. The scheduler aims at minimizing makespan and flowtime simultaneously. Experimental studies show that the proposed novel approach is more efficient than the PSO approach reported in the literature.

  3. A neural network based implementation of an MPC algorithm applied in the control systems of electromechanical plants

    NASA Astrophysics Data System (ADS)

    Marusak, Piotr M.; Kuntanapreeda, Suwat

    2018-01-01

    The paper considers application of a neural network based implementation of a model predictive control (MPC) control algorithm to electromechanical plants. Properties of such control plants implicate that a relatively short sampling time should be used. However, in such a case, finding the control value numerically may be too time-consuming. Therefore, the current paper tests the solution based on transforming the MPC optimization problem into a set of differential equations whose solution is the same as that of the original optimization problem. This set of differential equations can be interpreted as a dynamic neural network. In such an approach, the constraints can be introduced into the optimization problem with relative ease. Moreover, the solution of the optimization problem can be obtained faster than when the standard numerical quadratic programming routine is used. However, a very careful tuning of the algorithm is needed to achieve this. A DC motor and an electrohydraulic actuator are taken as illustrative examples. The feasibility and effectiveness of the proposed approach are demonstrated through numerical simulations.

  4. An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter

    NASA Astrophysics Data System (ADS)

    Gorsevski, Pece V.; Jankowski, Piotr

    2010-08-01

    The Kalman recursive algorithm has been very widely used for integrating navigation sensor data to achieve optimal system performances. This paper explores the use of the Kalman filter to extend the aggregation of spatial multi-criteria evaluation (MCE) and to find optimal solutions with respect to a decision strategy space where a possible decision rule falls. The approach was tested in a case study in the Clearwater National Forest in central Idaho, using existing landslide datasets from roaded and roadless areas and terrain attributes. In this approach, fuzzy membership functions were used to standardize terrain attributes and develop criteria, while the aggregation of the criteria was achieved by the use of a Kalman filter. The approach presented here offers advantages over the classical MCE theory because the final solution includes both the aggregated solution and the areas of uncertainty expressed in terms of standard deviation. A comparison of this methodology with similar approaches suggested that this approach is promising for predicting landslide susceptibility and further application as a spatial decision support system.

  5. Are strategies in physics discrete? A remote controlled investigation

    NASA Astrophysics Data System (ADS)

    Heck, Robert; Sherson, Jacob F.; www. scienceathome. org Team; players Team

    2017-04-01

    In science, strategies are formulated based on observations, calculations, or physical insight. For any given physical process, often several distinct strategies are identified. Are these truly distinct or simply low dimensional representations of a high dimensional continuum of solutions? Our online citizen science platform www.scienceathome.org used by more than 150,000 people recently enabled finding solutions to fast, 1D single atom transport [Nature2016]. Surprisingly, player trajectories bunched into discrete solution strategies (clans) yielding clear, distinct physical insight. Introducing the multi-dimensional vector in the direction of other local maxima we locate narrow, high-yield ``bridges'' connecting the clans. This demonstrates for this problem that a continuum of solutions with no clear physical interpretation does in fact exist. Next, four distinct strategies for creating Bose-Einstein condensates were investigated experimentally: hybrid and crossed dipole trap configurations in combination with either large volume or dimple loading from a magnetic trap. We find that although each conventional strategy appears locally optimal, ``bridges'' can be identified. In a novel approach, the problem was gamified allowing 750 citizen scientists to contribute to the experimental optimization yielding nearly a factor two improvement in atom number.

  6. Broadcasting satellite service synthesis using gradient and cyclic coordinate search procedures

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Mount-Campbell, C. A.; Gonsalvez, D. J.; Martin, C. H.; Levis, C. A.; Wang, C. W.

    1986-01-01

    Two search techniques are considered for solving satellite synthesis problems. Neither is likely to find a globally optimal solution. In order to determine which method performs better and what factors affect their performance, we design an experiment and solve the same problem under a variety of starting solution configuration-algorithm combinations. Since there is no randomization in the experiment, we present results of practical, rather than statistical, significance. Our implementation of a cyclic coordinate search procedure clearly finds better synthesis solutions than our implementation of a gradient search procedure does with our objective of maximizing the minimum C/I ratio computed at test points on the perimeters of the intended service areas. The length of the available orbital arc and the configuration of the starting solution are shown to affect the quality of the solutions found.

  7. Broadcasting satellite service synthesis using gradient and cyclic coordinate search procedures

    NASA Technical Reports Server (NTRS)

    Reilly, C. H.; Mount-Campbell, C. A.; Gonsalvez, D. J.; Martin, C. H.; Levis, C. A.

    1986-01-01

    Two search techniques are considered for solving satellite synthesis problems. Neither is likely to find a globally optimal solution. In order to determine which method performs better and what factors affect their performance, an experiment is designed and the same problem is solved under a variety of starting solution configuration-algorithm combinations. Since there is no randomization in the experiment, results of practical, rather than statistical, significance are presented. Implementation of a cyclic coordinate search procedure clearly finds better synthesis solutions than implementation of a gradient search procedure does with the objective of maximizing the minimum C/I ratio computed at test points on the perimeters of the intended service areas. The length of the available orbital arc and the configuration of the starting solution are shown to affect the quality of the solutions found.

  8. Shape design of internal cooling passages within a turbine blade

    NASA Astrophysics Data System (ADS)

    Nowak, Grzegorz; Nowak, Iwona

    2012-04-01

    The article concerns the optimization of the shape and location of non-circular passages cooling the blade of a gas turbine. To model the shape, four Bezier curves which form a closed profile of the passage were used. In order to match the shape of the passage to the blade profile, a technique was put forward to copy and scale the profile fragments into the component, and build the outline of the passage on the basis of them. For so-defined cooling passages, optimization calculations were carried out with a view to finding their optimal shape and location in terms of the assumed objectives. The task was solved as a multi-objective problem with the use of the Pareto method, for a cooling system composed of four and five passages. The tool employed for the optimization was the evolutionary algorithm. The article presents the impact of the population on the task convergence, and discusses the impact of different optimization objectives on the Pareto optimal solutions obtained. Due to the problem of different impacts of individual objectives on the position of the solution front which was noticed during the calculations, a two-step optimization procedure was introduced. Also, comparative optimization calculations for the scalar objective function were carried out and set up against the non-dominated solutions obtained in the Pareto approach. The optimization process resulted in a configuration of the cooling system that allows a significant reduction in the temperature of the blade and its thermal stress.

  9. Coupling HYDRUS-1D Code with PA-DDS Algorithms for Inverse Calibration

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Asadzadeh, Masoud; Holländer, Hartmut

    2017-04-01

    Numerical modelling requires calibration to predict future stages. A standard method for calibration is inverse calibration where generally multi-objective optimization algorithms are used to find a solution, e.g. to find an optimal solution of the van Genuchten Mualem (VGM) parameters to predict water fluxes in the vadose zone. We coupled HYDRUS-1D with PA-DDS to add a new, robust function for inverse calibration to the model. The PA-DDS method is a recently developed multi-objective optimization algorithm, which combines Dynamically Dimensioned Search (DDS) and Pareto Archived Evolution Strategy (PAES). The results were compared to a standard method (Marquardt-Levenberg method) implemented in HYDRUS-1D. Calibration performance is evaluated using observed and simulated soil moisture at two soil layers in the Southern Abbotsford, British Columbia, Canada in the terms of the root mean squared error (RMSE) and the Nash-Sutcliffe Efficiency (NSE). Results showed low RMSE values of 0.014 and 0.017 and strong NSE values of 0.961 and 0.939. Compared to the results by the Marquardt-Levenberg method, we received better calibration results for deeper located soil sensors. However, VGM parameters were similar comparing with previous studies. Both methods are equally computational efficient. We claim that a direct implementation of PA-DDS into HYDRUS-1D should reduce the computation effort further. This, the PA-DDS method is efficient for calibrating recharge for complex vadose zone modelling with multiple soil layer and can be a potential tool for calibration of heat and solute transport. Future work should focus on the effectiveness of PA-DDS for calibrating more complex versions of the model with complex vadose zone settings, with more soil layers, and against measured heat and solute transport. Keywords: Recharge, Calibration, HYDRUS-1D, Multi-objective Optimization

  10. Multi-objective optimization of radiotherapy: distributed Q-learning and agent-based simulation

    NASA Astrophysics Data System (ADS)

    Jalalimanesh, Ammar; Haghighi, Hamidreza Shahabi; Ahmadi, Abbas; Hejazian, Hossein; Soltani, Madjid

    2017-09-01

    Radiotherapy (RT) is among the regular techniques for the treatment of cancerous tumours. Many of cancer patients are treated by this manner. Treatment planning is the most important phase in RT and it plays a key role in therapy quality achievement. As the goal of RT is to irradiate the tumour with adequately high levels of radiation while sparing neighbouring healthy tissues as much as possible, it is a multi-objective problem naturally. In this study, we propose an agent-based model of vascular tumour growth and also effects of RT. Next, we use multi-objective distributed Q-learning algorithm to find Pareto-optimal solutions for calculating RT dynamic dose. We consider multiple objectives and each group of optimizer agents attempt to optimise one of them, iteratively. At the end of each iteration, agents compromise the solutions to shape the Pareto-front of multi-objective problem. We propose a new approach by defining three schemes of treatment planning created based on different combinations of our objectives namely invasive, conservative and moderate. In invasive scheme, we enforce killing cancer cells and pay less attention about irradiation effects on normal cells. In conservative scheme, we take more care of normal cells and try to destroy cancer cells in a less stressed manner. The moderate scheme stands in between. For implementation, each of these schemes is handled by one agent in MDQ-learning algorithm and the Pareto optimal solutions are discovered by the collaboration of agents. By applying this methodology, we could reach Pareto treatment plans through building different scenarios of tumour growth and RT. The proposed multi-objective optimisation algorithm generates robust solutions and finds the best treatment plan for different conditions.

  11. Solving Energy-Aware Real-Time Tasks Scheduling Problem with Shuffled Frog Leaping Algorithm on Heterogeneous Platforms

    PubMed Central

    Zhang, Weizhe; Bai, Enci; He, Hui; Cheng, Albert M.K.

    2015-01-01

    Reducing energy consumption is becoming very important in order to keep battery life and lower overall operational costs for heterogeneous real-time multiprocessor systems. In this paper, we first formulate this as a combinatorial optimization problem. Then, a successful meta-heuristic, called Shuffled Frog Leaping Algorithm (SFLA) is proposed to reduce the energy consumption. Precocity remission and local optimal avoidance techniques are proposed to avoid the precocity and improve the solution quality. Convergence acceleration significantly reduces the search time. Experimental results show that the SFLA-based energy-aware meta-heuristic uses 30% less energy than the Ant Colony Optimization (ACO) algorithm, and 60% less energy than the Genetic Algorithm (GA) algorithm. Remarkably, the running time of the SFLA-based meta-heuristic is 20 and 200 times less than ACO and GA, respectively, for finding the optimal solution. PMID:26110406

  12. Heterogeneous quantum computing for satellite constellation optimization: solving the weighted k-clique problem

    NASA Astrophysics Data System (ADS)

    Bass, Gideon; Tomlin, Casey; Kumar, Vaibhaw; Rihaczek, Pete; Dulny, Joseph, III

    2018-04-01

    NP-hard optimization problems scale very rapidly with problem size, becoming unsolvable with brute force methods, even with supercomputing resources. Typically, such problems have been approximated with heuristics. However, these methods still take a long time and are not guaranteed to find an optimal solution. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. Current quantum annealing (QA) devices are designed to solve difficult optimization problems, but they are limited by hardware size and qubit connectivity restrictions. We present a novel heterogeneous computing stack that combines QA and classical machine learning, allowing the use of QA on problems larger than the hardware limits of the quantum device. These results represent experiments on a real-world problem represented by the weighted k-clique problem. Through this experiment, we provide insight into the state of quantum machine learning.

  13. A Danger-Theory-Based Immune Network Optimization Algorithm

    PubMed Central

    Li, Tao; Xiao, Xin; Shi, Yuanquan

    2013-01-01

    Existing artificial immune optimization algorithms reflect a number of shortcomings, such as premature convergence and poor local search ability. This paper proposes a danger-theory-based immune network optimization algorithm, named dt-aiNet. The danger theory emphasizes that danger signals generated from changes of environments will guide different levels of immune responses, and the areas around danger signals are called danger zones. By defining the danger zone to calculate danger signals for each antibody, the algorithm adjusts antibodies' concentrations through its own danger signals and then triggers immune responses of self-regulation. So the population diversity can be maintained. Experimental results show that the algorithm has more advantages in the solution quality and diversity of the population. Compared with influential optimization algorithms, CLONALG, opt-aiNet, and dopt-aiNet, the algorithm has smaller error values and higher success rates and can find solutions to meet the accuracies within the specified function evaluation times. PMID:23483853

  14. An Investigation to Manufacturing Analytical Services Composition using the Analytical Target Cascading Method.

    PubMed

    Tien, Kai-Wen; Kulvatunyou, Boonserm; Jung, Kiwook; Prabhu, Vittaldas

    2017-01-01

    As cloud computing is increasingly adopted, the trend is to offer software functions as modular services and compose them into larger, more meaningful ones. The trend is attractive to analytical problems in the manufacturing system design and performance improvement domain because 1) finding a global optimization for the system is a complex problem; and 2) sub-problems are typically compartmentalized by the organizational structure. However, solving sub-problems by independent services can result in a sub-optimal solution at the system level. This paper investigates the technique called Analytical Target Cascading (ATC) to coordinate the optimization of loosely-coupled sub-problems, each may be modularly formulated by differing departments and be solved by modular analytical services. The result demonstrates that ATC is a promising method in that it offers system-level optimal solutions that can scale up by exploiting distributed and modular executions while allowing easier management of the problem formulation.

  15. Structural damage detection-oriented multi-type sensor placement with multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Fu; Xu, You-Lin; Law, Siu-Seong

    2018-05-01

    A structural damage detection-oriented multi-type sensor placement method with multi-objective optimization is developed in this study. The multi-type response covariance sensitivity-based damage detection method is first introduced. Two objective functions for optimal sensor placement are then introduced in terms of the response covariance sensitivity and the response independence. The multi-objective optimization problem is formed by using the two objective functions, and the non-dominated sorting genetic algorithm (NSGA)-II is adopted to find the solution for the optimal multi-type sensor placement to achieve the best structural damage detection. The proposed method is finally applied to a nine-bay three-dimensional frame structure. Numerical results show that the optimal multi-type sensor placement determined by the proposed method can avoid redundant sensors and provide satisfactory results for structural damage detection. The restriction on the number of each type of sensors in the optimization can reduce the searching space in the optimization to make the proposed method more effective. Moreover, how to select a most optimal sensor placement from the Pareto solutions via the utility function and the knee point method is demonstrated in the case study.

  16. An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications.

    PubMed

    Ye, Fei; Lou, Xin Yuan; Sun, Lin Fu

    2017-01-01

    This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm's performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem.

  17. An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications

    PubMed Central

    Lou, Xin Yuan; Sun, Lin Fu

    2017-01-01

    This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find the food source. However, the proposed mutation strategy uses two distinct generative mechanisms for new food sources at the osphresis phase, allowing the algorithm procedure to search for the optimal solution in both the whole solution space and within the local solution space containing the fruit fly swarm location. In an evaluation based on a group of ten benchmark problems, the proposed algorithm’s performance is compared with that of other well-known algorithms, and the results support the superiority of the proposed algorithm. Moreover, this algorithm is successfully applied in a SVM to perform both parameter setting turning for the SVM and feature selection to solve real-world classification problems. This method is called chaotic fruit fly optimization algorithm (CIFOA)-SVM and has been shown to be a more robust and effective optimization method than other well-known methods, particularly in terms of solving the medical diagnosis problem and the credit card problem. PMID:28369096

  18. Parallel-vector computation for structural analysis and nonlinear unconstrained optimization problems

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.

    1990-01-01

    Practical engineering application can often be formulated in the form of a constrained optimization problem. There are several solution algorithms for solving a constrained optimization problem. One approach is to convert a constrained problem into a series of unconstrained problems. Furthermore, unconstrained solution algorithms can be used as part of the constrained solution algorithms. Structural optimization is an iterative process where one starts with an initial design, a finite element structure analysis is then performed to calculate the response of the system (such as displacements, stresses, eigenvalues, etc.). Based upon the sensitivity information on the objective and constraint functions, an optimizer such as ADS or IDESIGN, can be used to find the new, improved design. For the structural analysis phase, the equation solver for the system of simultaneous, linear equations plays a key role since it is needed for either static, or eigenvalue, or dynamic analysis. For practical, large-scale structural analysis-synthesis applications, computational time can be excessively large. Thus, it is necessary to have a new structural analysis-synthesis code which employs new solution algorithms to exploit both parallel and vector capabilities offered by modern, high performance computers such as the Convex, Cray-2 and Cray-YMP computers. The objective of this research project is, therefore, to incorporate the latest development in the parallel-vector equation solver, PVSOLVE into the widely popular finite-element production code, such as the SAP-4. Furthermore, several nonlinear unconstrained optimization subroutines have also been developed and tested under a parallel computer environment. The unconstrained optimization subroutines are not only useful in their own right, but they can also be incorporated into a more popular constrained optimization code, such as ADS.

  19. People efficiently explore the solution space of the computationally intractable traveling salesman problem to find near-optimal tours.

    PubMed

    Acuña, Daniel E; Parada, Víctor

    2010-07-29

    Humans need to solve computationally intractable problems such as visual search, categorization, and simultaneous learning and acting, yet an increasing body of evidence suggests that their solutions to instantiations of these problems are near optimal. Computational complexity advances an explanation to this apparent paradox: (1) only a small portion of instances of such problems are actually hard, and (2) successful heuristics exploit structural properties of the typical instance to selectively improve parts that are likely to be sub-optimal. We hypothesize that these two ideas largely account for the good performance of humans on computationally hard problems. We tested part of this hypothesis by studying the solutions of 28 participants to 28 instances of the Euclidean Traveling Salesman Problem (TSP). Participants were provided feedback on the cost of their solutions and were allowed unlimited solution attempts (trials). We found a significant improvement between the first and last trials and that solutions are significantly different from random tours that follow the convex hull and do not have self-crossings. More importantly, we found that participants modified their current better solutions in such a way that edges belonging to the optimal solution ("good" edges) were significantly more likely to stay than other edges ("bad" edges), a hallmark of structural exploitation. We found, however, that more trials harmed the participants' ability to tell good from bad edges, suggesting that after too many trials the participants "ran out of ideas." In sum, we provide the first demonstration of significant performance improvement on the TSP under repetition and feedback and evidence that human problem-solving may exploit the structure of hard problems paralleling behavior of state-of-the-art heuristics.

  20. People Efficiently Explore the Solution Space of the Computationally Intractable Traveling Salesman Problem to Find Near-Optimal Tours

    PubMed Central

    Acuña, Daniel E.; Parada, Víctor

    2010-01-01

    Humans need to solve computationally intractable problems such as visual search, categorization, and simultaneous learning and acting, yet an increasing body of evidence suggests that their solutions to instantiations of these problems are near optimal. Computational complexity advances an explanation to this apparent paradox: (1) only a small portion of instances of such problems are actually hard, and (2) successful heuristics exploit structural properties of the typical instance to selectively improve parts that are likely to be sub-optimal. We hypothesize that these two ideas largely account for the good performance of humans on computationally hard problems. We tested part of this hypothesis by studying the solutions of 28 participants to 28 instances of the Euclidean Traveling Salesman Problem (TSP). Participants were provided feedback on the cost of their solutions and were allowed unlimited solution attempts (trials). We found a significant improvement between the first and last trials and that solutions are significantly different from random tours that follow the convex hull and do not have self-crossings. More importantly, we found that participants modified their current better solutions in such a way that edges belonging to the optimal solution (“good” edges) were significantly more likely to stay than other edges (“bad” edges), a hallmark of structural exploitation. We found, however, that more trials harmed the participants' ability to tell good from bad edges, suggesting that after too many trials the participants “ran out of ideas.” In sum, we provide the first demonstration of significant performance improvement on the TSP under repetition and feedback and evidence that human problem-solving may exploit the structure of hard problems paralleling behavior of state-of-the-art heuristics. PMID:20686597

  1. An evolutionary strategy based on partial imitation for solving optimization problems

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto

    2016-12-01

    In this work we introduce an evolutionary strategy to solve combinatorial optimization tasks, i.e. problems characterized by a discrete search space. In particular, we focus on the Traveling Salesman Problem (TSP), i.e. a famous problem whose search space grows exponentially, increasing the number of cities, up to becoming NP-hard. The solutions of the TSP can be codified by arrays of cities, and can be evaluated by fitness, computed according to a cost function (e.g. the length of a path). Our method is based on the evolution of an agent population by means of an imitative mechanism, we define 'partial imitation'. In particular, agents receive a random solution and then, interacting among themselves, may imitate the solutions of agents with a higher fitness. Since the imitation mechanism is only partial, agents copy only one entry (randomly chosen) of another array (i.e. solution). In doing so, the population converges towards a shared solution, behaving like a spin system undergoing a cooling process, i.e. driven towards an ordered phase. We highlight that the adopted 'partial imitation' mechanism allows the population to generate solutions over time, before reaching the final equilibrium. Results of numerical simulations show that our method is able to find, in a finite time, both optimal and suboptimal solutions, depending on the size of the considered search space.

  2. An objective function exploiting suboptimal solutions in metabolic networks

    PubMed Central

    2013-01-01

    Background Flux Balance Analysis is a theoretically elegant, computationally efficient, genome-scale approach to predicting biochemical reaction fluxes. Yet FBA models exhibit persistent mathematical degeneracy that generally limits their predictive power. Results We propose a novel objective function for cellular metabolism that accounts for and exploits degeneracy in the metabolic network to improve flux predictions. In our model, regulation drives metabolism toward a region of flux space that allows nearly optimal growth. Metabolic mutants deviate minimally from this region, a function represented mathematically as a convex cone. Near-optimal flux configurations within this region are considered equally plausible and not subject to further optimizing regulation. Consistent with relaxed regulation near optimality, we find that the size of the near-optimal region predicts flux variability under experimental perturbation. Conclusion Accounting for suboptimal solutions can improve the predictive power of metabolic FBA models. Because fluctuations of enzyme and metabolite levels are inevitable, tolerance for suboptimality may support a functionally robust metabolic network. PMID:24088221

  3. Hydration and conformational equilibria of simple hydrophobic and amphiphilic solutes.

    PubMed Central

    Ashbaugh, H S; Kaler, E W; Paulaitis, M E

    1998-01-01

    We consider whether the continuum model of hydration optimized to reproduce vacuum-to-water transfer free energies simultaneously describes the hydration free energy contributions to conformational equilibria of the same solutes in water. To this end, transfer and conformational free energies of idealized hydrophobic and amphiphilic solutes in water are calculated from explicit water simulations and compared to continuum model predictions. As benchmark hydrophobic solutes, we examine the hydration of linear alkanes from methane through hexane. Amphiphilic solutes were created by adding a charge of +/-1e to a terminal methyl group of butane. We find that phenomenological continuum parameters fit to transfer free energies are significantly different from those fit to conformational free energies of our model solutes. This difference is attributed to continuum model parameters that depend on solute conformation in water, and leads to effective values for the free energy/surface area coefficient and Born radii that best describe conformational equilibrium. In light of these results, we believe that continuum models of hydration optimized to fit transfer free energies do not accurately capture the balance between hydrophobic and electrostatic contributions that determines the solute conformational state in aqueous solution. PMID:9675177

  4. Optimisation multi-objectif des systemes energetiques

    NASA Astrophysics Data System (ADS)

    Dipama, Jean

    The increasing demand of energy and the environmental concerns related to greenhouse gas emissions lead to more and more private or public utilities to turn to nuclear energy as an alternative for the future. Nuclear power plants are then called to experience large expansion in the coming years. Improved technologies will then be put in place to support the development of these plants. This thesis considers the optimization of the thermodynamic cycle of the secondary loop of Gentilly-2 nuclear power plant in terms of output power and thermal efficiency. In this thesis, investigations are carried out to determine the optimal operating conditions of steam power cycles by the judicious use of the combination of steam extraction at the different stages of the turbines. Whether it is the case of superheating or regeneration, we are confronted in all cases to an optimization problem involving two conflicting objectives, as increasing the efficiency imply the decrease of mechanical work and vice versa. Solving this kind of problem does not lead to unique solution, but to a set of solutions that are tradeoffs between the conflicting objectives. To search all of these solutions, called Pareto optimal solutions, the use of an appropriate optimization algorithm is required. Before starting the optimization of the secondary loop, we developed a thermodynamic model of the secondary loop which includes models for the main thermal components (e.g., turbine, moisture separator-superheater, condenser, feedwater heater and deaerator). This model is used to calculate the thermodynamic state of the steam and water at the different points of the installation. The thermodynamic model has been developed with Matlab and validated by comparing its predictions with the operating data provided by the engineers of the power plant. The optimizer developed in VBA (Visual Basic for Applications) uses an optimization algorithm based on the principle of genetic algorithms, a stochastic optimization method which is very robust and widely used to solve problems usually difficult to handle by traditional methods. Genetic algorithms (GAs) have been used in previous research and proved to be efficient in optimizing heat exchangers networks (HEN) (Dipama et al., 2008). So, HEN have been synthesized to recover the maximum heat in an industrial process. The optimization problem formulated in the context of this work consists of a single objective, namely the maximization of energy recovery. The optimization algorithm developed in this thesis extends the ability of GAs by taking into account several objectives simultaneously. This algorithm provides an innovation in the method of finding optimal solutions, by using a technique which consist of partitioning the solutions space in the form of parallel grids called "watching corridors". These corridors permit to specify areas (the observation corridors) in which the most promising feasible solutions are found and used to guide the search towards optimal solutions. A measure of the progress of the search is incorporated into the optimization algorithm to make it self-adaptive through the use of appropriate genetic operators at each stage of optimization process. The proposed method allows a fast convergence and ensure a diversity of solutions. Moreover, this method gives the algorithm the ability to overcome difficulties associated with optimizing problems with complex Pareto front landscapes (e.g., discontinuity, disjunction, etc.). The multi-objective optimization algorithm has been first validated using numerical test problems found in the literature as well as energy systems optimization problems. Finally, the proposed optimization algorithm has been applied for the optimization of the secondary loop of Gentilly-2 nuclear power plant, and a set of solutions have been found which permit to make the power plant operate in optimal conditions. (Abstract shortened by UMI.)

  5. Performance evaluation of coherent Ising machines against classical neural networks

    NASA Astrophysics Data System (ADS)

    Haribara, Yoshitaka; Ishikawa, Hitoshi; Utsunomiya, Shoko; Aihara, Kazuyuki; Yamamoto, Yoshihisa

    2017-12-01

    The coherent Ising machine is expected to find a near-optimal solution in various combinatorial optimization problems, which has been experimentally confirmed with optical parametric oscillators and a field programmable gate array circuit. The similar mathematical models were proposed three decades ago by Hopfield et al in the context of classical neural networks. In this article, we compare the computational performance of both models.

  6. Determination of an Optimal Control Strategy for a Generic Surface Vehicle

    DTIC Science & Technology

    2014-06-18

    paragraphs uses the numerical procedure in MATLAB’s BVP (bvp4c) algorithm using the continuation method. The goal is to find a solution to the set of...solution. Solving the BVP problem using bvp4c requires an initial guess for the solution. Note that the algorithm is very sensitive to the particular...form of the initial guess. The quality of the initial guess is paramount in convergence speed of the BVP algorithm and often determines if the

  7. Blended near-optimal tools for flexible water resources decision making

    NASA Astrophysics Data System (ADS)

    Rosenberg, David

    2015-04-01

    State-of-the-art systems analysis techniques focus on efficiently finding optimal solutions. Yet an optimal solution is optimal only for the static modelled issues and managers often seek near-optimal alternatives that address un-modelled or changing objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as performance within a tolerable deviation from the optimal objective function value and identified a few maximally-different alternatives that addressed select un-modelled issues. This paper presents new stratified, Monte Carlo Markov Chain sampling and parallel coordinate plotting tools that generate and communicate the structure and full extent of the near-optimal region to an optimization problem. Plot controls allow users to interactively explore region features of most interest. Controls also streamline the process to elicit un-modelled issues and update the model formulation in response to elicited issues. Use for a single-objective water quality management problem at Echo Reservoir, Utah identifies numerous and flexible practices to reduce the phosphorus load to the reservoir and maintain close-to-optimal performance. Compared to MGA, the new blended tools generate more numerous alternatives faster, more fully show the near-optimal region, help elicit a larger set of un-modelled issues, and offer managers greater flexibility to cope in a changing world.

  8. SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Z; Folkert, M; Wang, J

    2016-06-15

    Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidentialmore » reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.« less

  9. Identifying the role of conservation biology for solving the environmental crisis.

    PubMed

    Dalerum, Fredrik

    2014-11-01

    Humans are altering their living environment to an extent that could cause environmental collapse. Promoting change into environmental sustainability is therefore urgent. Despite a rapid expansion in conservation biology, appreciation of underlying causes and identification of long-term solutions have largely been lacking. I summarized knowledge regarding the environmental crisis, and argue that the most important contributions toward solutions come from economy, political sciences, and psychology. Roles of conservation biology include providing environmental protection until sustainable solutions have been found, evaluating the effectiveness of implemented solutions, and providing societies with information necessary to align effectively with environmental values. Because of the potential disciplinary discrepancy between finding long-term solutions and short-term protection, we may face critical trade-offs between allocations of resources toward achieving sustainability. Since biological knowledge is required for such trade-offs, an additional role for conservation biologists may be to provide guidance toward finding optimal strategies in such trade-offs.

  10. Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning

    PubMed Central

    Hayashibe, Mitsuhiro; Shimoda, Shingo

    2014-01-01

    A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach. PMID:24616695

  11. Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning.

    PubMed

    Hayashibe, Mitsuhiro; Shimoda, Shingo

    2014-01-01

    A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.

  12. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2015-07-01

    In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.

  13. Single- and Multiple-Objective Optimization with Differential Evolution and Neural Networks

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2006-01-01

    Genetic and evolutionary algorithms have been applied to solve numerous problems in engineering design where they have been used primarily as optimization procedures. These methods have an advantage over conventional gradient-based search procedures became they are capable of finding global optima of multi-modal functions and searching design spaces with disjoint feasible regions. They are also robust in the presence of noisy data. Another desirable feature of these methods is that they can efficiently use distributed and parallel computing resources since multiple function evaluations (flow simulations in aerodynamics design) can be performed simultaneously and independently on ultiple processors. For these reasons genetic and evolutionary algorithms are being used more frequently in design optimization. Examples include airfoil and wing design and compressor and turbine airfoil design. They are also finding increasing use in multiple-objective and multidisciplinary optimization. This lecture will focus on an evolutionary method that is a relatively new member to the general class of evolutionary methods called differential evolution (DE). This method is easy to use and program and it requires relatively few user-specified constants. These constants are easily determined for a wide class of problems. Fine-tuning the constants will off course yield the solution to the optimization problem at hand more rapidly. DE can be efficiently implemented on parallel computers and can be used for continuous, discrete and mixed discrete/continuous optimization problems. It does not require the objective function to be continuous and is noise tolerant. DE and applications to single and multiple-objective optimization will be included in the presentation and lecture notes. A method for aerodynamic design optimization that is based on neural networks will also be included as a part of this lecture. The method offers advantages over traditional optimization methods. It is more flexible than other methods in dealing with design in the context of both steady and unsteady flows, partial and complete data sets, combined experimental and numerical data, inclusion of various constraints and rules of thumb, and other issues that characterize the aerodynamic design process. Neural networks provide a natural framework within which a succession of numerical solutions of increasing fidelity, incorporating more realistic flow physics, can be represented and utilized for optimization. Neural networks also offer an excellent framework for multiple-objective and multi-disciplinary design optimization. Simulation tools from various disciplines can be integrated within this framework and rapid trade-off studies involving one or many disciplines can be performed. The prospect of combining neural network based optimization methods and evolutionary algorithms to obtain a hybrid method with the best properties of both methods will be included in this presentation. Achieving solution diversity and accurate convergence to the exact Pareto front in multiple objective optimization usually requires a significant computational effort with evolutionary algorithms. In this lecture we will also explore the possibility of using neural networks to obtain estimates of the Pareto optimal front using non-dominated solutions generated by DE as training data. Neural network estimators have the potential advantage of reducing the number of function evaluations required to obtain solution accuracy and diversity, thus reducing cost to design.

  14. Experimental design for estimating unknown groundwater pumping using genetic algorithm and reduced order model

    NASA Astrophysics Data System (ADS)

    Ushijima, Timothy T.; Yeh, William W.-G.

    2013-10-01

    An optimal experimental design algorithm is developed to select locations for a network of observation wells that provide maximum information about unknown groundwater pumping in a confined, anisotropic aquifer. The design uses a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. The formulated optimization problem is non-convex and contains integer variables necessitating a combinatorial search. Given a realistic large-scale model, the size of the combinatorial search required can make the problem difficult, if not impossible, to solve using traditional mathematical programming techniques. Genetic algorithms (GAs) can be used to perform the global search; however, because a GA requires a large number of calls to a groundwater model, the formulated optimization problem still may be infeasible to solve. As a result, proper orthogonal decomposition (POD) is applied to the groundwater model to reduce its dimensionality. Then, the information matrix in the full model space can be searched without solving the full model. Results from a small-scale test case show identical optimal solutions among the GA, integer programming, and exhaustive search methods. This demonstrates the GA's ability to determine the optimal solution. In addition, the results show that a GA with POD model reduction is several orders of magnitude faster in finding the optimal solution than a GA using the full model. The proposed experimental design algorithm is applied to a realistic, two-dimensional, large-scale groundwater problem. The GA converged to a solution for this large-scale problem.

  15. Parameter estimation of a pulp digester model with derivative-free optimization strategies

    NASA Astrophysics Data System (ADS)

    Seiça, João C.; Romanenko, Andrey; Fernandes, Florbela P.; Santos, Lino O.; Fernandes, Natércia C. P.

    2017-07-01

    The work concerns the parameter estimation in the context of the mechanistic modelling of a pulp digester. The problem is cast as a box bounded nonlinear global optimization problem in order to minimize the mismatch between the model outputs with the experimental data observed at a real pulp and paper plant. MCSFilter and Simulated Annealing global optimization methods were used to solve the optimization problem. While the former took longer to converge to the global minimum, the latter terminated faster at a significantly higher value of the objective function and, thus, failed to find the global solution.

  16. Optimal correction and design parameter search by modern methods of rigorous global optimization

    NASA Astrophysics Data System (ADS)

    Makino, K.; Berz, M.

    2011-07-01

    Frequently the design of schemes for correction of aberrations or the determination of possible operating ranges for beamlines and cells in synchrotrons exhibit multitudes of possibilities for their correction, usually appearing in disconnected regions of parameter space which cannot be directly qualified by analytical means. In such cases, frequently an abundance of optimization runs are carried out, each of which determines a local minimum depending on the specific chosen initial conditions. Practical solutions are then obtained through an often extended interplay of experienced manual adjustment of certain suitable parameters and local searches by varying other parameters. However, in a formal sense this problem can be viewed as a global optimization problem, i.e. the determination of all solutions within a certain range of parameters that lead to a specific optimum. For example, it may be of interest to find all possible settings of multiple quadrupoles that can achieve imaging; or to find ahead of time all possible settings that achieve a particular tune; or to find all possible manners to adjust nonlinear parameters to achieve correction of high order aberrations. These tasks can easily be phrased in terms of such an optimization problem; but while mathematically this formulation is often straightforward, it has been common belief that it is of limited practical value since the resulting optimization problem cannot usually be solved. However, recent significant advances in modern methods of rigorous global optimization make these methods feasible for optics design for the first time. The key ideas of the method lie in an interplay of rigorous local underestimators of the objective functions, and by using the underestimators to rigorously iteratively eliminate regions that lie above already known upper bounds of the minima, in what is commonly known as a branch-and-bound approach. Recent enhancements of the Differential Algebraic methods used in particle optics for the computation of aberrations allow the determination of particularly sharp underestimators for large regions. As a consequence, the subsequent progressive pruning of the allowed search space as part of the optimization progresses is carried out particularly effectively. The end result is the rigorous determination of the single or multiple optimal solutions of the parameter optimization, regardless of their location, their number, and the starting values of optimization. The methods are particularly powerful if executed in interplay with genetic optimizers generating their new populations within the currently active unpruned space. Their current best guess provides rigorous upper bounds of the minima, which can then beneficially be used for better pruning. Examples of the method and its performance will be presented, including the determination of all operating points of desired tunes or chromaticities, etc. in storage ring lattices.

  17. Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high-dimensional data

    PubMed Central

    2017-01-01

    In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks. PMID:29236718

  18. Optimization Under Uncertainty for Wake Steering Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, Julian; Annoni, Jennifer; King, Ryan N.

    Here, wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in themore » presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.« less

  19. Optimization Under Uncertainty for Wake Steering Strategies: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quick, Julian; Annoni, Jennifer; King, Ryan N

    Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in the presencemore » of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.« less

  20. Optimization Under Uncertainty for Wake Steering Strategies

    NASA Astrophysics Data System (ADS)

    Quick, Julian; Annoni, Jennifer; King, Ryan; Dykes, Katherine; Fleming, Paul; Ning, Andrew

    2017-05-01

    Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as “wake steering,” in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in the presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.

  1. Optimization Under Uncertainty for Wake Steering Strategies

    DOE PAGES

    Quick, Julian; Annoni, Jennifer; King, Ryan N.; ...

    2017-06-13

    Here, wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in themore » presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.« less

  2. A new methodology for surcharge risk management in urban areas (case study: Gonbad-e-Kavus city).

    PubMed

    Hooshyaripor, Farhad; Yazdi, Jafar

    2017-02-01

    This research presents a simulation-optimization model for urban flood mitigation integrating Non-dominated Sorting Genetic Algorithm (NSGA-II) with Storm Water Management Model (SWMM) hydraulic model under a curve number-based hydrologic model of low impact development technologies in Gonbad-e-Kavus, a small city in the north of Iran. In the developed model, the best performance of the system relies on the optimal layout and capacity of retention ponds over the study area in order to reduce surcharge from the manholes underlying a set of storm event loads, while the available investment plays a restricting role. Thus, there is a multi-objective optimization problem with two conflicting objectives solved successfully by NSGA-II to find a set of optimal solutions known as the Pareto front. In order to analyze the results, a new factor, investment priority index (IPI), is defined which shows the risk of surcharging over the network and priority of the mitigation actions. The IPI is calculated using the probability of pond selection for candidate locations and average depth of the ponds in all Pareto front solutions. The IPI can help the decision makers to arrange a long-term progressive plan with the priority of high-risk areas when an optimal solution has been selected.

  3. Autonomous optimal trajectory design employing convex optimization for powered descent on an asteroid

    NASA Astrophysics Data System (ADS)

    Pinson, Robin Marie

    Mission proposals that land spacecraft on asteroids are becoming increasingly popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site with pinpoint precision. The problem under investigation is how to design a propellant (fuel) optimal powered descent trajectory that can be quickly computed onboard the spacecraft, without interaction from ground control. The goal is to autonomously design the optimal powered descent trajectory onboard the spacecraft immediately prior to the descent burn for use during the burn. Compared to a planetary powered landing problem, the challenges that arise from designing an asteroid powered descent trajectory include complicated nonlinear gravity fields, small rotating bodies, and low thrust vehicles. The nonlinear gravity fields cannot be represented by a constant gravity model nor a Newtonian model. The trajectory design algorithm needs to be robust and efficient to guarantee a designed trajectory and complete the calculations in a reasonable time frame. This research investigates the following questions: Can convex optimization be used to design the minimum propellant powered descent trajectory for a soft landing on an asteroid? Is this method robust and reliable to allow autonomy onboard the spacecraft without interaction from ground control? This research designed a convex optimization based method that rapidly generates the propellant optimal asteroid powered descent trajectory. The solution to the convex optimization problem is the thrust magnitude and direction, which designs and determines the trajectory. The propellant optimal problem was formulated as a second order cone program, a subset of convex optimization, through relaxation techniques by including a slack variable, change of variables, and incorporation of the successive solution method. Convex optimization solvers, especially second order cone programs, are robust, reliable, and are guaranteed to find the global minimum provided one exists. In addition, an outer optimization loop using Brent's method determines the optimal flight time corresponding to the minimum propellant usage over all flight times. Inclusion of additional trajectory constraints, solely vertical motion near the landing site and glide slope, were evaluated. Through a theoretical proof involving the Minimum Principle from Optimal Control Theory and the Karush-Kuhn-Tucker conditions it was shown that the relaxed problem is identical to the original problem at the minimum point. Therefore, the optimal solution of the relaxed problem is an optimal solution of the original problem, referred to as lossless convexification. A key finding is that this holds for all levels of gravity model fidelity. The designed thrust magnitude profiles were the bang-bang predicted by Optimal Control Theory. The first high fidelity gravity model employed was the 2x2 spherical harmonics model assuming a perfect triaxial ellipsoid and placement of the coordinate frame at the asteroid's center of mass and aligned with the semi-major axes. The spherical harmonics model is not valid inside the Brillouin sphere and this becomes relevant for irregularly shaped asteroids. Then, a higher fidelity model was implemented combining the 4x4 spherical harmonics gravity model with the interior spherical Bessel gravity model. All gravitational terms in the equations of motion are evaluated with the position vector from the previous iteration, creating the successive solution method. Methodology success was shown by applying the algorithm to three triaxial ellipsoidal asteroids with four different rotation speeds using the 2x2 gravity model. Finally, the algorithm was tested using the irregularly shaped asteroid, Castalia.

  4. Nash Social Welfare in Multiagent Resource Allocation

    NASA Astrophysics Data System (ADS)

    Ramezani, Sara; Endriss, Ulle

    We study different aspects of the multiagent resource allocation problem when the objective is to find an allocation that maximizes Nash social welfare, the product of the utilities of the individual agents. The Nash solution is an important welfare criterion that combines efficiency and fairness considerations. We show that the problem of finding an optimal outcome is NP-hard for a number of different languages for representing agent preferences; we establish new results regarding convergence to Nash-optimal outcomes in a distributed negotiation framework; and we design and test algorithms similar to those applied in combinatorial auctions for computing such an outcome directly.

  5. Evolutionary Multiobjective Query Workload Optimization of Cloud Data Warehouses

    PubMed Central

    Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan

    2014-01-01

    With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048

  6. Development of an Optimal Water Allocation Decision Tool for the Major Crops During the Water Deficit Period in the Southeast U.S.

    NASA Technical Reports Server (NTRS)

    Paudel, Krishna P.; Limaye, Ashutosh; Hatch, Upton; Cruise, James; Musleh, Fuad

    2005-01-01

    We developed a dynamic model to optimize irrigation application in three major crops (corn, cotton and peanuts) grown in the Southeast USA. Water supply amount is generated from an engineering model which is then combined with economic models to find the optimal amount of irrigation water to apply on each crop field during the six critical water deficit weeks in summer. Results indicate that water is applied on the crop with the highest marginal value product of irrigation. Decision making tool such as the one developed here would help farmers and policy makers to find the maximum profitable solution when water shortage is a serious concern.

  7. A study of optical design and optimization applied to lens module of laser beam shaping of advanced modern optical device

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Mu; Fang, Yi-Chin; Chen, Zhen Hsiang

    2011-10-01

    This study used the aspheric lens to realize the laser flat-top optimization, and applied the genetic algorithm (GA) to find the optimal results. Using the characteristics of aspheric lens to obtain the optimized high quality Nd: YAG 355 waveband laser flat-top optical system, this study employed the Light tools LDS (least damped square) and the GA of artificial intelligence optimization method to determine the optimal aspheric coefficient and obtain the optimal solution. This study applied the aspheric lens with GA for the flattening of laser beams using two aspheric lenses in the aspheric surface optical system to complete 80% spot narrowing under standard deviation of 0.6142.

  8. OTIS 3.2 Software Released

    NASA Technical Reports Server (NTRS)

    Riehl, John P.; Sjauw, Waldy K.

    2004-01-01

    Trajectory, mission, and vehicle engineers concern themselves with finding the best way for an object to get from one place to another. These engineers rely upon special software to assist them in this. For a number of years, many engineers have used the OTIS program for this assistance. With OTIS, an engineer can fully optimize trajectories for airplanes, launch vehicles like the space shuttle, interplanetary spacecraft, and orbital transfer vehicles. OTIS provides four modes of operation, with each mode providing successively stronger optimization capability. The most powerful mode uses a mathematical method called implicit integration to solve what engineers and mathematicians call the optimal control problem. OTIS 3.2, which was developed at the NASA Glenn Research Center, is the latest release of this industry workhorse and features new capabilities for parameter optimization and mission design. OTIS stands for Optimal Control by Implicit Simulation, and it is implicit integration that makes OTIS so powerful at solving trajectory optimization problems. Why is this so important? The optimization process not only determines how to get from point A to point B, but it can also determine how to do this with the least amount of propellant, with the lightest starting weight, or in the fastest time possible while avoiding certain obstacles along the way. There are numerous conditions that engineers can use to define optimal, or best. OTIS provides a framework for defining the starting and ending points of the trajectory (point A and point B), the constraints on the trajectory (requirements like "avoid these regions where obstacles occur"), and what is being optimized (e.g., minimize propellant). The implicit integration method can find solutions to very complicated problems when there is not a lot of information available about what the optimal trajectory might be. The method was first developed for solving two-point boundary value problems and was adapted for use in OTIS. Implicit integration usually allows OTIS to find solutions to problems much faster than programs that use explicit integration and parametric methods. Consequently, OTIS is best suited to solving very complicated and highly constrained problems.

  9. Self-calibration of robot-sensor system

    NASA Technical Reports Server (NTRS)

    Yeh, Pen-Shu

    1990-01-01

    The process of finding the coordinate transformation between a robot and an external sensor system has been addressed. This calibration is equivalent to solving a nonlinear optimization problem for the parameters that characterize the transformation. A two-step procedure is herein proposed for solving the problem. The first step involves finding a nominal solution that is a good approximation of the final solution. A varational problem is then generated to replace the original problem in the next step. With the assumption that the variational parameters are small compared to unity, the problem that can be more readily solved with relatively small computation effort.

  10. Phenomenological theory of collective decision-making

    NASA Astrophysics Data System (ADS)

    Zafeiris, Anna; Koman, Zsombor; Mones, Enys; Vicsek, Tamás

    2017-08-01

    An essential task of groups is to provide efficient solutions for the complex problems they face. Indeed, considerable efforts have been devoted to the question of collective decision-making related to problems involving a single dominant feature. Here we introduce a quantitative formalism for finding the optimal distribution of the group members' competences in the more typical case when the underlying problem is complex, i.e., multidimensional. Thus, we consider teams that are aiming at obtaining the best possible answer to a problem having a number of independent sub-problems. Our approach is based on a generic scheme for the process of evaluating the proposed solutions (i.e., negotiation). We demonstrate that the best performing groups have at least one specialist for each sub-problem - but a far less intuitive result is that finding the optimal solution by the interacting group members requires that the specialists also have some insight into the sub-problems beyond their unique field(s). We present empirical results obtained by using a large-scale database of citations being in good agreement with the above theory. The framework we have developed can easily be adapted to a variety of realistic situations since taking into account the weights of the sub-problems, the opinions or the relations of the group is straightforward. Consequently, our method can be used in several contexts, especially when the optimal composition of a group of decision-makers is designed.

  11. Fuel Optimal, Finite Thrust Guidance Methods to Circumnavigate with Lighting Constraints

    NASA Astrophysics Data System (ADS)

    Prince, E. R.; Carr, R. W.; Cobb, R. G.

    This paper details improvements made to the authors' most recent work to find fuel optimal, finite-thrust guidance to inject an inspector satellite into a prescribed natural motion circumnavigation (NMC) orbit about a resident space object (RSO) in geosynchronous orbit (GEO). Better initial guess methodologies are developed for the low-fidelity model nonlinear programming problem (NLP) solver to include using Clohessy- Wiltshire (CW) targeting, a modified particle swarm optimization (PSO), and MATLAB's genetic algorithm (GA). These initial guess solutions may then be fed into the NLP solver as an initial guess, where a different NLP solver, IPOPT, is used. Celestial lighting constraints are taken into account in addition to the sunlight constraint, ensuring that the resulting NMC also adheres to Moon and Earth lighting constraints. The guidance is initially calculated given a fixed final time, and then solutions are also calculated for fixed final times before and after the original fixed final time, allowing mission planners to choose the lowest-cost solution in the resulting range which satisfies all constraints. The developed algorithms provide computationally fast and highly reliable methods for determining fuel optimal guidance for NMC injections while also adhering to multiple lighting constraints.

  12. Compromise solution in the problem of change state control for the material body exposed to the external medium

    NASA Astrophysics Data System (ADS)

    Malafeyev, O. A.; Redinskikh, N. D.

    2018-05-01

    The problem of finding optimal temperature control of the material body state under the unknown in advance parameters of the external medium is formalized and studied in this paper. The problems of this type arise frequently in the real life. An optimal thermal regime is necessary to apply at the soil thawing or freezing, drying the building materials, heating the concrete to obtain the required strength, and so on. Problems of such type one can analyze making use the apparatus and methods of game theory. For describing the influence of external medium on the characteristics of different materials we make use the many-step two person zero-sum game in this paper. The compromise solution is taken as the optimality principle. The numerical example is given.

  13. Maximizing phylogenetic diversity in biodiversity conservation: Greedy solutions to the Noah's Ark problem.

    PubMed

    Hartmann, Klaas; Steel, Mike

    2006-08-01

    The Noah's Ark Problem (NAP) is a comprehensive cost-effectiveness methodology for biodiversity conservation that was introduced by Weitzman (1998) and utilizes the phylogenetic tree containing the taxa of interest to assess biodiversity. Given a set of taxa, each of which has a particular survival probability that can be increased at some cost, the NAP seeks to allocate limited funds to conserving these taxa so that the future expected biodiversity is maximized. Finding optimal solutions using this framework is a computationally difficult problem to which a simple and efficient "greedy" algorithm has been proposed in the literature and applied to conservation problems. We show that, although algorithms of this type cannot produce optimal solutions for the general NAP, there are two restricted scenarios of the NAP for which a greedy algorithm is guaranteed to produce optimal solutions. The first scenario requires the taxa to have equal conservation cost; the second scenario requires an ultrametric tree. The NAP assumes a linear relationship between the funding allocated to conservation of a taxon and the increased survival probability of that taxon. This relationship is briefly investigated and one variation is suggested that can also be solved using a greedy algorithm.

  14. An improved genetic algorithm for multidimensional optimization of precedence-constrained production planning and scheduling

    NASA Astrophysics Data System (ADS)

    Dao, Son Duy; Abhary, Kazem; Marian, Romeo

    2017-06-01

    Integration of production planning and scheduling is a class of problems commonly found in manufacturing industry. This class of problems associated with precedence constraint has been previously modeled and optimized by the authors, in which, it requires a multidimensional optimization at the same time: what to make, how many to make, where to make and the order to make. It is a combinatorial, NP-hard problem, for which no polynomial time algorithm is known to produce an optimal result on a random graph. In this paper, the further development of Genetic Algorithm (GA) for this integrated optimization is presented. Because of the dynamic nature of the problem, the size of its solution is variable. To deal with this variability and find an optimal solution to the problem, GA with new features in chromosome encoding, crossover, mutation, selection as well as algorithm structure is developed herein. With the proposed structure, the proposed GA is able to "learn" from its experience. Robustness of the proposed GA is demonstrated by a complex numerical example in which performance of the proposed GA is compared with those of three commercial optimization solvers.

  15. Blended near-optimal alternative generation, visualization, and interaction for water resources decision making

    NASA Astrophysics Data System (ADS)

    Rosenberg, David E.

    2015-04-01

    State-of-the-art systems analysis techniques focus on efficiently finding optimal solutions. Yet an optimal solution is optimal only for the modeled issues and managers often seek near-optimal alternatives that address unmodeled objectives, preferences, limits, uncertainties, and other issues. Early on, Modeling to Generate Alternatives (MGA) formalized near-optimal as performance within a tolerable deviation from the optimal objective function value and identified a few maximally different alternatives that addressed some unmodeled issues. This paper presents new stratified, Monte-Carlo Markov Chain sampling and parallel coordinate plotting tools that generate and communicate the structure and extent of the near-optimal region to an optimization problem. Interactive plot controls allow users to explore region features of most interest. Controls also streamline the process to elicit unmodeled issues and update the model formulation in response to elicited issues. Use for an example, single-objective, linear water quality management problem at Echo Reservoir, Utah, identifies numerous and flexible practices to reduce the phosphorus load to the reservoir and maintain close-to-optimal performance. Flexibility is upheld by further interactive alternative generation, transforming the formulation into a multiobjective problem, and relaxing the tolerance parameter to expand the near-optimal region. Compared to MGA, the new blended tools generate more numerous alternatives faster, more fully show the near-optimal region, and help elicit a larger set of unmodeled issues.

  16. Comparison of kinematic and dynamic leg trajectory optimization techniques for biped robot locomotion

    NASA Astrophysics Data System (ADS)

    Khusainov, R.; Klimchik, A.; Magid, E.

    2017-01-01

    The paper presents comparison analysis of two approaches in defining leg trajectories for biped locomotion. The first one operates only with kinematic limitations of leg joints and finds the maximum possible locomotion speed for given limits. The second approach defines leg trajectories from the dynamic stability point of view and utilizes ZMP criteria. We show that two methods give different trajectories and demonstrate that trajectories based on pure dynamic optimization cannot be realized due to joint limits. Kinematic optimization provides unstable solution which can be balanced by upper body movement.

  17. Watershed Management Optimization Support Tool (WMOST) ...

    EPA Pesticide Factsheets

    EPA's Watershed Management Optimization Support Tool (WMOST) version 2 is a decision support tool designed to facilitate integrated water management by communities at the small watershed scale. WMOST allows users to look across management options in stormwater (including green infrastructure), wastewater, drinking water, and land conservation programs to find the least cost solutions. The pdf version of these presentations accompany the recorded webinar with closed captions to be posted on the WMOST web page. The webinar was recorded at the time a training workshop took place for EPA's Watershed Management Optimization Support Tool (WMOST, v2).

  18. A device-oriented optimizer for solving ground state problems on an approximate quantum computer, Part II: Experiments for interacting spin and molecular systems

    NASA Astrophysics Data System (ADS)

    Kandala, Abhinav; Mezzacapo, Antonio; Temme, Kristan; Bravyi, Sergey; Takita, Maika; Chavez-Garcia, Jose; Córcoles, Antonio; Smolin, John; Chow, Jerry; Gambetta, Jay

    Hybrid quantum-classical algorithms can be used to find variational solutions to generic quantum problems. Here, we present an experimental implementation of a device-oriented optimizer that uses superconducting quantum hardware. The experiment relies on feedback between the quantum device and classical optimization software which is robust to measurement noise. Our device-oriented approach uses naturally available interactions for the preparation of trial states. We demonstrate the application of this technique for solving interacting spin and molecular structure problems.

  19. The potential application of the blackboard model of problem solving to multidisciplinary design

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    1989-01-01

    The potential application of the blackboard model of problem solving to multidisciplinary design is discussed. Multidisciplinary design problems are complex, poorly structured, and lack a predetermined decision path from the initial starting point to the final solution. The final solution is achieved using data from different engineering disciplines. Ideally, for the final solution to be the optimum solution, there must be a significant amount of communication among the different disciplines plus intradisciplinary and interdisciplinary optimization. In reality, this is not what happens in today's sequential approach to multidisciplinary design. Therefore it is highly unlikely that the final solution is the true optimum solution from an interdisciplinary optimization standpoint. A multilevel decomposition approach is suggested as a technique to overcome the problems associated with the sequential approach, but no tool currently exists with which to fully implement this technique. A system based on the blackboard model of problem solving appears to be an ideal tool for implementing this technique because it offers an incremental problem solving approach that requires no a priori determined reasoning path. Thus it has the potential of finding a more optimum solution for the multidisciplinary design problems found in today's aerospace industries.

  20. Finding an Optimal Thermo-Mechanical Processing Scheme for a Gum-Type Ti-Nb-Zr-Fe-O Alloy

    NASA Astrophysics Data System (ADS)

    Nocivin, Anna; Cojocaru, Vasile Danut; Raducanu, Doina; Cinca, Ion; Angelescu, Maria Lucia; Dan, Ioan; Serban, Nicolae; Cojocaru, Mirela

    2017-09-01

    A gum-type alloy was subjected to a thermo-mechanical processing scheme to establish a suitable process for obtaining superior structural and behavioural characteristics. Three processes were proposed: a homogenization treatment, a cold-rolling process and a solution treatment with three heating temperatures: 1073 K (800 °C), 1173 K (900 °C) and 1273 K (1000 °C). Results of all three proposed processes were analyzed using x-ray diffraction and scanning electron microscopy imaging, to establish and compare the structural modifications. The behavioural status was completed with micro-hardness and tensile strength tests. The optimal results were obtained for solution treatment at 1073 K.

  1. Dynamic modeling and optimization for space logistics using time-expanded networks

    NASA Astrophysics Data System (ADS)

    Ho, Koki; de Weck, Olivier L.; Hoffman, Jeffrey A.; Shishko, Robert

    2014-12-01

    This research develops a dynamic logistics network formulation for lifecycle optimization of mission sequences as a system-level integrated method to find an optimal combination of technologies to be used at each stage of the campaign. This formulation can find the optimal transportation architecture considering its technology trades over time. The proposed methodologies are inspired by the ground logistics analysis techniques based on linear programming network optimization. Particularly, the time-expanded network and its extension are developed for dynamic space logistics network optimization trading the quality of the solution with the computational load. In this paper, the methodologies are applied to a human Mars exploration architecture design problem. The results reveal multiple dynamic system-level trades over time and give recommendation of the optimal strategy for the human Mars exploration architecture. The considered trades include those between In-Situ Resource Utilization (ISRU) and propulsion technologies as well as the orbit and depot location selections over time. This research serves as a precursor for eventual permanent settlement and colonization of other planets by humans and us becoming a multi-planet species.

  2. Query optimization for graph analytics on linked data using SPARQL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seokyong; Lee, Sangkeun; Lim, Seung -Hwan

    2015-07-01

    Triplestores that support query languages such as SPARQL are emerging as the preferred and scalable solution to represent data and meta-data as massive heterogeneous graphs using Semantic Web standards. With increasing adoption, the desire to conduct graph-theoretic mining and exploratory analysis has also increased. Addressing that desire, this paper presents a solution that is the marriage of Graph Theory and the Semantic Web. We present software that can analyze Linked Data using graph operations such as counting triangles, finding eccentricity, testing connectedness, and computing PageRank directly on triple stores via the SPARQL interface. We describe the process of optimizing performancemore » of the SPARQL-based implementation of such popular graph algorithms by reducing the space-overhead, simplifying iterative complexity and removing redundant computations by understanding query plans. Our optimized approach shows significant performance gains on triplestores hosted on stand-alone workstations as well as hardware-optimized scalable supercomputers such as the Cray XMT.« less

  3. Optimal sensor placement for leak location in water distribution networks using genetic algorithms.

    PubMed

    Casillas, Myrna V; Puig, Vicenç; Garza-Castañón, Luis E; Rosich, Albert

    2013-11-04

    This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach.

  4. Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Genetic Algorithms

    PubMed Central

    Casillas, Myrna V.; Puig, Vicenç; Garza-Castañón, Luis E.; Rosich, Albert

    2013-01-01

    This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach. PMID:24193099

  5. An improved parent-centric mutation with normalized neighborhoods for inducing niching behavior in differential evolution.

    PubMed

    Biswas, Subhodip; Kundu, Souvik; Das, Swagatam

    2014-10-01

    In real life, we often need to find multiple optimally sustainable solutions of an optimization problem. Evolutionary multimodal optimization algorithms can be very helpful in such cases. They detect and maintain multiple optimal solutions during the run by incorporating specialized niching operations in their actual framework. Differential evolution (DE) is a powerful evolutionary algorithm (EA) well-known for its ability and efficiency as a single peak global optimizer for continuous spaces. This article suggests a niching scheme integrated with DE for achieving a stable and efficient niching behavior by combining the newly proposed parent-centric mutation operator with synchronous crowding replacement rule. The proposed approach is designed by considering the difficulties associated with the problem dependent niching parameters (like niche radius) and does not make use of such control parameter. The mutation operator helps to maintain the population diversity at an optimum level by using well-defined local neighborhoods. Based on a comparative study involving 13 well-known state-of-the-art niching EAs tested on an extensive collection of benchmarks, we observe a consistent statistical superiority enjoyed by our proposed niching algorithm.

  6. A combined NLP-differential evolution algorithm approach for the optimization of looped water distribution systems

    NASA Astrophysics Data System (ADS)

    Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.

    2011-08-01

    This paper proposes a novel optimization approach for the least cost design of looped water distribution systems (WDSs). Three distinct steps are involved in the proposed optimization approach. In the first step, the shortest-distance tree within the looped network is identified using the Dijkstra graph theory algorithm, for which an extension is proposed to find the shortest-distance tree for multisource WDSs. In the second step, a nonlinear programming (NLP) solver is employed to optimize the pipe diameters for the shortest-distance tree (chords of the shortest-distance tree are allocated the minimum allowable pipe sizes). Finally, in the third step, the original looped water network is optimized using a differential evolution (DE) algorithm seeded with diameters in the proximity of the continuous pipe sizes obtained in step two. As such, the proposed optimization approach combines the traditional deterministic optimization technique of NLP with the emerging evolutionary algorithm DE via the proposed network decomposition. The proposed methodology has been tested on four looped WDSs with the number of decision variables ranging from 21 to 454. Results obtained show the proposed approach is able to find optimal solutions with significantly less computational effort than other optimization techniques.

  7. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: II. Probabilistic Guarantees on Constraint Satisfaction

    PubMed Central

    Li, Zukui; Floudas, Christodoulos A.

    2012-01-01

    Probabilistic guarantees on constraint satisfaction for robust counterpart optimization are studied in this paper. The robust counterpart optimization formulations studied are derived from box, ellipsoidal, polyhedral, “interval+ellipsoidal” and “interval+polyhedral” uncertainty sets (Li, Z., Ding, R., and Floudas, C.A., A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear and Robust Mixed Integer Linear Optimization, Ind. Eng. Chem. Res, 2011, 50, 10567). For those robust counterpart optimization formulations, their corresponding probability bounds on constraint satisfaction are derived for different types of uncertainty characteristic (i.e., bounded or unbounded uncertainty, with or without detailed probability distribution information). The findings of this work extend the results in the literature and provide greater flexibility for robust optimization practitioners in choosing tighter probability bounds so as to find less conservative robust solutions. Extensive numerical studies are performed to compare the tightness of the different probability bounds and the conservatism of different robust counterpart optimization formulations. Guiding rules for the selection of robust counterpart optimization models and for the determination of the size of the uncertainty set are discussed. Applications in production planning and process scheduling problems are presented. PMID:23329868

  8. Optimal design of groundwater remediation system using a probabilistic multi-objective fast harmony search algorithm under uncertainty

    NASA Astrophysics Data System (ADS)

    Luo, Qiankun; Wu, Jianfeng; Yang, Yun; Qian, Jiazhong; Wu, Jichun

    2014-11-01

    This study develops a new probabilistic multi-objective fast harmony search algorithm (PMOFHS) for optimal design of groundwater remediation systems under uncertainty associated with the hydraulic conductivity (K) of aquifers. The PMOFHS integrates the previously developed deterministic multi-objective optimization method, namely multi-objective fast harmony search algorithm (MOFHS) with a probabilistic sorting technique to search for Pareto-optimal solutions to multi-objective optimization problems in a noisy hydrogeological environment arising from insufficient K data. The PMOFHS is then coupled with the commonly used flow and transport codes, MODFLOW and MT3DMS, to identify the optimal design of groundwater remediation systems for a two-dimensional hypothetical test problem and a three-dimensional Indiana field application involving two objectives: (i) minimization of the total remediation cost through the engineering planning horizon, and (ii) minimization of the mass remaining in the aquifer at the end of the operational period, whereby the pump-and-treat (PAT) technology is used to clean up contaminated groundwater. Also, Monte Carlo (MC) analysis is employed to evaluate the effectiveness of the proposed methodology. Comprehensive analysis indicates that the proposed PMOFHS can find Pareto-optimal solutions with low variability and high reliability and is a potentially effective tool for optimizing multi-objective groundwater remediation problems under uncertainty.

  9. Image Edge Tracking via Ant Colony Optimization

    NASA Astrophysics Data System (ADS)

    Li, Ruowei; Wu, Hongkun; Liu, Shilong; Rahman, M. A.; Liu, Sanchi; Kwok, Ngai Ming

    2018-04-01

    A good edge plot should use continuous thin lines to describe the complete contour of the captured object. However, the detection of weak edges is a challenging task because of the associated low pixel intensities. Ant Colony Optimization (ACO) has been employed by many researchers to address this problem. The algorithm is a meta-heuristic method developed by mimicking the natural behaviour of ants. It uses iterative searches to find the optimal solution that cannot be found via traditional optimization approaches. In this work, ACO is employed to track and repair broken edges obtained via conventional Sobel edge detector to produced a result with more connected edges.

  10. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    NASA Astrophysics Data System (ADS)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  11. RJMCMC based Text Placement to Optimize Label Placement and Quantity

    NASA Astrophysics Data System (ADS)

    Touya, Guillaume; Chassin, Thibaud

    2018-05-01

    Label placement is a tedious task in map design, and its automation has long been a goal for researchers in cartography, but also in computational geometry. Methods that search for an optimal or nearly optimal solution that satisfies a set of constraints, such as label overlapping, have been proposed in the literature. Most of these methods mainly focus on finding the optimal position for a given set of labels, but rarely allow the removal of labels as part of the optimization. This paper proposes to apply an optimization technique called Reversible-Jump Markov Chain Monte Carlo that enables to easily model the removal or addition during the optimization iterations. The method, quite preliminary for now, is tested on a real dataset, and the first results are encouraging.

  12. Improving Vector Evaluated Particle Swarm Optimisation Using Multiple Nondominated Leaders

    PubMed Central

    Lim, Kian Sheng; Buyamin, Salinda; Ahmad, Anita; Shapiai, Mohd Ibrahim; Naim, Faradila; Mubin, Marizan; Kim, Dong Hwa

    2014-01-01

    The vector evaluated particle swarm optimisation (VEPSO) algorithm was previously improved by incorporating nondominated solutions for solving multiobjective optimisation problems. However, the obtained solutions did not converge close to the Pareto front and also did not distribute evenly over the Pareto front. Therefore, in this study, the concept of multiple nondominated leaders is incorporated to further improve the VEPSO algorithm. Hence, multiple nondominated solutions that are best at a respective objective function are used to guide particles in finding optimal solutions. The improved VEPSO is measured by the number of nondominated solutions found, generational distance, spread, and hypervolume. The results from the conducted experiments show that the proposed VEPSO significantly improved the existing VEPSO algorithms. PMID:24883386

  13. Simulation and Optimization of Large Scale Subsurface Environmental Impacts; Investigations, Remedial Design and Long Term Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deschaine, L.M.; Chalmers Univ. of Technology, Dept. of Physical Resources, Complex Systems Group, Goteborg

    2008-07-01

    The global impact to human health and the environment from large scale chemical / radionuclide releases is well documented. Examples are the wide spread release of radionuclides from the Chernobyl nuclear reactors, the mobilization of arsenic in Bangladesh, the formation of Environmental Protection Agencies in the United States, Canada and Europe, and the like. The fiscal costs of addressing and remediating these issues on a global scale are astronomical, but then so are the fiscal and human health costs of ignoring them. An integrated methodology for optimizing the response(s) to these issues is needed. This work addresses development of optimalmore » policy design for large scale, complex, environmental issues. It discusses the development, capabilities, and application of a hybrid system of algorithms that optimizes the environmental response. It is important to note that 'optimization' does not singularly refer to cost minimization, but to the effective and efficient balance of cost, performance, risk, management, and societal priorities along with uncertainty analysis. This tool integrates all of these elements into a single decision framework. It provides a consistent approach to designing optimal solutions that are tractable, traceable, and defensible. The system is modular and scalable. It can be applied either as individual components or in total. By developing the approach in a complex systems framework, a solution methodology represents a significant improvement over the non-optimal 'trial and error' approach to environmental response(s). Subsurface environmental processes are represented by linear and non-linear, elliptic and parabolic equations. The state equations solved using numerical methods include multi-phase flow (water, soil gas, NAPL), and multicomponent transport (radionuclides, heavy metals, volatile organics, explosives, etc.). Genetic programming is used to generate the simulators either when simulation models do not exist, or to extend the accuracy of them. The uncertainty and sparse nature of information in earth science simulations necessitate stochastic representations. For discussion purposes, the solution to these site-wide challenges is divided into three sub-components; plume finding, long term monitoring, and site-wide remediation. Plume finding is the optimal estimation of the plume fringe(s) at a specified time. It is optimized by fusing geo-stochastic flow and transport simulations with the information content of data using a Kalman filter. The result is an optimal monitoring sensor network; the decision variable is location(s) of sensor in three dimensions. Long term monitoring extends this approach concept, and integrates the spatial-time correlations to optimize the decision variables of where to sample and when to sample over the project life cycle. Optimization of location and timing of samples to meet the desired accuracy of temporal plume movement is accomplished using enumeration or genetic algorithms. The remediation optimization solves the multi-component, multiphase system of equations and incorporates constraints on life-cycle costs, maximum annual costs, maximum allowable annual discharge (for assessing the monitored natural attenuation solution) and constraints on where remedial system component(s) can be located, including management overrides to force certain solutions to be chosen are incorporated for solution design. It uses a suite of optimization techniques, including the outer approximation method, Lipchitz global optimization, genetic algorithms, and the like. The automated optimal remedial design algorithm requires a stable simulator be available for the simulated process. This is commonly the case for all above specifications sans true three-dimensional multiphase flow. Much work is currently being conducted in the industry to develop stable 3D, three-phase simulators. If needed, an interim heuristic algorithm is available to get close to optimal for these conditions. This system process provides the full capability to optimize multi-source, multiphase, and multicomponent sites. The results of applying just components of these algorithms have produced predicted savings of as much as $90,000,000(US), when compared to alternative solutions. Investment in a pilot program to test the model saved 100% of the $20,000,000 predicted for the smaller test implementation. This was done without loss of effectiveness, and received an award from the Vice President - and now Nobel peace prize winner - Al Gore of the United States. (authors)« less

  14. A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks

    NASA Astrophysics Data System (ADS)

    De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio

    2016-05-01

    This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.

  15. Multi-objective evolutionary optimization for constructing neural networks for virtual reality visual data mining: application to geophysical prospecting.

    PubMed

    Valdés, Julio J; Barton, Alan J

    2007-05-01

    A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.

  16. Stochastic Optimal Control via Bellman's Principle

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Sun, Jian Q.

    2003-01-01

    This paper presents a method for finding optimal controls of nonlinear systems subject to random excitations. The method is capable to generate global control solutions when state and control constraints are present. The solution is global in the sense that controls for all initial conditions in a region of the state space are obtained. The approach is based on Bellman's Principle of optimality, the Gaussian closure and the Short-time Gaussian approximation. Examples include a system with a state-dependent diffusion term, a system in which the infinite hierarchy of moment equations cannot be analytically closed, and an impact system with a elastic boundary. The uncontrolled and controlled dynamics are studied by creating a Markov chain with a control dependent transition probability matrix via the Generalized Cell Mapping method. In this fashion, both the transient and stationary controlled responses are evaluated. The results show excellent control performances.

  17. Single-agent parallel window search

    NASA Technical Reports Server (NTRS)

    Powley, Curt; Korf, Richard E.

    1991-01-01

    Parallel window search is applied to single-agent problems by having different processes simultaneously perform iterations of Iterative-Deepening-A(asterisk) (IDA-asterisk) on the same problem but with different cost thresholds. This approach is limited by the time to perform the goal iteration. To overcome this disadvantage, the authors consider node ordering. They discuss how global node ordering by minimum h among nodes with equal f = g + h values can reduce the time complexity of serial IDA-asterisk by reducing the time to perform the iterations prior to the goal iteration. Finally, the two ideas of parallel window search and node ordering are combined to eliminate the weaknesses of each approach while retaining the strengths. The resulting approach, called simply parallel window search, can be used to find a near-optimal solution quickly, improve the solution until it is optimal, and then finally guarantee optimality, depending on the amount of time available.

  18. Adaptive photoacoustic imaging quality optimization with EMD and reconstruction

    NASA Astrophysics Data System (ADS)

    Guo, Chengwen; Ding, Yao; Yuan, Jie; Xu, Guan; Wang, Xueding; Carson, Paul L.

    2016-10-01

    Biomedical photoacoustic (PA) signal is characterized with extremely low signal to noise ratio which will yield significant artifacts in photoacoustic tomography (PAT) images. Since PA signals acquired by ultrasound transducers are non-linear and non-stationary, traditional data analysis methods such as Fourier and wavelet method cannot give useful information for further research. In this paper, we introduce an adaptive method to improve the quality of PA imaging based on empirical mode decomposition (EMD) and reconstruction. Data acquired by ultrasound transducers are adaptively decomposed into several intrinsic mode functions (IMFs) after a sifting pre-process. Since noise is randomly distributed in different IMFs, depressing IMFs with more noise while enhancing IMFs with less noise can effectively enhance the quality of reconstructed PAT images. However, searching optimal parameters by means of brute force searching algorithms will cost too much time, which prevent this method from practical use. To find parameters within reasonable time, heuristic algorithms, which are designed for finding good solutions more efficiently when traditional methods are too slow, are adopted in our method. Two of the heuristic algorithms, Simulated Annealing Algorithm, a probabilistic method to approximate the global optimal solution, and Artificial Bee Colony Algorithm, an optimization method inspired by the foraging behavior of bee swarm, are selected to search optimal parameters of IMFs in this paper. The effectiveness of our proposed method is proved both on simulated data and PA signals from real biomedical tissue, which might bear the potential for future clinical PA imaging de-noising.

  19. Testing of Strategies for the Acceleration of the Cost Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponciroli, Roberto; Vilim, Richard B.

    The general problem addressed in the Nuclear-Renewable Hybrid Energy System (N-R HES) project is finding the optimum economical dispatch (ED) and capacity planning solutions for the hybrid energy systems. In the present test-problem configuration, the N-R HES unit is composed of three electrical power-generating components, i.e. the Balance of Plant (BOP), the Secondary Energy Source (SES), and the Energy Storage (ES). In addition, there is an Industrial Process (IP), which is devoted to hydrogen generation. At this preliminary stage, the goal is to find the power outputs of each one of the N-R HES unit components (BOP, SES, ES) andmore » the IP hydrogen production level that maximizes the unit profit by simultaneously satisfying individual component operational constraints. The optimization problem is meant to be solved in the Risk Analysis Virtual Environment (RAVEN) framework. The dynamic response of the N-R HES unit components is simulated by using dedicated object-oriented models written in the Modelica modeling language. Though this code coupling provides for very accurate predictions, the ensuing optimization problem is characterized by a very large number of solution variables. To ease the computational burden and to improve the path to a converged solution, a method to better estimate the initial guess for the optimization problem solution was developed. The proposed approach led to the definition of a suitable Monte Carlo-based optimization algorithm (called the preconditioner), which provides an initial guess for the optimal N-R HES power dispatch and the optimal installed capacity for each one of the unit components. The preconditioner samples a set of stochastic power scenarios for each one of the N-R HES unit components, and then for each of them the corresponding value of a suitably defined cost function is evaluated. After having simulated a sufficient number of power histories, the configuration which ensures the highest profit is selected as the optimal one. The component physical dynamics are represented through suitable ramp constraints, which considerably simplify the numerical solving. In order to test the capabilities of the proposed approach, in the present report, the dispatch problem only is tackled, i.e. a reference unit configuration is assumed, and each one of the N-R HES unit components is assumed to have a fixed installed capacity. As for the next steps, the main improvement will concern the operation strategy of the ES facility. In particular, in order to describe a more realistic battery commitment strategy, the ES operation will be regulated according to the electricity price forecasts.« less

  20. Optimal water networks in protein cavities with GAsol and 3D-RISM.

    PubMed

    Fusani, Lucia; Wall, Ian; Palmer, David; Cortes, Alvaro

    2018-06-01

    Water molecules in protein binding sites play essential roles in biological processes. The popular 3D-RISM prediction method can calculate the solvent density distribution within minutes, but is difficult to convert it into explicit water molecules. We present GAsol, a tool that is capable of finding the network of water molecules that best fits a particular 3D-RISM density distribution in a fast and accurate manner and that outperforms other available tools by finding the globally optimal solution thanks to its genetic algorithm. https://github.com/accsc/GAsol. BSD 3-clauses license. alvaro.x.cortes@gsk.com. Supplementary data are available at Bioinformatics online.

  1. Competitive Facility Location with Random Demands

    NASA Astrophysics Data System (ADS)

    Uno, Takeshi; Katagiri, Hideki; Kato, Kosuke

    2009-10-01

    This paper proposes a new location problem of competitive facilities, e.g. shops and stores, with uncertain demands in the plane. By representing the demands for facilities as random variables, the location problem is formulated to a stochastic programming problem, and for finding its solution, three deterministic programming problems: expectation maximizing problem, probability maximizing problem, and satisfying level maximizing problem are considered. After showing that one of their optimal solutions can be found by solving 0-1 programming problems, their solution method is proposed by improving the tabu search algorithm with strategic vibration. Efficiency of the solution method is shown by applying to numerical examples of the facility location problems.

  2. Pareto joint inversion of 2D magnetotelluric and gravity data

    NASA Astrophysics Data System (ADS)

    Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek

    2015-04-01

    In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where interesting density distributions are relatively shallow and resistivity changes are related to deeper parts. This kind of conditions are well suited for joint inversion of MT and gravity data. In the next stage of the solution development of further code optimization and extensive tests for real data will be realized. Presented work was supported by Polish National Centre for Research and Development under the contract number POIG.01.04.00-12-279/13

  3. Scanning electron microscope fine tuning using four-bar piezoelectric actuated mechanism

    NASA Astrophysics Data System (ADS)

    Hatamleh, Khaled S.; Khasawneh, Qais A.; Al-Ghasem, Adnan; Jaradat, Mohammad A.; Sawaqed, Laith; Al-Shabi, Mohammad

    2018-01-01

    Scanning Electron Microscopes are extensively used for accurate micro/nano images exploring. Several strategies have been proposed to fine tune those microscopes in the past few years. This work presents a new fine tuning strategy of a scanning electron microscope sample table using four bar piezoelectric actuated mechanisms. The introduced paper presents an algorithm to find all possible inverse kinematics solutions of the proposed mechanism. In addition, another algorithm is presented to search for the optimal inverse kinematic solution. Both algorithms are used simultaneously by means of a simulation study to fine tune a scanning electron microscope sample table through a pre-specified circular or linear path of motion. Results of the study shows that, proposed algorithms were able to minimize the power required to drive the piezoelectric actuated mechanism by a ratio of 97.5% for all simulated paths of motion when compared to general non-optimized solution.

  4. Multivariable optimization of an auto-thermal ammonia synthesis reactor using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Anh-Nga, Nguyen T.; Tuan-Anh, Nguyen; Tien-Dung, Vu; Kim-Trung, Nguyen

    2017-09-01

    The ammonia synthesis system is an important chemical process used in the manufacture of fertilizers, chemicals, explosives, fibers, plastics, refrigeration. In the literature, many works approaching the modeling, simulation and optimization of an auto-thermal ammonia synthesis reactor can be found. However, they just focus on the optimization of the reactor length while keeping the others parameters constant. In this study, the other parameters are also considered in the optimization problem such as the temperature of feed gas enters the catalyst zone. The optimal problem requires the maximization of a multivariable objective function which subjects to a number of equality constraints involving the solution of coupled differential equations and also inequality constraints. The solution of an optimization problem can be found through, among others, deterministic or stochastic approaches. The stochastic methods, such as evolutionary algorithm (EA), which is based on natural phenomenon, can overcome the drawbacks such as the requirement of the derivatives of the objective function and/or constraints, or being not efficient in non-differentiable or discontinuous problems. Genetic algorithm (GA) which is a class of EA, exceptionally simple, robust at numerical optimization and is more likely to find a true global optimum. In this study, the genetic algorithm is employed to find the optimum profit of the process. The inequality constraints were treated using penalty method. The coupled differential equations system was solved using Runge-Kutta 4th order method. The results showed that the presented numerical method could be applied to model the ammonia synthesis reactor. The optimum economic profit obtained from this study are also compared to the results from the literature. It suggests that the process should be operated at higher temperature of feed gas in catalyst zone and the reactor length is slightly longer.

  5. Parameter optimization for surface flux transport models

    NASA Astrophysics Data System (ADS)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  6. Multidisciplinary design optimization using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1994-01-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared with efficient gradient methods. Applicaiton of GA is underway for a cost optimization study for a launch-vehicle fuel-tank and structural design of a wing. The strengths and limitations of GA for launch vehicle design optimization is studied.

  7. Spacecraft Attitude Maneuver Planning Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Kornfeld, Richard P.

    2004-01-01

    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used as is or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.

  8. Improved understanding of the searching behavior of ant colony optimization algorithms applied to the water distribution design problem

    NASA Astrophysics Data System (ADS)

    Zecchin, A. C.; Simpson, A. R.; Maier, H. R.; Marchi, A.; Nixon, J. B.

    2012-09-01

    Evolutionary algorithms (EAs) have been applied successfully to many water resource problems, such as system design, management decision formulation, and model calibration. The performance of an EA with respect to a particular problem type is dependent on how effectively its internal operators balance the exploitation/exploration trade-off to iteratively find solutions of an increasing quality. For a given problem, different algorithms are observed to produce a variety of different final performances, but there have been surprisingly few investigations into characterizing how the different internal mechanisms alter the algorithm's searching behavior, in both the objective and decision space, to arrive at this final performance. This paper presents metrics for analyzing the searching behavior of ant colony optimization algorithms, a particular type of EA, for the optimal water distribution system design problem, which is a classical NP-hard problem in civil engineering. Using the proposed metrics, behavior is characterized in terms of three different attributes: (1) the effectiveness of the search in improving its solution quality and entering into optimal or near-optimal regions of the search space, (2) the extent to which the algorithm explores as it converges to solutions, and (3) the searching behavior with respect to the feasible and infeasible regions. A range of case studies is considered, where a number of ant colony optimization variants are applied to a selection of water distribution system optimization problems. The results demonstrate the utility of the proposed metrics to give greater insight into how the internal operators affect each algorithm's searching behavior.

  9. Estimating Most Productive Scale Size in Data Envelopment Analysis with Integer Value Data

    NASA Astrophysics Data System (ADS)

    Dwi Sari, Yunita; Angria S, Layla; Efendi, Syahril; Zarlis, Muhammad

    2018-01-01

    The most productive scale size (MPSS) is a measurement that states how resources should be organized and utilized to achieve optimal results. The most productive scale size (MPSS) can be used as a benchmark for the success of an industry or company in producing goods or services. To estimate the most productive scale size (MPSS), each decision making unit (DMU) should pay attention the level of input-output efficiency, by data envelopment analysis (DEA) method decision making unit (DMU) can identify units used as references that can help to find the cause and solution from inefficiencies can optimize productivity that main advantage in managerial applications. Therefore, data envelopment analysis (DEA) is chosen to estimating most productive scale size (MPSS) that will focus on the input of integer value data with the CCR model and the BCC model. The purpose of this research is to find the best solution for estimating most productive scale size (MPSS) with input of integer value data in data envelopment analysis (DEA) method.

  10. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment.

    PubMed

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.

  11. Hybrid Symbiotic Organisms Search Optimization Algorithm for Scheduling of Tasks on Cloud Computing Environment

    PubMed Central

    Abdullahi, Mohammed; Ngadi, Md Asri

    2016-01-01

    Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127

  12. Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Lopez, Nicolas

    This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.

  13. Efficient receiver tuning using differential evolution strategies

    NASA Astrophysics Data System (ADS)

    Wheeler, Caleb H.; Toland, Trevor G.

    2016-08-01

    Differential evolution (DE) is a powerful and computationally inexpensive optimization strategy that can be used to search an entire parameter space or to converge quickly on a solution. The Kilopixel Array Pathfinder Project (KAPPa) is a heterodyne receiver system delivering 5 GHz of instantaneous bandwidth in the tuning range of 645-695 GHz. The fully automated KAPPa receiver test system finds optimal receiver tuning using performance feedback and DE. We present an adaptation of DE for use in rapid receiver characterization. The KAPPa DE algorithm is written in Python 2.7 and is fully integrated with the KAPPa instrument control, data processing, and visualization code. KAPPa develops the technologies needed to realize heterodyne focal plane arrays containing 1000 pixels. Finding optimal receiver tuning by investigating large parameter spaces is one of many challenges facing the characterization phase of KAPPa. This is a difficult task via by-hand techniques. Characterizing or tuning in an automated fashion without need for human intervention is desirable for future large scale arrays. While many optimization strategies exist, DE is ideal for time and performance constraints because it can be set to converge to a solution rapidly with minimal computational overhead. We discuss how DE is utilized in the KAPPa system and discuss its performance and look toward the future of 1000 pixel array receivers and consider how the KAPPa DE system might be applied.

  14. Optimal File-Distribution in Heterogeneous and Asymmetric Storage Networks

    NASA Astrophysics Data System (ADS)

    Langner, Tobias; Schindelhauer, Christian; Souza, Alexander

    We consider an optimisation problem which is motivated from storage virtualisation in the Internet. While storage networks make use of dedicated hardware to provide homogeneous bandwidth between servers and clients, in the Internet, connections between storage servers and clients are heterogeneous and often asymmetric with respect to upload and download. Thus, for a large file, the question arises how it should be fragmented and distributed among the servers to grant "optimal" access to the contents. We concentrate on the transfer time of a file, which is the time needed for one upload and a sequence of n downloads, using a set of m servers with heterogeneous bandwidths. We assume that fragments of the file can be transferred in parallel to and from multiple servers. This model yields a distribution problem that examines the question of how these fragments should be distributed onto those servers in order to minimise the transfer time. We present an algorithm, called FlowScaling, that finds an optimal solution within running time {O}(m log m). We formulate the distribution problem as a maximum flow problem, which involves a function that states whether a solution with a given transfer time bound exists. This function is then used with a scaling argument to determine an optimal solution within the claimed time complexity.

  15. A master-slave parallel hybrid multi-objective evolutionary algorithm for groundwater remediation design under general hydrogeological conditions

    NASA Astrophysics Data System (ADS)

    Wu, J.; Yang, Y.; Luo, Q.; Wu, J.

    2012-12-01

    This study presents a new hybrid multi-objective evolutionary algorithm, the niched Pareto tabu search combined with a genetic algorithm (NPTSGA), whereby the global search ability of niched Pareto tabu search (NPTS) is improved by the diversification of candidate solutions arose from the evolving nondominated sorting genetic algorithm II (NSGA-II) population. Also, the NPTSGA coupled with the commonly used groundwater flow and transport codes, MODFLOW and MT3DMS, is developed for multi-objective optimal design of groundwater remediation systems. The proposed methodology is then applied to a large-scale field groundwater remediation system for cleanup of large trichloroethylene (TCE) plume at the Massachusetts Military Reservation (MMR) in Cape Cod, Massachusetts. Furthermore, a master-slave (MS) parallelization scheme based on the Message Passing Interface (MPI) is incorporated into the NPTSGA to implement objective function evaluations in distributed processor environment, which can greatly improve the efficiency of the NPTSGA in finding Pareto-optimal solutions to the real-world application. This study shows that the MS parallel NPTSGA in comparison with the original NPTS and NSGA-II can balance the tradeoff between diversity and optimality of solutions during the search process and is an efficient and effective tool for optimizing the multi-objective design of groundwater remediation systems under complicated hydrogeologic conditions.

  16. Geographical determination of an optimal network of landing sites for Hermes

    NASA Astrophysics Data System (ADS)

    Goester, J. F.

    Once its mission is done, Hermès will perform a deorbit burn, then will pilot towards a specially equipped landing site. As the atmospheric re-entry corridor is limited (the maximum cross range is 1500 km) Hermès will have to be situated on or-bits going near the runway. For safety reasons, we need to get one return opportunity per revolution, so it may be necessary to consider several landing sites and to fit out them. This proposed method allows to find, with easiness and quickness, the geographic areas getting the optimal solutions in term of number of runways, solutions amongst which we will choose already existing sites, checking other meteorologic, politic and economic constraints.

  17. Robust optimization with transiently chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Sumi, R.; Molnár, B.; Ercsey-Ravasz, M.

    2014-05-01

    Efficiently solving hard optimization problems has been a strong motivation for progress in analog computing. In a recent study we presented a continuous-time dynamical system for solving the NP-complete Boolean satisfiability (SAT) problem, with a one-to-one correspondence between its stable attractors and the SAT solutions. While physical implementations could offer great efficiency, the transiently chaotic dynamics raises the question of operability in the presence of noise, unavoidable on analog devices. Here we show that the probability of finding solutions is robust to noise intensities well above those present on real hardware. We also developed a cellular neural network model realizable with analog circuits, which tolerates even larger noise intensities. These methods represent an opportunity for robust and efficient physical implementations.

  18. GEANT4 simulations of a novel 3He-free thermalization neutron detector

    NASA Astrophysics Data System (ADS)

    Mazzone, A.; Finocchiaro, P.; Lo Meo, S.; Colonna, N.

    2018-05-01

    A novel concept for 3He-free thermalization detector is here investigated by means of GEANT4 simulations. The detector is based on strips of solid-state detectors with 6Li deposit for neutron conversion. Various geometrical configurations have been investigated in order to find the optimal solution, in terms of value and energy dependence of the efficiency for neutron energies up to 10 MeV. The expected performance of the new detector are compared with those of an optimized thermalization detector based on standard 3He tubes. Although an 3He-based detector is superior in terms of performance and simplicity, the proposed solution may become more appealing in terms of costs in case of shortage of 3He supply.

  19. The mechanisms and boundary conditions of the Einstellung effect in chess: evidence from eye movements.

    PubMed

    Sheridan, Heather; Reingold, Eyal M

    2013-01-01

    In a wide range of problem-solving settings, the presence of a familiar solution can block the discovery of better solutions (i.e., the Einstellung effect). To investigate this effect, we monitored the eye movements of expert and novice chess players while they solved chess problems that contained a familiar move (i.e., the Einstellung move), as well as an optimal move that was located in a different region of the board. When the Einstellung move was an advantageous (but suboptimal) move, both the expert and novice chess players who chose the Einstellung move continued to look at this move throughout the trial, whereas the subset of expert players who chose the optimal move were able to gradually disengage their attention from the Einstellung move. However, when the Einstellung move was a blunder, all of the experts and the majority of the novices were able to avoid selecting the Einstellung move, and both the experts and novices gradually disengaged their attention from the Einstellung move. These findings shed light on the boundary conditions of the Einstellung effect, and provide convergent evidence for Bilalić, McLeod, & Gobet (2008)'s conclusion that the Einstellung effect operates by biasing attention towards problem features that are associated with the familiar solution rather than the optimal solution.

  20. A Multiuser Detector Based on Artificial Bee Colony Algorithm for DS-UWB Systems

    PubMed Central

    Liu, Xiaohui

    2013-01-01

    Artificial Bee Colony (ABC) algorithm is an optimization algorithm based on the intelligent behavior of honey bee swarm. The ABC algorithm was developed to solve optimizing numerical problems and revealed premising results in processing time and solution quality. In ABC, a colony of artificial bees search for rich artificial food sources; the optimizing numerical problems are converted to the problem of finding the best parameter which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solutions and then iteratively improve them by employing the behavior: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions. In this paper, an efficient multiuser detector based on a suboptimal code mapping multiuser detector and artificial bee colony algorithm (SCM-ABC-MUD) is proposed and implemented in direct-sequence ultra-wideband (DS-UWB) systems under the additive white Gaussian noise (AWGN) channel. The simulation results demonstrate that the BER and the near-far effect resistance performances of this proposed algorithm are quite close to those of the optimum multiuser detector (OMD) while its computational complexity is much lower than that of OMD. Furthermore, the BER performance of SCM-ABC-MUD is not sensitive to the number of active users and can obtain a large system capacity. PMID:23983638

  1. All-in-one model for designing optimal water distribution pipe networks

    NASA Astrophysics Data System (ADS)

    Aklog, Dagnachew; Hosoi, Yoshihiko

    2017-05-01

    This paper discusses the development of an easy-to-use, all-in-one model for designing optimal water distribution networks. The model combines different optimization techniques into a single package in which a user can easily choose what optimizer to use and compare the results of different optimizers to gain confidence in the performances of the models. At present, three optimization techniques are included in the model: linear programming (LP), genetic algorithm (GA) and a heuristic one-by-one reduction method (OBORM) that was previously developed by the authors. The optimizers were tested on a number of benchmark problems and performed very well in terms of finding optimal or near-optimal solutions with a reasonable computation effort. The results indicate that the model effectively addresses the issues of complexity and limited performance trust associated with previous models and can thus be used for practical purposes.

  2. A Modified Mean Gray Wolf Optimization Approach for Benchmark and Biomedical Problems.

    PubMed

    Singh, Narinder; Singh, S B

    2017-01-01

    A modified variant of gray wolf optimization algorithm, namely, mean gray wolf optimization algorithm has been developed by modifying the position update (encircling behavior) equations of gray wolf optimization algorithm. The proposed variant has been tested on 23 standard benchmark well-known test functions (unimodal, multimodal, and fixed-dimension multimodal), and the performance of modified variant has been compared with particle swarm optimization and gray wolf optimization. Proposed algorithm has also been applied to the classification of 5 data sets to check feasibility of the modified variant. The results obtained are compared with many other meta-heuristic approaches, ie, gray wolf optimization, particle swarm optimization, population-based incremental learning, ant colony optimization, etc. The results show that the performance of modified variant is able to find best solutions in terms of high level of accuracy in classification and improved local optima avoidance.

  3. Transversely diode-pumped alkali metal vapour laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkhomenko, A I; Shalagin, A M

    2015-09-30

    We have studied theoretically the operation of a transversely diode-pumped alkali metal vapour laser. For the case of high-intensity laser radiation, we have obtained an analytical solution to a complex system of differential equations describing the laser. This solution allows one to exhaustively determine all the energy characteristics of the laser and to find optimal parameters of the working medium and pump radiation (temperature, buffer gas pressure, and intensity and width of the pump spectrum). (lasers)

  4. A Simple Analytic Model for Estimating Mars Ascent Vehicle Mass and Performance

    NASA Technical Reports Server (NTRS)

    Woolley, Ryan C.

    2014-01-01

    The Mars Ascent Vehicle (MAV) is a crucial component in any sample return campaign. In this paper we present a universal model for a two-stage MAV along with the analytic equations and simple parametric relationships necessary to quickly estimate MAV mass and performance. Ascent trajectories can be modeled as two-burn transfers from the surface with appropriate loss estimations for finite burns, steering, and drag. Minimizing lift-off mass is achieved by balancing optimized staging and an optimized path-to-orbit. This model allows designers to quickly find optimized solutions and to see the effects of design choices.

  5. Feedback quantum control of molecular electronic population transfer

    NASA Astrophysics Data System (ADS)

    Bardeen, Christopher J.; Yakovlev, Vladislav V.; Wilson, Kent R.; Carpenter, Scott D.; Weber, Peter M.; Warren, Warren S.

    1997-11-01

    Feedback quantum control, where the sample `teaches' a computer-controlled arbitrary lightform generator to find the optimal light field, is experimentally demonstrated for a molecular system. Femtosecond pulses tailored by a computer-controlled acousto-optic pulse shaper excite fluorescence from laser dye molecules in solution. Fluorescence and laser power are monitored, and the computer uses the experimental data and a genetic algorithm to optimize population transfer from ground to first excited state. Both efficiency (the ratio of excited state population to laser energy) and effectiveness (total excited state population) are optimized. Potential use as an `automated theory tester' is discussed.

  6. PSO Algorithm Particle Filters for Improving the Performance of Lane Detection and Tracking Systems in Difficult Roads

    PubMed Central

    Cheng, Wen-Chang

    2012-01-01

    In this paper we propose a robust lane detection and tracking method by combining particle filters with the particle swarm optimization method. This method mainly uses the particle filters to detect and track the local optimum of the lane model in the input image and then seeks the global optimal solution of the lane model by a particle swarm optimization method. The particle filter can effectively complete lane detection and tracking in complicated or variable lane environments. However, the result obtained is usually a local optimal system status rather than the global optimal system status. Thus, the particle swarm optimization method is used to further refine the global optimal system status in all system statuses. Since the particle swarm optimization method is a global optimization algorithm based on iterative computing, it can find the global optimal lane model by simulating the food finding way of fish school or insects under the mutual cooperation of all particles. In verification testing, the test environments included highways and ordinary roads as well as straight and curved lanes, uphill and downhill lanes, lane changes, etc. Our proposed method can complete the lane detection and tracking more accurately and effectively then existing options. PMID:23235453

  7. Optimization of Wireless Power Transfer Systems Enhanced by Passive Elements and Metasurfaces

    NASA Astrophysics Data System (ADS)

    Lang, Hans-Dieter; Sarris, Costas D.

    2017-10-01

    This paper presents a rigorous optimization technique for wireless power transfer (WPT) systems enhanced by passive elements, ranging from simple reflectors and intermedi- ate relays all the way to general electromagnetic guiding and focusing structures, such as metasurfaces and metamaterials. At its core is a convex semidefinite relaxation formulation of the otherwise nonconvex optimization problem, of which tightness and optimality can be confirmed by a simple test of its solutions. The resulting method is rigorous, versatile, and general -- it does not rely on any assumptions. As shown in various examples, it is able to efficiently and reliably optimize such WPT systems in order to find their physical limitations on performance, optimal operating parameters and inspect their working principles, even for a large number of active transmitters and passive elements.

  8. Optimal Limited Contingency Planning

    NASA Technical Reports Server (NTRS)

    Meuleau, Nicolas; Smith, David E.

    2003-01-01

    For a given problem, the optimal Markov policy over a finite horizon is a conditional plan containing a potentially large number of branches. However, there are applications where it is desirable to strictly limit the number of decision points and branches in a plan. This raises the question of how one goes about finding optimal plans containing only a limited number of branches. In this paper, we present an any-time algorithm for optimal k-contingency planning. It is the first optimal algorithm for limited contingency planning that is not an explicit enumeration of possible contingent plans. By modelling the problem as a partially observable Markov decision process, it implements the Bellman optimality principle and prunes the solution space. We present experimental results of applying this algorithm to some simple test cases.

  9. Direct Multiple Shooting Optimization with Variable Problem Parameters

    NASA Technical Reports Server (NTRS)

    Whitley, Ryan J.; Ocampo, Cesar A.

    2009-01-01

    Taking advantage of a novel approach to the design of the orbital transfer optimization problem and advanced non-linear programming algorithms, several optimal transfer trajectories are found for problems with and without known analytic solutions. This method treats the fixed known gravitational constants as optimization variables in order to reduce the need for an advanced initial guess. Complex periodic orbits are targeted with very simple guesses and the ability to find optimal transfers in spite of these bad guesses is successfully demonstrated. Impulsive transfers are considered for orbits in both the 2-body frame as well as the circular restricted three-body problem (CRTBP). The results with this new approach demonstrate the potential for increasing robustness for all types of orbit transfer problems.

  10. Impact of Spatial Pumping Patterns on Groundwater Management

    NASA Astrophysics Data System (ADS)

    Yin, J.; Tsai, F. T. C.

    2017-12-01

    Challenges exist to manage groundwater resources while maintaining a balance between groundwater quantity and quality because of anthropogenic pumping activities as well as complex subsurface environment. In this study, to address the impact of spatial pumping pattern on groundwater management, a mixed integer nonlinear multi-objective model is formulated by integrating three objectives within a management framework to: (i) maximize total groundwater withdrawal from potential wells; (ii) minimize total electricity cost for well pumps; and (iii) attain groundwater level at selected monitoring locations as close as possible to the target level. Binary variables are used in the groundwater management model to control the operative status of pumping wells. The NSGA-II is linked with MODFLOW to solve the multi-objective problem. The proposed method is applied to a groundwater management problem in the complex Baton Rouge aquifer system, southeastern Louisiana. Results show that (a) non-dominated trade-off solutions under various spatial distributions of active pumping wells can be achieved. Each solution is optimal with regard to its corresponding objectives; (b) operative status, locations and pumping rates of pumping wells are significant to influence the distribution of hydraulic head, which in turn influence the optimization results; (c) A wide range of optimal solutions is obtained such that decision makers can select the most appropriate solution through negotiation with different stakeholders. This technique is beneficial to finding out the optimal extent to which three objectives including water supply concern, energy concern and subsidence concern can be balanced.

  11. Shortest path problem on a grid network with unordered intermediate points

    NASA Astrophysics Data System (ADS)

    Saw, Veekeong; Rahman, Amirah; Eng Ong, Wen

    2017-10-01

    We consider a shortest path problem with single cost factor on a grid network with unordered intermediate points. A two stage heuristic algorithm is proposed to find a feasible solution path within a reasonable amount of time. To evaluate the performance of the proposed algorithm, computational experiments are performed on grid maps of varying size and number of intermediate points. Preliminary results for the problem are reported. Numerical comparisons against brute forcing show that the proposed algorithm consistently yields solutions that are within 10% of the optimal solution and uses significantly less computation time.

  12. A single-vendor and a single-buyer integrated inventory model with ordering cost reduction dependent on lead time

    NASA Astrophysics Data System (ADS)

    Vijayashree, M.; Uthayakumar, R.

    2017-09-01

    Lead time is one of the major limits that affect planning at every stage of the supply chain system. In this paper, we study a continuous review inventory model. This paper investigates the ordering cost reductions are dependent on lead time. This study addressed two-echelon supply chain problem consisting of a single vendor and a single buyer. The main contribution of this study is that the integrated total cost of the single vendor and the single buyer integrated system is analyzed by adopting two different (linear and logarithmic) types ordering cost reductions act dependent on lead time. In both cases, we develop effective solution procedures for finding the optimal solution and then illustrative numerical examples are given to illustrate the results. The solution procedure is to determine the optimal solutions of order quantity, ordering cost, lead time and the number of deliveries from the single vendor and the single buyer in one production run, so that the integrated total cost incurred has the minimum value. Ordering cost reduction is the main aspect of the proposed model. A numerical example is given to validate the model. Numerical example solved by using Matlab software. The mathematical model is solved analytically by minimizing the integrated total cost. Furthermore, the sensitivity analysis is included and the numerical examples are given to illustrate the results. The results obtained in this paper are illustrated with the help of numerical examples. The sensitivity of the proposed model has been checked with respect to the various major parameters of the system. Results reveal that the proposed integrated inventory model is more applicable for the supply chain manufacturing system. For each case, an algorithm procedure of finding the optimal solution is developed. Finally, the graphical representation is presented to illustrate the proposed model and also include the computer flowchart in each model.

  13. Finite horizon EOQ model for non-instantaneous deteriorating items with price and advertisement dependent demand and partial backlogging under inflation

    NASA Astrophysics Data System (ADS)

    Palanivel, M.; Uthayakumar, R.

    2015-07-01

    This paper deals with an economic order quantity (EOQ) model for non-instantaneous deteriorating items with price and advertisement dependent demand pattern under the effect of inflation and time value of money over a finite planning horizon. In this model, shortages are allowed and partially backlogged. The backlogging rate is dependent on the waiting time for the next replenishment. This paper aids the retailer in minimising the total inventory cost by finding the optimal interval and the optimal order quantity. An algorithm is designed to find the optimum solution of the proposed model. Numerical examples are given to demonstrate the results. Also, the effect of changes in the different parameters on the optimal total cost is graphically presented and the implications are discussed in detail.

  14. Fast state transfer in a Λ-system: a shortcut-to-adiabaticity approach to robust and resource optimized control

    NASA Astrophysics Data System (ADS)

    Mortensen, Henrik Lund; Sørensen, Jens Jakob W. H.; Mølmer, Klaus; Sherson, Jacob Friis

    2018-02-01

    We propose an efficient strategy to find optimal control functions for state-to-state quantum control problems. Our procedure first chooses an input state trajectory, that can realize the desired transformation by adiabatic variation of the system Hamiltonian. The shortcut-to-adiabaticity formalism then provides a control Hamiltonian that realizes the reference trajectory exactly but on a finite time scale. As the final state is achieved with certainty, we define a cost functional that incorporates the resource requirements and a perturbative expression for robustness. We optimize this functional by systematically varying the reference trajectory. We demonstrate the method by application to population transfer in a laser driven three-level Λ-system, where we find solutions that are fast and robust against perturbations while maintaining a low peak laser power.

  15. Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Existence Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulicek, Miroslav; Haslinger, Jaroslav; Malek, Josef

    2009-10-15

    We study a shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to an optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by a generalized stationary Navier-Stokes system with nontrivial mixed boundary conditions. In this paper we prove the existence of solutions both to the generalized Navier-Stokes system and tomore » the shape optimization problem.« less

  16. Optimal Control Strategy Design Based on Dynamic Programming for a Dual-Motor Coupling-Propulsion System

    PubMed Central

    Zhang, Shuo; Zhang, Chengning; Han, Guangwei; Wang, Qinghui

    2014-01-01

    A dual-motor coupling-propulsion electric bus (DMCPEB) is modeled, and its optimal control strategy is studied in this paper. The necessary dynamic features of energy loss for subsystems is modeled. Dynamic programming (DP) technique is applied to find the optimal control strategy including upshift threshold, downshift threshold, and power split ratio between the main motor and auxiliary motor. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement in reducing energy loss due to the dual-motor coupling-propulsion system (DMCPS) running is realized without increasing the frequency of the mode switch. PMID:25540814

  17. Optimal control strategy design based on dynamic programming for a dual-motor coupling-propulsion system.

    PubMed

    Zhang, Shuo; Zhang, Chengning; Han, Guangwei; Wang, Qinghui

    2014-01-01

    A dual-motor coupling-propulsion electric bus (DMCPEB) is modeled, and its optimal control strategy is studied in this paper. The necessary dynamic features of energy loss for subsystems is modeled. Dynamic programming (DP) technique is applied to find the optimal control strategy including upshift threshold, downshift threshold, and power split ratio between the main motor and auxiliary motor. Improved control rules are extracted from the DP-based control solution, forming near-optimal control strategies. Simulation results demonstrate that a significant improvement in reducing energy loss due to the dual-motor coupling-propulsion system (DMCPS) running is realized without increasing the frequency of the mode switch.

  18. Characterizing L1-norm best-fit subspaces

    NASA Astrophysics Data System (ADS)

    Brooks, J. Paul; Dulá, José H.

    2017-05-01

    Fitting affine objects to data is the basis of many tools and methodologies in statistics, machine learning, and signal processing. The L1 norm is often employed to produce subspaces exhibiting a robustness to outliers and faulty observations. The L1-norm best-fit subspace problem is directly formulated as a nonlinear, nonconvex, and nondifferentiable optimization problem. The case when the subspace is a hyperplane can be solved to global optimality efficiently by solving a series of linear programs. The problem of finding the best-fit line has recently been shown to be NP-hard. We present necessary conditions for optimality for the best-fit subspace problem, and use them to characterize properties of optimal solutions.

  19. Improved mine blast algorithm for optimal cost design of water distribution systems

    NASA Astrophysics Data System (ADS)

    Sadollah, Ali; Guen Yoo, Do; Kim, Joong Hoon

    2015-12-01

    The design of water distribution systems is a large class of combinatorial, nonlinear optimization problems with complex constraints such as conservation of mass and energy equations. Since feasible solutions are often extremely complex, traditional optimization techniques are insufficient. Recently, metaheuristic algorithms have been applied to this class of problems because they are highly efficient. In this article, a recently developed optimizer called the mine blast algorithm (MBA) is considered. The MBA is improved and coupled with the hydraulic simulator EPANET to find the optimal cost design for water distribution systems. The performance of the improved mine blast algorithm (IMBA) is demonstrated using the well-known Hanoi, New York tunnels and Balerma benchmark networks. Optimization results obtained using IMBA are compared to those using MBA and other optimizers in terms of their minimum construction costs and convergence rates. For the complex Balerma network, IMBA offers the cheapest network design compared to other optimization algorithms.

  20. An extension of the directed search domain algorithm to bilevel optimization

    NASA Astrophysics Data System (ADS)

    Wang, Kaiqiang; Utyuzhnikov, Sergey V.

    2017-08-01

    A method is developed for generating a well-distributed Pareto set for the upper level in bilevel multiobjective optimization. The approach is based on the Directed Search Domain (DSD) algorithm, which is a classical approach for generation of a quasi-evenly distributed Pareto set in multiobjective optimization. The approach contains a double-layer optimizer designed in a specific way under the framework of the DSD method. The double-layer optimizer is based on bilevel single-objective optimization and aims to find a unique optimal Pareto solution rather than generate the whole Pareto frontier on the lower level in order to improve the optimization efficiency. The proposed bilevel DSD approach is verified on several test cases, and a relevant comparison against another classical approach is made. It is shown that the approach can generate a quasi-evenly distributed Pareto set for the upper level with relatively low time consumption.

  1. Optimization of HTS superconducting magnetic energy storage magnet volume

    NASA Astrophysics Data System (ADS)

    Korpela, Aki; Lehtonen, Jorma; Mikkonen, Risto

    2003-08-01

    Nonlinear optimization problems in the field of electromagnetics have been successfully solved by means of sequential quadratic programming (SQP) and the finite element method (FEM). For example, the combination of SQP and FEM has been proven to be an efficient tool in the optimization of low temperature superconductors (LTS) superconducting magnetic energy storage (SMES) magnets. The procedure can also be applied for the optimization of HTS magnets. However, due to a strongly anisotropic material and a slanted electric field, current density characteristic high temperature superconductors HTS optimization is quite different from that of the LTS. In this paper the volumes of solenoidal conduction-cooled Bi-2223/Ag SMES magnets have been optimized at the operation temperature of 20 K. In addition to the electromagnetic constraints the stress caused by the tape bending has also been taken into account. Several optimization runs with different initial geometries were performed in order to find the best possible solution for a certain energy requirement. The optimization constraints describe the steady-state operation, thus the presented coil geometries are designed for slow ramping rates. Different energy requirements were investigated in order to find the energy dependence of the design parameters of optimized solenoidal HTS coils. According to the results, these dependences can be described with polynomial expressions.

  2. Sparse Substring Pattern Set Discovery Using Linear Programming Boosting

    NASA Astrophysics Data System (ADS)

    Kashihara, Kazuaki; Hatano, Kohei; Bannai, Hideo; Takeda, Masayuki

    In this paper, we consider finding a small set of substring patterns which classifies the given documents well. We formulate the problem as 1 norm soft margin optimization problem where each dimension corresponds to a substring pattern. Then we solve this problem by using LPBoost and an optimal substring discovery algorithm. Since the problem is a linear program, the resulting solution is likely to be sparse, which is useful for feature selection. We evaluate the proposed method for real data such as movie reviews.

  3. Punctuated equilibrium and shock waves in molecular models of biological evolution.

    PubMed

    Saakian, David B; Ghazaryan, Makar H; Hu, Chin-Kun

    2014-08-01

    We consider the dynamics in infinite population evolution models with a general symmetric fitness landscape. We find shock waves, i.e., discontinuous transitions in the mean fitness, in evolution dynamics even with smooth fitness landscapes, which means that the search for the optimal evolution trajectory is more complicated. These shock waves appear in the case of positive epistasis and can be used to represent punctuated equilibria in biological evolution during long geological time scales. We find exact analytical solutions for discontinuous dynamics at the large-genome-length limit and derive optimal mutation rates for a fixed fitness landscape to send the population from the initial configuration to some final configuration in the fastest way.

  4. A Scalable and Robust Multi-Agent Approach to Distributed Optimization

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan

    2005-01-01

    Modularizing a large optimization problem so that the solutions to the subproblems provide a good overall solution is a challenging problem. In this paper we present a multi-agent approach to this problem based on aligning the agent objectives with the system objectives, obviating the need to impose external mechanisms to achieve collaboration among the agents. This approach naturally addresses scaling and robustness issues by ensuring that the agents do not rely on the reliable operation of other agents We test this approach in the difficult distributed optimization problem of imperfect device subset selection [Challet and Johnson, 2002]. In this problem, there are n devices, each of which has a "distortion", and the task is to find the subset of those n devices that minimizes the average distortion. Our results show that in large systems (1000 agents) the proposed approach provides improvements of over an order of magnitude over both traditional optimization methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents fail midway through the simulation) the system remains coordinated and still outperforms a failure-free and centralized optimization algorithm.

  5. Optimal Control via Self-Generated Stochasticity

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    The problem of global maxima of functionals has been examined. Mathematical roots of local maxima are the same as those for a much simpler problem of finding global maximum of a multi-dimensional function. The second problem is instability even if an optimal trajectory is found, there is no guarantee that it is stable. As a result, a fundamentally new approach is introduced to optimal control based upon two new ideas. The first idea is to represent the functional to be maximized as a limit of a probability density governed by the appropriately selected Liouville equation. Then, the corresponding ordinary differential equations (ODEs) become stochastic, and that sample of the solution that has the largest value will have the highest probability to appear in ODE simulation. The main advantages of the stochastic approach are that it is not sensitive to local maxima, the function to be maximized must be only integrable but not necessarily differentiable, and global equality and inequality constraints do not cause any significant obstacles. The second idea is to remove possible instability of the optimal solution by equipping the control system with a self-stabilizing device. The applications of the proposed methodology will optimize the performance of NASA spacecraft, as well as robot performance.

  6. Introduction to Numerical Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonover, Joseph A.

    2016-06-14

    These are slides for a lecture for the Parallel Computing Summer Research Internship at the National Security Education Center. This gives an introduction to numerical methods. Repetitive algorithms are used to obtain approximate solutions to mathematical problems, using sorting, searching, root finding, optimization, interpolation, extrapolation, least squares regresion, Eigenvalue problems, ordinary differential equations, and partial differential equations. Many equations are shown. Discretizations allow us to approximate solutions to mathematical models of physical systems using a repetitive algorithm and introduce errors that can lead to numerical instabilities if we are not careful.

  7. Development of mathematical models and optimization of the process parameters of laser surface hardened EN25 steel using elitist non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Vignesh, S.; Dinesh Babu, P.; Surya, G.; Dinesh, S.; Marimuthu, P.

    2018-02-01

    The ultimate goal of all production entities is to select the process parameters that would be of maximum strength, minimum wear and friction. The friction and wear are serious problems in most of the industries which are influenced by the working set of parameters, oxidation characteristics and mechanism involved in formation of wear. The experimental input parameters such as sliding distance, applied load, and temperature are utilized in finding out the optimized solution for achieving the desired output responses such as coefficient of friction, wear rate, and volume loss. The optimization is performed with the help of a novel method, Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) based on an evolutionary algorithm. The regression equations obtained using Response Surface Methodology (RSM) are used in determining the optimum process parameters. Further, the results achieved through desirability approach in RSM are compared with that of the optimized solution obtained through NSGA-II. The results conclude that proposed evolutionary technique is much effective and faster than the desirability approach.

  8. Many-body optimization using an ab initio monte carlo method.

    PubMed

    Haubein, Ned C; McMillan, Scott A; Broadbelt, Linda J

    2003-01-01

    Advances in computing power have made it possible to study solvated molecules using ab initio quantum chemistry. Inclusion of discrete solvent molecules is required to determine geometric information about solute/solvent clusters. Monte Carlo methods are well suited to finding minima in many-body systems, and ab initio methods are applicable to the widest range of systems. A first principles Monte Carlo (FPMC) method was developed to find minima in many-body systems, and emphasis was placed on implementing moves that increase the likelihood of finding minimum energy structures. Partial optimization and molecular interchange moves aid in finding minima and overcome the incomplete sampling that is unavoidable when using ab initio methods. FPMC was validated by studying the boron trifluoride-water system, and then the method was used to examine the methyl carbenium ion in water to demonstrate its application to solvation problems.

  9. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    NASA Technical Reports Server (NTRS)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  10. At-Least Version of the Generalized Minimum Spanning Tree Problem: Optimization Through Ant Colony System and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Janich, Karl W.

    2005-01-01

    The At-Least version of the Generalized Minimum Spanning Tree Problem (L-GMST) is a problem in which the optimal solution connects all defined clusters of nodes in a given network at a minimum cost. The L-GMST is NPHard; therefore, metaheuristic algorithms have been used to find reasonable solutions to the problem as opposed to computationally feasible exact algorithms, which many believe do not exist for such a problem. One such metaheuristic uses a swarm-intelligent Ant Colony System (ACS) algorithm, in which agents converge on a solution through the weighing of local heuristics, such as the shortest available path and the number of agents that recently used a given path. However, in a network using a solution derived from the ACS algorithm, some nodes may move around to different clusters and cause small changes in the network makeup. Rerunning the algorithm from the start would be somewhat inefficient due to the significance of the changes, so a genetic algorithm based on the top few solutions found in the ACS algorithm is proposed to quickly and efficiently adapt the network to these small changes.

  11. A Framework for Multi-Stakeholder Decision-Making and ...

    EPA Pesticide Factsheets

    This contribution describes the implementation of the conditional-value-at-risk (CVaR) metric to create a general multi-stakeholder decision-making framework. It is observed that stakeholder dissatisfactions (distance to their individual ideal solutions) can be interpreted as random variables. We thus shape the dissatisfaction distribution and find an optimal compromise solution by solving a CVaR minimization problem parameterized in the probability level. This enables us to generalize multi-stakeholder settings previously proposed in the literature that minimizes average and worst-case dissatisfactions. We use the concept of the CVaR norm to give a geometric interpretation to this problem and use the properties of this norm to prove that the CVaR minimization problem yields Pareto optimal solutions for any choice of the probability level. We discuss a broad range of potential applications of the framework. We demonstrate the framework in a bio-waste processing facility location case study, where we seek compromise solutions (facility locations) that balance stakeholder priorities on transportation, safety, water quality, and capital costs. This conference presentation abstract explains a new decision-making framework that computes compromise solution alternatives (reach consensus) by mitigating dissatisfactions among stakeholders as needed for SHC Decision Science and Support Tools project.

  12. Amoeba-based computing for traveling salesman problem: long-term correlations between spatially separated individual cells of Physarum polycephalum.

    PubMed

    Zhu, Liping; Aono, Masashi; Kim, Song-Ju; Hara, Masahiko

    2013-04-01

    A single-celled, multi-nucleated amoeboid organism, a plasmodium of the true slime mold Physarum polycephalum, can perform sophisticated computing by exhibiting complex spatiotemporal oscillatory dynamics while deforming its amorphous body. We previously devised an "amoeba-based computer (ABC)" to quantitatively evaluate the optimization capability of the amoeboid organism in searching for a solution to the traveling salesman problem (TSP) under optical feedback control. In ABC, the organism changes its shape to find a high quality solution (a relatively shorter TSP route) by alternately expanding and contracting its pseudopod-like branches that exhibit local photoavoidance behavior. The quality of the solution serves as a measure of the optimality of which the organism maximizes its global body area (nutrient absorption) while minimizing the risk of being illuminated (exposure to aversive stimuli). ABC found a high quality solution for the 8-city TSP with a high probability. However, it remains unclear whether intracellular communication among the branches of the organism is essential for computing. In this study, we conducted a series of control experiments using two individual cells (two single-celled organisms) to perform parallel searches in the absence of intercellular communication. We found that ABC drastically lost its ability to find a solution when it used two independent individuals. However, interestingly, when two individuals were prepared by dividing one individual, they found a solution for a few tens of minutes. That is, the two divided individuals remained correlated even though they were spatially separated. These results suggest the presence of a long-term memory in the intrinsic dynamics of this organism and its significance in performing sophisticated computing. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Post-Optimality Analysis In Aerospace Vehicle Design

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Kroo, Ilan M.; Gage, Peter J.

    1993-01-01

    This analysis pertains to the applicability of optimal sensitivity information to aerospace vehicle design. An optimal sensitivity (or post-optimality) analysis refers to computations performed once the initial optimization problem is solved. These computations may be used to characterize the design space about the present solution and infer changes in this solution as a result of constraint or parameter variations, without reoptimizing the entire system. The present analysis demonstrates that post-optimality information generated through first-order computations can be used to accurately predict the effect of constraint and parameter perturbations on the optimal solution. This assessment is based on the solution of an aircraft design problem in which the post-optimality estimates are shown to be within a few percent of the true solution over the practical range of constraint and parameter variations. Through solution of a reusable, single-stage-to-orbit, launch vehicle design problem, this optimal sensitivity information is also shown to improve the efficiency of the design process, For a hierarchically decomposed problem, this computational efficiency is realized by estimating the main-problem objective gradient through optimal sep&ivity calculations, By reducing the need for finite differentiation of a re-optimized subproblem, a significant decrease in the number of objective function evaluations required to reach the optimal solution is obtained.

  14. Rarity-weighted richness: a simple and reliable alternative to integer programming and heuristic algorithms for minimum set and maximum coverage problems in conservation planning.

    PubMed

    Albuquerque, Fabio; Beier, Paul

    2015-01-01

    Here we report that prioritizing sites in order of rarity-weighted richness (RWR) is a simple, reliable way to identify sites that represent all species in the fewest number of sites (minimum set problem) or to identify sites that represent the largest number of species within a given number of sites (maximum coverage problem). We compared the number of species represented in sites prioritized by RWR to numbers of species represented in sites prioritized by the Zonation software package for 11 datasets in which the size of individual planning units (sites) ranged from <1 ha to 2,500 km2. On average, RWR solutions were more efficient than Zonation solutions. Integer programming remains the only guaranteed way find an optimal solution, and heuristic algorithms remain superior for conservation prioritizations that consider compactness and multiple near-optimal solutions in addition to species representation. But because RWR can be implemented easily and quickly in R or a spreadsheet, it is an attractive alternative to integer programming or heuristic algorithms in some conservation prioritization contexts.

  15. Optical solutions for unbundled access network

    NASA Astrophysics Data System (ADS)

    Bacîş Vasile, Irina Bristena

    2015-02-01

    The unbundling technique requires finding solutions to guarantee the economic and technical performances imposed by the nature of the services that can be offered. One of the possible solutions is the optic one; choosing this solution is justified for the following reasons: it optimizes the use of the access network, which is the most expensive part of a network (about 50% of the total investment in telecommunications networks) while also being the least used (telephone traffic on the lines has a low cost); it increases the distance between the master station/central and the terminal of the subscriber; the development of the services offered to the subscribers is conditioned by the subscriber network. For broadband services there is a need for support for the introduction of high-speed transport. A proper identification of the factors that must be satisfied and a comprehensive financial evaluation of all resources involved, both the resources that are in the process of being bought as well as extensions are the main conditions that would lead to a correct choice. As there is no single optimal technology for all development scenarios, which can take into account all access systems, a successful implementation is always done by individual/particularized scenarios. The method used today for the selection of an optimal solution is based on statistics and analysis of the various, already implemented, solutions, and on the experience that was already gained; the main evaluation criterion and the most unbiased one is the ratio between the cost of the investment and the quality of service, while serving an as large as possible number of customers.

  16. ReacKnock: Identifying Reaction Deletion Strategies for Microbial Strain Optimization Based on Genome-Scale Metabolic Network

    PubMed Central

    Xu, Zixiang; Zheng, Ping; Sun, Jibin; Ma, Yanhe

    2013-01-01

    Gene knockout has been used as a common strategy to improve microbial strains for producing chemicals. Several algorithms are available to predict the target reactions to be deleted. Most of them apply mixed integer bi-level linear programming (MIBLP) based on metabolic networks, and use duality theory to transform bi-level optimization problem of large-scale MIBLP to single-level programming. However, the validity of the transformation was not proved. Solution of MIBLP depends on the structure of inner problem. If the inner problem is continuous, Karush-Kuhn-Tucker (KKT) method can be used to reformulate the MIBLP to a single-level one. We adopt KKT technique in our algorithm ReacKnock to attack the intractable problem of the solution of MIBLP, demonstrated with the genome-scale metabolic network model of E. coli for producing various chemicals such as succinate, ethanol, threonine and etc. Compared to the previous methods, our algorithm is fast, stable and reliable to find the optimal solutions for all the chemical products tested, and able to provide all the alternative deletion strategies which lead to the same industrial objective. PMID:24348984

  17. Inoculating wheat (Triticum aestivum L.) with the endophytic bacterium Serratia sp. PW7 to reduce pyrene contamination.

    PubMed

    Zhu, Xuezhu; Wang, Wanqing; Sun, Kai; Lin, Xianghao; Li, Shuang; Waigi, Michael Gatheru; Ling, Wanting

    2017-08-03

    This research was conducted to find an optimal inoculation way for a pyrene-degrading endophytic Serratia sp. PW7 to colonize wheat for reducing pyrene contamination. Three inoculation ways, which are soaking seeds in inocula (TS), dipping roots of seedlings in inocula (TR), and spraying inocula on leaves of seedlings (TL), were used in this study. Inoculated seedlings and noninoculated seedlings (CK) were, respectively, cultivated in Hoagland solutions supplemented with pyrene in a growth chamber. The results showed that strain PW7 successfully colonized the inoculated seedlings in high numbers, and significantly promoted the growth of seedlings (TS and TR). More importantly, strain PW7 reduced pyrene levels in the seedlings and the Hoagland solutions. Compared to the noninoculated seedlings, the pyrene contents of the inoculated seedlings were decreased by 35.7-86.3% in the shoots and by 26.8-60.1% in the roots after 8-day cultivation. By comparing the efficiencies of decreasing pyrene residues, it can be concluded that TR was an optimal inoculation way for endophytic strains to colonize the inoculated plants and to reduce the pyrene contamination. Our findings provide an optimized inoculation way to reduce organic contamination in crops by inoculating plants with functional endophytic bacteria.

  18. Discrete Methods and their Applications

    DTIC Science & Technology

    1993-02-03

    problem of finding all near-optimal solutions to a linear program. In paper [18], we give a brief and elementary proof of a result of Hoffman [1952) about...relies only on linear programming duality; second, we obtain geometric and algebraic representations of the bounds that are determined explicitly in...same. We have studied the problem of finding the minimum n such that a given unit interval graph is an n--graph. A linear time algorithm to compute

  19. River velocities from sequential multispectral remote sensing images

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Mied, Richard P.

    2013-06-01

    We address the problem of extracting surface velocities from a pair of multispectral remote sensing images over rivers using a new nonlinear multiple-tracer form of the global optimal solution (GOS). The derived velocity field is a valid solution across the image domain to the nonlinear system of equations obtained by minimizing a cost function inferred from the conservation constraint equations for multiple tracers. This is done by deriving an iteration equation for the velocity, based on the multiple-tracer displaced frame difference equations, and a local approximation to the velocity field. The number of velocity equations is greater than the number of velocity components, and thus overly constrain the solution. The iterative technique uses Gauss-Newton and Levenberg-Marquardt methods and our own algorithm of the progressive relaxation of the over-constraint. We demonstrate the nonlinear multiple-tracer GOS technique with sequential multispectral Landsat and ASTER images over a portion of the Potomac River in MD/VA, and derive a dense field of accurate velocity vectors. We compare the GOS river velocities with those from over 12 years of data at four NOAA reference stations, and find good agreement. We discuss how to find the appropriate spatial and temporal resolutions to allow optimization of the technique for specific rivers.

  20. Solving geosteering inverse problems by stochastic Hybrid Monte Carlo method

    DOE PAGES

    Shen, Qiuyang; Wu, Xuqing; Chen, Jiefu; ...

    2017-11-20

    The inverse problems arise in almost all fields of science where the real-world parameters are extracted from a set of measured data. The geosteering inversion plays an essential role in the accurate prediction of oncoming strata as well as a reliable guidance to adjust the borehole position on the fly to reach one or more geological targets. This mathematical treatment is not easy to solve, which requires finding an optimum solution among a large solution space, especially when the problem is non-linear and non-convex. Nowadays, a new generation of logging-while-drilling (LWD) tools has emerged on the market. The so-called azimuthalmore » resistivity LWD tools have azimuthal sensitivity and a large depth of investigation. Hence, the associated inverse problems become much more difficult since the earth model to be inverted will have more detailed structures. The conventional deterministic methods are incapable to solve such a complicated inverse problem, where they suffer from the local minimum trap. Alternatively, stochastic optimizations are in general better at finding global optimal solutions and handling uncertainty quantification. In this article, we investigate the Hybrid Monte Carlo (HMC) based statistical inversion approach and suggest that HMC based inference is more efficient in dealing with the increased complexity and uncertainty faced by the geosteering problems.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Vega, F F; Cantu-Paz, E; Lopez, J I

    The population size of genetic algorithms (GAs) affects the quality of the solutions and the time required to find them. While progress has been made in estimating the population sizes required to reach a desired solution quality for certain problems, in practice the sizing of populations is still usually performed by trial and error. These trials might lead to find a population that is large enough to reach a satisfactory solution, but there may still be opportunities to optimize the computational cost by reducing the size of the population. This paper presents a technique called plague that periodically removes amore » number of individuals from the population as the GA executes. Recently, the usefulness of the plague has been demonstrated for genetic programming. The objective of this paper is to extend the study of plagues to genetic algorithms. We experiment with deceptive trap functions, a tunable difficult problem for GAs, and the experiments show that plagues can save computational time while maintaining solution quality and reliability.« less

  2. TemperSAT: A new efficient fair-sampling random k-SAT solver

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Zhu, Zheng; Katzgraber, Helmut G.

    The set membership problem is of great importance to many applications and, in particular, database searches for target groups. Recently, an approach to speed up set membership searches based on the NP-hard constraint-satisfaction problem (random k-SAT) has been developed. However, the bottleneck of the approach lies in finding the solution to a large SAT formula efficiently and, in particular, a large number of independent solutions is needed to reduce the probability of false positives. Unfortunately, traditional random k-SAT solvers such as WalkSAT are biased when seeking solutions to the Boolean formulas. By porting parallel tempering Monte Carlo to the sampling of binary optimization problems, we introduce a new algorithm (TemperSAT) whose performance is comparable to current state-of-the-art SAT solvers for large k with the added benefit that theoretically it can find many independent solutions quickly. We illustrate our results by comparing to the currently fastest implementation of WalkSAT, WalkSATlm.

  3. Application of firefly algorithm to the dynamic model updating problem

    NASA Astrophysics Data System (ADS)

    Shabbir, Faisal; Omenzetter, Piotr

    2015-04-01

    Model updating can be considered as a branch of optimization problems in which calibration of the finite element (FE) model is undertaken by comparing the modal properties of the actual structure with these of the FE predictions. The attainment of a global solution in a multi dimensional search space is a challenging problem. The nature-inspired algorithms have gained increasing attention in the previous decade for solving such complex optimization problems. This study applies the novel Firefly Algorithm (FA), a global optimization search technique, to a dynamic model updating problem. This is to the authors' best knowledge the first time FA is applied to model updating. The working of FA is inspired by the flashing characteristics of fireflies. Each firefly represents a randomly generated solution which is assigned brightness according to the value of the objective function. The physical structure under consideration is a full scale cable stayed pedestrian bridge with composite bridge deck. Data from dynamic testing of the bridge was used to correlate and update the initial model by using FA. The algorithm aimed at minimizing the difference between the natural frequencies and mode shapes of the structure. The performance of the algorithm is analyzed in finding the optimal solution in a multi dimensional search space. The paper concludes with an investigation of the efficacy of the algorithm in obtaining a reference finite element model which correctly represents the as-built original structure.

  4. Nonconvex Sparse Logistic Regression With Weakly Convex Regularization

    NASA Astrophysics Data System (ADS)

    Shen, Xinyue; Gu, Yuantao

    2018-06-01

    In this work we propose to fit a sparse logistic regression model by a weakly convex regularized nonconvex optimization problem. The idea is based on the finding that a weakly convex function as an approximation of the $\\ell_0$ pseudo norm is able to better induce sparsity than the commonly used $\\ell_1$ norm. For a class of weakly convex sparsity inducing functions, we prove the nonconvexity of the corresponding sparse logistic regression problem, and study its local optimality conditions and the choice of the regularization parameter to exclude trivial solutions. Despite the nonconvexity, a method based on proximal gradient descent is used to solve the general weakly convex sparse logistic regression, and its convergence behavior is studied theoretically. Then the general framework is applied to a specific weakly convex function, and a necessary and sufficient local optimality condition is provided. The solution method is instantiated in this case as an iterative firm-shrinkage algorithm, and its effectiveness is demonstrated in numerical experiments by both randomly generated and real datasets.

  5. On the Motion of Agents across Terrain with Obstacles

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.

    2018-01-01

    The paper is devoted to finding the time optimal route of an agent travelling across a region from a given source point to a given target point. At each point of this region, a maximum allowed speed is specified. This speed limit may vary in time. The continuous statement of this problem and the case when the agent travels on a grid with square cells are considered. In the latter case, the time is also discrete, and the number of admissible directions of motion at each point in time is eight. The existence of an optimal solution of this problem is proved, and estimates of the approximate solution obtained on the grid are obtained. It is found that decreasing the size of cells below a certain limit does not further improve the approximation. These results can be used to estimate the quasi-optimal trajectory of the agent motion across the rugged terrain produced by an algorithm based on a cellular automaton that was earlier developed by the author.

  6. Vehicle routing problem with time windows using natural inspired algorithms

    NASA Astrophysics Data System (ADS)

    Pratiwi, A. B.; Pratama, A.; Sa’diyah, I.; Suprajitno, H.

    2018-03-01

    Process of distribution of goods needs a strategy to make the total cost spent for operational activities minimized. But there are several constrains have to be satisfied which are the capacity of the vehicles and the service time of the customers. This Vehicle Routing Problem with Time Windows (VRPTW) gives complex constrains problem. This paper proposes natural inspired algorithms for dealing with constrains of VRPTW which involves Bat Algorithm and Cat Swarm Optimization. Bat Algorithm is being hybrid with Simulated Annealing, the worst solution of Bat Algorithm is replaced by the solution from Simulated Annealing. Algorithm which is based on behavior of cats, Cat Swarm Optimization, is improved using Crow Search Algorithm to make simplier and faster convergence. From the computational result, these algorithms give good performances in finding the minimized total distance. Higher number of population causes better computational performance. The improved Cat Swarm Optimization with Crow Search gives better performance than the hybridization of Bat Algorithm and Simulated Annealing in dealing with big data.

  7. SfM with MRFs: discrete-continuous optimization for large-scale structure from motion.

    PubMed

    Crandall, David J; Owens, Andrew; Snavely, Noah; Huttenlocher, Daniel P

    2013-12-01

    Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and points, including noisy geotags and vanishing point (VP) estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it produces models that are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.

  8. Bifurcation analysis of eight coupled degenerate optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Ito, Daisuke; Ueta, Tetsushi; Aihara, Kazuyuki

    2018-06-01

    A degenerate optical parametric oscillator (DOPO) network realized as a coherent Ising machine can be used to solve combinatorial optimization problems. Both theoretical and experimental investigations into the performance of DOPO networks have been presented previously. However a problem remains, namely that the dynamics of the DOPO network itself can lower the search success rates of globally optimal solutions for Ising problems. This paper shows that the problem is caused by pitchfork bifurcations due to the symmetry structure of coupled DOPOs. Some two-parameter bifurcation diagrams of equilibrium points express the performance deterioration. It is shown that the emergence of non-ground states regarding local minima hampers the system from reaching the ground states corresponding to the global minimum. We then describe a parametric strategy for leading a system to the ground state by actively utilizing the bifurcation phenomena. By adjusting the parameters to break particular symmetry, we find appropriate parameter sets that allow the coherent Ising machine to obtain the globally optimal solution alone.

  9. When more of the same is better

    NASA Astrophysics Data System (ADS)

    Fontanari, José F.

    2016-01-01

    Problem solving (e.g., drug design, traffic engineering, software development) by task forces represents a substantial portion of the economy of developed countries. Here we use an agent-based model of cooperative problem-solving systems to study the influence of diversity on the performance of a task force. We assume that agents cooperate by exchanging information on their partial success and use that information to imitate the more successful agent in the system —the model. The agents differ only in their propensities to copy the model. We find that, for easy tasks, the optimal organization is a homogeneous system composed of agents with the highest possible copy propensities. For difficult tasks, we find that diversity can prevent the system from being trapped in sub-optimal solutions. However, when the system size is adjusted to maximize the performance the homogeneous systems outperform the heterogeneous systems, i.e., for optimal performance, sameness should be preferred to diversity.

  10. Path optimization with limited sensing ability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Sung Ha, E-mail: kang@math.gatech.edu; Kim, Seong Jun, E-mail: skim396@math.gatech.edu; Zhou, Haomin, E-mail: hmzhou@math.gatech.edu

    2015-10-15

    We propose a computational strategy to find the optimal path for a mobile sensor with limited coverage to traverse a cluttered region. The goal is to find one of the shortest feasible paths to achieve the complete scan of the environment. We pose the problem in the level set framework, and first consider a related question of placing multiple stationary sensors to obtain the full surveillance of the environment. By connecting the stationary locations using the nearest neighbor strategy, we form the initial guess for the path planning problem of the mobile sensor. Then the path is optimized by reducingmore » its length, via solving a system of ordinary differential equations (ODEs), while maintaining the complete scan of the environment. Furthermore, we use intermittent diffusion, which converts the ODEs into stochastic differential equations (SDEs), to find an optimal path whose length is globally minimal. To improve the computation efficiency, we introduce two techniques, one to remove redundant connecting points to reduce the dimension of the system, and the other to deal with the entangled path so the solution can escape the local traps. Numerical examples are shown to illustrate the effectiveness of the proposed method.« less

  11. A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition

    PubMed Central

    Sánchez, Daniela; Melin, Patricia

    2017-01-01

    A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition. PMID:28894461

  12. A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition.

    PubMed

    Sánchez, Daniela; Melin, Patricia; Castillo, Oscar

    2017-01-01

    A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.

  13. σ-SCF: A direct energy-targeting method to mean-field excited states

    NASA Astrophysics Data System (ADS)

    Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D.; Van Voorhis, Troy

    2017-12-01

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry—a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states—ground or excited—are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.

  14. σ-SCF: A direct energy-targeting method to mean-field excited states.

    PubMed

    Ye, Hong-Zhou; Welborn, Matthew; Ricke, Nathan D; Van Voorhis, Troy

    2017-12-07

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g., Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF (self-consistent field), tend to fall into the lowest solution consistent with a given symmetry-a problem known as "variational collapse." In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states-ground or excited-are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H 2 , HF). We find that σ-SCF is very effective at locating excited states, including individual, high energy excitations within a dense manifold of excited states. Like all single determinant methods, σ-SCF shows prominent spin-symmetry breaking for open shell states and our results suggest that this method could be further improved with spin projection.

  15. Chemotaxis can provide biological organisms with good solutions to the travelling salesman problem.

    PubMed

    Reynolds, A M

    2011-05-01

    The ability to find good solutions to the traveling salesman problem can benefit some biological organisms. Bacterial infection would, for instance, be eradicated most promptly if cells of the immune system minimized the total distance they traveled when moving between bacteria. Similarly, foragers would maximize their net energy gain if the distance that they traveled between multiple dispersed prey items was minimized. The traveling salesman problem is one of the most intensively studied problems in combinatorial optimization. There are no efficient algorithms for even solving the problem approximately (within a guaranteed constant factor from the optimum) because the problem is nondeterministic polynomial time complete. The best approximate algorithms can typically find solutions within 1%-2% of the optimal, but these are computationally intensive and can not be implemented by biological organisms. Biological organisms could, in principle, implement the less efficient greedy nearest-neighbor algorithm, i.e., always move to the nearest surviving target. Implementation of this strategy does, however, require quite sophisticated cognitive abilities and prior knowledge of the target locations. Here, with the aid of numerical simulations, it is shown that biological organisms can simply use chemotaxis to solve, or at worst provide good solutions (comparable to those found by the greedy algorithm) to, the traveling salesman problem when the targets are sources of a chemoattractant and are modest in number (n < 10). This applies to neutrophils and macrophages in microbial defense and to some predators.

  16. A note on the regularity of solutions of infinite dimensional Riccati equations

    NASA Technical Reports Server (NTRS)

    Burns, John A.; King, Belinda B.

    1994-01-01

    This note is concerned with the regularity of solutions of algebraic Riccati equations arising from infinite dimensional LQR and LQG control problems. We show that distributed parameter systems described by certain parabolic partial differential equations often have a special structure that smoothes solutions of the corresponding Riccati equation. This analysis is motivated by the need to find specific representations for Riccati operators that can be used in the development of computational schemes for problems where the input and output operators are not Hilbert-Schmidt. This situation occurs in many boundary control problems and in certain distributed control problems associated with optimal sensor/actuator placement.

  17. Optimization of Cubic Polynomial Functions without Calculus

    ERIC Educational Resources Information Center

    Taylor, Ronald D., Jr.; Hansen, Ryan

    2008-01-01

    In algebra and precalculus courses, students are often asked to find extreme values of polynomial functions in the context of solving an applied problem; but without the notion of derivative, something is lost. Either the functions are reduced to quadratics, since students know the formula for the vertex of a parabola, or solutions are…

  18. Inhibitory Control in a Notorious Brain Teaser: The Monty Hall Dilemma

    ERIC Educational Resources Information Center

    Saenen, Lore; Heyvaert, Mieke; Van Dooren, Wim; Onghena, Patrick

    2015-01-01

    The Monty Hall dilemma (MHD) is a counterintuitive probability problem in which participants often use misleading heuristics, such as the equiprobability bias. Finding the optimal solution to the MHD requires inhibition of these heuristics. In the current study, we investigated the relation between participants' equiprobability bias and their MHD…

  19. Image processing and reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chartrand, Rick

    2012-06-15

    This talk will examine some mathematical methods for image processing and the solution of underdetermined, linear inverse problems. The talk will have a tutorial flavor, mostly accessible to undergraduates, while still presenting research results. The primary approach is the use of optimization problems. We will find that relaxing the usual assumption of convexity will give us much better results.

  20. A Novel Joint Problem of Routing, Scheduling, and Variable-Width Channel Allocation in WMNs

    PubMed Central

    Liu, Wan-Yu; Chou, Chun-Hung

    2014-01-01

    This paper investigates a novel joint problem of routing, scheduling, and channel allocation for single-radio multichannel wireless mesh networks in which multiple channel widths can be adjusted dynamically through a new software technology so that more concurrent transmissions and suppressed overlapping channel interference can be achieved. Although the previous works have studied this joint problem, their linear programming models for the problem were not incorporated with some delicate constraints. As a result, this paper first constructs a linear programming model with more practical concerns and then proposes a simulated annealing approach with a novel encoding mechanism, in which the configurations of multiple time slots are devised to characterize the dynamic transmission process. Experimental results show that our approach can find the same or similar solutions as the optimal solutions for smaller-scale problems and can efficiently find good-quality solutions for a variety of larger-scale problems. PMID:24982990

  1. Fuel optimal maneuvers for spacecraft with fixed thrusters

    NASA Technical Reports Server (NTRS)

    Carter, T. C.

    1982-01-01

    Several mathematical models, including a minimum integral square criterion problem, were used for the qualitative investigation of fuel optimal maneuvers for spacecraft with fixed thrusters. The solutions consist of intervals of "full thrust" and "coast" indicating that thrusters do not need to be designed as "throttleable" for fuel optimal performance. For the primary model considered, singular solutions occur only if the optimal solution is "pure translation". "Time optimal" singular solutions can be found which consist of intervals of "coast" and "full thrust". The shape of the optimal fuel consumption curve as a function of flight time was found to depend on whether or not the initial state is in the region admitting singular solutions. Comparisons of fuel optimal maneuvers in deep space with those relative to a point in circular orbit indicate that qualitative differences in the solutions can occur. Computation of fuel consumption for certain "pure translation" cases indicates that considerable savings in fuel can result from the fuel optimal maneuvers.

  2. Cost effective simulation-based multiobjective optimization in the performance of an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Aittokoski, Timo; Miettinen, Kaisa

    2008-07-01

    Solving real-life engineering problems can be difficult because they often have multiple conflicting objectives, the objective functions involved are highly nonlinear and they contain multiple local minima. Furthermore, function values are often produced via a time-consuming simulation process. These facts suggest the need for an automated optimization tool that is efficient (in terms of number of objective function evaluations) and capable of solving global and multiobjective optimization problems. In this article, the requirements on a general simulation-based optimization system are discussed and such a system is applied to optimize the performance of a two-stroke combustion engine. In the example of a simulation-based optimization problem, the dimensions and shape of the exhaust pipe of a two-stroke engine are altered, and values of three conflicting objective functions are optimized. These values are derived from power output characteristics of the engine. The optimization approach involves interactive multiobjective optimization and provides a convenient tool to balance between conflicting objectives and to find good solutions.

  3. Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm

    NASA Astrophysics Data System (ADS)

    Anam, S.

    2017-10-01

    Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.

  4. Optimisation in radiotherapy. III: Stochastic optimisation algorithms and conclusions.

    PubMed

    Ebert, M

    1997-12-01

    This is the final article in a three part examination of optimisation in radiotherapy. Previous articles have established the bases and form of the radiotherapy optimisation problem, and examined certain types of optimisation algorithm, namely, those which perform some form of ordered search of the solution space (mathematical programming), and those which attempt to find the closest feasible solution to the inverse planning problem (deterministic inversion). The current paper examines algorithms which search the space of possible irradiation strategies by stochastic methods. The resulting iterative search methods move about the solution space by sampling random variates, which gradually become more constricted as the algorithm converges upon the optimal solution. This paper also discusses the implementation of optimisation in radiotherapy practice.

  5. Characterizing the Nash equilibria of three-player Bayesian quantum games

    NASA Astrophysics Data System (ADS)

    Solmeyer, Neal; Balu, Radhakrishnan

    2017-05-01

    Quantum games with incomplete information can be studied within a Bayesian framework. We analyze games quantized within the EWL framework [Eisert, Wilkens, and Lewenstein, Phys Rev. Lett. 83, 3077 (1999)]. We solve for the Nash equilibria of a variety of two-player quantum games and compare the results to the solutions of the corresponding classical games. We then analyze Bayesian games where there is uncertainty about the player types in two-player conflicting interest games. The solutions to the Bayesian games are found to have a phase diagram-like structure where different equilibria exist in different parameter regions, depending both on the amount of uncertainty and the degree of entanglement. We find that in games where a Pareto-optimal solution is not a Nash equilibrium, it is possible for the quantized game to have an advantage over the classical version. In addition, we analyze the behavior of the solutions as the strategy choices approach an unrestricted operation. We find that some games have a continuum of solutions, bounded by the solutions of a simpler restricted game. A deeper understanding of Bayesian quantum game theory could lead to novel quantum applications in a multi-agent setting.

  6. Three-Axis Time-Optimal Attitude Maneuvers of a Rigid-Body

    NASA Astrophysics Data System (ADS)

    Wang, Xijing; Li, Jisheng

    With the development trends for modern satellites towards macro-scale and micro-scale, new demands are requested for its attitude adjustment. Precise pointing control and rapid maneuvering capabilities have long been part of many space missions. While the development of computer technology enables new optimal algorithms being used continuously, a powerful tool for solving problem is provided. Many papers about attitude adjustment have been published, the configurations of the spacecraft are considered rigid body with flexible parts or gyrostate-type systems. The object function always include minimum time or minimum fuel. During earlier satellite missions, the attitude acquisition was achieved by using the momentum ex change devices, performed by a sequential single-axis slewing strategy. Recently, the simultaneous three-axis minimum-time maneuver(reorientation) problems have been studied by many researchers. It is important to research the minimum-time maneuver of a rigid spacecraft within onboard power limits, because of potential space application such as surveying multiple targets in space and academic value. The minimum-time maneuver of a rigid spacecraft is a basic problem because the solutions for maneuvering flexible spacecraft are based on the solution to the rigid body slew problem. A new method for the open-loop solution for a rigid spacecraft maneuver is presented. Having neglected all perturbation torque, the necessary conditions of spacecraft from one state to another state can be determined. There is difference between single-axis with multi-axis. For single- axis analytical solution is possible and the switching line passing through the state-space origin belongs to parabolic. For multi-axis, it is impossible to get analytical solution due to the dynamic coupling between the axes and must be solved numerically. Proved by modern research, Euler axis rotations are quasi-time-optimal in general. On the basis of minimum value principles, a research for reorienting an inertial syrnmetric spacecraft with time cost function from an initial state of rest to a final state of rest is deduced. And the solution to it is stated below: Firstly, the essential condition for solving the problem is deduced with the minimum value principle. The necessary conditions for optimality yield a two point boundary-value problem (TPBVP), which, when solved, produces the control history that minimize time performance index. In the nonsingular control, the solution is the' bang-bang maneuver. The control profile is characterized by Saturated controls for the entire maneuver. The singular control maybe existed. It is only singular in mathematics. According to physical principle, the bigger the mode of the control torque is, the shorter the time is. So saturated controls are used in singular control. Secondly, the control parameters are always in maximum, so the key problem is to determine switch point thus original problem is changed to find the changing time. By the use of adjusting the switch on/off time, the genetic algorithm, which is a new robust method is optimized to determine the switch features without the gyroscopic coupling. There is improvement upon the traditional GA in this research. The homotopy method to find the nonlinear algebra is based on rigorous topology continuum theory. Based on the idea of the homotopy, the relaxation parameters are introduced, and the switch point is figured out with simulated annealing. Computer simulation results using a rigid body show that the new method is feasible and efficient. A practical method of computing approximate solutions to the time-optimal control- switch times for rigid body reorientation has been developed.

  7. Anti-freezing-protein type III strongly influences the expression of relevant genes in cryopreserved potato shoot tips.

    PubMed

    Seo, Ji Hyang; Naing, Aung Htay; Jeon, Su Min; Kim, Chang Kil

    2018-06-04

    AFP improved cryopreservation efficiency of potato (Solanum tuberosum cv. Superior) by regulating transcript levels of CBF1 and DHN1. However, the optimal AFP concentration required for strong induction of the genes was dependent on the type of vitrification solution to which the AFP was added: This finding suggests that AFP increased cryopreservation efficiency by transcriptional regulation of these genes, which might protect plant cell membranes from cold stress during cryopreservation. Despite the availability of many studies reporting the benefits of anti-freeze protein III (AFP III) as a cryoprotectant, the role of AFP III in this process has not been well demonstrated using molecular analysis. In addition, AFP III has not been exploited in the cryopreservation of potato thus far. Therefore, we studied the effects of AFP III on the cryopreservation of potato (Solanum tuberosum cv. Superior). We found that CBF1 and DHN1 genes are low temperature-inducible in potato leaves (S. tuberosum cv. Superior). Transcript levels of these genes expressed in shoot tips cryopreserved with AFP III were higher than those of the controls. However, the optimal AFP III concentration required for strong induction of the genes was dependent on the type of cryoprotection solution to which the AFP III was added: 500 ng/mL worked best for PVS2, while 1500 ng/mL was optimal for LS. Interestingly, the involvement of AFP III in the cryoprotection solutions improved cryopreservation efficiency as compared to the control, and expression levels of the detected genes were associated with cryopreservation efficiency. This finding suggests that AFP III increased cryopreservation efficiency by transcriptional regulation of these genes, which might protect plant cell membranes from cold stress during cryopreservation. Therefore, we expect that our findings will lead to the successful application of AFP III as a potent cryoprotectant in the cryopreservation of rare and commercially important plant germplasms.

  8. System design optimization for a Mars-roving vehicle and perturbed-optimal solutions in nonlinear programming

    NASA Technical Reports Server (NTRS)

    Pavarini, C.

    1974-01-01

    Work in two somewhat distinct areas is presented. First, the optimal system design problem for a Mars-roving vehicle is attacked by creating static system models and a system evaluation function and optimizing via nonlinear programming techniques. The second area concerns the problem of perturbed-optimal solutions. Given an initial perturbation in an element of the solution to a nonlinear programming problem, a linear method is determined to approximate the optimal readjustments of the other elements of the solution. Then, the sensitivity of the Mars rover designs is described by application of this method.

  9. A multi-material topology optimization approach for wrinkle-free design of cable-suspended membrane structures

    NASA Astrophysics Data System (ADS)

    Luo, Yangjun; Niu, Yanzhuang; Li, Ming; Kang, Zhan

    2017-06-01

    In order to eliminate stress-related wrinkles in cable-suspended membrane structures and to provide simple and reliable deployment, this study presents a multi-material topology optimization model and an effective solution procedure for generating optimal connected layouts for membranes and cables. On the basis of the principal stress criterion of membrane wrinkling behavior and the density-based interpolation of multi-phase materials, the optimization objective is to maximize the total structural stiffness while satisfying principal stress constraints and specified material volume requirements. By adopting the cosine-type relaxation scheme to avoid the stress singularity phenomenon, the optimization model is successfully solved through a standard gradient-based algorithm. Four-corner tensioned membrane structures with different loading cases were investigated to demonstrate the effectiveness of the proposed method in automatically finding the optimal design composed of curved boundary cables and wrinkle-free membranes.

  10. Accelerating IMRT optimization by voxel sampling

    NASA Astrophysics Data System (ADS)

    Martin, Benjamin C.; Bortfeld, Thomas R.; Castañon, David A.

    2007-12-01

    This paper presents a new method for accelerating intensity-modulated radiation therapy (IMRT) optimization using voxel sampling. Rather than calculating the dose to the entire patient at each step in the optimization, the dose is only calculated for some randomly selected voxels. Those voxels are then used to calculate estimates of the objective and gradient which are used in a randomized version of a steepest descent algorithm. By selecting different voxels on each step, we are able to find an optimal solution to the full problem. We also present an algorithm to automatically choose the best sampling rate for each structure within the patient during the optimization. Seeking further improvements, we experimented with several other gradient-based optimization algorithms and found that the delta-bar-delta algorithm performs well despite the randomness. Overall, we were able to achieve approximately an order of magnitude speedup on our test case as compared to steepest descent.

  11. Nuclear Electric Vehicle Optimization Toolset (NEVOT)

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Kos, Larry D.; Qualls, A. Lou; Greene, Sherrell

    2004-01-01

    The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major nuclear electric propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a genetic algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be considered through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.

  12. Improving the FLORIS wind plant model for compatibility with gradient-based optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Jared J.; Gebraad, Pieter MO; Ning, Andrew

    The FLORIS (FLOw Redirection and Induction in Steady-state) model, a parametric wind turbine wake model that predicts steady-state wake characteristics based on wind turbine position and yaw angle, was developed for optimization of control settings and turbine locations. This article provides details on changes made to the FLORIS model to make the model more suitable for gradient-based optimization. Changes to the FLORIS model were made to remove discontinuities and add curvature to regions of non-physical zero gradient. Exact gradients for the FLORIS model were obtained using algorithmic differentiation. A set of three case studies demonstrate that using exact gradients withmore » gradient-based optimization reduces the number of function calls by several orders of magnitude. The case studies also show that adding curvature improves convergence behavior, allowing gradient-based optimization algorithms used with the FLORIS model to more reliably find better solutions to wind farm optimization problems.« less

  13. Selected Topics on Decision Making for Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Sweda, Timothy Matthew

    Electric vehicles (EVs) are an attractive alternative to conventional gasoline-powered vehicles due to their lower emissions, fuel costs, and maintenance costs. Range anxiety, or the fear of running out of charge prior to reaching one's destination, remains a significant concern, however. In this dissertation, we address the issue of range anxiety by developing a set of decision support tools for both charging infrastructure providers and EV drivers. In Chapter 1, we present an agent-based information system for identifying patterns in residential EV ownership and driving activities to enable strategic deployment of new charging infrastructure. Driver agents consider their own driving activities within the simulated environment, in addition to the presence of charging stations and the vehicle ownership of others in their social networks, when purchasing a new vehicle. The Chicagoland area is used as a case study to demonstrate the model, and several deployment scenarios are analyzed. In Chapter 2, we address the problem of finding an optimal recharging policy for an EV along a given path. The path consists of a sequence of nodes, each representing a charging station, and the driver must decide where to stop and how much to recharge at each stop. We present efficient algorithms for finding an optimal policy in general instances with deterministic travel costs and homogeneous charging stations, and also for two specialized cases. In addition, we develop two heuristic procedures that we characterize analytically and explore empirically. We further analyze and test our solution methods on model variations that include stochastic travel costs and nonhomogeneous charging stations. In Chapter 3, we study the problem of finding an optimal routing and recharging policy for an electric vehicle in a grid network. Each node in the network represents a charging station and has an associated probability of being available at any point in time or occupied by another vehicle. We present an efficient algorithm for finding an optimal a priori route and recharging policy as well as heuristic methods for finding adaptive policies. We conduct numerical experiments to demonstrate the empirical performance of our solutions.

  14. Optimal boundary regularity for a singular Monge-Ampère equation

    NASA Astrophysics Data System (ADS)

    Jian, Huaiyu; Li, You

    2018-06-01

    In this paper we study the optimal global regularity for a singular Monge-Ampère type equation which arises from a few geometric problems. We find that the global regularity does not depend on the smoothness of domain, but it does depend on the convexity of the domain. We introduce (a , η) type to describe the convexity. As a result, we show that the more convex is the domain, the better is the regularity of the solution. In particular, the regularity is the best near angular points.

  15. A continuous GRASP to determine the relationship between drugs and adverse reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Michael J.; Meneses, Claudio N.; Pardalos, Panos M.

    2007-11-05

    Adverse drag reactions (ADRs) are estimated to be one of the leading causes of death. Many national and international agencies have set up databases of ADR reports for the express purpose of determining the relationship between drugs and adverse reactions that they cause. We formulate the drug-reaction relationship problem as a continuous optimization problem and utilize C-GRASP, a new continuous global optimization heuristic, to approximately determine the relationship between drugs and adverse reactions. Our approach is compared against others in the literature and is shown to find better solutions.

  16. Methodology of Numerical Optimization for Orbital Parameters of Binary Systems

    NASA Astrophysics Data System (ADS)

    Araya, I.; Curé, M.

    2010-02-01

    The use of a numerical method of maximization (or minimization) in optimization processes allows us to obtain a great amount of solutions. Therefore, we can find a global maximum or minimum of the problem, but this is only possible if we used a suitable methodology. To obtain the global optimum values, we use the genetic algorithm called PIKAIA (P. Charbonneau) and other four algorithms implemented in Mathematica. We demonstrate that derived orbital parameters of binary systems published in some papers, based on radial velocity measurements, are local minimum instead of global ones.

  17. Optimal projection method determination by Logdet Divergence and perturbed von-Neumann Divergence.

    PubMed

    Jiang, Hao; Ching, Wai-Ki; Qiu, Yushan; Cheng, Xiao-Qing

    2017-12-14

    Positive semi-definiteness is a critical property in kernel methods for Support Vector Machine (SVM) by which efficient solutions can be guaranteed through convex quadratic programming. However, a lot of similarity functions in applications do not produce positive semi-definite kernels. We propose projection method by constructing projection matrix on indefinite kernels. As a generalization of the spectrum method (denoising method and flipping method), the projection method shows better or comparable performance comparing to the corresponding indefinite kernel methods on a number of real world data sets. Under the Bregman matrix divergence theory, we can find suggested optimal λ in projection method using unconstrained optimization in kernel learning. In this paper we focus on optimal λ determination, in the pursuit of precise optimal λ determination method in unconstrained optimization framework. We developed a perturbed von-Neumann divergence to measure kernel relationships. We compared optimal λ determination with Logdet Divergence and perturbed von-Neumann Divergence, aiming at finding better λ in projection method. Results on a number of real world data sets show that projection method with optimal λ by Logdet divergence demonstrate near optimal performance. And the perturbed von-Neumann Divergence can help determine a relatively better optimal projection method. Projection method ia easy to use for dealing with indefinite kernels. And the parameter embedded in the method can be determined through unconstrained optimization under Bregman matrix divergence theory. This may provide a new way in kernel SVMs for varied objectives.

  18. Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.

    PubMed

    Sun, Qiming; Chan, Garnet Kin-Lic

    2014-09-09

    Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.

  19. Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation

    DOE PAGES

    Ryan, Kevin; Rajan, Deepak; Ahmed, Shabbir

    2016-05-01

    We recently proposed scenario decomposition algorithm for stochastic 0-1 programs finds an optimal solution by evaluating and removing individual solutions that are discovered by solving scenario subproblems. In our work, we develop an asynchronous, distributed implementation of the algorithm which has computational advantages over existing synchronous implementations of the algorithm. Improvements to both the synchronous and asynchronous algorithm are proposed. We also test the results on well known stochastic 0-1 programs from the SIPLIB test library and is able to solve one previously unsolved instance from the test set.

  20. Refraction law and Fermat principle: a project using the ant colony optimization algorithm for undergraduate students in physics

    NASA Astrophysics Data System (ADS)

    Vuong, Q. L.; Rigaut, C.; Gossuin, Y.

    2018-07-01

    A programming project for undergraduate students in physics is proposed in this work. Its goal is to check the Snell–Descartes law of refraction using the Fermat principle and the ant colony optimization algorithm. The project involves basic mathematics and physics and is adapted to students with basic programming skills. More advanced tools can be used (but are not mandatory) as parallelization or object-oriented programming, which makes the project also suitable for more experienced students. We propose two tests to validate the program. Our algorithm is able to find solutions which are close to the theoretical predictions. Two quantities are defined to study its convergence and the quality of the solutions. It is also shown that the choice of the values of the simulation parameters is important to efficiently obtain precise results.

  1. Control of mechanical systems by the mixed "time and expenditure" criterion

    NASA Astrophysics Data System (ADS)

    Alesova, I. M.; Babadzanjanz, L. K.; Pototskaya, I. Yu.; Pupysheva, Yu. Yu.; Saakyan, A. T.

    2018-05-01

    The optimal controlled motion of a mechanical system, that is determined by the linear system ODE with constant coefficients and piecewise constant control components, is considered. The number of control switching points and the heights of control steps are considered as preset. The optimized functional is combination of classical time criteria and "Expenditure criteria", that is equal to the total area of all steps of all control components. In the absence of control, the solution of the system is equal to the sum of components (frequency components) corresponding to different eigenvalues of the matrix of the ODE system. Admissible controls are those that turn to zero (at a non predetermined time moment) the previously chosen frequency components of the solution. An algorithm for the finding of control switching points, based on the necessary minimum conditions for mixed criteria, is proposed.

  2. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.

    PubMed

    Ismail, Ahmad Muhaimin; Mohamad, Mohd Saberi; Abdul Majid, Hairudin; Abas, Khairul Hamimah; Deris, Safaai; Zaki, Nazar; Mohd Hashim, Siti Zaiton; Ibrahim, Zuwairie; Remli, Muhammad Akmal

    2017-12-01

    Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in small scale systems. In addition, the results of this study can be used to estimate kinetic parameter values in the stage of model selection for different experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Near-optimal alternative generation using modified hit-and-run sampling for non-linear, non-convex problems

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Alafifi, A.

    2016-12-01

    Water resources systems analysis often focuses on finding optimal solutions. Yet an optimal solution is optimal only for the modelled issues and managers often seek near-optimal alternatives that address un-modelled objectives, preferences, limits, uncertainties, and other issues. Early on, Modelling to Generate Alternatives (MGA) formalized near-optimal as the region comprising the original problem constraints plus a new constraint that allowed performance within a specified tolerance of the optimal objective function value. MGA identified a few maximally-different alternatives from the near-optimal region. Subsequent work applied Markov Chain Monte Carlo (MCMC) sampling to generate a larger number of alternatives that span the near-optimal region of linear problems or select portions for non-linear problems. We extend the MCMC Hit-And-Run method to generate alternatives that span the full extent of the near-optimal region for non-linear, non-convex problems. First, start at a feasible hit point within the near-optimal region, then run a random distance in a random direction to a new hit point. Next, repeat until generating the desired number of alternatives. The key step at each iterate is to run a random distance along the line in the specified direction to a new hit point. If linear equity constraints exist, we construct an orthogonal basis and use a null space transformation to confine hits and runs to a lower-dimensional space. Linear inequity constraints define the convex bounds on the line that runs through the current hit point in the specified direction. We then use slice sampling to identify a new hit point along the line within bounds defined by the non-linear inequity constraints. This technique is computationally efficient compared to prior near-optimal alternative generation techniques such MGA, MCMC Metropolis-Hastings, evolutionary, or firefly algorithms because search at each iteration is confined to the hit line, the algorithm can move in one step to any point in the near-optimal region, and each iterate generates a new, feasible alternative. We use the method to generate alternatives that span the near-optimal regions of simple and more complicated water management problems and may be preferred to optimal solutions. We also discuss extensions to handle non-linear equity constraints.

  4. Finding the Optimal Nets for Self-Folding Kirigami

    NASA Astrophysics Data System (ADS)

    Araújo, N. A. M.; da Costa, R. A.; Dorogovtsev, S. N.; Mendes, J. F. F.

    2018-05-01

    Three-dimensional shells can be synthesized from the spontaneous self-folding of two-dimensional templates of interconnected panels, called nets. However, some nets are more likely to self-fold into the desired shell under random movements. The optimal nets are the ones that maximize the number of vertex connections, i.e., vertices that have only two of its faces cut away from each other in the net. Previous methods for finding such nets are based on random search, and thus, they do not guarantee the optimal solution. Here, we propose a deterministic procedure. We map the connectivity of the shell into a shell graph, where the nodes and links of the graph represent the vertices and edges of the shell, respectively. Identifying the nets that maximize the number of vertex connections corresponds to finding the set of maximum leaf spanning trees of the shell graph. This method allows us not only to design the self-assembly of much larger shell structures but also to apply additional design criteria, as a complete catalog of the maximum leaf spanning trees is obtained.

  5. Committee-Based Active Learning for Surrogate-Assisted Particle Swarm Optimization of Expensive Problems.

    PubMed

    Wang, Handing; Jin, Yaochu; Doherty, John

    2017-09-01

    Function evaluations (FEs) of many real-world optimization problems are time or resource consuming, posing a serious challenge to the application of evolutionary algorithms (EAs) to solve these problems. To address this challenge, the research on surrogate-assisted EAs has attracted increasing attention from both academia and industry over the past decades. However, most existing surrogate-assisted EAs (SAEAs) either still require thousands of expensive FEs to obtain acceptable solutions, or are only applied to very low-dimensional problems. In this paper, a novel surrogate-assisted particle swarm optimization (PSO) inspired from committee-based active learning (CAL) is proposed. In the proposed algorithm, a global model management strategy inspired from CAL is developed, which searches for the best and most uncertain solutions according to a surrogate ensemble using a PSO algorithm and evaluates these solutions using the expensive objective function. In addition, a local surrogate model is built around the best solution obtained so far. Then, a PSO algorithm searches on the local surrogate to find its optimum and evaluates it. The evolutionary search using the global model management strategy switches to the local search once no further improvement can be observed, and vice versa. This iterative search process continues until the computational budget is exhausted. Experimental results comparing the proposed algorithm with a few state-of-the-art SAEAs on both benchmark problems up to 30 decision variables as well as an airfoil design problem demonstrate that the proposed algorithm is able to achieve better or competitive solutions with a limited budget of hundreds of exact FEs.

  6. Fast and robust estimation of spectro-temporal receptive fields using stochastic approximations.

    PubMed

    Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn

    2015-05-15

    The receptive field (RF) represents the signal preferences of sensory neurons and is the primary analysis method for understanding sensory coding. While it is essential to estimate a neuron's RF, finding numerical solutions to increasingly complex RF models can become computationally intensive, in particular for high-dimensional stimuli or when many neurons are involved. Here we propose an optimization scheme based on stochastic approximations that facilitate this task. The basic idea is to derive solutions on a random subset rather than computing the full solution on the available data set. To test this, we applied different optimization schemes based on stochastic gradient descent (SGD) to both the generalized linear model (GLM) and a recently developed classification-based RF estimation approach. Using simulated and recorded responses, we demonstrate that RF parameter optimization based on state-of-the-art SGD algorithms produces robust estimates of the spectro-temporal receptive field (STRF). Results on recordings from the auditory midbrain demonstrate that stochastic approximations preserve both predictive power and tuning properties of STRFs. A correlation of 0.93 with the STRF derived from the full solution may be obtained in less than 10% of the full solution's estimation time. We also present an on-line algorithm that allows simultaneous monitoring of STRF properties of more than 30 neurons on a single computer. The proposed approach may not only prove helpful for large-scale recordings but also provides a more comprehensive characterization of neural tuning in experiments than standard tuning curves. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. On-board autonomous attitude maneuver planning for planetary spacecraft using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Kornfeld, Richard P.

    2003-01-01

    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This paper presents an approach for attitude path planning that makes full use of a priori constraint knowledge and is computationally tractable enough to be executed on-board a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used 'as is' or as an initial solution to initialize additional deterministic optimization algorithms. A number of example simulations are presented including the case examples of a generic Europa Orbiter spacecraft in cruise as well as in orbit around Europa. The search times are typically on the order of minutes, thus demonstrating the viability of the presented approach. The results are applicable to all future deep space missions where greater spacecraft autonomy is required. In addition, onboard autonomous attitude planning greatly facilitates navigation and science observation planning, benefiting thus all missions to planet Earth as well.

  8. A sequential solution for anisotropic total variation image denoising with interval constraints

    NASA Astrophysics Data System (ADS)

    Xu, Jingyan; Noo, Frédéric

    2017-09-01

    We show that two problems involving the anisotropic total variation (TV) and interval constraints on the unknown variables admit, under some conditions, a simple sequential solution. Problem 1 is a constrained TV penalized image denoising problem; problem 2 is a constrained fused lasso signal approximator. The sequential solution entails finding first the solution to the unconstrained problem, and then applying a thresholding to satisfy the constraints. If the interval constraints are uniform, this sequential solution solves problem 1. If the interval constraints furthermore contain zero, the sequential solution solves problem 2. Here uniform interval constraints refer to all unknowns being constrained to the same interval. A typical example of application is image denoising in x-ray CT, where the image intensities are non-negative as they physically represent linear attenuation coefficient in the patient body. Our results are simple yet seem unknown; we establish them using the Karush-Kuhn-Tucker conditions for constrained convex optimization.

  9. Boundary control of elliptic solutions to enforce local constraints

    NASA Astrophysics Data System (ADS)

    Bal, G.; Courdurier, M.

    We present a constructive method to devise boundary conditions for solutions of second-order elliptic equations so that these solutions satisfy specific qualitative properties such as: (i) the norm of the gradient of one solution is bounded from below by a positive constant in the vicinity of a finite number of prescribed points; (ii) the determinant of gradients of n solutions is bounded from below in the vicinity of a finite number of prescribed points. Such constructions find applications in recent hybrid medical imaging modalities. The methodology is based on starting from a controlled setting in which the constraints are satisfied and continuously modifying the coefficients in the second-order elliptic equation. The boundary condition is evolved by solving an ordinary differential equation (ODE) defined via appropriate optimality conditions. Unique continuations and standard regularity results for elliptic equations are used to show that the ODE admits a solution for sufficiently long times.

  10. Singular-Arc Time-Optimal Trajectory of Aircraft in Two-Dimensional Wind Field

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2006-01-01

    This paper presents a study of a minimum time-to-climb trajectory analysis for aircraft flying in a two-dimensional altitude dependent wind field. The time optimal control problem possesses a singular control structure when the lift coefficient is taken as a control variable. A singular arc analysis is performed to obtain an optimal control solution on the singular arc. Using a time-scale separation with the flight path angle treated as a fast state, the dimensionality of the optimal control solution is reduced by eliminating the lift coefficient control. A further singular arc analysis is used to decompose the original optimal control solution into the flight path angle solution and a trajectory solution as a function of the airspeed and altitude. The optimal control solutions for the initial and final climb segments are computed using a shooting method with known starting values on the singular arc The numerical results of the shooting method show that the optimal flight path angle on the initial and final climb segments are constant. The analytical approach provides a rapid means for analyzing a time optimal trajectory for aircraft performance.

  11. Source term identification in atmospheric modelling via sparse optimization

    NASA Astrophysics Data System (ADS)

    Adam, Lukas; Branda, Martin; Hamburger, Thomas

    2015-04-01

    Inverse modelling plays an important role in identifying the amount of harmful substances released into atmosphere during major incidents such as power plant accidents or volcano eruptions. Another possible application of inverse modelling lies in the monitoring the CO2 emission limits where only observations at certain places are available and the task is to estimate the total releases at given locations. This gives rise to minimizing the discrepancy between the observations and the model predictions. There are two standard ways of solving such problems. In the first one, this discrepancy is regularized by adding additional terms. Such terms may include Tikhonov regularization, distance from a priori information or a smoothing term. The resulting, usually quadratic, problem is then solved via standard optimization solvers. The second approach assumes that the error term has a (normal) distribution and makes use of Bayesian modelling to identify the source term. Instead of following the above-mentioned approaches, we utilize techniques from the field of compressive sensing. Such techniques look for a sparsest solution (solution with the smallest number of nonzeros) of a linear system, where a maximal allowed error term may be added to this system. Even though this field is a developed one with many possible solution techniques, most of them do not consider even the simplest constraints which are naturally present in atmospheric modelling. One of such examples is the nonnegativity of release amounts. We believe that the concept of a sparse solution is natural in both problems of identification of the source location and of the time process of the source release. In the first case, it is usually assumed that there are only few release points and the task is to find them. In the second case, the time window is usually much longer than the duration of the actual release. In both cases, the optimal solution should contain a large amount of zeros, giving rise to the concept of sparsity. In the paper, we summarize several optimization techniques which are used for finding sparse solutions and propose their modifications to handle selected constraints such as nonnegativity constraints and simple linear constraints, for example the minimal or maximal amount of total release. These techniques range from successive convex approximations to solution of one nonconvex problem. On simple examples, we explain these techniques and compare them from the point of implementation simplicity, approximation capability and convergence properties. Finally, these methods will be applied on the European Tracer Experiment (ETEX) data and the results will be compared with the current state of arts techniques such as regularized least squares or Bayesian approach. The obtained results show the surprisingly good results of these techniques. This research is supported by EEA/Norwegian Financial Mechanism under project 7F14287 STRADI.

  12. Runway Scheduling Using Generalized Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Montoya, Justin; Wood, Zachary; Rathinam, Sivakumar

    2011-01-01

    A generalized dynamic programming method for finding a set of pareto optimal solutions for a runway scheduling problem is introduced. The algorithm generates a set of runway fight sequences that are optimal for both runway throughput and delay. Realistic time-based operational constraints are considered, including miles-in-trail separation, runway crossings, and wake vortex separation. The authors also model divergent runway takeoff operations to allow for reduced wake vortex separation. A modeled Dallas/Fort Worth International airport and three baseline heuristics are used to illustrate preliminary benefits of using the generalized dynamic programming method. Simulated traffic levels ranged from 10 aircraft to 30 aircraft with each test case spanning 15 minutes. The optimal solution shows a 40-70 percent decrease in the expected delay per aircraft over the baseline schedulers. Computational results suggest that the algorithm is promising for real-time application with an average computation time of 4.5 seconds. For even faster computation times, two heuristics are developed. As compared to the optimal, the heuristics are within 5% of the expected delay per aircraft and 1% of the expected number of runway operations per hour ad can be 100x faster.

  13. Scalable Heuristics for Planning, Placement and Sizing of Flexible AC Transmission System Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, Vladmir; Backhaus, Scott N.; Chertkov, Michael

    Aiming to relieve transmission grid congestion and improve or extend feasibility domain of the operations, we build optimization heuristics, generalizing standard AC Optimal Power Flow (OPF), for placement and sizing of Flexible Alternating Current Transmission System (FACTS) devices of the Series Compensation (SC) and Static VAR Compensation (SVC) type. One use of these devices is in resolving the case when the AC OPF solution does not exist because of congestion. Another application is developing a long-term investment strategy for placement and sizing of the SC and SVC devices to reduce operational cost and improve power system operation. SC and SVCmore » devices are represented by modification of the transmission line inductances and reactive power nodal corrections respectively. We find one placement and sizing of FACTs devices for multiple scenarios and optimal settings for each scenario simultaneously. Our solution of the nonlinear and nonconvex generalized AC-OPF consists of building a convergent sequence of convex optimizations containing only linear constraints and shows good computational scaling to larger systems. The approach is illustrated on single- and multi-scenario examples of the Matpower case-30 model.« less

  14. Mitigation of epidemics in contact networks through optimal contact adaptation *

    PubMed Central

    Youssef, Mina; Scoglio, Caterina

    2013-01-01

    This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights. PMID:23906209

  15. Mitigation of epidemics in contact networks through optimal contact adaptation.

    PubMed

    Youssef, Mina; Scoglio, Caterina

    2013-08-01

    This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights.

  16. Sensitivity analysis of multi-objective optimization of CPG parameters for quadruped robot locomotion

    NASA Astrophysics Data System (ADS)

    Oliveira, Miguel; Santos, Cristina P.; Costa, Lino

    2012-09-01

    In this paper, a study based on sensitivity analysis is performed for a gait multi-objective optimization system that combines bio-inspired Central Patterns Generators (CPGs) and a multi-objective evolutionary algorithm based on NSGA-II. In this system, CPGs are modeled as autonomous differential equations, that generate the necessary limb movement to perform the required walking gait. In order to optimize the walking gait, a multi-objective problem with three conflicting objectives is formulated: maximization of the velocity, the wide stability margin and the behavioral diversity. The experimental results highlight the effectiveness of this multi-objective approach and the importance of the objectives to find different walking gait solutions for the quadruped robot.

  17. A note on resource allocation scheduling with group technology and learning effects on a single machine

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Yuan; Wang, Ji-Bo; Ji, Ping; He, Hongyu

    2017-09-01

    In this article, single-machine group scheduling with learning effects and convex resource allocation is studied. The goal is to find the optimal job schedule, the optimal group schedule, and resource allocations of jobs and groups. For the problem of minimizing the makespan subject to limited resource availability, it is proved that the problem can be solved in polynomial time under the condition that the setup times of groups are independent. For the general setup times of groups, a heuristic algorithm and a branch-and-bound algorithm are proposed, respectively. Computational experiments show that the performance of the heuristic algorithm is fairly accurate in obtaining near-optimal solutions.

  18. An adaptive approach to the physical annealing strategy for simulated annealing

    NASA Astrophysics Data System (ADS)

    Hasegawa, M.

    2013-02-01

    A new and reasonable method for adaptive implementation of simulated annealing (SA) is studied on two types of random traveling salesman problems. The idea is based on the previous finding on the search characteristics of the threshold algorithms, that is, the primary role of the relaxation dynamics in their finite-time optimization process. It is shown that the effective temperature for optimization can be predicted from the system's behavior analogous to the stabilization phenomenon occurring in the heating process starting from a quenched solution. The subsequent slow cooling near the predicted point draws out the inherent optimizing ability of finite-time SA in more straightforward manner than the conventional adaptive approach.

  19. Tuning Monotonic Basin Hopping: Improving the Efficiency of Stochastic Search as Applied to Low-Thrust Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Englander, Jacob; Englander, Arnold

    2014-01-01

    Trajectory optimization methods using MBH have become well developed during the past decade. An essential component of MBH is a controlled random search through the multi-dimensional space of possible solutions. Historically, the randomness has been generated by drawing RVs from a uniform probability distribution. Here, we investigate the generating the randomness by drawing the RVs from Cauchy and Pareto distributions, chosen because of their characteristic long tails. We demonstrate that using Cauchy distributions (as first suggested by Englander significantly improves MBH performance, and that Pareto distributions provide even greater improvements. Improved performance is defined in terms of efficiency and robustness, where efficiency is finding better solutions in less time, and robustness is efficiency that is undiminished by (a) the boundary conditions and internal constraints of the optimization problem being solved, and (b) by variations in the parameters of the probability distribution. Robustness is important for achieving performance improvements that are not problem specific. In this work we show that the performance improvements are the result of how these long-tailed distributions enable MBH to search the solution space faster and more thoroughly. In developing this explanation, we use the concepts of sub-diffusive, normally-diffusive, and super-diffusive RWs originally developed in the field of statistical physics.

  20. Optimal simultaneous superpositioning of multiple structures with missing data.

    PubMed

    Theobald, Douglas L; Steindel, Phillip A

    2012-08-01

    Superpositioning is an essential technique in structural biology that facilitates the comparison and analysis of conformational differences among topologically similar structures. Performing a superposition requires a one-to-one correspondence, or alignment, of the point sets in the different structures. However, in practice, some points are usually 'missing' from several structures, for example, when the alignment contains gaps. Current superposition methods deal with missing data simply by superpositioning a subset of points that are shared among all the structures. This practice is inefficient, as it ignores important data, and it fails to satisfy the common least-squares criterion. In the extreme, disregarding missing positions prohibits the calculation of a superposition altogether. Here, we present a general solution for determining an optimal superposition when some of the data are missing. We use the expectation-maximization algorithm, a classic statistical technique for dealing with incomplete data, to find both maximum-likelihood solutions and the optimal least-squares solution as a special case. The methods presented here are implemented in THESEUS 2.0, a program for superpositioning macromolecular structures. ANSI C source code and selected compiled binaries for various computing platforms are freely available under the GNU open source license from http://www.theseus3d.org. dtheobald@brandeis.edu Supplementary data are available at Bioinformatics online.

  1. A novel harmony search-K means hybrid algorithm for clustering gene expression data

    PubMed Central

    Nazeer, KA Abdul; Sebastian, MP; Kumar, SD Madhu

    2013-01-01

    Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms. PMID:23390351

  2. A novel harmony search-K means hybrid algorithm for clustering gene expression data.

    PubMed

    Nazeer, Ka Abdul; Sebastian, Mp; Kumar, Sd Madhu

    2013-01-01

    Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms.

  3. Light extraction efficiency analysis of GaN-based light-emitting diodes with nanopatterned sapphire substrates.

    PubMed

    Pan, Jui-Wen; Tsai, Pei-Jung; Chang, Kao-Der; Chang, Yung-Yuan

    2013-03-01

    In this paper, we propose a method to analyze the light extraction efficiency (LEE) enhancement of a nanopatterned sapphire substrates (NPSS) light-emitting diode (LED) by comparing wave optics software with ray optics software. Finite-difference time-domain (FDTD) simulations represent the wave optics software and Light Tools (LTs) simulations represent the ray optics software. First, we find the trends of and an optimal solution for the LEE enhancement when the 2D-FDTD simulations are used to save on simulation time and computational memory. The rigorous coupled-wave analysis method is utilized to explain the trend we get from the 2D-FDTD algorithm. The optimal solution is then applied in 3D-FDTD and LTs simulations. The results are similar and the difference in LEE enhancement between the two simulations does not exceed 8.5% in the small LED chip area. More than 10(4) times computational memory is saved during the LTs simulation in comparison to the 3D-FDTD simulation. Moreover, LEE enhancement from the side of the LED can be obtained in the LTs simulation. An actual-size NPSS LED is simulated using the LTs. The results show a more than 307% improvement in the total LEE enhancement of the NPSS LED with the optimal solution compared to the conventional LED.

  4. Optimization of brushless direct current motor design using an intelligent technique.

    PubMed

    Shabanian, Alireza; Tousiwas, Armin Amini Poustchi; Pourmandi, Massoud; Khormali, Aminollah; Ataei, Abdolhay

    2015-07-01

    This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using an improved bee algorithm (IBA). The characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. This method is based on the capability of swarm-based algorithms in finding the optimal solution. One sample case is used to illustrate the performance of the design approach and optimization technique. The IBA has a better performance and speed of convergence compared with bee algorithm (BA). Simulation results show that the proposed method has a very high/efficient performance. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  5. σ -SCF: A Direct Energy-targeting Method To Mean-field Excited States

    NASA Astrophysics Data System (ADS)

    Ye, Hongzhou; Welborn, Matthew; Ricke, Nathan; van Voorhis, Troy

    The mean-field solutions of electronic excited states are much less accessible than ground state (e.g. Hartree-Fock) solutions. Energy-based optimization methods for excited states, like Δ-SCF, tend to fall into the lowest solution consistent with a given symmetry - a problem known as ``variational collapse''. In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, σ-SCF, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find all excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states - ground or excited - are treated on an equal footing. Third, it provides an alternate approach to locate Δ-SCF solutions that are otherwise hardly accessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF). This work was funded by a Grant from NSF (CHE-1464804).

  6. Towards adjoint-based inversion for rheological parameters in nonlinear viscous mantle flow

    NASA Astrophysics Data System (ADS)

    Worthen, Jennifer; Stadler, Georg; Petra, Noemi; Gurnis, Michael; Ghattas, Omar

    2014-09-01

    We address the problem of inferring mantle rheological parameter fields from surface velocity observations and instantaneous nonlinear mantle flow models. We formulate this inverse problem as an infinite-dimensional nonlinear least squares optimization problem governed by nonlinear Stokes equations. We provide expressions for the gradient of the cost functional of this optimization problem with respect to two spatially-varying rheological parameter fields: the viscosity prefactor and the exponent of the second invariant of the strain rate tensor. Adjoint (linearized) Stokes equations, which are characterized by a 4th order anisotropic viscosity tensor, facilitates efficient computation of the gradient. A quasi-Newton method for the solution of this optimization problem is presented, which requires the repeated solution of both nonlinear forward Stokes and linearized adjoint Stokes equations. For the solution of the nonlinear Stokes equations, we find that Newton’s method is significantly more efficient than a Picard fixed point method. Spectral analysis of the inverse operator given by the Hessian of the optimization problem reveals that the numerical eigenvalues collapse rapidly to zero, suggesting a high degree of ill-posedness of the inverse problem. To overcome this ill-posedness, we employ Tikhonov regularization (favoring smooth parameter fields) or total variation (TV) regularization (favoring piecewise-smooth parameter fields). Solution of two- and three-dimensional finite element-based model inverse problems show that a constant parameter in the constitutive law can be recovered well from surface velocity observations. Inverting for a spatially-varying parameter field leads to its reasonable recovery, in particular close to the surface. When inferring two spatially varying parameter fields, only an effective viscosity field and the total viscous dissipation are recoverable. Finally, a model of a subducting plate shows that a localized weak zone at the plate boundary can be partially recovered, especially with TV regularization.

  7. Inferring neural activity from BOLD signals through nonlinear optimization.

    PubMed

    Vakorin, Vasily A; Krakovska, Olga O; Borowsky, Ron; Sarty, Gordon E

    2007-11-01

    The blood oxygen level-dependent (BOLD) fMRI signal does not measure neuronal activity directly. This fact is a key concern for interpreting functional imaging data based on BOLD. Mathematical models describing the path from neural activity to the BOLD response allow us to numerically solve the inverse problem of estimating the timing and amplitude of the neuronal activity underlying the BOLD signal. In fact, these models can be viewed as an advanced substitute for the impulse response function. In this work, the issue of estimating the dynamics of neuronal activity from the observed BOLD signal is considered within the framework of optimization problems. The model is based on the extended "balloon" model and describes the conversion of neuronal signals into the BOLD response through the transitional dynamics of the blood flow-inducing signal, cerebral blood flow, cerebral blood volume and deoxyhemoglobin concentration. Global optimization techniques are applied to find a control input (the neuronal activity and/or the biophysical parameters in the model) that causes the system to follow an admissible solution to minimize discrepancy between model and experimental data. As an alternative to a local linearization (LL) filtering scheme, the optimization method escapes the linearization of the transition system and provides a possibility to search for the global optimum, avoiding spurious local minima. We have found that the dynamics of the neural signals and the physiological variables as well as the biophysical parameters can be robustly reconstructed from the BOLD responses. Furthermore, it is shown that spiking off/on dynamics of the neural activity is the natural mathematical solution of the model. Incorporating, in addition, the expansion of the neural input by smooth basis functions, representing a low-pass filtering, allows us to model local field potential (LFP) solutions instead of spiking solutions.

  8. Dwell time algorithm based on the optimization theory for magnetorheological finishing

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfei; Wang, Yang; Wang, Yajun; He, Jianguo; Ji, Fang; Huang, Wen

    2010-10-01

    Magnetorheological finishing (MRF) is an advanced polishing technique capable of rapidly converging to the required surface figure. This process can deterministically control the amount of the material removed by varying a time to dwell at each particular position on the workpiece surface. The dwell time algorithm is one of the most important key techniques of the MRF. A dwell time algorithm based on the1 matrix equation and optimization theory was presented in this paper. The conventional mathematical model of the dwell time was transferred to a matrix equation containing initial surface error, removal function and dwell time function. The dwell time to be calculated was just the solution to the large, sparse matrix equation. A new mathematical model of the dwell time based on the optimization theory was established, which aims to minimize the 2-norm or ∞-norm of the residual surface error. The solution meets almost all the requirements of precise computer numerical control (CNC) without any need for extra data processing, because this optimization model has taken some polishing condition as the constraints. Practical approaches to finding a minimal least-squares solution and a minimal maximum solution are also discussed in this paper. Simulations have shown that the proposed algorithm is numerically robust and reliable. With this algorithm an experiment has been performed on the MRF machine developed by ourselves. After 4.7 minutes' polishing, the figure error of a flat workpiece with a 50 mm diameter is improved by PV from 0.191λ(λ = 632.8 nm) to 0.087λ and RMS 0.041λ to 0.010λ. This algorithm can be constructed to polish workpieces of all shapes including flats, spheres, aspheres, and prisms, and it is capable of improving the polishing figures dramatically.

  9. McTwo: a two-step feature selection algorithm based on maximal information coefficient.

    PubMed

    Ge, Ruiquan; Zhou, Manli; Luo, Youxi; Meng, Qinghan; Mai, Guoqin; Ma, Dongli; Wang, Guoqing; Zhou, Fengfeng

    2016-03-23

    High-throughput bio-OMIC technologies are producing high-dimension data from bio-samples at an ever increasing rate, whereas the training sample number in a traditional experiment remains small due to various difficulties. This "large p, small n" paradigm in the area of biomedical "big data" may be at least partly solved by feature selection algorithms, which select only features significantly associated with phenotypes. Feature selection is an NP-hard problem. Due to the exponentially increased time requirement for finding the globally optimal solution, all the existing feature selection algorithms employ heuristic rules to find locally optimal solutions, and their solutions achieve different performances on different datasets. This work describes a feature selection algorithm based on a recently published correlation measurement, Maximal Information Coefficient (MIC). The proposed algorithm, McTwo, aims to select features associated with phenotypes, independently of each other, and achieving high classification performance of the nearest neighbor algorithm. Based on the comparative study of 17 datasets, McTwo performs about as well as or better than existing algorithms, with significantly reduced numbers of selected features. The features selected by McTwo also appear to have particular biomedical relevance to the phenotypes from the literature. McTwo selects a feature subset with very good classification performance, as well as a small feature number. So McTwo may represent a complementary feature selection algorithm for the high-dimensional biomedical datasets.

  10. Exact algorithms for haplotype assembly from whole-genome sequence data.

    PubMed

    Chen, Zhi-Zhong; Deng, Fei; Wang, Lusheng

    2013-08-15

    Haplotypes play a crucial role in genetic analysis and have many applications such as gene disease diagnoses, association studies, ancestry inference and so forth. The development of DNA sequencing technologies makes it possible to obtain haplotypes from a set of aligned reads originated from both copies of a chromosome of a single individual. This approach is often known as haplotype assembly. Exact algorithms that can give optimal solutions to the haplotype assembly problem are highly demanded. Unfortunately, previous algorithms for this problem either fail to output optimal solutions or take too long time even executed on a PC cluster. We develop an approach to finding optimal solutions for the haplotype assembly problem under the minimum-error-correction (MEC) model. Most of the previous approaches assume that the columns in the input matrix correspond to (putative) heterozygous sites. This all-heterozygous assumption is correct for most columns, but it may be incorrect for a small number of columns. In this article, we consider the MEC model with or without the all-heterozygous assumption. In our approach, we first use new methods to decompose the input read matrix into small independent blocks and then model the problem for each block as an integer linear programming problem, which is then solved by an integer linear programming solver. We have tested our program on a single PC [a Linux (x64) desktop PC with i7-3960X CPU], using the filtered HuRef and the NA 12878 datasets (after applying some variant calling methods). With the all-heterozygous assumption, our approach can optimally solve the whole HuRef data set within a total time of 31 h (26 h for the most difficult block of the 15th chromosome and only 5 h for the other blocks). To our knowledge, this is the first time that MEC optimal solutions are completely obtained for the filtered HuRef dataset. Moreover, in the general case (without the all-heterozygous assumption), for the HuRef dataset our approach can optimally solve all the chromosomes except the most difficult block in chromosome 15 within a total time of 12 days. For both of the HuRef and NA12878 datasets, the optimal costs in the general case are sometimes much smaller than those in the all-heterozygous case. This implies that some columns in the input matrix (after applying certain variant calling methods) still correspond to false-heterozygous sites. Our program, the optimal solutions found for the HuRef dataset available at http://rnc.r.dendai.ac.jp/hapAssembly.html.

  11. [Reconstruction of Vehicle-human Crash Accident and Injury Analysis Based on 3D Laser Scanning, Multi-rigid-body Reconstruction and Optimized Genetic Algorithm].

    PubMed

    Sun, J; Wang, T; Li, Z D; Shao, Y; Zhang, Z Y; Feng, H; Zou, D H; Chen, Y J

    2017-12-01

    To reconstruct a vehicle-bicycle-cyclist crash accident and analyse the injuries using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, and to provide biomechanical basis for the forensic identification of death cause. The vehicle was measured by 3D laser scanning technology. The multi-rigid-body models of cyclist, bicycle and vehicle were developed based on the measurements. The value range of optimal variables was set. A multi-objective genetic algorithm and the nondominated sorting genetic algorithm were used to find the optimal solutions, which were compared to the record of the surveillance video around the accident scene. The reconstruction result of laser scanning on vehicle was satisfactory. In the optimal solutions found by optimization method of genetic algorithm, the dynamical behaviours of dummy, bicycle and vehicle corresponded to that recorded by the surveillance video. The injury parameters of dummy were consistent with the situation and position of the real injuries on the cyclist in accident. The motion status before accident, damage process by crash and mechanical analysis on the injury of the victim can be reconstructed using 3D laser scanning technology, multi-rigid-body dynamics and optimized genetic algorithm, which have application value in the identification of injury manner and analysis of death cause in traffic accidents. Copyright© by the Editorial Department of Journal of Forensic Medicine

  12. Tip-Enhanced Raman Scattering Imaging of Two-Dimensional Tungsten Disulfide with Optimized Tip Fabrication Process.

    PubMed

    Lee, Chanwoo; Kim, Sung Tae; Jeong, Byeong Geun; Yun, Seok Joon; Song, Young Jae; Lee, Young Hee; Park, Doo Jae; Jeong, Mun Seok

    2017-01-13

    We successfully achieve the tip-enhanced nano Raman scattering images of a tungsten disulfide monolayer with optimizing a fabrication method of gold nanotip by controlling the concentration of etchant in an electrochemical etching process. By applying a square-wave voltage supplied from an arbitrary waveform generator to a gold wire, which is immersed in a hydrochloric acid solution diluted with ethanol at various ratios, we find that both the conical angle and radius of curvature of the tip apex can be varied by changing the ratio of hydrochloric acid and ethanol. We also suggest a model to explain the origin of these variations in the tip shape. From the systematic study, we find an optimal condition for achieving the yield of ~60% with the radius of ~34 nm and the cone angle of ~35°. Using representative tips fabricated under the optimal etching condition, we demonstrate the tip-enhanced Raman scattering experiment of tungsten disulfide monolayer grown by a chemical vapor deposition method with a spatial resolution of ~40 nm and a Raman enhancement factor of ~4,760.

  13. Finding long chains in kidney exchange using the traveling salesman problem.

    PubMed

    Anderson, Ross; Ashlagi, Itai; Gamarnik, David; Roth, Alvin E

    2015-01-20

    As of May 2014 there were more than 100,000 patients on the waiting list for a kidney transplant from a deceased donor. Although the preferred treatment is a kidney transplant, every year there are fewer donors than new patients, so the wait for a transplant continues to grow. To address this shortage, kidney paired donation (KPD) programs allow patients with living but biologically incompatible donors to exchange donors through cycles or chains initiated by altruistic (nondirected) donors, thereby increasing the supply of kidneys in the system. In many KPD programs a centralized algorithm determines which exchanges will take place to maximize the total number of transplants performed. This optimization problem has proven challenging both in theory, because it is NP-hard, and in practice, because the algorithms previously used were unable to optimally search over all long chains. We give two new algorithms that use integer programming to optimally solve this problem, one of which is inspired by the techniques used to solve the traveling salesman problem. These algorithms provide the tools needed to find optimal solutions in practice.

  14. Finding long chains in kidney exchange using the traveling salesman problem

    PubMed Central

    Anderson, Ross; Ashlagi, Itai; Gamarnik, David; Roth, Alvin E.

    2015-01-01

    As of May 2014 there were more than 100,000 patients on the waiting list for a kidney transplant from a deceased donor. Although the preferred treatment is a kidney transplant, every year there are fewer donors than new patients, so the wait for a transplant continues to grow. To address this shortage, kidney paired donation (KPD) programs allow patients with living but biologically incompatible donors to exchange donors through cycles or chains initiated by altruistic (nondirected) donors, thereby increasing the supply of kidneys in the system. In many KPD programs a centralized algorithm determines which exchanges will take place to maximize the total number of transplants performed. This optimization problem has proven challenging both in theory, because it is NP-hard, and in practice, because the algorithms previously used were unable to optimally search over all long chains. We give two new algorithms that use integer programming to optimally solve this problem, one of which is inspired by the techniques used to solve the traveling salesman problem. These algorithms provide the tools needed to find optimal solutions in practice. PMID:25561535

  15. A disturbance based control/structure design algorithm

    NASA Technical Reports Server (NTRS)

    Mclaren, Mark D.; Slater, Gary L.

    1989-01-01

    Some authors take a classical approach to the simultaneous structure/control optimization by attempting to simultaneously minimize the weighted sum of the total mass and a quadratic form, subject to all of the structural and control constraints. Here, the optimization will be based on the dynamic response of a structure to an external unknown stochastic disturbance environment. Such a response to excitation approach is common to both the structural and control design phases, and hence represents a more natural control/structure optimization strategy than relying on artificial and vague control penalties. The design objective is to find the structure and controller of minimum mass such that all the prescribed constraints are satisfied. Two alternative solution algorithms are presented which have been applied to this problem. Each algorithm handles the optimization strategy and the imposition of the nonlinear constraints in a different manner. Two controller methodologies, and their effect on the solution algorithm, will be considered. These are full state feedback and direct output feedback, although the problem formulation is not restricted solely to these forms of controller. In fact, although full state feedback is a popular choice among researchers in this field (for reasons that will become apparent), its practical application is severely limited. The controller/structure interaction is inserted by the imposition of appropriate closed-loop constraints, such as closed-loop output response and control effort constraints. Numerical results will be obtained for a representative flexible structure model to illustrate the effectiveness of the solution algorithms.

  16. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables as a function of adhesive properties and convergences of different joints based on the two optimization methods.

  17. Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

    PubMed Central

    Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.

    2009-01-01

    Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that all the solutions studied were structurally inhomogeneous, it is important for future work to understand how the LipC's solution aggregation affected its activity. PMID:19759821

  18. How Near is a Near-Optimal Solution: Confidence Limits for the Global Optimum.

    DTIC Science & Technology

    1980-05-01

    or near-optimal solutions are the only practical solutions available. This paper identifies and compares some procedures which use independent near...approximate or near-optimal solutions are the only practical solutions available. This paper identifies and compares some procedures which use inde- pendent...The objective of this paper is to indicate some relatively new statistical procedures for obtaining an upper confidence limit on G Each of these

  19. Improving spacecraft design using a multidisciplinary design optimization methodology

    NASA Astrophysics Data System (ADS)

    Mosher, Todd Jon

    2000-10-01

    Spacecraft design has gone from maximizing performance under technology constraints to minimizing cost under performance constraints. This is characteristic of the "faster, better, cheaper" movement that has emerged within NASA. Currently spacecraft are "optimized" manually through a tool-assisted evaluation of a limited set of design alternatives. With this approach there is no guarantee that a systems-level focus will be taken and "feasibility" rather than "optimality" is commonly all that is achieved. To improve spacecraft design in the "faster, better, cheaper" era, a new approach using multidisciplinary design optimization (MDO) is proposed. Using MDO methods brings structure to conceptual spacecraft design by casting a spacecraft design problem into an optimization framework. Then, through the construction of a model that captures design and cost, this approach facilitates a quicker and more straightforward option synthesis. The final step is to automatically search the design space. As computer processor speed continues to increase, enumeration of all combinations, while not elegant, is one method that is straightforward to perform. As an alternative to enumeration, genetic algorithms are used and find solutions by reviewing fewer possible solutions with some limitations. Both methods increase the likelihood of finding an optimal design, or at least the most promising area of the design space. This spacecraft design methodology using MDO is demonstrated on three examples. A retrospective test for validation is performed using the Near Earth Asteroid Rendezvous (NEAR) spacecraft design. For the second example, the premise that aerobraking was needed to minimize mission cost and was mission enabling for the Mars Global Surveyor (MGS) mission is challenged. While one might expect no feasible design space for an MGS without aerobraking mission, a counterintuitive result is discovered. Several design options that don't use aerobraking are feasible and cost effective. The third example is an original commercial lunar mission entitled Eagle-eye. This example shows how an MDO approach is applied to an original mission with a larger feasible design space. It also incorporates a simplified business case analysis.

  20. Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    DTIC Science & Technology

    2016-09-09

    prenticeship Scheduling (COVAS), which performs ma- chine learning using human expert demonstration, in conjunction with optimization, to automatically and ef...ficiently produce optimal solutions to challenging real- world scheduling problems. COVAS first learns a policy from human scheduling demonstration via...apprentice- ship learning , then uses this initial solution to provide a tight bound on the value of the optimal solution, thereby substantially

  1. Airfoil Design and Optimization by the One-Shot Method

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Taasan, Shlomo; Salas, M. D.

    1995-01-01

    An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Lagrange multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.

  2. A noisy chaotic neural network for solving combinatorial optimization problems: stochastic chaotic simulated annealing.

    PubMed

    Wang, Lipo; Li, Sa; Tian, Fuyu; Fu, Xiuju

    2004-10-01

    Recently Chen and Aihara have demonstrated both experimentally and mathematically that their chaotic simulated annealing (CSA) has better search ability for solving combinatorial optimization problems compared to both the Hopfield-Tank approach and stochastic simulated annealing (SSA). However, CSA may not find a globally optimal solution no matter how slowly annealing is carried out, because the chaotic dynamics are completely deterministic. In contrast, SSA tends to settle down to a global optimum if the temperature is reduced sufficiently slowly. Here we combine the best features of both SSA and CSA, thereby proposing a new approach for solving optimization problems, i.e., stochastic chaotic simulated annealing, by using a noisy chaotic neural network. We show the effectiveness of this new approach with two difficult combinatorial optimization problems, i.e., a traveling salesman problem and a channel assignment problem for cellular mobile communications.

  3. A hybrid Jaya algorithm for reliability-redundancy allocation problems

    NASA Astrophysics Data System (ADS)

    Ghavidel, Sahand; Azizivahed, Ali; Li, Li

    2018-04-01

    This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.

  4. Airfoil optimization by the one-shot method

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Taasan, Shlomo; Salas, M. D.

    1994-01-01

    An efficient numerical approach for the design of optimal aerodynamic shapes is presented in this paper. The objective of any optimization problem is to find the optimum of a cost function subject to a certain state equation (Governing equation of the flow field) and certain side constraints. As in classical optimal control methods, the present approach introduces a costate variable (Language multiplier) to evaluate the gradient of the cost function. High efficiency in reaching the optimum solution is achieved by using a multigrid technique and updating the shape in a hierarchical manner such that smooth (low-frequency) changes are done separately from high-frequency changes. Thus, the design variables are changed on a grid where their changes produce nonsmooth (high-frequency) perturbations that can be damped efficiently by the multigrid. The cost of solving the optimization problem is approximately two to three times the cost of the equivalent analysis problem.

  5. Mixed H(2)/H(sub infinity): Control with output feedback compensators using parameter optimization

    NASA Technical Reports Server (NTRS)

    Schoemig, Ewald; Ly, Uy-Loi

    1992-01-01

    Among the many possible norm-based optimization methods, the concept of H-infinity optimal control has gained enormous attention in the past few years. Here the H-infinity framework, based on the Small Gain Theorem and the Youla Parameterization, effectively treats system uncertainties in the control law synthesis. A design approach involving a mixed H(sub 2)/H-infinity norm strives to combine the advantages of both methods. This advantage motivates researchers toward finding solutions to the mixed H(sub 2)/H-infinity control problem. The approach developed in this research is based on a finite time cost functional that depicts an H-infinity bound control problem in a H(sub 2)-optimization setting. The goal is to define a time-domain cost function that optimizes the H(sub 2)-norm of a system with an H-infinity-constraint function.

  6. Mixed H2/H(infinity)-Control with an output-feedback compensator using parameter optimization

    NASA Technical Reports Server (NTRS)

    Schoemig, Ewald; Ly, Uy-Loi

    1992-01-01

    Among the many possible norm-based optimization methods, the concept of H-infinity optimal control has gained enormous attention in the past few years. Here the H-infinity framework, based on the Small Gain Theorem and the Youla Parameterization, effectively treats system uncertainties in the control law synthesis. A design approach involving a mixed H(sub 2)/H-infinity norm strives to combine the advantages of both methods. This advantage motivates researchers toward finding solutions to the mixed H(sub 2)/H-infinity control problem. The approach developed in this research is based on a finite time cost functional that depicts an H-infinity bound control problem in a H(sub 2)-optimization setting. The goal is to define a time-domain cost function that optimizes the H(sub 2)-norm of a system with an H-infinity-constraint function.

  7. Topology optimization of hyperelastic structures using a level set method

    NASA Astrophysics Data System (ADS)

    Chen, Feifei; Wang, Yiqiang; Wang, Michael Yu; Zhang, Y. F.

    2017-12-01

    Soft rubberlike materials, due to their inherent compliance, are finding widespread implementation in a variety of applications ranging from assistive wearable technologies to soft material robots. Structural design of such soft and rubbery materials necessitates the consideration of large nonlinear deformations and hyperelastic material models to accurately predict their mechanical behaviour. In this paper, we present an effective level set-based topology optimization method for the design of hyperelastic structures that undergo large deformations. The method incorporates both geometric and material nonlinearities where the strain and stress measures are defined within the total Lagrange framework and the hyperelasticity is characterized by the widely-adopted Mooney-Rivlin material model. A shape sensitivity analysis is carried out, in the strict sense of the material derivative, where the high-order terms involving the displacement gradient are retained to ensure the descent direction. As the design velocity enters into the shape derivative in terms of its gradient and divergence terms, we develop a discrete velocity selection strategy. The whole optimization implementation undergoes a two-step process, where the linear optimization is first performed and its optimized solution serves as the initial design for the subsequent nonlinear optimization. It turns out that this operation could efficiently alleviate the numerical instability and facilitate the optimization process. To demonstrate the validity and effectiveness of the proposed method, three compliance minimization problems are studied and their optimized solutions present significant mechanical benefits of incorporating the nonlinearities, in terms of remarkable enhancement in not only the structural stiffness but also the critical buckling load.

  8. Optimal control of information epidemics modeled as Maki Thompson rumors

    NASA Astrophysics Data System (ADS)

    Kandhway, Kundan; Kuri, Joy

    2014-12-01

    We model the spread of information in a homogeneously mixed population using the Maki Thompson rumor model. We formulate an optimal control problem, from the perspective of single campaigner, to maximize the spread of information when the campaign budget is fixed. Control signals, such as advertising in the mass media, attempt to convert ignorants and stiflers into spreaders. We show the existence of a solution to the optimal control problem when the campaigning incurs non-linear costs under the isoperimetric budget constraint. The solution employs Pontryagin's Minimum Principle and a modified version of forward backward sweep technique for numerical computation to accommodate the isoperimetric budget constraint. The techniques developed in this paper are general and can be applied to similar optimal control problems in other areas. We have allowed the spreading rate of the information epidemic to vary over the campaign duration to model practical situations when the interest level of the population in the subject of the campaign changes with time. The shape of the optimal control signal is studied for different model parameters and spreading rate profiles. We have also studied the variation of the optimal campaigning costs with respect to various model parameters. Results indicate that, for some model parameters, significant improvements can be achieved by the optimal strategy compared to the static control strategy. The static strategy respects the same budget constraint as the optimal strategy and has a constant value throughout the campaign horizon. This work finds application in election and social awareness campaigns, product advertising, movie promotion and crowdfunding campaigns.

  9. Application of the gravity search algorithm to multi-reservoir operation optimization

    NASA Astrophysics Data System (ADS)

    Bozorg-Haddad, Omid; Janbaz, Mahdieh; Loáiciga, Hugo A.

    2016-12-01

    Complexities in river discharge, variable rainfall regime, and drought severity merit the use of advanced optimization tools in multi-reservoir operation. The gravity search algorithm (GSA) is an evolutionary optimization algorithm based on the law of gravity and mass interactions. This paper explores the GSA's efficacy for solving benchmark functions, single reservoir, and four-reservoir operation optimization problems. The GSA's solutions are compared with those of the well-known genetic algorithm (GA) in three optimization problems. The results show that the GSA's results are closer to the optimal solutions than the GA's results in minimizing the benchmark functions. The average values of the objective function equal 1.218 and 1.746 with the GSA and GA, respectively, in solving the single-reservoir hydropower operation problem. The global solution equals 1.213 for this same problem. The GSA converged to 99.97% of the global solution in its average-performing history, while the GA converged to 97% of the global solution of the four-reservoir problem. Requiring fewer parameters for algorithmic implementation and reaching the optimal solution in fewer number of functional evaluations are additional advantages of the GSA over the GA. The results of the three optimization problems demonstrate a superior performance of the GSA for optimizing general mathematical problems and the operation of reservoir systems.

  10. Two-Swim Operators in the Modified Bacterial Foraging Algorithm for the Optimal Synthesis of Four-Bar Mechanisms

    PubMed Central

    Hernández-Ocaña, Betania; Pozos-Parra, Ma. Del Pilar; Mezura-Montes, Efrén; Portilla-Flores, Edgar Alfredo; Vega-Alvarado, Eduardo; Calva-Yáñez, Maria Bárbara

    2016-01-01

    This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem. PMID:27057156

  11. Two-Swim Operators in the Modified Bacterial Foraging Algorithm for the Optimal Synthesis of Four-Bar Mechanisms.

    PubMed

    Hernández-Ocaña, Betania; Pozos-Parra, Ma Del Pilar; Mezura-Montes, Efrén; Portilla-Flores, Edgar Alfredo; Vega-Alvarado, Eduardo; Calva-Yáñez, Maria Bárbara

    2016-01-01

    This paper presents two-swim operators to be added to the chemotaxis process of the modified bacterial foraging optimization algorithm to solve three instances of the synthesis of four-bar planar mechanisms. One swim favors exploration while the second one promotes fine movements in the neighborhood of each bacterium. The combined effect of the new operators looks to increase the production of better solutions during the search. As a consequence, the ability of the algorithm to escape from local optimum solutions is enhanced. The algorithm is tested through four experiments and its results are compared against two BFOA-based algorithms and also against a differential evolution algorithm designed for mechanical design problems. The overall results indicate that the proposed algorithm outperforms other BFOA-based approaches and finds highly competitive mechanisms, with a single set of parameter values and with less evaluations in the first synthesis problem, with respect to those mechanisms obtained by the differential evolution algorithm, which needed a parameter fine-tuning process for each optimization problem.

  12. Optimizing DNA assembly based on statistical language modelling.

    PubMed

    Fang, Gang; Zhang, Shemin; Dong, Yafei

    2017-12-15

    By successively assembling genetic parts such as BioBrick according to grammatical models, complex genetic constructs composed of dozens of functional blocks can be built. However, usually every category of genetic parts includes a few or many parts. With increasing quantity of genetic parts, the process of assembling more than a few sets of these parts can be expensive, time consuming and error prone. At the last step of assembling it is somewhat difficult to decide which part should be selected. Based on statistical language model, which is a probability distribution P(s) over strings S that attempts to reflect how frequently a string S occurs as a sentence, the most commonly used parts will be selected. Then, a dynamic programming algorithm was designed to figure out the solution of maximum probability. The algorithm optimizes the results of a genetic design based on a grammatical model and finds an optimal solution. In this way, redundant operations can be reduced and the time and cost required for conducting biological experiments can be minimized. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Ant system: optimization by a colony of cooperating agents.

    PubMed

    Dorigo, M; Maniezzo, V; Colorni, A

    1996-01-01

    An analogy with the way ant colonies function has suggested the definition of a new computational paradigm, which we call ant system (AS). We propose it as a viable new approach to stochastic combinatorial optimization. The main characteristics of this model are positive feedback, distributed computation, and the use of a constructive greedy heuristic. Positive feedback accounts for rapid discovery of good solutions, distributed computation avoids premature convergence, and the greedy heuristic helps find acceptable solutions in the early stages of the search process. We apply the proposed methodology to the classical traveling salesman problem (TSP), and report simulation results. We also discuss parameter selection and the early setups of the model, and compare it with tabu search and simulated annealing using TSP. To demonstrate the robustness of the approach, we show how the ant system (AS) can be applied to other optimization problems like the asymmetric traveling salesman, the quadratic assignment and the job-shop scheduling. Finally we discuss the salient characteristics-global data structure revision, distributed communication and probabilistic transitions of the AS.

  14. Decision-theoretic methodology for reliability and risk allocation in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, N.Z.; Papazoglou, I.A.; Bari, R.A.

    1985-01-01

    This paper describes a methodology for allocating reliability and risk to various reactor systems, subsystems, components, operations, and structures in a consistent manner, based on a set of global safety criteria which are not rigid. The problem is formulated as a multiattribute decision analysis paradigm; the multiobjective optimization, which is performed on a PRA model and reliability cost functions, serves as the guiding principle for reliability and risk allocation. The concept of noninferiority is used in the multiobjective optimization problem. Finding the noninferior solution set is the main theme of the current approach. The assessment of the decision maker's preferencesmore » could then be performed more easily on the noninferior solution set. Some results of the methodology applications to a nontrivial risk model are provided and several outstanding issues such as generic allocation and preference assessment are discussed.« less

  15. Two-machine flow shop scheduling integrated with preventive maintenance planning

    NASA Astrophysics Data System (ADS)

    Wang, Shijin; Liu, Ming

    2016-02-01

    This paper investigates an integrated optimisation problem of production scheduling and preventive maintenance (PM) in a two-machine flow shop with time to failure of each machine subject to a Weibull probability distribution. The objective is to find the optimal job sequence and the optimal PM decisions before each job such that the expected makespan is minimised. To investigate the value of integrated scheduling solution, computational experiments on small-scale problems with different configurations are conducted with total enumeration method, and the results are compared with those of scheduling without maintenance but with machine degradation, and individual job scheduling combined with independent PM planning. Then, for large-scale problems, four genetic algorithm (GA) based heuristics are proposed. The numerical results with several large problem sizes and different configurations indicate the potential benefits of integrated scheduling solution and the results also show that proposed GA-based heuristics are efficient for the integrated problem.

  16. Multiobjective optimization in structural design with uncertain parameters and stochastic processes

    NASA Technical Reports Server (NTRS)

    Rao, S. S.

    1984-01-01

    The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.

  17. Neural networks for vertical microcode compaction

    NASA Astrophysics Data System (ADS)

    Chu, Pong P.

    1992-09-01

    Neural networks provide an alternative way to solve complex optimization problems. Instead of performing a program of instructions sequentially as in a traditional computer, neural network model explores many competing hypotheses simultaneously using its massively parallel net. The paper shows how to use the neural network approach to perform vertical micro-code compaction for a micro-programmed control unit. The compaction procedure includes two basic steps. The first step determines the compatibility classes and the second step selects a minimal subset to cover the control signals. Since the selection process is an NP- complete problem, to find an optimal solution is impractical. In this study, we employ a customized neural network to obtain the minimal subset. We first formalize this problem, and then define an `energy function' and map it to a two-layer fully connected neural network. The modified network has two types of neurons and can always obtain a valid solution.

  18. Optimizing noise control strategy in a forging workshop.

    PubMed

    Razavi, Hamideh; Ramazanifar, Ehsan; Bagherzadeh, Jalal

    2014-01-01

    In this paper, a computer program based on a genetic algorithm is developed to find an economic solution for noise control in a forging workshop. Initially, input data, including characteristics of sound sources, human exposure, abatement techniques, and production plans are inserted into the model. Using sound pressure levels at working locations, the operators who are at higher risk are identified and picked out for the next step. The program is devised in MATLAB such that the parameters can be easily defined and changed for comparison. The final results are structured into 4 sections that specify an appropriate abatement method for each operator and machine, minimum allowance time for high-risk operators, required damping material for enclosures, and minimum total cost of these treatments. The validity of input data in addition to proper settings in the optimization model ensures the final solution is practical and economically reasonable.

  19. Bees do not use nearest-neighbour rules for optimization of multi-location routes.

    PubMed

    Lihoreau, Mathieu; Chittka, Lars; Le Comber, Steven C; Raine, Nigel E

    2012-02-23

    Animals collecting patchily distributed resources are faced with complex multi-location routing problems. Rather than comparing all possible routes, they often find reasonably short solutions by simply moving to the nearest unvisited resources when foraging. Here, we report the travel optimization performance of bumble-bees (Bombus terrestris) foraging in a flight cage containing six artificial flowers arranged such that movements between nearest-neighbour locations would lead to a long suboptimal route. After extensive training (80 foraging bouts and at least 640 flower visits), bees reduced their flight distances and prioritized shortest possible routes, while almost never following nearest-neighbour solutions. We discuss possible strategies used during the establishment of stable multi-location routes (or traplines), and how these could allow bees and other animals to solve complex routing problems through experience, without necessarily requiring a sophisticated cognitive representation of space.

  20. Scalable multi-objective control for large scale water resources systems under uncertainty

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Quinn, Julianne; Herman, Jonathan; Castelletti, Andrea; Reed, Patrick

    2016-04-01

    The use of mathematical models to support the optimal management of environmental systems is rapidly expanding over the last years due to advances in scientific knowledge of the natural processes, efficiency of the optimization techniques, and availability of computational resources. However, undergoing changes in climate and society introduce additional challenges for controlling these systems, ultimately motivating the emergence of complex models to explore key causal relationships and dependencies on uncontrolled sources of variability. In this work, we contribute a novel implementation of the evolutionary multi-objective direct policy search (EMODPS) method for controlling environmental systems under uncertainty. The proposed approach combines direct policy search (DPS) with hierarchical parallelization of multi-objective evolutionary algorithms (MOEAs) and offers a threefold advantage: the DPS simulation-based optimization can be combined with any simulation model and does not add any constraint on modeled information, allowing the use of exogenous information in conditioning the decisions. Moreover, the combination of DPS and MOEAs prompts the generation or Pareto approximate set of solutions for up to 10 objectives, thus overcoming the decision biases produced by cognitive myopia, where narrow or restrictive definitions of optimality strongly limit the discovery of decision relevant alternatives. Finally, the use of large-scale MOEAs parallelization improves the ability of the designed solutions in handling the uncertainty due to severe natural variability. The proposed approach is demonstrated on a challenging water resources management problem represented by the optimal control of a network of four multipurpose water reservoirs in the Red River basin (Vietnam). As part of the medium-long term energy and food security national strategy, four large reservoirs have been constructed on the Red River tributaries, which are mainly operated for hydropower production, flood control, and water supply. Numerical results under historical as well as synthetically generated hydrologic conditions show that our approach is able to discover key system tradeoffs in the operations of the system. The ability of the algorithm to find near-optimal solutions increases with the number of islands in the adopted hierarchical parallelization scheme. In addition, although significant performance degradation is observed when the solutions designed over history are re-evaluated over synthetically generated inflows, we successfully reduced these vulnerabilities by identifying alternative solutions that are more robust to hydrologic uncertainties, while also addressing the tradeoffs across the Red River multi-sector services.

  1. Optimized Hyper Beamforming of Linear Antenna Arrays Using Collective Animal Behaviour

    PubMed Central

    Ram, Gopi; Mandal, Durbadal; Kar, Rajib; Ghoshal, Sakti Prasad

    2013-01-01

    A novel optimization technique which is developed on mimicking the collective animal behaviour (CAB) is applied for the optimal design of hyper beamforming of linear antenna arrays. Hyper beamforming is based on sum and difference beam patterns of the array, each raised to the power of a hyperbeam exponent parameter. The optimized hyperbeam is achieved by optimization of current excitation weights and uniform interelement spacing. As compared to conventional hyper beamforming of linear antenna array, real coded genetic algorithm (RGA), particle swarm optimization (PSO), and differential evolution (DE) applied to the hyper beam of the same array can achieve reduction in sidelobe level (SLL) and same or less first null beam width (FNBW), keeping the same value of hyperbeam exponent. Again, further reductions of sidelobe level (SLL) and first null beam width (FNBW) have been achieved by the proposed collective animal behaviour (CAB) algorithm. CAB finds near global optimal solution unlike RGA, PSO, and DE in the present problem. The above comparative optimization is illustrated through 10-, 14-, and 20-element linear antenna arrays to establish the optimization efficacy of CAB. PMID:23970843

  2. Control of size and aspect ratio in hydroquinone-based synthesis of gold nanorods

    NASA Astrophysics Data System (ADS)

    Morasso, Carlo; Picciolini, Silvia; Schiumarini, Domitilla; Mehn, Dora; Ojea-Jiménez, Isaac; Zanchetta, Giuliano; Vanna, Renzo; Bedoni, Marzia; Prosperi, Davide; Gramatica, Furio

    2015-08-01

    In this article, we describe how it is possible to tune the size and the aspect ratio of gold nanorods obtained using a highly efficient protocol based on the use of hydroquinone as a reducing agent by varying the amounts of CTAB and silver ions present in the "seed-growth" solution. Our approach not only allows us to prepare nanorods with a four times increased Au3+ reduction yield, when compared with the commonly used protocol based on ascorbic acid, but also allows a remarkable reduction of 50-60 % of the amount of CTAB needed. In fact, according to our findings, the concentration of CTAB present in the seed-growth solution do not linearly influence the final aspect ratio of the obtained nanorods, and an optimal concentration range between 30 and 50 mM has been identified as the one that is able to generate particles with more elongated shapes. On the optimized protocol, the effect of the concentration of Ag+ ions in the seed-growth solution and the stability of the obtained particles has also been investigated.

  3. Preparation of pure chitosan film using ternary solvents and its super absorbency.

    PubMed

    Wang, Xuejun; Lou, Tao; Zhao, Wenhua; Song, Guojun

    2016-11-20

    Chemical modification and graft copolymerization were commonly adopted to prepare super absorbent materials. However, physical microstructure of pure chitosan film was optimized to improve the water uptake capacity in this study. Chitosan films with micro-nanostructure were prepared by a ternary solvent system. The optimal process parameters are 1% acetic acid water solution: dioxane: dimethyl sulfoxide=90: 2.5: 7.5 (v/v/v) with chitosan concentration at 1.25% (w/v). The water uptake capacity of the chitosan film prepared under the optimal process parameters was 896g/g. The prepared chitosan films also exhibited high water uptake capacity in response to external stimuli such as temperature, pH and salt. This finding may provide another way for improving the water absorbency. The pure chitosan film may find potential applications especially in the fields of hygienic products and biomedicine due to its super water absorbency and nontoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Beating the limits with initial correlations

    NASA Astrophysics Data System (ADS)

    Basilewitsch, Daniel; Schmidt, Rebecca; Sugny, Dominique; Maniscalco, Sabrina; Koch, Christiane P.

    2017-11-01

    Fast and reliable reset of a qubit is a key prerequisite for any quantum technology. For real world open quantum systems undergoing non-Markovian dynamics, reset implies not only purification, but in particular erasure of initial correlations between qubit and environment. Here, we derive optimal reset protocols using a combination of geometric and numerical control theory. For factorizing initial states, we find a lower limit for the entropy reduction of the qubit as well as a speed limit. The time-optimal solution is determined by the maximum coupling strength. Initial correlations, remarkably, allow for faster reset and smaller errors. Entanglement is not necessary.

  5. Navigation Solution for a Multiple Satellite and Multiple Ground Architecture

    DTIC Science & Technology

    2014-09-14

    Primer Vector Theory . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.6 The Traveling Salesman Problem . . . . . . . . . . . . . . . . . . 12...the Traveling Salesman problem [42]. It is framed as a nonlinear programming, complete combinatorial optimization where the orbital debris pieces relate...impulsive maneuvers and applies his findings to a Hohmann transfer with the addition of mid-course burns and wait times. 2.2.6 The Traveling Salesman

  6. A LiDAR data-based camera self-calibration method

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Feng, Jing; Li, Xiaolu; Chen, Jianjun

    2018-07-01

    To find the intrinsic parameters of a camera, a LiDAR data-based camera self-calibration method is presented here. Parameters have been estimated using particle swarm optimization (PSO), enhancing the optimal solution of a multivariate cost function. The main procedure of camera intrinsic parameter estimation has three parts, which include extraction and fine matching of interest points in the images, establishment of cost function, based on Kruppa equations and optimization of PSO using LiDAR data as the initialization input. To improve the precision of matching pairs, a new method of maximal information coefficient (MIC) and maximum asymmetry score (MAS) was used to remove false matching pairs based on the RANSAC algorithm. Highly precise matching pairs were used to calculate the fundamental matrix so that the new cost function (deduced from Kruppa equations in terms of the fundamental matrix) was more accurate. The cost function involving four intrinsic parameters was minimized by PSO for the optimal solution. To overcome the issue of optimization pushed to a local optimum, LiDAR data was used to determine the scope of initialization, based on the solution to the P4P problem for camera focal length. To verify the accuracy and robustness of the proposed method, simulations and experiments were implemented and compared with two typical methods. Simulation results indicated that the intrinsic parameters estimated by the proposed method had absolute errors less than 1.0 pixel and relative errors smaller than 0.01%. Based on ground truth obtained from a meter ruler, the distance inversion accuracy in the experiments was smaller than 1.0 cm. Experimental and simulated results demonstrated that the proposed method was highly accurate and robust.

  7. Capturing the essence of a metabolic network: a flux balance analysis approach.

    PubMed

    Murabito, Ettore; Simeonidis, Evangelos; Smallbone, Kieran; Swinton, Jonathan

    2009-10-07

    As genome-scale metabolic reconstructions emerge, tools to manage their size and complexity will be increasingly important. Flux balance analysis (FBA) is a constraint-based approach widely used to study the metabolic capabilities of cellular or subcellular systems. FBA problems are highly underdetermined and many different phenotypes can satisfy any set of constraints through which the metabolic system is represented. Two of the main concerns in FBA are exploring the space of solutions for a given metabolic network and finding a specific phenotype which is representative for a given task such as maximal growth rate. Here, we introduce a recursive algorithm suitable for overcoming both of these concerns. The method proposed is able to find the alternate optimal patterns of active reactions of an FBA problem and identify the minimal subnetwork able to perform a specific task as optimally as the whole. Our method represents an alternative to and an extension of other approaches conceived for exploring the space of solutions of an FBA problem. It may also be particularly helpful in defining a scaffold of reactions upon which to build up a dynamic model, when the important pathways of the system have not yet been well-defined.

  8. Finite element analysis and genetic algorithm optimization design for the actuator placement on a large adaptive structure

    NASA Astrophysics Data System (ADS)

    Sheng, Lizeng

    The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms, GA Version 1, 2 and 3, were developed to find the optimal locations of piezoelectric actuators from the order of 1021 ˜ 1056 candidate placements. Introducing a variable population approach, we improve the flexibility of selection operation in genetic algorithms. Incorporating mutation and hill climbing into micro-genetic algorithms, we are able to develop a more efficient genetic algorithm. Through extensive numerical experiments, we find that the design search space for the optimal placements of a large number of actuators is highly multi-modal and that the most distinct nature of genetic algorithms is their robustness. They give results that are random but with only a slight variability. The genetic algorithms can be used to get adequate solution using a limited number of evaluations. To get the highest quality solution, multiple runs including different random seed generators are necessary. The investigation time can be significantly reduced using a very coarse grain parallel computing. Overall, the methodology of using finite element analysis and genetic algorithm optimization provides a robust solution approach for the challenging problem of optimal placements of a large number of actuators in the design of next generation of adaptive structures.

  9. Fast Optimization for Aircraft Descent and Approach Trajectory

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dmitry G.; Schuet, Stefan; Brenton, J.; Timucin, Dogan; Smith, David; Kaneshige, John

    2017-01-01

    We address problem of on-line scheduling of the aircraft descent and approach trajectory. We formulate a general multiphase optimal control problem for optimization of the descent trajectory and review available methods of its solution. We develop a fast algorithm for solution of this problem using two key components: (i) fast inference of the dynamical and control variables of the descending trajectory from the low dimensional flight profile data and (ii) efficient local search for the resulting reduced dimensionality non-linear optimization problem. We compare the performance of the proposed algorithm with numerical solution obtained using optimal control toolbox General Pseudospectral Optimal Control Software. We present results of the solution of the scheduling problem for aircraft descent using novel fast algorithm and discuss its future applications.

  10. BBPH: Using progressive hedging within branch and bound to solve multi-stage stochastic mixed integer programs

    DOE PAGES

    Barnett, Jason; Watson, Jean -Paul; Woodruff, David L.

    2016-11-27

    Progressive hedging, though an effective heuristic for solving stochastic mixed integer programs (SMIPs), is not guaranteed to converge in this case. Here, we describe BBPH, a branch and bound algorithm that uses PH at each node in the search tree such that, given sufficient time, it will always converge to a globally optimal solution. Additionally, to providing a theoretically convergent “wrapper” for PH applied to SMIPs, computational results demonstrate that for some difficult problem instances branch and bound can find improved solutions after exploring only a few nodes.

  11. Minimize system cost by choosing optimal subsystem reliability and redundancy

    NASA Technical Reports Server (NTRS)

    Suich, Ronald C.; Patterson, Richard L.

    1993-01-01

    The basic question which we address in this paper is how to choose among competing subsystems. This paper utilizes both reliabilities and costs to find the subsystems with the lowest overall expected cost. The paper begins by reviewing some of the concepts of expected value. We then address the problem of choosing among several competing subsystems. These concepts are then applied to k-out-of-n: G subsystems. We illustrate the use of the authors' basic program in viewing a range of possible solutions for several different examples. We then discuss the implications of various solutions in these examples.

  12. Decision making for best cogeneration power integration into a grid

    NASA Astrophysics Data System (ADS)

    Al Asmar, Joseph; Zakhia, Nadim; Kouta, Raed; Wack, Maxime

    2016-07-01

    Cogeneration systems are known to be efficient power systems for their ability to reduce pollution. Their integration into a grid requires simultaneous consideration of the economic and environmental challenges. Thus, an optimal cogeneration power are adopted to face such challenges. This work presents a novelty in selectinga suitable solution using heuristic optimization method. Its aim is to optimize the cogeneration capacity to be installed according to the economic and environmental concerns. This novelty is based on the sensitivity and data analysis method, namely, Multiple Linear Regression (MLR). This later establishes a compromise between power, economy, and pollution, which leads to find asuitable cogeneration power, and further, to be integrated into a grid. The data exploited were the results of the Genetic Algorithm (GA) multi-objective optimization. Moreover, the impact of the utility's subsidy on the selected power is shown.

  13. Supply chain coordination with defective items and quantity discount

    NASA Astrophysics Data System (ADS)

    Lin, Hsien-Jen; Lin, Yu-Jen

    2014-12-01

    This study develops an integrated inventory system involving defective items and quantity discount for optimal pricing and ordering strategies. The model analysed in this study is one in which the buyer orders a quantity, the vendor produces more than buyer's order quantity in order to reduce set-up cost, and then he/she offers an all-units quantity discount to the buyer. Our objective is to determine the optimal order quantity, retail price, mark-up rate, and the number of shipments per production run from the vendor to the buyer, so that the entire supply chain joint total profit incurred has a maximum value. Furthermore, an algorithm of finding the optimal solution is developed. Numerical examples are provided to illustrate the theoretical results.

  14. Optimal approach to quantum communication using dynamic programming.

    PubMed

    Jiang, Liang; Taylor, Jacob M; Khaneja, Navin; Lukin, Mikhail D

    2007-10-30

    Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished by noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols, quantum repeater protocols, can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final-state fidelity for preparing long-distance entangled states.

  15. A variable-gain output feedback control design approach

    NASA Technical Reports Server (NTRS)

    Haylo, Nesim

    1989-01-01

    A multi-model design technique to find a variable-gain control law defined over the whole operating range is proposed. The design is formulated as an optimal control problem which minimizes a cost function weighing the performance at many operating points. The solution is obtained by embedding into the Multi-Configuration Control (MCC) problem, a multi-model robust control design technique. In contrast to conventional gain scheduling which uses a curve fit of single model designs, the optimal variable-gain control law stabilizes the plant at every operating point included in the design. An iterative algorithm to compute the optimal control gains is presented. The methodology has been successfully applied to reconfigurable aircraft flight control and to nonlinear flight control systems.

  16. Optimal bounds and extremal trajectories for time averages in nonlinear dynamical systems

    NASA Astrophysics Data System (ADS)

    Tobasco, Ian; Goluskin, David; Doering, Charles R.

    2018-02-01

    For any quantity of interest in a system governed by ordinary differential equations, it is natural to seek the largest (or smallest) long-time average among solution trajectories, as well as the extremal trajectories themselves. Upper bounds on time averages can be proved a priori using auxiliary functions, the optimal choice of which is a convex optimization problem. We prove that the problems of finding maximal trajectories and minimal auxiliary functions are strongly dual. Thus, auxiliary functions provide arbitrarily sharp upper bounds on time averages. Moreover, any nearly minimal auxiliary function provides phase space volumes in which all nearly maximal trajectories are guaranteed to lie. For polynomial equations, auxiliary functions can be constructed by semidefinite programming, which we illustrate using the Lorenz system.

  17. Optimal impulsive manoeuvres and aerodynamic braking

    NASA Technical Reports Server (NTRS)

    Jezewski, D. J.

    1985-01-01

    A method developed for obtaining solutions to the aerodynamic braking problem, using impulses in the exoatmospheric phases is discussed. The solution combines primer vector theory and the results of a suboptimal atmospheric guidance program. For a specified initial and final orbit, the solution determines: (1) the minimum impulsive cost using a maximum of four impulses, (2) the optimal atmospheric entry and exit-state vectors subject to equality and inequality constraints, and (3) the optimal coast times. Numerical solutions which illustrate the characteristics of the solution are presented.

  18. A Collaborative Neurodynamic Approach to Multiple-Objective Distributed Optimization.

    PubMed

    Yang, Shaofu; Liu, Qingshan; Wang, Jun

    2018-04-01

    This paper is concerned with multiple-objective distributed optimization. Based on objective weighting and decision space decomposition, a collaborative neurodynamic approach to multiobjective distributed optimization is presented. In the approach, a system of collaborative neural networks is developed to search for Pareto optimal solutions, where each neural network is associated with one objective function and given constraints. Sufficient conditions are derived for ascertaining the convergence to a Pareto optimal solution of the collaborative neurodynamic system. In addition, it is proved that each connected subsystem can generate a Pareto optimal solution when the communication topology is disconnected. Then, a switching-topology-based method is proposed to compute multiple Pareto optimal solutions for discretized approximation of Pareto front. Finally, simulation results are discussed to substantiate the performance of the collaborative neurodynamic approach. A portfolio selection application is also given.

  19. Comparing genetic algorithm and particle swarm optimization for solving capacitated vehicle routing problem

    NASA Astrophysics Data System (ADS)

    Iswari, T.; Asih, A. M. S.

    2018-04-01

    In the logistics system, transportation plays an important role to connect every element in the supply chain, but it can produces the greatest cost. Therefore, it is important to make the transportation costs as minimum as possible. Reducing the transportation cost can be done in several ways. One of the ways to minimizing the transportation cost is by optimizing the routing of its vehicles. It refers to Vehicle Routing Problem (VRP). The most common type of VRP is Capacitated Vehicle Routing Problem (CVRP). In CVRP, the vehicles have their own capacity and the total demands from the customer should not exceed the capacity of the vehicle. CVRP belongs to the class of NP-hard problems. These NP-hard problems make it more complex to solve such that exact algorithms become highly time-consuming with the increases in problem sizes. Thus, for large-scale problem instances, as typically found in industrial applications, finding an optimal solution is not practicable. Therefore, this paper uses two kinds of metaheuristics approach to solving CVRP. Those are Genetic Algorithm and Particle Swarm Optimization. This paper compares the results of both algorithms and see the performance of each algorithm. The results show that both algorithms perform well in solving CVRP but still needs to be improved. From algorithm testing and numerical example, Genetic Algorithm yields a better solution than Particle Swarm Optimization in total distance travelled.

  20. Optimal control theory for non-scalar-valued performance criteria. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gerring, H. P.

    1971-01-01

    The theory of optimal control for nonscalar-valued performance criteria is discussed. In the space, where the performance criterion attains its value, the relations better than, worse than, not better than, and not worse than are defined by a partial order relation. The notion of optimality splits up into superiority and non-inferiority, because worse than is not the complement of better than, in general. A superior solution is better than every other solution. A noninferior solution is not worse than any other solution. Noninferior solutions have been investigated particularly for vector-valued performance criteria. Superior solutions for non-scalar-valued performance criteria attaining their values in abstract partially ordered spaces are emphasized. The main result is the infimum principle which constitutes necessary conditions for a control to be a superior solution to an optimal control problem.

  1. Case Study on Optimal Routing in Logistics Network by Priority-based Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoguang; Lin, Lin; Gen, Mitsuo; Shiota, Mitsushige

    Recently, research on logistics caught more and more attention. One of the important issues on logistics system is to find optimal delivery routes with the least cost for products delivery. Numerous models have been developed for that reason. However, due to the diversity and complexity of practical problem, the existing models are usually not very satisfying to find the solution efficiently and convinently. In this paper, we treat a real-world logistics case with a company named ABC Co. ltd., in Kitakyusyu Japan. Firstly, based on the natures of this conveyance routing problem, as an extension of transportation problem (TP) and fixed charge transportation problem (fcTP) we formulate the problem as a minimum cost flow (MCF) model. Due to the complexity of fcTP, we proposed a priority-based genetic algorithm (pGA) approach to find the most acceptable solution to this problem. In this pGA approach, a two-stage path decoding method is adopted to develop delivery paths from a chromosome. We also apply the pGA approach to this problem, and compare our results with the current logistics network situation, and calculate the improvement of logistics cost to help the management to make decisions. Finally, in order to check the effectiveness of the proposed method, the results acquired are compared with those come from the two methods/ software, such as LINDO and CPLEX.

  2. Estimating of aquifer parameters from the single-well water-level measurements in response to advancing longwall mine by using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Buyuk, Ersin; Karaman, Abdullah

    2017-04-01

    We estimated transmissivity and storage coefficient values from the single well water-level measurements positioned ahead of the mining face by using particle swarm optimization (PSO) technique. The water-level response to the advancing mining face contains an semi-analytical function that is not suitable for conventional inversion shemes because the partial derivative is difficult to calculate . Morever, the logaritmic behaviour of the model create difficulty for obtaining an initial model that may lead to a stable convergence. The PSO appears to obtain a reliable solution that produce a reasonable fit between water-level data and model function response. Optimization methods have been used to find optimum conditions consisting either minimum or maximum of a given objective function with regard to some criteria. Unlike PSO, traditional non-linear optimization methods have been used for many hydrogeologic and geophysical engineering problems. These methods indicate some difficulties such as dependencies to initial model, evolution of the partial derivatives that is required while linearizing the model and trapping at local optimum. Recently, Particle swarm optimization (PSO) became the focus of modern global optimization method that is inspired from the social behaviour of birds of swarms, and appears to be a reliable and powerful algorithms for complex engineering applications. PSO that is not dependent on an initial model, and non-derivative stochastic process appears to be capable of searching all possible solutions in the model space either around local or global optimum points.

  3. An efficient hybrid approach for multiobjective optimization of water distribution systems

    NASA Astrophysics Data System (ADS)

    Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.

    2014-05-01

    An efficient hybrid approach for the design of water distribution systems (WDSs) with multiple objectives is described in this paper. The objectives are the minimization of the network cost and maximization of the network resilience. A self-adaptive multiobjective differential evolution (SAMODE) algorithm has been developed, in which control parameters are automatically adapted by means of evolution instead of the presetting of fine-tuned parameter values. In the proposed method, a graph algorithm is first used to decompose a looped WDS into a shortest-distance tree (T) or forest, and chords (Ω). The original two-objective optimization problem is then approximated by a series of single-objective optimization problems of the T to be solved by nonlinear programming (NLP), thereby providing an approximate Pareto optimal front for the original whole network. Finally, the solutions at the approximate front are used to seed the SAMODE algorithm to find an improved front for the original entire network. The proposed approach is compared with two other conventional full-search optimization methods (the SAMODE algorithm and the NSGA-II) that seed the initial population with purely random solutions based on three case studies: a benchmark network and two real-world networks with multiple demand loading cases. Results show that (i) the proposed NLP-SAMODE method consistently generates better-quality Pareto fronts than the full-search methods with significantly improved efficiency; and (ii) the proposed SAMODE algorithm (no parameter tuning) exhibits better performance than the NSGA-II with calibrated parameter values in efficiently offering optimal fronts.

  4. Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem

    NASA Astrophysics Data System (ADS)

    Rahmalia, Dinita

    2017-08-01

    Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.

  5. Optimization of structures undergoing harmonic or stochastic excitation. Ph.D. Thesis; [atmospheric turbulence and white noise

    NASA Technical Reports Server (NTRS)

    Johnson, E. H.

    1975-01-01

    The optimal design was investigated of simple structures subjected to dynamic loads, with constraints on the structures' responses. Optimal designs were examined for one dimensional structures excited by harmonically oscillating loads, similar structures excited by white noise, and a wing in the presence of continuous atmospheric turbulence. The first has constraints on the maximum allowable stress while the last two place bounds on the probability of failure of the structure. Approximations were made to replace the time parameter with a frequency parameter. For the first problem, this involved the steady state response, and in the remaining cases, power spectral techniques were employed to find the root mean square values of the responses. Optimal solutions were found by using computer algorithms which combined finite elements methods with optimization techniques based on mathematical programming. It was found that the inertial loads for these dynamic problems result in optimal structures that are radically different from those obtained for structures loaded statically by forces of comparable magnitude.

  6. An optimization tool for satellite equipment layout

    NASA Astrophysics Data System (ADS)

    Qin, Zheng; Liang, Yan-gang; Zhou, Jian-ping

    2018-01-01

    Selection of the satellite equipment layout with performance constraints is a complex task which can be viewed as a constrained multi-objective optimization and a multiple criteria decision making problem. The layout design of a satellite cabin involves the process of locating the required equipment in a limited space, thereby satisfying various behavioral constraints of the interior and exterior environments. The layout optimization of satellite cabin in this paper includes the C.G. offset, the moments of inertia and the space debris impact risk of the system, of which the impact risk index is developed to quantify the risk to a satellite cabin of coming into contact with space debris. In this paper an optimization tool for the integration of CAD software as well as the optimization algorithms is presented, which is developed to automatically find solutions for a three-dimensional layout of equipment in satellite. The effectiveness of the tool is also demonstrated by applying to the layout optimization of a satellite platform.

  7. Nuclear Electric Vehicle Optimization Toolset (NEVOT): Integrated System Design Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.; Steincamp, James W.; Stewart, Eric T.; Patton, Bruce W.; Pannell, William P.; Newby, Ronald L.; Coffman, Mark E.; Qualls, A. L.; Bancroft, S.; Molvik, Greg

    2003-01-01

    The Nuclear Electric Vehicle Optimization Toolset (NEVOT) optimizes the design of all major Nuclear Electric Propulsion (NEP) vehicle subsystems for a defined mission within constraints and optimization parameters chosen by a user. The tool uses a Genetic Algorithm (GA) search technique to combine subsystem designs and evaluate the fitness of the integrated design to fulfill a mission. The fitness of an individual is used within the GA to determine its probability of survival through successive generations in which the designs with low fitness are eliminated and replaced with combinations or mutations of designs with higher fitness. The program can find optimal solutions for different sets of fitness metrics without modification and can create and evaluate vehicle designs that might never be conceived of through traditional design techniques. It is anticipated that the flexible optimization methodology will expand present knowledge of the design trade-offs inherent in designing nuclear powered space vehicles and lead to improved NEP designs.

  8. Evaluation of Genetic Algorithm Concepts Using Model Problems. Part 2; Multi-Objective Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A genetic algorithm approach suitable for solving multi-objective optimization problems is described and evaluated using a series of simple model problems. Several new features including a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all optimization problems attempted. The binning algorithm generally provides pareto front quality enhancements and moderate convergence efficiency improvements for most of the model problems. The gene-space transformation procedure provides a large convergence efficiency enhancement for problems with non-convoluted pareto fronts and a degradation in efficiency for problems with convoluted pareto fronts. The most difficult problems --multi-mode search spaces with a large number of genes and convoluted pareto fronts-- require a large number of function evaluations for GA convergence, but always converge.

  9. Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control

    NASA Technical Reports Server (NTRS)

    Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.

    2015-01-01

    The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.

  10. Biosorption of formic and acetic acids from aqueous solution using activated carbon from shea butter seed shells

    NASA Astrophysics Data System (ADS)

    Adekola, Folahan A.; Oba, Ismaila A.

    2017-10-01

    The efficiency of prepared activated carbon from shea butter seed shells (SB-AC) for the adsorption of formic acid (FA) and acetic acid (AA) from aqueous solution was investigated. The effect of optimization parameters including initial concentration, agitation time, adsorbent dosage and temperature of adsorbate solution on the sorption capacity were studied. The SB-AC was characterized for the following parameters: bulk density, moisture content, ash content, pH, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The optimal conditions for the adsorption were established and the adsorption data for AA fitted Dubinin-Radushkevich (D-R) isotherm well, whereas FA followed Langmuir isotherm. The kinetic data were examined. It was found that pseudo-second-order kinetic model was found to adequately explain the sorption kinetic of AA and FA from aqueous solution. It was again found that intraparticle diffusion was found to explain the adsorption mechanism. Adsorption thermodynamic parameters were estimated and the negative values of Δ G showed that the adsorption process was feasible and spontaneous in nature, while the negative values of Δ H indicate that the adsorption process was exothermic. It is therefore established that SB-AC has good potential for the removal of AA and FA from aqueous solution. Hence, it should find application in the regular treatment of polluted water in aquaculture and fish breeding system.

  11. A graph decomposition-based approach for water distribution network optimization

    NASA Astrophysics Data System (ADS)

    Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.; Deuerlein, Jochen W.

    2013-04-01

    A novel optimization approach for water distribution network design is proposed in this paper. Using graph theory algorithms, a full water network is first decomposed into different subnetworks based on the connectivity of the network's components. The original whole network is simplified to a directed augmented tree, in which the subnetworks are substituted by augmented nodes and directed links are created to connect them. Differential evolution (DE) is then employed to optimize each subnetwork based on the sequence specified by the assigned directed links in the augmented tree. Rather than optimizing the original network as a whole, the subnetworks are sequentially optimized by the DE algorithm. A solution choice table is established for each subnetwork (except for the subnetwork that includes a supply node) and the optimal solution of the original whole network is finally obtained by use of the solution choice tables. Furthermore, a preconditioning algorithm is applied to the subnetworks to produce an approximately optimal solution for the original whole network. This solution specifies promising regions for the final optimization algorithm to further optimize the subnetworks. Five water network case studies are used to demonstrate the effectiveness of the proposed optimization method. A standard DE algorithm (SDE) and a genetic algorithm (GA) are applied to each case study without network decomposition to enable a comparison with the proposed method. The results show that the proposed method consistently outperforms the SDE and GA (both with tuned parameters) in terms of both the solution quality and efficiency.

  12. Vibrations of a thin cylindrical shell stiffened by rings with various stiffness

    NASA Astrophysics Data System (ADS)

    Nesterchuk, G. A.

    2018-05-01

    The problem of vibrations of a thin-walled elastic cylindrical shell reinforced by frames of different rigidity is investigated. The solution for the case of the clamped shell edges was obtained by asymptotic methods and refined by the finite element method. Rings with zero eccentricity and stiffness varying along the generatrix of the shell cylinder are considered. Varying the optimal coefficients of the distribution functions of the rigidity of the frames and finding more precise parameters makes it possible to find correction factors for analytical formulas of approximate calculation.

  13. Hybridization of Strength Pareto Multiobjective Optimization with Modified Cuckoo Search Algorithm for Rectangular Array

    NASA Astrophysics Data System (ADS)

    Abdul Rani, Khairul Najmy; Abdulmalek, Mohamedfareq; A. Rahim, Hasliza; Siew Chin, Neoh; Abd Wahab, Alawiyah

    2017-04-01

    This research proposes the various versions of modified cuckoo search (MCS) metaheuristic algorithm deploying the strength Pareto evolutionary algorithm (SPEA) multiobjective (MO) optimization technique in rectangular array geometry synthesis. Precisely, the MCS algorithm is proposed by incorporating the Roulette wheel selection operator to choose the initial host nests (individuals) that give better results, adaptive inertia weight to control the positions exploration of the potential best host nests (solutions), and dynamic discovery rate to manage the fraction probability of finding the best host nests in 3-dimensional search space. In addition, the MCS algorithm is hybridized with the particle swarm optimization (PSO) and hill climbing (HC) stochastic techniques along with the standard strength Pareto evolutionary algorithm (SPEA) forming the MCSPSOSPEA and MCSHCSPEA, respectively. All the proposed MCS-based algorithms are examined to perform MO optimization on Zitzler-Deb-Thiele’s (ZDT’s) test functions. Pareto optimum trade-offs are done to generate a set of three non-dominated solutions, which are locations, excitation amplitudes, and excitation phases of array elements, respectively. Overall, simulations demonstrates that the proposed MCSPSOSPEA outperforms other compatible competitors, in gaining a high antenna directivity, small half-power beamwidth (HPBW), low average side lobe level (SLL) suppression, and/or significant predefined nulls mitigation, simultaneously.

  14. Using modified fruit fly optimisation algorithm to perform the function test and case studies

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Tsao

    2013-06-01

    Evolutionary computation is a computing mode established by practically simulating natural evolutionary processes based on the concept of Darwinian Theory, and it is a common research method. The main contribution of this paper was to reinforce the function of searching for the optimised solution using the fruit fly optimization algorithm (FOA), in order to avoid the acquisition of local extremum solutions. The evolutionary computation has grown to include the concepts of animal foraging behaviour and group behaviour. This study discussed three common evolutionary computation methods and compared them with the modified fruit fly optimization algorithm (MFOA). It further investigated the ability of the three mathematical functions in computing extreme values, as well as the algorithm execution speed and the forecast ability of the forecasting model built using the optimised general regression neural network (GRNN) parameters. The findings indicated that there was no obvious difference between particle swarm optimization and the MFOA in regards to the ability to compute extreme values; however, they were both better than the artificial fish swarm algorithm and FOA. In addition, the MFOA performed better than the particle swarm optimization in regards to the algorithm execution speed, and the forecast ability of the forecasting model built using the MFOA's GRNN parameters was better than that of the other three forecasting models.

  15. Design optimization of tailor-rolled blank thin-walled structures based on ɛ-support vector regression technique and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Duan, Libin; Xiao, Ning-cong; Li, Guangyao; Cheng, Aiguo; Chen, Tao

    2017-07-01

    Tailor-rolled blank thin-walled (TRB-TH) structures have become important vehicle components owing to their advantages of light weight and crashworthiness. The purpose of this article is to provide an efficient lightweight design for improving the energy-absorbing capability of TRB-TH structures under dynamic loading. A finite element (FE) model for TRB-TH structures is established and validated by performing a dynamic axial crash test. Different material properties for individual parts with different thicknesses are considered in the FE model. Then, a multi-objective crashworthiness design of the TRB-TH structure is constructed based on the ɛ-support vector regression (ɛ-SVR) technique and non-dominated sorting genetic algorithm-II. The key parameters (C, ɛ and σ) are optimized to further improve the predictive accuracy of ɛ-SVR under limited sample points. Finally, the technique for order preference by similarity to the ideal solution method is used to rank the solutions in Pareto-optimal frontiers and find the best compromise optima. The results demonstrate that the light weight and crashworthiness performance of the optimized TRB-TH structures are superior to their uniform thickness counterparts. The proposed approach provides useful guidance for designing TRB-TH energy absorbers for vehicle bodies.

  16. Optimization and evaluation of lipid emulsions for intravenous co-delivery of artemether and lumefantrine in severe malaria treatment.

    PubMed

    Yang, Yinxian; Gao, Hailing; Zhou, Shuang; Kuang, Xiao; Wang, Zhenjie; Liu, Hongzhuo; Sun, Jin

    2018-05-10

    Parenteral therapy for severe and complicated malaria is necessary, but currently available parenteral antimalarials have their own drawbacks. As for recommended artemisinin-based combination therapy, antimalarial artemether and lumefantrine are limited in parenteral delivery due to their poor water solubility. Herein, the aim of this study was to develop the lipid-based emulsions for intravenous co-delivery of artemether and lumefantrine. The lipid emulsion was prepared by high-speed shear and high-pressure homogenization, and the formulations were optimized mainly by monitoring particle size distribution under autoclaved conditions. The final optimal formulation was with uniform particle size distribution (~ 220 nm), high encapsulation efficiency (~ 99%), good physiochemical stability, and acceptable hemolysis potential. The pharmacokinetic study in rats showed that C max of artemether and lumefantrine for the optimized lipid emulsions were significantly increased than the injectable solution, which was critical for rapid antimalarial activity. Furthermore, the AUC 0-t of artemether and lumefantrine in the lipid emulsion group were 5.01- and 1.39-fold of those from the solution, respectively, suggesting enhanced bioavailability. With these findings, the developed lipid emulsion is a promising alternative parenteral therapy for the malaria treatment, especially for severe or complicated malaria.

  17. Optimal simultaneous superpositioning of multiple structures with missing data

    PubMed Central

    Theobald, Douglas L.; Steindel, Phillip A.

    2012-01-01

    Motivation: Superpositioning is an essential technique in structural biology that facilitates the comparison and analysis of conformational differences among topologically similar structures. Performing a superposition requires a one-to-one correspondence, or alignment, of the point sets in the different structures. However, in practice, some points are usually ‘missing’ from several structures, for example, when the alignment contains gaps. Current superposition methods deal with missing data simply by superpositioning a subset of points that are shared among all the structures. This practice is inefficient, as it ignores important data, and it fails to satisfy the common least-squares criterion. In the extreme, disregarding missing positions prohibits the calculation of a superposition altogether. Results: Here, we present a general solution for determining an optimal superposition when some of the data are missing. We use the expectation–maximization algorithm, a classic statistical technique for dealing with incomplete data, to find both maximum-likelihood solutions and the optimal least-squares solution as a special case. Availability and implementation: The methods presented here are implemented in THESEUS 2.0, a program for superpositioning macromolecular structures. ANSI C source code and selected compiled binaries for various computing platforms are freely available under the GNU open source license from http://www.theseus3d.org. Contact: dtheobald@brandeis.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22543369

  18. Tuning Monotonic Basin Hopping: Improving the Efficiency of Stochastic Search as Applied to Low-Thrust Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Englander, Arnold C.

    2014-01-01

    Trajectory optimization methods using monotonic basin hopping (MBH) have become well developed during the past decade [1, 2, 3, 4, 5, 6]. An essential component of MBH is a controlled random search through the multi-dimensional space of possible solutions. Historically, the randomness has been generated by drawing random variable (RV)s from a uniform probability distribution. Here, we investigate the generating the randomness by drawing the RVs from Cauchy and Pareto distributions, chosen because of their characteristic long tails. We demonstrate that using Cauchy distributions (as first suggested by J. Englander [3, 6]) significantly improves monotonic basin hopping (MBH) performance, and that Pareto distributions provide even greater improvements. Improved performance is defined in terms of efficiency and robustness. Efficiency is finding better solutions in less time. Robustness is efficiency that is undiminished by (a) the boundary conditions and internal constraints of the optimization problem being solved, and (b) by variations in the parameters of the probability distribution. Robustness is important for achieving performance improvements that are not problem specific. In this work we show that the performance improvements are the result of how these long-tailed distributions enable MBH to search the solution space faster and more thoroughly. In developing this explanation, we use the concepts of sub-diffusive, normally-diffusive, and super-diffusive random walks (RWs) originally developed in the field of statistical physics.

  19. Incorporating Servqual-QFD with Taguchi Design for optimizing service quality design

    NASA Astrophysics Data System (ADS)

    Arbi Hadiyat, M.

    2018-03-01

    Deploying good service design in service companies has been updated issue in improving customer satisfaction, especially based on the level of service quality measured by Parasuraman’s SERVQUAL. Many researchers have been proposing methods in designing the service, and some of them are based on engineering viewpoint, especially by implementing the QFD method or even using robust Taguchi method. The QFD method would found the qualitative solution by generating the “how’s”, while Taguchi method gives more quantitative calculation in optimizing best solution. However, incorporating both QFD and Taguchi has been done in this paper and yields better design process. The purposes of this research is to evaluate the incorporated methods by implemented it to a case study, then analyze the result and see the robustness of those methods to customer perception of service quality. Started by measuring service attributes using SERVQUAL and find the improvement with QFD, the deployment of QFD solution then generated by defining Taguchi factors levels and calculating the Signal-to-noise ratio in its orthogonal array, and optimized Taguchi response then found. A case study was given for designing service in local bank. Afterward, the service design obtained from previous analysis was then evaluated and shows that it was still meet the customer satisfaction. Incorporating QFD and Taguchi has performed well and can be adopted and developed for another research for evaluating the robustness of result.

  20. Probing for quantum speedup in spin-glass problems with planted solutions

    NASA Astrophysics Data System (ADS)

    Hen, Itay; Job, Joshua; Albash, Tameem; Rønnow, Troels F.; Troyer, Matthias; Lidar, Daniel A.

    2015-10-01

    The availability of quantum annealing devices with hundreds of qubits has made the experimental demonstration of a quantum speedup for optimization problems a coveted, albeit elusive goal. Going beyond earlier studies of random Ising problems, here we introduce a method to construct a set of frustrated Ising-model optimization problems with tunable hardness. We study the performance of a D-Wave Two device (DW2) with up to 503 qubits on these problems and compare it to a suite of classical algorithms, including a highly optimized algorithm designed to compete directly with the DW2. The problems are generated around predetermined ground-state configurations, called planted solutions, which makes them particularly suitable for benchmarking purposes. The problem set exhibits properties familiar from constraint satisfaction (SAT) problems, such as a peak in the typical hardness of the problems, determined by a tunable clause density parameter. We bound the hardness regime where the DW2 device either does not or might exhibit a quantum speedup for our problem set. While we do not find evidence for a speedup for the hardest and most frustrated problems in our problem set, we cannot rule out that a speedup might exist for some of the easier, less frustrated problems. Our empirical findings pertain to the specific D-Wave processor and problem set we studied and leave open the possibility that future processors might exhibit a quantum speedup on the same problem set.

  1. Using Markov Chains and Multi-Objective Optimization for Energy-Efficient Context Recognition.

    PubMed

    Janko, Vito; Luštrek, Mitja

    2017-12-29

    The recognition of the user's context with wearable sensing systems is a common problem in ubiquitous computing. However, the typically small battery of such systems often makes continuous recognition impractical. The strain on the battery can be reduced if the sensor setting is adapted to each context. We propose a method that efficiently finds near-optimal sensor settings for each context. It uses Markov chains to simulate the behavior of the system in different configurations and the multi-objective genetic algorithm to find a set of good non-dominated configurations. The method was evaluated on three real-life datasets and found good trade-offs between the system's energy expenditure and the system's accuracy. One of the solutions, for example, consumed five-times less energy than the default one, while sacrificing only two percentage points of accuracy.

  2. Full-order optimal compensators for flow control: the multiple inputs case

    NASA Astrophysics Data System (ADS)

    Semeraro, Onofrio; Pralits, Jan O.

    2018-03-01

    Flow control has been the subject of numerous experimental and theoretical works. We analyze full-order, optimal controllers for large dynamical systems in the presence of multiple actuators and sensors. The full-order controllers do not require any preliminary model reduction or low-order approximation: this feature allows us to assess the optimal performance of an actuated flow without relying on any estimation process or further hypothesis on the disturbances. We start from the original technique proposed by Bewley et al. (Meccanica 51(12):2997-3014, 2016. https://doi.org/10.1007/s11012-016-0547-3), the adjoint of the direct-adjoint (ADA) algorithm. The algorithm is iterative and allows bypassing the solution of the algebraic Riccati equation associated with the optimal control problem, typically infeasible for large systems. In this numerical work, we extend the ADA iteration into a more general framework that includes the design of controllers with multiple, coupled inputs and robust controllers (H_{∞} methods). First, we demonstrate our results by showing the analytical equivalence between the full Riccati solutions and the ADA approximations in the multiple inputs case. In the second part of the article, we analyze the performance of the algorithm in terms of convergence of the solution, by comparing it with analogous techniques. We find an excellent scalability with the number of inputs (actuators), making the method a viable way for full-order control design in complex settings. Finally, the applicability of the algorithm to fluid mechanics problems is shown using the linearized Kuramoto-Sivashinsky equation and the Kármán vortex street past a two-dimensional cylinder.

  3. An efficient assisted history matching and uncertainty quantification workflow using Gaussian processes proxy models and variogram based sensitivity analysis: GP-VARS

    NASA Astrophysics Data System (ADS)

    Rana, Sachin; Ertekin, Turgay; King, Gregory R.

    2018-05-01

    Reservoir history matching is frequently viewed as an optimization problem which involves minimizing misfit between simulated and observed data. Many gradient and evolutionary strategy based optimization algorithms have been proposed to solve this problem which typically require a large number of numerical simulations to find feasible solutions. Therefore, a new methodology referred to as GP-VARS is proposed in this study which uses forward and inverse Gaussian processes (GP) based proxy models combined with a novel application of variogram analysis of response surface (VARS) based sensitivity analysis to efficiently solve high dimensional history matching problems. Empirical Bayes approach is proposed to optimally train GP proxy models for any given data. The history matching solutions are found via Bayesian optimization (BO) on forward GP models and via predictions of inverse GP model in an iterative manner. An uncertainty quantification method using MCMC sampling in conjunction with GP model is also presented to obtain a probabilistic estimate of reservoir properties and estimated ultimate recovery (EUR). An application of the proposed GP-VARS methodology on PUNQ-S3 reservoir is presented in which it is shown that GP-VARS provides history match solutions in approximately four times less numerical simulations as compared to the differential evolution (DE) algorithm. Furthermore, a comparison of uncertainty quantification results obtained by GP-VARS, EnKF and other previously published methods shows that the P50 estimate of oil EUR obtained by GP-VARS is in close agreement to the true values for the PUNQ-S3 reservoir.

  4. Optimization of Friction Stir Welding Tool Advance Speed via Monte-Carlo Simulation of the Friction Stir Welding Process

    PubMed Central

    Fraser, Kirk A.; St-Georges, Lyne; Kiss, Laszlo I.

    2014-01-01

    Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time. PMID:28788627

  5. Optimization of Friction Stir Welding Tool Advance Speed via Monte-Carlo Simulation of the Friction Stir Welding Process.

    PubMed

    Fraser, Kirk A; St-Georges, Lyne; Kiss, Laszlo I

    2014-04-30

    Recognition of the friction stir welding process is growing in the aeronautical and aero-space industries. To make the process more available to the structural fabrication industry (buildings and bridges), being able to model the process to determine the highest speed of advance possible that will not cause unwanted welding defects is desirable. A numerical solution to the transient two-dimensional heat diffusion equation for the friction stir welding process is presented. A non-linear heat generation term based on an arbitrary piecewise linear model of friction as a function of temperature is used. The solution is used to solve for the temperature distribution in the Al 6061-T6 work pieces. The finite difference solution of the non-linear problem is used to perform a Monte-Carlo simulation (MCS). A polynomial response surface (maximum welding temperature as a function of advancing and rotational speed) is constructed from the MCS results. The response surface is used to determine the optimum tool speed of advance and rotational speed. The exterior penalty method is used to find the highest speed of advance and the associated rotational speed of the tool for the FSW process considered. We show that good agreement with experimental optimization work is possible with this simplified model. Using our approach an optimal weld pitch of 0.52 mm/rev is obtained for 3.18 mm thick AA6061-T6 plate. Our method provides an estimate of the optimal welding parameters in less than 30 min of calculation time.

  6. A Cascade Optimization Strategy for Solution of Difficult Multidisciplinary Design Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.; Berke, Laszlo

    1996-01-01

    A research project to comparatively evaluate 10 nonlinear optimization algorithms was recently completed. A conclusion was that no single optimizer could successfully solve all 40 problems in the test bed, even though most optimizers successfully solved at least one-third of the problems. We realized that improved search directions and step lengths, available in the 10 optimizers compared, were not likely to alleviate the convergence difficulties. For the solution of those difficult problems we have devised an alternative approach called cascade optimization strategy. The cascade strategy uses several optimizers, one followed by another in a specified sequence, to solve a problem. A pseudorandom scheme perturbs design variables between the optimizers. The cascade strategy has been tested successfully in the design of supersonic and subsonic aircraft configurations and air-breathing engines for high-speed civil transport applications. These problems could not be successfully solved by an individual optimizer. The cascade optimization strategy, however, generated feasible optimum solutions for both aircraft and engine problems. This paper presents the cascade strategy and solutions to a number of these problems.

  7. An optimization-based approach for solving a time-harmonic multiphysical wave problem with higher-order schemes

    NASA Astrophysics Data System (ADS)

    Mönkölä, Sanna

    2013-06-01

    This study considers developing numerical solution techniques for the computer simulations of time-harmonic fluid-structure interaction between acoustic and elastic waves. The focus is on the efficiency of an iterative solution method based on a controllability approach and spectral elements. We concentrate on the model, in which the acoustic waves in the fluid domain are modeled by using the velocity potential and the elastic waves in the structure domain are modeled by using displacement. Traditionally, the complex-valued time-harmonic equations are used for solving the time-harmonic problems. Instead of that, we focus on finding periodic solutions without solving the time-harmonic problems directly. The time-dependent equations can be simulated with respect to time until a time-harmonic solution is reached, but the approach suffers from poor convergence. To overcome this challenge, we follow the approach first suggested and developed for the acoustic wave equations by Bristeau, Glowinski, and Périaux. Thus, we accelerate the convergence rate by employing a controllability method. The problem is formulated as a least-squares optimization problem, which is solved with the conjugate gradient (CG) algorithm. Computation of the gradient of the functional is done directly for the discretized problem. A graph-based multigrid method is used for preconditioning the CG algorithm.

  8. Application of shifted Jacobi pseudospectral method for solving (in)finite-horizon min-max optimal control problems with uncertainty

    NASA Astrophysics Data System (ADS)

    Nikooeinejad, Z.; Delavarkhalafi, A.; Heydari, M.

    2018-03-01

    The difficulty of solving the min-max optimal control problems (M-MOCPs) with uncertainty using generalised Euler-Lagrange equations is caused by the combination of split boundary conditions, nonlinear differential equations and the manner in which the final time is treated. In this investigation, the shifted Jacobi pseudospectral method (SJPM) as a numerical technique for solving two-point boundary value problems (TPBVPs) in M-MOCPs for several boundary states is proposed. At first, a novel framework of approximate solutions which satisfied the split boundary conditions automatically for various boundary states is presented. Then, by applying the generalised Euler-Lagrange equations and expanding the required approximate solutions as elements of shifted Jacobi polynomials, finding a solution of TPBVPs in nonlinear M-MOCPs with uncertainty is reduced to the solution of a system of algebraic equations. Moreover, the Jacobi polynomials are particularly useful for boundary value problems in unbounded domain, which allow us to solve infinite- as well as finite and free final time problems by domain truncation method. Some numerical examples are given to demonstrate the accuracy and efficiency of the proposed method. A comparative study between the proposed method and other existing methods shows that the SJPM is simple and accurate.

  9. Multiobjective Optimization of Low-Energy Trajectories Using Optimal Control on Dynamical Channels

    NASA Technical Reports Server (NTRS)

    Coffee, Thomas M.; Anderson, Rodney L.; Lo, Martin W.

    2011-01-01

    We introduce a computational method to design efficient low-energy trajectories by extracting initial solutions from dynamical channels formed by invariant manifolds, and improving these solutions through variational optimal control. We consider trajectories connecting two unstable periodic orbits in the circular restricted 3-body problem (CR3BP). Our method leverages dynamical channels to generate a range of solutions, and approximates the areto front for impulse and time of flight through a multiobjective optimization of these solutions based on primer vector theory. We demonstrate the application of our method to a libration orbit transfer in the Earth-Moon system.

  10. RNAblueprint: flexible multiple target nucleic acid sequence design.

    PubMed

    Hammer, Stefan; Tschiatschek, Birgit; Flamm, Christoph; Hofacker, Ivo L; Findeiß, Sven

    2017-09-15

    Realizing the value of synthetic biology in biotechnology and medicine requires the design of molecules with specialized functions. Due to its close structure to function relationship, and the availability of good structure prediction methods and energy models, RNA is perfectly suited to be synthetically engineered with predefined properties. However, currently available RNA design tools cannot be easily adapted to accommodate new design specifications. Furthermore, complicated sampling and optimization methods are often developed to suit a specific RNA design goal, adding to their inflexibility. We developed a C ++  library implementing a graph coloring approach to stochastically sample sequences compatible with structural and sequence constraints from the typically very large solution space. The approach allows to specify and explore the solution space in a well defined way. Our library also guarantees uniform sampling, which makes optimization runs performant by not only avoiding re-evaluation of already found solutions, but also by raising the probability of finding better solutions for long optimization runs. We show that our software can be combined with any other software package to allow diverse RNA design applications. Scripting interfaces allow the easy adaption of existing code to accommodate new scenarios, making the whole design process very flexible. We implemented example design approaches written in Python to demonstrate these advantages. RNAblueprint , Python implementations and benchmark datasets are available at github: https://github.com/ViennaRNA . s.hammer@univie.ac.at, ivo@tbi.univie.ac.at or sven@tbi.univie.ac.at. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  11. Optimal design of a gas transmission network: A case study of the Turkish natural gas pipeline network system

    NASA Astrophysics Data System (ADS)

    Gunes, Ersin Fatih

    Turkey is located between Europe, which has increasing demand for natural gas and the geographies of Middle East, Asia and Russia, which have rich and strong natural gas supply. Because of the geographical location, Turkey has strategic importance according to energy sources. To supply this demand, a pipeline network configuration with the optimal and efficient lengths, pressures, diameters and number of compressor stations is extremely needed. Because, Turkey has a currently working and constructed network topology, obtaining an optimal configuration of the pipelines, including an optimal number of compressor stations with optimal locations, is the focus of this study. Identifying a network design with lowest costs is important because of the high maintenance and set-up costs. The quantity of compressor stations, the pipeline segments' lengths, the diameter sizes and pressures at compressor stations, are considered to be decision variables in this study. Two existing optimization models were selected and applied to the case study of Turkey. Because of the fixed cost of investment, both models are formulated as mixed integer nonlinear programs, which require branch and bound combined with the nonlinear programming solution methods. The differences between these two models are related to some factors that can affect the network system of natural gas such as wall thickness, material balance compressor isentropic head and amount of gas to be delivered. The results obtained by these two techniques are compared with each other and with the current system. Major differences between results are costs, pressures and flow rates. These solution techniques are able to find a solution with minimum cost for each model both of which are less than the current cost of the system while satisfying all the constraints on diameter, length, flow rate and pressure. These results give the big picture of an ideal configuration for the future state network for the country of Turkey.

  12. Fuel-optimal low-thrust formation reconfiguration via Radau pseudospectral method

    NASA Astrophysics Data System (ADS)

    Li, Jing

    2016-07-01

    This paper investigates fuel-optimal low-thrust formation reconfiguration near circular orbit. Based on the Clohessy-Wiltshire equations, first-order necessary optimality conditions are derived from the Pontryagin's maximum principle. The fuel-optimal impulsive solution is utilized to divide the low-thrust trajectory into thrust and coast arcs. By introducing the switching times as optimization variables, the fuel-optimal low-thrust formation reconfiguration is posed as a nonlinear programming problem (NLP) via direct transcription using multiple-phase Radau pseudospectral method (RPM), which is then solved by a sparse nonlinear optimization software SNOPT. To facilitate optimality verification and, if necessary, further refinement of the optimized solution of the NLP, formulas for mass costate estimation and initial costates scaling are presented. Numerical examples are given to show the application of the proposed optimization method. To fix the problem, generic fuel-optimal low-thrust formation reconfiguration can be simplified as reconfiguration without any initial and terminal coast arcs, whose optimal solutions can be efficiently obtained from the multiple-phase RPM at the cost of a slight fuel increment. Finally, influence of the specific impulse and maximum thrust magnitude on the fuel-optimal low-thrust formation reconfiguration is analyzed. Numerical results shown the links and differences between the fuel-optimal impulsive and low-thrust solutions.

  13. Assessing the Efficacy of Poly(N-isopropylacrylamide) for Drug Delivery Applications Using Molecular Dynamics Simulations.

    PubMed

    Moghadam, Soroush; Larson, Ronald G

    2017-02-06

    All-atom molecular dynamic simulations (AA-MD) are performed for aqueous solutions of hydrophobic drug molecules (phenytoin) with model polymer excipients, namely, (1) N-isopropylacrylamide, (pNIPAAm), (2) pNIPAAm-co-acrylamide (Am), and (3) pNIPAAm-co-dimethylacrylamide (DMA). After validating the force field parameters using the well-known lower critical solution behavior of pNIPAAm, we simulate the polymer-drug complex in water and its behavior at temperatures below (295 K) and above the LCST (310 K). Using radial distribution functions, we find that there is an optimum comonomer molar fraction of around 20-30% DMA at which interaction with phenytoin drug molecules is strongest, consistent with recent experimental findings. The results provide evidence that molecular simulations are able to provide guidance in the optimization of novel polymer excipients for drug release.

  14. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization

    DOE PAGES

    Xi, Maolong; Lu, Dan; Gui, Dongwei; ...

    2016-11-27

    Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so asmore » to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO 3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.« less

  15. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization

    NASA Astrophysics Data System (ADS)

    Xi, Maolong; Lu, Dan; Gui, Dongwei; Qi, Zhiming; Zhang, Guannan

    2017-01-01

    Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so as to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.

  16. Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Maolong; Lu, Dan; Gui, Dongwei

    Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so asmore » to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO 3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.« less

  17. A novel comprehensive learning artificial bee colony optimizer for dynamic optimization biological problems.

    PubMed

    Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei

    2017-03-01

    There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.

  18. An Interactive Method to Solve Infeasibility in Linear Programming Test Assembling Models

    ERIC Educational Resources Information Center

    Huitzing, Hiddo A.

    2004-01-01

    In optimal assembly of tests from item banks, linear programming (LP) models have proved to be very useful. Assembly by hand has become nearly impossible, but these LP techniques are able to find the best solutions, given the demands and needs of the test to be assembled and the specifics of the item bank from which it is assembled. However,…

  19. Rapid space trajectory generation using a Fourier series shape-based approach

    NASA Astrophysics Data System (ADS)

    Taheri, Ehsan

    With the insatiable curiosity of human beings to explore the universe and our solar system, it is essential to benefit from larger propulsion capabilities to execute efficient transfers and carry more scientific equipments. In the field of space trajectory optimization the fundamental advances in using low-thrust propulsion and exploiting the multi-body dynamics has played pivotal role in designing efficient space mission trajectories. The former provides larger cumulative momentum change in comparison with the conventional chemical propulsion whereas the latter results in almost ballistic trajectories with negligible amount of propellant. However, the problem of space trajectory design translates into an optimal control problem which is, in general, time-consuming and very difficult to solve. Therefore, the goal of the thesis is to address the above problem by developing a methodology to simplify and facilitate the process of finding initial low-thrust trajectories in both two-body and multi-body environments. This initial solution will not only provide mission designers with a better understanding of the problem and solution but also serves as a good initial guess for high-fidelity optimal control solvers and increases their convergence rate. Almost all of the high-fidelity solvers enjoy the existence of an initial guess that already satisfies the equations of motion and some of the most important constraints. Despite the nonlinear nature of the problem, it is sought to find a robust technique for a wide range of typical low-thrust transfers with reduced computational intensity. Another important aspect of our developed methodology is the representation of low-thrust trajectories by Fourier series with which the number of design variables reduces significantly. Emphasis is given on simplifying the equations of motion to the possible extent and avoid approximating the controls. These facts contribute to speeding up the solution finding procedure. Several example applications of two and three-dimensional two-body low-thrust transfers are considered. In addition, in the multi-body dynamic, and in particular the restricted-three-body dynamic, several Earth-to-Moon low-thrust transfers are investigated.

  20. Real-time Collision Avoidance and Path Optimizer for Semi-autonomous UAVs.

    NASA Astrophysics Data System (ADS)

    Hawary, A. F.; Razak, N. A.

    2018-05-01

    Whilst UAV offers a potentially cheaper and more localized observation platform than current satellite or land-based approaches, it requires an advance path planner to reveal its true potential, particularly in real-time missions. Manual control by human will have limited line-of-sights and prone to errors due to careless and fatigue. A good alternative solution is to equip the UAV with semi-autonomous capabilities that able to navigate via a pre-planned route in real-time fashion. In this paper, we propose an easy-and-practical path optimizer based on the classical Travelling Salesman Problem and adopts a brute force search method to re-optimize the route in the event of collisions using range finder sensor. The former utilizes a Simple Genetic Algorithm and the latter uses Nearest Neighbour algorithm. Both algorithms are combined to optimize the route and avoid collision at once. Although many researchers proposed various path planning algorithms, we find that it is difficult to integrate on a basic UAV model and often lacks of real-time collision detection optimizer. Therefore, we explore a practical benefit from this approach using on-board Arduino and Ardupilot controllers by manually emulating the motion of an actual UAV model prior to test on the flying site. The result showed that the range finder sensor provides a real-time data to the algorithm to find a collision-free path and eventually optimized the route successfully.

  1. Meta-control of combustion performance with a data mining approach

    NASA Astrophysics Data System (ADS)

    Song, Zhe

    Large scale combustion process is complex and proposes challenges of optimizing its performance. Traditional approaches based on thermal dynamics have limitations on finding optimal operational regions due to time-shift nature of the process. Recent advances in information technology enable people collect large volumes of process data easily and continuously. The collected process data contains rich information about the process and, to some extent, represents a digital copy of the process over time. Although large volumes of data exist in industrial combustion processes, they are not fully utilized to the level where the process can be optimized. Data mining is an emerging science which finds patterns or models from large data sets. It has found many successful applications in business marketing, medical and manufacturing domains The focus of this dissertation is on applying data mining to industrial combustion processes, and ultimately optimizing the combustion performance. However the philosophy, methods and frameworks discussed in this research can also be applied to other industrial processes. Optimizing an industrial combustion process has two major challenges. One is the underlying process model changes over time and obtaining an accurate process model is nontrivial. The other is that a process model with high fidelity is usually highly nonlinear, solving the optimization problem needs efficient heuristics. This dissertation is set to solve these two major challenges. The major contribution of this 4-year research is the data-driven solution to optimize the combustion process, where process model or knowledge is identified based on the process data, then optimization is executed by evolutionary algorithms to search for optimal operating regions.

  2. A modified multi-objective particle swarm optimization approach and its application to the design of a deepwater composite riser

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Chen, J.

    2017-09-01

    A modified multi-objective particle swarm optimization method is proposed for obtaining Pareto-optimal solutions effectively. Different from traditional multi-objective particle swarm optimization methods, Kriging meta-models and the trapezoid index are introduced and integrated with the traditional one. Kriging meta-models are built to match expensive or black-box functions. By applying Kriging meta-models, function evaluation numbers are decreased and the boundary Pareto-optimal solutions are identified rapidly. For bi-objective optimization problems, the trapezoid index is calculated as the sum of the trapezoid's area formed by the Pareto-optimal solutions and one objective axis. It can serve as a measure whether the Pareto-optimal solutions converge to the Pareto front. Illustrative examples indicate that to obtain Pareto-optimal solutions, the method proposed needs fewer function evaluations than the traditional multi-objective particle swarm optimization method and the non-dominated sorting genetic algorithm II method, and both the accuracy and the computational efficiency are improved. The proposed method is also applied to the design of a deepwater composite riser example in which the structural performances are calculated by numerical analysis. The design aim was to enhance the tension strength and minimize the cost. Under the buckling constraint, the optimal trade-off of tensile strength and material volume is obtained. The results demonstrated that the proposed method can effectively deal with multi-objective optimizations with black-box functions.

  3. FOCuS: a metaheuristic algorithm for computing knockouts from genome-scale models for strain optimization.

    PubMed

    Mutturi, Sarma

    2017-06-27

    Although handful tools are available for constraint-based flux analysis to generate knockout strains, most of these are either based on bilevel-MIP or its modifications. However, metaheuristic approaches that are known for their flexibility and scalability have been less studied. Moreover, in the existing tools, sectioning of search space to find optimal knocks has not been considered. Herein, a novel computational procedure, termed as FOCuS (Flower-pOllination coupled Clonal Selection algorithm), was developed to find the optimal reaction knockouts from a metabolic network to maximize the production of specific metabolites. FOCuS derives its benefits from nature-inspired flower pollination algorithm and artificial immune system-inspired clonal selection algorithm to converge to an optimal solution. To evaluate the performance of FOCuS, reported results obtained from both MIP and other metaheuristic-based tools were compared in selected case studies. The results demonstrated the robustness of FOCuS irrespective of the size of metabolic network and number of knockouts. Moreover, sectioning of search space coupled with pooling of priority reactions based on their contribution to objective function for generating smaller search space significantly reduced the computational time.

  4. Guaranteed Discrete Energy Optimization on Large Protein Design Problems.

    PubMed

    Simoncini, David; Allouche, David; de Givry, Simon; Delmas, Céline; Barbe, Sophie; Schiex, Thomas

    2015-12-08

    In Computational Protein Design (CPD), assuming a rigid backbone and amino-acid rotamer library, the problem of finding a sequence with an optimal conformation is NP-hard. In this paper, using Dunbrack's rotamer library and Talaris2014 decomposable energy function, we use an exact deterministic method combining branch and bound, arc consistency, and tree-decomposition to provenly identify the global minimum energy sequence-conformation on full-redesign problems, defining search spaces of size up to 10(234). This is achieved on a single core of a standard computing server, requiring a maximum of 66GB RAM. A variant of the algorithm is able to exhaustively enumerate all sequence-conformations within an energy threshold of the optimum. These proven optimal solutions are then used to evaluate the frequencies and amplitudes, in energy and sequence, at which an existing CPD-dedicated simulated annealing implementation may miss the optimum on these full redesign problems. The probability of finding an optimum drops close to 0 very quickly. In the worst case, despite 1,000 repeats, the annealing algorithm remained more than 1 Rosetta unit away from the optimum, leading to design sequences that could differ from the optimal sequence by more than 30% of their amino acids.

  5. Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization

    NASA Technical Reports Server (NTRS)

    Pinson, Robin; Lu, Ping

    2015-01-01

    This paper investigates a convex optimization based method that can rapidly generate the fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously design the optimal powered descent trajectory on-board the spacecraft immediately prior to the descent burn. Compared to a planetary powered landing problem, the major difficulty is the complex gravity field near the surface of an asteroid that cannot be approximated by a constant gravity field. This paper uses relaxation techniques and a successive solution process that seeks the solution to the original nonlinear, nonconvex problem through the solutions to a sequence of convex optimal control problems.

  6. Design Optimization Toolkit: Users' Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilo Valentin, Miguel Alejandro

    The Design Optimization Toolkit (DOTk) is a stand-alone C++ software package intended to solve complex design optimization problems. DOTk software package provides a range of solution methods that are suited for gradient/nongradient-based optimization, large scale constrained optimization, and topology optimization. DOTk was design to have a flexible user interface to allow easy access to DOTk solution methods from external engineering software packages. This inherent flexibility makes DOTk barely intrusive to other engineering software packages. As part of this inherent flexibility, DOTk software package provides an easy-to-use MATLAB interface that enables users to call DOTk solution methods directly from the MATLABmore » command window.« less

  7. Exploratory High-Fidelity Aerostructural Optimization Using an Efficient Monolithic Solution Method

    NASA Astrophysics Data System (ADS)

    Zhang, Jenmy Zimi

    This thesis is motivated by the desire to discover fuel efficient aircraft concepts through exploratory design. An optimization methodology based on tightly integrated high-fidelity aerostructural analysis is proposed, which has the flexibility, robustness, and efficiency to contribute to this goal. The present aerostructural optimization methodology uses an integrated geometry parameterization and mesh movement strategy, which was initially proposed for aerodynamic shape optimization. This integrated approach provides the optimizer with a large amount of geometric freedom for conducting exploratory design, while allowing for efficient and robust mesh movement in the presence of substantial shape changes. In extending this approach to aerostructural optimization, this thesis has addressed a number of important challenges. A structural mesh deformation strategy has been introduced to translate consistently the shape changes described by the geometry parameterization to the structural model. A three-field formulation of the discrete steady aerostructural residual couples the mesh movement equations with the three-dimensional Euler equations and a linear structural analysis. Gradients needed for optimization are computed with a three-field coupled adjoint approach. A number of investigations have been conducted to demonstrate the suitability and accuracy of the present methodology for use in aerostructural optimization involving substantial shape changes. Robustness and efficiency in the coupled solution algorithms is crucial to the success of an exploratory optimization. This thesis therefore also focuses on the design of an effective monolithic solution algorithm for the proposed methodology. This involves using a Newton-Krylov method for the aerostructural analysis and a preconditioned Krylov subspace method for the coupled adjoint solution. Several aspects of the monolithic solution method have been investigated. These include appropriate strategies for scaling and matrix-vector product evaluation, as well as block preconditioning techniques that preserve the modularity between subproblems. The monolithic solution method is applied to problems with varying degrees of fluid-structural coupling, as well as a wing span optimization study. The monolithic solution algorithm typically requires 20%-70% less computing time than its partitioned counterpart. This advantage increases with increasing wing flexibility. The performance of the monolithic solution method is also much less sensitive to the choice of the solution parameter.

  8. Performance evaluation of the inverse dynamics method for optimal spacecraft reorientation

    NASA Astrophysics Data System (ADS)

    Ventura, Jacopo; Romano, Marcello; Walter, Ulrich

    2015-05-01

    This paper investigates the application of the inverse dynamics in the virtual domain method to Euler angles, quaternions, and modified Rodrigues parameters for rapid optimal attitude trajectory generation for spacecraft reorientation maneuvers. The impact of the virtual domain and attitude representation is numerically investigated for both minimum time and minimum energy problems. Owing to the nature of the inverse dynamics method, it yields sub-optimal solutions for minimum time problems. Furthermore, the virtual domain improves the optimality of the solution, but at the cost of more computational time. The attitude representation also affects solution quality and computational speed. For minimum energy problems, the optimal solution can be obtained without the virtual domain with any considered attitude representation.

  9. Multiple shooting algorithms for jump-discontinuous problems in optimal control and estimation

    NASA Technical Reports Server (NTRS)

    Mook, D. J.; Lew, Jiann-Shiun

    1991-01-01

    Multiple shooting algorithms are developed for jump-discontinuous two-point boundary value problems arising in optimal control and optimal estimation. Examples illustrating the origin of such problems are given to motivate the development of the solution algorithms. The algorithms convert the necessary conditions, consisting of differential equations and transversality conditions, into algebraic equations. The solution of the algebraic equations provides exact solutions for linear problems. The existence and uniqueness of the solution are proved.

  10. Multiobjective evolutionary optimization of water distribution systems: Exploiting diversity with infeasible solutions.

    PubMed

    Tanyimboh, Tiku T; Seyoum, Alemtsehay G

    2016-12-01

    This article investigates the computational efficiency of constraint handling in multi-objective evolutionary optimization algorithms for water distribution systems. The methodology investigated here encourages the co-existence and simultaneous development including crossbreeding of subpopulations of cost-effective feasible and infeasible solutions based on Pareto dominance. This yields a boundary search approach that also promotes diversity in the gene pool throughout the progress of the optimization by exploiting the full spectrum of non-dominated infeasible solutions. The relative effectiveness of small and moderate population sizes with respect to the number of decision variables is investigated also. The results reveal the optimization algorithm to be efficient, stable and robust. It found optimal and near-optimal solutions reliably and efficiently. The real-world system based optimization problem involved multiple variable head supply nodes, 29 fire-fighting flows, extended period simulation and multiple demand categories including water loss. The least cost solutions found satisfied the flow and pressure requirements consistently. The best solutions achieved indicative savings of 48.1% and 48.2% based on the cost of the pipes in the existing network, for populations of 200 and 1000, respectively. The population of 1000 achieved slightly better results overall. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization.

    PubMed

    Dai, Cai; Wang, Yuping; Ye, Miao; Xue, Xingsi; Liu, Hailin

    2016-12-01

    Research on multiobjective optimization problems becomes one of the hottest topics of intelligent computation. In order to improve the search efficiency of an evolutionary algorithm and maintain the diversity of solutions, in this paper, the learning automata (LA) is first used for quantization orthogonal crossover (QOX), and a new fitness function based on decomposition is proposed to achieve these two purposes. Based on these, an orthogonal evolutionary algorithm with LA for complex multiobjective optimization problems with continuous variables is proposed. The experimental results show that in continuous states, the proposed algorithm is able to achieve accurate Pareto-optimal sets and wide Pareto-optimal fronts efficiently. Moreover, the comparison with the several existing well-known algorithms: nondominated sorting genetic algorithm II, decomposition-based multiobjective evolutionary algorithm, decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes, multiobjective optimization by LA, and multiobjective immune algorithm with nondominated neighbor-based selection, on 15 multiobjective benchmark problems, shows that the proposed algorithm is able to find more accurate and evenly distributed Pareto-optimal fronts than the compared ones.

  12. Graphics Processing Unit–Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks

    PubMed Central

    García-Calvo, Raúl; Guisado, JL; Diaz-del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco

    2018-01-01

    Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes—master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)—is carried out for this problem. Several procedures that optimize the use of the GPU’s resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs). PMID:29662297

  13. Graphics Processing Unit-Enhanced Genetic Algorithms for Solving the Temporal Dynamics of Gene Regulatory Networks.

    PubMed

    García-Calvo, Raúl; Guisado, J L; Diaz-Del-Rio, Fernando; Córdoba, Antonio; Jiménez-Morales, Francisco

    2018-01-01

    Understanding the regulation of gene expression is one of the key problems in current biology. A promising method for that purpose is the determination of the temporal dynamics between known initial and ending network states, by using simple acting rules. The huge amount of rule combinations and the nonlinear inherent nature of the problem make genetic algorithms an excellent candidate for finding optimal solutions. As this is a computationally intensive problem that needs long runtimes in conventional architectures for realistic network sizes, it is fundamental to accelerate this task. In this article, we study how to develop efficient parallel implementations of this method for the fine-grained parallel architecture of graphics processing units (GPUs) using the compute unified device architecture (CUDA) platform. An exhaustive and methodical study of various parallel genetic algorithm schemes-master-slave, island, cellular, and hybrid models, and various individual selection methods (roulette, elitist)-is carried out for this problem. Several procedures that optimize the use of the GPU's resources are presented. We conclude that the implementation that produces better results (both from the performance and the genetic algorithm fitness perspectives) is simulating a few thousands of individuals grouped in a few islands using elitist selection. This model comprises 2 mighty factors for discovering the best solutions: finding good individuals in a short number of generations, and introducing genetic diversity via a relatively frequent and numerous migration. As a result, we have even found the optimal solution for the analyzed gene regulatory network (GRN). In addition, a comparative study of the performance obtained by the different parallel implementations on GPU versus a sequential application on CPU is carried out. In our tests, a multifold speedup was obtained for our optimized parallel implementation of the method on medium class GPU over an equivalent sequential single-core implementation running on a recent Intel i7 CPU. This work can provide useful guidance to researchers in biology, medicine, or bioinformatics in how to take advantage of the parallelization on massively parallel devices and GPUs to apply novel metaheuristic algorithms powered by nature for real-world applications (like the method to solve the temporal dynamics of GRNs).

  14. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarepisheh, M; Li, R; Xing, L

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) andmore » aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves quality of resultant treatment plans as compared with conventional VMAT or IMRT treatments.« less

  15. A proposed simulation optimization model framework for emergency department problems in public hospital

    NASA Astrophysics Data System (ADS)

    Ibrahim, Ireen Munira; Liong, Choong-Yeun; Bakar, Sakhinah Abu; Ahmad, Norazura; Najmuddin, Ahmad Farid

    2015-12-01

    The Emergency Department (ED) is a very complex system with limited resources to support increase in demand. ED services are considered as good quality if they can meet the patient's expectation. Long waiting times and length of stay is always the main problem faced by the management. The management of ED should give greater emphasis on their capacity of resources in order to increase the quality of services, which conforms to patient satisfaction. This paper is a review of work in progress of a study being conducted in a government hospital in Selangor, Malaysia. This paper proposed a simulation optimization model framework which is used to study ED operations and problems as well as to find an optimal solution to the problems. The integration of simulation and optimization is hoped can assist management in decision making process regarding their resource capacity planning in order to improve current and future ED operations.

  16. An opinion formation based binary optimization approach for feature selection

    NASA Astrophysics Data System (ADS)

    Hamedmoghadam, Homayoun; Jalili, Mahdi; Yu, Xinghuo

    2018-02-01

    This paper proposed a novel optimization method based on opinion formation in complex network systems. The proposed optimization technique mimics human-human interaction mechanism based on a mathematical model derived from social sciences. Our method encodes a subset of selected features to the opinion of an artificial agent and simulates the opinion formation process among a population of agents to solve the feature selection problem. The agents interact using an underlying interaction network structure and get into consensus in their opinions, while finding better solutions to the problem. A number of mechanisms are employed to avoid getting trapped in local minima. We compare the performance of the proposed method with a number of classical population-based optimization methods and a state-of-the-art opinion formation based method. Our experiments on a number of high dimensional datasets reveal outperformance of the proposed algorithm over others.

  17. Optimized Projection Matrix for Compressive Sensing

    NASA Astrophysics Data System (ADS)

    Xu, Jianping; Pi, Yiming; Cao, Zongjie

    2010-12-01

    Compressive sensing (CS) is mainly concerned with low-coherence pairs, since the number of samples needed to recover the signal is proportional to the mutual coherence between projection matrix and sparsifying matrix. Until now, papers on CS always assume the projection matrix to be a random matrix. In this paper, aiming at minimizing the mutual coherence, a method is proposed to optimize the projection matrix. This method is based on equiangular tight frame (ETF) design because an ETF has minimum coherence. It is impossible to solve the problem exactly because of the complexity. Therefore, an alternating minimization type method is used to find a feasible solution. The optimally designed projection matrix can further reduce the necessary number of samples for recovery or improve the recovery accuracy. The proposed method demonstrates better performance than conventional optimization methods, which brings benefits to both basis pursuit and orthogonal matching pursuit.

  18. SIFT optimization and automation for matching images from multiple temporal sources

    NASA Astrophysics Data System (ADS)

    Castillo-Carrión, Sebastián; Guerrero-Ginel, José-Emilio

    2017-05-01

    Scale Invariant Feature Transformation (SIFT) was applied to extract tie-points from multiple source images. Although SIFT is reported to perform reliably under widely different radiometric and geometric conditions, using the default input parameters resulted in too few points being found. We found that the best solution was to focus on large features as these are more robust and not prone to scene changes over time, which constitutes a first approach to the automation of processes using mapping applications such as geometric correction, creation of orthophotos and 3D models generation. The optimization of five key SIFT parameters is proposed as a way of increasing the number of correct matches; the performance of SIFT is explored in different images and parameter values, finding optimization values which are corroborated using different validation imagery. The results show that the optimization model improves the performance of SIFT in correlating multitemporal images captured from different sources.

  19. Effect of a limited-enforcement intelligent tutoring system in dermatopathology on student errors, goals and solution paths.

    PubMed

    Payne, Velma L; Medvedeva, Olga; Legowski, Elizabeth; Castine, Melissa; Tseytlin, Eugene; Jukic, Drazen; Crowley, Rebecca S

    2009-11-01

    Determine effects of a limited-enforcement intelligent tutoring system in dermatopathology on student errors, goals and solution paths. Determine if limited enforcement in a medical tutoring system inhibits students from learning the optimal and most efficient solution path. Describe the type of deviations from the optimal solution path that occur during tutoring, and how these deviations change over time. Determine if the size of the problem-space (domain scope), has an effect on learning gains when using a tutor with limited enforcement. Analyzed data mined from 44 pathology residents using SlideTutor-a Medical Intelligent Tutoring System in Dermatopathology that teaches histopathologic diagnosis and reporting skills based on commonly used diagnostic algorithms. Two subdomains were included in the study representing sub-algorithms of different sizes and complexities. Effects of the tutoring system on student errors, goal states and solution paths were determined. Students gradually increase the frequency of steps that match the tutoring system's expectation of expert performance. Frequency of errors gradually declines in all categories of error significance. Student performance frequently differs from the tutor-defined optimal path. However, as students continue to be tutored, they approach the optimal solution path. Performance in both subdomains was similar for both errors and goal differences. However, the rate at which students progress toward the optimal solution path differs between the two domains. Tutoring in superficial perivascular dermatitis, the larger and more complex domain was associated with a slower rate of approximation towards the optimal solution path. Students benefit from a limited-enforcement tutoring system that leverages diagnostic algorithms but does not prevent alternative strategies. Even with limited enforcement, students converge toward the optimal solution path.

  20. Transfer of control system interface solutions from other domains to the thermal power industry.

    PubMed

    Bligård, L-O; Andersson, J; Osvalder, A-L

    2012-01-01

    In a thermal power plant the operators' roles are to control and monitor the process to achieve efficient and safe production. To achieve this, the human-machine interfaces have a central part. The interfaces need to be updated and upgraded together with the technical functionality to maintain optimal operation. One way of achieving relevant updates is to study other domains and see how they have solved similar issues in their design solutions. The purpose of this paper is to present how interface design solution ideas can be transferred from domains with operator control to thermal power plants. In the study 15 domains were compared using a model for categorisation of human-machine systems. The result from the domain comparison showed that nuclear power, refinery and ship engine control were most similar to thermal power control. From the findings a basic interface structure and three specific display solutions were proposed for thermal power control: process parameter overview, plant overview, and feed water view. The systematic comparison of the properties of a human-machine system allowed interface designers to find suitable objects, structures and navigation logics in a range of domains that could be transferred to the thermal power domain.

Top