Science.gov

Sample records for fine metal particulates

  1. Dispersion and Deposition of Fine Particulates, Heavy Metals and Nitrogen in Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Whitlow, T. H.; Tong, Z.

    2015-12-01

    Cities are characterized by networks of heavily trafficked roads, abrupt environmental gradients and local sources of airborne pollutants. Because urban dwellers are inevitably in close proximity to near ground pollution, there has been recent interest in using trees and green roofs to reduce human exposure yet there have been few empirical studies documenting the effect of vegetation and spatial heterogeneity on pollution concentration, human exposure and food safety. In this paper we describe the results of 2 studies in the New York metropolitan area. The first describes the effect of roadside trees on the concentration of fine particulates downwind of a major highway. The second examines vertical attenuation of fine particulates between street level and a rooftop vegetable farm and the deposition of nitrogen and heavy metals to vegetables and soil on the roof.

  2. Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology.

    PubMed

    Cakmak, Sabit; Dales, Robert; Kauri, Lisa Marie; Mahmud, Mamun; Van Ryswyk, Keith; Vanos, Jennifer; Liu, Ling; Kumarathasan, Premkumari; Thomson, Errol; Vincent, Renaud; Weichenthal, Scott

    2014-06-01

    Studying the physiologic effects of components of fine particulate mass (PM2.5) could contribute to a better understanding of the nature of toxicity of air pollution. We examined the relation between acute changes in cardiovascular and respiratory function, and PM2.5-associated-metals. Using generalized linear mixed models, daily changes in ambient PM2.5-associated metals were compared to daily changes in physiologic measures in 59 healthy subjects who spent 5-days near a steel plant and 5-days on a college campus. Interquartile increases in calcium, cadmium, lead, strontium, tin, vanadium and zinc were associated with statistically significant increases in heart rate of 1-3 beats per minute, increases of 1-3 mmHg in blood pressure and/or lung function decreases of up to 4% for total lung capacity. Metals contained in PM2.5 were found to be associated with acute changes in cardiovascular and respiratory physiology. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  3. [Association between personal exposure to metals in fine particulate matter and urinary metals: baseline results from a panel study].

    PubMed

    Yu, Y Q; Cui, X Q; Feng, W; Zhang, X M; Yuan, J; Chen, W H; Wu, T C

    2016-08-06

    To investigate the associations between 21 metals in fine particulate matter (PM2.5) and their corresponding concentrations in urine in the general population. Between April and May 2011, this panel study enrolled 120 residents using random sampling approach in Wuhan communities which contained 3 035 subjects. Participants were aged 18 to 80 years and had lived in the sampling buildings for at least 5 years. Data from basic questionnaires, physical examinations, and morning blood and urine samples under fasting conditions were collected. Participants with missing data were excluded. Finally, 83 particpants included. Participants were instructed to use personal air samplers to continuously monitor PM2.5 for 24 h. The following 21 metals were measured in PM2.5 and urine by inductively coupled plasma mass spectrometry: aluminum, titanium, vanadium, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, selenium, rubidium, strontium, molybdenum, cadmium, tin, antimony, barium, tungsten, thallium and lead. The associations between PM2.5 metals and urinary metals were investigated using generalized linear regression models. The age of the study population was (51.5±6.3)years. After adjusting for age, sex, smoking status, BMI, education and income, elevated urinary chromium was significantly associated with increased chromium concentrations in personal PM2.5. The least square means (standard deviation) of urinary chromium in participants classified as having low exposure (<12.491 ng/m(3)), intermediate exposure (12.491-32.388 ng/m(3)) and high exposure (>32.388 ng/m(3)) were (-1.334±0.756), (-1.114±0.813) and (-0.718±0.645) μg/mmol creatinine, respectively (P=0.009). However, the association between urinary and personal PM chromium was not observed after additionally adjusting for false discovery rate (P>0.05). Furthermore, the results demonstrated that other metals in PM2.5 were not related to their corresponding concentrations in urine of subjects. Urinary

  4. Advanced Fine Particulate Characterization Methods

    SciTech Connect

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  5. Emissions of organic compounds and trace metals in fine particulate matter from motor vehicles: a tunnel study in Houston, Texas.

    PubMed

    Chellam, Shankararaman; Kulkarni, Pranav; Fraser, Matthew P

    2005-01-01

    Fine particulate matter (PM) samples collected in a highway tunnel in Houston, TX, were analyzed to quantify the concentrations of 14 n-alkanes, 12 polycyclic aromatic hydrocarbons, and nine petroleum biomarkers, as well as 21 metals, with the ultimate aim of identifying appropriate tracers for diesel engines. First, an exploratory multivariate dimensionality reduction technique called principal component analysis (PCA) was employed to identify all potential candidates for tracers. Next, emission indices were calculated to interpret PCA results physically. Emission indices of n-heneicosane, n-docosane, n-tricosane, n-tetracosane, n-pentacosane, fluoranthene, and pyrene were correlated highly and increased strongly with percentage carbon present in the tunnel emanating from diesel vehicles. This suggests that these organic compounds are useful molecular markers to separate emissions from diesel and gasoline engines. Additionally, the results are the first quantification of the metal composition of PM with aerodynamic diameters smaller than 2.5 microm (PM2.5) emissions from mobile sources in Houston. PCA of trace metal concentrations followed by emission index calculations revealed that barium in fine airborne particles can be linked quantitatively to diesel engine emissions, demonstrating its role as an elemental tracer for heavy-duty trucks.

  6. Regional Background Fine Particulate Matter

    EPA Science Inventory

    A modeling system composed of the global model GEOS-Chem providing hourly lateral boundary conditions to the regional model CMAQ was used to calculate the policy relevant background level of fine particulate: matter. Simulations were performed for the full year of 2004 over the d...

  7. Transfer of fine sediments and particulate heavy metals in large river basins

    NASA Astrophysics Data System (ADS)

    Scherer, Ulrike; Reid, Lucas; Fuchs, Stephan

    2013-04-01

    For heavy metals and other particulate contaminants erosion is an important emission pathway into surface waters. Emissions via erosion can strongly vary depending on land use, morphology, erodibility of the soils and the heavy metal content in the topsoil layer of the source areas. A high spatial resolution of input data is thus necessary to identify hotspots of heavy metal emissions via erosion in large river basins. In addition a part of the suspended solid load which is emitted to surface waters from the catchment areas can be deposited in the river system during transportation. The retention of sediments mainly takes place in lakes, reservoirs and river barrages. Former modelling studies in large river basins of Germany revealed, that the observed suspended sediment loads at monitoring stations were strongly overestimated, if retention processes in the river system were neglected. The objective of this study was therefore to test whether the consideration of sedimentation rates in lakes, reservoirs and river barrages can improve the prediction of observed suspended sediment loads in large river basins. We choose the German/Austrian part of the Danube basin until Passau (77 156 km²) for this analysis, as the alpine tributaries in the South of the Danube basin deliver high annual sediment rates (i.e. Inn and Isar) which are not fully recovered at the monitoring stations located further upstream of the Danube due to retention processes. The sediment input was quantified for all tributaries and added up along the flow path of the river system. Due to the large scale, sediment production within the catchments was calculated using the USLE for cultivated land and naturally covered areas and specific erosion rates for alpine areas without vegetation cover. Sediment delivery was estimated using an approach based on the location of the sediment source areas in the catchments and the morphology on the way to the surface waters. The location of the lakes, reservoirs and

  8. SOUTHERN FINE PARTICULATE MONITORING PROJECT

    SciTech Connect

    Ashley D. Williamson

    2001-07-01

    This is the third quarterly progress report of the ''Southern Fine Particulate Monitoring Project'', funded by the U.S. Department of Energy's National Energy Technology Laboratory under DOE Cooperative Agreement No. DE-FC26-00NT40770 to Southern Research Institute (SRI). In this two year project SRI will conduct detailed studies of ambient fine particulate matter in the Birmingham, AL metropolitan area. Project objectives include: Augment existing measurements of primary and secondary aerosols at an established urban southeastern monitoring site; Make a detailed database of near-continuous measurements of the time variation of fine particulate mass, composition, and key properties (including particle size distribution); Apply the measurements to source attribution, time/transport properties of fine PM, and implications for management strategies for PM{sub 2.5}; and Validate and compare key measurement methods used in this study for applicability within other PM{sub 2.5} research by DOE-FE, EPA, NARSTO, and others. During the third project quarter, the new SRI air monitoring shelter and additional instruments were installed at the site. Details include: Installation of Radiance Research M903 Nephelometer; Installation of SRI air monitoring shelter at North Birmingham Site; Relocation of instruments from SEARCH shelter to SRI shelter; Installation of Rupprecht & Patashnick 8400 Sulfate Monitor; Assembly and initial laboratory testing for particulate sulfate monitor of Harvard design; Efficiency testing of particle sizing instrument package at SRI lab; Preparation for the Eastern Supersite July measurement intensive program; and Continued monitoring with TEOM and particle sizing instruments.

  9. Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates

    NASA Astrophysics Data System (ADS)

    Monteverde, Frédéric; Bellosi, Alida

    2005-05-01

    Two metal-diboride-based ceramics containing up to 15 vol%. ultra-fine α-SiC particulates were developed from commercially available powders. The primary matrix of the composites was ZrB 2 or a mixture of ZrB 2 and HfB 2. With the assistance of 4.5 vol%. ZrN as a sintering aid, both the compositions achieved nearly full density after hot-pressing at 1,900 °C. The microstructure was characterized by fine diboride grains ( ≈3 μm average size) and SiC particles dispersed uniformly. Limited amounts of secondary phases like MO 2 and M(C,N), M=Zr or Zr/Hf, were found. The thermo-mechanical data of both the materials offered a promising combination of properties: about 16 GPa of micro-hardness, 5 MPa√ m of fracture toughness and Young's moduli exceeding 470 GPa. The ZrB 2sbnd SiC composite showed values of strength in air of 635 ± 60 and 175 ± 15 MPa at 25 and 1,500 °C, respectively. Likewise, the (ZrB 2 + HfB 2) sbnd SiC composite exhibited values of strength in air of 590 ± 25 and 190 ± 20 MPa at 25 and 1,500 °C, respectively. The composites also displayed good tolerance of conditions of repeated short exposures, 10 minutes each, at 1,700 °C in stagnant air. In such oxidizing conditions, the resistance to oxidation was provided by the formation of a protective silica-based glass coating, the primary oxidation product of SiC. Such a coating encapsulated the specimen coherently, and provided protection to the faces exposed to the hot atmosphere.

  10. Southern Fine Particulate Monitoring Project

    SciTech Connect

    Ashley Williamson

    2003-05-31

    This final project report presents experimental details, results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the October, 2001-September, 2002 study period.The host site for these measurement activities is the North Birmingham PM monitoring station by the Jefferson County Health Department in Birmingham, AL.The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. During the course of the project, measurement intercomparison data were developed for these instruments and several complementary measurements at the site. The report details the instrument set and operating procedures and describes the resulting data. Report subsections present an overview summary of the data, followed by detailed description of the systematic time behavior of PM{sub 2.5} and other specific particulate size fractions. Specific subsections are included for particle size distribution, light scattering, and particle sulfate data. The final subsection addresses application of the measurements to the practical questions of fine PM generation and transport, source attribution, and PM{sub 2.5} management strategies.

  11. Hydrocarbons and heavy metals in fine particulates in oil field air: possible impacts on production of natural silk.

    PubMed

    Devi, Gitumani; Devi, Arundhuti; Bhattacharyya, Krishna Gopal

    2016-02-01

    Analyses of fine particulates (PM2.5) from the upper Assam oil fields of India indicated considerable presence of higher hydrocarbons (C22-C35) and heavy metals, Cd, Co, Cr, Cu, Ni, Pb, and Zn. This has raised serious concern for the sustainability of the exotic Muga (Antheraea assama) silk production, which has been a prime activity of a large number of people living in the area. The Muga worm feeds on the leaves of Machilus bombycina plant, and the impacts of air quality on its survival were further investigated by analyzing the leaves of the plant, the plantation soil, and the Muga cocoons. PM2.5 content in the air was much more during the winter due to near calm conditions and high humidity. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and gas chromatography-mass spectrometer (GC-MS) analysis of PM2.5 showed the presence of higher alkanes (C22-C35) that could be traced to crude oil. Cr, Ni, and Zn were found in higher concentrations in PM2.5, M. bombycina leaves, and the plantation soil indicating a common origin. The winter has been the best period for production of the silk cocoons, and the unhealthy air during this period is likely to affect the production, which is already reflected in the declining yield of Muga cocoons from the area. SEM and protein analyses of the Muga silk fiber produced in the oil field area have exhibited the deteriorating quality of the silk. This is the first report from India on hydrocarbons and associated metals in PM2.5 collected from an oil field and on their possible effects on production of silk by A. assama.

  12. Temporal distribution of fine particulates (PM₂.₅:PM₁₀), potentially toxic metals, PAHs and Metal-bound carcinogenic risk in the population of Lucknow City, India.

    PubMed

    Pandey, P; Patel, D K; Khan, A H; Barman, S C; Murthy, R C; Kisku, G C

    2013-01-01

    Ubiquitous fine particulates can readily be bound to toxic metals and polycyclic aromatic hydrocarbons and are considered to be a great threat to human health. The purpose of this study was to assess the magnitude of air pollution risks to public health by determining four crucial parameters- inhalable particulates, metals in particulates and PAHs which are associated with PM₁₀ in the air environment of Lucknow, India during 2007-09. The values of PM₁₀ and PM₂.₅ ranged between 102.3-240.5 and 28.0-196.9 μg/m³ whilst the average PM₁₀ was 1.7 times and PM was 1.5 times higher than their respective NAAQS of 100 and 60 μg/m³ respectively. The estimated relative death rate and hospital admissions for each increase in the PM₁₀ levels of 10 μg/m³ ranged from 1.5-8% and from 3.9-8.0% (as per APHEA2 1990) respectively in persons > 65 yrs. Among the locations; AQ, AQ and AQ (with diversified activities and heavy traffic) recorded higher concentrations of both the particulate fractions than the AQ (residential area with low traffic). The average concentrations of Fe, Pb, Ni, Cu, Cr, Cd in PM₁₀ were 219.4, 40.6, 35.1, 27.3, 22.2 and 16.2 ng/m³ and that in PM₂.₅ were 54.3, 33.9, 38.5, 29.4, 8.4, and 1.17 ng/m³ respectively Regression analysis revealed that correlation of metals with PM₂.₅ was stronger than PM. The ratio of metals adsorbed on surface of particles (PM₂.₅:PM₁₀) reveals that PM₂.₅ has more affinity for Ni, Cu and Pb and PM₁₀ for Cd, Fe and Cr. Health risk due to carcinogenic metals bound to respirable particulates was predicted by estimating excess cancer risk (ECR). The highest ECR value was estimated for Cr, 266.70 × 10⁻⁶, which was associated with PM10 and 100.92 × 10⁻⁶ which was associated with PM₂.₅, whereas lead has the lowest ECR value. Amongst PAHs, benzo(a)pyrene (51.96 ± 19.71 ng/m) was maximum in PM₁₀ samples. Maximum concentrations of PM₁₀, PM₂.₅, metals and PAHs were

  13. SOUTHERN FINE PARTICULATE MONITORING PROJECT

    SciTech Connect

    Unknown

    2002-04-01

    This quarterly report presents results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the January-March, 2002 study period. The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. Some instrumental issues were noted with the upgrade of the APS model 3320 are described in the report, as well as preliminary performance indications for the upgraded instrument. During the quarter preliminary data analysis and modeling studies were conducted to test the potential of the North Birmingham site data for source attribution analyses. Our initial assessment has continued to be optimistic in this regard due to the location of the site relative to several important classes of local and midrange emission sources. We anticipate that these analyses will provide good separations of the effects of major source classes and spatial source clusters, and will provide useful information relevant to PM{sub 2.5} implementation strategies.

  14. Are the Associations of Cardiac Acceleration and Deceleration Capacities with Fine Metal Particulate in Welders Mediated by Inflammation?

    PubMed Central

    Umukoro, Peter E.; Jason, Wong Y.Y.; Cavallari, Jennifer M.; Fang, Shona C.; Lu, Chensheng; Lin, Xihong; Mittleman, Murray A.; Schmidt, Georg; Christiani, David C.

    2015-01-01

    Objective To investigate whether associations of Acceleration Capacity (AC) and Deceleration Capacity (DC) with metal-PM2.5 are mediated by inflammation. Methods We obtained PM2.5, CRP, IL-6, 8 and 10; and electrocardiograms to compute AC and DC, from 45 male welders. Mediation analyses were performed using linear mixed models to assess associations between PM2.5 exposure, inflammatory mediator, and AC or DC; controlling for covariates. Results The proportion of total effect of PM2.5 on AC or DC (indirect effect) mediated through IL-6 on AC was 4% at most. Controlling for IL-6 (direct effect), a 1 mg/m3 increase of PM2.5 was associated with a decrease of 2.16 (95% CI: −0.36, 4.69) msec in AC and a decrease of 2.51 (95% CI: −0.90, 5.93) msec in DC. Conclusion IL-6 may be mediating the effect of metal particulates on AC. PMID:26949872

  15. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-11-08

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  16. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-01-26

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  17. Combustor for fine particulate coal

    DOEpatents

    Carlson, Larry W.

    1988-01-01

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

  18. FINE PARTICULATE MATTER EMISSIONS FROM CANDLES

    EPA Science Inventory

    The paper gives reulst of testing five types of candles, purchased from local stores, for fine particulate matter (PM) emissions under close-to-realistic conditions in a research house. The test method allows for determination of both the emission and deposition rates. Most tes...

  19. SPATIAL PREDICTION OF FINE PARTICULATE MATTER

    EPA Science Inventory

    A new national monitoring network for the measurement of fine particular matter (PM2.5) is currently under development. A primary goal of this network is to collect monitoring data in residential communities for the evaluation of compliance with particulate air quality standards...

  20. FINE PARTICULATE MATTER EMISSIONS FROM CANDLES

    EPA Science Inventory

    The paper gives reulst of testing five types of candles, purchased from local stores, for fine particulate matter (PM) emissions under close-to-realistic conditions in a research house. The test method allows for determination of both the emission and deposition rates. Most tes...

  1. Contribution of heavy metals to toxicity of coal combustion related fine particulate matter (PM2.5) in Caenorhabditis elegans with wild-type or susceptible genetic background.

    PubMed

    Sun, Lingmei; Wu, Quli; Liao, Kai; Yu, Peihang; Cui, Qiuhong; Rui, Qi; Wang, Dayong

    2016-02-01

    Contribution of chemical components in coal combustion related fine particulate matter (PM2.5) to its toxicity is largely unclear. We focused on heavy metals in PM2.5 to investigate their contribution to toxicity formation in Caenorhabditis elegans. Among 8 heavy metals examined (Fe, Zn, Pb, As, Cd, Cr, Cu, and Ni), Pb, Cr, and Cu potentially contributed to PM2.5 toxicity in wild-type nematodes. Combinational exposure to any two of these three heavy metals caused higher toxicity than exposure to Pb, Cr, or Cu alone. Toxicity from the combinational exposure to Pb, Cr, and Cu at the examined concentrations was higher than exposure to PM2.5 (100 mg/L). Moreover, mutation of sod-2 or sod-3 gene encoding Mn-SOD increased susceptibility in nematodes exposed to Fe, Zn, or Ni, although Fe, Zn, or Ni at the examined concentration did not lead to toxicity in wild-type nematodes. Our results highlight the potential contribution of heavy metals to PM2.5 toxicity in environmental organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Heavy metals bound to fine particulate matter from northern China induce season-dependent health risks: A study based on myocardial toxicity.

    PubMed

    Zhang, Yingying; Ji, Xiaotong; Ku, Tingting; Li, Guangke; Sang, Nan

    2016-09-01

    Substantial epidemiological evidence has consistently reported that fine particulate matter (PM2.5) is associated with an increased risk of cardiovascular outcomes. PM2.5 is a complex mixture of extremely small particles and liquid droplets composed of multiple components, and there has been high interest in identifying the specific health-relevant physical and/or chemical toxic constituents of PM2.5. In the present study, we analyzed 8 heavy metals (Cr, Ni, Cu, Cd, Pb, Zn, Mn and Co) in the PM2.5 collected during four different seasons in Taiyuan, a typical coal-burning city in northern China. Our results indicated that total concentrations of the 8 heavy metals differed among the seasons. Zn and Pb, which are primarily derived from the anthropogenic source, coal burning, were the dominant elements, and high concentrations of these two elements were observed during the spring and winter. To clarify whether these heavy metals in the locally collected PM2.5 were associated with health effects, we conducted health risk assessments using validated methods. Interestingly, Pb was responsible for greater potential health risks to children. Because cardiovascular disease (CVD) is a main contributor to the mortality associated with PM2.5 exposure, we performed experimental assays to evaluate the myocardial toxicity. Our in vitro experiments showed that the heavy metal-containing PM2.5 induced season-dependent apoptosis in rat H9C2 cells through a reactive oxygen species (ROS)-mediated inflammatory response. Our findings suggested that heavy metals bound to PM2.5 produced by coal burning play an important role in myocardial toxicity and contribute to season-dependent health risks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Chemical Speciation and Health Risk Assessment of Fine Particulate Bound Trace Metals Emitted from Ota Industrial Estate, Nigeria

    NASA Astrophysics Data System (ADS)

    Anake, Winifred U.; Ana, Godson R. E. E.; Williams, Akan B.; Fred-Ahmadu, Omowunmi H.; Benson, Nsikak U.

    2017-05-01

    In this study carcinogenic and non-carcinogenic health risk due to exposure to PM2.5-bound trace metals from an industrial area in Southwestern Nigeria was estimated. A four-step chemical sequential extraction procedure was employed for the chemical extraction of arsenic (As), cadmium (Cd), chromium (Cr) copper (Cu), manganese (Mn), nickel (Ni), and zinc (Zn). Samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Results reveal Cr and Cu as the most dominant exchangeable fraction metals, indicating possibility of their being readily soluble once PM2.5 is inhaled. Cd and Cr record the highest bioavailability index of 0.7. The cumulative lifetime cancer risks due to inhalation exposure for adults (4.25×10-2), children 1-6 years old (4.87×10-3), and children 6-18 years old (1.46×10-2) were found above Environmental Protection Agency’s acceptable range of 1×10-6 to 1×10-4. The hazard index values for all studied trace metals suggest significant potential for non-carcinogenic health risks to adults and children. The choice of chemical speciation as an essential tool in facilitating a better predictive insight on metal bioavailability and toxicity for immediate remediation action has been highlighted.

  4. Infrared spectral behavior of fine particulate solids

    USGS Publications Warehouse

    Hunt, G.R.

    1976-01-01

    Transmission and emission spectra of clouds and layers of fine particulate samples of quartz, magnesium oxide, and aluminum oxide in the 6.5-35-??m wavelength range are presented. They demonstrate that the behavior of layers of particles constitutes a good analogue for a cloud of particles; that individual micrometer-sized particles emit most where they absorb most; that as the size of the particle is increased, the emission features reverse polarity and the spectrum approaches that of one obtained from a polished plate; and that as the particle layer-thickness increases, radiative interaction becomes increasingly important so that the emission maximum shifts from the strongest to weaker features, or produces a maximum at the Christiansen wavelength.

  5. Weekly cycles in fine particulate nitrate

    NASA Astrophysics Data System (ADS)

    Millstein, Dev E.; Harley, Robert A.; Hering, Susanne V.

    Atmospheric responses to changes in emissions are a complex but central issue in control strategy design for pollutants such as ozone and particulate matter. Here, we investigate fine particle nitrate response to weekly cycles in emissions, which includes a large decrease in diesel NO x emissions among other changes. Nitrate concentrations were measured at 10-min time resolution for a year or longer at four US urban sites: Fresno and Claremont in California, St. Louis, and Pittsburgh. Weekly minima in nitrate concentrations were observed at Fresno, Claremont, and St. Louis, with mean reductions of 21-29% below weekly average values on Sundays or Mondays. The day of week with lowest nitrate varied with site and season. No significant day-of-week variations in nitrate were observed at Pittsburgh. Analysis of ammonium and sulfate measurements at Pittsburgh indicates that weekend sulfate reductions observed at this site during spring/summer months do not increase ammonia availability, but rather lead to more complete neutralization of S(VI). Fine particle nitrate measurements at Claremont were resolved into three size ranges (0.07-0.45, 0.45-1.0, and 1.0-2.5 μm); similar weekly reductions were seen for each size range.

  6. Fine particulate chemical composition and light extinction at Meadview, AZ.

    PubMed

    Eatough, Delbert J; Cui, Wenxuan; Hull, Jeffery; Farber, Robert J

    2006-12-01

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides

  7. Fine particulate chemical composition and light extinction at Meadview, AZ

    SciTech Connect

    Delbert J. Eatough; Wenxuan Cui; Jeffery Hull; Robert J. Farber

    2006-12-15

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr daynight samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was {+-} 0.6 {mu}g/m{sup 3} organic material, {+-} 0.3 {mu}g/m{sup 3} ammonium sulfate, and {+-} 0.07 {mu}g/m{sup 3} ammonium nitrate. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction. 49 refs., 12 figs., 7 tabs.

  8. Seasonal variation in concentration and metallic constituents of atmospheric particulates near the western coast of central Taiwan.

    PubMed

    Fang, Guor-Cheng; Wu, Yuh-Shen; Lee, Wen-Jhy; Chou, Te-Yen; Lin, I-Chen

    2006-06-01

    In addition to determining the concentration and metallic constituents of particulate matter at Taichung Harbor in central Taiwan, this study attempts to characterize the mass, metallic elements, composition and concentrations of total suspended particulates (TSP), fine particles and coarse particles. Statistical approaches, such as the Spearman tests, were also adopted to determine the seasonal variations of concentrations of these pollutants. Experimental results indicate that the mean TSP, fine particulate and coarse particulate concentrations in spring and winter are higher than in summer and autumn on the western coast of central Taiwan. Spearman statistical analysis of metallic elements Mn and Pb showed high concentration coefficients for fine and coarse particulates on the western coast of central Taiwan. The order of mean metallic concentrations in TSP, coarse particulates and fine particles was Fe > Zn > Mg > Cu> Cr > Mn > Pb in TSP, Fe > Cu > Zn > Mg > Mn > Pb > Cr in coarse particulates and Fe > Cu > Mg > Pb > Zn > Mn > Cr in fine particulates.

  9. Powder and particulate production of metallic alloys

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.

  10. PREDICTION OF FINE PARTICULATE LEVELS AT UNMONITORED LOCATIONS

    EPA Science Inventory

    In November and December of 1999, air concentrations of ultrafine, fine, and coarse particulate matter were measured at two intensive sites in El Paso, Texas. The intensive sites included collocated measurements of NO2 and volatile organic compounds (VOCs) in the air from both...

  11. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    EPA Science Inventory

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  12. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    EPA Science Inventory

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  13. PREDICTION OF FINE PARTICULATE LEVELS AT UNMONITORED LOCATIONS

    EPA Science Inventory

    In November and December of 1999, air concentrations of ultrafine, fine, and coarse particulate matter were measured at two intensive sites in El Paso, Texas. The intensive sites included collocated measurements of NO2 and volatile organic compounds (VOCs) in the air from both...

  14. SPATIO-TEMPORAL MODELING OF FINE PARTICULATE MATTER

    EPA Science Inventory

    Studies indicate that even short-term exposure to high concentrations of fine atmospheric particulate matter (PM2.5) can lead to long-term health effects. In this paper, we propose a random effects model for PM2.5 concentrations. In particular, we anticipa...

  15. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter ...

    EPA Pesticide Factsheets

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10% and 30% moisture content on a wet basis) in a forced-draft fan stove, and (iv) wood in a natural-draft rocket cookstove. LPG combustion had the highest thermal efficiency (~57%) and the lowest PAH emissions per unit fuel energy, resulting in the lowest PAH emissions per useful energy delivered (MJd). The average benzo[a]pyrene (B[a]P) emission factor for LPG was 0.842 µg/MJd; the emission rate was 0.043 µg/min. The highest PAH emissions were from wood burning in the natural-draft stove (209-700 µg B[a]P/MJd). PAH emissions from kerosene were significantly lower than those from the wood burning in the natural-draft cookstove, but higher than those from LPG. It is expected that in rural regions where LPG and kerosene are unavailable or unaffordable, the forced-draft fan stove may be an alternative because its emission factor (5.17-8.07 µg B[a]P/MJd) and emission rate (0.52-0.57 µg/min) are similar to kerosene (5.36 µg B[a]P/MJd and 0.45 µg/min). Compared with wood combustion emissions, LPG stoves emit less total PAH emissions and less fractions of high molecular weight PAHs. Relatively large variations in PAH emissions from LPG call for additional future tests to identify the major

  16. 76 FR 63251 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA). ACTION... Transport of Fine Particulate Matter and Ozone'', which was signed on October 6, 2011 and posted on EPA's...: Interstate Transport of Fine Particulate Matter and Ozone and Correction of SIP Approvals). EPA is...

  17. Determination of lead in fine particulates by slurry sampling electrothermal atomic absorption spectrometry.

    PubMed

    Yu, J C; Ho, K F; Lee, S C

    2001-01-02

    A simple method for determining lead in fine particulates (PM2.5) by using electrothermal atomic absorption spectrometry (ETAAS) has been developed. Particulates collected on Nuclepore filter by using a dichotomous sampler were suspended in diluted nitric acid after ultrasonic agitation. The dislodging efficiency is nearly 100% after agitation for 5 min. In order to study the suspension behavior of PM2.5 in solvents, a Brookhaven ZetaPlus Particle Size Analyzer was used to determine the particle size distribution and suspension behavior of air particulates in the solvent. The pre-digestion and modification effect of nitric acid would be discussed. Palladium was added as a chemical modifier and the temperature program of ETAAS was changed in order to improve the recovery. The slurry was introduced directly into a graphite tube for atomization. The metal content in the sample was determined by the standard addition method. In addition, a conventional acid digestion procedure was applied to verify the efficiency of the slurry sampling method. It offers a quick and efficient alternative method for heavy metal characterization in fine particulates.

  18. 77 FR 28785 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA). ACTION... Reduce Interstate Transport of Fine Particulate Matter and Ozone'' as a direct final rule on February 21... Particulate Matter and Ozone'' as a direct final rule on February 21, 2012. See 77 FR 10342. The direct...

  19. 77 FR 10341 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... Implementation Plans To Reduce Interstate Transport of Fine Particulate Matter and Ozone; Final Rule and Proposed... Implementation Plans To Reduce Interstate Transport of Fine Particulate Matter and Ozone AGENCY: Environmental... Particulate Matter and Ozone and Correction of SIP Approvals published August 8, 2011). In the...

  20. Inhibition of the WNT/β-catenin pathway by fine particulate matter in haze: Roles of metals and polycyclic aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Lee, Kang-Yun; Cao, Jun-Ji; Lee, Chii-Hong; Hsiao, Ta-Chih; Yeh, Chi-Tai; Huynh, Thanh-Tuan; Han, Yong-Ming; Li, Xiang-Dong; Chuang, Kai-Jen; Tian, Linwei; Ho, Kin-Fai; Chuang, Hsiao-Chi

    2015-05-01

    Air pollution might have a great impact on pulmonary health, but biological evidence in response to particulate matter less than 2.5 μm in size (PM2.5) has been lacking. Physicochemical characterization of haze PM2.5 collected from Beijing, Xian and Hong Kong was performed. Biological pathways were identified by proteomic profiling in mouse lungs, suggesting that WNT/β-catenin is important in the response to haze PM2.5. Suppression of β-catenin levels, activation of caspase-3 and alveolar destruction, as well as IL-6, TNF-α and IFN-γ production, were observed in the lungs. The inhibition of β-catenin, TCF4 and cyclin D1 was observed in vitro in response to haze PM2.5. The inhibition of WNT/β-catenin signaling, apoptosis-related results (caspase-3 and alveolar destruction), and inflammation, particularly including caspase-3 and alveolar destruction, were more highly associated with polycyclic aromatic hydrocarbons in haze PM2.5. In conclusion, decreased WNT/β-catenin expression modulated by haze PM2.5 could be involved in alveolar destruction and inflammation during haze episodes.

  1. Hydrocycloning thickening: dewatering and densification of fine particulates

    SciTech Connect

    Lin, I.J.

    1987-01-01

    The paper reviews integrated ore-dressing machines with particular reference to hydrocyclones and describes a new concept, the cyclo-thick apparatus, which combines features of the hydrocyclone and the thickener in a single machine. Field tests conducted with the cyclo-thick demonstrated that the unit is remarkably simple and clean in design, and can effectively separate, dewater, and densify fine particulates. This unit should be considered as a viable alternative when evaluating potential solutions to a given separation, thickening, or filtration problem. Various practical applications are proposed.

  2. 77 FR 50446 - Approval and Promulgation of Implementation Plans; Tennessee; Knoxville; Fine Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the 1997 annual fine particulate matter (PM 2.5 )...

  3. 77 FR 12526 - Approval and Promulgation of Implementation Plans; Georgia; Atlanta; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year...

  4. Fine particulate matter in acute exacerbation of COPD

    PubMed Central

    Ni, Lei; Chuang, Chia-Chen; Zuo, Li

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD) can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM) in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM) in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress (OS), immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden. PMID:26557095

  5. California Wildfires of 2008: Coarse and Fine Particulate Matter Toxicity

    PubMed Central

    Wegesser, Teresa C.; Pinkerton, Kent E.; Last, Jerold A.

    2009-01-01

    Background During the last week of June 2008, central and northern California experienced thousands of forest and brush fires, giving rise to a week of severe fire-related particulate air pollution throughout the region. California experienced PM10–2.5 (particulate matter with mass median aerodynamic diameter > 2.5 μm to < 10 μm; coarse ) and PM2.5 (particulate matter with mass median aerodynamic diameter < 2.5 μm; fine) concentrations greatly in excess of the air quality standards and among the highest values reported at these stations since data have been collected. Objectives These observations prompt a number of questions about the health impact of exposure to elevated levels of PM10–2.5 and PM2.5 and about the specific toxicity of PM arising from wildfires in this region. Methods Toxicity of PM10–2.5 and PM2.5 obtained during the time of peak concentrations of smoke in the air was determined with a mouse bioassay and compared with PM samples collected under normal conditions from the region during the month of June 2007. Results Concentrations of PM were not only higher during the wildfire episodes, but the PM was much more toxic to the lung on an equal weight basis than was PM collected from normal ambient air in the region. Toxicity was manifested as increased neutrophils and protein in lung lavage and by histologic indicators of increased cell influx and edema in the lung. Conclusions We conclude that the wildfire PM contains chemical components toxic to the lung, especially to alveolar macrophages, and they are more toxic to the lung than equal doses of PM collected from ambient air from the same region during a comparable season. PMID:19590679

  6. [Fine particulate matter and nonalcoholic fatty liver disease].

    PubMed

    Li, M; Li, Y M

    2016-09-20

    Fine particulate matter is defined as the particulate matter with an aerodynamic diameter of < 2.5 μm, i.e., PM2.5. Its surface absorbs large amounts of toxic and hazardous substances, which can deposit in pulmonary alveoli through respiration and reach other organs through pulmonary ventilation. Many studies have confirmed that PM2.5 is closely associated with pulmonary and cardiovascular diseases. Nonalcoholic fatty liver disease(NAFLD)has similar risk factors as these diseases, as well as obesity, hyperlipidemia, and type 2 diabetes, and it is considered a part of metabolic syndrome. In this view, many studies focus on the possible association between PM2.5 and NAFLD in recent years, including epidemiological study and experimental study, so as to investigate possible pathogenic mechanisms. With reference to the research advances in PM2.5 and NAFLD, this article reviews the association between PM2.5 and NAFLD from the aspects of lipid deposition, oxidative stress, and insulin resistance.

  7. Effects of Crayfish on Quality of Fine Particulate Organic Matter

    NASA Astrophysics Data System (ADS)

    Montemarano, J. J.; Kershner, M. W.; Leff, L. G.

    2005-05-01

    The origin and ontogeny of detritus often determines its bioavailability. Crayfish shred and consume detrital organic matter, influencing fine particulate organic matter (FPOM) availability, composition and quality. Given consumption of FPOM by many invertebrates, crayfish can indirectly affect these organisms by altering FPOM bioavailability through organic matter fragmentation, biofilm disturbance, and defecation. These effects may or may not vary among coarse particulate organic matter (CPOM) from different leaf species. To assess crayfish effects on FPOM quality, crayfish were fed stream-conditioned maple or oak leaves in hanging 1-mm mesh-bottom baskets in aquaria. After 12 h, crayfish and remaining leaves were removed. FPOM fragments that fell through the mesh were vacuum filtered and analyzed for percent organic matter, C:N ratio, and bacterial abundance. The same analyses were conducted on crayfish feces collected using finger cots encasing crayfish abdomens. C:N ratios did not differ between feces and maple leaf CPOM, but were lower in FPOM produced through fragmentation and disturbance (P = 0.023). Overall, crayfish alter the ontogeny of detritus, which may, in turn, affect stream FPOM dynamics.

  8. 77 FR 34830 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA). ACTION: Final... Implementation Plans: Interstate Transport of Fine Particulate Matter and Ozone and Correction of SIP Approvals... 5,917 ] Table III-5--2012-2013 Ozone-Season NOX Budgets, New Unit Set-Asides 2012-2013 Indian...

  9. 77 FR 10323 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... Implementation Plans To Reduce Interstate Transport of Fine Particulate Matter and Ozone; Final Rule #0;#0... To Reduce Interstate Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection... assumptions regarding flue gas treatment in existing scrubbers at seven units; (4) revise the Arkansas...

  10. 77 FR 10350 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... Implementation Plans: Interstate Transport of Fine Particulate Matter and Ozone and Correction of SIP Approvals... ozone in downwind states. After the final rule was published, it was brought to our attention that...

  11. Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Nattinger, K.; Simpson, W. R.; Huff, D.

    2015-12-01

    Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this

  12. ON LINE MEASUREMENT OF PRIMARY FINE PARTICULATE MATTER

    SciTech Connect

    Dale R. Tree

    1999-09-01

    The measurement of fine particulate in pulverized coal flames has several applications of importance. These include but are not limited to: (1) The detection of fine particulate in the effluent for pollution control; (2) The detection of soot and fuel burnout in real time within a boiler; and (3) The quantification of soot within coal flame for improved understanding of pulverized coal flame heat transfer and soot modeling. A method has been investigated using two-color extinction along a line of sight within the flame which provides a continuous real-time measurement of the soot concentration. The method uses two inexpensive HeNe lasers and simple light detectors. The results of testing the method on a pilot scale 0.2 MW pulverized coal reactor demonstrate the method is working well in a qualitative sense and an error analysis performed on the uncertainty of the assumed values demonstrates the method to be accurate to within {+-} 30%. Additional experiments designed to quantify the measurement more accurately are ongoing. Measurements at the end of the reactor just prior to the exit showed soot could not be detected until the overall equivalence ratio became greater than 1.0. The detection limit for the method was estimated to be 1 x 10{sup -8} soot volume fraction. Peak soot concentration was found to approach a level of 0.88 x 10{sup -6} at the sootiest condition. The method was used to obtain an axial profile of soot concentration aligned with the down-fired pulverized coal flame for three different flame swirls of 0, 0.5 and 1.5 and an overall equivalence ratio of 1.2. The axial measurements showed the soot concentration to increase initially and level off to a constant maximum value. At 0.5 swirl the soot volume fraction increased more rapidly near the burner and both the 0.5 and 1.5 swirl cases showed that soot had reached a maximum by 0.9 m, but the 0 swirl soot concentration was still increasing. Previous measurements of species and velocity in the reactor

  13. Role of particulate metals in heterogenous secondary sulfate formation

    NASA Astrophysics Data System (ADS)

    Clements, Andrea L.; Buzcu-Guven, Birnur; Fraser, Matthew P.; Kulkarni, Pranav; Chellam, Shankararaman

    2013-08-01

    A series of field sampling and controlled laboratory experiments were undertaken to quantify the role of trace metals found in ambient fine particulate matter and metal-rich primary sources in the heterogenous catalytic conversion of SO2 gas into sulfate particulate matter (PM) in the atmosphere. Analysis produced source profiles of three primary source materials, fluidized-bed catalytic cracking catalyst, coal-fired combustion fly ash, and paved road dust, featuring 33 elements including rare earth metals, which are not commonly reported in the literature. Subsequently three sets of experiments were conducted exposing 1) source materials, 2) ambient PM, and 3) ambient PM augmented with approximately an equal amount of source material to SO2 gas and measuring sulfate formation. Source material experiments revealed that the greatest extent of reaction was on the surface of coal fly ash with sulfate formation of 19 ± 5 mg sulfate g-1 material. Ambient fine particulate matter (PM) experiments showed sulfate formation ranging from negligible amounts to 180 ± 10 mg sulfate g-1 PM. It was much more difficult to quantify the sulfate formation on ambient filters augmented with the source materials. In these experiments, sulfate formation ranged from negligible amounts to 40 ± 8 mg sulfate g-1 of particles (ambient + augmented material). These three sets of experiments shows that heterogenous sulfate formation is often negligible but, under some conditions can contribute 10% or more to the total sulfate concentrations when exposed to high SO2 concentrations such as those found in plumes. Factor analysis of the source material experiments grouped metals into two categories, crustal components and anthropogenically emitted metals representative of catalyst material, with the former showing the strongest correlation with sulfate formation. Subsequent analysis of data collected from the ambient PM experiments showed a much weaker correlation of sulfate formation with the

  14. Determination of levoglucosan in atmospheric fine particulate matter.

    PubMed

    Simpson, Christopher D; Dills, Russell L; Katz, Bethany S; Kalman, David A

    2004-06-01

    A microanalytical method suitable for the quantitative determination of the sugar anhydride levoglucosan in low-volume samples of atmospheric fine particulate matter (PM) has been developed and validated. The method incorporates two sugar anhydrides as quality control standards. The recovery standard sedoheptulosan (2,7-anhydro-beta-D-altro-heptulopyranose) in 20 microL solvent is added onto samples of the atmospheric fine PM and aged for 1 hr before ultrasonic extraction with ethylacetate/ triethylamine. The extract is reduced in volume, an internal standard is added (1,5-anhydro-D-mannitol), and a portion of the extract is derivatized with 10% by volume N-trimethylsilylimidazole. The derivatized extract is analyzed by gas chromatography/mass spectrometry (GC/MS). The recovery of levoglucosan using this procedure was 69 +/- 6% from five filters amended with 2 microg levoglucosan, and the reproducibility of the assay is 9%. The limit of detection is approximately 0.1 microg/mL, which is equivalent to approximately 3.5 ng/m3 for a 10 L/min sampler or approximately 8.7 ng/m3 for a 4 L/min personal sampler (assuming 24-hr integrated samples). We demonstrated that levoglucosan concentrations in collocated samples (expressed as ng/m3) were identical irrespective of whether samples were collected by PM with aerodynamic diameter < or = 2.5 microm or PM with aerodynamic diameter < or = 10 microm impactors. It was also demonstrated that X-ray fluorescence analysis of samples of atmospheric PM, before levoglucosan determinations, did not alter the levels of levoglucosan.

  15. Airborne endotoxin in fine particulate matter in Beijing

    NASA Astrophysics Data System (ADS)

    Guan, Tianjia; Yao, Maosheng; Wang, Junxia; Fang, Yanhua; Hu, Songhe; Wang, Yan; Dutta, Anindita; Yang, Junnan; Wu, Yusheng; Hu, Min; Zhu, Tong

    2014-11-01

    Endotoxin is an important biological component of particulate matter (PM) which, upon inhalation, can induce adverse health effects, and also possibly complicate the diseases in combination with other pollutants. From 1 March 2012 to 27 February 2013 we collected air samples using quartz filters daily for the quantification of airborne endotoxin and also fine PM (PM2.5) in Beijing, China. The geometric means for endotoxin concentration and the fraction of endotoxin in PM were 0.65 EU/m3 (range: 0.10-75.02) and 10.25 EU/mg PM2.5 (range: 0.38-1627.29), respectively. The endotoxin concentrations were shown to vary greatly with seasons, typically with high values in the spring and winter seasons. Temperature and relative humidity, as well as concentrations of sulfur dioxide and nitrogen oxides were found to be significantly correlated with airborne endotoxin concentrations (p < 0.05). Additionally, positive correlations were also detected between endotoxin concentrations and natural sources of Na+, K+, Mg2+, and F-, while negative correlations were observed between endotoxin concentrations and anthropogenic sources of P, Co, Zn, As, and Tl. Oxidative potential analysis revealed that endotoxin concentrations were positively correlated with reactive oxygen species (ROS), but not dithiothreitol (DTT) of PM. This study provided the first continuous time series of airborne endotoxin concentrations in Beijing, and identifies its potential associations with atmospheric factors. The information developed here can assist in the assessment of health effects of air pollution in Beijing.

  16. Fine particulate matter air pollution and atherosclerosis: Mechanistic insights.

    PubMed

    Bai, Yuntao; Sun, Qinghua

    2016-12-01

    Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous plaque in the arteries. Its etiology is very complicated and its risk factors primarily include genetic defects, smoking, hyperlipidemia, hypertension, lack of exercise, and infection. Recent studies suggest that fine particulate matter (PM2.5) air pollution may also contribute to the development of atherosclerosis. The present review integrates current experimental evidence with mechanistic pathways whereby PM2.5 exposure can promote the development of atherosclerosis. PM2.5-mediated enhancement of atherosclerosis is likely due to its pro-oxidant and pro-inflammatory effects, involving multiple organs, different cell types, and various molecular mediators. Studies about the effects of PM2.5inhalation on atherosclerosis may yield a better understanding of the link between air pollution and major cardiovascular diseases, and provide useful information for policy makers to determine acceptable levels of PM2.5 air quality. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Modeling residential fine particulate matter infiltration for exposure assessment.

    PubMed

    Hystad, Perry U; Setton, Eleanor M; Allen, Ryan W; Keller, Peter C; Brauer, Michael

    2009-09-01

    Individuals spend the majority of their time indoors; therefore, estimating infiltration of outdoor-generated fine particulate matter (PM(2.5)) can help reduce exposure misclassification in epidemiological studies. As indoor measurements in individual homes are not feasible in large epidemiological studies, we evaluated the potential of using readily available data to predict infiltration of ambient PM(2.5) into residences. Indoor and outdoor light scattering measurements were collected for 84 homes in Seattle, Washington, USA, and Victoria, British Columbia, Canada, to estimate residential infiltration efficiencies. Meteorological variables and spatial property assessment data (SPAD), containing detailed housing characteristics for individual residences, were compiled for both study areas using a geographic information system. Multiple linear regression was used to construct models of infiltration based on these data. Heating (October to February) and non-heating (March to September) season accounted for 36% of the yearly variation in detached residential infiltration. Two SPAD housing characteristic variables, low building value, and heating with forced air, predicted 37% of the variation found between detached residential infiltration during the heating season. The final model, incorporating temperature and the two SPAD housing characteristic variables, with a seasonal interaction term, explained 54% of detached residential infiltration. Residences with low building values had higher infiltration efficiencies than other residences, which could lead to greater exposure gradients between low and high socioeconomic status individuals than previously identified using only ambient PM(2.5) concentrations. This modeling approach holds promise for incorporating infiltration efficiencies into large epidemiology studies, thereby reducing exposure misclassification.

  18. The environmental cost of reducing agricultural fine particulate matter emissions.

    PubMed

    Funk, Paul A

    2010-06-01

    The U.S. Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) in 2006, reducing acceptable fine particulate matter (PM2.5) levels; state environmental protection agencies in states with nonattainment areas are required to draft State Implementation Plans (SIPs) detailing measures to reduce regional PM2.5 levels by reducing PM2.5 and PM2.5 precursor emissions. These plans need to account for increases in emissions caused by operating control technologies. Potential PM2.5 emissions reductions realized by adding a second set of dust cyclones were estimated for the cotton ginning industry. Increases in energy consumption were calculated based on dust cyclone air pressure drop. Additional energy required was translated into increased emissions using published emission factors and state emissions inventories. Reductions in gin emissions were compared with increases in emissions at the power plant. Because of the electrical energy required, reducing one unit of agricultural PM2.5 emissions at a cotton gin results in emitting 0.11-2.67 units of direct PM2.5, 1.39-69.1 units of PM2.5 precursors, 1.70-76.8 units of criteria pollutants, and 692-15,400 units of greenhouse gases at the point where electricity is produced. If regulations designed to reduce rural PM2.5 emissions increase electrical power consumption, the unintended net effect may be more emissions, increased environmental damage, and a greater risk to public health.

  19. Hormesis for fine particulate matter (PM 2.5).

    PubMed

    Cox, Louis Anthony Tony

    2012-01-01

    The hypothesis of hormesis - that substances that harm health at high exposures can reduce risks below background at low exposures, e.g., if they activate defenses without overwhelming them - becomes important for practical policy making if it holds for regulated substances. Recently, the U.S. EPA concluded that reductions in ambient concentrations of fine particulate matter (PM2.5) in air caused trillions of dollars worth of human health benefits for a compliance cost of only about $65 billion per year. This conclusion depends on an unverified assumption of a positive, causal, straight-line relation between PM2.5 concentrations and mortality risks. We review empirical data on PM2.5 and mortality risks (and their precursors, inflammatory responses) and conclude that the PM2.5 concentration-response relation may be J-shaped, rather than linear. This possibility implies that the 1990 Clean Air Act Amendment may well have produced no (or negative) human health benefits, rather than the trillions of dollars worth of reduced mortalities ascribed to it by EPA; and that attempts to achieve further risk-reduction benefits by further reducing PM2.5 concentrations may be counterproductive. This creates a very high value for scientific information that better reveals the true shape of the PM2.5 concentration-response function at and below current ambient levels.

  20. Hormesis for Fine Particulate Matter (PM 2.5)

    PubMed Central

    Cox, Louis Anthony (Tony)

    2012-01-01

    The hypothesis of hormesis – that substances that harm health at high exposures can reduce risks below background at low exposures, e.g., if they activate defenses without overwhelming them – becomes important for practical policy making if it holds for regulated substances. Recently, the U.S. EPA concluded that reductions in ambient concentrations of fine particulate matter (PM2.5) in air caused trillions of dollars worth of human health benefits for a compliance cost of only about $65 billion per year. This conclusion depends on an unverified assumption of a positive, causal, straight-line relation between PM2.5 concentrations and mortality risks. We review empirical data on PM2.5 and mortality risks (and their precursors, inflammatory responses) and conclude that the PM2.5 concentration-response relation may be J-shaped, rather than linear. This possibility implies that the 1990 Clean Air Act Amendment may well have produced no (or negative) human health benefits, rather than the trillions of dollars worth of reduced mortalities ascribed to it by EPA; and that attempts to achieve further risk-reduction benefits by further reducing PM2.5 concentrations may be counterproductive. This creates a very high value for scientific information that better reveals the true shape of the PM2.5 concentration-response function at and below current ambient levels. PMID:22740783

  1. Exploring variation and predictors of residential fine particulate matter infiltration.

    PubMed

    Clark, Nina A; Allen, Ryan W; Hystad, Perry; Wallace, Lance; Dell, Sharon D; Foty, Richard; Dabek-Zlotorzynska, Ewa; Evans, Greg; Wheeler, Amanda J

    2010-08-01

    Although individuals spend the majority of their time indoors, most epidemiological studies estimate personal air pollution exposures based on outdoor levels. This almost certainly results in exposure misclassification as pollutant infiltration varies between homes. However, it is often not possible to collect detailed measures of infiltration for individual homes in large-scale epidemiological studies and thus there is currently a need to develop models that can be used to predict these values. To address this need, we examined infiltration of fine particulate matter (PM(2.5)) and identified determinants of infiltration for 46 residential homes in Toronto, Canada. Infiltration was estimated using the indoor/outdoor sulphur ratio and information on hypothesized predictors of infiltration were collected using questionnaires and publicly available databases. Multiple linear regression was used to develop the models. Mean infiltration was 0.52 ± 0.21 with no significant difference across heating and non-heating seasons. Predictors of infiltration were air exchange, presence of central air conditioning, and forced air heating. These variables accounted for 38% of the variability in infiltration. Without air exchange, the model accounted for 26% of the variability. Effective modelling of infiltration in individual homes remains difficult, although key variables such as use of central air conditioning show potential as an easily attainable indicator of infiltration.

  2. Urban tree effects on fine particulate matter and human health

    Treesearch

    David J. Nowak

    2014-01-01

    Overall, city trees reduce particulate matter and provide substantial health benefits; but under certain conditions, they can locally increase particulate matter concentrations. Urban foresters need to understand how trees affect particulate matter so they can select proper species and create appropriate designs to improve air quality. This article details trees'...

  3. Modeling of microwave heating of particulate metals

    NASA Astrophysics Data System (ADS)

    Mishra, P.; Upadhyaya, A.; Sethi, G.

    2006-10-01

    Recent studies have shown that metal powder compacts can be heated to high temperatures using microwaves. While microwave heating of ceramics is well understood and modeled, there is still uncertainty about the exact mechanism and mode of microwave heating of particulate metals. The current study describes an approach for modeling the microwave heating of metal powder compacts using an electromagnetic-thermal model. The model predicts the variation in temperature with time during sintering. The effect of powder size, emissivity, and susceptor heating on the heating rate has also been assessed. These predictions have been validated by the experimental observations of the thermal profiles of Sn-, Cu-, and W-alloy compacts, using a 2.45 GHz multimode microwave furnace.

  4. Role of microRNA-4516 involved autophagy associated with exposure to fine particulate matter

    PubMed Central

    Li, Xiaobo; Lv, Yang; Hao, Jihong; Sun, Hao; Gao, Na; Zhang, Chengcheng; Lu, Runze; Wang, Shizhi; Yin, Lihong; Pu, Yuepu; Chen, Rui

    2016-01-01

    Metals are vital toxic components of fine particulate matter (PM2.5). Cellular responses to exposure to PM2.5 or PM metal components remain unknown. Post-transcriptional profiling and subsequent cell- and individual-based assays implied that the metal ion-binding miR-4516/RPL37/autophagy pathway could play a critical role in cellular responses to PM2.5 and PM metal stresses. miR-4516 was up-regulated in A549 cells exposed to PM2.5 and in the serum of individuals living in a city with moderate air pollution. The expression levels of the miR-4516 target genes, namely, RPL37 and UBA52, were involved in ribosome function and inhibited by exposure to PM2.5 and PM metal components. Autophagy in A549 cells was induced by PM2.5 exposure as a response to decreased RPL37 expression. Moreover, enhanced miR-4516 expression was positively correlated with the augmentation of the internal burden of aluminum and lead in individuals living in a city with moderate air pollution. Hereby, the miR-4516/RPL37/autophagy pathway may represent a novel mechanism that mediates responses to PM metal components. PMID:27329587

  5. Particulate metal distribution in Tagus estuary (Portugal) during a flood episode.

    PubMed

    Duarte, B; Caçador, I

    2012-10-01

    Particulate metal concentrations were assessed before, during and after a flood episode in the Tagus estuary. Particulate metal concentrations showed a decrease during the flood period and very similar values in the months before and after the flood event. Before this period, sampling station characteristics were verified to be homogenous during the peak of the flooding event, as all of the sampling stations assumed very specific characteristics. One of the main consequences from the flood, concurrent with a decrease in particulate metal concentrations, was the high input of SPM into the estuarine area. This finding indicates higher levels of heavy metals in fine-sized particles at low SPM concentration than those present in coarser particles at high SPM levels. These periodic flood events can be considered as estuarine contamination masks and should be interpreted as periods of dilution in heavy metal contamination rather than as an estuarine cleansing process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Smog episodes, fine particulate pollution and mortality in China.

    PubMed

    Zhou, Maigeng; He, Guojun; Fan, Maoyong; Wang, Zhaoxi; Liu, Yang; Ma, Jing; Ma, Zongwei; Liu, Jiangmei; Liu, Yunning; Wang, Linhong; Liu, Yuanli

    2015-01-01

    Starting from early January 2013, northern China was hit by multiple prolonged and severe smog events which were characterized by extremely high-level concentrations of ambient fine particulate matter (PM2.5) with hourly peaks of PM2.5 over 800 µg/m(3). However, the consequences of this severe air pollution are largely unknown. This study investigates the acute effect of the smog episodes and PM2.5 on mortality for both urban and rural areas in northern China. We collected PM2.5, mortality, and meteorological data for 5 urban city districts and 2 rural counties in Beijing, Tianjin and Hebei Province of China from January 1, 2013 through December 31, 2013. We employed the generalized additive models to estimate the associations between smog episodes or PM2.5 and daily mortality for each district/county. Without any meteorological control, the smog episodes are positively and statistically significantly associated with mortality in 5 out of 7 districts/counties. However, the findings are sensitive to the meteorological factors. After controlling for temperature, humidity, dew point and wind, the statistical significance disappears in all urban districts. In contrast, the smog episodes are consistently and statistically significantly associated with higher total mortality and mortality from cardiovascular/respiratory diseases in the two rural counties. In Ji County, a smog episode is associated with 6.94% (95% Confidence Interval, -0.20 to 14.58) increase in overall mortality, and in Ci County it is associated with a 19.26% (95% CI, 6.66-33.34) increase in overall mortality. The smog episodes kill people primarily through its impact on cardiovascular and respiratory diseases. On average, a smog episode is associated with 11.66% (95% CI, 3.12-20.90) increase in cardiovascular and respiratory mortality in Ji County, and it is associated with a 22.23% (95% CI, 8.11-38.20) increase in cardiovascular and respiratory mortality in Ci County. A 10 μg/m(3) increase in PM2

  7. Ambient fine particulate matter alters cerebral hemodynamics in the elderly.

    PubMed

    Wellenius, Gregory A; Boyle, Luke D; Wilker, Elissa H; Sorond, Farzaneh A; Coull, Brent A; Koutrakis, Petros; Mittleman, Murray A; Lipsitz, Lewis A

    2013-06-01

    Short-term elevations in fine particulate matter air pollution (PM2.5) are associated with increased risk of acute cerebrovascular events. Evidence from the peripheral circulation suggests that vascular dysfunction may be a central mechanism. However, the effects of PM2.5 on cerebrovascular function and hemodynamics are unknown. We used transcranial Doppler ultrasound to measure beat-to-beat blood flow velocity in the middle cerebral artery at rest and in response to changes in end-tidal CO2 (cerebral vasoreactivity) and arterial blood pressure (cerebral autoregulation) in 482 participants from the Maintenance of Balance, Independent Living, Intellect, and Zest in the Elderly (MOBILIZE) of Boston study. We used linear mixed effects models with random subject intercepts to evaluate the association between cerebrovascular hemodynamic parameters and mean PM2.5 levels 1 to 28 days earlier adjusting for age, race, medical history, meteorologic covariates, day of week, temporal trends, and season. An interquartile range increase (3.0 µg/m(3)) in mean PM2.5 levels during the previous 28 days was associated with an 8.6% (95% confidence interval, 3.7%-13.8%; P<0.001) higher cerebral vascular resistance and a 7.5% (95% confidence interval, 4.2%-10.6%; P<0.001) lower blood flow velocity at rest. Measures of cerebral vasoreactivity and autoregulation were not associated with PM2.5 levels. In this cohort of community-dwelling seniors, exposure to PM2.5 was associated with higher resting cerebrovascular resistance and lower cerebral blood flow velocity. If replicated, these findings suggest that alterations in cerebrovascular hemodynamics may underlie the increased risk of particle-related acute cerebrovascular events.

  8. Seasonal variability of endotoxin in ambient fine particulate matter.

    PubMed

    Carty, Cara L; Gehring, Ulrike; Cyrys, Josef; Bischof, Wolfgang; Heinrich, Joachim

    2003-12-01

    Endotoxin is a toxic, pro-inflammatory compound that has been detected in indoor air and dust in homes and occupational settings, and also in outdoor air. Data on the outdoor sampling of endotoxin are limited. Currently, little is known about the seasonal variation and influence of temperature on outdoor endotoxin levels. In the present study, we report endotoxin levels in fine fraction particulate matter with a 50% aerodynamic cutoff diameter of 2.5 microm (PM2.5) and describe the seasonal variation of endotoxin in Munich, Germany. In 1999-2000, PM2.5 was collected at forty outdoor monitoring sites across Munich. Approximately four samples were collected at each site for a total of 158 samples. Endotoxin concentrations in the PM2.5 samples were determined using the kinetic chromogenic Limulus Amebocyte Lysate (LAL) assay. The geometric mean endotoxin concentration was 1.07 EU mg PM2.5(-1) (95% C.I.: 0.915-1.251) or 0.015 EU m(-3) of sampled air (95% C.I.: 0.013-0.018). Munich endotoxin levels were significantly related to ambient temperature (p < 0.0001) and percent relative humidity (p < 0.0001). Sampling periods with higher average temperatures yielded higher levels of endotoxin in PM2.5 (r = 0.641), whereas decreases in percent relative humidity were associated with increased endotoxin levels in PM2.5 (r = -0.388). Endotoxin levels were significantly higher during the warmer seasons of spring [means ratio (MR): 2.5-2.7] and summer (MR: 2.1-3.0) than during winter. Although temperature and relative humidity do not explain all of the variability in endotoxin levels, their effects were significant in our data set. Temperature effects and seasonal variation of endotoxin should be considered in future studies of outdoor endotoxin.

  9. Comparison of gene expression profiles induced by coarse, fine, and ultrafile particulate matter

    EPA Science Inventory

    Coarse, fine, and ultrafine particulate matter (PM) fractions possess different physical properties and chemical compositions and may produce different adverse health effects. Studies were undertaken to determine whether or not gene expression patterns may be used to discriminate...

  10. Comparison of gene expression profiles induced by coarse, fine, and ultrafile particulate matter

    EPA Science Inventory

    Coarse, fine, and ultrafine particulate matter (PM) fractions possess different physical properties and chemical compositions and may produce different adverse health effects. Studies were undertaken to determine whether or not gene expression patterns may be used to discriminate...

  11. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    EPA Science Inventory

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  12. 77 FR 1894 - Approval and Promulgation of Implementation Plans; Georgia; Rome; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... Matter 2002 Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year emissions...

  13. 77 FR 12769 - Approval and Promulgation of Implementation Plans; Georgia; Macon; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year...

  14. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    EPA Science Inventory

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  15. 77 FR 31262 - Approval and Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year..., a 2002 base year emissions inventory and other planning SIP revisions related to attainment of the...

  16. Characterization of atmospheric particulate and metallic elements at Taichung Harbor near Taiwan Strait during 2004-2005.

    PubMed

    Fang, Guor-Cheng; Wu, Yuh-Shen; Lin, Jum-Bo; Lin, Chi-Kwong; Rau, Jui-Yeh; Huang, Shih-Han

    2006-06-01

    Air aerosol samples for TSP (total suspended particulate), coarse particulate (particle matter with aerodynamical diameter 2.5-10 microm, PM(2.5-10)), fine particulate (particle matter with aerodynamical diameter <2.5 microm, PM(2.5)) and metallic elements were collected during March 2004 to January 2005 at TH (Taichung Harbor) in central Taiwan. The seasonal variation average concentration of TSP (total suspended particulate), coarse particulate (particle matter with aerodynamical diameter 2.5-10 microm, PM(2.5-10)) and fine particulate (particle matter with aerodynamical diameter <2.5 microm, PM(2.5)) were in the range 132-171.1 microg m(-3) and 43-49.5 microg m(-3), respectively. Seasonal variation of metallic elements Cu, Mn, Zn and Fe in the TSP (total suspended particulate) shows that higher concentration was observed during spring. Seasonal variation of metallic elements Pb, Cr and Mg in the TSP (total suspended particulate) shows that higher concentration was observed during winter. The average metallic element TSP (total suspended particulate) concentration order was Fe>Zn>Mg>Cu>Cr>Mn>Pb in spring. In addition, at the TH sampling site, the average concentration variation of TSP (total suspended particulate) displayed the following order: spring>winter>autumn>summer. However, the average concentration variation of coarse particulate (particle matter with aerodynamical diameter 2.5-10 microm, PM(2.5-10)) displayed the following order: spring>winter>summer>autumn. Finally, the average concentration variations of fine particulate (particle matter with aerodynamical diameter <2.5 microm, PM(2.5)) were in the following order: winter>spring>summer>autumn at the TH sample site.

  17. Stability of metal particle and metal particulate media

    NASA Technical Reports Server (NTRS)

    Okamoto, Kazuhiro

    1992-01-01

    Metal particulate (MP) video tape was launched for 8 mm video tape in 1985. Since then MP tapes have been applied to several consumer formats and instrumental formats because of its superior electrical performance. Recently data storage media, such as DDS and D-8, have started employing MP tape. However, there are serious concerns with archival stability of MP tape particularly in the case of data storage use, as metal particles essentially have problems with chemical instability and are susceptible to oxidation and corrosion. Although there were some studies about the archival stability of metal particles or MP tapes, a clear understanding has yet to be reached. In this paper, we report the stability of magnetic properties of current metal particles, and then discuss the new technologies to improve the stability further.

  18. Smoking increases air pollution levels in city streets: observational and fine particulate data.

    PubMed

    Patel, Vimal; Thomson, George; Wilson, Nick

    2012-09-01

    To address the paucity of research around smokefree streets, we: (i) refined existing data collection methods; (ii) expanded on the meagre previous research in this area; and (iii) compared results by differing size of urban centre. We refined established methods; a solo observer simultaneously observed smoking and measured fine particulate levels (PM(2.5)) on a route of shopping streets in central Lower Hutt City, New Zealand. Over 33.6 h of measurement, mean fine particulate levels were 1.7 times higher when smoking was observed than when it was not (7.9 vs 4.8 μg/m(3); p=0.0001). Smoking appeared to be a substantive contributor to fine particulate air pollution in city streets, when compared to levels adjacent to road traffic. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. [Effects of airborne fine particulate matter on human respiratory symptoms and pulmonary function].

    PubMed

    Gao, Zhi-Yi; Li, Peng-Kun; Zhao, Jin-Zhuo; Jiang, Rong-Fang; Yang, Bin-Jie; Zhang, Min-Hua; Song, Wei-Min

    2010-10-01

    to explore effects of airborne fine particulate matter exposure on human respiratory symptoms and pulmonary function. one hundred and seven field traffic policemen were recruited as airborne fine particulate matter high-exposure group and one hundred and one male residents as common exposure group. The individual sampler was used to measure fine particulate matter exposure levels of the two groups. To obtain personal information, especially respiratory symptoms such as cough, sputum, etc. a questionnaire survey was used. The pulmonary ventilation function was detected: forced expiratory vital capacity (FVC), the first 1 second forced expiratory volume (FEV1.0), FVC/FEV1.0% and peak flow values (PEF), and the difference of fine particulate matter exposure level and respiratory function of the two groups was compared. 24 h individual average fine particulate matter exposure concentration of traffic police and residents were respectively (115.4 ± 46.17) microg/m(3) and (74.94 ± 40.09) microg/m(3), the traffic police PM2.5 exposure levels were significantly higher than the residents. In the incidence of respiratory symptoms, compared with high-exposure group and common exposure group, coughing, expectoration, throat unwell, asthma, short of breath and nose discomfort, traffic police group was higher than residents group (P < 0.05). The abnormal rate of lung ventilation function indexes, such as FVC and FEV1.0 was 25.23% and 12.15% respectively in high-exposure group, 11.88% and 2.97% in common exposure group, there was no statistical difference between two groups. Besides, the abnormal rate of FVC and FEV1.0, showed rising trend in high-exposure group with seniority. long-term higher levels of airborne fine particulate matter exposure, may impact respiratory health and impair pulmonary function.

  20. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    PubMed Central

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-01-01

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM1 (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles. PMID:26402691

  1. Source apportionment of airborne fine particulate matter in an underground mine.

    PubMed

    McDonald, Jacob D; Zielinska, Barbara; Sagebiel, John C; McDaniel, Mark R; Mousset-Jones, Pierre

    2003-04-01

    The chemical mass balance source apportionment technique was applied to an underground gold mine to assess the contribution of diesel exhaust, rock dust, oil mists, and cigarette smoke to airborne fine (<2.5 microm) particulate matter (PM). Apportionments were conducted in two locations in the mine, one near the mining operations and one near the exit of the mine where the ventilated mine air was exhausted. Results showed that diesel exhaust contributed 78-98% of the fine particulate mass and greater than 90% of the fine particle carbon, with rock dust making up the remainder. Oil mists and cigarette smoke contributions were below detection limits for this study. The diesel exhaust fraction of the total fine PM was higher than the recently implemented mine air quality standards based on total carbon at both sample locations in the mine.

  2. Control of fine particulate emissions from coal-fired utility boilers: Spin filter collection device (rotary cyclone)

    SciTech Connect

    He, Bo X.

    1990-01-01

    A bench-scale test program has been performed to evaluate the concept of placing a porous cylindrical surface (such as a metal screen) at the core of a container and spinning the surface with an external motor for fine particulate/gas separation. The rotating surface enhances the centrifugal effects in the annular region and provides a smooth transition between the flow in the annular and core regions and acts like an enhanced cyclone. It is therefore called a rotary cyclone.'' The porous surface is self-cleaning and offers good steady-state pressure drop characteristics. Objectives of this project are: (1) to carry out theoretical and experimental investigations using the rotary cyclone concept to capture particulates in the 0.5 to 10 micron size range; and (2) to evaluate its economic feasibility based on an engineering scale-up and comparison with conventional fabric filter and electrostatic precipitator systems. It was demonstrated that the efficiency in separating fine particulates is governed by two major characteristics, i.e., the magnitude of the centrifugal force and the approach velocity or the gas-to-surface area ratio. Results from the bench-scale tests have shown a collection efficiency of well over 99% for a typical fly ash. A preliminary conceptual design for a 40 MW installation was developed based on the experimental work. 4 refs., 4 figs., 8 tabs.

  3. Fine particulate concentrations on sidewalks in five Southern California cities

    NASA Astrophysics Data System (ADS)

    Boarnet, Marlon G.; Houston, Douglas; Edwards, Rufus; Princevac, Marko; Ferguson, Gavin; Pan, Hansheng; Bartolome, Christian

    2011-08-01

    This research provides an exploratory examination of the factors associated with fine particle concentrations in intersection and sidewalk microenvironments in five study areas in the Los Angeles region. The study areas range from low-density, auto-oriented development patterns to dense urban areas with mid- and high-rise buildings. Average concentrations of FP DT (fine particle concentrations measured with DustTrak Aerosol Monitors) ranged from about 20 to 70 μg m -3 across study areas during stationary and mobile (walking) monitoring in morning, midday, and evening periods. Results suggest that fine particle concentrations are highly variable on urban sidewalks. A regression analysis shows that concentrations are associated with traffic and the proximate built environment characteristics after accounting for meteorological factors, time of day, and location in the region. Regressions show higher concentrations were associated with lower wind speeds and higher temperatures, higher adjacent passenger vehicle traffic, higher ambient concentrations, and street canyons with buildings of over five stories. Locations in street canyons with 2-5 story buildings and with more paving and open space had lower concentrations after accounting for other factors. The associations with traffic and built environment variables explained a small amount of the variation in FP DT concentrations, suggesting that future research should examine the relative role of localized traffic and built environment characteristics compared to regional ambient concentrations and meteorology.

  4. The environmental cost of reducing agricultural fine particulate (PM2.5) dust emissions.

    USDA-ARS?s Scientific Manuscript database

    The US Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) in 2006, reducing acceptable fine particulate (PM2.5) levels; state environmental protection agencies in states with non-attainment areas are required to draft State Implementation Plans (SIP) det...

  5. FINE PARTICULATE MATTER SOURCE ATTRIBUTION FOR SOUTHEAST TEXAS USING 14C/13C RATIOS

    EPA Science Inventory

    Radiocarbon analyses of fine particulate matter samples collected during the summer of 2000 in southeast Texas indicate that a substantial fraction of the aerosol carbon at an urban/suburban site (27% to 73%) and at a rural, forested site (44% to 77%) was modern carbon. Data fr...

  6. 76 FR 63860 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... Interstate Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA...; (4) revise the Arkansas ozone-season new unit set-aside to account for erroneously omitted projected... projected emissions for SO 2 , ozone- season NO X , and annual NO X ; (6) revise New Jersey's ozone...

  7. 75 FR 45075 - Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate Matter and Ozone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Interstate Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA... Matter and Ozone'' (Transport Rule) which is published elsewhere in today's issue of the Federal Register... ozone NAAQS. Public hearing: The proposal for which EPA is holding the public hearings is...

  8. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    PubMed Central

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  9. DAILY SIMULATION OF OZONE AND FINE PARTICULATES OVER NEW YORK STATE: FINDINGS AND CHALLENGES

    EPA Science Inventory

    This study investigates the potential utility of the application of a photochemical modeling system in providing simultaneous forecasts of ozone (O3) and fine particulate matter (PM2.5) over New York State. To this end, daily simulations from the Community M...

  10. DAILY SIMULATION OF OZONE AND FINE PARTICULATES OVER NEW YORK STATE: FINDINGS AND CHALLENGES

    EPA Science Inventory

    This study investigates the potential utility of the application of a photochemical modeling system in providing simultaneous forecasts of ozone (O3) and fine particulate matter (PM2.5) over New York State. To this end, daily simulations from the Community M...

  11. RESPIRATORY TOXICOLOGCAL EFFECTS OF WORLD TRADE CENTER FINE PARTICULATE MATTER IN MICE

    EPA Science Inventory


    ABSTRACT BODY:
    The destruction of the World Trade Center (WTC) caused the release of high levels of airborne pollutants which were reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate mat...

  12. Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile.

    PubMed

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G E; Leiva Guzmán, Manuel A

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002-2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m(3)) and the United States Environmental Protection Agency standard (15 µg/m(3)) for fine particulate matter.

  13. WORLD TRADE CENTER FINE PARTICULATE MATTER CAUSES RESPIRATORY TRACT HYPERRESPONSIVENESS IN MICE

    EPA Science Inventory

    World Trade Center Fine Particulate Matter Causes Respiratory Tract Hyperresponsiveness in Mice

    Stephen H. Gavett1, Najwa Haykal-Coates1, Jerry W. Highfill1, Allen D. Ledbetter1, Lung Chi Chen2, Mitchell D. Cohen2, Jack R. Harkema3, James G. Wagner3, and Daniel L. Costa1.<...

  14. CHEMICAL ANALYSIS OF WORLD TRADE CENTER FINE PARTICULATE MATTER FOR USE IN TOXICOLOGICAL ASSESSMENT

    EPA Science Inventory

    Chemical Analysis of World Trade Center Fine Particulate Matter for Use in Toxicological Assessment
    John K. McGee1, Lung Chi Chen2, Mitchell D. Cohen2, Glen R. Chee2, Colette M. Prophete2, Najwa Haykal-Coates1, Shirley J. Wasson3, Teri L. Conner4, Daniel L. Costa1, and Steph...

  15. RESPIRATORY TOXICOLOGCAL EFFECTS OF WORLD TRADE CENTER FINE PARTICULATE MATTER IN MICE

    EPA Science Inventory


    ABSTRACT BODY:
    The destruction of the World Trade Center (WTC) caused the release of high levels of airborne pollutants which were reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate mat...

  16. WORLD TRADE CENTER FINE PARTICULATE MATTER CAUSES RESPIRATORY TRACT HYPERRESPONSIVENESS IN MICE

    EPA Science Inventory

    World Trade Center Fine Particulate Matter Causes Respiratory Tract Hyperresponsiveness in Mice

    Stephen H. Gavett1, Najwa Haykal-Coates1, Jerry W. Highfill1, Allen D. Ledbetter1, Lung Chi Chen2, Mitchell D. Cohen2, Jack R. Harkema3, James G. Wagner3, and Daniel L. Costa1.<...

  17. SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...

  18. CHEMICAL ANALYSIS OF WORLD TRADE CENTER FINE PARTICULATE MATTER FOR USE IN TOXICOLOGICAL ASSESSMENT

    EPA Science Inventory

    Chemical Analysis of World Trade Center Fine Particulate Matter for Use in Toxicological Assessment
    John K. McGee1, Lung Chi Chen2, Mitchell D. Cohen2, Glen R. Chee2, Colette M. Prophete2, Najwa Haykal-Coates1, Shirley J. Wasson3, Teri L. Conner4, Daniel L. Costa1, and Steph...

  19. Mechanisms governing fine particulate emissions from coal flames

    SciTech Connect

    Newton, G.H.; Schieber, C.; Socha, R.G.; Kramlich, J.C.

    1990-04-01

    The primary objective of this program was to provide a basic understanding of the principal processes that govern the formation of particulate matter in the 0.5--10 {mu}m size range in pulverized coal flames. The mechanism that produces ash particles in this size range is not clear. Particle sizes smaller than the 0.5--10 {mu}m size range are generally accepted to result from a vaporization/condensation mechanism while particles larger than this size result from the coalescence of ash in coal particles which may breakup as they burn. This program combined experimental and theoretical studies to understand the mechanisms which control the production of ash in the 0.5--10 {mu}m size range. (VC)

  20. Fine Particulate Matter Concentrations in Urban Chinese Cities, 2005-2016: A Systematic Review.

    PubMed

    He, Mike Z; Zeng, Xiange; Zhang, Kaiyue; Kinney, Patrick L

    2017-02-14

    Background: Particulate matter pollution has become a growing health concern over the past few decades globally. The problem is especially evident in China, where particulate matter levels prior to 2013 are publically unavailable. We conducted a systematic review of scientific literature that reported fine particulate matter (PM2.5) concentrations in different regions of China from 2005 to 2016. Methods: We searched for English articles in PubMed and Embase and for Chinese articles in the China National Knowledge Infrastructure (CNKI). We evaluated the studies overall and categorized the collected data into six geographical regions and three economic regions. Results: The mean (SD) PM2.5 concentration, weighted by the number of sampling days, was 60.64 (33.27) μg/m³ for all geographic regions and 71.99 (30.20) μg/m³ for all economic regions. A one-way ANOVA shows statistically significant differences in PM2.5 concentrations between the various geographic regions (F = 14.91, p < 0.0001) and the three economic regions (F = 4.55, p = 0.01). Conclusions: This review identifies quantifiable differences in fine particulate matter concentrations across regions of China. The highest levels of fine particulate matter were found in the northern and northwestern regions and especially Beijing. The high percentage of data points exceeding current federal regulation standards suggests that fine particulate matter pollution remains a huge problem for China. As pre-2013 emissions data remain largely unavailable, we hope that the data aggregated from this systematic review can be incorporated into current and future models for more accurate historical PM2.5 estimates.

  1. Fine Particulate Matter Concentrations in Urban Chinese Cities, 2005–2016: A Systematic Review

    PubMed Central

    He, Mike Z.; Zeng, Xiange; Zhang, Kaiyue; Kinney, Patrick L.

    2017-01-01

    Background: Particulate matter pollution has become a growing health concern over the past few decades globally. The problem is especially evident in China, where particulate matter levels prior to 2013 are publically unavailable. We conducted a systematic review of scientific literature that reported fine particulate matter (PM2.5) concentrations in different regions of China from 2005 to 2016. Methods: We searched for English articles in PubMed and Embase and for Chinese articles in the China National Knowledge Infrastructure (CNKI). We evaluated the studies overall and categorized the collected data into six geographical regions and three economic regions. Results: The mean (SD) PM2.5 concentration, weighted by the number of sampling days, was 60.64 (33.27) μg/m3 for all geographic regions and 71.99 (30.20) μg/m3 for all economic regions. A one-way ANOVA shows statistically significant differences in PM2.5 concentrations between the various geographic regions (F = 14.91, p < 0.0001) and the three economic regions (F = 4.55, p = 0.01). Conclusions: This review identifies quantifiable differences in fine particulate matter concentrations across regions of China. The highest levels of fine particulate matter were found in the northern and northwestern regions and especially Beijing. The high percentage of data points exceeding current federal regulation standards suggests that fine particulate matter pollution remains a huge problem for China. As pre-2013 emissions data remain largely unavailable, we hope that the data aggregated from this systematic review can be incorporated into current and future models for more accurate historical PM2.5 estimates. PMID:28216601

  2. Sources of fine particulate species in ambient air over Lake Champlain Basin, VT

    SciTech Connect

    Ning Gao; Amy E. Gildemeister; Kira Krumhansl; Katherine Lafferty; Philip K. Hopke; Eugene Kim; Richard L. Poirot

    2006-11-15

    This study is a part of an ongoing investigation of the types and locations of emission sources that contribute fine particulate air contaminants to Underhill, VT. The air quality monitoring data used for this study are from the Interagency Monitoring of Protected Visual Environments network for the period of 2001-2003 for the Underhill site. The main source-receptor modeling techniques used are the positive matrix factorization (PMF) and potential source contribution function (PSCF). This new study is intended as a comparison to a previous study of the 1988-1995 Underhill data that successfully revealed a total of 11 types of emission sources with significant contributions to this rural site. This new study has identified a total of nine sources: nitrate-rich secondary aerosol, wood smoke, East Coast oil combustion, automobile emission, metal working, soil/dust, sulfur-rich aerosol type I, sulfur-rich aerosol type II, and sea salt/road salt. Furthermore, the mass contributions from the PMF identified sources that correspond with sampling days with either good or poor visibility were analyzed to seek possible correlations. It has been shown that sulfur-rich aerosol type I, nitrate aerosol, and automobile emission are the most important contributors to visibility degradation. Soil/dust and sea salt/road salt also have an added effect. 38 refs., 17 figs., 2 tabs.

  3. Sources of fine urban particulate matter in Detroit, MI.

    PubMed

    Gildemeister, Amy E; Hopke, Philip K; Kim, Eugene

    2007-10-01

    Data from the speciation trends network (STN) was used to evaluate the amount and temporal patterns of particulate matter originating from local industrial sources and long-range transport at two sites in Detroit, MI: Allen Park, MI, southwest of both Detroit and the areas of heavy industrial activity; Dearborn, MI, located on the south side of Detroit near the most heavily industrialized region. Using positive matrix factorization (PMF) and comparing source contributions at Allen Park to those in Dearborn, contributions made by local industrial sources (power plants, coke refineries, iron smelting, waste incineration), local area sources (automobile and diesel truck) and long range sources of PM(2.5) can be distinguished in greater Detroit. Overall, the mean mass concentration measured at Dearborn was 19% higher than that measured at Allen Park. The mass at Allen Park was apportioned as: secondary sulfate 31%, secondary nitrate 28%, soil 8%, mixed aged sea and road salts 4%, gasoline 15%, diesel 4%, and biomass burning 3%. At Dearborn the mass was apportioned as: secondary sulfate 25%, secondary nitrate 20%, soil 12%, mixed aged sea and road salts 4%, gasoline 20%, diesel 8%, iron and steel, 5%, and mixed industrial 7%. The impact of the iron and steel, soil, and mixed aged sea and road salt was much higher at the Dearborn site than at the Allen Park site, suggesting that close proximity to a local industrial complex has a direct negative impact on local air quality.

  4. Ultra High Efficiency ESP for Fine Particulate and Air Toxics Control

    SciTech Connect

    Srinivasachar, Srivats; Pease, Benjamin R.; Porle, Kjell; Mauritzson, Christer; Haythornthwaite, Sheila

    1997-07-01

    Nearly ninety percent of U.S. coal-fired utility boilers are equipped with electrostatic precipitators (ESP). Cost effective retrofittable ESP technologies are the only means to accomplish Department of Energy's (DOE) goal of a major reduction in fine particulate and air toxic emissions from coal-fired power plants. Particles in the size range of 0.1 to 5 {micro}m typically escape ESPs. Metals, such as arsenic, cadmium, lead, molybdenum and antimony, concentrate on these particles. This is the main driver for improved fine particulate control. Vapor phase emissions of mercury, selenium and arsenic are also of major concern. Current dry ESPs, which operate at temperatures greater than 280 F, provide little control for vapor phase toxics. The need for inherent improvement to ESPs has to be considered keeping in perspective the current trend towards the use of low sulfur coals. Switching to low sulfur coals is the dominant approach for SO{sub 2} emission reduction in the utility industry. Low sulfur coals generate high resistivity ash, which can cause an undesirable phenomenon called ''back corona.'' Higher particulate emissions occur if there is back corona in the ESP. Results of the pilot-scale testing identified the ''low temperature ESP'' concept to have the biggest impact for the two low sulfur coals investigated. Lowering the flue gas temperature to 220 F provided the maximum impact in terms of decreased emissions. Intermediate operating temperatures (reduction from 340 to 270 F) also gave significant ESP performance improvement. A significant reduction in particulate emissions was also noted when the flue gas humidity was increased (temperature held constant) from the baseline condition for these moderately high resistivity ash coals. Independent control of flue gas humidity and temperature was an important and a notable element in this project. Mercury emissions were also measured as a function of flue gas temperature. Mercury emissions decreased as the flue

  5. Clustering Dynamics of Ultra-fine Particulate Systems

    NASA Astrophysics Data System (ADS)

    Dutt, Meenakshi; Elliott, James

    2008-03-01

    Length scales of particles and their surrounding medium strongly determines the nature of their interactions with one another and their responses to external fields. We are interested in systems of ultrafine particles (0.1 - 1.0 micron) such as volcanic ash, solid aerosols, or fine powders for pharmaceutical ihalation applications. We develop a numerical model for these systems using the Derjaguin-Muller-Toporov (DMT) adhesion theory along with the van der Waals attraction between the particles and their contact mechanical interactions. We study the dynamics of these systems in the absence and presence of gravity by controlling the particle size, and thereby, the surface properties of the particles. The high surface energies of these particles causes them to agglomerate as they gravitationally settle. We explore their internal structure as a function of their particle size.

  6. [Elemental size distribution of airborne fine and ultrafine particulate matters in the suburb of Shanghai, China].

    PubMed

    Lin, Jun; Liu, Wei; Li, Yan; Bao, Liang-Man; Li, Yu-Lan; Xu, Zhong-Yang; Wu, Wei-Wei; Chen, Dong-Liang; He, Wei

    2009-04-15

    The elemental size distributions of airborne fine/ultrafine particulate matters in the suburb of Shanghai were studied using synchrotron X-ray fluorescence. Median mass aerodynamic diameter (MMAD), elemental correlation coefficient as well as enrichment factor (EF) of each size fraction were calculated to characterize the sources of elements in fine/ultrafine particulate matters. Ca and Ti distributed mainly in coarse particles (> 2 microm) with size independent enrichment factors between 0.1 and 3.2, and the correlation coefficient between Ca and Ti was as high as 0.933, which implied strong contribution from nature sources, such as soil dusts and resuspended dusts. However, V, Cr, Mn, Ni, Zn, Cu, Pb, Cl, S mainly distributed in 0.1-1.0 microm particulate matters with MMAD between 0.56-0.94 microm. The EF of V, Cr, Ni, Cu, Zn, Pb increased with decreasing particle size. The highest EF were found for Pb in ultrafine particulate matters (< 0.1 microm) with EF of 2,023.7-2,244.2. The evidences suggested that these elements were significantly influenced by anthropogenic sources and enriched in fine/ultrafine particles smaller than 1 microm. Fe distributed uniformly in the particles larger than 0.2 microm with MMAD of 1.3 microm. The results indicated non-negligible influences of remote transmission of anthropogenic pollutions.

  7. A Single Transition Metal-Rich Particulate Inhalation Exposure Elicits Concentration-Dependent Cardiovascular Toxicity in Hypertensive Rats

    EPA Science Inventory

    Recently, investigators in the CALFINE study demonstrated an association between the fine particulate matter (PM)-associated metals, Ni and Fe, in ambient air in nine California counties and increased cardiovascular mortality (Ostro et al. 2007). Residual oil fly ash (ROFA), a wa...

  8. A Single Transition Metal-Rich Particulate Inhalation Exposure Elicits Concentration-Dependent Cardiovascular Toxicity in Hypertensive Rats

    EPA Science Inventory

    Recently, investigators in the CALFINE study demonstrated an association between the fine particulate matter (PM)-associated metals, Ni and Fe, in ambient air in nine California counties and increased cardiovascular mortality (Ostro et al. 2007). Residual oil fly ash (ROFA), a wa...

  9. Analysis of Fine Particulate Nitrate on Diurnal, Weekly and Seasonal Time Scales

    NASA Astrophysics Data System (ADS)

    Millstein, D. E.; Harley, R. A.; Hering, S. V.

    2006-12-01

    Particulate nitrate is a secondary pollutant and important contributor to PM2.5; nitrate responses to changes in precursor emissions, meteorology, and atmospheric chemistry are of interest here. Fine particulate nitrate concentrations were analyzed on diurnal, weekly, and seasonal at 4 urban sites in the United States. Clear weekly signals in ambient black carbon concentrations as a result of reduced diesel emissions on weekends have been reported previously. A similar response in particulate nitrate has been hard to discern in the previously available data, despite significant weekend reductions in NOx emissions. Past analyses have been constrained by limited data availability: routine measurement programs typically have involved sampling once every 6 days, or less frequently. Also most measurement programs report 24-h average concentrations, which prevents consideration of diurnal patterns. Here we analyze semi-continuous measurements of fine particulate nitrate at 10-min time resolution. We consider yearlong records of nitrate measured at Fresno (California), Pittsburgh (Pennsylvania) and St. Louis (Missouri). At a fourth site (Claremont, California), we analyze particulate nitrate measurements resolved into three size fractions: 0.07-0.45, 0.45-1, and 1-2.5 um. Daily average fine particulate nitrate concentrations were compared to a 7-day moving average at each site. We observed weekly cycles in nitrate at Fresno, Claremont, and St. Louis. The nitrate response was delayed in time relative to weekend decreases in NOx emissions. No weekly cycle in nitrate was observed at Pittsburgh. Analysis of related pollutants at Pittsburgh shows nitrate formation is ammonia-limited during spring, summer and fall; this limits the effect of NOx reductions on nitrate formation. Reductions in sulfate observed on weekends during spring and summer months at Pittsburgh could affect ammonia availability. However, we found in this case that decreases in sulfate led to increased

  10. Vascular function and short-term exposure to fine particulate air pollution.

    PubMed

    Pope, C Arden; Hansen, Jaron C; Kuprov, Roman; Sanders, Matthew D; Anderson, Michael N; Eatough, Delbert J

    2011-08-01

    Exposure to fine particulate air pollution has been implicated as a risk factor for cardiopulmonary disease and mortality. Proposed biological pathways imply that particle-induced pulmonary and systemic inflammation play a role in activating the vascular endothelium and altering vascular function. Potential effects of fine particulate pollution on vascular function are explored using controlled chamber exposure and uncontrolled ambient exposure. Research subjects included four panels with a total of 26 healthy nonsmoking young adults. On two study visits, at least 7 days apart, subjects spent 3 hr in a controlled-exposure chamber exposed to 150-200 microg/m3 of fine particles generated from coal or wood combustion and 3 hr in a clean room, with exposure and nonexposure periods alternated between visits. Baseline, postexposure, and post-clean room reactive hyperemia-peripheral arterial tonometry (RH-PAT) was conducted. A microvascular responsiveness index, defined as the log of the RH-PAT ratio, was calculated. There was no contemporaneous vascular response to the few hours of controlled exposure. Declines in vascular response were associated with elevated ambient exposures for the previous 2 days, especially for female subjects. Cumulative exposure to real-life fine particulate pollution may affect vascular function. More research is needed to determine the roles of age and gender, the effect of pollution sources, the importance of cumulative exposure over a few days versus a few hours, and the lag time between exposure and response.

  11. SOURCE SIGNATURES OF FINE PARTICULATE MATTER FROM PETROLEUM REFINING AND FUEL USE

    SciTech Connect

    Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Artur Braun; Yuanzhi Chen; J. David Robertson; Joseph Kyger; Adel F. Sarofim; Ronald J. Pugmire; Henk L.C. Meuzelaar; JoAnn Lighty

    2003-07-31

    The molecular structure and microstructure of a suite of fine particulate matter (PM) samples produced by the combustion of residual fuel oil and diesel fuel were investigated by an array of analytical techniques. Some of the more important results are summarized below. Diesel PM (DPM): A small diesel engine test facility was used to generate a suite of diesel PM samples from different fuels under engine load and idle conditions. C XANES, {sup 13}C NMR, XRD, and TGA were in accord that the samples produced under engine load conditions contained more graphitic material than those produced under idle conditions, which contained a larger amount of unburned diesel fuel and lubricating oil. The difference was enhanced by the addition of 5% of oxygenated compounds to the reference fuel. Scanning transmission x-ray micro-spectroscopy (STXM) was able to distinguish particulate regions rich in C=C bonds from regions rich in C-H bonds with a resolution of {approx}50 nm. The former are representative of more graphitic regions and the latter of regions rich in unburned fuel and oil. The dominant microstructure observed by SEM and TEM consisted of complex chain-like structures of PM globules {approx}20-100 nm in mean diameter, with a high fractal dimension. High resolution TEM revealed that the graphitic part of the diesel soot consisted of onion-like structures made up of graphene layers. Typically 3-10 graphene layers make up the ''onion rings'', with the layer spacing decreasing as the number of layers increases. ROFA PM: Residual oil fly ash (ROFA) PM has been analyzed by a new approach that combines XAFS spectroscopy with selective leaching procedures. ROFA PM{sub 2.5} and PM{sub 2.5+} produced in combustion facilities at the U.S. EPA National Risk Management Research Laboratory (NRML) were analyzed by XAFS before and after leaching with water, acid (1N HCl), and pentane. Both water and acid leaching removed most of the metal sulfates, which were the dominant phase present

  12. Chemical composition of submicron and fine particulate matter collected in Krakow, Poland. Consequences for the APARIC project.

    PubMed

    Samek, Lucyna; Furman, Leszek; Mikrut, Magdalena; Regiel-Futyra, Anna; Macyk, Wojciech; Stochel, Grażyna; van Eldik, Rudi

    2017-11-01

    Submicron particulate matter containing particles with an aerodynamic diameter ≤1 μm (PM1) are not monitored continuously by Environmental Protection Agencies around the World and are seldom studied. Numerous studies have indicated that people exposed to ultrafine (≤100 nm), submicron and fine particulate matter containing particles with an aerodynamic diameter ≤2.5 μm (PM2.5), can suffer from respiratory track diseases, cardiovascular, immunological or heart diseases and others. Inorganic pollutants containing redox active transition metals and small gaseous molecules, are involved in the generation of reactive oxygen and reactive nitrogen species. Inhalation of this kind of particles can affect immune-toxicity. Environmental pollution may aggravate the course of autoimmune diseases, in particular influence the mechanisms of the autoimmune system. Important factors that influence the toxicity of particulate matter, are particle size distribution, composition and concentration. This report deals with the composition of PM1 and PM2.5 fractions collected in Krakow, Poland. In spring 2015, the mean concentrations of PM1 and PM2.5 were 19 ± 14 and 27 ± 19 μg/m(3), respectively. The PM2.5 fraction contained approximately 70 ± 17% of submicron particulate matter. In spring 2016, the mean concentrations of PM1 and PM2.5 were 12 ± 5 and 22 ± 12 μg/m(3), respectively. The PM2.5 fraction contained approximately 60 ± 15% of submicron particulate matter. The concentrations of the elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr and Pb in both fractions were determined by X-ray fluorescence spectrometry. Most of the analyzed metals had higher concentrations in the fine fraction than in the submicron one. Concentrations of V and As were below the detection limit in both fractions, whereas concentrations of Mn and Ca were below the detection limits in the PM1 fraction. The results are discussed in terms of the consequences they may have on

  13. Comparing exposure metrics for the effects of fine particulate matter on emergency hospital admissions.

    PubMed

    Mannshardt, Elizabeth; Sucic, Katarina; Jiao, Wan; Dominici, Francesca; Frey, H Christopher; Reich, Brian; Fuentes, Montserrat

    2013-01-01

    A crucial step in an epidemiological study of the effects of air pollution is to accurately quantify exposure of the population. In this paper, we investigate the sensitivity of the health effects estimates associated with short-term exposure to fine particulate matter with respect to three potential metrics for daily exposure: ambient monitor data, estimated values from a deterministic atmospheric chemistry model, and stochastic daily average human exposure simulation output. Each of these metrics has strengths and weaknesses when estimating the association between daily changes in ambient exposure to fine particulate matter and daily emergency hospital admissions. Monitor data is readily available, but is incomplete over space and time. The atmospheric chemistry model output is spatially and temporally complete but may be less accurate than monitor data. The stochastic human exposure estimates account for human activity patterns and variability in pollutant concentration across microenvironments, but requires extensive input information and computation time. To compare these metrics, we consider a case study of the association between fine particulate matter and emergency hospital admissions for respiratory cases for the Medicare population across three counties in New York. Of particular interest is to quantify the impact and/or benefit to using the stochastic human exposure output to measure ambient exposure to fine particulate matter. Results indicate that the stochastic human exposure simulation output indicates approximately the same increase in the relative risk associated with emergency admissions as using a chemistry model or monitoring data as exposure metrics. However, the stochastic human exposure simulation output and the atmospheric chemistry model both bring additional information, which helps to reduce the uncertainly in our estimated risk.

  14. Spatio-Temporal Distributions of Particulate Matter and Heavy Metal Exposures in Washington, DC

    NASA Astrophysics Data System (ADS)

    Greene, N. A.; Morris, V. R.

    2005-05-01

    The District of Columbia ranks seventh highest as one of the unhealthiest places to live due to poor air quality (EPA Report, 1999). Particulate matter is one of the major contributors to pollution in the Washington, DC environment. Quite often ambient airborne toxics are closely associated with particulate matter. Fine aerosols are characterized as particles with diameters smaller than 1m and are easily deposited into the alveolar regions of the human lungs, which can impose severe health risks. In this study, high-resolution aerosol measurements of PM2.5 and heavy metals like chromium, lead, cadmium and arsenic, in four wards of Washington, DC have been performed. Spatial distributions of both aerosols and heavy metals are characterized as a function of size and mass properties. This paper presents results of the spatial analysis of aerosol number and mass distribution for PM2.5.

  15. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  16. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk?

    PubMed Central

    Pope, C A

    2000-01-01

    This article briefly summarizes the epidemiology of the health effects of fine particulate air pollution, provides an early, somewhat speculative, discussion of the contribution of epidemiology to evaluating biologic mechanisms, and evaluates who's at risk or is susceptible to adverse health effects. Based on preliminary epidemiologic evidence, it is speculated that a systemic response to fine particle-induced pulmonary inflammation, including cytokine release and altered cardiac autonomic function, may be part of the pathophysiologic mechanisms or pathways linking particulate pollution with cardiopulmonary disease. The elderly, infants, and persons with chronic cardiopulmonary disease, influenza, or asthma are most susceptible to mortality and serious morbidity effects from short-term acutely elevated exposures. Others are susceptible to less serious health effects such as transient increases in respiratory symptoms, decreased lung function, or other physiologic changes. Chronic exposure studies suggest relatively broad susceptibility to cumulative effects of long-term repeated exposure to fine particulate pollution, resulting in substantive estimates of population average loss of life expectancy in highly polluted environments. Additional knowledge is needed about the specific pollutants or mix of pollutants responsible for the adverse health effects and the biologic mechanisms involved. PMID:10931790

  17. Fluidized reduction of oxides on fine metal powders without sintering

    NASA Technical Reports Server (NTRS)

    Hayashi, T.

    1985-01-01

    In the process of reducing extremely fine metal particles (av. particle size or = 1000 angstroms) covered with an oxide layer, the metal particles are fluidized by a gas flow contg. H, heated, and reduced. The method uniformly and easily reduces surface oxide layers of the extremely fine metal particles without causing sintering. The metal particles are useful for magnetic recording materials, conductive paste, powder metallurgy materials, chem. reagents, and catalysts.

  18. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment.

    PubMed

    McGee, John K; Chen, Lung Chi; Cohen, Mitchell D; Chee, Glen R; Prophete, Colette M; Haykal-Coates, Najwa; Wasson, Shirley J; Conner, Teri L; Costa, Daniel L; Gavett, Stephen H

    2003-06-01

    The catastrophic destruction of the World Trade Center (WTC) on 11 September 2001 caused the release of high levels of airborne pollutants into the local environment. To assess the toxicity of fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)], which may adversely affect the health of workers and residents in the area, we collected fallen dust samples on 12 and 13 September 2001 from sites within a half-mile of Ground Zero. Samples of WTC dust were sieved, aerosolized, and size-separated, and the PM2.5 fraction was isolated on filters. Here we report the chemical and physical properties of PM2.5 derived from these samples and compare them with PM2.5 fractions of three reference materials that range in toxicity from relatively inert to acutely toxic (Mt. St. Helens PM; Washington, DC, ambient air PM; and residual oil fly ash). X-ray diffraction of very coarse sieved WTC PM (< 53 microm) identified calcium sulfate (gypsum) and calcium carbonate (calcite) as major components. Scanning electron microscopy confirmed that calcium-sulfur and calcium-carbon particles were also present in the WTC PM2.5 fraction. Analysis of WTC PM2.5 using X-ray fluorescence, neutron activation analysis, and inductively coupled plasma spectrometry showed high levels of calcium (range, 22-33%) and sulfur (37-43% as sulfate) and much lower levels of transition metals and other elements. Aqueous extracts of WTC PM2.5 were basic (pH range, 8.9-10.0) and had no evidence of significant bacterial contamination. Levels of carbon were relatively low, suggesting that combustion-derived particles did not form a significant fraction of these samples recovered in the immediate aftermath of the destruction of the towers. Because gypsum and calcite are known to cause irritation of the mucus membranes of the eyes and respiratory tract, inhalation of high doses of WTC PM2.5 could potentially cause toxic respiratory effects.

  19. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment.

    PubMed Central

    McGee, John K; Chen, Lung Chi; Cohen, Mitchell D; Chee, Glen R; Prophete, Colette M; Haykal-Coates, Najwa; Wasson, Shirley J; Conner, Teri L; Costa, Daniel L; Gavett, Stephen H

    2003-01-01

    The catastrophic destruction of the World Trade Center (WTC) on 11 September 2001 caused the release of high levels of airborne pollutants into the local environment. To assess the toxicity of fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)], which may adversely affect the health of workers and residents in the area, we collected fallen dust samples on 12 and 13 September 2001 from sites within a half-mile of Ground Zero. Samples of WTC dust were sieved, aerosolized, and size-separated, and the PM2.5 fraction was isolated on filters. Here we report the chemical and physical properties of PM2.5 derived from these samples and compare them with PM2.5 fractions of three reference materials that range in toxicity from relatively inert to acutely toxic (Mt. St. Helens PM; Washington, DC, ambient air PM; and residual oil fly ash). X-ray diffraction of very coarse sieved WTC PM (< 53 microm) identified calcium sulfate (gypsum) and calcium carbonate (calcite) as major components. Scanning electron microscopy confirmed that calcium-sulfur and calcium-carbon particles were also present in the WTC PM2.5 fraction. Analysis of WTC PM2.5 using X-ray fluorescence, neutron activation analysis, and inductively coupled plasma spectrometry showed high levels of calcium (range, 22-33%) and sulfur (37-43% as sulfate) and much lower levels of transition metals and other elements. Aqueous extracts of WTC PM2.5 were basic (pH range, 8.9-10.0) and had no evidence of significant bacterial contamination. Levels of carbon were relatively low, suggesting that combustion-derived particles did not form a significant fraction of these samples recovered in the immediate aftermath of the destruction of the towers. Because gypsum and calcite are known to cause irritation of the mucus membranes of the eyes and respiratory tract, inhalation of high doses of WTC PM2.5 could potentially cause toxic respiratory effects. PMID:12782501

  20. A Source Apportionment of U.S. Fine Particulate Matter Air Pollution

    PubMed Central

    Thurston, George D.; Ito, Kazuhiko; Lall, Ramona

    2011-01-01

    Using daily fine particulate matter (PM2.5) composition data from the 2000–2005 U.S. EPA Chemical Speciation Network (CSN) for over 200 sites, we applied multivariate methods to identify and quantify the major fine particulate matter (PM2.5) source components in the U.S. Novel aspects of this work were: (1) the application of factor analysis (FA) to multi-city daily data, drawing upon both spatial and temporal variations of chemical species; and, (2) the exclusion of secondary components (sulfates, nitrates and organic carbon) from the source identification FA to more clearly discern and apportion the PM2.5 mass to primary emission source categories. For the quantification of source-related mass, we considered two approaches based upon the FA results: 1) using single key tracers for sources identified by FA in a mass regression; and, 2) applying Absolute Principal Component Analysis (APCA). In each case, we followed a two-stage mass regression approach, in which secondary components were first apportioned among the identified sources, and then mass was apportioned to the sources and to other secondary mass not explained by the individual sources. The major U.S. PM2.5 source categories identified via FA (and their key elements) were: Metals Industry (Pb, Zn); Crustal/Soil Particles (Ca, Si); Motor Vehicle Traffic (EC, NO2); Steel Industry (Fe, Mn); Coal Combustion (As, Se); Oil Combustion (V, Ni); Salt Particles (Na, Cl) and Biomass Burning (K). Nationwide spatial plots of the source-related PM2.5 impacts were confirmatory of the factor interpretations: ubiquitous sources, such as Traffic and Soil, were found to be spread across the nation, more unique sources (such as Steel and Metals Processing) being highest in select industrialized cities, Biomass Burning was highest in the U.S. Northwest, while Residual Oil combustion was highest in cities in the Northeastern U.S. and in cities with major seaports. The sum of these source contributions and the secondary PM2

  1. A source apportionment of U.S. fine particulate matter air pollution

    NASA Astrophysics Data System (ADS)

    Thurston, George D.; Ito, Kazuhiko; Lall, Ramona

    2011-08-01

    Using daily fine particulate matter (PM 2.5) composition data from the 2000-2005 U.S. EPA Chemical Speciation Network (CSN) for over 200 sites, we applied multivariate methods to identify and quantify the major fine particulate matter (PM 2.5) source components in the U.S. Novel aspects of this work were: (1) the application of factor analysis (FA) to multi-city daily data, drawing upon both spatial and temporal variations of chemical species; and, (2) the exclusion of secondary components (sulfates, nitrates and organic carbon) from the source identification FA to more clearly discern and apportion the PM 2.5 mass to primary emission source categories. For the quantification of source-related mass, we considered two approaches based upon the FA results: 1) using single key tracers for sources identified by FA in a mass regression; and, 2) applying Absolute Principal Component Analysis (APCA). In each case, we followed a two-stage mass regression approach, in which secondary components were first apportioned among the identified sources, and then mass was apportioned to the sources and to other secondary mass not explained by the individual sources. The major U.S. PM 2.5 source categories identified via FA (and their key tracers) were: Metals Industry (Pb, Zn); Crustal/Soil Particles (Ca, Si); Motor Vehicle Traffic (EC, NO 2); Steel Industry (Fe, Mn); Coal Combustion (As, Se); Oil Combustion (V, Ni); Salt Particles (Na, Cl) and Biomass Burning (K). Nationwide spatial plots of the source-related PM 2.5 impacts were confirmatory of the factor interpretations: ubiquitous sources, such as Traffic and Soil, were found to be spread across the nation, more unique sources (such as Steel and Metals Processing) being highest in select industrialized cities, Biomass Burning was highest in the U.S. Northwest, while Residual Oil combustion was highest in cities in the Northeastern U.S. and in cities with major seaports. The sum of these source contributions and the secondary PM

  2. Source apportionments of ambient fine particulate matter in Israeli, Jordanian, and Palestinian cities.

    PubMed

    Heo, Jongbae; Wu, Bo; Abdeen, Ziad; Qasrawi, Radwan; Sarnat, Jeremy A; Sharf, Geula; Shpund, Kobby; Schauer, James J

    2017-06-01

    This manuscript evaluates spatial and temporal variations of source contributions to ambient fine particulate matter (PM2.5) in Israeli, Jordanian, and Palestinian cities. Twenty-four hour integrated PM2.5 samples were collected every six days over a 1-year period (January to December 2007) in four cities in Israel (West Jerusalem, Eilat, Tel Aviv, and Haifa), four cities in Jordan (Amman, Aqaba, Rahma, and Zarka), and three cities in Palestine (Nablus, East Jerusalem, and Hebron). The PM2.5 samples were analyzed for major chemical components, including organic carbon and elemental carbon, ions, and metals, and the results were used in a positive matrix factorization (PMF) model to estimate source contributions to PM2.5 mass. Nine sources, including secondary sulfate, secondary nitrate, mobile, industrial lead sources, dust, construction dust, biomass burning, fuel oil combustion and sea salt, were identified across the sampling sites. Secondary sulfate was the dominant source, contributing 35% of the total PM2.5 mass, and it showed relatively homogeneous temporal trends of daily source contribution in the study area. Mobile sources were found to be the second greatest contributor to PM2.5 mass in the large metropolitan cities, such as Tel Aviv, Hebron, and West and East Jerusalem. Other sources (i.e. industrial lead sources, construction dust, and fuel oil combustion) were closely related to local emissions within individual cities. This study demonstrates how international cooperation can facilitate air pollution studies that address regional air pollution issues and the incremental differences across cities in a common airshed. It also provides a model to study air pollution in regions with limited air quality monitoring capacity that have persistent and emerging air quality problems, such as Africa, South Asia and Central America. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    SciTech Connect

    Haynes, Erin N.; Chen, Aimin; Ryan, Patrick; Succop, Paul; Wright, John; Dietrich, Kim N.

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  4. [Leaf micro-morphology and features in adsorbing air suspended particulate matter and accumulating heavy metals in seven trees species].

    PubMed

    Liu, Ling; Fang, Yan-Ming; Wang, Shun-Chang; Xie, Ying; Yang, Dan-Dan

    2013-06-01

    The purpose of this study was to assess the relationship between tree leaf micro-morphology and features in adsorbing air suspended particulate matter and accumulating heavy metals. Seven tree species, including Ginkgo biloba, at heavy traffic density site in Huainan were selected to analyze the frequency of air particulate matter retained by leaves, the particle amount of different sizes per unit leaf area retained by leaves and its related micro-morphology structure, and the relationship between particle amount of different sizes per unit leaf area retained by leaves and its related accumulation of heavy metals. We found that the species characterized by small leaf area, special epidemis with abundant fax, and highly uneven cell wall, as well as big and dense stomata and without trichomes mainly absorbed fine particulate matter; while those species with many trichomes mainly retained coarse particulate matter. Accumulation of heavy metals in leaves of the seven species was significantly different except for Ph. Tree species with high capacities in heavy metal accumulation were Ginkgo biloba, Ligustrum lucidum, and Cinnamomum camphora. Accumulation of Cd, Cr, Ni, Zn, Cu and total heavy metal concentration for seven tree species was positively related to the amount of particulate matter absorbed. Correlation coefficients of d10 vs d2.5, d10 vs d1.0, d2.5 vs d1.0 were 0.987, 0.971, 0.996, respective, and the correlate level was significant. The ratios of d2.5/d10, d1.0/d10, d1.0/d2.5 were 0.844, 0.763, 0.822, indicating that the particulate matter from traffic was mainly fine particulates.

  5. Characterization of Fine Particulate Matter and Associations between Particulate Chemical Constituents and Mortality in Seoul, Korea

    PubMed Central

    Son, Ji-Young; Lee, Jong-Tae; Kim, Ki-Hyun; Jung, Kweon

    2012-01-01

    Background: Numerous studies have linked fine particles [≤ 2.5 µm in aerodynamic diameter (PM2.5)] and health. Most studies focused on the total mass of the particles, although the chemical composition of the particles varies substantially. Which chemical components of fine particles that are the most harmful is not well understood, and research on the chemical composition of PM2.5 and the components that are the most harmful is particularly limited in Asia. Objectives: We characterized PM2.5 chemical composition and estimated the effects of cause-specific mortality of PM2.5 mass and constituents in Seoul, Korea. We compared the chemical composition of particles to those of the eastern and western United States. Methods: We examined temporal variability of PM2.5 mass and its composition using hourly data. We applied an overdispersed Poisson generalized linear model, adjusting for time, day of week, temperature, and relative humidity to investigate the association between risk of mortality and PM2.5 mass and its constituents in Seoul, Korea, for August 2008 through October 2009. Results: PM2.5 and chemical components exhibited temporal patterns by time of day and season. The chemical characteristics of Seoul’s PM2.5 were more similar to PM2.5 found in the western United States than in the eastern United States. Seoul’s PM2.5 had lower sulfate (SO4) contributions and higher nitrate (NO3) contributions than that of the eastern United States, although overall PM2.5 levels in Seoul were higher than in the United States. An interquartile range (IQR) increase in magnesium (Mg) (0.05 μg/m3) was associated with a 1.4% increase (95% confidence interval: 0.2%, 2.6%) in total mortality on the following day. Several components that were among the largest contributors to PM2.5 total mass—NO3, SO4, and ammonium (NH4)—were moderately associated with same-day cardiovascular mortality at the p < 0.10 level. Other components with smaller mass contributions [Mg and

  6. Particulate Trace Metal Composition in Coastal Waters Surrounding Taiwan

    NASA Astrophysics Data System (ADS)

    Jiann, K. T.; Huang, K. C.; Hsieh, A. C.

    2016-02-01

    Coastal zones are dynamic environments where materials are transported from the land and where biomass is the most abundant, feeding on the terrestrial nutrients supplied. Therefore, compositions of particulate matter in coastal waters are complex. We collected size-fractionated particulate matter from Taiwan's coastal waters and determine trace metal concentrations, along with some key parameters that allow for the assessment of contribution of particulate matter from different sources. Al content in the particles is used to derive a mineralogical contribution (largely terrestrial) in the particle samples, based on the fact that Al concentrations in common clay minerals and in biota are 2-3 orders of magnitude different. Thereafter, trace metal concentrations in biotic particles can be derived after subtracting contribution from mineral particles (using a reference trace metal concentration in mineral phase), and the results can be compared directly. In the four size classes of particulate matter we collected (0.4-10 µm, 10-60 µm, 60-153 µm, and >153 µm), Al concentration, i.e. mineralogical contribution, decreased with increasing size. The derived biotic trace metal concentrations in near-shore coastal waters showed large variations in different size fractions. Biotic Cd concentrations increased with increasing particle size, implying bioaccumulation along the food chain. For Pb, higher concentrations were mostly associated with smaller size fractions. This may suggest the particle-reactive characteristics applied here for biotic particles. For other elements of biological and environmental significance, such as Cu, Ni, and Zn, their bulk particulate concentrations were relatively constant regardless sample locations and size fraction, but large variations in the biotic contents were found among different size fractions, as well as among samples collected from different locations with various extent of anthropogenic influence.

  7. Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model.

    PubMed

    Singh, Nandita; Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, Tirthankar

    2017-04-01

    Fine particulates (PM2.5) constitute dominant proportion of airborne particulates and have been often associated with human health disorders, changes in regional climate, hydrological cycle and more recently to food security. Intrinsic properties of particulates are direct function of sources. This initiates the necessity of conducting a comprehensive review on PM2.5 sources over South Asia which in turn may be valuable to develop strategies for emission control. Particulate source apportionment (SA) through receptor models is one of the existing tool to quantify contribution of particulate sources. Review of 51 SA studies were performed of which 48 (94%) were appeared within a span of 2007-2016. Almost half of SA studies (55%) were found concentrated over few typical urban stations (Delhi, Dhaka, Mumbai, Agra and Lahore). Due to lack of local particulate source profile and emission inventory, positive matrix factorization and principal component analysis (62% of studies) were the primary choices, followed by chemical mass balance (CMB, 18%). Metallic species were most regularly used as source tracers while use of organic molecular markers and gas-to-particle conversion were minimum. Among all the SA sites, vehicular emissions (mean ± sd: 37 ± 20%) emerged as most dominating PM2.5 source followed by industrial emissions (23 ± 16%), secondary aerosols (22 ± 12%) and natural sources (20 ± 15%). Vehicular emissions (39 ± 24%) also identified as dominating source for highly polluted sites (PM2.5>100 μgm(-3), n = 15) while site specific influence of either or in combination of industrial, secondary aerosols and natural sources were recognized. Source specific trends were considerably varied in terms of region and seasonality. Both natural and industrial sources were most influential over Pakistan and Afghanistan while over Indo-Gangetic plain, vehicular, natural and industrial emissions appeared dominant. Influence of vehicular emission was found

  8. Tracking Petroleum Refinery Emission Events Using Lanthanum and Lanthanides as Elemental Markers for Fine Particulate Matter

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Chellam, S.; Fraser, M. P.

    2007-12-01

    This presentation reports the development and application of an analytical method to quantify the rare earth elements (REEs) in atmospheric particulate matter and emissions of catalyst material from the petroleum refining industry. Inductively coupled plasma - mass spectrometry following high temperature/high pressure microwave digestion has been used to study the REE composition of several fresh and spent catalysts used in fluidized-bed catalytic cracking (FCC) units in petroleum refineries as well as in ambient atmospheric fine particulate matter collected in Houston, TX. The results show that the routine emissions from local FCC units in Houston contribute a constant and low amount to ambient PM2.5 of ~0.1 micrograms per cubic meter. However, a significant (33 - 106 fold) increase in the contributions of FCC emissions to PM2.5 is quantified during an upset emission event compared with background levels associated with routine operation. The impact of emissions from the local refinery that reported the emission event was tracked to a site approximately 50 km downwind from the source, illustrating the potential exposure of humans over a large geographical area through the long-range transport of atmospheric fine particles as well as the power of elemental signatures to understand the sources of fine particles.

  9. Integrating nephelometer measurements for the airborne fine particulate matter (PM 2.5) mass concentrations

    NASA Astrophysics Data System (ADS)

    Shendrikar, Arun D.; Steinmetz, William K.

    This work describes the application of integrating nephelometer measurements for the determination of airborne fine particulate matter (PM 2.5) mass concentrations. In response to over 150 complaints (spanning a period of 20 years) from local citizens of irritant fogs and pungent odors, the North Carolina Division of Air Quality conducted a monitoring program, in collaboration with the Washington Regional Air Quality Office and PCS Phosphate, Inc., to characterize air quality in the Pamlico River airshed of eastern North Carolina. The continuous monitoring from 1 May through 31 October 2000 at four sites, involved collection of air samples and subsequent quantification for reactive acidic and basic gases, aerosols and fine particulate matter (PM 2.5) using a 7-day Annular Denuder System (ADS). Additionally, the airborne concentration of the fine particulate matter (PM 2.5) was concurrently (to the ADS) monitored using a tapered element oscillating micro-balance (TEOM). Relevant meteorological data were obtained from conventional sensors installed at each sampling site. An integrating nephelometer was used for the regional visibility measurements. An integrating nephelometer was used to measure light scattering (a surrogate for visibility) continuously for 24-h per day over a 6-month period at the four sites. A linear relationship has been found for the nephelometer (Beta scat) measurements and mass data (PM 2.5) obtained both from the TEOM and ADS. The calculated correlation coefficient results between nephelometer and ADS and nephelometer and TEOM are satisfactory and close to one. This indicates that in this region, the nephelometer measurements have the potential to be a surrogate for the determination of regional airborne fine particle (PM 2.5) mass concentrations. The ratios for each of the four sampling sites using 24-h averages of nephelometer data and PM 2.5 concentrations from the ADS units and the TEOM gave an average ratio of 0.32±0.02. This value

  10. A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects.

    PubMed

    Mukherjee, Arideep; Agrawal, Madhoolika

    2017-03-31

    Fine particulate matter (PM) in the ambient air is implicated in a variety of human health issues throughout the globe. Regulation of fine PM in the atmosphere requires information on the dimension of the problem with respect to variations in concentrations and sources. To understand the current status of fine particles in the atmosphere and their potential harmful health effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 2000 to evaluate the global scenario of the PM2.5 (particles <2.5 μm in aerodynamic diameter), its exceedance of national and international standards, sources, mechanism of toxicity, and harmful health effects of PM2.5 and its components. PM2.5 levels and exceedances of national and international standards were several times higher in Asian countries, while levels in Europe and USA were mostly well below the respective standards. Vehicular traffic has a significant influence on PM2.5 levels in urban areas; followed by combustion activities (biomass, industrial, and waste burning) and road dust. In urban atmosphere, fine particles are mostly associated with different health effects with old aged people, pregnant women, and more so children being the most susceptible ones. Fine PM chemical constituents severely effect health due to their carcinogenic or mutagenic nature. Most of the research indicated an exceedance of fine PM level of the standards with a diverse array of health effects based on PM2.5 chemical constituents. Emission reduction policies with epidemiological studies are needed to understand the benefits of sustainable control measures for fine PM mitigation.

  11. Comparison of gene expression profiles induced by coarse, fine, and ultrafine particulate matter.

    PubMed

    Huang, Yuh-Chin T; Karoly, Edward D; Dailey, Lisa A; Schmitt, Michael T; Silbajoris, Robert; Graff, Donald W; Devlin, Robert B

    2011-01-01

    Coarse, fine, and ultrafine particulate matter (PM) fractions possess different physical properties and chemical compositions and may produce different adverse health effects. Studies were undertaken to determine whether or not gene expression patterns may be used to discriminate among the three size fractions. Airway epithelial cells obtained from 6 normal individuals were exposed to Chapel Hill coarse, fine or ultrafine PM (250 μg/ml) for 6 and 24 h (n=3 different individuals each). RNA was isolated and hybridized to Affymetrix cDNA microarrays. Significant genes were identified and mapped to canonical pathways. Expression of selected genes was confirmed by reverse-transcription polymerase chain reaction (RT-PCR). The numbers of genes altered by coarse, fine, and ultrafine PM increased from 0, 6, and 17 at 6 h to 1281, 302, and 455 at 24 h, respectively. The NRF2-mediated oxidative stress response, cell cycle:G2/M DNA damage checkpoint regulation, and mitotic roles of polo-like kinase were the top three pathways altered by all three fractions. Fine and ultrafine PM displayed more similar gene expression patterns. One example was the increased expression of metallothionein isoforms, reflecting the higher zinc content associated with fine and ultrafine fractions. A set of 10 genes was identified that could discriminate fine and ultrafine PM from coarse PM. These results indicate that common properties shared by the three size fractions as well as size-specific factors, e.g., compositions, may determine the effects on gene expression. Genomic markers may be used to discriminate coarse from fine and ultrafine PM.

  12. Fine particulate speciation profile and emission factor of municipal solid waste incinerator established by dilution sampling method.

    PubMed

    Yang, Hsi-Hsien; Luo, Shao-Wei; Lee, Kuei-Ting; Wu, Jhin-Yan; Chang, Chun Wei; Chu, Pei Feng

    2016-08-01

    In this study, fine particulate matter (PM2.5) emitted from a municipal solid waste incinerator (MSWI) was collected using dilution sampling method. Chemical compositions of the collected PM2.5 samples, including carbon content, metal elements, and water-soluble ions, were analyzed. Traditional in-stack hot sampling was simultaneously conducted to compare the influences of dilution on PM2.5 emissions and the characteristics of the bonded chemical species. The results, established by a dilution sampling method, show that PM2.5 and total particulate matter (TPM) emission factors were 61.6 ± 4.52 and 66.1 ± 5.27 g ton-waste(-1), respectively. The average ratio of PM2.5/TPM is 0.93, indicating that more than 90% of PM emission from the MSWI was fine particulate. The major chemical species in PM2.5 included organic carbon (OC), Cl(-), NH4(+), elemental carbon (EC) and Si, which account for 69.7% of PM2.5 mass. OC was from the unburned carbon in the exhaust, which adsorbed onto the particulate during the cooling process. High Cl(-) emission is primarily attributable to wastes containing plastic bags made of polyvinyl chloride, salt in kitchen refuse and waste biomass, and so on. Minor species that account for 0.01-1% of PM2.5 mass included SO4(2-), K(+), Na, K, NO3(-), Al, Ca(2+), Zn, Ca, Cu, Fe, Pb, and Mg. The mean ratio of dilution method/in-stack hot method was 0.454. The contents of water-soluble ions (Cl(-), SO4(2-), NO3(-)) were significantly enriched in PM2.5 via gas-to-particle conversion in the dilution process. Results indicate that in-stack hot sampling would underestimate levels of these species in PM2.5. PM2.5 samples from a municipal solid waste incinerator (MSWI) were collected simultaneously by a dilution sampling technique and a traditional in-stack method. PM2.5 emission factors and chemical speciation profiles were established. Dilution sampling provides more reliable data than in-stack hot sampling. The results can be applied to estimate the PM2

  13. Fine particulate air pollution and total mortality among elderly Californians, 1973-2002.

    PubMed

    Enstrom, James E

    2005-12-15

    Fine particulate air pollution has been associated with increases in long-term mortality in selected cohort studies, and this association has been influential in the establishment of air quality regulations for fine particles (PM(2.5)). However, this epidemiologic evidence has been questioned because of methodological issues, conflicting findings, and lack of an accepted causal mechanism. To further evaluate this association, the long-term relation between fine particulate air pollution and total mortality was examined in a cohort of 49, 975 elderly Californians, with a mean age of 65 yr as of 1973. These subjects, who resided in 25 California counties, were enrolled in 1959, recontacted in 1972, and followed from 1973 through 2002; 39, 846 deaths were identified. Proportional hazards regression models were used to determine their relative risk of death (RR) and 95% confidence interval (CI) during 1973-2002 by county of residence. The models adjusted for age, sex, cigarette smoking, race, education, marital status, body mass index, occupational exposure, exercise, and a dietary factor. For the 35, 789 subjects residing in 11 of these counties, county-wide exposure to fine particles was estimated from outdoor ambient concentrations measured during 1979-1983 and RRs were calculated as a function of these PM(2.5) levels (mean of 23.4 microg/m(3)). For the initial period, 1973-1982, a small positive risk was found: RR was 1.04 (1.01-1.07) for a 10-microg/m(3) increase in PM(2.5). For the subsequent period, 1983-2002, this risk was no longer present: RR was 1.00 (0.98-1.02). For the entire follow-up period, RR was 1.01 (0.99-1.03). The RRs varied somewhat among major subgroups defined by sex, age, education level, smoking status, and health status. None of the subgroups that had significantly elevated RRs during 1973-1982 had significantly elevated RRs during 1983-2002. The RRs showed no substantial variation by county of residence during any of the three follow

  14. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity.

    PubMed

    Haynes, Erin N; Chen, Aimin; Ryan, Patrick; Succop, Paul; Wright, John; Dietrich, Kim N

    2011-11-01

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter (≤2.5 μm) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter≤2.5 and ≤10 μm emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical significance

  15. Source Signatures of Fine Particulate Matter from Petroleum Refining and Fuel Use

    SciTech Connect

    Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Robert Huggins

    1999-12-31

    Combustion experiments were carried out on four different residual fuel oils in a 732 kW boiler. Particulate matter (PM) emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 microns in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the <2.5 micron fraction (PM{sub 2.5}) in fact consists of carbonaceous cenospheres and vesicular particles that range up to 10 microns in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As Kedges, and at the Pb L-edge. Deconvolution of the x-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM{sub 2.5} samples than in the >2.5 micron samples (PM{sub 2.5+}). Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agree fairly well with that of NiSO4, while most of the V spectra closely resemble that of vanadyl sulfate (VO{center_dot}SO{sub 4}{center_dot}xH{sub 2}O). The other metals investigated (Fe, Cu, Zn, and Pb) were also present predominantly as sulfates. Arsenic is present as an arsenate (As{sup +5}). X-ray diffraction patterns of the PM{sub 2.5} fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the LOI ranging from 64 to 87 % for the PM{sub 2.5} fraction and from 88 to 97% for the PM{sub 2.5+} fraction. {sup 13}C nuclear magnetic resonance (NMR) analysis indicates that the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.

  16. Infiltration processing of metal matrix composites using coated ceramic particulates

    NASA Astrophysics Data System (ADS)

    Leon-Patino, Carlos Alberto

    2001-07-01

    A new process was developed to fabricate particulate metal matrix composites (MMCs). The process involves three steps: (1) modifying the particulate surface by metal coating, (2) forming a particulate porous compact; and (3) introducing metal into the channel network by vacuum infiltration. MMCs with different reinforcements, volume fractions, and sizes can be produced by this technique. Powders of alumina and silicon carbide were successfully coated with nickel and copper in preparation for infiltration with molten aluminum. Electroless Ni and Cu deposition was used since it enhances the wettability of the reinforcements for composite fabrication. While Cu deposits were polycrystalline, traces of phosphorous co-deposited from the electroless bath gave an amorphous Ni-P coating. The effect of metal coating on wetting behavior was evaluated at 800°C on plain and metal-coated ceramic plates using a sessile drop technique. The metallic films eliminated the non-wetting behavior of the uncoated ceramics, leading to equilibrium contact angles in the order of 12° and below 58° for Ni and Cu coated ceramics, respectively. The spreading data indicated that local diffusion at the triple junction was the governing mechanism of the wetting process. Precipitation of intermetallic phases in the drop/ceramic interface delayed the formation of Al4C3. Infiltration with molten Al showed that the coated-particulates are suitable as reinforcing materials for fabricating MMCs, giving porosity-free components with a homogeneously distributed reinforcing phase. The coating promoted easy metal flow through the preform, compared to the non-infiltration behavior of the uncoated counterparts. Liquid state diffusion kinetics due to temperature dependent viscosity forces controlled the infiltration process. Microstructural analysis indicated the formation of intermetallic phases such as CuAl 2, in the case of Cu coating, and Ni2Al3 and NiAl 3 when Ni-coated powders were infiltrated. The

  17. Peroxides and macrophages in the toxicity of fine particulate matter in rats.

    PubMed

    Laskin, Debra L; Morio, Lisa; Hooper, Kimberly; Li, Tsung-Hung; Buckley, Brian; Turpin, Barbara

    2003-12-01

    Epidemiologists have observed a positive association between human morbidity and mortality and the atmospheric concentrations of fine particulate matter (PM), but the mechanisms underlying the toxic effects of PM have not been elucidated. Various components of ambient PM have been implicated in toxicity (including ultrafine particles, transition metals, organics and oxidants). Our research focused on hydrogen peroxide (H2O2). We speculated that fine PM transports H2O2 into the lower lung, leading to tissue injury and to accumulation and activation of macrophages in these regions. The macrophages release cytotoxic mediators and proinflammatory cytokines that contribute to the pathogenesis of tissue injury. To test this hypothesis, we conducted studies to determine (1) whether tissue injury induced by aerosols is mediated by cytotoxic H2O2 carried into the lower lung by fine particles and (2) whether exposure of rats to fine PM leads to accumulation of activated macrophages in the lung. For our studies, systems were designed to generate model atmospheric fine PM and atmospheric peroxides consisting of an ammonium sulfate [(NH4)2SO4] aerosol (mass median diameter, 0.46 +/- 0.14 microm) and H2O2. We also constructed a 6-port nose-only exposure chamber. Female Sprague Dawley rats were exposed for 2 hours to aerosols consisting of (NH4)2SO4 (430 microg/m3), (NH4)2SO4 + 10, 20 or 100 ppb H2O2, vapor-phase H2O2 (10, 20 or 100 ppb), or particle-free air. Studies using oxygen-18 (18O)-labeled H2O2 were conducted to validate the transport of H2O2 into the lower lung with (NH4)2SO4. Rats were killed immediately (0 hours) or 24 hours after exposure. Compared with control animals, inhalation of (NH4)2SO4 and H2O2, alone or in combination, had no major effect on cell number or viability, protein content, or lactate dehydrogenase (LDH) levels in bronchoalveolar lavage (BAL) fluid collected either immediately or 24 hours after exposure. However, electron microscopy revealed that a

  18. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    DOE PAGES

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; ...

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrationsmore » were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.« less

  19. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    PubMed Central

    2015-01-01

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). These estimates offer information about global population exposure to the chemical components and sources of PM2.5. PMID:25343705

  20. Analysis of semi-volatile materials (SVM) in fine particulate matter

    NASA Astrophysics Data System (ADS)

    Salvador, Christian Mark; Chou, Charles C.-K.

    2014-10-01

    The mass fraction of semi-volatile materials (SVM) in fine particulate matter (PM2.5) was investigated at a subtropical urban aerosol observatory (TARO, 25.0 °N, 121.5 °E) in Taipei, Taiwan during August 2013. In particular, an integrated Denuder-FDMS-TEOM system was employed to study the effectiveness of the coupling of FDMS and TEOM instruments. The charcoal and MgO denuders used in this study performed a removal efficiency of 89 and 95% for positive interferences in OC and nitrate measurements, respectively, and did not induce a significant particle loss during the field campaign, suggesting that denuders should be considered as a standard device in PM2.5 instrumentation. Analysis on the mass concentration and speciation data found that, as a result of SVM loss, FRM-based measurement underestimated PM2.5 by 21% in our case. Coupling FDMS to TEOM significantly improved the bias in PM2.5 mass concentration from -25% to -14%. The negative bias in FDMS-TEOM was attributed to the failure of FDMS in recovering the mass of lost SVOMs in PM2.5. The results of this study highlight the significance of SVM in a subtropical urban environment, give a warning of underestimated health risk relevant to PM2.5 exposure, and necessitate further development of instrument and/or technique to provide accurate ambient levels of fine particulate matters.

  1. The Effects on Bronchial Epithelial Mucociliary Cultures of Coarse, Fine, and Ultrafine Particulate Matter From an Underground Railway Station

    PubMed Central

    Loxham, Matthew; Morgan-Walsh, Rebecca J.; Cooper, Matthew J.; Blume, Cornelia; Swindle, Emily J.; Dennison, Patrick W.; Howarth, Peter H.; Cassee, Flemming R.; Teagle, Damon A. H.; Palmer, Martin R.; Davies, Donna E.

    2015-01-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10–2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1–11.1 µg/cm2) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research. PMID:25673499

  2. The effects on bronchial epithelial mucociliary cultures of coarse, fine, and ultrafine particulate matter from an underground railway station.

    PubMed

    Loxham, Matthew; Morgan-Walsh, Rebecca J; Cooper, Matthew J; Blume, Cornelia; Swindle, Emily J; Dennison, Patrick W; Howarth, Peter H; Cassee, Flemming R; Teagle, Damon A H; Palmer, Martin R; Davies, Donna E

    2015-05-01

    We have previously shown that underground railway particulate matter (PM) is rich in iron and other transition metals across coarse (PM10-2.5), fine (PM2.5), and quasi-ultrafine (PM0.18) fractions and is able to generate reactive oxygen species (ROS). However, there is little knowledge of whether the metal-rich nature of such particles exerts toxic effects in mucus-covered airway epithelial cell cultures or whether there is an increased risk posed by the ultrafine fraction. Monolayer and mucociliary air-liquid interface (ALI) cultures of primary bronchial epithelial cells (PBECs) were exposed to size-fractionated underground railway PM (1.1-11.1 µg/cm(2)) and release of lactate dehydrogenase and IL-8 was assayed. ROS generation was measured, and the mechanism of generation studied using desferrioxamine (DFX) and N-acetylcysteine (NAC). Expression of heme oxygenase-1 (HO-1) was determined by RT-qPCR. Particle uptake was studied by transmission electron microscopy. Underground PM increased IL-8 release from PBECs, but this was diminished in mucus-secreting ALI cultures. Fine and ultrafine PM generated a greater level of ROS than coarse PM. ROS generation by ultrafine PM was ameliorated by DFX and NAC, suggesting an iron-dependent mechanism. Despite the presence of mucus, ALI cultures displayed increased HO-1 expression. Intracellular PM was observed within vesicles, mitochondria, and free in the cytosol. The results indicate that, although the mucous layer appears to confer some protection against underground PM, ALI PBECs nonetheless detect PM and mount an antioxidant response. The combination of increased ROS-generating ability of the metal-rich ultrafine fraction and ability of PM to penetrate the mucous layer merits further research.

  3. ROS-generating/ARE-activating capacity of metals in roadway particulate matter deposited in urban environment.

    PubMed

    Shuster-Meiseles, Timor; Shafer, Martin M; Heo, Jongbae; Pardo, Michal; Antkiewicz, Dagmara S; Schauer, James J; Rudich, Assaf; Rudich, Yinon

    2016-04-01

    In this study we investigated the possible causal role for soluble metal species extracted from roadway traffic emissions in promoting particulate matter (PM)-induced reactive oxygen species (ROS) production and antioxidant response element (ARE) promoter activation. To this end, these responses have been evaluated in alveolar macrophage and epithelial lung cells that have been exposed to 'Unfiltered', 'Filtered' and 'Filtered+Chelexed' water extracts of PM samples collected from the roadway urban environments of Thessaloniki, Milan and London. Except for Thessaloniki, our results demonstrate that filtration resulted in a minor decrease in ROS activity of the fine PM fraction, suggesting that ROS activity is attributed mainly to water-soluble PM species. In contrast to ROS, ARE activity was mediated predominantly by the water-soluble component of PM present in both the fine and coarse extracts. Further removal of metals by Chelex treatment from filtered water extracts showed that soluble metal species are the major factors mediating ROS and ARE activities of the soluble fraction, especially in the London PM extracts. Finally, utilizing step-wise multiple-regression analysis, we show that 87% and 78% of the total variance observed in ROS and ARE assays, respectively, is accounted for by changes in soluble metal concentration. Using a statistical analysis we find that As, Zn and Fe best predict the ROS-generating/ARE-activating capacity of the near roadway particulate matter in the pulmonary cells studied. Collectively, our findings imply that soluble metals present in roadside PM are potential drivers of both pro- and anti-oxidative effects of PM in respiratory tract.

  4. 76 FR 48207 - Federal Implementation Plans: Interstate Transport of Fine Particulate Matter and Ozone and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ...In this action, EPA is limiting the interstate transport of emissions of nitrogen oxides (NOX) and sulfur dioxide (SO2) that contribute to harmful levels of fine particle matter (PM2.5) and ozone in downwind states. EPA is identifying emissions within 27 states in the eastern United States that significantly affect the ability of downwind states to attain and maintain compliance with the 1997 and 2006 fine particulate matter national ambient air quality standards (NAAQS) and the 1997 ozone NAAQS. Also, EPA is limiting these emissions through Federal Implementation Plans (FIPs) that regulate electric generating units (EGUs) in the 27 states. This action will substantially reduce adverse air quality impacts in downwind states from emissions transported across state lines. In conjunction with other federal and state actions, it will help assure that all but a handful of areas in the eastern part of the country achieve compliance with the current ozone and PM2.5 NAAQS by the deadlines established in the Clean Air Act (CAA or Act). The FIPs may not fully eliminate the prohibited emissions from certain states with respect to the 1997 ozone NAAQS for two remaining downwind areas and EPA is committed to identifying any additional required upwind emission reductions and taking any necessary action in a future rulemaking. In this action, EPA is also modifying its prior approvals of certain State Implementation Plan (SIP) submissions to rescind any statements that the submissions in question satisfy the interstate transport requirements of the CAA or that EPA's approval of the SIPs affects our authority to issue interstate transport FIPs with respect to the 1997 fine particulate and 1997 ozone standards for 22 states. EPA is also issuing a supplemental proposal to request comment on its conclusion that six additional states significantly affect downwind states' ability to attain and maintain compliance with the 1997 ozone NAAQS.

  5. Temporal variation of hydroxyl radical generation and 8-hydroxy-2'-deoxyguanosine formation by coarse and fine particulate matter

    PubMed Central

    Shi, T; Knaapen, A; Begerow, J; Birmili, W; Borm, P; Schins, R

    2003-01-01

    Aims: To determine the induction of 8-hydroxy-2'-deoxyguanosine (8-OHdG) by fine (<2.5 µm) and coarse (10–2.5 µm) particulate matter (PM) sampled over time at one sampling location, and to relate the observed effects to the hydroxyl radical (•OH) generating activities and transition metal content of these samples, and to meteorological parameters. Methods: Weekly samples of coarse and fine PM were analysed for H2O2 dependent •OH formation using electron spin resonance (ESR) and formation of 8-OHdG in calf thymus DNA using an immuno-dotblot assay. Immunocytochemistry was used to determine 8-OHdG formation in A549 human epithelial lung cells. To determine temporal effects, samples from six weeks in summer and six weeks in autumn/winter were compared using ESR and the dotblot assay. Concentrations of leachable V, Cr, Fe, Ni, and Cu were determined by inductively coupled plasma mass spectrometry. Results: Both PM fractions elicited •OH generation as well as 8-OHdG formation in calf thymus DNA and in A549 cells. 8-OHdG formation in the naked DNA was significantly related to •OH generation, but not to metal concentrations except for copper. A significantly higher •OH generation was observed for coarse PM, but not fine PM collected during the autumn/winter season; this was not due to differences in sampled mass or metal content. Specific weather conditions under which increased •OH formation in the coarse mode was observed suggest that other, as yet unknown, anthropogenic components might affect the radical generating capacity of PM. Conclusions: Both coarse and fine PM are able to generate •OH, and induce formation of 8-OHdG. When considered at equal mass, •OH formation shows considerable variability with regard to the fraction of PM, as well as the sampling season. The toxicological implications of this heterogeneity in •OH formation by PM, as can be easily determined by ESR, need further investigation. PMID:12709515

  6. Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013.

    PubMed

    Villalobos, Ana M; Barraza, Francisco; Jorquera, Héctor; Schauer, James J

    2015-04-15

    Santiago is one of the largest cities in South America and has experienced high fine particulate matter (PM2.5) concentrations in fall and winter months for decades. To better understand the sources of fall and wintertime pollution in Santiago, PM2.5 samples were collected for 24 h every weekday from March to October 2013 for chemical analysis. Samples were analyzed for mass, elemental carbon (EC), organic carbon (OC), water soluble organic carbon (WSOC), water soluble nitrogen (WSTN), secondary inorganic ions, and particle-phase organic tracers for source apportionment. Selected samples were analyzed as monthly composites for organic tracers. PM2.5 concentrations were considerably higher in the coldest months (June-July), averaging (mean ± standard deviation) 62±15 μg/m(3) in these two months. Average fine particle mass concentration during the study period was 40±20 μg/m(3). Organic matter during the peak winter months was the major component of fine particles comprising around 70% of the particle mass. Source contributions to OC were calculated using organic molecular markers and a chemical mass balance (CMB) receptor model. The four combustion sources identified were wood smoke, diesel engine emission, gasoline vehicles, and natural gas. Wood smoke was the predominant source of OC, accounting for 58±42% of OC in fall and winter. Wood smoke and nitrate were the major contributors to PM2.5. In fall and winter, wood smoke accounted for 9.8±7.1 μg/m(3) (21±15%) and nitrate accounted for 9.1±4.8 μg/m(3) (20±10%) of fine PM. The sum of secondary inorganic ions (sulfate, nitrate, and ammonium) represented about 30% of PM2.5 mass. Secondary organic aerosols contributed only in warm months, accounting for about 30% of fine PM during this time. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Predictors of indoor fine particulate matter in infants' bedrooms in Denmark.

    PubMed

    Raaschou-Nielsen, Ole; Sørensen, Mette; Hertel, Ole; Chawes, Bo L K; Vissing, Nadja; Bønnelykke, Klaus; Bisgaard, Hans

    2011-01-01

    Particulate matter (PM) in ambient air is responsible for adverse health effects in adults and children. Relatively little is known about the concentrations, sources and health effects of PM in indoor air. To identify sources of fine PM in infants' bedrooms. We conducted 1122 measurements of fine PM (PM(2.5) and black smoke) in the bedrooms of 389 infants and registered indoor activities and characteristics of the house. We used mixed models to identify and quantify associations between predictors and concentrations. The concentration of PM(2.5) was 2.8 times (95% confidence interval [CI], 1.4-5.5 times) higher in houses where people smoked; the concentration increased by 19% (95% CI, 15-23%) per doubling of the amount of tobacco smoked and decreased by 16% (95% CI, 9-27%) per 5-m increase in the distance between the smoking area and the infant's bedroom. Frying without a range hood was associated with a 32% (95% CI, 12-54%) higher PM(2.5) concentration per time per day, whereas frying with use of a range hood did not increase the concentration in the infant's bedroom. Use of a fireplace, stove, candles or vacuum-cleaner, interior rebuilding or renovation, local traffic, inner city residence and cold season increased the fine PM concentration. Open windows decreased the PM(2.5) concentration in homes with smokers but increased the concentration in non-smoking homes. We identified several sources of fine PM in infants' bedrooms. The concentrations can be reduced by use of a range hood for frying, by not using candles, a fireplace or a stove, by increasing the distance between the bedroom and the smoking area and by opening windows in houses of smokers. Smoking is a strong predictor of fine PM in infants' bedrooms and should be avoided. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Contribution of ship emissions to the fine particulate in the community near an international port in Hong Kong

    NASA Astrophysics Data System (ADS)

    Yau, P. S.; Lee, S. C.; Cheng, Y.; Huang, Y.; Lai, S. C.; Xu, X. H.

    2013-04-01

    Fine particulates from ship exhaust are proved to be harmful to human health. To better understand the impact of ship emissions on the particulate matter (PM) level of port-side residential areas, fine particulates (PM2.5) were collected near Kwai Chung and Tsing Yi Container Terminals (KTCT) in Hong Kong during August 2009 to March 2010. The average PM2.5 concentration was 30.5 μg/m3. The contribution of ship emissions on fine particulates near the container port was demonstrated by source apportionment. By positive matrix factorization (PMF) analysis, eight potential sources, i.e., residual oil (RO) combustion, marine diesel oil (MDO) combustion, vehicle emission, coal combustion, incineration, crustal and sea-salt, secondary sulfate and secondary nitrate were identified. Among the identified sources, RO combustion and MDO combustion were regarded as ship emissions and accounted for 12% and 7% of PM2.5 respectively. An estimate of 1.8 μg/m3 (6%) of secondary sulfate corresponded to 3.6 μg/m3 of primary fine particulates from RO combustion. Together with primary PM emitted from ships, the total ambient PM2.5 mass associated with ship emissions at the sampling site was 7.6 μg/m3 (25%).

  9. Impact of fine particulate fluctuation and other variables on Beijing's air quality index.

    PubMed

    Chen, Bo; Lu, Shaowei; Li, Shaoning; Wang, Bing

    2015-04-01

    We analyzed fluctuation in Beijing's air quality over 328 days, based on air quality grades and air quality data from 35 atmospheric monitoring stations. Our results show the air over Beijing is subject to pollution 152 days of the year, or 46.34%. Among all pollutants, fine particulates, solid or liquid, 2.5 μm or less in size (PM2.5), appeared most frequently as the primary pollutant: 249 days, or 76% of the sample year (328 days). Nitrogen dioxide (NO2) and coarse particulates (PM10) cause the least pollution, appearing only 7 and 3 days, or 2 and 1% of the sample year, respectively. In Beijing, fine particulates like PM2.5 vary seasonally: 154.54 ± 18.60 in winter > 145.22 ± 18.61 in spring > 140.16 ± 20.76 in autumn > 122.37 ± 13.42 in summer. Air quality is best in August and worst in December, while various districts in Beijing experience different air quality. To be specific, from south to north and from west to east, air quality tends to improve. Meteorological elements have a constraining effect on air pollutants, which means there is a linear correlation between the air quality index and humidity, rainfall, wind speed, and temperature. Under a typical pollution scenario, the higher the air quality index (AQI) value, the lower the wind speed and the greater the relative humidity; the lower the AQI value, the higher the wind speed and lower the relative humidity. Analysis of influencing factors reveals that the air pollution is mainly particulate matter produced by burning coal, vehicle emissions, volatile oils and gas, fast development of food services, emissions from the surrounding region, and natural dust clouds formed in arid areas to the northwest. Topography affects the distribution of meteorological conditions, in turn varying air quality over the region from one location to another. Human activities also exercise impact on urban air quality with dual functions.

  10. The relation between past exposure to fine particulate air pollution and prevalent anxiety: observational cohort study.

    PubMed

    Power, Melinda C; Kioumourtzoglou, Marianthi-Anna; Hart, Jaime E; Okereke, Olivia I; Laden, Francine; Weisskopf, Marc G

    2015-03-24

    To determine whether higher past exposure to particulate air pollution is associated with prevalent high symptoms of anxiety. Observational cohort study. Nurses' Health Study. 71,271 women enrolled in the Nurses' Health Study residing throughout the contiguous United States who had valid estimates on exposure to particulate matter for at least one exposure period of interest and data on anxiety symptoms. Meaningfully high symptoms of anxiety, defined as a score of 6 points or greater on the phobic anxiety subscale of the Crown-Crisp index, administered in 2004. The 71,271 eligible women were aged between 57 and 85 years (mean 70 years) at the time of assessment of anxiety symptoms, with a prevalence of high anxiety symptoms of 15%. Exposure to particulate matter was characterized using estimated average exposure to particulate matter <2.5 μm in diameter (PM2.5) and 2.5 to 10 μm in diameter (PM2.5-10) in the one month, three months, six months, one year, and 15 years prior to assessment of anxiety symptoms, and residential distance to the nearest major road two years prior to assessment. Significantly increased odds of high anxiety symptoms were observed with higher exposure to PM2.5 for multiple averaging periods (for example, odds ratio per 10 µg/m(3) increase in prior one month average PM2.5: 1.12, 95% confidence interval 1.06 to 1.19; in prior 12 month average PM2.5: 1.15, 1.06 to 1.26). Models including multiple exposure windows suggested short term averaging periods were more relevant than long term averaging periods. There was no association between anxiety and exposure to PM2.5-10. Residential proximity to major roads was not related to anxiety symptoms in a dose dependent manner. Exposure to fine particulate matter (PM2.5) was associated with high symptoms of anxiety, with more recent exposures potentially more relevant than more distant exposures. Research evaluating whether reductions in exposure to ambient PM2.5 would reduce the population level

  11. Electrostatic precipitator for metal and particulate emission control

    SciTech Connect

    Yang, C.L.; Beltran, M.

    2000-03-01

    Improving air pollution control systems is crucial for incinerators to be an option for sewage sludge disposal. Combinations of venturi and tray tower scrubbers are the most popular air pollution control system for sewage sludge incinerators. Recently wet electrostatic precipitators have been installed downstream of the scrubbing system to ensure the compliance of new regulations. Performance and stack tests were conducted on sludge incinerators at Somerset Raritan Valley Sewage Authority and New England Treatment Company. Efficiencies in terms of heavy metal and particulate removals are presented. This paper also describes sewage sludge incinerators, existing air pollution control systems, design considerations of the wet electrostatic precipitator, as well as sampling and analysis methods.

  12. [Concentrations of fine particulate matters and ultrafine particles and influenced factors during winter in an area of Beijing].

    PubMed

    Ni, Yang; Tu, Xing-ying; Zhu, Yi-dan; Guo, Xin-biao; Deng, Fu-rong

    2014-06-18

    To study the concentrations of fine particulate matters and ultrafine particles and influenced factors during winter in an area of Beijing. Real-time monitoring of particles' mass and number concentrations were conducted in an area of Beijing from February 7(th) to 27(th), 2013. At the same time, the meteorological data were also collected from the Beijing meteorological website. Differences of the particles' mass and number concentrations during different periods were analyzed using Mann-Whitney U test. Meanwhile, the influenced factors were also analyzed. The mean concentrations of fine particulate matters and ultrafine particles were (157.2 ± 142.8) μg/m³ and (25 018 ± 9 309) particles/cm³, respectively. The particles' number and mass concentrations in haze days were 1.27 times and 2.91 times higher than those in non-haze days, respectively. The mass concentrations of fine particulate matters in the self-monitoring site were higher than those in the nearest central monitoring sites, and the hourly-average concentrations of particles were significantly consistent with those at the commuter times. Meanwhile, the setting off of fireworks/firecrackers during the Spring Festival could lead to short-term increases of the particles' number and mass concentrations. When the wind speed was low and the related humidity was high, the concentrations of particulate matters were relatively high, and the mass concentrations of fine particulate matters were lagged about 1-2 d. The level of the particulate matters in this area was high. Heavy traffic, setting off of fireworks/firecrackers and meteorological factors may be some of the main factors affecting the concentrations of the particulate matters in this area. Among those factors, the effect of setting off of fireworks/firecrackers didn't last long and the effect of the meteorological factors had a hysteresis effect.

  13. Leaching and retention of dissolved metals in particulate loaded pervious concrete columns.

    PubMed

    Vadas, Timothy M; Smith, Malcolm; Luan, Hongwei

    2017-04-01

    This study examined metal leaching and retention in pervious concrete with or without embedded particulate matter. Particulate matter was collected from an adjacent parking lot and from a nearby parking garage as examples of weathered and un-weathered particulate matter. Particle size distributions were similar, but metal content was 3-35-fold higher and organic matter content was 3-fold higher in the parking garage particulate matter compared to the parking lot particulate matter. Replicate columns were established with either no particulate added as the control, or 20 g of parking lot or parking garage particulate matter. Synthetic rainwater was passed through the columns at variable rainfall intensity or fixed intensity to assess leaching. Metals were leached at higher concentrations from the parking garage particulate amended column, but from all columns less than 1% of the metal mass leached. Rainfall intensity did not have a large effect on leached metal concentrations, only varying effluent by about 2-fold. Synthetic stormwater with elevated dissolved Cu, Zn, Cd and Pb concentrations was passed through the same columns and metal removal efficiencies were on the order of 85-95%, 30-95%, 60-90%, and 95+% for each metal, respectively. After loading the column with a year's worth of stormwater metal exposure, removal efficiencies in the no particulate and parking lot particulate amended columns decreased, while parking garage particulate amended columns performed similarly with a small drop in Cu and Pb removal efficiencies. Generally, columns with no particulate and parking lot particulate amendments performed similarly, suggesting the pervious concrete is responsible for the majority of the initial metal retention. The parking garage particulate amended columns retained more metals from stormwater, perhaps due to an increase in pH that promoted surface precipitation as hydroxides or carbonate species on the pervious concrete, or due to complexation in the

  14. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    SciTech Connect

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S.; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G.; Bittman, Shabtai; Macdonald, Douglas J.

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  15. Effects of wind direction on coarse and fine particulate matter concentrations in southeast Kansas.

    PubMed

    Guerra, Sergio A; Lane, Dennis D; Marotz, Glen A; Carter, Ray E; Hohl, Carrie M; Baldauf, Richard W

    2006-11-01

    Field data for coarse particulate matter ([PM] PM10) and fine particulate matter (PM2.5) were collected at selected sites in Southeast Kansas from March 1999 to October 2000, using portable MiniVol particulate samplers. The purpose was to assess the influence on air quality of four industrial facilities that burn hazardous waste in the area located in the communities of Chanute, Independence, Fredonia, and Coffeyville. Both spatial and temporal variation were observed in the data. Variation because of sampling site was found to be statistically significant for PM10 but not for PM2.5. PM10 concentrations were typically slightly higher at sites located within the four study communities than at background sites. Sampling sites were located north and south of the four targeted sources to provide upwind and downwind monitoring pairs. No statistically significant differences were found between upwind and downwind samples for either PM10 or PM2.5, indicating that the targeted sources did not contribute significantly to PM concentrations. Wind direction can frequently contribute to temporal variation in air pollutant concentrations and was investigated in this study. Sampling days were divided into four classifications: predominantly south winds, predominantly north winds, calm/variable winds, and winds from other directions. The effect of wind direction was found to be statistically significant for both PM10 and PM2.5. For both size ranges, PM concentrations were typically highest on days with predominantly south winds; days with calm/variable winds generally produced higher concentrations than did those with predominantly north winds or those with winds from "other" directions. The significant effect of wind direction suggests that regional sources may exert a large influence on PM concentrations in the area.

  16. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    PubMed

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  17. Residential Proximity to Major Roadways, Fine Particulate Matter, and Hepatic Steatosis: The Framingham Heart Study.

    PubMed

    Li, Wenyuan; Dorans, Kirsten S; Wilker, Elissa H; Rice, Mary B; Long, Michelle T; Schwartz, Joel; Coull, Brent A; Koutrakis, Petros; Gold, Diane R; Fox, Caroline S; Mittleman, Murray A

    2017-10-01

    We examined associations between ambient air pollution and hepatic steatosis among 2,513 participants from the Framingham (Massachusetts) Offspring Study and Third Generation Cohort who underwent a computed tomography scan (2002-2005), after excluding men who reported >21 drinks/week and women who reported >14 drinks/week. We calculated each participant's residential-based distance to a major roadway and used a spatiotemporal model to estimate the annual mean concentrations of fine particulate matter. Liver attenuation was measured by computed tomography, and liver-to-phantom ratio (LPR) was calculated. Lower values of LPR represent more liver fat. We estimated differences in continuous LPR using linear regression models and prevalence ratios for presence of hepatic steatosis (LPR ≤ 0.33) using generalized linear models, adjusting for demographics, individual and area-level measures of socioeconomic position, and clinical and lifestyle factors. Participants who lived 58 m (25th percentile) from major roadways had lower LPR (β = -0.003, 95% confidence interval: -0.006, -0.001) and higher prevalence of hepatic steatosis (prevalence ratio = 1.16, 95% confidence interval: 1.05, 1.28) than those who lived 416 m (75th percentile) away. The 2003 annual average fine particulate matter concentration was not associated with liver-fat measurements. Our findings suggest that living closer to major roadways was associated with more liver fat. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings

    PubMed Central

    Miller, Shelly L.; Facciola, Nick A.; Toohey, Darin; Zhai, John

    2017-01-01

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055–0.1 μm) and fine (0.1–0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design. PMID:28134841

  19. Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments

    NASA Astrophysics Data System (ADS)

    Kaur, S.; Nieuwenhuijsen, M. J.; Colvile, R. N.

    Personal exposure studies are crucial alongside microenvironment and ambient studies in order to get a better understanding of the health risks posed by fine particulate matter and carbon monoxide in the urban transport microenvironment and for making informed decisions to manage and reduce the health risks. Studies specifically assessing the PM 2.5, ultrafine particle count and carbon monoxide personal exposure concentrations of adults in an urban transport microenvironment have steadily increased in number over the last decade. However, no recent collective summary is available, particularly one which also considers ultrafine particles; therefore, we present a review of the personal exposure concentration studies for the above named pollutants on different modes of surface transportation (walking, cycling, bus, car and taxi) in the urban transport microenvironment. Comparisons between personal exposure measurements and concentrations recorded at fixed monitoring sites are considered in addition to the factors influencing personal exposure in the transport microenvironment. In general, the exposure studies examined revealed pedestrians and cyclists to experience lower fine particulate matter and CO exposure concentrations in comparison to those inside vehicles—the vehicle shell provided no protection to the passengers. Proximity to the pollutant sources had a significant impact on exposure concentration levels experienced, consequently individuals should be encouraged to use back street routes. Fixed monitoring stations were found to be relatively poor predictors of CO and PM 2.5 exposure concentration levels experienced by individuals in the urban transport microenvironment. Although the mode of transport, traffic and meteorology parameters were commonly identified as significant factors influencing exposure concentrations to the different pollutants under examination, a large amount of the exposure concentration variation in the exposure studies remained

  20. Fine particulate matter estimated by mathematical model and hospitalizations for pneumonia and asthma in children

    PubMed Central

    César, Ana Cristina Gobbo; Nascimento, Luiz Fernando Costa; Mantovani, Katia Cristina Cota; Vieira, Luciana Cristina Pompeo

    2016-01-01

    Abstract Objective: To estimate the association between exposure to fine particulate matter with an aerodynamic diameter <2.5 microns (PM2.5) and hospitalizations for pneumonia and asthma in children. Methods: An ecological study of time series was performed, with daily indicators of hospitalization for pneumonia and asthma in children up to 10 years of age, living in Taubaté (SP) and estimated concentrations of PM2.5, between August 2011 and July 2012. A generalized additive model of Poisson regression was used to estimate the relative risk, with lag zero up to five days after exposure; the single pollutant model was adjusted by the apparent temperature, as defined from the temperature and relative air humidity, seasonality and weekday. Results: The values of the relative risks for hospitalization for pneumonia and asthma were significant for lag 0 (RR=1.051, 95%CI; 1.016 to 1.088); lag 2 (RR=1.066, 95%CI: 1.023 to 1.113); lag 3 (RR=1.053, 95%CI: 1.015 to 1.092); lag 4 (RR=1.043, 95%CI: 1.004 to 1.088) and lag 5 (RR=1.061, 95%CI: 1.018 to 1.106). The increase of 5mcg/m3 in PM2.5 contributes to increase the relative risk for hospitalization from 20.3 to 38.4 percentage points; however, the reduction of 5µg/m3 in PM2.5 concentration results in 38 fewer hospital admissions. Conclusions: Exposure to PM2.5 was associated with hospitalizations for pneumonia and asthma in children younger than 10 years of age, showing the role of fine particulate matter in child health and providing subsidies for the implementation of preventive measures to decrease these outcomes. PMID:26522821

  1. Assessing the impact of fine particulate matter (PM2.5) on ...

    EPA Pesticide Factsheets

    An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate concentrations. The general approach for research designed to analyze health impacts of exposure to PM2.5 is to use concentration data from the nearest ground-based air quality monitor(s), which typically have missing data on the temporal and spatial scales due to filter sampling schedules and monitor placement, respectively. To circumvent these data gaps, this research project uses a Hierarchical Bayesian Model (HBM) to generate estimates of PM2.5 in areas with and without air quality monitors by combining PM2.5 concentrations measured by monitors, PM2.5 concentration estimates derived from satellite aerosol optical depth (AOD) data, and Community-Multiscale Air Quality (CMAQ) model predictions of PM2.5 concentrations. This methodology represents a substantial step forward in the approach for developing representative PM2.5 concentration datasets to correlate with inpatient hospitalizations and emergency room visits data for asthma and inpatient hospitalizations for myocardial infarction (MI) and heart failure (HF) using case-crossover analysis. There were two key objective of this current study. First was to show that the inputs to the HBM could be expanded to include AOD data in addition t

  2. Characterization of visibility impacts related to fine particulate matter in Canada.

    PubMed

    McDonald, Karen; Shepherd, Marjorie

    2004-09-01

    Canada has recently established standards for the management of particulate matter (PM) air quality. National networks currently measure PM mass concentrations and chemical speciation. Methods used in the U.S. IMPROVE network are applied to the 1994--2000 Canadian fine PM data to obtain a regional reconstruction of the visibility based on particle composition. Nationally, the greatest light extinction occurs in the Windsor-Quebec City corridor. Variations in the dominant chemical species responsible for the reduction in visibility are presented for regions across the country. In most regions, sulfate and nitrate contribute most greatly to reduced visibility. The visibility implications of achieving the Canada-Wide Standard (CWS) across the country are evaluated, with the greatest improvement in visibility associated with achieving the CWS in southern Ontario. Elsewhere in the country, achieving the CWS will actually result in deteriorating air quality. Improving current estimates of visibility requires higher spatially and temporally resolved measurements of organic and elemental carbon fractions and particulate nitrate.

  3. 2006 critical review - health effects of fine particulate air pollution: lines that connect

    SciTech Connect

    C. Arden Pope III; Douglas W. Dockery

    2006-06-15

    Efforts to understand and mitigate the health effects of particulate matter (PM) air pollution have a rich and interesting history. This review focuses on six substantial lines of research that have been pursued since 1997 that have helped elucidate our understanding about the effects of PM on human health. There has been substantial progress in the evaluation of PM health effects at different time-scales of exposure and in the exploration of the shape of the concentration-response function. There has also been emerging evidence of PM-related cardiovascular health effects and growing knowledge regarding interconnected general pathophysiological pathways that link PM exposure with cardiopulmonary morbidity and mortality. Despite important gaps in scientific knowledge and continued reasons for some skepticism, a comprehensive evaluation of the research findings provides persuasive evidence that exposure to fine particulate air pollution has adverse effects on cardiopulmonary health. Although much of this research has been motivated by environmental public health policy, these results have important scientific, medical, and public health implications that are broader than debates over legally mandated air quality standards. 502 refs., 4 figs., 7 tabs.

  4. PIXE and PESA aspects of the Guelph Visibility and Fine Particulate Monitoring Program

    NASA Astrophysics Data System (ADS)

    Nejedlý, Z.; Campbell, J. L.; Teesdale, W. J.; Gielen, C.

    1997-11-01

    This paper describes the analytical equipment, data processing, and quality assurance protocol of the Visibility and Particulate Monitoring Program run by the Guelph Scanning Proton Microprobe (GSPM) laboratory at the University of Guelph. The focus of the discussion is the ion beam analyses used in the program. A new experimental chamber for Proton-Induced X-ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) of particulate samples is presented. The chamber provides a fast and reliable analysis of thin samples by PIXE and PESA. The PIXE spectra are collected simultaneously by two Si(Li) detectors to increase sensitivity and reliability of the measurement. Several aspects of thin target PIXE calibration are discussed. An extension to the GUPIX software package for automatic analysis of aerosol samples is presented. Three levels of quality assurance are described, including analysis of fly ash particles on artificial filter, linear regression between the two PIXE detectors, intra- and interlaboratory comparisons, and calculation of the reconstructed mass (RCMA) from composite variables and its comparison to fine mass.

  5. Application of satellite remote-sensing data for source analysis of fine particulate matter transport events.

    PubMed

    Engel-Cox, Jill A; Young, Gregory S; Hoff, Raymond M

    2005-09-01

    Satellite sensors have provided new datasets for monitoring regional and urban air quality. Satellite sensors provide comprehensive geospatial information on air quality with both qualitative imagery and quantitative data, such as aerosol optical depth. Yet there has been limited application of these new datasets in the study of air pollutant sources relevant to public policy. One promising approach to more directly link satellite sensor data to air quality policy is to integrate satellite sensor data with air quality parameters and models. This paper presents a visualization technique to integrate satellite sensor data, ground-based data, and back trajectory analysis relevant to a new rule concerning the transport of particulate matter across state boundaries. Overlaying satellite aerosol optical depth data and back trajectories in the days leading up to a known fine particulate matter with an aerodynamic diameter of <2.5 microm (PM2.5) event may indicate whether transport or local sources appear to be most responsible for high PM2.5 levels in a certain location at a certain time. Events in five cities in the United States are presented as case studies. This type of analysis can be used to help understand the source locations of pollutants during specific events and to support regulatory compliance decisions in cases of long distance transport.

  6. Geographic differences in inter-individual variability of human exposure to fine particulate matter.

    PubMed

    Cao, Ye; Frey, H Christopher

    2011-10-01

    Human exposure to fine particulate matter (PM(2.5)) is associated with short and long term adverse health effects. The amount of ambient PM(2.5) that infiltrates indoor locations such as residences depends on air exchange rate (ACH), penetration factor, and deposition rate. ACH varies by climate zone and thus by geographic location. Geographic variability in the ratio of exposure to ambient concentration is estimated based on comparison of three modeling domains in different climate zones: (1) New York City; (2) Harris County in Texas, and (3) a six-county domain along the I-40 corridor in North Carolina. Inter-individual variability in exposure to PM(2.5) was estimated using the Stochastic Human Exposure and Dose Simulation for Particulate Matter (SHEDS-PM) model. ACH is distinguishably the most sensitive input for both ambient and nonambient exposure to PM(2.5). High ACH leads to high ambient exposure indoors but lower non-ambient exposure, and vice versa. For summer, the average ratio of exposure to ambient concentration varies by 13 percent among the selected domains, mainly because of differences in housing stock, climate zone, and seasonal ACH. High daily average exposures for some individuals are mainly caused by non-ambient exposure to smoking or cooking. The implications of these results for interpretation of epidemiological studies are discussed.

  7. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India

    PubMed Central

    Prasannavenkatesh, Ramachandran; Andimuthu, Ramachandran; Kandasamy, Palanivelu; Rajadurai, Geetha; Subash Kumar, Divya; Radhapriya, Parthasarathy; Ponnusamy, Malini

    2015-01-01

    Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution. PMID:26258167

  8. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India.

    PubMed

    Prasannavenkatesh, Ramachandran; Andimuthu, Ramachandran; Kandasamy, Palanivelu; Rajadurai, Geetha; Kumar, Divya Subash; Radhapriya, Parthasarathy; Ponnusamy, Malini

    2015-01-01

    Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013-January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  9. Particulate metal distribution in Guadiana estuary punctuated by flood episodes

    NASA Astrophysics Data System (ADS)

    Caetano, Miguel; Vale, Carlos; Falcão, Manuela

    2006-10-01

    The distribution of major (Al, Ca, Mg, Fe and Mn) and trace metals (Zn, Cu, Pb and Cd) in particulate material was determined in different flow and tidal conditions along the Guadiana estuary. Under moderate river flows, concentrations of Al in SPM decreased seawards, while Ca and Mg showed an opposite trend reflecting the physical mixing of fluvial and marine particles along the salinity gradient. Ratios of Cu/Al, Zn/Al, Pb/Al and Cd/Al increased sharply in the estuary mouth as a result of local inputs of urban sewage from the two major cities located at the estuary mouth. Under these flow conditions Cu/Al and Cd/Al ratios were higher in spring, indicating that retention by phytoplankton was the major factor influencing these metal gradients in SPM. Sediments transported during an exceptional flood contained higher inorganic fraction and lower metal content (two orders of magnitude) than particles transported under moderate river flows. The material exported during flood peaks was recorded in the Guadiana shelf as coarser sediment layer with diminished levels of Fe, Cu and Pb. In spite of metal mobility in upper sediment layers of the coastal zone, these metals reflect the export episodes in Guadiana. The construction of Alqueva dam will attenuate in the future these flood events decreasing the amount of sediment supplied by the river to the coastal zone.

  10. SOURCE SAMPLING FINE PARTICULATE MATTER: A KRAFT PROCESS RECOVERY BOILER AT A PULP AND PAPER FACILITY, VOLUMES 1 AND 2

    EPA Science Inventory

    Fine particulate matter of aerodynamic diameter 2.5 m or less (PM-2.5) has been found harmful to human health, and a National Ambient Air Quality Standard for PM-2.5 was promulgated by the U.S. Environmental Protection Agency in July 1997. A national network of ambient monitorin...

  11. EPA Approves Redesignation of Atlanta Area to Attainment for the 1997 Annual Fine Particulate Matter (PM2.5) Standard

    EPA Pesticide Factsheets

    ATLANTA - Today, the U.S. Environmental Protection Agency announced that it is taking final action to approve the state of Georgia's request to redesignate the Atlanta Area to attainment for the 1997 Fine Particulate Matter (PM2.5) standard. This fi

  12. 76 FR 60492 - Adequacy Status of the Ohio Portion of the Huntington/Ashland Submitted Annual Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... AGENCY Adequacy Status of the Ohio Portion of the Huntington/Ashland Submitted Annual Fine Particulate... Ohio portion of the Huntington/Ashland WV-KY-OH area. Ohio submitted the insignificance findings with... portion of the Huntington/Ashland area is no longer required to perform a regional emissions analysis for...

  13. DAILY VARIATION IN ORGANIC COMPOSITION OF FINE PARTICULATE MATTER IN THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY

    EPA Science Inventory

    Organic composition of fine particulate matter (PM2.5) was investigated as a part of the Detroit Exposure and Aerosol Research Study (DEARS). A high volume (113 liters/minute) sampler was used at the Allen Park community air monitoring station to collect PM2.5 for analysis by ga...

  14. Zebrafish Locomotor Responses Demonstrate Irritant Effects of Fine Particulate Matter Sources and a Role for TRPA1

    EPA Science Inventory

    Fine particulate matter (PM) air pollution is a complex mixture of chemicals, the composition of which is determined by contributing sources, and has been linked to cardiopulmonary dysfunction. These effects stem in part from the irritating properties of PM constituents, which ...

  15. DAILY VARIATION IN ORGANIC COMPOSITION OF FINE PARTICULATE MATTER IN THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY

    EPA Science Inventory

    Organic composition of fine particulate matter (PM2.5) was investigated as a part of the Detroit Exposure and Aerosol Research Study (DEARS). A high volume (113 liters/minute) sampler was used at the Allen Park community air monitoring station to collect PM2.5 for analysis by ga...

  16. NONLINEARITIES IN THE SULFATE SECONDARY FINE PARTICULATE RESPONSE TO NOX EMISSIONS REDUCTIONS AS MODELED BY THE REGIONAL ACID DEPOSITION MODEL

    EPA Science Inventory

    Attention is increasingly being devoted to the health effects of fine particulates. In regions that have a large production of sulfate, sulfuric acid and nitric acid compete for the available ammonia to form aerosols. In addition, the available nitric acid is the result of ur...

  17. Exploration of the Rapid Effects of Personal Fine Particulate Matter Exposure on Hemodynamics and Vascular Function during the Same Day

    EPA Science Inventory

    Background: Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure–response relationships remain unclear. Object...

  18. NONLINEARITIES IN THE SULFATE SECONDARY FINE PARTICULATE RESPONSE TO NOX EMISSIONS REDUCTIONS AS MODELED BY THE REGIONAL ACID DEPOSITION MODEL

    EPA Science Inventory

    Attention is increasingly being devoted to the health effects of fine particulates. In regions that have a large production of sulfate, sulfuric acid and nitric acid compete for the available ammonia to form aerosols. In addition, the available nitric acid is the result of ur...

  19. Source apportionment with uncertainty estimates of fine particulate matter in Ostrava, Czech Republic using Positive Matrix Factorization

    EPA Science Inventory

    A 14-week investigation during a warm and cold seasons was conducted to improve understanding of air pollution sources that might be impacting air quality in Ostrava, the Czech Republic. Fine particulate matter (PM2.5) samples were collected in consecutive 12-h day and night incr...

  20. Source apportionment with uncertainty estimates of fine particulate matter in Ostrava, Czech Republic using Positive Matrix Factorization

    EPA Science Inventory

    A 14-week investigation during a warm and cold seasons was conducted to improve understanding of air pollution sources that might be impacting air quality in Ostrava, the Czech Republic. Fine particulate matter (PM2.5) samples were collected in consecutive 12-h day and night incr...

  1. Exploration of the Rapid Effects of Personal Fine Particulate Matter Exposure on Hemodynamics and Vascular Function during the Same Day

    EPA Science Inventory

    Background: Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure–response relationships remain unclear. Object...

  2. Zebrafish Locomotor Responses Demonstrate Irritant Effects of Fine Particulate Matter Sources and a Role for TRPA1

    EPA Science Inventory

    Fine particulate matter (PM) air pollution is a complex mixture of chemicals, the composition of which is determined by contributing sources, and has been linked to cardiopulmonary dysfunction. These effects stem in part from the irritating properties of PM constituents, which ...

  3. The fate of donor osteocytes in fine particulate bone powders during repair of bone defects in experimental rats.

    PubMed

    Wang, Xin-Tao; Zhou, Chang-Long; Yan, Jing-Long; Yan, Xi; Xie, Huan-Xin; Sun, Cheng-Li

    2012-05-01

    The aim of the study was to investigate the fate of donor osteocytes in fine particulate bone powders during repair of bone defects in experimental rats. The iliac bone of male inbred DA rats was harvested and used as the larger bone grafts and also prepared as fine particulate (granulated) bone powders (300-500μm size particles) for transplantation into radial defects in female rats. The presence and relative amounts of genes specific to the sex-determining region of the Y-chromosome (Sry) originating from the bone grafts were evaluated by polymerase chain reaction and by in situ hybridization, respectively. Additional samples were evaluated histologically. In the larger bone grafts, the expression of Sry decreased relatively early, disappeared by 1 week, reappeared at 4 weeks and continued to increase with time. In the fine particulate bone powders, Sry was detected all the time and its expression was statistically greater than in the larger bone grafts at each time point. Both bone grafts provided donor cells to repair the defects. The donor cells seemed to function differently between the two groups. The fine particulate bone powders contained more living osteocytes in comparison with the larger bone grafts and may accelerate the healing of bone defects compared with conventional autografts. Copyright © 2011 Elsevier GmbH. All rights reserved.

  4. Analysis of trace elements and ions in ambient fine particulate matter at three elementary schools in Ohio.

    PubMed

    John, Kuruvilla; Karnae, Saritha; Crist, Kevin; Kim, Myoungwoo; Kulkarni, Amol

    2007-04-01

    The results from a chemical characterization study of fine particulate matter (PM2.5) measured at three elementary schools in Central and Southeast Ohio is presented here. PM2.5 aerosol samples were collected from outdoor monitors and indoor samplers at each monitoring location during the period of February 1, 1999, through August 31, 2000. The locations included a rural elementary school in Athens, OH, and two urban schools within Columbus, OH. The trace metal and ionic concentrations in the collected samples were analyzed using an X-ray fluorescence spectrophotometer and ion chromatography unit, respectively. Sulfate ion was found to be the largest component present in the samples at all three of the sites. Other abundant components included nitrate, chloride, ammonium, and sodium ions, as well as calcium, silicon, and iron. The average PM2.5 concentrations showed similar temporal variations among the three sites within the study region. PM2.5 and its major component, sulfate ion, showed strong seasonal variations with maximum concentrations observed during the summer at all three of the sites. The indoor environment was found to be more contaminated during the spring months (March through May) at New Albany (a suburb of Columbus, OH) and East Athens (rural Ohio area). Potential source contribution function analysis showed that particulate matter levels at the monitoring sites were affected by transport from adjoining urban areas and industrial complexes located along the Ohio River Valley. A preliminary outdoor source apportionment using the principal component analysis (PCA) technique was performed. The results from the PCA suggest that the study region was primarily impacted by industrial, fossil fuel combustion, and geological sources. The 2002 emissions inventory data for PM2.5 compiled by Ohio Environmental Protection Agency also showed impacts of similar source types, and this was used to validate the PCA analysis.

  5. Advances in Nanocarbon Metals: Fine Structure

    DTIC Science & Technology

    2015-03-01

    SUPPLEMENTARY NOTES 14. ABSTRACT This study is an investigation of the structure and some properties of silver, copper, and aluminum alloy covetics...Covetics can incorporate large amounts of carbon (C) in a nanoscale form to alter physical and mechanical properties of the base metal or alloy ...and properties can be obtained. 15. SUBJECT TERMS covetic, nanocarbon silver, aluminum , copper 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  6. Residential Proximity to Major Roads, Exposure to Fine Particulate Matter, and Coronary Artery Calcium: The Framingham Heart Study.

    PubMed

    Dorans, Kirsten S; Wilker, Elissa H; Li, Wenyuan; Rice, Mary B; Ljungman, Petter L; Schwartz, Joel; Coull, Brent A; Kloog, Itai; Koutrakis, Petros; D'Agostino, Ralph B; Massaro, Joseph M; Hoffmann, Udo; O'Donnell, Christopher J; Mittleman, Murray A

    2016-08-01

    Long-term exposure to traffic and particulate matter air pollution is associated with a higher risk of cardiovascular disease, potentially via atherosclerosis promotion. Prior research on associations of traffic and particulate matter with coronary artery calcium Agatston score (CAC), an atherosclerosis correlate, has yielded inconsistent findings. Given this background, we assessed whether residential proximity to major roadway or fine particulate matter were associated with CAC in a Northeastern US study. We measured CAC ≤2 times from 2002 to 2005 and 2008 to 2011 among Framingham Offspring or Third-Generation Cohort participants. We assessed associations of residential distance to major roadway and residential fine particulate matter (2003 average; spatiotemporal model) with detectable CAC, using generalized estimating equation regression. We used linear mixed effects models to assess associations with loge(CAC). We also assessed associations with CAC progression. Models were adjusted for demographic variables, socioeconomic position markers, and time. Among 3399 participants, 51% had CAC measured twice. CAC was detectable in 47% of observations. At first scan, mean age was 52.2 years (standard deviation 11.7); 51% male. There were no consistent associations with detectable CAC, continuous CAC, or CAC progression. We observed heterogeneous associations of distance to major roadway with odds of detectable CAC by hypertensive status; interpretation of these findings is questionable. Our findings add to prior work and support evidence against strong associations of traffic or fine particulate matter with the presence, extent, or progression of CAC in a region with relatively low levels of and little variation in fine particulate matter. © 2016 American Heart Association, Inc.

  7. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    NASA Astrophysics Data System (ADS)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  8. The sensitivity of ozone and fine particulate matter concentrations to global change at different spatiotemporal scales

    NASA Astrophysics Data System (ADS)

    Racherla, Pavan Nandan

    Ozone (O3) and fine particulate matter (PM) are harmful to human health. Changes in climate and anthropogenic emissions due to global change will affect concentrations of O3 and fine PM. These effects are not well understood, however. We perform a suite of simulations using an integrated model of global climate, tropospheric gas-phase chemistry, and aerosols to investigate the effects of global change on O3 and fine PM at different spatiotemporal scales ranging from the global annual-average concentrations to regional (eg. United States) air pollution episodes. One major consequence of climate change is a lengthening of the O3 season over the eastern U.S. to include late spring and early fall months. Climate change is also predicted to increase the severity and frequency of O3 episodes over much of the eastern U.S. We found that U.S. O 3 and fine PM are sensitive first and foremost to U.S. anthropogenic emissions changes. However, the effect of climate change is very sensitive to the prevalent domestic anthropogenic emissions, and it increases strongly with emissions, thereby making it important to factor climate change in to air quality planning. The reductions in domestic emissions will, therefore, have the added benefit of minimized climate effects. Climate change affects fine PM sulfate and nitrate concentrations the most. Substantial increases of up to 2 mug m-3 in the July-average sulfate concentrations were predicted in many polluted regions in the eastern U.S. Higher NO x and ammonia emissions could negate the benefits of significant SO2 emissions reductions vis-a-vis the annual-average PM2.5 standard for several areas in the Northeast and Midwest U.S. Simultaneous reductions in SO2 and NOx emissions, however, will help bring most of the eastern U.S. into compliance with the current annual-average PM2.5 standard. If the U.S. O3 standard were to change from the current 80 ppbv to 55 ppbv (which is the case in many European countries), the increased O3

  9. Toxicologic and epidemiologic clues from the characterization of the 1952 London smog fine particulate matter in archival autopsy lung tissues.

    PubMed Central

    Hunt, Andrew; Abraham, Jerrold L; Judson, Bret; Berry, Colin L

    2003-01-01

    Exposure to atmospheric fine particulate matter (PM), even at low ambient concentrations, has clearly been linked to increases in mortality and morbidity. A 10- micro g m(-3) increase in PM10 (PM < 10 micro m) has been found to produce a 0.5% increase in daily mortality. The mechanism of action is a source of debate, although recent attention has focused on the cardiac effects of PM exposures. Likewise, several possible etiologic agents have been implicated, including ultrafine PM (PM metals, and the acid components, yet the responsible constituent remains undetermined. During the catastrophic PM exposure episode in London in December 1952, some 4,000 excess deaths occurred at the height of the event. The extreme mortality during that episode and the preservation of archival autopsy tissues allow us the unique opportunity to report on the form and composition of December 1952 London PM in situ in tissues from persons known to have died from the smog exposure. Because absolute increases in mortality with current levels of PM in Western Europe and North America are low, analogous tissues are unlikely to be contemporaneously available. Taking a lung compartment (airway, airspace, interstitium, and lymph node) approach, we differentiated exposures contemporary with death from those of earlier origin. Electron microscopic analyses revealed the dominance of retained soot and a surfeit of other particle types. A variety of metal-bearing particle types were found in all compartments, but Pb, Zn, and SnZn types appeared the least biopersistent. The results support the acute toxicologic importance of ultrafine carbonaceous and metal PM. PMID:12842775

  10. Toxicologic and epidemiologic clues from the characterization of the 1952 London smog fine particulate matter in archival autopsy lung tissues.

    PubMed

    Hunt, Andrew; Abraham, Jerrold L; Judson, Bret; Berry, Colin L

    2003-07-01

    Exposure to atmospheric fine particulate matter (PM), even at low ambient concentrations, has clearly been linked to increases in mortality and morbidity. A 10- micro g m(-3) increase in PM10 (PM < 10 micro m) has been found to produce a 0.5% increase in daily mortality. The mechanism of action is a source of debate, although recent attention has focused on the cardiac effects of PM exposures. Likewise, several possible etiologic agents have been implicated, including ultrafine PM (PM metals, and the acid components, yet the responsible constituent remains undetermined. During the catastrophic PM exposure episode in London in December 1952, some 4,000 excess deaths occurred at the height of the event. The extreme mortality during that episode and the preservation of archival autopsy tissues allow us the unique opportunity to report on the form and composition of December 1952 London PM in situ in tissues from persons known to have died from the smog exposure. Because absolute increases in mortality with current levels of PM in Western Europe and North America are low, analogous tissues are unlikely to be contemporaneously available. Taking a lung compartment (airway, airspace, interstitium, and lymph node) approach, we differentiated exposures contemporary with death from those of earlier origin. Electron microscopic analyses revealed the dominance of retained soot and a surfeit of other particle types. A variety of metal-bearing particle types were found in all compartments, but Pb, Zn, and SnZn types appeared the least biopersistent. The results support the acute toxicologic importance of ultrafine carbonaceous and metal PM.

  11. Development of diesel particulate filter made of porous metal

    SciTech Connect

    Matsunuma, Kenji; Ihara, Tomohiko; Hanamoto, Yuichi; Nakajima, Shiro; Okamoto, Satoru

    1996-09-01

    Pollution is worsening in cities. The exhaust gas from vehicles is the main cause of air pollution in cities. The major drawback of the diesel engine is the Particulate Matter (PM) contained in the exhaust fumes which is also said to lead to cancer. For about 20 years many tests have been conducted in order to reduce PM in diesel exhaust gas. However the exhaust gas in present diesel engines contains a significant amount of PM. This is because there is no practical material for the Diesel Particulate Filter (DPF). Conventional ceramic materials have problems such as cracking and melting during regeneration and conventional metal materials lack adequate corrosion resistance for practical use. The authors present a new type of DPF made of metal porous matter (Celmet) which is designed with a thermal construction and simple control system in order to solve the problem of diesel exhaust gas. As metal porous matter has low pressure loss per unit filter area during filtering, two-cylinder filters have similar trapping performance to the honeycomb type filter such as pressure loss and trapping efficiency, In this paper, 2,800--3,400cc diesel engines were used. Then a cycle of collection and regeneration with an electric heater and 12V battery was performed under several conditions on the engine bench and trapping efficiency and pressure loss were measured. It was confirmed that this new type DPF has good practical use in automobiles. Tests on forklifts were also performed. In a simple control system, this DPF can be applied to practical use. It is trouble-free for 6 months. The total performance of DPF for vehicles such as forklifts and heavy duty vehicles and the possibilities for other practical uses was mainly discussed.

  12. Winter-time size distribution and source apportionment of total suspended particulate matter and associated metals in Delhi

    NASA Astrophysics Data System (ADS)

    Srivastava, Arun; Gupta, Sandeep; Jain, V. K.

    2009-03-01

    A study of the winter time size distribution and source apportionment of total suspended particulate matter (TSPM) and associated heavy metal concentrations have been carried out for the city of Delhi. This study is important from the point of view of implementation of compressed natural gas (CNG) as alternate of diesel fuel in the public transport system in 2001 to reduce the pollution level. TSPM were collected using a five-stage cascade impactor at six sites in the winters of 2005-06. The results of size distribution indicate that a major portion (~ 40%) of TSPM concentration is in the form of PM0.7 (< 0.7 μm). Similar trends were observed with most of the heavy metals associated with various size fractions of TSPM. A very good correlation between coarse and fine size fraction of TSPM was observed. It was also observed that the metals associated with coarse particles have more chances of correlation with other metals; rather they are associated with fine particles. Source apportionment was carried out separately in coarse and fine size modes of TSPM by Chemical Mass Balance Receptor Model (CMB8) as well as by Principle Component Analysis (PCA) of SPSS. Source apportionment by PCA reveals that there are two major sources (possibly vehicular and crustal re-suspension) in both coarse and fine size fractions. Results obtained by CMB8 show the dominance of vehicular pollutants and crustal dust in fine and coarse size mode respectively. Noticeably the dominance of vehicular pollutants are now confined to fine size only whilst during pre CNG era it dominated both coarse and fine size mode. An increase of 42.5, 44.4, 48.2, 38.6 and 38.9% in the concentrations of TSPM, PM10.9, coarse particles, fine particles and lead respectively was observed during pre (2001) to post CNG (2005-06) period.

  13. Nuclear reactors using fine-particulate fuel for primary power in space

    SciTech Connect

    Botts, T.E.; Powell, J.R.; Usher, J.L.; Horn, F.L.

    1982-01-01

    Large future power requirements in space, include power beaming to earth, airplanes, and solar-powered satellites in eclipse; industrial processing; and space colonies. The Rotating Bed Nuclear Reactor (RBR) and Fixed Bed Reactor (FBR) are multi-megawatt power systems which are light, compact and suited to operation in space. Both are cavity reactors, with an annular fuel region (e.g., a bed of 500 ..mu.. HTGR fuel particulates made of UC with ceramic coating) surrounded by a reflector that moderates fast neutrons from the /sup 235/U fuel. A porous metal drum holds the fuel. In the RBR, rotation of the drum allows the particulate fuel bed to fluidize as cooling gas passes through. In the FBR, an inner porous carbon drum holds the packed fuel bed, which is not fluidized. The RBR and FBR have many important features for space nuclear power: very high power density (up to thousands of MW(th)/m/sup 3/ of fuel); very small size and weight, excellent thermal shock and fatigue resistance; short start/stop times (sec); high gas outlet temperatures (to 3000/sup 0/K), good neutron economy, low critical mass; and simple/reliable construction.

  14. Quantifying the sources of ozone, fine particulate matter, and regional haze in the Southeastern United States.

    PubMed

    Odman, M Talat; Hu, Yongtao; Russell, Armistead G; Hanedar, Asude; Boylan, James W; Brewer, Patricia F

    2009-07-01

    A detailed sensitivity analysis was conducted to quantify the contributions of various emission sources to ozone (O3), fine particulate matter (PM2.5), and regional haze in the Southeastern United States. O3 and particulate matter (PM) levels were estimated using the Community Multiscale Air Quality (CMAQ) modeling system and light extinction values were calculated from modeled PM concentrations. First, the base case was established using the emission projections for the year 2009. Then, in each model run, SO2, primary carbon (PC), NH3, NO(x) or VOC emissions from a particular source category in a certain geographic area were reduced by 30% and the responses were determined by calculating the difference between the results of the reduced emission case and the base case. The sensitivity of summertime O3 to VOC emissions is small in the Southeast and ground-level NO(x) controls are generally more beneficial than elevated NO(x) controls (per unit mass of emissions reduced). SO2 emission reduction is the most beneficial control strategy in reducing summertime PM2.5 levels and improving visibility in the Southeast and electric generating utilities are the single largest source of SO2. Controlling PC emissions can be very effective locally, especially in winter. Reducing NH3 emissions is an effective strategy to reduce wintertime ammonium nitrate (NO3NH4) levels and improve visibility; NO(x) emissions reductions are not as effective. The results presented here will help the development of specific emission control strategies for future attainment of the National Ambient Air Quality Standards in the region.

  15. Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes.

    PubMed

    Wang, Yangjun; Bao, Shengwei; Wang, Shuxiao; Hu, Yongtao; Shi, Xiang; Wang, Jiandong; Zhao, Bin; Jiang, Jingkun; Zheng, Mei; Wu, Minghong; Russell, Armistead G; Wang, Yuhang; Hao, Jiming

    2017-02-15

    In order to alleviate extreme haze pollution, understanding the origin of fine particulate matter (PM2.5) is crucial. In this study, we applied Particulate Matter Source Apportionment Technology (PSAT) in CAMx (Comprehensive Air Quality Model with Extensions) to quantify the impacts of emissions from different regions on PM2.5 concentrations in Beijing for haze episodes during January 6-23, 2013. Emission inventory was developed by Tsinghua University. Evolution of local and Regional contributions during local and non-local dominated haze episodes were discussed, separately. In the meanwhile, average contribution of other every city in Jing-Jin-Ji region to PM2.5 concentrations larger than 75μgm(-3) in Beijing urban for each range of local contribution percent was analyzed. The results indicate that local emissions contributed 83.6% of PM2.5 at the urban center of Beijing, while regional transport from surrounding cities and parts of Shandong, Henan and Anhui provinces contributed 9.4%; long-range transport contributed the remaining 7.0% mainly from areas >750km away to the south of Beijing during this study period. Compared to non-local-dominated haze episodes, local-dominated heavy haze episodes in Beijing were easily resulted from unfavorable meteorological conditions with much lower PBL and wind velocity. Furthermore, local contribution is more easily to cause a sharp increase or sharp reduction of PM2.5 concentration in central Beijing, reflecting that Beijing local has much stronger potential to form extremely heavy haze episodes. The results indicated that controlling local emissions is a much more important measure to alleviate the extreme haze episodes in Beijing, like that on the night of Jan 12, 2013. Furthermore, emission control in Jing-Jin-Ji region, especially in Tangshan, Tianjin, Baoding, Langfang, Shijiazhuang and Cangzhou, as well as Henan and Shandong province, are important to reduce the PM2.5 concentrations and the occurrence of haze episodes

  16. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    NASA Astrophysics Data System (ADS)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  17. The CCRUSH study: Characterization of coarse and fine particulate matter in northeastern Colorado

    NASA Astrophysics Data System (ADS)

    Clements, Nicholas Steven

    Particulate matter in the troposphere adversely impacts human health when inhaled and alters climate through cloud formation processes and by absorbing/scattering light. Particles smaller than 2.5 mum in diameter (fine particulate matter; PM2.5), are typically emitted from combustion-related sources and can form and grow through secondary processing in the atmosphere. Coarse particles (PM10-2.5), ranging 2.5 to 10 mum, are typically generated through abrasive processes, such as erosion of road surfaces, entrained via resuspension, and settle quickly out of the atmosphere due to their large size. After deciding against regulating PM10-2.5 in 2006 citing, among other reasons, mixed results from epidemiological studies of the pollutant and lack of knowledge on health impacts in rural areas, the United States Environmental Protection Agency (US EPA) funded a series of studies that investigated the ambient composition, toxicology, and epidemiology of PM10-2.5. One such study, The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study, aimed to characterize the composition, sources, and health effects of PM10-2.5 in semi-arid northeastern Colorado and consisted of two field campaigns and an epidemiological study. Summarized here are the results from the two field campaigns, the first of which included over three years of continuous PM10-2.5 and PM2.5 mass concentration monitoring at multiple sites in urban-Denver and rural-Greeley, Colorado. This data set was used to characterize the spatiotemporal variability of PM10-2.5 and PM2.5. During the second year of continuous monitoring, PM 10-2.5 and PM2.5 filter samples were collected for compositional analyses that included: elemental composition, bulk elemental and organic carbon concentrations, water-soluble organic carbon concentrations, UV-vis absorbance, fluorescence spectroscopy, and endotoxin content. Elemental composition was used to understand enrichment of trace elements in atmospheric particles and to

  18. Fine organic particulate matter dominates indoor-generated PM2.5 in RIOPA homes.

    PubMed

    Polidori, Andrea; Turpin, Barbara; Meng, Qing Yu; Lee, Jong Hoon; Weisel, Clifford; Morandi, Maria; Colome, Steven; Stock, Thomas; Winer, Arthur; Zhang, Jim; Kwon, Jaymin; Alimokhtari, Shahnaz; Shendell, Derek; Jones, Jennifer; Farrar, Corice; Maberti, Silvia

    2006-07-01

    Residential indoor and outdoor fine particle (PM(2.5)) organic (OC) and elemental carbon (EC) concentrations (48 h) were measured at 173 homes in Houston, TX, Los Angeles County, CA, and Elizabeth, NJ as part of the Relationship of Indoor, Outdoor and Personal Air (RIOPA) study. The adsorption of organic vapors on the quartz fiber sampling filter (a positive artifact) was substantial indoors and out, accounting for 36% and 37% of measured OC at the median indoor (8.2 microg C/m(3)) and outdoor (5.0 microg C/m(3)) OC concentrations, respectively. Uncorrected, adsorption artifacts would lead to substantial overestimation of particulate OC both indoors and outdoors. After artifact correction, the mean particulate organic matter (OM=1.4 OC) concentration indoors (9.8 microg/m(3)) was twice the mean outdoor concentration (4.9 microg/m(3)). The mean EC concentration was 1.1 microg/m(3) both indoors and outdoors. OM accounted for 29%, 30% and 29% of PM(2.5) mass outdoors and 48%, 55% and 61% of indoor PM(2.5) mass in Los Angeles Co., Elizabeth and Houston study homes, respectively. Indirect evidence provided by species mass balance results suggests that PM(2.5) nitrate (not measured) was largely lost during outdoor-to-indoor transport, as reported by Lunden et al. This results in dramatic changes with outdoor-to-indoor transport in the mass and composition of ambient-generated PM(2.5) at California homes. On average, 71% to 76% of indoor OM was emitted or formed indoors, calculated by (1) Random Component Superposition (RCS) model and (2) non-linear fit of OC and air exchange rate data to the mass balance model. Assuming that all particles penetrate indoors (P=1) and there is no particle loss indoors (k=0), a lower bound estimate of 41% of indoor OM was indoor-generated (mean). OM appears to be the predominant species in indoor-generated PM(2.5), based on species mass balance results. Particulate OM emitted or formed indoors is substantial enough to alter the

  19. Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress

    PubMed Central

    Haberzettl, Petra; O’Toole, Timothy E.; Bhatnagar, Aruni; Conklin, Daniel J.

    2016-01-01

    Background: Epidemiological evidence suggests that exposure to ambient air fine particulate matter (PM2.5) increases the risk of developing type 2 diabetes and cardiovascular disease. However, the mechanisms underlying these effects of PM2.5 remain unclear. Objectives: We tested the hypothesis that PM2.5 exposure decreases vascular insulin sensitivity by inducing pulmonary oxidative stress. Methods: Mice fed control (10–13% kcal fat) and high-fat (60% kcal fat, HFD) diets, treated with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) or mice overexpressing lung-specific extracellular superoxide dismutase (ecSOD) were exposed to HEPA-filtered air or to concentrated PM2.5 (CAP) for 9 or 30 days, and changes in systemic and organ-specific insulin sensitivity and inflammation were measured. Results: In control diet–fed mice, exposure to CAP for 30 days decreased insulin-stimulated Akt phosphorylation in lung, heart, and aorta but not in skeletal muscle, adipose tissue, and liver and did not affect adiposity or systemic glucose tolerance. In HFD-fed mice, 30-day CAP exposure suppressed insulin-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation in skeletal muscle and increased adipose tissue inflammation and systemic glucose intolerance. In control diet–fed mice, a 9-day CAP exposure was sufficient to suppress insulin-stimulated Akt and eNOS phosphorylation and to decrease IκBα (inhibitor of the transcription factor NF-κB levels in the aorta. Treatment with the antioxidant TEMPOL or lung-specific overexpression of ecSOD prevented CAP-induced vascular insulin resistance and inflammation. Conclusions: Short-term exposure to PM2.5 induces vascular insulin resistance and inflammation triggered by a mechanism involving pulmonary oxidative stress. Suppression of vascular insulin signaling by PM2.5 may accelerate the progression to systemic insulin resistance, particularly in the context of diet-induced obesity. Citation: Haberzettl P, O

  20. Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress.

    PubMed

    Haberzettl, Petra; O'Toole, Timothy E; Bhatnagar, Aruni; Conklin, Daniel J

    2016-12-01

    Epidemiological evidence suggests that exposure to ambient air fine particulate matter (PM2.5) increases the risk of developing type 2 diabetes and cardiovascular disease. However, the mechanisms underlying these effects of PM2.5 remain unclear. We tested the hypothesis that PM2.5 exposure decreases vascular insulin sensitivity by inducing pulmonary oxidative stress. Mice fed control (10-13% kcal fat) and high-fat (60% kcal fat, HFD) diets, treated with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) or mice overexpressing lung-specific extracellular superoxide dismutase (ecSOD) were exposed to HEPA-filtered air or to concentrated PM2.5 (CAP) for 9 or 30 days, and changes in systemic and organ-specific insulin sensitivity and inflammation were measured. In control diet-fed mice, exposure to CAP for 30 days decreased insulin-stimulated Akt phosphorylation in lung, heart, and aorta but not in skeletal muscle, adipose tissue, and liver and did not affect adiposity or systemic glucose tolerance. In HFD-fed mice, 30-day CAP exposure suppressed insulin-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation in skeletal muscle and increased adipose tissue inflammation and systemic glucose intolerance. In control diet-fed mice, a 9-day CAP exposure was sufficient to suppress insulin-stimulated Akt and eNOS phosphorylation and to decrease IκBα (inhibitor of the transcription factor NF-κB levels in the aorta. Treatment with the antioxidant TEMPOL or lung-specific overexpression of ecSOD prevented CAP-induced vascular insulin resistance and inflammation. Short-term exposure to PM2.5 induces vascular insulin resistance and inflammation triggered by a mechanism involving pulmonary oxidative stress. Suppression of vascular insulin signaling by PM2.5 may accelerate the progression to systemic insulin resistance, particularly in the context of diet-induced obesity. Citation: Haberzettl P, O'Toole TE, Bhatnagar A, Conklin DJ. 2016. Exposure to fine

  1. Trends in the elemental composition of fine particulate matter in Santiago, Chile, from 1998 to 2003.

    PubMed

    Sax, Sonja N; Koutrakis, Petros; Rudolph, Pablo A Ruiz; Cereceda-Balic, Francisco; Gramsch, Ernesto; Oyola, Pedro

    2007-07-01

    Santiago, Chile, is one of the most polluted cities in South America. As a response, over the past 15 yr, numerous pollution reduction programs have been implemented by the environmental authority, Comisión Nacional del Medio Ambiente. This paper assesses the effectiveness of these interventions by examining the trends of fine particulate matter (PM(2.5)) and its associated elements. Daily fine particle filter samples were collected in Santiago at a downtown location from April 1998 through March 2003. Additionally, meteorological variables were measured continuously. Annual average concentrations of PM(2.5) decreased only marginally, from 41.8 microg/m3 for the 1998-1999 period to 35.4 microg/m3 for the 2002-2003 period. PM(2.5) concentrations exceeded the annual U.S. Environmental Protection Agency standard of 15 microg/m3. Also, approximately 20% of the daily samples exceeded the old standard of 65 microg/m3, whereas approximately half of the samples exceeded the new standard of 35 microg/m3 (effective in 2006). Mean PM(2.5) levels measured during the cold season (April through September) were three times higher than those measured in the warm season (October through March). Particulate mass and elemental concentration trends were investigated using regression models, controlling for year, month, weekday, wind speed, temperature, and relative humidity. The results showed significant decreases for Pb, Br, and S concentrations and minor but still significant decreases for Ni, Al, Si, Ca, and Fe. The larger decreases were associated with specific remediation policies implemented, including the removal of lead from gasoline, the reduction of sulfur levels in diesel fuel, and the introduction of natural gas. These results suggest that the pollution reduction programs, especially the ones related to transport, have been effective in reducing various important components of PM(2.5). However, particle mass and other associated element levels remain high, and it is thus

  2. Contribution of fine particulate matter sources to indoor exposure in bars, restaurants, and cafes.

    PubMed

    Daly, B-J; Schmid, K; Riediker, M

    2010-06-01

    This study investigated the contribution of sources and establishment characteristics, on the exposure to fine particulate matter (PM(2.5)) in the non-smoking sections of bars, cafes, and restaurants in central Zurich. PM(2.5)-exposure was determined with a nephelometer. A random sample of hospitality establishments was investigated on all weekdays, from morning until midnight. Each visit lasted 30 min. Numbers of smokers and other sources, such as candles and cooking processes, were recorded, as were seats, open windows, and open doors. Ambient air pollution data were obtained from public authorities. Data were analysed using robust MM regression. Over 14 warm, sunny days, 102 establishments were measured. Average establishment PM(2.5) concentrations were 64.7 microg/m(3) (s.d. = 73.2 microg/m(3), 30-min maximum 452.2 microg/m(3)). PM(2.5) was significantly associated with the number of smokers, percentage of seats occupied by smokers, and outdoor PM. Each smoker increased PM(2.5) on average by 15 microg/m(3). No associations were found with other sources, open doors or open windows. Bars had more smoking guests and showed significantly higher concentrations than restaurants and cafes. Smokers were the most important PM(2.5)-source in hospitality establishments, while outdoor PM defined the baseline. Concentrations are expected to be even higher during colder, unpleasant times of the year. Smokers and ambient air pollution are the most important sources of fine airborne particulate matter (PM(2.5)) in the non-smoking sections of bars, restaurants, and cafes. Other sources do not significantly contribute to PM(2.5)-levels, while opening doors and windows is not an efficient means of removing pollutants. First, this demonstrates the impact that even a few smokers can have in affecting particle levels. Second, it implies that creating non-smoking sections, and using natural ventilation, is not sufficient to bring PM(2.5) to levels that imply no harm for employees and

  3. Ambient Fine Particulate Matter and Mortality among Survivors of Myocardial Infarction: Population-Based Cohort Study

    PubMed Central

    Chen, Hong; Burnett, Richard T.; Copes, Ray; Kwong, Jeffrey C.; Villeneuve, Paul J.; Goldberg, Mark S.; Brook, Robert D.; van Donkelaar, Aaron; Jerrett, Michael; Martin, Randall V.; Brook, Jeffrey R.; Kopp, Alexander; Tu, Jack V.

    2016-01-01

    Background: Survivors of acute myocardial infarction (AMI) are at increased risk of dying within several hours to days following exposure to elevated levels of ambient air pollution. Little is known, however, about the influence of long-term (months to years) air pollution exposure on survival after AMI. Objective: We conducted a population-based cohort study to determine the impact of long-term exposure to fine particulate matter ≤ 2.5 μm in diameter (PM2.5) on post-AMI survival. Methods: We assembled a cohort of 8,873 AMI patients who were admitted to 1 of 86 hospital corporations across Ontario, Canada in 1999–2001. Mortality follow-up for this cohort extended through 2011. Cumulative time-weighted exposures to PM2.5 were derived from satellite observations based on participants’ annual residences during follow-up. We used standard and multilevel spatial random-effects Cox proportional hazards models and adjusted for potential confounders. Results: Between 1999 and 2011, we identified 4,016 nonaccidental deaths, of which 2,147 were from any cardiovascular disease, 1,650 from ischemic heart disease, and 675 from AMI. For each 10-μg/m3 increase in PM2.5, the adjusted hazard ratio (HR10) of nonaccidental mortality was 1.22 [95% confidence interval (CI): 1.03, 1.45]. The association with PM2.5 was robust to sensitivity analyses and appeared stronger for cardiovascular-related mortality: ischemic heart (HR10 = 1.43; 95% CI: 1.12, 1.83) and AMI (HR10 = 1.64; 95% CI: 1.13, 2.40). We estimated that 12.4% of nonaccidental deaths (or 497 deaths) could have been averted if the lowest measured concentration in an urban area (4 μg/m3) had been achieved at all locations over the course of the study. Conclusions: Long-term air pollution exposure adversely affects the survival of AMI patients. Citation: Chen H, Burnett RT, Copes R, Kwong JC, Villeneuve PJ, Goldberg MS, Brook RD, van Donkelaar A, Jerrett M, Martin RV, Brook JR, Kopp A, Tu JV. 2016. Ambient fine

  4. Effects of urban fine particulate matter and ozone on HDL functionality.

    PubMed

    Ramanathan, Gajalakshmi; Yin, Fen; Speck, Mary; Tseng, Chi-Hong; Brook, Jeffrey R; Silverman, Frances; Urch, Bruce; Brook, Robert D; Araujo, Jesus A

    2016-05-24

    Exposures to ambient particulate matter (PM) are associated with increased morbidity and mortality. PM2.5 (<2.5 μm) and ozone exposures have been shown to associate with carotid intima media thickness in humans. Animal studies support a causal relationship between air pollution and atherosclerosis and identified adverse PM effects on HDL functionality. We aimed to determine whether brief exposures to PM2.5 and/or ozone could induce effects on HDL anti-oxidant and anti-inflammatory capacity in humans. Subjects were exposed to fine concentrated ambient fine particles (CAP) with PM2.5 targeted at 150 μg/m(3), ozone targeted at 240 μg/m(3) (120 ppb), PM2.5 plus ozone targeted at similar concentrations, and filtered air (FA) for 2 h, on 4 different occasions, at least two weeks apart, in a randomized, crossover study. Blood was obtained before exposures (baseline), 1 h after and 20 h after exposures. Plasma HDL anti-oxidant/anti-inflammatory capacity and paraoxonase activity were determined. HDL anti-oxidant/anti-inflammatory capacity was assessed by a cell-free fluorescent assay and expressed in units of a HDL oxidant index (HOI). Changes in HOI (ΔHOI) were calculated as the difference in HOI from baseline to 1 h after or 20 h after exposures. There was a trend towards bigger ΔHOI between PM2.5 and FA 1 h after exposures (p = 0.18) but not 20 h after. This trend became significant (p <0.05) when baseline HOI was lower (<1.5 or <2.0), indicating decreased HDL anti-oxidant/anti-inflammatory capacity shortly after the exposures. There were no significant effects of ozone alone or in combination with PM2.5 on the change in HOI at both time points. The change in HOI due to PM2.5 showed a positive trend with particle mass concentration (p = 0.078) and significantly associated with the slope of systolic blood pressure during exposures (p = 0.005). Brief exposures to concentrated PM2.5 elicited swift effects on HDL anti

  5. Corrosion behavior of a particulate metal-matrix composite

    SciTech Connect

    Bertolini, L.; Brunella, M.F.; Candiani, S.

    1999-04-01

    The corrosion behavior of a particulate-reinforced metal-matrix composite (MMC) with an Al 6061-T6 (UNS A96061, Al-Mg-Si) matrix and 10 vol% alumina (Al{sub 2}O{sub 3}) particles was studied. The material was tested in different extrusion and forging conditions. Potentiodynamic polarization tests were carried out in aerated and deaerated sodium chloride (NaCl) solutions with concentrations from 0.06 N up to saturation to study pitting corrosion initiation. Three-month immersion tests were performed in aerated solutions. Results showed pitting corrosion initiated in aerated solutions, even for the lower chloride concentration. No significant influence of Al{sub 2}O{sub 3} particles on corrosion susceptibility of the matrix was observed. However, corrosion attacks occurred preferentially in the vicinity of the reinforcing particles. Extrusion or forging treatment did not affect corrosion behavior of the composite material significantly.

  6. Classification of surface structures on fine metallic wires

    NASA Astrophysics Data System (ADS)

    Bernabeu, E.; Sanchez-Brea, L. M.; Siegmann, P.; Martinez-Antón, J. C.; Gomez-Pedrero, J. A.; Wilkening, G.; Koenders, L.; Müller, F.; Hildebrand, M.; Hermann, H.

    2001-08-01

    In this report a classification of the main surface structures found on fine metallic wires is carried out (between ˜20 and 500 μm in diameter). For this, we have analyzed a series of wires of different metallic materials, diameters and production environments by scanning electron microscopy, atomic force microscopy, and confocal microscopy. A description and the images of the structures is given and, in addition, a nomenclature to be used by manufacturers, customers and researches is proposed. With this information the surface quality of fine metallic wires may be improved in a fabrication level. One of the objectives of this catalogue of defects is to serve as a basis for measuring the quality of the surface of the wires during the production process and the development of a measuring device for that purpose.

  7. Spatiotemporal Distribution of Airborne Particulate Metals and Metalloids in a Populated Arid Region

    PubMed Central

    Prabhakar, Gouri; Sorooshian, Armin; Toffol, Emily; Arellano, Avelino F.; Betterton, Eric A.

    2014-01-01

    A statistical analysis of data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network of aerosol samplers has been used to study the spatial and temporal concentration trends in airborne particulate metals and metalloids for southern Arizona. The study region is a rapidly growing area in southwestern North America characterized by high fine soil concentrations (among the highest in the United States), anthropogenic emissions from an area within the fastest growing region in the United States, and a high density of active and abandoned mining sites. Crustal tracers in the region are most abundant in the summer (April – June) followed by fall (October – November) as a result of dry meteorological conditions which favor dust emissions from natural and anthropogenic activity. A distinct day-of-week cycle is evident for crustal tracer mass concentrations, with the greatest amplitude evident in urban areas. There have been significant reductions since 1988 in the concentrations of toxic species that are typically associated with smelting and mining. Periods with high fine soil concentrations coincide with higher concentrations of metals and metalloids in the atmosphere, with the enhancement being higher at urban sites. PMID:24955017

  8. Spatiotemporal distribution of airborne particulate metals and metalloids in a populated arid region

    NASA Astrophysics Data System (ADS)

    Prabhakar, Gouri; Sorooshian, Armin; Toffol, Emily; Arellano, Avelino F.; Betterton, Eric A.

    2014-08-01

    A statistical analysis of data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network of aerosol samplers has been used to study the spatial and temporal concentration trends in airborne particulate metals and metalloids for southern Arizona. The study region is a rapidly growing area in southwestern North America characterized by high fine soil concentrations (among the highest in the United States), anthropogenic emissions from an area within the fastest growing region in the United States, and a high density of active and abandoned mining sites. Crustal tracers in the region are most abundant in the summer (April-June) followed by fall (October-November) as a result of dry meteorological conditions which favor dust emissions from natural and anthropogenic activity. A distinct day-of-week cycle is evident for crustal tracer mass concentrations, with the greatest amplitude evident in urban areas. There have been significant reductions since 1988 in the concentrations of toxic species that are typically associated with smelting and mining. Periods with high fine soil concentrations coincide with higher concentrations of metals and metalloids in the atmosphere, with the enhancement being higher at urban sites.

  9. Fine Particulate Pollution and Source Apportionment in the Urban Centers for Africa, Asia and Latin America

    NASA Astrophysics Data System (ADS)

    Guttikunda, S. K.; Johnson, T. M.; Procee, P.

    2004-12-01

    Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.

  10. Eco-toxicological bioassay of atmospheric fine particulate matter (PM2.5) with Photobacterium Phosphoreum T3.

    PubMed

    Wang, Wenxin; Shi, Chanzhen; Yan, Yan; Yang, Yunfei; Zhou, Bin

    2016-11-01

    A bioluminescent bacterium, Photobacterium phosphoreum T3 (PPT3), was used as a bio-indicator for the atmospheric fine particulate matter (PM2.5) to determine the eco-toxicity of PM2.5. The PM2.5 contains toxic chemicals, which reduce light output. The PM2.5 samples were collected in the period from March 2014 to January 2015 in Nanjing and analyzed for the chemical composition versus their eco-toxicity. The eco-toxicological responses of each toxicant were detected in PM2.5 samples with PPT3. The dose-response curves obtained were verified using the Weibull fitting function. According to the measured EC50 values (EC50, the concentration of a toxicant that inhibits 50% of the bioluminescence), the toxicity sequence was: B[a]P>hexa-PCB>tetra-PCB>tri-PCB>Pb(2+)>DEHP>Cu(2+)>DBP>BDE209>Zn(2+)>DMP>DEP, where B[a]P is benzo(a)pyrene, PCB is polychlorinated biphenyl, DEHP is diethylhexyl phthalate, DBP is dibutyl phthalate, BDE209 is decabromodiphenyl ether, DMP is dimethyl phthalate, and DEP is diethyl phthalate. All the PM2.5 samples analyzed proved to be weak toxic for PPT3. The toxicity of PM2.5 was assessed by the dose-addition of organic species and heavy metallic elements existing in PM2.5 with PPT3. The bioluminescence test showed that the metals and organics detected in PM2.5 promoted PM2.5 toxicity. The total detectable organics (denoted by ΣOrs) exhibited slightly higher toxicity than the total metals (denoted by ΣMs). In contrast, the sum of water-soluble ions (denoted by ΣIons) was beneficial to PPT3. The PM2.5 toxicity increased as the PM2.5 trapped more organics or metallic elements from the industrial or densely populated urban areas, where the PM2.5 had a high inhibition rate of bioluminescence for PPT3 in contrast to the residential PM2.5 samples, where the minimum inhibition rate was observed. The toxicity of PM2.5 samples varied with the mass concentrations, chemical constituents, and sampling locations. The chemicals in PM2.5, especially organic

  11. Estimation of fine particulate matter in Taipei using landuse regression and bayesian maximum entropy methods.

    PubMed

    Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming

    2011-06-01

    Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005-2007.

  12. Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter

    SciTech Connect

    Boys, B. L.; Martin, R. V.; van Donkelaar, A.; MacDonell, R. J.; Hsu, N. C.; Cooper, M. J.; Yantosca, R. M.; Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S. W.

    2014-10-07

    Ambient fine particulate matter (PM2.5) is a leading environmental risk factor for premature mortality. We use aerosol optical depth (AOD) retrieved from two satellite instruments, MISR and SeaWiFS, to produce a unified 15-year global time series (1998-2012) of ground-level PM2.5 concentration at a resolution of 1 degrees x 1 degrees. The GEOS-Chem chemical transport model (CTM) is used to relate each individual AOD retrieval to ground-level PM2.5. Four broad areas showing significant, spatially coherent, annual trends are examined in detail: the Eastern U.S. (-0.39 +/- 0.10 mu g m(-3) yr(-1)), the Arabian Peninsula (0.81 +/- 0.21 mu g m(-3) yr(-1)), South Asia (0.93 +/- 0.22 mu g m(-3) yr(-1)) and East Asia (0.79 +/- 0.27 mu g m(-3) yr(-1)). Over the period of dense in situ observation (1999-2012), the linear tendency for the Eastern U.S. (-0.37 +/- 0.13 mu g m(-3) yr(-1)) agrees well with that from in situ measurements (-0.38 +/- 0.06 mu g m(-3) yr(-1)). A GEOS-Chem simulation reveals that secondary inorganic aerosols largely explain the observed PM2.5 trend over the Eastern U.S., South Asia, and East Asia, while mineral dust largely explains the observed trend over the Arabian Peninsula.

  13. Diagnostic air quality model evaluation of source-specific primary and secondary fine particulate carbon.

    PubMed

    Napelenok, Sergey L; Simon, Heather; Bhave, Prakash V; Pye, Havala O T; Pouliot, George A; Sheesley, Rebecca J; Schauer, James J

    2014-01-01

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 μgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 μgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others.

  14. Exposure to Fine Airborne Particulate Matters Induces Hepatic Fibrosis in Murine Models

    PubMed Central

    Zheng, Ze; Zhang, Xuebao; Wang, Jiemei; Dandeka, Aditya; Kim, Hyunbae; Qiu, Yining; Xu, Xiaohua; Cui, Yuqi; Wang, Aixia; Chen, Lung Chi; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2016-01-01

    Background Hepatic fibrosis, featured by accumulation of excessive extracellular matrix in liver tissues, is associated with metabolic disease and cancer. Inhalation exposure to airborne particulate matter in fine ranges (PM2.5) correlates with pulmonary dysfunction, cardiovascular disease, and metabolic syndrome. In this study, we investigated the effect and mechanism of PM2.5 exposure on hepatic fibrogenesis. Methods Both inhalation exposure of mice and in vitro exposure of specialized cells to PM2.5 were performed to elucidate the effect of PM2.5 exposure on hepatic fibrosis. Histological examinations, gene expression analyses, and genetic animal models were utilized to determine the effect and mechanism by which PM2.5 exposure promotes hepatic fibrosis. Results Inhalation exposure to concentrated ambient PM2.5 induces hepatic fibrosis in mice under the normal chow or high-fat diet. Mice after PM2.5 exposure displayed increased expression of collagens in liver tissues. Exposure to PM2.5 led to activation of the transforming growth factor β (TGFβ)-SMAD3 signaling, suppression of peroxisome proliferator-activated receptor γ (PPARγ), and expression of collagens in hepatic stellate cells. NADPH oxidase plays a critical role in PM2.5-induced liver fibrogenesis. Conclusions Exposure to PM2.5 exerts discernible effects on promoting hepatic fibrogenesis. NADPH oxidase mediates the effects of PM2.5 exposure on promoting hepatic fibrosis. PMID:26220751

  15. Ambient Fine Particulate Matter Exposure and Risk of Cardiovascular Mortality: Adjustment of the Meteorological Factors

    PubMed Central

    Luo, Kai; Li, Wenjing; Zhang, Ruiming; Li, Runkui; Xu, Qun; Cao, Yang

    2016-01-01

    Few studies have explicitly explored the impacts of the extensive adjustment (with a lag period of more than one week) of temperature and humidity on the association between ambient fine particulate matter (PM2.5) and cardiovascular mortality. In a time stratified case-crossover study, we used a distributed lag nonlinear model to assess the impacts of extensive adjustments of temperature and humidity for longer lag periods (for 7, 14, 21, 28 and 40 days) on effects of PM2.5 on total cardiovascular mortality and mortality of cerebrovascular and ischemic heart disease and corresponding exposure-response relationships in Beijing, China, between 2008 and 2011. Compared with results only controlled for temperature and humidity for 2 days, the estimated effects of PM2.5 were smaller and magnitudes of exposure-response curves were decreased when longer lag periods of temperature and relative humidity were included for adjustments, but these changes varied across subpopulation, with marked decreases occurring in males and the elderly who are more susceptible to PM2.5-related mortalities. Our findings suggest that the adjustment of meteorological factors using lag periods shorter than one week may lead to overestimated effects of PM2.5. The associations of PM2.5 with cardiovascular mortality in susceptible populations were more sensitive to further adjustments for temperature and relative humidity. PMID:27827945

  16. Exposure to fine airborne particulate matters induces hepatic fibrosis in murine models.

    PubMed

    Zheng, Ze; Zhang, Xuebao; Wang, Jiemei; Dandekar, Aditya; Kim, Hyunbae; Qiu, Yining; Xu, Xiaohua; Cui, Yuqi; Wang, Aixia; Chen, Lung Chi; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2015-12-01

    Hepatic fibrosis, featured by the accumulation of excessive extracellular matrix in liver tissue, is associated with metabolic disease and cancer. Inhalation exposure to airborne particulate matter in fine ranges (PM2.5) correlates with pulmonary dysfunction, cardiovascular disease, and metabolic syndrome. In this study, we investigated the effect and mechanism of PM2.5 exposure on hepatic fibrogenesis. Both inhalation exposure of mice and in vitro exposure of specialized cells to PM2.5 were performed to elucidate the effect of PM2.5 exposure on hepatic fibrosis. Histological examinations, gene expression analyses, and genetic animal models were utilized to determine the effect and mechanism by which PM2.5 exposure promotes hepatic fibrosis. Inhalation exposure to concentrated ambient PM2.5 induces hepatic fibrosis in mice under the normal chow or high-fat diet. Mice after PM2.5 exposure displayed increased expression of collagens in liver tissues. Exposure to PM2.5 led to activation of the transforming growth factor β-SMAD3 signaling, suppression of peroxisome proliferator-activated receptor γ, and expression of collagens in hepatic stellate cells. NADPH oxidase plays a critical role in PM2.5-induced liver fibrogenesis. Exposure to PM2.5 exerts discernible effects on promoting hepatic fibrogenesis. NADPH oxidase mediates the effects of PM2.5 exposure on promoting hepatic fibrosis. Copyright © 2015. Published by Elsevier B.V.

  17. Impacts of fine particulate matter on premature mortality under future climate change

    NASA Astrophysics Data System (ADS)

    Park, S.; Allen, R.; Lim, C. H.

    2016-12-01

    Climate change modulates concentration of fine particulate matter (PM2.5) via modifying atmospheric circulation and the hydrological cycle. Furthermore, surface PM2.5 is significantly associated with respiratory diseases and premature mortality. In this study, we assess the response of PM2.5 concentration to climate change in the future (end of 21st century) and its effects on year of life lost (YLL) and premature mortality. We use outputs from five models participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) to evaluate climate change effects on PM2.5: for present climate with current aerosol emissions and greenhouse gas concentrations, and for future climate, also with present-day aerosol emissions, but with end-of-the century greenhouse gas concentrations, sea surface temperatures and sea-ice. The results show that climate change is associated with an increase in PM2.5 concentration. Combined with global future population data from the United Nation (UN), we also find an increase in premature mortality and YLL.

  18. Spatial Variable Selection Methods for Investigating Acute Health Effects of Fine Particulate Matter Components

    PubMed Central

    Vock, Laura F. Boehm; Reich, Brian J.; Fuentes, Montserrat; Dominici, Francesca

    2014-01-01

    Summary Multi-site time series studies have reported evidence of an association between short term exposure to particulate matter (PM) and adverse health effects, but the effect size varies across the United States. Variability in the effect may partially be due to differing community level exposure and health characteristics, but also due to the chemical composition of PM which is known to vary greatly by location and time. The objective of this article is to identify particularly harmful components of this chemical mixture. Because of the large number of highly-correlated components, we must incorporate some regularization into a statistical model. We assume that, at each spatial location, the regression coefficients come from a mixture model with the flavor of stochastic search variable selection, but utilize a copula to share information about variable inclusion and effect magnitude across locations. The model differs from current spatial variable selection techniques by accommodating both local and global variable selection. The model is used to study the association between fine PM (PM <2.5 μm) components, measured at 115 counties nationally over the period 2000–2008, and cardiovascular emergency room admissions among Medicare patients. PMID:25303336

  19. Blueberry Anthocyanin-Enriched Extracts Attenuate Fine Particulate Matter (PM2.5)-Induced Cardiovascular Dysfunction.

    PubMed

    Wang, Ziyu; Pang, Wei; He, Congcong; Li, Yibo; Jiang, Yugang; Guo, Changjiang

    2017-01-11

    Blueberry anthocyanin-enriched extracts (BAE) at three doses (0.5, 1.0, and 2.0 g/kg) were administered by oral gavage to rats exposed to 10 mg/kg fine particulate matter (PM2.5) three times a week. A positive control group was exposed to PM2.5 without BAE treatment. We analyzed heart rate (HR), electrocardiogram (ECG), and histopathology, and biomarkers of cardiovascular system injuries, systemic inflammation, oxidative stress, endothelial function, and apoptosis. Results indicated that BAE, particularly at 1.0 g/kg, improved ECG and decreased cytokine levels in PM2.5-exposed rats. These changes were accompanied by an increase in interleukin 10 levels and superoxide dismutase activity in heart tissue and Bcl-2 protein expression, as well as a decrease in interleukin 6, malondialdehyde, endothelin 1, and angiotensin II levels and a reduction in Bax protein expression. This study demonstrates that BAE at certain doses can protect the cardiovascular system from PM2.5-induced damage.

  20. Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008

    NASA Astrophysics Data System (ADS)

    Cohen, David D.; Crawford, Jagoda; Stelcer, Eduard; Bac, Vuong Thu

    2010-01-01

    PM 2.5 particulate matter has been collected on Teflon filters every Sunday and Wednesday at Hanoi, Vietnam for nearly eight years from April 2001 to December 2008. These filters have been analysed for over 21 different chemical species from hydrogen to lead by ion beam analysis techniques. This is the first long term PM 2.5 dataset for this region. The average PM 2.5 mass for the study period was (54 ± 33) μg m -3, well above the current US EPA health goal of 15 μg m -3. The average PM 2.5 composition was found to be (29 ± 8)% ammonium sulfate, (8.9 ± 3.3)% soil, (28 ± 11)% organic matter, (0.6 ± 1.4)% salt and (9.2 ± 2.8)% black carbon. The remaining missing mass (25%) was mainly nitrates and absorbed water. Positive matrix factorisation techniques identified the major source contributions to the fine mass as automobiles and transport (40 ± 10)%, windblown soil (3.4 ± 2)%, secondary sulfates (7.8 ± 10)%, smoke from biomass burning (13 ± 6)%, ferrous and cement industries (19 ± 8)%, and coal combustion (17 ± 7)% during the 8 year study period.

  1. Associations Between Fine Particulate Matter Components and Daily Mortality in Nagoya, Japan

    PubMed Central

    Ueda, Kayo; Yamagami, Makiko; Ikemori, Fumikazu; Hisatsune, Kunihiro; Nitta, Hiroshi

    2016-01-01

    Background Seasonal variation and regional heterogeneity have been observed in the estimated effect of fine particulate matter (PM2.5) mass on mortality. Differences in the chemical compositions of PM2.5 may cause this variation. We investigated the association of the daily concentration of PM2.5 components with mortality in Nagoya, Japan. Methods We combined daily mortality counts for all residents aged 65 years and older with concentration data for PM2.5 mass and components in Nagoya from April 2003 to December 2007. A time-stratified case-crossover design was used to examine the association of daily mortality with PM2.5 mass and each component (chloride, nitrate, sulfate, sodium, potassium, calcium, magnesium, ammonium, elemental carbon [EC], and organic carbon [OC]). Results We found a stronger association between mortality and PM2.5 mass in transitional seasons. In analysis for each PM2.5 component, sulfate, nitrate, chloride, ammonium, potassium, EC, and OC were significantly associated with mortality in a single-pollutant model. In a multi-pollutant model, an interquartile range increase in the concentration of sulfate was marginally associated with an increase in all-cause mortality of 2.1% (95% confidence interval, −0.1 to 4.4). Conclusions These findings suggest that some specific PM components have a more hazardous effect than others and contribute to seasonal variation in the health effects of PM2.5. PMID:26686882

  2. World Trade Center fine particulate matter--chemistry and toxic respiratory effects: an overview.

    PubMed Central

    Gavett, Stephen H

    2003-01-01

    The 11 September 2001 terrorist attack on New York City's World Trade Center (WTC) caused an unprecedented environmental emergency. The collapse of the towers sent a tremendous cloud of crushed building materials and other pollutants into the air of lower Manhattan. In response to the calamity, federal, state, and city environmental authorities and research institutes devoted enormous resources to evaluate the impact of WTC-derived air pollution on public health. Unfortunately, on the day of the disaster, no air-sampling monitors were operating close to the WTC site to characterize and quantify pollutants in the dust cloud. However, analysis of fallen dust samples collected 5 and 6 days after the attack showed that 1-4% by weight consisted of particles small enough to be respirable (Lioy et al. 2002). These particles included fine particulate matter, or PM(subscript)2.5(/subscript) [PM < 2.5 micro m mass median aerodynamic diameter (MMAD)], which can be inhaled deep into the lung and is associated with cardiovascular and respiratory health effects. Because of the extremely high concentrations of dust immediately after the collapse of the towers, even a relatively small proportion of PM(subscript)2.5(/subscript) in the dust clouds could have contributed to breathing problems in rescue workers and others who were not wearing protective masks. PMID:12782500

  3. Obesity and the cardiovascular health effects of fine particulate air pollution

    PubMed Central

    Weichenthal, Scott; Hoppin, Jane A; Reeves, Francois

    2014-01-01

    Objective This review examines evidence related to the potential impact of obesity on the cardiovascular health effects of fine particulate air pollution (PM2.5). Methods A PubMed search was conducted in December, 2013 and studies were included if they examined the relationship between PM2.5 and cardiovascular health as well as effect modification by obesity. Results One hundred twenty-one citations were reviewed; three large prospective cohort studies and 14 panel studies with short-term follow-up met the above criteria. All three cohort studies reported stronger associations between PM2.5 and cardiovascular mortality among obese subjects and one reported a significant trend of increased risk with increased body mass index. Similarly, 11 of 14 panel studies reported stronger associations between PM2.5 and acute changes in physiological measures of cardiovascular health among obese subjects including outcomes such as blood pressure and arrhythmia. Although interactions were not always statistically significant, the consistent pattern of stronger associations among obese subjects suggests that obesity may modify the impact of PM2.5 on cardiovascular health. Conclusions Epidemiological evidence suggests that obesity may increase susceptibility to the cardiovascular health effects of PM2.5. This an important area of research as the public health impacts of air pollution could increase with increasing prevalence of obesity. PMID:24639433

  4. Gas chromatographic analysis of organic marker compounds in fine particulate matter using solid-phase microextraction.

    PubMed

    Lin, Lin; Lee, Milton L; Eatough, Delbert J

    2007-01-01

    A gas chromatographic method that uses solid-phase microextraction for analysis of organic marker compounds in fine particulate matter (PM2.5) is reported. The target marker compounds were selected for specificity toward emission from wood smoke, diesel or gasoline combustion, or meat cooking. Temperature-programmed volatilization analysis was used to characterize the thermal stabilities and volatile properties of the compounds of interest. The compounds were thermally evaporated from a quartz filter, sorbed to a solid phase microextraction (SPME) fiber, and thermally desorbed at 280 degrees C in a gas chromatograph injection port connected via a DB 1701 capillary separating column. Various experimental parameters (fiber type, time, and temperature of sorption) were optimized. It was found that high extraction yield could be achieved using a polyacrylate fiber for polar substances, such as levoglucosan, and a 7-microm polydimethylsiloxane (PDMS)-coated fiber for nonpolar compounds, such as hopanes and polyaromatic hydrocarbon. A compromise was made by selecting a carboxen/PDMS fiber, which can simultaneously extract all of the analytes of interest with moderate-to-high efficiency at 180 degrees C within a 30-min accumulation period. The optimized method was applied to the determination of levoglucosan in pine wood combustion emissions. The simplicity, rapidity, and selectivity of sample collection with a polymer-coated SPME coupled to capillary gas chromatography (GC) made this method potentially useful for atmospheric chemistry studies.

  5. Temporal Patterns in Fine Particulate Matter Time Series in Beijing: A Calendar View.

    PubMed

    Liu, Jianzheng; Li, Jie; Li, Weifeng

    2016-08-26

    Extremely high fine particulate matter (PM2.5) concentration has become synonymous to Beijing, the capital of China, posing critical challenges to its sustainable development and leading to major public health concerns. In order to formulate mitigation measures and policies, knowledge on PM2.5 variation patterns should be obtained. While previous studies are limited either because of availability of data, or because of problematic a priori assumptions that PM2.5 concentration follows subjective seasonal, monthly, or weekly patterns, our study aims to reveal the data on a daily basis through visualization rather than imposing subjective periodic patterns upon the data. To achieve this, we conduct two time-series cluster analyses on full-year PM2.5 data in Beijing in 2014, and provide an innovative calendar visualization of PM2.5 measurements throughout the year. Insights from the analysis on temporal variation of PM2.5 concentration show that there are three diurnal patterns and no weekly patterns; seasonal patterns exist but they do not follow a strict temporal division. These findings advance current understanding on temporal patterns in PM2.5 data and offer a different perspective which can help with policy formulation on PM2.5 mitigation.

  6. World Trade Center fine particulate matter--chemistry and toxic respiratory effects: an overview.

    PubMed

    Gavett, Stephen H

    2003-06-01

    The 11 September 2001 terrorist attack on New York City's World Trade Center (WTC) caused an unprecedented environmental emergency. The collapse of the towers sent a tremendous cloud of crushed building materials and other pollutants into the air of lower Manhattan. In response to the calamity, federal, state, and city environmental authorities and research institutes devoted enormous resources to evaluate the impact of WTC-derived air pollution on public health. Unfortunately, on the day of the disaster, no air-sampling monitors were operating close to the WTC site to characterize and quantify pollutants in the dust cloud. However, analysis of fallen dust samples collected 5 and 6 days after the attack showed that 1-4% by weight consisted of particles small enough to be respirable (Lioy et al. 2002). These particles included fine particulate matter, or PM(subscript)2.5(/subscript) [PM < 2.5 micro m mass median aerodynamic diameter (MMAD)], which can be inhaled deep into the lung and is associated with cardiovascular and respiratory health effects. Because of the extremely high concentrations of dust immediately after the collapse of the towers, even a relatively small proportion of PM(subscript)2.5(/subscript) in the dust clouds could have contributed to breathing problems in rescue workers and others who were not wearing protective masks.

  7. Temporal Patterns in Fine Particulate Matter Time Series in Beijing: A Calendar View

    PubMed Central

    Liu, Jianzheng; Li, Jie; Li, Weifeng

    2016-01-01

    Extremely high fine particulate matter (PM2.5) concentration has become synonymous to Beijing, the capital of China, posing critical challenges to its sustainable development and leading to major public health concerns. In order to formulate mitigation measures and policies, knowledge on PM2.5 variation patterns should be obtained. While previous studies are limited either because of availability of data, or because of problematic a priori assumptions that PM2.5 concentration follows subjective seasonal, monthly, or weekly patterns, our study aims to reveal the data on a daily basis through visualization rather than imposing subjective periodic patterns upon the data. To achieve this, we conduct two time-series cluster analyses on full-year PM2.5 data in Beijing in 2014, and provide an innovative calendar visualization of PM2.5 measurements throughout the year. Insights from the analysis on temporal variation of PM2.5 concentration show that there are three diurnal patterns and no weekly patterns; seasonal patterns exist but they do not follow a strict temporal division. These findings advance current understanding on temporal patterns in PM2.5 data and offer a different perspective which can help with policy formulation on PM2.5 mitigation. PMID:27561629

  8. Fossil and nonfossil carbon in fine particulate matter: A study of five European cities

    NASA Astrophysics Data System (ADS)

    Glasius, Marianne; La Cour, Agnete; Lohse, Christian

    2011-06-01

    Fossil carbon in particulate matter comes from anthropogenic use and combustion of fossil fuels, while nonfossil carbon may originate from both biogenic (e.g., pollen, plant debris, fungal spores, and biogenic secondary organic aerosol (SOA)) and anthropogenic sources (e.g., cooking and residential wood combustion). We investigated the relative contributions of fossil and nonfossil sources to fine carbonaceous aerosols in five European cities by radiocarbon analysis of aerosol samples collected at four types of sites in 2002-2004. The average fraction of nonfossil carbon was 43 ± 11%, with the lowest fraction, 36 ± 7%, at urban curbside sites and the highest fraction, 54 ± 11%, at rural background sites, farthest away from the impact of man-made emissions. Generally, fossil carbon concentrations at urban curbside sites are elevated in comparison to background sites, which is expected because of their proximity to vehicular emissions. Contrary to what might be expected, the concentration of nonfossil carbon is also higher at curbside than at background sites. This may be attributable to differences between site categories in levels of primary biological aerosols, brake and tire wear in resuspended road dust, biofuels, emissions from cooking and residential wood combustion, or processes such as anthropogenic enhancement of biogenic SOA and increased partitioning of semivolatile compounds into the aerosol phase at urban sites. The exact causes should be investigated by future detailed source analyses.

  9. Analysis of Fine Particulate Matter During the 2006 MIRAGE (MILAGRO) Field Campaign. Part I. Data Validation

    NASA Astrophysics Data System (ADS)

    Moya, M.; Matias, E.; Nenes, A.; Ponce de Leon, C.

    2006-12-01

    As part of the MIRAGE (MILAGRO, http://mirage-mex.acd.ucar.edu) field campaign, particulate matter in size ranges of 1, 2.5 μm was collected at the T1 site (located ~ 35 km NE downwind Mexico city) from March 5th-31st, 2006. Scientific objectives related to this database are focused on application of different aerosol modeling tools (Part II of this work). In this part a discussion of data validation and findings related is presented. Overall, highest concentrations of fine PM are present during the morning sampling periods (PM1, ~90% and PM2.5, ~70% of the time) suggesting a combination of transport of emissions from the Valley of Mexico and combustion processes nearby T1 are occurring. Although electroneutrality balances are achieved for both PM size ranges on the different sampling periods, it is noted that levels of concentration (neq/m3) found at the MIRAGE site (100-500 neq/m3) are significantly lower than those observed in Mexico City, reported previously around 200-1000 neq/m3. A considerable amount of crustal species is observed in the 2.5-1 μm size range. Additional analysis of K/Na ratio supports this finding and also suggests the dominating emissions in PM1 are of anthropogenic origin while in the PM2.5-1 size range are of crustal origin.

  10. Temporal Patterns in Fine Particulate Matter Time Series in Beijing: A Calendar View

    NASA Astrophysics Data System (ADS)

    Liu, Jianzheng; Li, Jie; Li, Weifeng

    2016-08-01

    Extremely high fine particulate matter (PM2.5) concentration has become synonymous to Beijing, the capital of China, posing critical challenges to its sustainable development and leading to major public health concerns. In order to formulate mitigation measures and policies, knowledge on PM2.5 variation patterns should be obtained. While previous studies are limited either because of availability of data, or because of problematic a priori assumptions that PM2.5 concentration follows subjective seasonal, monthly, or weekly patterns, our study aims to reveal the data on a daily basis through visualization rather than imposing subjective periodic patterns upon the data. To achieve this, we conduct two time-series cluster analyses on full-year PM2.5 data in Beijing in 2014, and provide an innovative calendar visualization of PM2.5 measurements throughout the year. Insights from the analysis on temporal variation of PM2.5 concentration show that there are three diurnal patterns and no weekly patterns; seasonal patterns exist but they do not follow a strict temporal division. These findings advance current understanding on temporal patterns in PM2.5 data and offer a different perspective which can help with policy formulation on PM2.5 mitigation.

  11. Ambient Fine Particulate Matter Induces Apoptosis of Endothelial Progenitor Cells Through Reactive Oxygen Species Formation

    PubMed Central

    Cui, Yuqi; Xie, Xiaoyun; Jia, Fengpeng; He, Jianfeng; Li, Zhihong; Fu, Minghuan; Hao, Hong; Liu, Ying; Liu, Jason Z.; Cowan, Peter J.; Zhu, Hua; Sun, Qinghua; Liu, Zhenguo

    2015-01-01

    Background/Aims Bone marrow (BM)-derived endothelial progenitor cells (EPCs) play a critical role in angiogenesis and vascular repair. Some environmental insults, like fine particulate matter (PM) exposure, significantly impair cardiovascular functions. However, the mechanisms for PM-induced adverse effects on cardiovascular system remain largely unknown. The present research was to study the detrimental effects of PM on EPCs and explore the potential mechanisms. Methods PM was intranasal-distilled into male C57BL/6 mice for one month. Flow cytometry was used to measure the number of EPCs, apoptosis level of circulating EPCs and intracellular reactive oxygen species (ROS) formation. Serum TNF-α and IL-1β were measured using ELISA. To determine the role of PM-induced ROS in EPC apoptosis, PM was co-administrated with the antioxidant N-acetylcysteine (NAC) in wild type mice or used in a triple transgenic mouse line (TG) with overexpression of antioxidant enzyme network (AON) composed of superoxide dismutase (SOD)1, SOD3, and glutathione peroxidase (Gpx-1) with decreased in vivo ROS production. Results PM treatment significantly decreased circulating EPC population, promoted apoptosis of EPCs in association with increased ROS production and serum TNF-α and IL-1β levels, which could be effectively reversed by either NAC treatment or overexpression of AON. Conclusion PM exposure significantly decreased circulating EPCs population due to increased apoptosis via ROS formation in mice. PMID:25591776

  12. Chemical compositions responsible for inflammation and tissue damage in the mouse lung by coarse and fine particulate samples from contrasting air pollution in Europe.

    PubMed

    Happo, Mikko S; Hirvonen, Maija-Riitta; Halinen, Arja I; Jalava, Pasi I; Pennanen, Arto S; Sillanpaa, Markus; Hillamo, Risto; Salonen, Raimo O

    2008-11-01

    Inflammation is regarded as an important mechanism in mortality and morbidity associated with exposures of cardiorespiratory patients to urban air particulate matter. We investigated the association of the chemical composition and sources of urban air fine (PM(2.5-0.2)) and coarse (PM(10-2.5)) particulate samples with the inflammatory activity in the mouse lung. The particulate samples were collected during selected seasons in six European cities using a high-volume cascade impactor. Healthy C57BL/6J mice were intratracheally instilled with a single dose (10 mg/kg) of the particulate samples. At 4, 12, and 24 h after the exposure, the lungs were lavaged and the bronchoalveolar lavage fluid (BALF) was assayed for indicators of inflammation and tissue damage: cell number, total protein, and cytokines (tumor necrosis factor [TNF]-alpha, interleukin [IL]-6, and KC). Dicarboxylic acids and transition metals, especially Ni and V, in PM(2.5-0.2) correlated positively and some secondary inorganic ions (NO3(-), NH4(+)) negatively with the inflammatory activity. Total organic matter and SO4(2-) had no consistent correlations. In addition, the soil-derived constituents (Ca2+, Al, Fe, Si) showed positive correlations with the PM(2.5-0.2)-induced inflammatory activity, but their role in PM(10-2.5) remained obscure, possibly due to largely undefined biogenic material. Markers of poor biomass and coal combustion, i.e., monosaccharide anhydrides and As, were associated with elevated PAH contents in PM(2.5-0.2) and a consistent immunosuppressive effect. Overall, our results support epidemiological findings that the local sources of incomplete combustion and resuspended road dust are important in urban air particulate pollution-related health effects.

  13. Chemical Characterisation of the Coarse and Fine Particulate Matter in the Environment of an Underground Railway System: Cytotoxic Effects and Oxidative Stress—A Preliminary Study

    PubMed Central

    Spagnolo, Anna Maria; Ottria, Gianluca; Perdelli, Fernanda; Cristina, Maria Luisa

    2015-01-01

    Background: Exposure to the particulate matter produced in underground railway systems is arousing increasing scientific interest because of its health effects. The aim of our study was to evaluate the airborne concentrations of PM10 and three sub-fractions of PM2.5 in an underground railway system environment in proximity to platforms and in underground commercial areas within the system, and to compare these with the outdoor airborne concentrations. We also evaluated the metal components, the cytotoxic properties of the various fractions of particulate matter (PM) and their capacity to induce oxidative stress. Method: We collected the coarse fraction (5–10 µm) and the fine fractions (1–2.5 µm; 0.5–1 µm; 0.25–0.5 µm). Chemical characterisation was determined by means of spectrometry. Cytotoxicity and oxidative stress were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Reactive Oxygen Species (ROS) assessment. Results: The concentrations of both PM10 and PM2.5 proved to be similar at the three sampling sites. Iron and other transition metals displayed a greater concentration at the subway platform than at the other two sites. The 2.5–10 µm and 1–2.5 µm fractions of PM from all three sampling sites determined a greater increase in ROS; the intensity of oxidative stress progressively declined as particle diameter diminished. Moreover, ROS concentrations were correlated with the concentrations of some transition metals, namely Mn, Cr, Ti, Fe, Cu, Zn, Ni and Mo. All particulate matter fractions displayed lower or similar ROS values between platform level and the outdoor air. Conclusions: The present study revealed that the underground railway environment at platform level, although containing higher concentrations of some particularly reactive metallic species, did not display higher cytotoxicity and oxidative stress levels than the outdoor air. PMID:25872016

  14. Chemical characterisation of the coarse and fine particulate matter in the environment of an underground railway system: cytotoxic effects and oxidative stress-a preliminary study.

    PubMed

    Spagnolo, Anna Maria; Ottria, Gianluca; Perdelli, Fernanda; Cristina, Maria Luisa

    2015-04-13

    Exposure to the particulate matter produced in underground railway systems is arousing increasing scientific interest because of its health effects. The aim of our study was to evaluate the airborne concentrations of PM10 and three sub-fractions of PM2.5 in an underground railway system environment in proximity to platforms and in underground commercial areas within the system, and to compare these with the outdoor airborne concentrations. We also evaluated the metal components, the cytotoxic properties of the various fractions of particulate matter (PM) and their capacity to induce oxidative stress. We collected the coarse fraction (5-10 µm) and the fine fractions (1-2.5 µm; 0.5-1 µm; 0.25-0.5 µm). Chemical characterisation was determined by means of spectrometry. Cytotoxicity and oxidative stress were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Reactive Oxygen Species (ROS) assessment. The concentrations of both PM10 and PM2.5 proved to be similar at the three sampling sites. Iron and other transition metals displayed a greater concentration at the subway platform than at the other two sites. The 2.5-10 µm and 1-2.5 µm fractions of PM from all three sampling sites determined a greater increase in ROS; the intensity of oxidative stress progressively declined as particle diameter diminished. Moreover, ROS concentrations were correlated with the concentrations of some transition metals, namely Mn, Cr, Ti, Fe, Cu, Zn, Ni and Mo. All particulate matter fractions displayed lower or similar ROS values between platform level and the outdoor air. The present study revealed that the underground railway environment at platform level, although containing higher concentrations of some particularly reactive metallic species, did not display higher cytotoxicity and oxidative stress levels than the outdoor air.

  15. Magnetic phases in lunar fines - Metallic Fe or ferric oxides.

    NASA Technical Reports Server (NTRS)

    Tsay, F.-D.; Manatt, S. L.; Chan, S. I.

    1973-01-01

    The ferromagnetic resonance observed for the Apollo 11 and 12 lunar fines is characterized by an asymmetric lineshape with a narrower appearance on the high field side. This asymmetry together with an anisotropy energy which varies from +640 to +500 G over the temperature range of 80 to 298 K indicate that the ferromagnetic resonance arises from metallic Fe having the body-centered cubic structure and not from hematite, magnetite or other Fe(3+) ions in magnetite-like phases. The g-value, the lineshape asymmetry, and the temperature dependence of the linewidth for the Apollo 14 and 15 fines as reported by other workers are found to be essentially similar to those observed for the Apollo 11 and 12 fines.

  16. Magnetic phases in lunar fines - Metallic Fe or ferric oxides.

    NASA Technical Reports Server (NTRS)

    Tsay, F.-D.; Manatt, S. L.; Chan, S. I.

    1973-01-01

    The ferromagnetic resonance observed for the Apollo 11 and 12 lunar fines is characterized by an asymmetric lineshape with a narrower appearance on the high field side. This asymmetry together with an anisotropy energy which varies from +640 to +500 G over the temperature range of 80 to 298 K indicate that the ferromagnetic resonance arises from metallic Fe having the body-centered cubic structure and not from hematite, magnetite or other Fe(3+) ions in magnetite-like phases. The g-value, the lineshape asymmetry, and the temperature dependence of the linewidth for the Apollo 14 and 15 fines as reported by other workers are found to be essentially similar to those observed for the Apollo 11 and 12 fines.

  17. Controlling fine particulate and acid mist emissions from a residual oil fired utility boiler with an EDV{trademark} system

    SciTech Connect

    Olen, K.R.; Vincent, H.B.; Jones, G.

    1995-06-01

    Florida Power & Light Company (FPL), in cooperation with the Electric Power Research Institute (EPRI) and Belco Technologies Corporation, evaluated the performance of an EDV system to remove fine particulate and acid mist from untreated flue gas from a residual oil-fired utility boiler. The cosponsored project was carried out using a full-scale EDV module in a slip stream from one of the 400 MW wall-fired boilers at FPL`s Sanford Plant. Particulate, acid gas and chemical analytical data are presented, and used to illustrate the effects of operating variables on EDV performance. EDV system efficiencies of 90% were achieved, which resulted in controlled particulate and SO{sub 3} emissions of less than 10 mg/Nm{sup 3} (0.0065 lbs/10{sup 6}Btu) and 1 ppmv, respectively.

  18. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China

    NASA Astrophysics Data System (ADS)

    Hagler, G. S. W.; Bergin, M. H.; Salmon, L. G.; Yu, J. Z.; Wan, E. C. H.; Zheng, M.; Zeng, L. M.; Kiang, C. S.; Zhang, Y. H.; Lau, A. K. H.; Schauer, J. J.

    Fine particulate matter (PM 2.5) was measured for 4 months during 2002-2003 at seven sites located in the rapidly developing Pearl River Delta region of China, an area encompassing the major cities of Hong Kong, Shenzhen and Guangzhou. The 4-month average fine particulate matter concentration ranged from 37 to 71 μg m -3 in Guangdong province and from 29 to 34 μg m -3 in Hong Kong. Main constituents of fine particulate mass were organic compounds (24-35% by mass) and sulfate (21-32%). With sampling sites strategically located to monitor the regional air shed patterns and urban areas, specific source-related fine particulate species (sulfate, organic mass, elemental carbon, potassium and lead) and daily surface winds were analyzed to estimate influential source locations. The impact of transport was investigated by categorizing 13 (of 20 total) sampling days by prevailing wind direction (southerly, northerly or low wind-speed mixed flow). The vicinity of Guangzhou is determined to be a major source area influencing regional concentrations of PM 2.5, with levels observed to increase by 18-34 μg m -3 (accounting for 46-56% of resulting particulate levels) at sites immediately downwind of Guangzhou. The area near Guangzhou is also observed to heavily impact downwind concentrations of lead. Potassium levels, related to biomass burning, appear to be controlled by sources in the northern part of the Pearl River Delta, near rural Conghua and urban Guangzhou. Guangzhou appears to contribute 5-6 μg m -3 of sulfate to downwind locations. Guangzhou also stands out as a significant regional source of organic mass (OM), adding 8.5-14.5 μg m -3 to downwind concentrations. Elemental carbon is observed to be strongly influenced by local sources, with highest levels found in urban regions. In addition, it appears that sources outside of the Pearl River Delta contribute a significant fraction of overall fine particulate matter in Hong Kong and Guangdong province. This is evident

  19. Global Fine Particulate Matter Concentrations and Trends Inferred from Satellite Observations, Modeling, and Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Martin, Randall; van Donkelaar, Aaron; Boys, Brian; Philip, Sajeev; Lee, Colin; Snider, Graydon; Weagle, Crystal

    2014-05-01

    Outdoor fine particulate matter (PM2.5) is a leading environmentally-related cause of premature mortality worldwide. However, ground-level PM2.5 monitors remain sparse in many regions of the world. Satellite remote sensing from MODIS, MISR, and SeaWiFS yields a powerful global data source to address this issue. Global modeling (GEOS-Chem) plays a critical role in relating these observations to ground-level concentrations. The resultant satellite-based estimates of PM2.5 indicate dramatic variation around the world, with implications for global public health. A new ground-based aerosol network (SPARTAN) offers valuable measurements to understand the relationship between satellite observations of aerosol optical depth and ground-level PM2.5 concentrations. This talk will highlight recent advances in combining satellite remote sensing, global modeling, and ground-based measurements to improve understanding of global population exposure to outdoor fine particulate matter.

  20. Interactions between cigarette smoking and fine particulate matter in the Risk of Lung Cancer Mortality in Cancer Prevention Study II.

    PubMed

    Turner, Michelle C; Cohen, Aaron; Jerrett, Michael; Gapstur, Susan M; Diver, W Ryan; Pope, C Arden; Krewski, Daniel; Beckerman, Bernardo S; Samet, Jonathan M

    2014-12-15

    The International Agency for Research on Cancer recently classified outdoor air pollution and airborne particulate matter as carcinogenic to humans. However, there are gaps in the epidemiologic literature, including assessment of possible joint effects of cigarette smoking and fine particulate matter (particulate matter less than or equal to 2.5 µm in diameter) on lung cancer risk. We present estimates of interaction on the additive scale between these risk factors from Cancer Prevention Study II, a large prospective US cohort study of nearly 1.2 million participants recruited in 1982. Estimates of the relative excess risk of lung cancer mortality due to interaction, the attributable proportion due to interaction, and the synergy index were 2.19 (95% confidence interval (CI): -0.10, 4.83), 0.14 (95% CI: 0.00, 0.25), and 1.17 (95% CI: 1.00, 1.37), respectively, using the 25th and 75th percentiles as cutpoints for fine particulate matter. This suggests small increases in lung cancer risk among persons with both exposures beyond what would be expected from the sum of the effects of the individual exposures alone. Although reductions in cigarette smoking will achieve the greatest impact on lung cancer rates, these results suggest that attempted reductions in lung cancer risk through both tobacco control and air quality management may exceed expectations based on reducing exposure to either risk factor alone.

  1. World Trade Center fine particulate matter causes respiratory tract hyperresponsiveness in mice.

    PubMed Central

    Gavett, Stephen H; Haykal-Coates, Najwa; Highfill, Jerry W; Ledbetter, Allen D; Chen, Lung Chi; Cohen, Mitchell D; Harkema, Jack R; Wagner, James G; Costa, Daniel L

    2003-01-01

    Pollutants originating from the destruction of the World Trade Center (WTC) in New York City on 11 September 2001 have been reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)] has detrimental respiratory effects in mice to contribute to the risk assessment of WTC-derived pollutants. Samples of WTC PM2.5 were derived from settled dust collected at several locations around Ground Zero on 12 and 13 September 2001. Aspirated samples of WTC PM2.5 induced mild to moderate degrees of pulmonary inflammation 1 day after exposure but only at a relatively high dose (100 microg). This response was not as great as that caused by 100 microg PM2.5 derived from residual oil fly ash (ROFA) or Washington, DC, ambient air PM [National Institute of Standards and Technology, Standard Reference Material (SRM) 1649a]. However, this same dose of WTC PM2.5 caused airway hyperresponsiveness to methacholine aerosol comparable to that from SRM 1649a and to a greater degree than that from ROFA. Mice exposed to lower doses by aspiration or inhalation exposure did not develop significant inflammation or hyperresponsiveness. These results show that exposure to high levels of WTC PM2.5 can promote mechanisms of airflow obstruction in mice. Airborne concentrations of WTC PM2.5 that would cause comparable doses in people are high (approximately 425 microg/m3 for 8 hr) but conceivable in the aftermath of the collapse of the towers when rescue and salvage efforts were in effect. We conclude that a high-level exposure to WTC PM2.5 could cause pulmonary inflammation and airway hyperresponsiveness in people. The effects of chronic exposures to lower levels of WTC PM2.5, the persistence of any respiratory effects, and the effects of coarser WTC PM are unknown and were not examined in these studies. Degree of exposure and respiratory

  2. World Trade Center fine particulate matter causes respiratory tract hyperresponsiveness in mice.

    PubMed

    Gavett, Stephen H; Haykal-Coates, Najwa; Highfill, Jerry W; Ledbetter, Allen D; Chen, Lung Chi; Cohen, Mitchell D; Harkema, Jack R; Wagner, James G; Costa, Daniel L

    2003-06-01

    Pollutants originating from the destruction of the World Trade Center (WTC) in New York City on 11 September 2001 have been reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)] has detrimental respiratory effects in mice to contribute to the risk assessment of WTC-derived pollutants. Samples of WTC PM2.5 were derived from settled dust collected at several locations around Ground Zero on 12 and 13 September 2001. Aspirated samples of WTC PM2.5 induced mild to moderate degrees of pulmonary inflammation 1 day after exposure but only at a relatively high dose (100 microg). This response was not as great as that caused by 100 microg PM2.5 derived from residual oil fly ash (ROFA) or Washington, DC, ambient air PM [National Institute of Standards and Technology, Standard Reference Material (SRM) 1649a]. However, this same dose of WTC PM2.5 caused airway hyperresponsiveness to methacholine aerosol comparable to that from SRM 1649a and to a greater degree than that from ROFA. Mice exposed to lower doses by aspiration or inhalation exposure did not develop significant inflammation or hyperresponsiveness. These results show that exposure to high levels of WTC PM2.5 can promote mechanisms of airflow obstruction in mice. Airborne concentrations of WTC PM2.5 that would cause comparable doses in people are high (approximately 425 microg/m3 for 8 hr) but conceivable in the aftermath of the collapse of the towers when rescue and salvage efforts were in effect. We conclude that a high-level exposure to WTC PM2.5 could cause pulmonary inflammation and airway hyperresponsiveness in people. The effects of chronic exposures to lower levels of WTC PM2.5, the persistence of any respiratory effects, and the effects of coarser WTC PM are unknown and were not examined in these studies. Degree of exposure and respiratory

  3. Process for preparing fine-grain metal carbide powder

    DOEpatents

    Kennedy, C.R.; Jeffers, F.P.

    Fine-grain metal carbide powder suitable for use in the fabrication of heat resistant products is prepared by coating bituminous pitch on SiO/sub 2/ or Ta/sub 2/O/sub 5/ particles, heating the coated particles to convert the bituminous pitch to coke, and then heating the particles to a higher temperature to convert the particles to a carbide by reaction of said coke therewith.

  4. Local and regional sources of fine and coarse particulate matter based on traffic and background monitoring

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-05-01

    The aim of this study was to identify local and exogenous sources affecting particulate matter (PM) levels in five major cities of Northern Europe namely: London, Paris, Hamburg, Copenhagen and Stockholm. Besides local emissions, PM profile at urban and suburban areas of the European Union (EU) is also influenced by regional PM sources due to atmospheric transport, thus geographical city distribution is of a great importance. At each city, PM10, PM2.5, NO2, SO2, CO and O3 air pollution data from two air pollution monitoring stations of the EU network were used. Different background characteristics of the selected two sampling sites at each city facilitated comparisons, providing a more exact analysis of PM sources. Four source apportionment methods: Pearson correlations among the levels of particulates and gaseous pollutants, characterisation of primal component analysis components, long-range transport analysis and extrapolation of PM size distribution ratios were applied. In general, fine (PM2.5) and coarse (PM10) particles were highly correlated, thus common sources are suggested. Combustion-originated gaseous pollutants (CO, NO2, SO2) were strongly associated to PM10 and PM2.5, primarily at areas severely affected by traffic. On the contrary, at background stations neighbouring important natural sources of particles or situated in suburban areas with rural background, natural emissions of aerosols were indicated. Series of daily PM2.5/PM10 ratios showed that minimum fraction values were detected during warm periods, due to higher volumes of airborne biogenic PM coarse, mainly at stations with important natural sources of particles in their vicinity. Hybrid single-particle Lagrangian integrated trajectory model was used, in order to extract 4-day backward air mass trajectories that arrived in the five cities which are under study during days with recorded PM10 exceedances. At all five cities, a significantly large fraction of those trajectories were classified

  5. Ambient Fine Particulate Matter, Nitrogen Dioxide, and Preterm Birth in New York City

    PubMed Central

    Johnson, Sarah; Bobb, Jennifer F.; Ito, Kazuhiko; Savitz, David A.; Elston, Beth; Shmool, Jessie L.C.; Dominici, Francesca; Ross, Zev; Clougherty, Jane E.; Matte, Thomas

    2016-01-01

    Background: Recent studies have suggested associations between air pollution and various birth outcomes, but the evidence for preterm birth is mixed. Objective: We aimed to assess the relationship between air pollution and preterm birth using 2008–2010 New York City (NYC) birth certificates linked to hospital records. Methods: We analyzed 258,294 singleton births with 22–42 completed weeks gestation to nonsmoking mothers. Exposures to ambient fine particles (PM2.5) and nitrogen dioxide (NO2) during the first, second, and cumulative third trimesters within 300 m of maternal address were estimated using data from the NYC Community Air Survey and regulatory monitors. We estimated the odds ratio (OR) of spontaneous preterm (gestation < 37 weeks) births for the first- and second-trimester exposures in a logistic mixed model, and the third-trimester cumulative exposures in a discrete time survival model, adjusting for maternal characteristics and delivery hospital. Spatial and temporal components of estimated exposures were also separately analyzed. Results: PM2.5 was not significantly associated with spontaneous preterm birth. NO2 in the second trimester was negatively associated with spontaneous preterm birth in the adjusted model (OR = 0.90; 95% CI: 0.83, 0.97 per 20 ppb). Neither pollutant was significantly associated with spontaneous preterm birth based on adjusted models of temporal exposures, whereas the spatial exposures showed significantly reduced odds ratios (OR = 0.80; 95% CI: 0.67, 0.96 per 10 μg/m3 PM2.5 and 0.88; 95% CI: 0.79, 0.98 per 20 ppb NO2). Without adjustment for hospital, these negative associations were stronger. Conclusion: Neither PM2.5 nor NO2 was positively associated with spontaneous preterm delivery in NYC. Delivery hospital was an important spatial confounder. Citation: Johnson S, Bobb JF, Ito K, Savitz DA, Elston B, Shmool JL, Dominici F, Ross Z, Clougherty JE, Matte T. 2016. Ambient fine particulate matter, nitrogen dioxide, and

  6. Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.; Johnson, Scott M.

    2010-01-01

    . Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.

  7. Characterizing and predicting coarse and fine particulates in classrooms located close to an urban roadway.

    PubMed

    Chithra, V S; Nagendra, S M Shiva

    2014-08-01

    The PM10, PM2.5, and PM1 (particulate matter with aerodynamic diameters < 10, < 2.5, and < 1 microm, respectively) concentrations were monitored over a 90-day period in a naturally ventilated school building located at roadside in Chennai City. The 24-hr average PM10, PM2.5, and PM1 concentrations at indoor and outdoor environments were found to be 136 +/- 60, 36 +/- 15, and 20 +/- 12 and 76 +/- 42, 33 +/- 16, and 23 +/- 14 microg/m3, respectively. The size distribution of PM in the classroom indicated that coarse mode was dominant during working hours (08:00 a.m. to 04:00 p.m.), whereas fine mode was dominant during nonworking hours (04:00 p.m. to 08:00 a.m.). The increase in coarser particles coincided with occupant activities in the classrooms and finer particles were correlated with outdoor traffic. Analysis of indoor PM10, PM2.5, and PM1 concentrations monitored at another school, which is located at urban reserved forest area (background site) indicated 3-4 times lower PM10 concentration than the school located at roadside. Also, the indoor PM1 and PM2.5 concentrations were 1.3-1.5 times lower at background site. Further, a mass balance indoor air quality (IAQ) model was modified to predict the indoor PM concentration in the classroom. Results indicated good agreement between the predicted and measured indoor PM2.5 (R2 = 0.72-0.81) and PM1 (R2 = 0.81-0.87) concentrations. But, the measured and predicted PM10 concentrations showed poor correlation (R2 = 0.17-0.23), which may be because the IAQ model could not take into account the sudden increase in PM10 concentration (resuspension of large size particles) due to human activities. Implications: The present study discusses characteristics of the indoor coarse and fine PM concentrations of a naturally ventilated school building located close to an urban roadway and at a background site in Chennai City, India. The study results will be useful to engineers and policymakers to prepare strategies for improving the

  8. Concentration dynamics of coarse and fine particulate matter at and around signalised traffic intersections.

    PubMed

    Kumar, Prashant; Goel, Anju

    2016-09-14

    The understanding of rapidly evolving concentrations of particulate matter (PMC) at signalised traffic intersections (TIs) is limited, but it is important for accurate exposure assessment. We performed "mobile" and "fixed-site" monitoring of size-resolved PMCs in the 0.25-34 μm range at TIs. On-road mobile measurements were made inside a car under five different ventilation settings on a 6 km long round route, passing through 10 different TIs. Fixed-site measurements were conducted at two types (3- and 4-way) of TIs. The aims were to assess the effects of different ventilation settings on in-vehicle PMCs and their comparison during delay conditions at the TIs with those experienced by pedestrians while crossing these TIs. We also estimated the zone of influence (ZoI) for PM10, PM2.5 and PM1 under different driving conditions and fitted the probability distribution functions to fixed-site data to understand the concentration and exposure dynamics of coarse and fine particles around the studied (3- and 4-way) TIs. The fine particles (PM2.5) showed a strong positive exponential correlation with the air exchange rates under different ventilation settings compared with coarse particles (PM2.5-10) showing an opposite trend. This suggested that the ventilation system of the car was relatively more efficient in removing coarse particles from the incoming outside air. On-road median PM10, PM2.5 and PM1 during delays at the TIs were ∼40%, 16% and 17% higher, respectively, compared with free-flow conditions on the rest of the route. About 7% of the average commuting time spent during delay conditions over all the runs at the TIs corresponded to 10, 7 and 8% of the total respiratory deposition dose (RDD) for PM10, PM2.5 and PM1, respectively. The maximum length of the ZoI for PM2.5 and PM1 was highest at the 4-way TI and the maximum length of the ZoI for PM10 was highest at the 3-way TI. The on-road average RDD rate of PM10 inside the cabin when windows were fully open was

  9. Ambient Fine Particulate Matter, Nitrogen Dioxide, and Preterm Birth in New York City.

    PubMed

    Johnson, Sarah; Bobb, Jennifer F; Ito, Kazuhiko; Savitz, David A; Elston, Beth; Shmool, Jessie L C; Dominici, Francesca; Ross, Zev; Clougherty, Jane E; Matte, Thomas

    2016-08-01

    Recent studies have suggested associations between air pollution and various birth outcomes, but the evidence for preterm birth is mixed. We aimed to assess the relationship between air pollution and preterm birth using 2008-2010 New York City (NYC) birth certificates linked to hospital records. We analyzed 258,294 singleton births with 22-42 completed weeks gestation to nonsmoking mothers. Exposures to ambient fine particles (PM2.5) and nitrogen dioxide (NO2) during the first, second, and cumulative third trimesters within 300 m of maternal address were estimated using data from the NYC Community Air Survey and regulatory monitors. We estimated the odds ratio (OR) of spontaneous preterm (gestation < 37 weeks) births for the first- and second-trimester exposures in a logistic mixed model, and the third-trimester cumulative exposures in a discrete time survival model, adjusting for maternal characteristics and delivery hospital. Spatial and temporal components of estimated exposures were also separately analyzed. PM2.5 was not significantly associated with spontaneous preterm birth. NO2 in the second trimester was negatively associated with spontaneous preterm birth in the adjusted model (OR = 0.90; 95% CI: 0.83, 0.97 per 20 ppb). Neither pollutant was significantly associated with spontaneous preterm birth based on adjusted models of temporal exposures, whereas the spatial exposures showed significantly reduced odds ratios (OR = 0.80; 95% CI: 0.67, 0.96 per 10 μg/m3 PM2.5 and 0.88; 95% CI: 0.79, 0.98 per 20 ppb NO2). Without adjustment for hospital, these negative associations were stronger. Neither PM2.5 nor NO2 was positively associated with spontaneous preterm delivery in NYC. Delivery hospital was an important spatial confounder. Johnson S, Bobb JF, Ito K, Savitz DA, Elston B, Shmool JL, Dominici F, Ross Z, Clougherty JE, Matte T. 2016. Ambient fine particulate matter, nitrogen dioxide, and preterm birth in New York City. Environ Health Perspect 124

  10. Exposure of highway maintenance workers to fine particulate matter and noise.

    PubMed

    Meier, Reto; Cascio, Wayne E; Danuser, Brigitta; Riediker, Michael

    2013-10-01

    In this study, we assessed the mixed exposure of highway maintenance workers to airborne particles, noise, and gaseous co-pollutants. The aim was to provide a better understanding of the workers' exposure to facilitate the evaluation of short-term effects on cardiovascular health endpoints. To quantify the workers' exposure, we monitored 18 subjects during 50 non-consecutive work shifts. Exposure assessment was based on personal and work site measurements and included fine particulate matter (PM2.5), particle number concentration (PNC), noise (Leq), and the gaseous co-pollutants: carbon monoxide, nitrogen dioxide, and ozone. Mean work shift PM2.5 concentrations (gravimetric measurements) ranged from 20.3 to 321 μg m(-3) (mean 62 μg m(-3)) and PNC were between 1.6×10(4) and 4.1×10(5) particles cm(-3) (8.9×10(4) particles cm(-3)). Noise levels were generally high with Leq over work shifts from 73.3 to 96.0 dB(A); the averaged Leq over all work shifts was 87.2 dB(A). The highest exposure to fine and ultrafine particles was measured during grass mowing and lumbering when motorized brush cutters and chain saws were used. Highest noise levels, caused by pneumatic hammers, were measured during paving and guardrail repair. We found moderate Spearman correlations between PNC and PM2.5 (r = 0.56); PNC, PM2.5, and CO (r = 0.60 and r = 0.50) as well as PNC and noise (r = 0.50). Variability and correlation of parameters were influenced by work activities that included equipment causing combined air pollutant and noise emissions (e.g. brush cutters and chain saws). We conclude that highway maintenance workers are frequently exposed to elevated airborne particle and noise levels compared with the average population. This elevated exposure is a consequence of the permanent proximity to highway traffic with additional peak exposures caused by emissions of the work-related equipment.

  11. Transition metals in coarse, fine, very fine and ultra-fine particles from an interstate highway transect near Detroit

    NASA Astrophysics Data System (ADS)

    Cahill, Thomas A.; Barnes, David E.; Lawton, Jonathan A.; Miller, Roger; Spada, Nicholas; Willis, Robert D.; Kimbrough, Sue

    2016-11-01

    As one component of a study investigating the impact of vehicle emissions on near-road air quality, human exposures, and potential health effects, particles were measured from September 21 to October 30, 2010 on both sides of a major roadway (Interstate-96) in Detroit. Traffic moved freely on this 12 lane freeway with a mean velocity of 69 mi/hr. with little braking and acceleration. The UC Davis DELTA Group rotating drum (DRUM) impactors were used to collect particles in 8 size ranges at sites nominally 100 m south, 10 m north, 100 m north, and 300 m north of the highway. Ultra-fine particles were continuously collected at the 10 m north and 100 m north sites. Samples were analyzed every 3 h for mass (soft beta ray transmission), 42 elements (synchrotron-induced x-ray fluorescence) and optical attenuation (350-800 nm spectroscopy). A three day period of steady southerly winds along the array allowed direct measurement of freeway emission rates for coarse (10 > Dp > 1.0 μm), PM2.5, very fine (0.26 > Dp > 0.09 μm), and ultra-fine (Dp < 0.09 μm) particles. The PM2.5 mass concentrations were modeled using literature emission rates during the south to north wind periods, and averaged 1.6 ± 0.5 μg/m3, versus the measured value of 2.0 ± 0.7 μg/m3. Using European freeway emission rates from 2010, and modeling them at the I-96 site, we would predict roughly 3.1 μg/m3 of PM2.5 particles, corrected from the 4.9 PM10 value by their measured road dust contributions. Using California car and truck emission rates of 1973, this value would have been about 16 μg/m3, corrected down from the 19 μg/m3 PM5.0 using measured roadway dust contributions. This would have included 2.7 μg/m3 of lead, versus the 0.0033 μg/m3 measured. Very fine particles were distributed across the array with a relatively weak falloff versus distance. For the ultra-fine particles, emissions of soot and metals seen in vehicular braking studies correlated with traffic at the 10 m site, but only the

  12. High levels of airborne ultrafine and fine particulate matter in indoor ice arenas.

    PubMed

    Rundell, Kenneth W

    2003-03-01

    The high prevalence of airway dysfunction among ice arena athletes may be related to rink air exposure; in particular, high concentrations of ultrafine and fine particulate matter (0.02-1.0 micro m diameter, PM(1)) from ice resurfacing machines may enhance airway inflammation and hyperreactivity. The purpose of this study was to identify levels of PM(1) emitted from ice resurfacing machines used in indoor ice arenas, and to compare [PM(1)] pre- and post-resurfacing to each other and to outdoor [PM(1)]. Multiple one Hz measurements were recorded on 28 different days as 15-s mean of PM(1).cm(-3) for 2 min at 1-1.5 m "above ice" in 10 rinks pre- and post-resurfacing, with measured airborne PM(1) outside each rink to be used individual rink references. Rink PM(1).cm(-3) was approximately 30 times greater than PM(1).cm(-3) outside the respective rinks (p <.05). Rink values were 104.2 +/- 59.3 x 10(3) PM(1).cm(-3) during prime usage, compared to outdoor values of 3.8 +/- 2.5 x 10(3) PM(1).cm(-3). Ice resurfacing increased PM(1).cm(-3) 4-fold (p <.05). No difference in PM(1) emissions between gasoline and propane powered resurfacing machines was identified. The rate of PM(1) dissipation after resurfacing was highly variable between rinks and probably dependent upon rink ventilation and resurfacing machine engine efficiency. Gas-powered edging increased PM(1).cm(-3) 18-fold and 158-fold versus pre-edging rink and outdoor values, respectively. We conclude that the primary source of airborne indoor rink PM(1) is internal combustion ice-resurfacing machines and that this poor air quality may be causal to the unique and high prevalence of airway dysfunction in ice arena athletes.

  13. Fine particulate matter and visibility in the Lake Tahoe Basin: chemical characterization, trends, and source apportionment.

    PubMed

    Green, Mark C; Chen, L W Antony; DuBois, David W; Molenar, John V

    2012-08-01

    Speciated PM2.5 (particulate matter with an aerodynamic diameterFine mass at SOLA is 2.5 times that at BLIS, mainly due to enhanced organic and elemental carbon (OC and EC). SOLA experiences a winter peak in PM25 mainly due to OC and EC from residential wood combustion, whereas BLIS experiences a summer peak in PM2.5 mainly due to OC and ECfrom wildfires. Carbonaceous aerosol dominates visibility impairment, causing about 1/2 the reconstructed aerosol light extinction at BLIS and 70% at SOLA. Trend analysis (1990-2009) showed statistically significant decreases in aerosol extinction at BLIS on 20% best and 60% middle visibility days and statistically insignificant upward trends on 20% worst days. SOLA (1990-2003) showed statistically significant decreases in aerosol extinction for all day categories, driven by decreasing OC and EC. From the regional haze rule baseline period of 2000-2004 until 2005-2009, BLIS saw 20% best days improving and 20% worst days getting worse due to increased wildfire effects. Receptor modeling was performed using positive matrix factorization (PMF) and chemical mass balance (CMB). It confirmed that (1) biomass burning dominanted PM25 sources at both sites with increasing importance over time; (2) low combustion efficiency burning accounts for most of the biomass burning contribution; (3) road dust and traffic contributions were much higher at SOLA than at BLIS; and (4) industrial combustion and salting were minor sources.

  14. Fine Particulate Air Pollution and Daily Mortality. A Nationwide Analysis in 272 Chinese Cities.

    PubMed

    Chen, Renjie; Yin, Peng; Meng, Xia; Liu, Cong; Wang, Lijun; Xu, Xiaohui; Ross, Jennifer A; Tse, Lap A; Zhao, Zhuohui; Kan, Haidong; Zhou, Maigeng

    2017-07-01

    Evidence concerning the acute health effects of air pollution caused by fine particulate matter (PM2.5) in developing countries is quite limited. To evaluate short-term associations between PM2.5 and daily cause-specific mortality in China. A nationwide time-series analysis was performed in 272 representative Chinese cities from 2013 to 2015. Two-stage Bayesian hierarchical models were applied to estimate regional- and national-average associations between PM2.5 concentrations and daily cause-specific mortality. City-specific effects of PM2.5 were estimated using the overdispersed generalized additive models after adjusting for time trends, day of the week, and weather conditions. Exposure-response relationship curves and potential effect modifiers were also evaluated. The average of annual mean PM2.5 concentration in each city was 56 μg/m(3) (minimum, 18 μg/m(3); maximum, 127 μg/m(3)). Each 10-μg/m(3) increase in 2-day moving average of PM2.5 concentrations was significantly associated with increments in mortality of 0.22% from total nonaccidental causes, 0.27% from cardiovascular diseases, 0.39% from hypertension, 0.30% from coronary heart diseases, 0.23% from stroke, 0.29% from respiratory diseases, and 0.38% from chronic obstructive pulmonary disease. There was a leveling off in the exposure-response curves at high concentrations in most, but not all, regions. The associations were stronger in cities with lower PM2.5 levels or higher temperatures, and in subpopulations with elder age or less education. This nationwide investigation provided robust evidence of the associations between short-term exposure to PM2.5 and increased mortality from various cardiopulmonary diseases in China. The magnitude of associations was lower than those reported in Europe and North America.

  15. Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter

    NASA Astrophysics Data System (ADS)

    Gao, Jing-Feng; Fan, Xiao-Yan; Pan, Kai-Ling; Li, Hong-Yu; Sun, Li-Xin

    2016-12-01

    Increasing ammonia emissions could exacerbate air pollution caused by fine particulate matter (PM2.5). Therefore, it is of great importance to investigate ammonia oxidation in PM2.5. This study investigated the diversity, abundance and activity of ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB) and complete ammonia oxidizers (Comammox) in PM2.5 collected in Beijing-Tianjin-Hebei megalopolis, China. Nitrosopumilus subcluster 5.2 was the most dominant AOA. Nitrosospira multiformis and Nitrosomonas aestuarii were the most dominant AOB. Comammox were present in the atmosphere, as revealed by the occurrence of Candidatus Nitrospira inopinata in PM2.5. The average cell numbers of AOA, AOB and Ca. N. inopinata were 2.82 × 104, 4.65 × 103 and 1.15 × 103 cell m‑3 air, respectively. The average maximum nitrification rate of PM2.5 was 0.14 μg (NH4+-N) [m3 air·h]‑1. AOA might account for most of the ammonia oxidation, followed by Comammox, while AOB were responsible for a small part of ammonia oxidation. Statistical analyses showed that Nitrososphaera subcluster 4.1 was positively correlated with organic carbon concentration, and Nitrosomonas eutropha showed positive correlation with ammonia concentration. Overall, this study expanded our knowledge concerning AOA, AOB and Comammox in PM2.5 and pointed towards an important role of AOA and Comammox in ammonia oxidation in PM2.5.

  16. A Quasi-Experimental Analysis of Elementary School Absences and Fine Particulate Air Pollution

    PubMed Central

    Hales, Nicholas M.; Barton, Caleb C.; Ransom, Michael R.; Allen, Ryan T.; Pope, C. Arden

    2016-01-01

    Abstract Fine particulate air pollution (PM2.5) has been associated with many adverse health outcomes including school absences. Specifically, a previous study in the Utah Valley area, conducted during a time with relatively high air pollution exposure, found significant positive correlations between school absences and air pollution. We examined the hypothesis that ambient PM2.5 exposures are associated with elementary school absences using a quasi-natural experiment to help control for observed and unobserved structural factors that influence school absences. The Alpine, Provo, and Salt Lake City school districts are located in valleys subject to daily mean PM2.5 concentrations almost twice as high as those in the Park City School District. We used seminonparametric generalized additive Poisson regression models to evaluate associations between absences and daily PM2.5 levels in the 3 districts that were exposed to the most pollution while using Park City absences as a quasi-control. The study covered 3 school years (2011/12-2013/14). School absences were most strongly associated with observed structural factors such as seasonal trends across school years, day-of-week effects, holiday effects, weather, etc. However, after controlling for these structural factors directly and using a control district, a 10 μg/m3 increase in PM2.5 was associated with an approximately 1.7% increase in daily elementary school absences. Exposure to ambient air pollution can contribute to elementary school absences, although this effect is difficult to disentangle from various other factors. PMID:26945391

  17. Effect of Fine Particulate Matter (PM2.5) on Rat Placenta Pathology and Perinatal Outcomes

    PubMed Central

    Liu, Yi; Wang, Ledan; Wang, Fang; Li, Changzhong

    2016-01-01

    Background Fine particulate matter with aerodynamic diameters smaller than 2.5 μm (PM2.5) has been reported to cause adverse effects on human health. Evidence has shown the association between PM2.5 exposure and adverse perinatal outcomes, and the most common method is epidemiological investigation. We wished to investigate the impact of PM2.5 on placenta and prenatal outcomes and its related mechanisms in a rat model. Material/Methods Pregnant rats were exposed to a low PM2.5 dose (15 mg/kg) with intratracheal instillation at pregnant day 10 and day 18, while the controls received an equivalent volume normal saline. All rats received cesarean section 24 h after the last intratracheal instillation and were sacrificed with anesthesia. Blood routine tests (BRT) and interleukin-6 (IL-6) were detected for analyzing inflammation and blood coagulation. Placenta tissue sections underwent pathologic examination, and the levels of homogenate glutathione peroxidase (GSH-Px) and methane dicarboxylic aldehyde (MDA) were determined for oxidative stress estimation. Results Increased absorbed blastocysts, and lower maternal weight gain and fetal weight were found in the PM2.5 exposure group compared to controls (p<0.05). Exposure to PM2.5 caused a significant increase of blood mononuclear cells (PBMC), platelets, and IL-6 levels (P<0.01). There were no differences in GSH-Px and MDA of placenta homogenate between the 2 groups (P>0.05). Placenta pathological examination demonstrated thrombus and chorioamnionitis in the PM2.5 exposure group. Conclusions PM2.5 exposure can result in placental pathological changes and adverse perinatal outcomes. The placental inflammation and hypercoagulability with vascular thrombosis may play important roles in placental impairment, but oxidative stress appears to be less important. PMID:27629830

  18. Biomass Burning as a Source of Ambient Fine Particulate Air Pollution and Acute Myocardial Infarction

    PubMed Central

    Kulka, Ryan; Lavigne, Eric; van Rijswijk, David; Brauer, Michael; Villeneuve, Paul J.; Stieb, Dave; Joseph, Lawrence; Burnett, Rick T.

    2017-01-01

    Background: Biomass burning is an important source of ambient fine particulate air pollution (PM2.5) in many regions of the world. Methods: We conducted a time-stratified case-crossover study of ambient PM2.5 and hospital admissions for myocardial infarction (MI) in three regions of British Columbia, Canada. Daily hospital admission data were collected between 2008 and 2015 and PM2.5 data were collected from fixed site monitors. We used conditional logistic regression models to estimate odds ratios (ORs) describing the association between PM2.5 and the risk of hospital admission for MI. We used stratified analyses to evaluate effect modification by biomass burning as a source of ambient PM2.5 using the ratio of levoglucosan/PM2.5 mass concentrations. Results: Each 5 µg/m3 increase in 3-day mean PM2.5 was associated with an increased risk of MI among elderly subjects (≥65 years; OR = 1.06, 95% CI: 1.03, 1.08); risk was not increased among younger subjects. Among the elderly, the strongest association occurred during colder periods (<6.44°C); when we stratified analyses by tertiles of monthly mean biomass contributions to PM2.5 during cold periods, ORs of 1.19 (95% CI: 1.04, 1.36), 1.08 (95% CI: 1.06, 1.09), and 1.04 (95% CI: 1.03, 1.06) were observed in the upper, middle, and lower tertiles (Ptrend = 0.003), respectively. Conclusion: Short-term changes in ambient PM2.5 were associated with an increased risk of MI among elderly subjects. During cold periods, increased biomass burning contributions to PM2.5 may modify its association with MI. PMID:28177951

  19. Fine Particulate Air Pollution and Mortality in Nine California Counties: Results from CALFINE

    PubMed Central

    Ostro, Bart; Broadwin, Rachel; Green, Shelley; Feng, Wen-Ying; Lipsett, Michael

    2006-01-01

    Many epidemiologic studies provide evidence of an association between daily counts of mortality and ambient particulate matter < 10 μm in diameter (PM10). Relatively few studies, however, have investigated the relationship of mortality with fine particles [PM < 2.5 μm in diameter (PM2.5)], especially in a multicity setting. We examined associations between PM2.5 and daily mortality in nine heavily populated California counties using data from 1999 through 2002. We considered daily counts of all-cause mortality and several cause-specific subcategories (respiratory, cardiovascular, ischemic heart disease, and diabetes). We also examined these associations among several subpopulations, including the elderly (> 65 years of age), males, females, non-high school graduates, whites, and Hispanics. We used Poisson multiple regression models incorporating natural or penalized splines to control for covariates that could affect daily counts of mortality, including time, seasonality, temperature, humidity, and day of the week. We used meta-analyses using random-effects models to pool the observations in all nine counties. The analysis revealed associations of PM2.5 levels with several mortality categories. Specifically, a 10-μg/m3 change in 2-day average PM2.5 concentration corresponded to a 0.6% (95% confidence interval, 0.2–1.0%) increase in all-cause mortality, with similar or greater effect estimates for several other subpopulations and mortality subcategories, including respiratory disease, cardiovascular disease, diabetes, age > 65 years, females, deaths out of the hospital, and non-high school graduates. Results were generally insensitive to model specification and the type of spline model used. This analysis adds to the growing body of evidence linking PM2.5 with daily mortality. PMID:16393654

  20. Spatial vulnerability of fine particulate matter relative to the prevalence of diabetes in the United States.

    PubMed

    Chien, Lung-Chang; Alamgir, Hasanat; Yu, Hwa-Lung

    2015-03-01

    Recent research supports a link between diabetes and fine particulate matter (≤ 2.5μg in diameter; PM2.5) in both laboratory and epidemiology studies. However, research investigating the potential relationship of the spatial vulnerability of diabetes to concomitant PM2.5 levels is still sparse, and the level of diabetes geographic disparities attributed to PM2.5 levels has yet to be evaluated. We conducted a Bayesian structured additive regression modeling approach to determine whether long-term exposure to PM2.5 is spatially associated with diabetes prevalence after adjusting for the socioeconomic status of county residents. This study utilizes the following data sources from 2004 to 2010: the Behavioral Risk Factor Surveillance System, the American Community Survey, and the Environmental Protection Agency. We also conducted spatial comparisons with low, median-low, median-high, and high levels of PM2.5 concentrations. When PM2.5 concentrations increased 1 μg/m(3), the increase in the relative risk percentage for diabetes ranged from -5.47% (95% credible interval = -6.14, -4.77) to 2.34% (95% CI = 2.01, 2.70), where 1323 of 3109 counties (42.55%) displayed diabetes vulnerability with significantly positive relative risk percentages. These vulnerable counties are more likely located in the Southeast, Central, and South Regions of the U.S. A similar spatial vulnerability pattern for concentrations of low PM2.5 levels was also present in these same three regions. A clear cluster of vulnerable counties at median-high PM2.5 level was found in Michigan. This study identifies the spatial vulnerability of diabetes prevalence associated with PM2.5, and thereby provides the evidence needed to prompt and establish enhanced surveillance that can monitor diabetes vulnerability in areas with low PM2.5 pollution. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Association between fine particulate matter exposure and subclinical atherosclerosis: A meta-analysis.

    PubMed

    Akintoye, Emmanuel; Shi, Liuhua; Obaitan, Itegbemie; Olusunmade, Mayowa; Wang, Yan; Newman, Jonathan D; Dodson, John A

    2016-04-01

    Epidemiological studies in humans that have evaluated the association between fine particulate matter (PM2.5) and atherosclerosis have yielded mixed results. In order to further investigate this relationship, we conducted a comprehensive search for studies published through May 2014 and performed a meta-analysis of all available observational studies that investigated the association between PM2.5 and three noninvasive measures of clinical and subclinical atherosclerosis: carotid intima media thickness, arterial calcification, and ankle-brachial index. Five reviewers selected studies based on predefined inclusion criteria. Pooled mean change estimates and 95% confidence intervals were calculated using random-effects models. Assessment of between-study heterogeneity was performed where the number of studies was adequate. Our pooled sample included 11,947 subjects for carotid intima media thickness estimates, 10,750 for arterial calcification estimates, and 6497 for ankle-brachial index estimates. Per 10 µg/m(3) increase in PM2.5 exposure, carotid intima media thickness increased by 22.52 µm but this did not reach statistical significance (p = 0.06). We did not find similar associations for arterial calcification (p = 0.44) or ankle-brachial index (p = 0.85). Our meta-analysis supports a relationship between PM2.5 and subclinical atherosclerosis measured by carotid intima media thickness. We did not find a similar relationship between PM2.5 and arterial calcification or ankle-brachial index, although the number of studies was small. © The European Society of Cardiology 2015.

  2. Ozone, Fine Particulate Matter, and Chronic Lower Respiratory Disease Mortality in the United States

    PubMed Central

    Hao, Yongping; Balluz, Lina; Strosnider, Heather; Wen, Xiao Jun; Li, Chaoyang; Qualters, Judith R.

    2016-01-01

    Rationale Short-term effects of air pollution exposure on respiratory disease mortality are well established. However, few studies have examined the effects of long-term exposure, and among those that have, results are inconsistent. Objectives To evaluate long-term association between ambient ozone, fine particulate matter (PM2.5, particles with an aerodynamic diameter of 2.5 µm or less), and chronic lower respiratory disease (CLRD) mortality in the contiguous United States. Methods We fit Bayesian hierarchical spatial Poisson models, adjusting for five county-level covariates (percentage of adults aged ≥65 years, poverty, lifetime smoking, obesity, and temperature), with random effects at state and county levels to account for spatial heterogeneity and spatial dependence. Measurements and Main Results We derived county-level average daily concentration levels for ambient ozone and PM2.5 for 2001–2008 from the U.S. Environmental Protection Agency’s down-scaled estimates and obtained 2007–2008 CLRD deaths from the National Center for Health Statistics. Exposure to ambient ozone was associated with an increased rate of CLRD deaths, with a rate ratio of 1.05 (95% credible interval, 1.01–1.09) per 5-ppb increase in ozone; the association between ambient PM2.5 and CLRD mortality was positive but statistically insignificant (rate ratio, 1.07; 95% credible interval, 0.99–1.14). Conclusions This study links air pollution exposure data with CLRD mortality for all 3,109 contiguous U.S. counties. Ambient ozone may be associated with an increased rate of death from CLRD in the contiguous United States. Although we adjusted for selected county-level covariates and unobserved influences through Bayesian hierarchical spatial modeling, the possibility of ecologic bias remains. PMID:26017067

  3. Fine particulate air pollution and mortality in nine California counties: results from CALFINE.

    PubMed

    Ostro, Bart; Broadwin, Rachel; Green, Shelley; Feng, Wen-Ying; Lipsett, Michael

    2006-01-01

    Many epidemiologic studies provide evidence of an association between daily counts of mortality and ambient particulate matter<10 microm in diameter (PM10). Relatively few studies, however, have investigated the relationship of mortality with fine particles [PM<2.5 microm in diameter (PM2.5)], especially in a multicity setting. We examined associations between PM2.5 and daily mortality in nine heavily populated California counties using data from 1999 through 2002. We considered daily counts of all-cause mortality and several cause-specific subcategories (respiratory, cardiovascular, ischemic heart disease, and diabetes). We also examined these associations among several subpopulations, including the elderly (>65 years of age), males, females, non-high school graduates, whites, and Hispanics. We used Poisson multiple regression models incorporating natural or penalized splines to control for covariates that could affect daily counts of mortality, including time, seasonality, temperature, humidity, and day of the week. We used meta-analyses using random-effects models to pool the observations in all nine counties. The analysis revealed associations of PM2.5 levels with several mortality categories. Specifically, a 10-microg/m3 change in 2-day average PM2.5 concentration corresponded to a 0.6% (95% confidence interval, 0.2-1.0%) increase in all-cause mortality, with similar or greater effect estimates for several other subpopulations and mortality subcategories, including respiratory disease, cardiovascular disease, diabetes, age>65 years, females, deaths out of the hospital, and non-high school graduates. Results were generally insensitive to model specification and the type of spline model used. This analysis adds to the growing body of evidence linking PM2.5 with daily mortality.

  4. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions

    PubMed Central

    Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Błaszczak, Barbara; Klejnowski, Krzysztof; Rogula-Kopiec, Patrycja

    2016-01-01

    Twenty-four-hour samples of fine ambient particulate matter (PM2.5; particles with aerodynamic diameters ≤2.5 µm) were collected in a suburban (quasi-rural) area in Racibórz (Poland) between 1 January 2011 and 26 December 2012. The samples were analyzed for the contents of 28 elements. Sources of PM2.5 were identified and the contribution of each source to the PM2.5 concentration was assessed using an enrichment factor (EF) analysis, a principal component analysis (PCA), and multi-linear regression analysis (MLRA). In the cold season (January–March and October–December 2011–2012), the mean ambient concentration of PM2.5 in Racibórz was 48.7 ± 39.4 µg·m−3, which was much higher than at other suburban or rural sites in Europe. Additionally the ambient concentrations of some toxic PM2.5-bound elements were also high, i.e., the mean ambient concentrations of PM2.5-bound As, Cd, and Pb were 11.3 ± 11.5, 5.2 ± 2.5, and 34.0 ± 34.2 ng·m−3, respectively. In the warm season (April–September 2011–2012), the PM2.5 and PM2.5-bound element concentrations in Racibórz were comparable to the concentrations noted at other suburban (or rural) sites in Europe. Our findings suggest that elemental composition and concentrations of PM2.5 in Racibórz are mainly influenced by anthropogenic emissions, i.e., the energy production based on coal and biomass combustion, traffic, and industry. PMID:27428988

  5. Ambient fine particulate matter air pollution and leisure-time physical inactivity among US adults.

    PubMed

    An, R; Xiang, X

    2015-12-01

    There is mounting evidence documenting the adverse health effects of short- and long-term exposure to ambient fine particulate matter (PM2.5) air pollution, but population-based evidence linking PM2.5 and health behaviour remains lacking. This study examined the relationship between ambient PM2.5 air pollution and leisure-time physical inactivity among US adults 18 years of age and above. Retrospective data analysis. Participant-level data (n = 2,381,292) from the Behavioral Risk Factor Surveillance System 2003-2011 surveys were linked with Wide-ranging Online Data for Epidemiologic Research air quality data by participants' residential county and interview month/year. Multilevel logistic regressions were performed to examine the effect of ambient PM2.5 air pollution on participants' leisure-time physical inactivity, accounting for various individual and county-level characteristics. Regressions were estimated on the overall sample and subsamples stratified by sex, age cohort, race/ethnicity and body weight status. One unit (μg/m(3)) increase in county monthly average PM2.5 concentration was found to be associated with an increase in the odds of physical inactivity by 0.46% (95% confidence interval = 0.34%-0.59%). The effect was similar between the sexes but to some extent (although not always statistically significant) larger for younger adults, Hispanics, and overweight/obese individuals compared with older adults, non-Hispanic whites or African Americans, and normal weight individuals, respectively. Ambient PM2.5 air pollution is found to be associated with a modest but measurable increase in individuals' leisure-time physical inactivity, and the relationship tends to differ across population subgroups. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  6. Impacts of Intercontinental Transport of Anthropogenic Fine Particulate Matter on Human Mortality

    NASA Technical Reports Server (NTRS)

    Anenberg, Susan C.; West, J. Jason; Hongbin, Yu; Chin, Mian; Schulz, Michael; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Fiore, Arlene; Hess, Peter; Marmer, Elina; Montanaro, Veronica; Park, Rokjin; Shindell, Drew; Takemura, Toshihiko; Dentener, Frank

    2014-01-01

    Fine particulate matter with diameter of 2.5 microns or less (PM2.5) is associated with premature mortality and can travel long distances, impacting air quality and health on intercontinental scales. We estimate the mortality impacts of 20 % anthropogenic primary PM2.5 and PM2.5 precursor emission reductions in each of four major industrial regions (North America, Europe, East Asia, and South Asia) using an ensemble of global chemical transport model simulations coordinated by the Task Force on Hemispheric Transport of Air Pollution and epidemiologically-derived concentration-response functions. We estimate that while 93-97 % of avoided deaths from reducing emissions in all four regions occur within the source region, 3-7 % (11,500; 95 % confidence interval, 8,800-14,200) occur outside the source region from concentrations transported between continents. Approximately 17 and 13 % of global deaths avoided by reducing North America and Europe emissions occur extraregionally, owing to large downwind populations, compared with 4 and 2 % for South and East Asia. The coarse resolution global models used here may underestimate intraregional health benefits occurring on local scales, affecting these relative contributions of extraregional versus intraregional health benefits. Compared with a previous study of 20 % ozone precursor emission reductions, we find that despite greater transport efficiency for ozone, absolute mortality impacts of intercontinental PM2.5 transport are comparable or greater for neighboring source-receptor pairs, due to the stronger effect of PM2.5 on mortality. However, uncertainties in modeling and concentration-response relationships are large for both estimates.

  7. Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth; Schauer, James; Quraishi, Tauseef A.; Mahmood, Abid

    2010-03-01

    Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM 2.5 and PM 10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM 2.5 was 194 ± 94 μg m -3 and PM 10 was 336 ± 135 μg m -3. Coarse aerosol (PM 10-2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM 2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.

  8. Effects of Independence Day fireworks on atmospheric concentrations of fine particulate matter in the United States

    NASA Astrophysics Data System (ADS)

    Seidel, Dian J.; Birnbaum, Abigail N.

    2015-08-01

    Previous case studies have documented increases in air pollutants, including particulate matter (PM), during and following fireworks displays associated with various holidays and celebrations around the world. But no study to date has explored fireworks effects on air quality over large regions using systematic observations over multiple years to estimate typical regional PM increases. This study uses observations of fine PM (with particle diameters < 2.5 μm, PM2.5) from 315 air quality monitoring sites across the United States to estimate the effects of Independence Day fireworks on hourly and 24-hr average concentrations. Hourly PM2.5 concentrations during the evening of July 4 and morning of July 5 are higher than on the two preceding and following days in July, considered as control days. On national average, the increases are largest (21 μg/m3) at 9-10 pm on July 4 and drop to zero by noon on July 5. Average concentrations for the 24-hr period beginning 8 pm on July 4 are 5 μg/m3 (42%) greater than on control days, on national average. The magnitude and timing of the Independence Day increases vary from site to site and from year to year, as would be expected given variations in factors such as PM2.5 emissions from fireworks, local meteorological conditions, and distances between fireworks displays and monitoring sites. At one site adjacent to fireworks, hourly PM2.5 levels climb to ∼500 μg/m3, and 24-hr average concentrations increase by 48 μg/m3 (370%). These results have implications for potential improvements in air quality models and their predictions, which currently do not account for this emissions source.

  9. A Quasi-Experimental Analysis of Elementary School Absences and Fine Particulate Air Pollution.

    PubMed

    Hales, Nicholas M; Barton, Caleb C; Ransom, Michael R; Allen, Ryan T; Pope, C Arden

    2016-03-01

    Fine particulate air pollution (PM2.5) has been associated with many adverse health outcomes including school absences. Specifically, a previous study in the Utah Valley area, conducted during a time with relatively high air pollution exposure, found significant positive correlations between school absences and air pollution. We examined the hypothesis that ambient PM2.5 exposures are associated with elementary school absences using a quasi-natural experiment to help control for observed and unobserved structural factors that influence school absences. The Alpine, Provo, and Salt Lake City school districts are located in valleys subject to daily mean PM2.5 concentrations almost twice as high as those in the Park City School District. We used seminonparametric generalized additive Poisson regression models to evaluate associations between absences and daily PM2.5 levels in the 3 districts that were exposed to the most pollution while using Park City absences as a quasi-control. The study covered 3 school years (2011/12-2013/14). School absences were most strongly associated with observed structural factors such as seasonal trends across school years, day-of-week effects, holiday effects, weather, etc. However, after controlling for these structural factors directly and using a control district, a 10 μg/m increase in PM2.5 was associated with an approximately 1.7% increase in daily elementary school absences. Exposure to ambient air pollution can contribute to elementary school absences, although this effect is difficult to disentangle from various other factors.

  10. Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Balachandran, S.; Pachon, J. E.; Baek, J.; Ivey, C.; Holmes, H.; Odman, M. T.; Mulholland, J. A.; Russell, A. G.

    2013-10-01

    A hybrid fine particulate matter (PM2.5) source apportionment approach based on a receptor-model (RM) species balance and species specific source impacts from a chemical transport model (CTM) equipped with a sensitivity analysis tool is developed to provide physically- and chemically-consistent relationships between source emissions and receptor impacts. This hybrid approach enhances RM results by providing initial estimates of source impacts from a much larger number of sources than are typically used in RMs, and provides source-receptor relationships for secondary species. Further, the method addresses issues of source collinearities, and accounts for emissions uncertainties. Hybrid method results also provide information on the resulting source impact uncertainties. We apply this hybrid approach to conduct PM2.5 source apportionment at Chemical Speciation Network (CSN) sites across the US. Ambient PM2.5 concentrations at these receptor sites were apportioned to 33 separate sources. Hybrid method results led to large changes of impacts from CTM estimates for sources such as dust, woodstove, and other biomass burning sources, but limited changes to others. The refinements reduced the differences between CTM-simulated and observed concentrations of individual PM2.5 species by over 98% when using a weighted least squared error minimization. The rankings of source impacts changed from the initial estimates, revealing that CTM-only results should be evaluated with observations. Assessment with RM results at six US locations showed that the hybrid results differ somewhat from commonly resolved sources. The hybrid method also resolved sources that typical RM methods do not capture without extra measurement information on unique tracers. The method can be readily applied to large domains and long (such as multi-annual) time periods to provide source impact estimates for management- and health-related studies.

  11. Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Balachandran, S.; Pachon, J. E.; Baek, J.; Ivey, C.; Holmes, H.; Odman, M. T.; Mulholland, J. A.; Russell, A. G.

    2014-06-01

    A hybrid fine particulate matter (PM2.5) source apportionment approach based on a receptor model (RM) species balance and species specific source impacts from a chemical transport model (CTM) equipped with a sensitivity analysis tool is developed to provide physically and chemically consistent relationships between source emissions and receptor impacts. This hybrid approach enhances RM results by providing initial estimates of source impacts from a much larger number of sources than are typically used in RMs, and provides source-receptor relationships for secondary species. Further, the method addresses issues of source collinearities and accounts for emissions uncertainties. We apply this hybrid approach to conduct PM2.5 source apportionment at Chemical Speciation Network (CSN) sites across the US. Ambient PM2.5 concentrations at these receptor sites were apportioned to 33 separate sources. Hybrid method results led to large changes of impacts from CTM estimates for sources such as dust, woodstoves, and other biomass-burning sources, but limited changes to others. The refinements reduced the differences between CTM-simulated and observed concentrations of individual PM2.5 species by over 98% when using a weighted least-squares error minimization. The rankings of source impacts changed from the initial estimates, further demonstrating that CTM-only results should be evaluated with observations. Assessment with RM results at six US locations showed that the hybrid results differ somewhat from commonly resolved sources. The hybrid method also resolved sources that typical RM methods do not capture without extra measurement information for unique tracers. The method can be readily applied to large domains and long (such as multi-annual) time periods to provide source impact estimates for management- and health-related studies.

  12. Relationship Between Birth Weight and Exposure to Airborne Fine Particulate Potassium and Titanium During Gestation

    PubMed Central

    Bell, Michelle L.; Belanger, Kathleen; Ebisu, Keita; Gent, Janneane F.; Leaderer, Brian P.

    2012-01-01

    Airborne particles are linked to numerous health impacts, including adverse pregnancy outcomes. Most studies of particles examined total mass, although the chemical structure of particles varies widely. We investigated whether mother’s exposure to potassium (K) and titanium (Ti) components of airborne fine particulate matter (PM2.5) during pregnancy was associated with birth weight or risk of low birth weight (<2500 gm) for term infants. The study population was 76,788 infants born in four counties in Connecticut and Massachusetts, US, for August 2000-February 2004. Both K and Ti were associated with birth weight. An interquartile range (IQR) increase K was associated with an 8.75% (95% confidence interval (CI): 1.24–16.8%) increase in risk of low birth weight. An IQR increase in Ti was associated with a 12.1% (95% CI: 3.55–21.4%) increase in risk of low birth weight, with an estimate of 6.41% (95% CI: −5.80–20.2%) for males and 16.4% (95% CI: 5.13–28.9%) for females. Results were robust to sensitivity analysis of first births only, but not adjustment by co-pollutants. Disentangling the effects of various chemical components is challenging because of the covariance among some components due to similar sources. Central effect estimates for infants of African-American mothers were higher than those of white mothers, although the confidence intervals overlapped. Our results indicate that exposure to airborne potassium and titanium during pregnancy is associated with lower birth weight. Associations may relate to chemical components of sources producing K and Ti. PMID:22705336

  13. Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter

    PubMed Central

    Gao, Jing-Feng; Fan, Xiao-Yan; Pan, Kai-Ling; Li, Hong-Yu; Sun, Li-Xin

    2016-01-01

    Increasing ammonia emissions could exacerbate air pollution caused by fine particulate matter (PM2.5). Therefore, it is of great importance to investigate ammonia oxidation in PM2.5. This study investigated the diversity, abundance and activity of ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB) and complete ammonia oxidizers (Comammox) in PM2.5 collected in Beijing-Tianjin-Hebei megalopolis, China. Nitrosopumilus subcluster 5.2 was the most dominant AOA. Nitrosospira multiformis and Nitrosomonas aestuarii were the most dominant AOB. Comammox were present in the atmosphere, as revealed by the occurrence of Candidatus Nitrospira inopinata in PM2.5. The average cell numbers of AOA, AOB and Ca. N. inopinata were 2.82 × 104, 4.65 × 103 and 1.15 × 103 cell m−3 air, respectively. The average maximum nitrification rate of PM2.5 was 0.14 μg (NH4+-N) [m3 air·h]−1. AOA might account for most of the ammonia oxidation, followed by Comammox, while AOB were responsible for a small part of ammonia oxidation. Statistical analyses showed that Nitrososphaera subcluster 4.1 was positively correlated with organic carbon concentration, and Nitrosomonas eutropha showed positive correlation with ammonia concentration. Overall, this study expanded our knowledge concerning AOA, AOB and Comammox in PM2.5 and pointed towards an important role of AOA and Comammox in ammonia oxidation in PM2.5. PMID:27941955

  14. Long-Term Fine Particulate Matter Exposure and Mortality From Diabetes in Canada

    PubMed Central

    Brook, Robert D.; Cakmak, Sabit; Turner, Michelle C.; Brook, Jeffrey R.; Crouse, Dan L.; Peters, Paul A.; van Donkelaar, Aaron; Villeneuve, Paul J.; Brion, Orly; Jerrett, Michael; Martin, Randall V.; Rajagopalan, Sanjay; Goldberg, Mark S.; Pope, C. Arden; Burnett, Richard T.

    2013-01-01

    OBJECTIVE Recent studies suggest that chronic exposure to air pollution can promote the development of diabetes. However, whether this relationship actually translates into an increased risk of mortality attributable to diabetes is uncertain. RESEARCH DESIGN AND METHODS We evaluated the association between long-term exposure to ambient fine particulate matter (PM2.5) and diabetes-related mortality in a prospective cohort analysis of 2.1 million adults from the 1991 Canadian census mortality follow-up study. Mortality information, including ∼5,200 deaths coded as diabetes being the underlying cause, was ascertained by linkage to the Canadian Mortality Database from 1991 to 2001. Subject-level estimates of long-term exposure to PM2.5 were derived from satellite observations. The hazard ratios (HRs) for diabetes-related mortality were related to PM2.5 and adjusted for individual-level and contextual variables using Cox proportional hazards survival models. RESULTS Mean PM2.5 exposure levels for the entire population were low (8.7 µg/m3; SD, 3.9 µg/m3; interquartile range, 6.2 µg/m3). In fully adjusted models, a 10-µg/m3 elevation in PM2.5 exposure was associated with an increase in risk for diabetes-related mortality (HR, 1.49; 95% CI, 1.37–1.62). The monotonic change in risk to the population persisted to PM2.5 concentration <5 µg/m3. CONCLUSIONS Long-term exposure to PM2.5, even at low levels, is related to an increased risk of mortality attributable to diabetes. These findings have considerable public health importance given the billions of people exposed to air pollution and the worldwide growing epidemic of diabetes. PMID:23780947

  15. Fine particulate air pollution and systemic autoimmune rheumatic disease in two Canadian provinces.

    PubMed

    Bernatsky, Sasha; Smargiassi, Audrey; Barnabe, Cheryl; Svenson, Lawrence W; Brand, Allan; Martin, Randall V; Hudson, Marie; Clarke, Ann E; Fortin, Paul R; van Donkelaar, Aaron; Edworthy, Steven; Bélisle, Patrick; Joseph, Lawrence

    2016-04-01

    To estimate the degree to which fine particulate (PM2.5) air pollution is associated with systemic autoimmune rheumatic diseases (SARDs). We used population-based administrative data from Alberta (1993-2007) and Quebec (1989-2011). SARD algorithms included ≥2 physician billing codes, or ≥1 rheumatology billing code, or ≥1 hospitalization diagnostic code (for systemic lupus, Sjogren's Syndrome, scleroderma, polymyositis, dermatomyositis, or undifferentiated connective tissue disease). Bayesian hierarchical latent class regression models estimated the probability that any given resident was a SARD case, based on the algorithms. Mean 2001-2006 residential ambient PM2.5 levels were assigned using satellite-derived data for dissemination area regions in Alberta and CLSC regions in Quebec. The sum of individual level probabilities provided the estimated total cases per region in each province, according to age, sex, urban-versus-rural residence, income, and PM2.5 levels. In Alberta, we ran separate models for First-Nations (FN) and non-First Nations subgroups. Bayesian logistic regression modeling generated odds ratio (OR) estimates for being a SARD case, accounting concurrently for demographics, as well as an interaction term between age and sex. Our data suggested that the probability of being a SARD case was higher among females versus males and for residents aged >45 versus younger, with the highest ORs for older females. Independently, the odds of being a SARDs case increased with PM2.5 levels in both provinces. Our data suggest that PM2.5 exposure may be associated with an increased risk of SARDs. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Long-term Exposure to Fine Particulate Matter Air Pollution and Mortality Among Canadian Women.

    PubMed

    Villeneuve, Paul J; Weichenthal, Scott A; Crouse, Daniel; Miller, Anthony B; To, Teresa; Martin, Randall V; van Donkelaar, Aaron; Wall, Claus; Burnett, Richard T

    2015-07-01

    Long-term exposure to fine particulate matter (PM2.5) has been associated with increased mortality, especially from cardiovascular disease. There are, however, uncertainties about the nature of the exposure-response relation at lower concentrations. In Canada, where ambient air pollution levels are substantially lower than in most other countries, there have been few attempts to study associations between long-term exposure to PM2.5 and mortality. We present a prospective cohort analysis of 89,248 women who enrolled in the Canadian National Breast Screening Study between 1980 and 1985, and for whom residential measures of PM2.5 could be assigned. We derived individual-level estimates of long-term exposure to PM2.5 from satellite observations. We linked cohort records to national mortality data to ascertain mortality between 1980 and 2005. We used Cox proportional hazards models to characterize associations between PM2.5 and several causes of death. The hazard ratios (HRs) and 95% confidence intervals (CIs) computed from these models were adjusted for several individual and neighborhood-level characteristics. The cohort was composed predominantly of Canadian-born (82%) and married (80%) women. The median residential concentration of PM2.5 was 9.1 μg/m(3) (standard deviation = 3.4). In fully adjusted models, a 10 μg/m(3) increase in PM2.5 exposure was associated with elevated risks of nonaccidental (HR: 1.12; 95% CI = 1.04, 1.19), and ischemic heart disease mortality (HR: 1.34; 95% CI = 1.09, 1.66). The findings from this study provide additional support for the hypothesis that exposure to very low levels of ambient PM2.5 increases the risk of cardiovascular mortality.

  17. Short-Term Exposure to Fine Particulate Matter and Risk of Ischemic Stroke.

    PubMed

    Matsuo, Ryu; Michikawa, Takehiro; Ueda, Kayo; Ago, Tetsuro; Nitta, Hiroshi; Kitazono, Takanari; Kamouchi, Masahiro

    2016-12-01

    There is a strong association between ambient concentrations of particulate matter (PM) and cardiovascular disease. However, it remains unclear whether acute exposure to fine PM (PM2.5) triggers ischemic stroke events and whether the timing of exposure is associated with stroke risk. We, therefore, examined the association between ambient PM2.5 and occurrence of ischemic stroke. We analyzed data for 6885 ischemic stroke patients from a multicenter hospital-based stroke registry in Japan who were previously independent and hospitalized within 24 hours of stroke onset. Time of symptom onset was confirmed, and the association between PM (suspended PM and PM2.5) and occurrence of ischemic stroke was analyzed by time-stratified case-crossover analysis. Ambient PM2.5 and suspended PM at lag days 0 to 1 were associated with subsequent occurrence of ischemic stroke (ambient temperature-adjusted odds ratio [95% confidence interval] per 10 μg/m(3): suspended PM, 1.02 [1.00-1.05]; PM2.5, 1.03 [1.00-1.06]). In contrast, ambient suspended PM and PM2.5 at lag days 2 to 3 or 4 to 6 showed no significant association with stroke occurrence. The association between PM2.5 at lag days 0 to 1 and ischemic stroke was maintained after adjusting for other air pollutants (nitrogen dioxide, photochemical oxidants, or sulfur dioxide) or influenza epidemics and was evident in the cold season. These findings suggest that short-term exposure to PM2.5 within 1 day before onset is associated with the subsequent occurrence of ischemic stroke. © 2016 American Heart Association, Inc.

  18. Time-Series Analysis of Mortality Effects of Fine Particulate Matter Components in Detroit and Seattle

    PubMed Central

    Zhou, Jiang; Ito, Kazuhiko; Lall, Ramona; Lippmann, Morton; Thurston, George

    2011-01-01

    Background Recent toxicological and epidemiological studies have shown associations between particulate matter (PM) and adverse health effects, but which PM components are most influential is less well known. Objectives In this study, we used time-series analyses to determine the associations between daily fine PM [PM ≤ 2.5 μm in aerodynamic diameter (PM2.5)] concentrations and daily mortality in two U.S. cities—Seattle, Washington, and Detroit, Michigan. Methods We obtained daily PM2.5 filters for the years of 2002–2004 and analyzed trace elements using X-ray fluorescence and black carbon using light reflectance as a surrogate measure of elemental carbon. We used Poisson regression and distributed lag models to estimate excess deaths for all causes and for cardiovascular and respiratory diseases adjusting for time-varying covariates. We computed the excess risks for interquartile range increases of each pollutant at lags of 0 through 3 days for both warm and cold seasons. Results The cardiovascular and respiratory mortality series exhibited different source and seasonal patterns in each city. The PM2.5 components and gaseous pollutants associated with mortality in Detroit were most associated with warm season secondary aerosols and traffic markers. In Seattle, the component species most closely associated with mortality included those for cold season traffic and other combustion sources, such as residual oil and wood burning. Conclusions The effects of PM2.5 on daily mortality vary with source, season, and locale, consistent with the hypothesis that PM composition has an appreciable influence on the health effects attributable to PM. PMID:21193387

  19. The relationship between physicochemical characterization and the potential toxicity of fine particulates (PM 2.5) in Shanghai atmosphere

    NASA Astrophysics Data System (ADS)

    Senlin, Lu; Zhenkun, Yao; Xiaohui, Chen; Minghong, Wu; Guoying, Sheng; Jiamo, Fu; Paul, Daly

    Fine particulate matter with aerodynamic diameter less than 2.5 μm (PM 2.5) was collected at urban and suburban sites in Shanghai from April 2005 to March 2006. Average mass concentrations of PM 2.5 ranged from 43.5 to 149 μg m -3 in the urban area and 21.7 to 159 μg m -3 in suburban area. The mass levels of PM 2.5 sampled at urban and suburban sites showed seasonal variation with much higher values in winter and spring, lower values in summer, and the lowest in autumn. The results of environmental scanning electron microscopy (ESEM) showed that Shanghai PM 2.5 was consisted of soot aggregates, coal fly ashes, minerals, bio-particles and unidentified particles. Inductively coupled plasma atomic mission spectrum (ICP-AES) results showed total elements in Shanghai PM 2.5 increased gradually from summer to winter and remained at a relatively high level in spring. There was a significant difference in the mass of elements in PM 2.5 collected in urban and in suburban atmosphere. Enrichment factor (EF) analysis results demonstrated that K, Na, Ca, Mg, Al, Fe, Ba and Sr originated from natural sources, while As, Cu, Zn, Pb, Cd, Mn, Ni and Se were emitted from anthropogenic sources. The plasmid DNA assay showed that potential toxicity of Shanghai PM 2.5 collected at urban and suburban sampling sites, and in different seasons, varied greatly. Toxicity of the Shanghai urban winter PM 2.5 sample was much stronger compared to any of the other samples. Heavy metals in Shanghai PM 2.5, including Cu, Zn, Pb, Cd, Cr, Mn, and Ni, might have synergic-effects on plasmid DNA damage.

  20. Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States.

    PubMed

    Kundu, Shuvashish; Stone, Elizabeth A

    2014-05-01

    The composition and sources of fine particulate matter (PM2.5) were investigated in rural and urban locations in Iowa, located in the agricultural and industrial Midwestern United States, from April 2009 to December 2012. Major chemical contributors to PM2.5 mass were sulfate, nitrate, ammonium, and organic carbon. Non-parametric statistical analyses demonstrated that the two rural sites had significantly enhanced levels of crustal materials (Si, Al) driven by agricultural activities and unpaved roads. Meanwhile, the three urban areas had enhanced levels of secondary aerosols (nitrate, sulfate, and ammonium) and combustion products (elemental carbon). The Davenport site had significantly higher levels of PM2.5 and trace metals (Fe, Pb, Zn), demonstrating the important local impact of industrial point sources on air quality. Sources of PM2.5 were evaluated by using the multi-variant positive matrix factorization (PMF) source apportionment model. For each individual site, seven to nine factors were identified: secondary sulfate (accounting for 29-30% of PM2.5), secondary nitrate (17-24%), biomass burning (9-21%), gasoline combustion (6-16%), diesel combustion (3-9%), dust (6-11%), industry (0.4-5%) and winter salt (2-6%). Source contributions demonstrated a clear urban enhancement in PM2.5 from gasoline engines (by a factor of 1.14) and diesel engines (by a factor of 2.3), which is significant due to the well-documented negative health impacts of vehicular emissions. This study presents the first source apportionment results from the state of Iowa and is broadly applicable to understanding the differences in anthropogenic and natural sources in the urban-rural continuum of particle air pollution.

  1. Spatial and Temporal Variation in Fine Particulate Matter Mass and Chemical Composition: The Middle East Consortium for Aerosol Research Study

    PubMed Central

    Abdeen, Ziad; Heo, Jongbae; Wu, Bo; Shpund, Jacob; Vanger, Arye; Sharf, Geula; Moise, Tamar; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Al-Mahasneh, Qusai M.; Sarnat, Jeremy A.; Schauer, James J.

    2014-01-01

    Ambient fine particulate matter (PM2.5) samples were collected from January to December 2007 to investigate the sources and chemical speciation in Palestine, Jordan, and Israel. The 24-h PM2.5 samples were collected on 6-day intervals at eleven urban and rural sites simultaneously. Major chemical components including metals, ions, and organic and elemental carbon were analyzed. The mass concentrations of PM2.5 across the 11 sites varied from 20.6 to 40.3 μg/m3, with an average of 28.7 μg/m3. Seasonal variation of PM2.5 concentrations was substantial, with higher average concentrations (37.3 μg/m3) in the summer (April–June) months compared to winter (October–December) months (26.0 μg/m3) due mainly to high contributions of sulfate and crustal components. PM2.5 concentrations in the spring were greatly impacted by regional dust storms. Carbonaceous mass was the most abundant component, contributing 40% to the total PM2.5 mass averaged across the eleven sites. Crustal components averaged 19.1% of the PM2.5 mass and sulfate, ammonium, and nitrate accounted for 16.2%, 6.4%, and 3.7%, respectively, of the total PM2.5 mass. The results of this study demonstrate the need to better protect the health and welfare of the residents on both sides of the Jordan River in the Middle East. PMID:25045751

  2. Spatial and temporal variation in fine particulate matter mass and chemical composition: the Middle East Consortium for Aerosol Research Study.

    PubMed

    Abdeen, Ziad; Qasrawi, Radwan; Heo, Jongbae; Wu, Bo; Shpund, Jacob; Vanger, Arye; Sharf, Geula; Moise, Tamar; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Al-Mahasneh, Qusai M; Sarnat, Jeremy A; Schauer, James J

    2014-01-01

    Ambient fine particulate matter (PM2.5) samples were collected from January to December 2007 to investigate the sources and chemical speciation in Palestine, Jordan, and Israel. The 24-h PM2.5 samples were collected on 6-day intervals at eleven urban and rural sites simultaneously. Major chemical components including metals, ions, and organic and elemental carbon were analyzed. The mass concentrations of PM2.5 across the 11 sites varied from 20.6 to 40.3 μg/m(3), with an average of 28.7 μg/m(3). Seasonal variation of PM2.5 concentrations was substantial, with higher average concentrations (37.3 μg/m(3)) in the summer (April-June) months compared to winter (October-December) months (26.0 μg/m(3)) due mainly to high contributions of sulfate and crustal components. PM2.5 concentrations in the spring were greatly impacted by regional dust storms. Carbonaceous mass was the most abundant component, contributing 40% to the total PM2.5 mass averaged across the eleven sites. Crustal components averaged 19.1% of the PM2.5 mass and sulfate, ammonium, and nitrate accounted for 16.2%, 6.4%, and 3.7%, respectively, of the total PM2.5 mass. The results of this study demonstrate the need to better protect the health and welfare of the residents on both sides of the Jordan River in the Middle East.

  3. Contributions of biomass burning and other sources to fine particulate carbon at rural locations throughout the United States

    NASA Astrophysics Data System (ADS)

    Schichtel, B. A.; Rodriguez, M. A.; Barna, M. G.; Gebhart, K. A.; Pierce, T. E.; Munchak, L. A.; Collett, J. L.; Malm, W. C.

    2010-12-01

    Carbonaceous compounds are a major component of ambient fine particulate matter in rural and urban environments and can contribute to health effects, regional haze, and positive and negative forcing on the earth’s radiation balance. Understanding the sources that contribute to particulate carbon is important for the development of regulations to address these and other issues. A backward Lagrangian particle dispersion chemical transport model was develop to simulate particulate carbon concentrations and the contributions from wildfire, vegetation, mobile, area and other sources at individual receptor sites. This model was used to simulate carbon concentrations at IMPROVE monitoring sites from 2006-2008. IMPROVE monitors fine particulate matter and its composition in mostly rural locations throughout the United States. The simulations were conducted using emission from the 2002 WRAP regional haze emission inventory for all years. Wildfires vary significantly from one year to another, so the WRAP fire emissions were replaced with the NCAR biomass burning emission inventory derived from MODIS satellite data for the modeled years. The Lagrangian model used pseudo-first order rate equations where the physical and chemical rate coefficients are derived by tuning the model to fit measured 2008 particulate carbon concentrations and secondary organic carbon fractions. Contributions of biomass burning to particulate carbon during 2006 were also available from the CMAQ Eulerian chemical transport model operated by the United States EPA. In this presentation, the biomass burning contributions from the two 2006 model runs are compared and seasonal and spatial patterns of the source contributions from 2006 - 2008 simulates are presented. On average, different sources contributed to different seasons. During the summer months, the particulate carbon was predominately due to biomass burning and secondary organic carbon from vegetation. Smaller contributions from area and mobile

  4. The effects of components of fine particulate air pollution on mortality in california: results from CALFINE.

    PubMed

    Ostro, Bart; Feng, Wen-Ying; Broadwin, Rachel; Green, Shelley; Lipsett, Michael

    2007-01-01

    Several epidemiologic studies provide evidence of an association between daily mortality and particulate matter < 2.5 pm in diameter (PM2.5). Little is known, however, about the relative effects of PM2.5 constituents. We examined associations between 19 PM2.5 components and daily mortality in six California counties. We obtained daily data from 2000 to 2003 on mortality and PM2.5 mass and components, including elemental and organic carbon (EC and OC), nitrates, sulfates, and various metals. We examined associations of PM2.5 and its constituents with daily counts of several mortality categories: all-cause, cardiovascular, respiratory, and mortality age > 65 years. Poisson regressions incorporating natural splines were used to control for time-varying covariates. Effect estimates were determined for each component in each county and then combined using a random-effects model. PM2.5 mass and several constituents were associated with multiple mortality categories, especially cardiovascular deaths. For example, for a 3-day lag, the latter increased by 1.6, 2.1, 1.6, and 1.5% for PM2.5, EC, OC, and nitrates based on interquartile ranges of 14.6, 0.8, 4.6, and 5.5 pg/m(3), respectively. Stronger associations were observed between mortality and additional pollutants, including sulfates and several metals, during the cool season. This multicounty analysis adds to the growing body of evidence linking PM2.5 with mortality and indicates that excess risks may vary among specific PM2.5 components. Therefore, the use of regression coefficients based on PM2.5 mass may underestimate associations with some PM2.5 components. Also, our findings support the hypothesis that combustion-associated pollutants are particularly important in California.

  5. Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: The important roles of ammonia and ozone

    NASA Astrophysics Data System (ADS)

    Wen, Liang; Chen, Jianmin; Yang, Lingxiao; Wang, Xinfeng; Xu, Caihong; Sui, Xiao; Yao, Lan; Zhu, Yanhong; Zhang, Junmei; Zhu, Tong; Wang, Wenxing

    2015-01-01

    Severe PM2.5 pollution was observed frequently on the North China Plain, and nitrate contributed a large fraction of the elevated PM2.5 concentrations. To obtain a comprehensive understanding of the formation pathways of these fine particulate nitrate and the key factors that affect these pathways, field measurements of fine particulate nitrate and related air pollutants were made at a rural site on the North China Plain in the summer of 2013. Extremely high concentrations of fine particulate nitrate were frequently observed at night and in the early morning. The maximum hourly concentration of fine particulate nitrate reached 87.2 μg m-3. This concentration accounted for 29.9% of the PM2.5. The very high NH3 concentration in the early morning significantly accelerated the formation of fine particulate nitrate, as indicated by the concurrent appearance of NH3 and NO3- concentration peaks and a rising neutralization ratio (the equivalent ratio of NH4+ to the sum of SO42- and NO3-). On a number of other episode days, strong photochemical activity during daytime led to high concentrations of O3 at night. The fast secondary formation of fine particulate nitrate was mainly attributed to the hydrolysis of N2O5, which was produced from O3 and NO2. Considering the important roles of NH3 and O3 in fine particulate nitrate formation, we suggest the control of NH3 emissions and photochemical pollution to address the high levels of fine particulate nitrate and the severe PM2.5 pollution on the North China Plain.

  6. Atmospheric mercury and fine particulate matter in coastal New England: implications for mercury and trace element sources in the northeastern United States

    USGS Publications Warehouse

    Kolker, Allan; Engle, Mark A.; Peucker-Ehrenbrink, Bernhard; Geboy, Nicholas J.; Krabbenhotft, David P. Krabbenhoft; Bothner, Michael H. Bothner; Tate, Michael T.

    2013-01-01

    Intensive sampling of ambient atmospheric fine particulate matter was conducted at Woods Hole, Massachusetts over a four-month period from 3 April to 29 July, 2008, in conjunction with year-long deployment of the USGS Mobile Mercury Lab. Results were obtained for trace elements in fine particulate matter concurrently with determination of ambient atmospheric mercury speciation and concentrations of ancillary gasses (SO2, NOx, and O3). For particulate matter, trace element enrichment factors greater than 10 relative to crustal background values were found for As, Bi, Cd, Cu, Hg, Pb, Sb, V, and Zn, indicating contribution of these elements by anthropogenic sources. For other elements, enrichments are consistent with natural marine (Na, Ca, Mg, Sr) or crustal (Ba, Ce, Co, Cs, Fe, Ga, La, Rb, Sc, Th, Ti, U, Y) sources, respectively. Positive matrix factorization was used together with concentration weighted air-mass back trajectories to better define element sources and their locations. Our analysis, based on events exhibiting the 10% highest PM2.5 contributions for each source category, identifies coal-fired power stations concentrated in the U.S. Ohio Valley, metal smelting in eastern Canada, and marine and crustal sources showing surprisingly similar back trajectories, at times each sampling Atlantic coastal airsheds. This pattern is consistent with contribution of Saharan dust by a summer maximum at the latitude of Florida and northward transport up the Atlantic Coast by clockwise circulation of the summer Bermuda High. Results for mercury speciation show diurnal production of RGM by photochemical oxidation of Hg° in a marine environment, and periodic traverse of the study area by correlated RGM-SO2(NOx) plumes, indicative of coal combustion sources.

  7. Development of Metal Substrate for Denox Catalysts and Particulate Trap

    SciTech Connect

    Pollard, Michael; Habeger, Craig; Frary, Megan; Haines, Scott; Fluharty, Amy; Dakhoul, Youssef; Carr, Michael; Park, Paul; Stefanick, Matthew; DaCosta, Herbert; Balmer-Millar, M Lou; Readey, Michael; McCluskey, Philip

    2005-12-31

    The objective of this project was to develop advanced metallic catalyst substrate materials and designs for use in off-highway applications. The new materials and designs will be used as catalyst substrates and diesel particulate traps. They will increase durability, reduce flow resistance, decrease time to light-off, and reduce cost relative to cordierite substrates. Metallic catalyst substrates are used extensively for diesel oxidation catalysts and have the potential to be used in other catalytic systems for diesel engines. Metallic substrates have many advantages over ceramic materials including improved durability and resistance to thermal shock and vibration. However, the cost is generally higher than cordierite. The most common foil material used for metallic substrates is FeCr Alloy, which is expensive and has temperature capabilities beyond what is necessary for diesel applications. The first task in the project was Identification and Testing of New Materials. In this task, several materials were analyzed to determine if a low cost substitute for FeCr Alloy was available or could be developed. Two materials were identified as having lower cost while showing no decrease in mechanical properties or oxidation resistance at the application temperatures. Also, the ability to fabricate these materials into a finished substrate was not compromised, and the ability to washcoat these materials was satisfactory. Therefore, both candidate materials were recommended for cost savings depending on which would be less expensive in production quantities. The second task dealt with the use of novel flow designs to improve the converter efficiency while possibly decreasing the size of the converter to reduce cost even more. A non-linear flow path was simulated to determine if there would be an increase in efficiency. From there, small samples were produced for bench testing. Bench tests showed that the use of non-linear channels significantly reduced the light

  8. SYSTEMIC TRANSLOCATION OF PARTICULATE MATTER-ASSOCIATED METALS FOLLOWING A SINGLE INTRATRACHEAL INSTILLATION IN RATS

    EPA Science Inventory

    Respirable ambient particulate matter (PM) exposure has been associated with an increased risk of cardiovascular disease. Direct translocation of PM associated metals from the lungs into systemic circulation may be partly responsible. We measured elemental content of lungs, pla...

  9. SYSTEMIC TRANSLOCATION OF PARTICULATE MATTER-ASSOCIATED METALS FOLLOWING A SINGLE INTRATRACHEAL INSTILLATION IN RATS

    EPA Science Inventory

    Respirable ambient particulate matter (PM) exposure has been associated with an increased risk of cardiovascular disease. Direct translocation of PM associated metals from the lungs into systemic circulation may be partly responsible. We measured elemental content of lungs, pla...

  10. Carcinogenicity of airborne fine particulate benzo(a)pyrene: an appraisal of the evidence and the need for control.

    PubMed Central

    Perera, F

    1981-01-01

    Benzo(a)pyrene(BaP) originating from fossil fuel and other organic combustion processes is largely adsorbed on fine particulate and hence is a widespread atmospheric pollutant. Available emissions and air quality data are based on the total weight of particulate matter without reference to size and give little information on trends and concentrations of fine particulate BaP. Greater reliance on coal, synfuels and diesel fuel for energy production and transportation will significantly increase ambient levels of BaP. Because of the particulate size, BaP is substantially deposited in the lower lung and readily eluted into surrounding tissue. After elution in the lung, BaP is metabolically activated to its electrophilic, carcinogenic from by a complex enzyme system whose activity is increased by prior exposure to air pollutants, cigarette smoke and certain drugs. The resultant diol epoxide metabolite has been shown to bind covalently with the DNA of the lung. In experimental animals, BaP is a potent initiating carcinogen whose action is enhanced by sulfur dioxide, promoting agents and carrier fine particles. The effect of small, divided doses of BaP has been shown to be greater than that of a single high dose; no threshold has been established. Epidemiological studies show that mixtures containing BaP (such as urban air, industrial emissions and cigarette smoke) are carcinogenic and may interact synergistically. Occupational studies indicate that the action of BaP-containing mixtures is enhanced in the presence of SO2. However, quantitative risk assessment for BaP is precluded by problems in extrapolating to the general population from small-scale animal studies; uncertainties in findings of epidemiology; and imprecise exposure data. Existing stationary and mobile controls preferentially remove coarse particulate matter and are inefficient collectors of the particulate BaP. In the current absence of health and environmental standards for BaP, there is little incentive

  11. Assessment of Population and Microenvironmental Exposure to Fine Particulate Matter (PM2.5)

    NASA Astrophysics Data System (ADS)

    Jiao, Wan

    A positive relationship exists between fine particulate matter (PM 2.5) exposure and adverse health effects. PM2.5 concentration-response functions used in the quantitative risk assessment were based on findings from human epidemiological studies that relied on areawide ambient concentrations as surrogate for actual ambient exposure, which cannot capture the spatial and temporal variability in human exposures. The goal of the study is to assess inter-individual, geographic and seasonal variability in population exposures to inform the interpretation of available epidemiological studies, and to improve the understanding of how exposure-related factors in important exposure microenvironments contribute to the variability in individual PM2.5 exposure. Typically, the largest percentage of time in which an individual is exposed to PM2.5 of ambient origin occurs in indoor residence, and the highest ambient PM2.5 concentrations occur in transportation microenvironments because of the proximity to on-road traffic emissions. Therefore, indoor residence and traffic-related transportation microenvironments were selected for further assessment in the study. Population distributions of individual daily PM2.5 exposures were estimated for the selected regions and seasons using the Stochastic Human Exposure and Dose Simulation Model for Particulate Matter (SHEDS-PM). For the indoor residence, the current practice by assuming the entire residence to be one large single zone for calculating the indoor residential PM 2.5 concentration was evaluated by applying an indoor air quality model, RISK, to compare indoor PM2.5 concentrations between single-zone and multi-zone scenarios. For the transportation microenvironments, one field data collection focused on in-vehicle microenvironment and was conducted to quantify the variability in the in-vehicle PM2.5 concentration with respect to the outside vehicle concentration for a wide range of conditions that affect intra-vehicle variability

  12. Ambient Fine Particulate (PM2.5) Air Pollution Attributable to Household Cooking Fuel in Asia

    NASA Astrophysics Data System (ADS)

    Chafe, Z.; Mehta, S.; Smith, K. R.

    2011-12-01

    Using the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model, hosted by the International Institute for Applied Systems Analysis (IIASA), we estimate the proportion of fine particulate ambient air pollution (PM2.5) attributable to household fuel use for cooking in Asia. This analysis considers primary anthropogenic PM2.5 emissions in two years: 1990 and 2005. Only emissions from household cooking fuels-not heating or lighting-are considered. Due to data availability, this analysis focuses solely on Asian countries, notably India and China which are home to about half of the households using solid fuel use worldwide. Forest and grassland fires, dust, and other "natural" particle sources were omitted from this analysis. The impact of emission sources on secondary particles from aerosol precursors was not determined. In China, the proportion of total primary anthropogenic PM2.5 attributable to household cooking decreased from 44% to 31% between 1990 and 2005. In India, the percent of primary anthropogenic PM2.5 emissions attributable to household cooking decreased from 55% to 49% between 1990 and 2005. Total mass change in primary anthropogenic PM2.5 emissions was much more variable by state in India, between 1990 and 2005, than by province in China (where there was a general downward trend in the total mass emitted). Similarly, growth in industrial emissions was much more variable at the sub-national level, between 1990 and 2005, in India than in China. Energy production played a more prominent role in the growth of primary anthropogenic PM2.5 emissions in India than it did in China. Forward-looking GAINS scenarios show that the contribution of household cooking to total primary anthropogenic PM2.5 emissions is much greater than that from on-road transport in India and China between 1990 and 2030. On-road cars, trucks, and other transport vehicles are, however, the cause of important pollutants other than PM2.5 (as are as cooking stoves that do

  13. Atmospheric fine particulate matter and breast cancer mortality: a population-based cohort study.

    PubMed

    Tagliabue, Giovanna; Borgini, Alessandro; Tittarelli, Andrea; van Donkelaar, Aaron; Martin, Randall V; Bertoldi, Martina; Fabiano, Sabrina; Maghini, Anna; Codazzi, Tiziana; Scaburri, Alessandra; Favia, Imma; Cau, Alessandro; Barigelletti, Giulio; Tessandori, Roberto; Contiero, Paolo

    2016-11-14

    Atmospheric fine particulate matter (PM2.5) has multiple adverse effects on human health. Global atmospheric levels of PM2.5 increased by 0.55 μg/m(3)/year (2.1%/year) from 1998 through 2012. There is evidence of a causal relationship between atmospheric PM2.5 and breast cancer (BC) incidence, but few studies have investigated BC mortality and atmospheric PM2.5. We investigated BC mortality in relation to atmospheric PM2.5 levels among patients living in Varese Province, northern Italy. We selected female BC cases, archived in the local population-based cancer registry, diagnosed at age 50-69 years, between 2003 and 2009. The geographic coordinates of each woman's place of residence were identified, and individual PM2.5 exposures were assessed from satellite data. Grade, stage, age at diagnosis, period of diagnosis and participation in BC screening were potential confounders. Kaplan-Meir and Nelson-Aalen methods were used to test for mortality differences in relation to PM2.5 quartiles. Multivariable Cox proportional hazards modelling estimated HRs and 95% CIs of BC death in relation to PM2.5 exposure. Of 2021 BC cases, 325 died during follow-up to 31 December 2013, 246 for BC. Risk of BC death was significantly higher for all three upper quartiles of PM2.5 exposure compared to the lowest, with HRs of death: 1.82 (95% CI 1.15 to 2.89), 1.73 (95% CI 1.12 to 2.67) and 1.72 (95% CI 1.08 to 2.75). Our study indicates that the risk of BC mortality increases with PM2.5 exposure. Although additional research is required to confirm these findings, they are further evidence that PM2.5 exposure is harmful and indicate an urgent need to improve global air quality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Impact of Fine Particulate Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes

    PubMed Central

    Haikerwal, Anjali; Akram, Muhammad; Del Monaco, Anthony; Smith, Karen; Sim, Malcolm R; Meyer, Mick; Tonkin, Andrew M; Abramson, Michael J; Dennekamp, Martine

    2015-01-01

    Background Epidemiological studies investigating the role of fine particulate matter (PM2.5; aerodynamic diameter <2.5 μm) in triggering acute coronary events, including out-of-hospital cardiac arrests and ischemic heart disease (IHD), during wildfires have been inconclusive. Methods and Results We examined the associations of out-of-hospital cardiac arrests, IHD, acute myocardial infarction, and angina (hospital admissions and emergency department attendance) with PM2.5 concentrations during the 2006–2007 wildfires in Victoria, Australia, using a time-stratified case-crossover study design. Health data were obtained from comprehensive health-based administrative registries for the study period (December 2006 to January 2007). Modeled and validated air exposure data from wildfire smoke emissions (daily average PM2.5, temperature, relative humidity) were also estimated for this period. There were 457 out-of-hospital cardiac arrests, 2106 emergency department visits, and 3274 hospital admissions for IHD. After adjusting for temperature and relative humidity, an increase in interquartile range of 9.04 μg/m3 in PM2.5 over 2 days moving average (lag 0-1) was associated with a 6.98% (95% CI 1.03% to 13.29%) increase in risk of out-of-hospital cardiac arrests, with strong association shown by men (9.05%,95%CI 1.63% to 17.02%) and by older adults (aged ≥65 years) (7.25%, 95% CI 0.24% to 14.75%). Increase in risk was (2.07%, 95% CI 0.09% to 4.09%) for IHD-related emergency department attendance and (1.86%, 95% CI: 0.35% to 3.4%) for IHD-related hospital admissions at lag 2 days, with strong associations shown by women (3.21%, 95% CI 0.81% to 5.67%) and by older adults (2.41%, 95% CI 0.82% to 5.67%). Conclusion PM2.5 exposure was associated with increased risk of out-of-hospital cardiac arrests and IHD during the 2006–2007 wildfires in Victoria. This evidence indicates that PM2.5 may act as a triggering factor for acute coronary events during wildfire episodes

  15. Impact of Fine Particulate Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes.

    PubMed

    Haikerwal, Anjali; Akram, Muhammad; Del Monaco, Anthony; Smith, Karen; Sim, Malcolm R; Meyer, Mick; Tonkin, Andrew M; Abramson, Michael J; Dennekamp, Martine

    2015-07-15

    Epidemiological studies investigating the role of fine particulate matter (PM2.5; aerodynamic diameter <2.5 μm) in triggering acute coronary events, including out-of-hospital cardiac arrests and ischemic heart disease (IHD), during wildfires have been inconclusive. We examined the associations of out-of-hospital cardiac arrests, IHD, acute myocardial infarction, and angina (hospital admissions and emergency department attendance) with PM2.5 concentrations during the 2006-2007 wildfires in Victoria, Australia, using a time-stratified case-crossover study design. Health data were obtained from comprehensive health-based administrative registries for the study period (December 2006 to January 2007). Modeled and validated air exposure data from wildfire smoke emissions (daily average PM2.5, temperature, relative humidity) were also estimated for this period. There were 457 out-of-hospital cardiac arrests, 2106 emergency department visits, and 3274 hospital admissions for IHD. After adjusting for temperature and relative humidity, an increase in interquartile range of 9.04 μg/m(3) in PM2.5 over 2 days moving average (lag 0-1) was associated with a 6.98% (95% CI 1.03% to 13.29%) increase in risk of out-of-hospital cardiac arrests, with strong association shown by men (9.05%,95%CI 1.63% to 17.02%) and by older adults (aged ≥65 years) (7.25%, 95% CI 0.24% to 14.75%). Increase in risk was (2.07%, 95% CI 0.09% to 4.09%) for IHD-related emergency department attendance and (1.86%, 95% CI: 0.35% to 3.4%) for IHD-related hospital admissions at lag 2 days, with strong associations shown by women (3.21%, 95% CI 0.81% to 5.67%) and by older adults (2.41%, 95% CI 0.82% to 5.67%). PM2.5 exposure was associated with increased risk of out-of-hospital cardiac arrests and IHD during the 2006-2007 wildfires in Victoria. This evidence indicates that PM2.5 may act as a triggering factor for acute coronary events during wildfire episodes. © 2015 The Authors. Published on behalf of the

  16. Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh.

    PubMed

    Tunno, Brett J; Naumoff Shields, Kyra; Cambal, Leah; Tripathy, Sheila; Holguin, Fernando; Lioy, Paul; Clougherty, Jane E

    2015-12-01

    Impacts of industrial emissions on outdoor air pollution in nearby communities are well-documented. Fewer studies, however, have explored impacts on indoor air quality in these communities. Because persons in northern climates spend a majority of their time indoors, understanding indoor exposures, and the role of outdoor air pollution in shaping such exposures, is a priority issue. Braddock and Clairton, Pennsylvania, industrial communities near Pittsburgh, are home to an active steel mill and coke works, respectively, and the population experiences elevated rates of childhood asthma. Twenty-one homes were selected for 1-week indoor sampling for fine particulate matter (PM2.5) and black carbon (BC) during summer 2011 and winter 2012. Multivariate linear regression models were used to examine contributions from both outdoor concentrations and indoor sources. In the models, an outdoor infiltration component explained 10 to 39% of variability in indoor air pollution for PM2.5, and 33 to 42% for BC. For both PM2.5 models and the summer BC model, smoking was a stronger predictor than outdoor pollution, as greater pollutant concentration increases were identified. For winter BC, the model was explained by outdoor pollution and an open windows modifier. In both seasons, indoor concentrations for both PM2.5 and BC were consistently higher than residence-specific outdoor concentration estimates. Mean indoor PM2.5 was higher, on average, during summer (25.8±22.7 μg/m3) than winter (18.9±13.2 μg/m3). Contrary to the study's hypothesis, outdoor concentrations accounted for only little to moderate variability (10 to 42%) in indoor concentrations; a much greater proportion of PM2.5 was explained by cigarette smoking. Outdoor infiltration was a stronger predictor for BC compared to PM2.5, especially in winter. Our results suggest that, even in industrial communities of high outdoor pollution concentrations, indoor activities--particularly cigarette smoking--may play a larger

  17. Atmospheric fine particulate matter and breast cancer mortality: a population-based cohort study

    PubMed Central

    Tagliabue, Giovanna; Borgini, Alessandro; Tittarelli, Andrea; van Donkelaar, Aaron; Martin, Randall V; Bertoldi, Martina; Fabiano, Sabrina; Maghini, Anna; Codazzi, Tiziana; Scaburri, Alessandra; Favia, Imma; Cau, Alessandro; Barigelletti, Giulio; Tessandori, Roberto; Contiero, Paolo

    2016-01-01

    Objectives Atmospheric fine particulate matter (PM2.5) has multiple adverse effects on human health. Global atmospheric levels of PM2.5 increased by 0.55 μg/m3/year (2.1%/year) from 1998 through 2012. There is evidence of a causal relationship between atmospheric PM2.5 and breast cancer (BC) incidence, but few studies have investigated BC mortality and atmospheric PM2.5. We investigated BC mortality in relation to atmospheric PM2.5 levels among patients living in Varese Province, northern Italy. Methods We selected female BC cases, archived in the local population-based cancer registry, diagnosed at age 50–69 years, between 2003 and 2009. The geographic coordinates of each woman's place of residence were identified, and individual PM2.5 exposures were assessed from satellite data. Grade, stage, age at diagnosis, period of diagnosis and participation in BC screening were potential confounders. Kaplan-Meir and Nelson-Aalen methods were used to test for mortality differences in relation to PM2.5 quartiles. Multivariable Cox proportional hazards modelling estimated HRs and 95% CIs of BC death in relation to PM2.5 exposure. Results Of 2021 BC cases, 325 died during follow-up to 31 December 2013, 246 for BC. Risk of BC death was significantly higher for all three upper quartiles of PM2.5 exposure compared to the lowest, with HRs of death: 1.82 (95% CI 1.15 to 2.89), 1.73 (95% CI 1.12 to 2.67) and 1.72 (95% CI 1.08 to 2.75). Conclusions Our study indicates that the risk of BC mortality increases with PM2.5 exposure. Although additional research is required to confirm these findings, they are further evidence that PM2.5 exposure is harmful and indicate an urgent need to improve global air quality. PMID:28076275

  18. Particulate Trace Metal Composition in the Western Philippine Sea: the importance of anthropogenic aerosol deposition

    NASA Astrophysics Data System (ADS)

    Liao, W. H.; Ho, T. Y.

    2016-02-01

    The Western Philippine Sea (WPS), receiving huge amount of East Asian aerosols in winter and spring, is an ideal platform to investigate the impact of aerosol deposition on trace metal cycling in the oceanic surface water. Particulate trace metal composition provides useful information to elucidate the relative contribution of trace metal sources. In this study, we collected size-fractionated particles in the water column through two different seasons to investigate their trace metal composition and seasonal variability. Our results show that most of trace metal to phosphorus (P) normalized quotas in the size-fractionated particles are one to two orders of magnitude higher than intracellular trace metal quota in phytoplankton. Since all the particles collected are composed of biotic particles, the elevated trace metal to P quotas indicate that extracellular adsorption of trace metal accounts for larger amount than intracellular assimilation. In addition, the metal to Al ratios were similar to the ratios observed in aerosols, indicating that the metals mainly originated from aerosols. Overall, the extracellular adsorption of aerosol metals account for most of the particulate trace metals in the plankton samples. Our results prove the importance of aerosol metals on particulate trace metal composition in the open ocean. The impact of the input of anthropogenic aerosols on marine biogeochemistry deserves further studies in the global open ocean.

  19. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution.

    PubMed

    Yu, Weili; Isimjan, Tayirjan; Del Gobbo, Silvano; Anjum, Dalaver H; Abdel-Azeim, Safwat; Cavallo, Luigi; Garcia-Esparza, Angel T; Domen, Kazunari; Xu, Wei; Takanabe, Kazuhiro

    2014-09-01

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials.

  20. Acute Effects of Fine Particulate Air Pollution on ST Segment Height: A Longitudinal Study

    EPA Science Inventory

    Background: The mechanisms for the relationship between particulate air pollution and cardiac disease are not fully understood. Air pollution-induced myocardial ischemia is one of the potentially important mechanisms. Methods: We investigate the acute effects and the time cours...

  1. Cardiovascular Effects of Concentrated Ambient Fine and Ultrafine Particulate Matter Exposure in Healthy Older Volunteers

    EPA Science Inventory

    Rationale: Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Advanced age is among the factors identified as conferring susceptibility to PM inhalation. In order to characteri...

  2. Ozone co-exposure modifies cardiac function responses to fine and ultrafine particulate matter in mice

    EPA Science Inventory

    There is growing evidence from epidemiological studies that show acute exposure to particulate matter (PM) increases the risk of cardiovascular morbidity and mortality. Although the data supporting these findings are increasingly more convincing, the immediate impact of PM inhala...

  3. Cardiovascular Effects of Concentrated Ambient Fine and Ultrafine Particulate Matter Exposure in Healthy Older Volunteers

    EPA Science Inventory

    Rationale: Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Advanced age is among the factors identified as conferring susceptibility to PM inhalation. In order to characteri...

  4. INVERTING CASCADE IMPACTOR DATA FOR SIZE-RESOLVED CHARACTERIZATION OF FINE PARTICULATE SOURCE EMISSIONS

    EPA Science Inventory

    Cascade impactors are particularly useful in determining the mass size distributions of particulate and individual chemical species. The impactor raw data must be inverted to reconstruct a continuous particle size distribution. An inversion method using a lognormal function for p...

  5. INVERTING CASCADE IMPACTOR DATA FOR SIZE-RESOLVED CHARACTERIZATION OF FINE PARTICULATE SOURCE EMISSIONS

    EPA Science Inventory

    Cascade impactors are particularly useful in determining the mass size distributions of particulate and individual chemical species. The impactor raw data must be inverted to reconstruct a continuous particle size distribution. An inversion method using a lognormal function for p...

  6. Acute Effects of Fine Particulate Air Pollution on ST Segment Height: A Longitudinal Study

    EPA Science Inventory

    Background: The mechanisms for the relationship between particulate air pollution and cardiac disease are not fully understood. Air pollution-induced myocardial ischemia is one of the potentially important mechanisms. Methods: We investigate the acute effects and the time cours...

  7. Ozone co-exposure modifies cardiac function responses to fine and ultrafine particulate matter in mice

    EPA Science Inventory

    There is growing evidence from epidemiological studies that show acute exposure to particulate matter (PM) increases the risk of cardiovascular morbidity and mortality. Although the data supporting these findings are increasingly more convincing, the immediate impact of PM inhala...

  8. Ambient air particulate concentrations and metallic elements principal component analysis at Taichung Harbor (TH) and WuChi Traffic (WT) near Taiwan Strait during 2004-2005.

    PubMed

    Fang, Guor-Cheng; Wu, Yuh-Shen; Wen, Chih-Chung; Huang, Shih-Han; Rau, Jui-Yeh

    2006-09-01

    The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter of total suspended particulate (TSP), fine particle (particle matter with aerodynamical diameter <2.5 microm, PM(2.5)), coarse particle (particle matter with aerodynamical diameter 2.5-10 microm, PM (2.5-10)) at the Taichung Harbor (TH) and WuChi Traffic (WT) sampling site of central Taiwan during March 2004 to February 2005. The result indicated the average total suspended particulate concentration in 1 year was 157.31 and 112.58 microg m(-3) at TH and WT sampling site, respectively. Fine particle (PM(2.5)) size was the dominant species at TH and WT sampling site. In TH sampling site, higher correlation coefficient was observed on total suspended particulates of metallic elements Fe and Zn. And in WT sampling site, higher correlation coefficients displayed on total suspended particulates of metallic elements Fe and Zn, Fe and Mn. Ambient airborne particle principal component analysis of metallic metals was used to identify the possible pollutant sources in this study. At the TH sampling site, 50.81% of the total variance of the data was observed in factor 1. Higher loading of Fe (0.86), Zn (0.79), Pb (0.76), and Mn (0.68) were contributed by traffic emission and the soil source. At the WT sampling site, factor 1 explained 53.74% of the total variance of the data and had high loading for Zn (0.86) and Cu (0.85), which were identified as industrial/traffic emission sources.

  9. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    SciTech Connect

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  10. Trace element contents in fine particulate matter (PM2.5) in urban school microenvironments near a contaminated beach with mine tailings, Chañaral, Chile.

    PubMed

    Mesías Monsalve, Stephanie; Martínez, Leonardo; Yohannessen Vásquez, Karla; Alvarado Orellana, Sergio; Klarián Vergara, José; Martín Mateo, Miguel; Costilla Salazar, Rogelio; Fuentes Alburquenque, Mauricio; Cáceres Lillo, Dante D

    2017-05-23

    Air quality in schools is an important public health issue because children spend a considerable part of their daily life in classrooms. Particulate size and chemical composition has been associated with negative health effects. We studied levels of trace element concentrations in fine particulate matter (PM2.5) in indoor versus outdoor school settings from six schools in Chañaral, a coastal city with a beach severely polluted with mine tailings. Concentrations of trace elements were measured on two consecutive days during the summer and winter of 2012 and 2013 and determined using X-ray fluorescence. Source apportionment and element enrichment were measured using principal components analysis and enrichment factors. Trace elements were higher in indoor school spaces, especially in classrooms compared with outdoor environments. The most abundant elements were Na, Cl, S, Ca, Fe, K, Mn, Ti, and Si, associated with earth's crust. Conversely, an extremely high enrichment factor was determined for Cu, Zn, Ni and Cr; heavy metals associated with systemic and carcinogenic risk effects, whose probably origin sources are industrial and mining activities. These results suggest that the main source of trace elements in PM2.5 from these school microenvironments is a mixture of dust contaminated with mine tailings and marine aerosols. Policymakers should prioritize environmental management changes to minimize further environmental damage and its direct impact on the health of children exposed.

  11. Preterm birth associated with maternal fine particulate matter exposure: A global, regional and national assessment.

    PubMed

    Malley, Christopher S; Kuylenstierna, Johan C I; Vallack, Harry W; Henze, Daven K; Blencowe, Hannah; Ashmore, Mike R

    2017-04-01

    Reduction of preterm births (<37 completed weeks of gestation) would substantially reduce neonatal and infant mortality, and deleterious health effects in survivors. Maternal fine particulate matter (PM2.5) exposure has been identified as a possible risk factor contributing to preterm birth. The aim of this study was to produce the first estimates of ambient PM2.5-associated preterm births for 183 individual countries and globally. To do this, national, population-weighted, annual average ambient PM2.5 concentration, preterm birth rate and number of livebirths were combined to calculate the number of PM2.5-associated preterm births in 2010 for 183 countries. Uncertainty was quantified using Monte-Carlo simulations, and analyses were undertaken to investigate the sensitivity of PM2.5-associated preterm birth estimates to assumptions about the shape of the concentration-response function at low and high PM2.5 exposures, inclusion of provider-initiated preterm births, and exposure to indoor air pollution. Globally, in 2010, the number of PM2.5-associated preterm births was estimated as 2.7 million (1.8-3.5 million, 18% (12-24%) of total preterm births globally) with a low concentration cut-off (LCC) set at 10μgm(-3), and 3.4 million (2.4-4.2 million, 23% (16-28%)) with a LCC of 4.3μgm(-3). South and East Asia, North Africa/Middle East and West sub-Saharan Africa had the largest contribution to the global total, and the largest percentage of preterm births associated with PM2.5. Sensitivity analyses showed that PM2.5-associated preterm birth estimates were 24% lower when provider-initiated preterm births were excluded, 38-51% lower when risk was confined to the PM2.5 exposure range in the studies used to derive the effect estimate, and 56% lower when mothers who live in households that cook with solid fuels (and whose personal PM2.5 exposure is likely dominated by indoor air pollution) were excluded. The concentration-response function applied here derives from a

  12. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    DOE R&D Accomplishments Database

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  13. Cancer risk from polycyclic aromatic compounds in fine particulate matter generated from household coal combustion in Xuanwei, China.

    PubMed

    Lui, K H; Bandowe, Benjamin A Musa; Tian, Linwei; Chan, Chi-Sing; Cao, Jun-Ji; Ning, Zhi; Lee, S C; Ho, K F

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM2.5) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. A sample from the community with the highest mortality contained the highest total concentration of PAHs, OPAHs and AZAs and posed the highest excess cancer risk from a lifetime of inhaling fine particulates. Positive correlations between total carbonyl-OPAHs, total AZAs and total PAHs implied that the emissions were dependent on similar factors, regardless of sample location and type. The calculated cancer risk ranged from 5.23-10.7 × 10(-3), which is higher than the national average. The risk in each sample was ∼1-2 orders of magnitude higher than that deemed high risk, suggesting that the safety of these households is in jeopardy. The lack of potency equivalency factors for the PAH derivatives could possibly have underestimated the overall cancer risk.

  14. An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure

    PubMed Central

    Pope, C. Arden; Ezzati, Majid; Olives, Casey; Lim, Stephen S.; Mehta, Sumi; Shin, Hwashin H.; Singh, Gitanjali; Hubbell, Bryan; Brauer, Michael; Anderson, H. Ross; Smith, Kirk R.; Balmes, John R.; Bruce, Nigel G.; Kan, Haidong; Laden, Francine; Prüss-Ustün, Annette; Turner, Michelle C.; Gapstur, Susan M.; Diver, W. Ryan; Cohen, Aaron

    2014-01-01

    Background: Estimating the burden of disease attributable to long-term exposure to fine particulate matter (PM2.5) in ambient air requires knowledge of both the shape and magnitude of the relative risk (RR) function. However, adequate direct evidence to identify the shape of the mortality RR functions at the high ambient concentrations observed in many places in the world is lacking. Objective: We developed RR functions over the entire global exposure range for causes of mortality in adults: ischemic heart disease (IHD), cerebrovascular disease (stroke), chronic obstructive pulmonary disease (COPD), and lung cancer (LC). We also developed RR functions for the incidence of acute lower respiratory infection (ALRI) that can be used to estimate mortality and lost-years of healthy life in children < 5 years of age. Methods: We fit an integrated exposure–response (IER) model by integrating available RR information from studies of ambient air pollution (AAP), second hand tobacco smoke, household solid cooking fuel, and active smoking (AS). AS exposures were converted to estimated annual PM2.5 exposure equivalents using inhaled doses of particle mass. We derived population attributable fractions (PAFs) for every country based on estimated worldwide ambient PM2.5 concentrations. Results: The IER model was a superior predictor of RR compared with seven other forms previously used in burden assessments. The percent PAF attributable to AAP exposure varied among countries from 2 to 41 for IHD, 1 to 43 for stroke, < 1 to 21 for COPD, < 1 to 25 for LC, and < 1 to 38 for ALRI. Conclusions: We developed a fine particulate mass–based RR model that covered the global range of exposure by integrating RR information from different combustion types that generate emissions of particulate matter. The model can be updated as new RR information becomes available. Citation: Burnett RT, Pope CA III, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, Anderson HR

  15. Chemical characteristics and source apportionment of fine particulate organic carbon in Hong Kong during high particulate matter episodes in winter 2003

    NASA Astrophysics Data System (ADS)

    Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Schauer, James J.; Yuan, Zibing; Lau, Alexis K. H.; Louie, Peter K. K.

    2013-02-01

    PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October-4 November and 30 November-13 December). The highest PM2.5 reached 216 μg m- 3 during the first high PM period and 113 μg m- 3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long-range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water-soluble organic carbon and sulfate, consistent with its secondary nature.

  16. Laser Indirect Shock Welding of Fine Wire to Metal Sheet.

    PubMed

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-09-12

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent.

  17. Laser Indirect Shock Welding of Fine Wire to Metal Sheet

    PubMed Central

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-01-01

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent. PMID:28895900

  18. Personal exposure assessment to particulate metals using a paper-based analytical device

    NASA Astrophysics Data System (ADS)

    Cate, David; Volckens, John; Henry, Charles

    2013-03-01

    The development of a paper-based analytical device (PAD) for assessing personal exposure to particulate metals will be presented. Human exposure to metal aerosols, such as those that occur in the mining, construction, and manufacturing industries, has a significant impact on the health of our workforce, costing an estimated $10B in the U.S and causing approximately 425,000 premature deaths world-wide each year. Occupational exposure to particulate metals affects millions of individuals in manufacturing, construction (welding, cutting, blasting), and transportation (combustion, utility maintenance, and repair services) industries. Despite these effects, individual workers are rarely assessed for their exposure to particulate metals, due mainly to the high cost and effort associated with personal exposure measurement. Current exposure assessment methods for particulate metals call for an 8-hour filter sample, after which time, the filter sample is transported to a laboratory and analyzed by inductively-coupled plasma (ICP). The time from sample collection to reporting is typically weeks and costs several hundred dollars per sample. To exacerbate the issue, method detection limits suffer because of sample dilution during digestion. The lack of sensitivity hampers task-based exposure assessment, for which sampling times may be tens of minutes. To address these problems, and as a first step towards using microfluidics for personal exposure assessment, we have developed PADs for measurement of Pb, Cd, Cr, Fe, Ni, and Cu in aerosolized particulate matter.

  19. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure.

    PubMed

    Burnett, Richard T; Pope, C Arden; Ezzati, Majid; Olives, Casey; Lim, Stephen S; Mehta, Sumi; Shin, Hwashin H; Singh, Gitanjali; Hubbell, Bryan; Brauer, Michael; Anderson, H Ross; Smith, Kirk R; Balmes, John R; Bruce, Nigel G; Kan, Haidong; Laden, Francine; Prüss-Ustün, Annette; Turner, Michelle C; Gapstur, Susan M; Diver, W Ryan; Cohen, Aaron

    2014-04-01

    Estimating the burden of disease attributable to long-term exposure to fine particulate matter (PM2.5) in ambient air requires knowledge of both the shape and magnitude of the relative risk (RR) function. However, adequate direct evidence to identify the shape of the mortality RR functions at the high ambient concentrations observed in many places in the world is lacking. We developed RR functions over the entire global exposure range for causes of mortality in adults: ischemic heart disease (IHD), cerebrovascular disease (stroke), chronic obstructive pulmonary disease (COPD), and lung cancer (LC). We also developed RR functions for the incidence of acute lower respiratory infection (ALRI) that can be used to estimate mortality and lost-years of healthy life in children < 5 years of age. We fit an integrated exposure-response (IER) model by integrating available RR information from studies of ambient air pollution (AAP), second hand tobacco smoke, household solid cooking fuel, and active smoking (AS). AS exposures were converted to estimated annual PM2.5 exposure equivalents using inhaled doses of particle mass. We derived population attributable fractions (PAFs) for every country based on estimated worldwide ambient PM2.5 concentrations. The IER model was a superior predictor of RR compared with seven other forms previously used in burden assessments. The percent PAF attributable to AAP exposure varied among countries from 2 to 41 for IHD, 1 to 43 for stroke, < 1 to 21 for COPD, < 1 to 25 for LC, and < 1 to 38 for ALRI. We developed a fine particulate mass-based RR model that covered the global range of exposure by integrating RR information from different combustion types that generate emissions of particulate matter. The model can be updated as new RR information becomes available.

  20. Ambient air concentrations exceeded health-based standards for fine particulate matter and benzene during the Deepwater Horizon oil spill.

    PubMed

    Nance, Earthea; King, Denae; Wright, Beverly; Bullard, Robert D

    2016-02-01

    The Deepwater Horizon oil spill is considered one of the largest marine oil spills in the history of the United States. Air emissions associated with the oil spill caused concern among residents of Southeast Louisiana. The purpose of this study was to assess ambient concentrations of benzene (n=3,887) and fine particulate matter (n=102,682) during the oil spill and to evaluate potential exposure disparities in the region. Benzene and fine particulate matter (PM2.5) concentrations in the targeted parishes were generally higher following the oil spill, as expected. Benzene concentrations reached 2 to 19 times higher than background, and daily exceedances of PM2.5 were 10 to 45 times higher than background. Both benzene and PM2.5 concentrations were considered high enough to exceed public health criteria, with measurable exposure disparities in the coastal areas closer to the spill and clean-up activities. These findings raise questions about public disclosure of environmental health risks associated with the oil spill. The findings also provide a science-based rationale for establishing health-based action levels in future disasters. Benzene and particulate matter monitoring during the Deepwater Horizon oil spill revealed that ambient air quality was a likely threat to public health and that residents in coastal Louisiana experienced significantly greater exposures than urban residents. Threshold air pollution levels established for the oil spill apparently were not used as a basis for informing the public about these potential health impacts. Also, despite carrying out the most comprehensive air monitoring ever conducted in the region, none of the agencies involved provided integrated analysis of the data or conclusive statements about public health risk. Better information about real-time risk is needed in future environmental disasters.

  1. Characteristics of Fine Particulate Carbonaceous Aerosol at Two Remote Sites in Central Asia

    EPA Science Inventory

    Central Asia is a relatively understudied region of the world in terms of characterizing ambient particulate matter (PM) and quantifying source impacts of PM at receptor locations, although it is speculated to have an important role as a source region for long-range transport of ...

  2. Species of fine particulate matter and the risk of preterm birth

    EPA Science Inventory

    Particulate matter (PM) has been variably associated with preterm birth (PTB), but the roles of PM species have been less studied. We estimated risk of birth in 4 preterm categories (risks reported as PTBs per 106 pregnancies; PTB categories = gestational age of 20-27; 28-31; 32-...

  3. HEAVY DUTY DIESEL FINE PARTICULATE MATTER EMISSIONS: DEVELOPMENT AND APPLICATION OF ON-ROAD MEASUREMENT CAPABILITIES

    EPA Science Inventory

    The report discusses EPA's On-Road Diesel Emissions Characterization Facility, which has been collecting real-world gaseous emissions data for the past 6 years. It has recently undergone extensive modifications to enhance its particulate matter (PM) measurement capabilities, with...

  4. HEAVY DUTY DIESEL FINE PARTICULATE MATTER EMISSIONS: DEVELOPMENT AND APPLICATION OF ON-ROAD MEASUREMENT CAPABILITIES

    EPA Science Inventory

    The report discusses EPA's On-Road Diesel Emissions Characterization Facility, which has been collecting real-world gaseous emissions data for the past 6 years. It has recently undergone extensive modifications to enhance its particulate matter (PM) measurement capabilities, with...

  5. Characteristics of Fine Particulate Carbonaceous Aerosol at Two Remote Sites in Central Asia

    EPA Science Inventory

    Central Asia is a relatively understudied region of the world in terms of characterizing ambient particulate matter (PM) and quantifying source impacts of PM at receptor locations, although it is speculated to have an important role as a source region for long-range transport of ...

  6. Species of fine particulate matter and the risk of preterm birth

    EPA Science Inventory

    Particulate matter (PM) has been variably associated with preterm birth (PTB), but the roles of PM species have been less studied. We estimated risk of birth in 4 preterm categories (risks reported as PTBs per 106 pregnancies; PTB categories = gestational age of 20-27; 28-31; 32-...

  7. Pulsed high energy synthesis of fine metal powders

    NASA Technical Reports Server (NTRS)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Repetitively pulsed plasma jets generated by a capillary arc discharge at high stagnation pressure (>15,000 psi) and high temperature (>10,000 K) are utilized to produce 0.1-10 .mu.m sized metal powders and decrease cost of production. The plasma jets impact and atomize melt materials to form the fine powders. The melt can originate from a conventional melt stream or from a pulsed arc between two electrodes. Gas streams used in conventional gas atomization are replaced with much higher momentum flux plasma jets. Delivering strong incident shocks aids in primary disintegration of the molten material. A series of short duration, high pressure plasma pulses fragment the molten material. The pulses introduce sharp velocity gradients in the molten material which disintegrates into fine particles. The plasma pulses have peak pressures of approximately one kilobar. The high pressures improve the efficiency of disintegration. High gas flow velocities and pressures are achieved without reduction in gas density. Repetitively pulsed plasma jets will produce powders with lower mean size and narrower size distribution than conventional atomization techniques.

  8. Characterization of chemical composition and concentration of fine particulate matter during a transit strike in Ottawa, Canada

    NASA Astrophysics Data System (ADS)

    Ding, Luyi; Chan, Tak Wai; Ke, Fu; Wang, Daniel K. W.

    2014-06-01

    From December 10, 2008 to February 9, 2009, a strike stopped the public transit services in Ottawa, Ontario, Canada. To understand the changes in air quality associated with the transit strike, the chemical composition and concentration of the fine particulate matter with diameters less than 2.5 microns (PM2.5), collected before, during, and after the transit strike period, were evaluated. The collected PM2.5 samples were analyzed to determine the particulate matter mass, the levels of organic carbon (OC) and elemental carbon (EC), as well as the particulate non-polar semi-volatiles, e.g., polycyclic aromatic hydrocarbons (PAHs), hopanes, and steranes. Particle number size distributions measured during and after the transit strike period were also compared. Results indicated that during transit strike months, particle number size distributions were entirely dominated by nucleation mode particles leading to an increase in total particle number concentration by about 79%. In addition, particulate matter, organic carbon, and elemental carbon mass concentrations also increased by over 100%. The average total PAH levels during the strike months were higher by a factor of about 7. Elevated concentrations of high molecular weight PAHs (i.e., PAH with 5 and 6 rings) observed during the strike months suggested that there were more gasoline-powered vehicles on the roads over that period. The level of carcinogenic benzo[a]pyrene was higher by a factor of 5. Mass concentrations of hopanes and steranes were 30-98% higher during the strike months than non-strike months and exhibited strong correlations with EC suggesting the primary origin of these compounds. These results indicated that the increased traffic volume due to the passenger vehicles and the change in driving pattern during the transit strike period reduced the local air quality.

  9. Particulate matter and heavy metal deposition on the leaves of Euonymus japonicus during the East Asian monsoon in Beijing, China

    PubMed Central

    Hong, Xiuling; Sun, Liwei

    2017-01-01

    Plants can be effectively used as bio-monitors of environmental pollution. However, how the particulate matter (PM) and heavy metal retention ability of plants changes in different areas with human disturbance along with monsoon has not yet been investigated in urban ecosystems. In this study, we measured the amount of PM and heavy metals such as Ni, Cr, Cu, Pb, and Zn accumulated by the leaves of Euonymus japonicus during the East Asian monsoon from different functional units in Beijing, China. A rinse-and-weigh method developed in our laboratory was used to determine the mass of the PM, and electro-thermal atomic absorption spectrometry was used for heavy metal analysis. We found that the types of functional units had little influence, whereas the monsoon had a significant effect on the deposition of PM: northwest areas during the monsoon had the lowest effect (with 0.005, 0.453, 0.643, and 1.569 g/m2 fine, coarse, large, and total PM, respectively), and the southeast areas during the monsoon had the highest effect (0.015, 2.687, 1.941, and 4.228 g/m2 for fine, coarse, large, and total PM, respectively). Notable, we found considerable variations in heavy metal accumulation across the functional units analyzed, that is, the accumulation level was higher in communities than in parks (P < 0.0001 for all heavy metals). Moreover, a positive relationship was found between PM retention and heavy metal accumulation by the leaves of E. japonicus. Taken together, our results suggested that the PM and heavy metal retention ability of E. japonicus was sensitive to human disturbance and monsoon in Beijing. Since E. japonicus is a widely distributed tree and has the ability of to purify the atmosphere, it is an ideal plant for mitigating urban environmental pollution. PMID:28662081

  10. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.

    PubMed

    Turner, Andrew; Mawji, Edward

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (<1%) to octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.

  11. Ambient fine particulate concentrations and chemical composition at two sampling sites in metropolitan Pittsburgh: a 2001 intensive summer study

    NASA Astrophysics Data System (ADS)

    Modey, William K.; Eatough, Delbert J.; Anderson, Richard R.; Martello, Donald V.; Takahama, Satoshi; Lucas, Leonard J.; Davidson, Cliff I.

    The concentration and chemical composition of ambient fine particulate material (PM 2.5) is reported for two sampling sites in the Pittsburgh, Pennsylvania metropolitan area: the Department of Energy, National Energy Technology Laboratory (NETL) PM study site south of the city center, and the Carnegie Mellon Pittsburgh Air Quality Study (PAQS) site 5 km east of central Pittsburgh established with funding by the EPA Supersites Program and by DOE-NETL. Data from these sampling sites were characterized by one to three-day episodes with PM 2.5 concentrations (constructed from the sum of the chemical components) exceeding 40.0 μg m -3. The episodes were dominated by high concentrations of ammonium sulfate. The fine particle concentrations were compared with meteorological data from surface weather maps and a Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT model), with back-trajectories estimated over 24 h. High PM 2.5 concentrations were associated with transition from a high pressure to a low pressure regime in advance of an approaching frontal system indicating long-range transport of pollutants. In contrast, fine particulate organic material appeared to be dominated by nearby sources. Distinct differences were observed in the diurnal variations in concentration between the two sites. The NETL site showed clear maximum concentrations of semi-volatile organic material (SVOM) during midday, and minimum concentrations of nonvolatile organic compounds in the afternoon. In contrast, the Carnegie Mellon PAQS site showed an absence of diurnal variation in SVOM, but still with minimum concentrations of nonvolatile organic compounds in the afternoon and evening. Neither site showed significant diurnal variation in ammonium sulfate.

  12. Characterization of fine particulate matter produced by combustion of residual fuel oil.

    PubMed

    Huffman, G P; Huggins, F E; Shah, N; Huggins, R; Linak, W P; Miller, C A; Pugmire, R J; Meuzelaar, H L; Seehra, M S; Manivannan, A

    2000-07-01

    Combustion experiments were carried out on four different residual fuel oils in a 732-kW boiler. PM emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 microns in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the PM2.5 fraction consists of carbonaceous cenospheres and vesicular particles that range up to 10 microns in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As K-edges and at the Pb L-edge. Deconvolution of the X-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM2.5 samples than in the PM2.5+ samples. Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agreed fairly well with that of NiSO4, while most of the V spectra closely resembled that of vanadyl sulfate (VO.SO4.xH2O). The other metals investigated (i.e., Fe, Cu, Zn, and Pb) also were present predominantly as sulfates. Arsenic was present as an arsenate (As+5). X-ray diffraction patterns of the PM2.5 fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the loss on ignition (LOI) ranging from 64 to 87% for the PM2.5 fraction and from 88 to 97% for the PM2.5+ fraction. Based on 13C nuclear magnetic resonance (NMR) analysis, the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.

  13. TREATMENT OF HEAVY METALS IN STORMWATER USING WET POND AND WETLAND MESOCOSMS

    EPA Science Inventory

    Urban stormwater runoff is a significant source of suspended sediments and associated contaminants, including heavy metals, to receiving waterways. These metals are either dissolved or bound to particulates (coarse - >75 µm; fine particulates - <75 - 1µm; colloids - <1 µm). Inf...

  14. TREATMENT OF HEAVY METALS IN STORMWATER USING WET POND AND WETLAND MESOCOSMS

    EPA Science Inventory

    Urban stormwater runoff is a significant source of suspended sediments and associated contaminants, including heavy metals, to receiving waterways. These metals are either dissolved or bound to particulates (coarse - >75 µm; fine particulates - <75 - 1µm; colloids - <1 µm). Inf...

  15. Monitoring of ambient fine particulate matter concentrations from space: application to European and African cities

    NASA Astrophysics Data System (ADS)

    Léon, Jean-Francois; Liousse, Cathy; Galy-Lacaux, Corinne; Doumbia, Thierno; Cachier, Hélène

    2010-10-01

    Air pollution is a major issue for global environment as well as human health and well-being. Recently, satellites which are equipped with relevant air quality instruments have been placed into orbit. In this paper, we first present a review on satellite remote sensing of particulate pollution. We then present new results for Europe and on African cities particulate air pollutants using POLDER satellite data. Based on satellite AOD observations, we show that the number of days exceeding the 15.4 μg/m3 threshold is twice frequent in Ouagadougou, Burkina- Faso than in Paris, France. At the regional scale, we observe that the northern coast of the golf of Guinea is dramatically impacted by poor air quality.

  16. A comparison between ceramic membrane filters and conventional fabric filters for fine particulate removal from a coal-fired industrial boiler

    SciTech Connect

    Miller, B.G.; Wincek, R.T.; Glick, D.C.; Scaroni, A.W.; Drury, K.; Makris; Stubblefield, D.J.

    1998-12-31

    Penn State is developing technologies for ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF) in industrial boilers. Emissions being addressed are SO{sub 2}, NOx, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Results from trace element and polynuclear aromatic hydrocarbon emissions testing, when firing coal-based fuels, are reported elsewhere in these proceedings. This paper discusses the evaluation of ceramic membrane filters for fine particulate removal in a package boiler when firing micronized coal and CWSF.

  17. Chemical Composition and Emission Sources of the Fine Particulate Matters in a Southeast Asian Mega City (Dhaka, Bangladesh)

    NASA Astrophysics Data System (ADS)

    Salam, Abdus

    2016-04-01

    Air pollution has significant impact on human health, climate change, agriculture, visibility reduction, and also on the atmospheric chemistry. There are many studies already reported about the direct relation of the human mortality and morbidity with the increase of the atmospheric particulate matters. Especially, fine particulate matters can easily enter into the human respiratory system and causes many diseases. Particulate matters have the properties to absorb the solar radiation and impact on the climate. Dhaka, Bangladesh is a densely populated mega-city in the world. About 16 million inhabitants are living within an area of 360 square kilometers. Air quality situation has been degrading due to unplanned growth, increasing vehicles, severe traffic jams, brick kilns, industries, construction, and also transboundary air pollution. A rapidly growing number of vehicles has worsen the air quality in spite of major policy interventions, e.g., ban of two-stroke and three-wheeled vehicles, phase out of 20 years old vehicles, conversion to compressed natural gas (CNGs), etc. Introduction of CNGs to reduce air pollution was not the solution for fine particles at all, as evidence shows that CNGs and diesel engines are the major sources of fine particles. High concentration of the air pollutants in Dhaka city such as PM, carbonaceous species (black and organic carbon), CO, etc. has already been reported. PM2.5 mass, chemical composition (e.g., BC, OC, SO42-, NO3-, trace elements, etc.), aerosol Optical Depth (AOD) and emission sources of our recent measurements at the highly polluted south East Asian Mega city (Dhaka) Bangladesh will be presented in the conference. PM2.5 samples were collected on filters with Digital PM2.5 sampler (Switzerland) and Air photon, USA. BC was measured from filters (with thermal and optical method) and also real time with an Aethalometer AE42 (Magee Scitific., USA). Water soluble ions were determined from filters with ion chromatogram. AOD

  18. The Association between Ambient Fine Particulate Air Pollution and Lung Cancer Incidence: Results from the AHSMOG-2 Study

    PubMed Central

    Gharibvand, Lida; Shavlik, David; Ghamsary, Mark; Beeson, W. Lawrence; Soret, Samuel; Knutsen, Raymond; Knutsen, Synnove F.

    2016-01-01

    Background: There is a positive association between ambient fine particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) and incidence and mortality of lung cancer (LC), but few studies have assessed the relationship between ambient PM2.5 and LC among never smokers. Objectives: We assessed the association between PM2.5 and risk of LC using the Adventist Health and Smog Study-2 (AHSMOG-2), a cohort of health conscious nonsmokers where 81% have never smoked. Methods: A total of 80,285 AHSMOG-2 participants were followed for an average of 7.5 years with respect to incident LC identified through linkage with U.S. state cancer registries. Estimates of ambient air pollution levels at participants’ residences were obtained for 2000 and 2001, the years immediately prior to the start of the study. Results: A total of 250 incident LC cases occurred during 598,927 person-years of follow-up. For each 10-μg/m3 increment in PM2.5, adjusted hazard ratio (HR) with 95% confidence interval (CI) for LC incidence was 1.43 (95% CI: 1.11, 1.84) in the two-pollutant multivariable model with ozone. Among those who spent > 1 hr/day outdoors or who had lived 5 or more years at their enrollment address, the HR was 1.68 (95% CI: 1.28, 2.22) and 1.54 (95% CI: 1.17, 2.04), respectively. Conclusion: Increased risk estimates of LC were observed for each 10-μg/m3 increment in ambient PM2.5 concentration. The estimate was higher among those with longer residence at enrollment address and those who spent > 1 hr/day outdoors. Citation: Gharibvand L, Shavlik D, Ghamsary M, Beeson WL, Soret S, Knutsen R, Knutsen SF. 2017. The association between ambient fine particulate air pollution and lung cancer incidence: results from the AHSMOG-2 study. Environ Health Perspect 125:378–384; http://dx.doi.org/10.1289/EHP124Citation: Gharibvand L, Shavlik D, Ghamsary M, Beeson WL, Soret S, Knutsen R, Knutsen SF. 2017. The association between ambient fine particulate air pollution and lung cancer

  19. Monitoring personal, indoor, and outdoor exposures to metals in airborne particulate matter: Risk of contamination during sampling, handling and analysis

    NASA Astrophysics Data System (ADS)

    Rasmussen, Pat E.; Wheeler, Amanda J.; Hassan, Nouri M.; Filiatreault, Alain; Lanouette, Monique

    Rigorous sampling and quality assurance protocols are required for the reliable measurement of personal, indoor and outdoor exposures to metals in fine particulate matter (PM 2.5). Testing of five co-located replicate air samplers assisted in identifying and quantifying sources of contamination of filters in the laboratory and in the field. A field pilot study was conducted in Windsor, Ont., Canada to ascertain the actual range of metal content that may be obtained on filter samples using low-flow (4 L min -1) 24-h monitoring of personal, indoor and outdoor air. Laboratory filter blanks and NIST certified reference materials were used to assess contamination, instrument performance, accuracy and precision of the metals determination. The results show that there is a high risk of introducing metal contamination during all stages of sampling, handling and analysis, and that sources and magnitude of contamination vary widely from element to element. Due to the very small particle masses collected on low-flow 24-h filter samples (median 0.107 mg for a sample volume of approximately 6 m 3) the contribution of metals from contamination commonly exceeds the content of the airborne particles being sampled. Thus, the use of field blanks to ascertain the magnitude and variability of contamination is critical to determine whether or not a given element should be reported. The results of this study were incorporated into standard operating procedures for a large multiyear personal, indoor and outdoor air monitoring campaign in Windsor.

  20. Changes to the structure of blood clots formed in the presence of fine particulate matter

    NASA Astrophysics Data System (ADS)

    Metassan, Sofian; Ariens, Robert A. S.; Scott, D. Julian; Routledge, Michael N.

    2009-02-01

    Both long-term and short-term exposure (one to two hours) to particulate matter are associated with morbidity and mortality caused by cardiovascular diseases. The underlying mechanisms leading to cardiovascular events are unclear, however, changes to blood coagulability upon exposure to ultrafine particulate matter (UFPM, the smallest of which can enter the circulation) is a plausible mechanism. Objectives: This study aims to investigate the direct effects of particulate matter on fibrin polymerization, lateral aggregation and the formation of fibrin network structure. Methods: Standard Urban Particulate Matter (PM) was suspended in Tris buffer centrifuged and filtered with <200nm filter to obtain ultrafine PM or their water-soluble components. Purified normal fibrinogen was made to clot by adding thrombin and calcium chloride in the presence of varying concentrations of PM. Permeation properties (Darcy constant [Ks]) and turbidity of clots were measured to investigate the effects on flow-rate, pore size, and fibrin polymerization. In addition, confocal microscopy was performed to study detailed clot structure. Results: Total PM increased the Ks of clots in a dose dependant manner (Ks = 4.4, 6.9 and 13.2 x 10-9 cm2 for 0, 50 and 100 |ag/ml total PM concentrations, respectively). Filtered PM also produced a significant increase in Ks at PM concentration of 17 |ag/ml. Final turbidity measurements at 20min were obtained for varying concentrations of PM. Maximum optical density (OD) for 1 mg/ml fibrinogen at 0, 50, 100 and 200 |ag/ml total PM concentrations were 0.39, 0.42, 0.45 and 0.46, respectively. The maximum OD for 0, 17, 34 and 68 |ag/ml filtered PM concentrations were 0.39, 0.42 0.47 and 0.51, respectively, suggesting an increase in fibre diameter with increasing particulate concentration. The lag phase was significantly shorter and the rate of polymerisation was significantly faster in the presence of 68 |ag/ml filtered PM. Confocal microscopy results showed

  1. Fine root branch orders contribute differentially to uptake, allocation, and return of potentially toxic metals.

    PubMed

    Guo, Ying-Ying; Wang, Jun-Jian; Kong, De-Liang; Wang, Wei; Guo, Da-Li; Wang, Yan-Bing; Xie, Qing-Long; Liu, Yang-Sheng; Zeng, Hui

    2013-10-15

    Growing evidence has revealed high heterogeneity of fine root networks in both structure and function, with different root orders corporately maintaining trees' physiological activities. However, little information is available on how fine root heterogeneity of trees responds to environmental stresses. We examined concentrations of seven potentially toxic metals (Cr, Ni, Cu, Zn, As, Cd, and Pb) within fine root networks and their correlations with root morphological and macro-elemental traits in six Chinese subtropical trees. The contributions of different orders of roots to fine-root metal storage and return were also estimated. Results showed no consistent pattern for the correlation among different metal concentration against root traits. Unlike root metal concentration that generally decreased with root order, root metal storage was commonly lowest in middle root orders. Root senescence was at least comparable to leaf senescence contributing to metal removal. Although the first-order roots constituted 7.2-22.3% of total fine root biomass, they disproportionately contributed to most of metal return fluxes via root senescence. The two distinct root functional modules contributed differentially to metal uptake, allocation, and return, with defensive (lower-order) roots effectively stabilizing and removing toxic metals and bulk buffering (higher-order) roots possessing a persistent but diluted metal pool. Our results suggest a strong association of physiological functions of metal detoxification and metal homeostasis with the structural heterogeneity in fine root architecture.

  2. Characteristics and health implications of fine and coarse particulates at roadside, urban background and rural sites in UK.

    PubMed

    Namdeo, A; Bell, M C

    2005-05-01

    Recent studies have pointed to evidence that fine particles in the air could be significant contributors to respiratory and cardiovascular diseases and mortality. Epidemiologists looking at the health effects of particulate pollution need more information from various receptor locations to improve the understanding of this problem. Detailed information on temporal, spatial and size distributions of particulate pollution in urban areas is also important for air quality modellers as well as being an aid to decision and policy makers of local authorities. This paper presents a detailed analysis of temporal and seasonal variation of PM(10) and PM(2.5) levels at one urban roadside, one urban background and one rural monitoring location. Levels of PM(10), PM(2.5) and coarse fraction of particulates are compared. In addition, particulate levels are compared with NO(2) and CO concentrations. The study concludes that PM(10) and PM(2.5) are closely related at urban locations. Diurnal variation in PM(2.5)/PM(10) ratio shows the influence of vehicular emission and movement on size distribution. This ratio is higher in winter than in summer, indicating a build-up or longer residence time of finer particulates or washout due to wet weather in winter. In the second part of this study, a disease burden analysis is carried out based on the dose-response relationships recommended by the UK Committee on the Medical Effects of Air Pollution. The disease burden analysis indicates that if Marylebone Road (MR) levels of PM(10) were prevalent all over London, it will result in around 2.5% increase in death rates due to all causes. Whereas, if Bloomsbury (BB) levels were prevalent in London, which is more likely to occur as this is more representative of the urban background environment to which people in London are likely to be exposed, the corresponding increase would be around 1.7%. Considering this, in London, at Bloomsbury levels, 973 deaths and 1515 respiratory hospital admissions

  3. Dissolved and particulate metals dynamics in a human impacted estuary from the SW Atlantic

    NASA Astrophysics Data System (ADS)

    La Colla, Noelia S.; Negrin, Vanesa L.; Marcovecchio, Jorge E.; Botté, Sandra E.

    2015-12-01

    In order to evaluate metal behavior in urban stressed estuaries, the distribution of major elements (Fe and Mn) and trace elements (Cd and Cu) between suspended particulate matter (SPM) and subsuperficial seawater in the Bahía Blanca Estuary, Argentina, was studied. Four different impacted areas were selected to study the spatial and temporal distribution of these metals in an estuary in continuous industrial development and where an environmental law was implemented to supervise industrial discharges in waters. Sampling was performed within intertidal areas. Physicochemical conditions usually influence the partitioning of metals between the dissolved and particulate fraction thus, salinity, pH, turbidity, temperature and dissolved oxygen were also measured. Dissolved metals were analyzed with atomic absorption spectrophotometry (AAS) and the particulate fraction with inductively coupled plasma optical emission spectrometry (ICP OES). Metals concentration ranges, within the dissolved fraction (μg/L), were from below the method detection limit for all the elements to 4.7 in the case of Cd, 6.0 for Cu and 62 for Fe. Minimum and maximum values in the particulate fraction (μg/g, d.w.) were from below the method detection limit to 11 for Cd; from 24 to 220 for Cu and from 630 to 1500 for Mn. For Fe, concentrations ranged from 2.2 to 9.6 (%). The general order of the dissolved/particulate partition coefficients (Log10Kds) for the studied metals, considering mean values, were: Fe (7.0) > Cu (4.2) > Cd (3.3). The metals values as well as the physicochemical parameters showed temporal variations and many correlations were found among them. Log10Kd Fe values were the highest, highlighting its strong affinity for particles. Metals concentrations were sometimes higher than those from other polluted areas as well as from previous studies from the same estuary, which highlights the potential impact of these elements in the study area. The concentrations of particulate metals

  4. Size distribution of acidic sulfate ions in fine ambient particulate matter and assessment of source region effect

    NASA Astrophysics Data System (ADS)

    Hazi, Y.; Heikkinen, M. S. A.; Cohen, B. S.

    Human exposure studies strongly suggested that the fine fraction of ambient particulate matter (PM) and its associated acidic sulfates are closely correlated with observed adverse health effects. Acidic sulfates are the products of atmospheric sulfur dioxide oxidation and neutralization processes. Few data are available on the amount and size distribution of acidic sulfates within the fine fraction of ambient PM. Knowledge of this distribution will help to understand their toxic mechanisms in the human respiratory tract. The goals of this research were: (1) to measure the size distribution of hydrogen ion, sulfate, and ammonium within the fine fraction of the ambient aerosol in air masses originating from different source regions; and (2) to examine the effect of the source region and the seasons on the sampled PM composition. Six size fractions within the fine ambient PM were collected using a micro-orifice impactor. Results from 30 sampling sessions demonstrated that higher total concentrations of these three ions were observed during the warm months than during the cold months of the year. Size distribution results show that the midpoint diameter of the fraction of particles with the largest fraction of hydrogen, sulfate and ammonium ions was 0.38 μm. Although most of the mass containing hydrogen and sulfate ions was measured in the fraction of particles with 0.38 μm midpoint diameter, the ultrafine fraction (<0.1 μm) was found to be more acidic. Ambient ion concentrations varied between sampling sessions and seasons, but the overall size distribution profiles are similar. Air mass back trajectories were used to identify the source region of the sampled aerosols. No apparent source region effect was observed in terms of the distribution profile of the ions. However, samples collected from air masses that originated from, or passed over, high sulfur dioxide emission areas demonstrated higher concentrations of the different ions.

  5. SOURCE SAMPLING FINE PARTICULATE MATTER--INSTITUTIONAL OIL-FIRED BOILER

    EPA Science Inventory

    EPA seeks to understand the correlation between ambient fine PM and adverse human health effects, and there are no reliable emission factors to use for estimating PM2.5 or NH3. The most common source of directly emitted PM2.5 is incomplete combustion of fossil or biomass fuels. M...

  6. SOURCE SAMPLING FINE PARTICULATE MATTER--INSTITUTIONAL OIL-FIRED BOILER

    EPA Science Inventory

    EPA seeks to understand the correlation between ambient fine PM and adverse human health effects, and there are no reliable emission factors to use for estimating PM2.5 or NH3. The most common source of directly emitted PM2.5 is incomplete combustion of fossil or biomass fuels. M...

  7. Determination of trace metals in air particulate matters by capillary electrophoresis with spectrophotometric detection

    SciTech Connect

    Fung, Y.S.; Tung, H.S.

    1998-12-31

    Chemical analysis of trace metals in air particulate matters are required for studies in the apportionment of major air pollution sources, occupational health protection, environmental monitoring of ambient and indoor air, and for atmospheric aerosol research purpose. The demand for the required analysis is towards more sensitive, cheaper and automated method, as well as capability of differentiating different chemical species present in the air particulate matters. The recent advance of capillary electrophoresis provides an alternative method for multi-element determination with capability of speciation of different chemical elements for both total and leachable metal determination. It also uses equipment available in many chemical laboratories with reasonable capital and low running cost. In the present paper, the application of CE for trace metal analysis in air particulate matters will be investigated in three areas. The first area is the development of sample pretreatment method. For total metal analysis, the microwave digestion method is chosen based on short digestion time and reduced contamination. The second area is the optimization of the CE buffers. The use of strong and weak complex system is compared using histidine and 4-methylbenzylamine for indirect UV detection and 8-hydroxyquinoline-5-sulphonic acid (HQS) for direct UV detection for CE separation of alkali and alkaline earth metals (ammonium, potassium, sodium, calcium, magnesium, barium, strontium) with transition metals (cobalt, cadmium, nickel, zinc, lead and copper). The role of lactic acid, 18-crown-6 and other additives to effect satisfactory separation of closely co-migrated pairs and to achieve suitable separation of large amounts of alkali metals (ppm) from trace levels of transition metals (ppb) will be discussed for both leachable and total metals present in air particulate matters.

  8. Fine Particulate Matter, Residential Proximity to Major Roads, and Markers of Small Vessel Disease in a Memory Study Population

    PubMed Central

    Wilker, Elissa H.; Martinez-Ramirez, Sergi; Kloog, Itai; Schwartz, Joel; Mostofsky, Elizabeth; Koutrakis, Petros; Mittleman, Murray A.; Viswanathan, Anand

    2016-01-01

    Background Long-term exposure to ambient air pollution has been associated with impaired cognitive function and vascular disease in older adults, but little is known about these associations among people with concerns about memory loss. Objective To examine associations between exposures to fine particulate matter and residential proximity to major roads and markers of small vessel disease. Methods From 2004—2010, 236 participants in the Massachusetts Alzheimer’s Disease Research Center Longitudinal Cohort participated in neuroimaging studies. Residential proximity to major roads and estimated 2003 residential annual average of fine particulate air pollution (PM2.5) were linked to measures of brain parenchymal fraction (BPF), white matter hyperintensities (WMH), and cerebral microbleeds. Associations were modeled using linear and logistic regression and adjusted for clinical and lifestyle factors. Results In this population (median age [interquartile range]=74[12], 57% female) living in a region with median 2003 PM2.5 annual average below the current Environmental Protection Agency (EPA) standard, there were no associations between living closer to a major roadway or for a 2 μg/m3 increment in PM2.5 and smaller BPF, greater WMH volume, or a higher odds of microbleeds. However, a 2 μg/m3 increment in PM2.5 was associated with −0.19 (95% Confidence Interval (CI): −0.37, −0.005) lower natural log-transformed WMH volume. Other associations had wide confidence intervals. Conclusions In this population, where median 2003 estimated PM2.5 levels were below the current EPA standard, we observed no pattern of association between residential proximity to major roads or 2003 average PM2.5 and greater burden of small vessel disease or neurodegeneration. PMID:27372639

  9. Fine Particulate Matter, Residential Proximity to Major Roads, and Markers of Small Vessel Disease in a Memory Study Population.

    PubMed

    Wilker, Elissa H; Martinez-Ramirez, Sergi; Kloog, Itai; Schwartz, Joel; Mostofsky, Elizabeth; Koutrakis, Petros; Mittleman, Murray A; Viswanathan, Anand

    2016-06-30

    Long-term exposure to ambient air pollution has been associated with impaired cognitive function and vascular disease in older adults, but little is known about these associations among people with concerns about memory loss. To examine associations between exposures to fine particulate matter and residential proximity to major roads and markers of small vessel disease. From 2004-2010, 236 participants in the Massachusetts Alzheimer's Disease Research Center Longitudinal Cohort participated in neuroimaging studies. Residential proximity to major roads and estimated 2003 residential annual average of fine particulate air pollution (PM2.5) were linked to measures of brain parenchymal fraction (BPF), white matter hyperintensities (WMH), and cerebral microbleeds. Associations were modeled using linear and logistic regression and adjusted for clinical and lifestyle factors. In this population (median age [interquartile range] = 74 [12], 57% female) living in a region with median 2003 PM2.5 annual average below the current Environmental Protection Agency (EPA) standard, there were no associations between living closer to a major roadway or for a 2μg/m3 increment in PM2.5 and smaller BPF, greater WMH volume, or a higher odds of microbleeds. However, a 2μg/m3 increment in PM2.5 was associated with -0.19 (95% Confidence Interval (CI): -0.37, -0.005) lower natural log-transformed WMH volume. Other associations had wide confidence intervals. In this population, where median 2003 estimated PM2.5 levels were below the current EPA standard, we observed no pattern of association between residential proximity to major roads or 2003 average PM2.5 and greater burden of small vessel disease or neurodegeneration.

  10. Characterization of chemical components and bioreactivity of fine particulate matter (PM2.5) during incense burning.

    PubMed

    Lui, K H; Bandowe, Benjamin A Musa; Ho, Steven Sai Hang; Chuang, Hsiao-Chi; Cao, Jun-Ji; Chuang, Kai-Jen; Lee, S C; Hu, Di; Ho, K F

    2016-06-01

    The chemical and bioreactivity properties of fine particulate matter (PM2.5) emitted during controlled burning of different brands of incense were characterized. Incenses marketed as being environmentally friendly emitted lower mass of PM2.5 particulates than did traditional incenses. However, the environmentally friendly incenses produced higher total concentrations of non-volatile polycyclic aromatic hydrocarbons (PAHs) and some oxygenated polycyclic aromatic hydrocarbons (OPAHs). Human alveolar epithelial A549 cells were exposed to the collected PM2.5, followed by determining oxidative stress and inflammation. There was moderate to strong positive correlation (R > 0.60, p < 0.05) between selected PAHs and OPAHs against oxidative-inflammatory responses. Strong positive correlation was observed between interleukin 6 (IL-6) and summation of total Group B2 PAHs/OPAHs (∑7PAHs/ΣOPAHs). The experimental data indicate that emissions from the environmentally friendly incenses contained higher concentrations of several PAH and OPAH compounds than did traditional incense. Moreover, these PAHs and OPAHs were strongly correlated with inflammatory responses. The findings suggest a need to revise existing regulation of such products.

  11. A summary of the 2006 critical review - health effects of fine particulate air pollution: lines that connect

    SciTech Connect

    C. Arden Pope; Douglas Dockery

    2006-06-15

    In spite of continued gaps in knowledge, several important lines of research explored in the 2006 Critical Review in the Journal of the Air Waste Management Association, June 2006, pp 709-742 have substantially helped elucidate our understanding about human health effects of particulate air pollution. A comprehensive evaluation of the literature provides a compelling evidence that continued reductions in exposure to combustion-related fine particulate air pollution as indicated by PM 2.5 will result in improvements in cardiopulmonary health. Although research on the health effects of PM has been motivated largely by environmental health policy, in this review the progress of the science has been of more interest than debates over legally mandated standards. There has been substantial progress in the evaluation of the health effects of PM at different time-scales of exposure and in the exploration of the shape of the concentration-response function. The emerging evidence of PM-related cardiovascular health effects and the growing knowledge regarding inter connected general pahtophysiological pathways that link PM exposure with cardiopulmonary morbidity and mortality are fascinating results. These results have important scientific, medical, and public health implications that are much broader than debates over air quality Standard. Unsolved scientific issues dealing with the health effects of PM air pollution need not serve as sources of division, but as opportunities for cooperation and increased collaboration between epidemiology, toxicology, exposure assessment, and related disciplines. 40 refs., 4 figs.

  12. Fine particulate matter and polycyclic aromatic hydrocarbon concentration patterns in Roxbury, Massachusetts: a community-based GIS analysis.

    PubMed Central

    Levy, J I; Houseman, E A; Spengler, J D; Loh, P; Ryan, L

    2001-01-01

    Given an elevated prevalence of respiratory disease and density of pollution sources, residents of Roxbury, Massachusetts, have been interested in better understanding their exposures to air pollution. To determine whether local transportation sources contribute significantly to exposures, we conducted a community-based pilot investigation to measure concentrations of fine particulate matter (particulate matter < 2.5 microm; PM(2.5)) and particle-bound polycyclic aromatic hydrocarbons (PAHs) in Roxbury in the summer of 1999. Community members carried portable monitors on the streets in a 1-mile radius around a large bus terminal to create a geographic information system (GIS) map of concentrations and gathered data on site characteristics that could predict ambient concentrations. Both PM(2.5) and PAH concentrations were greater during morning rush hours and on weekdays. In linear mixed-effects regressions controlling for temporal autocorrelation, PAH concentrations were significantly higher with closer proximity to the bus terminal (p < 0.05), and both pollutants were elevated, but not statistically significantly so, on bus routes. Regressions on a subset of measurements for which detailed site characteristics were gathered showed higher concentrations of both pollutants on roads reported to have heavy bus traffic. Although a more comprehensive monitoring protocol would be needed to develop robust predictive functions for air pollution, our study demonstrates that pollution patterns in an urban area can be characterized with limited monitoring equipment and that university-community partnerships can yield relevant exposure information. PMID:11335181

  13. Fine particulate matter and polycyclic aromatic hydrocarbon concentration patterns in Roxbury, Massachusetts: a community-based GIS analysis.

    PubMed

    Levy, J I; Houseman, E A; Spengler, J D; Loh, P; Ryan, L

    2001-04-01

    Given an elevated prevalence of respiratory disease and density of pollution sources, residents of Roxbury, Massachusetts, have been interested in better understanding their exposures to air pollution. To determine whether local transportation sources contribute significantly to exposures, we conducted a community-based pilot investigation to measure concentrations of fine particulate matter (particulate matter < 2.5 microm; PM(2.5)) and particle-bound polycyclic aromatic hydrocarbons (PAHs) in Roxbury in the summer of 1999. Community members carried portable monitors on the streets in a 1-mile radius around a large bus terminal to create a geographic information system (GIS) map of concentrations and gathered data on site characteristics that could predict ambient concentrations. Both PM(2.5) and PAH concentrations were greater during morning rush hours and on weekdays. In linear mixed-effects regressions controlling for temporal autocorrelation, PAH concentrations were significantly higher with closer proximity to the bus terminal (p < 0.05), and both pollutants were elevated, but not statistically significantly so, on bus routes. Regressions on a subset of measurements for which detailed site characteristics were gathered showed higher concentrations of both pollutants on roads reported to have heavy bus traffic. Although a more comprehensive monitoring protocol would be needed to develop robust predictive functions for air pollution, our study demonstrates that pollution patterns in an urban area can be characterized with limited monitoring equipment and that university-community partnerships can yield relevant exposure information.

  14. A Case-Crossover Study between Fine Particulate Matter Elemental Composition and Emergency Admission with Cardiovascular Disease

    PubMed Central

    Huang, Zhijun; Zhou, Yuqing; Lu, Yao; Duan, Yizhu; Tang, Xiaohong; Deng, Qihong; Yuan, Hong

    2017-01-01

    Background It is generally understood that Fine Particulate Matter (PM2.5) can cause high blood pressure. However, it remains unclear whether there is a relationship between the elemental composition of PM2.5 and cardiovascular disease in emergency department patients. Methods Crossover design for time stratified cases and conditional logistic regression were used to analyze the correlation between emergency admissions for cerebral hemorrhage, cerebral infarction, TIA (Transient ischemic attack), coronary heart disease and PM2.5, concentrations of chemical element compositions, and Particulate Matter 10 (PM10) in Changsha city. Results When the temperature, atmosphere pressure, maximum wind speed, NO2 and SO2 were adjusted, the OR (Odd Ratio) of cerebral hemorrhage was 1.177 [95% confidence interval (CI): 1.006-1.376, p = 0.04] with every10 μg/m3 increase of PM2.5. PM10 was unrelated to cardiovascular emergencies (p > 0.05). In addition, with each additional IQR (Interquartile Range) increase of Ni, Zn and Pb concentrations in PM2.5, the values of OR were 1.826 (95% CI: 1.031-3.233), 1.568 (95% CI: 1.015-2.423) and 1.682 (95% CI: 1.010-2.800), respectively. Conclusions Concentration rises of nickel, zinc and lead elements for PM2.5 in Changsha city were related to the increase of emergency admissions with cerebral hemorrhage. PMID:28115809

  15. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, James A.; Kattamis, Theodoulos; Chambers, Brent V.; Bond, Bruce E.; Varela, Raul H.

    1989-01-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.

  16. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.

    1989-08-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.

  17. Measurement of emissions of fine particulate organic matter from Chinese cooking

    NASA Astrophysics Data System (ADS)

    He, Ling-Yan; Hu, Min; Huang, Xiao-Feng; Yu, Ben-De; Zhang, Yuan-Hang; Liu, De-Quan

    Cooking emissions may contribute significantly to atmospheric organic particles in urban environment in China, and thus need to be examined first for its chemical compositions and characteristics. The particulate organic emissions of the two cooking styles of Chinese cuisine, that is, Hunan Cooking and Cantonese Cooking, were characterized in Shenzhen. More than half of the PM 2.5 mass is due to organic compounds, and over 90 species of organic compounds were identified and quantified, accounting for 26.1% of bulk organic particle mass and 20.7% of PM 2.5. Fatty acids, diacids and steroids were the major organic compounds emitted from both styles of cooking. Of the quantified organic mass, over 90% was fatty acids. The mass of organic species, and the molecular distribution of n-alkanes and PAHs indicated the dissimilarities between the two different cooking styles, but generally the major parts of the organic particulate emissions of the two restaurants were similar, showing less difference than between Chinese and American cooking.

  18. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    PubMed

    Li, Longxiang; Gong, Jianhua; Zhou, Jieping

    2014-01-01

    Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.

  19. Spatial Interpolation of Fine Particulate Matter Concentrations Using the Shortest Wind-Field Path Distance

    PubMed Central

    Li, Longxiang; Gong, Jianhua; Zhou, Jieping

    2014-01-01

    Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197

  20. Reducing fine particulate to improve health: a health impact assessment for Taiwan.

    PubMed

    Yang, Chia-Ming; Kao, Kai

    2013-01-01

    Recently various countries have adopted the new standards for PM(2.5) (particulate matter <2.5 μm in aerodynamic diameter), but Taiwan still maintains an old set of air quality guidelines for particulate matter; therefore, the authors quantified the public health impact of long-term exposure to PM(2.5) in terms of attributable number of deaths and the potential gain in life expectancy by reducing PM(2.5) annual levels to 25, 20, 15, and 10 μg/m(3). When the guideline for PM(2.5) long-term exposure was set at 25 μg/m(3), 3.3% of all-cause mortality or 4,500 deaths in 2009 could be prevented. The potential gain in life expectancy at age 30 of this reduction would increase by a range between 1 and 7 months in Taiwan. This study shows that guidelines for PM(2.5), especially for long-term exposure, should be adopted in Taiwan as soon as possible to protect public health.

  1. Chemical compositions of fine particulate organic matter emitted from Chinese cooking.

    PubMed

    Zhao, Yunliang; Hu, Min; Slanina, Sjaak; Zhang, Yuanhang

    2007-01-01

    Food cooking can be a significant source of atmospheric particulate organic matter. In this study, the chemical composition of particulate organic matter (POM) in PM2.5 emitted from four different Chinese cooking styles were examined by gas chromotography-mass spectrometry (GC-MS). The identified species are consistent in the emissions from different Chinese cooking styles and the quantified compounds account for 5-10% of total POM in PM2.5. The dominant homologue is fatty acids, constituting 73-85% of the quantified compounds. The pattern of n-alkanes and the presence of beta-sitosterol and levoglucosan indicate that vegetables are consumed during Chinese cooking operations. Furthermore, the emissions of different compounds are impacted significantly by the cooking ingredients. The candidates of organic tracers used to describe and distinguish emissions from Chinese cooking in Guangzhou are tetradecanoic acid, hexadecanoic acid, octadecanoic acid, oleic acid, levoglucosan, mannosan, galactosan, nonanal, and lactones. During the sampling period, the relative contribution of Chinese cooking to the mass concentration of atmospheric hexadecanoic acid should be less than 1.3% in Guangzhou.

  2. Ambient fine particulate matter, nitrogen dioxide, and term birth weight in New York, New York.

    PubMed

    Savitz, David A; Bobb, Jennifer F; Carr, Jessie L; Clougherty, Jane E; Dominici, Francesca; Elston, Beth; Ito, Kazuhiko; Ross, Zev; Yee, Michelle; Matte, Thomas D

    2014-02-15

    Building on a unique exposure assessment project in New York, New York, we examined the relationship of particulate matter with aerodynamic diameter less than 2.5 μm and nitrogen dioxide with birth weight, restricting the population to term births to nonsmokers, along with other restrictions, to isolate the potential impact of air pollution on growth. We included 252,967 births in 2008-2010 identified in vital records, and we assigned exposure at the residential location by using validated models that accounted for spatial and temporal factors. Estimates of association were adjusted for individual and contextual sociodemographic characteristics and season, using linear mixed models to quantify the predicted change in birth weight in grams related to increasing pollution levels. Adjusted estimates for particulate matter with aerodynamic diameter less than 2.5 μm indicated that for each 10-µg/m(3) increase in exposure, birth weights declined by 18.4, 10.5, 29.7, and 48.4 g for exposures in the first, second, and third trimesters and for the total pregnancy, respectively. Adjusted estimates for nitrogen dioxide indicated that for each 10-ppb increase in exposure, birth weights declined by 14.2, 15.9, 18.0, and 18.0 g for exposures in the first, second, and third trimesters and for the total pregnancy, respectively. These results strongly support the association of urban air pollution exposure with reduced fetal growth.

  3. TRANSCRIPTION FACTOR ACTIVATION FOLLOWING EXPOSURE OF AN INTACT LUNG PREPARATION TO METALLIC PARTICULATE MATTER

    EPA Science Inventory

    TRANSCRIPTION FACTOR ACTIVATION FOLLOWING EXPOSURE OF AN INTACT LUNG PREPARATION TO METALLIC PARTICULATE MATTER

    James M. Samet1,2, Robert Silbajoris1, Tony Huang1 and Ilona Jaspers3

    1Human Studies Division, National Health and Environmental Effects Research Laborato...

  4. TRANSCRIPTION FACTOR ACTIVATION FOLLOWING EXPOSURE OF AN INTACT LUNG PREPARATION TO METALLIC PARTICULATE MATTER

    EPA Science Inventory

    TRANSCRIPTION FACTOR ACTIVATION FOLLOWING EXPOSURE OF AN INTACT LUNG PREPARATION TO METALLIC PARTICULATE MATTER

    James M. Samet1,2, Robert Silbajoris1, Tony Huang1 and Ilona Jaspers3

    1Human Studies Division, National Health and Environmental Effects Research Laborato...

  5. Fracture Analysis of Particulate Reinforced Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, James B.; Cornie, James A.

    2013-01-01

    A fracture analysis of highly loaded particulate reinforced composites was performed using laser moire interferometry to measure the displacements within the plastic zone at the tip of an advancing crack. Ten castings were made of five different particulate reinforcement-aluminum alloy combinations. Each casting included net-shape specimens which were used for the evaluation of fracture toughness, tensile properties, and flexure properties resulting in an extensive materials properties data. Measured fracture toughness range from 14.1 MPa for an alumina reinforced 356 aluminum alloy to 23.9 MPa for a silicon carbide reinforced 2214 aluminum alloy. For the combination of these K(sub Ic) values and the measured tensile strengths, the compact tension specimens were too thin to yield true plane strain K(sub Ic) values. All materials exhibited brittle behavior characterized by very small tensile ductility suggesting that successful application of these materials requires that the design stresses be below the elastic limit. Probabilistic design principles similar to those used with ceramics are recommended when using these materials. Such principles would include the use of experimentally determined design allowables. In the absence of thorough testing, a design allowable stress of 60 percent of the measured ultimate tensile stress is recommended.

  6. Electrically conductive polycrystalline diamond and particulate metal based electrodes

    DOEpatents

    Swain, Greg M.; Wang, Jian

    2005-04-26

    An electrically conducting and dimensionally stable diamond (12, 14) and metal particle (13) electrode produced by electrodepositing the metal on the diamond is described. The electrode is particularly useful in harsh chemical environments and at high current densities and potentials. The electrode is particularly useful for generating hydrogen, and for reducing oxygen and oxidizing methanol in reactions which are of importance in fuel cells.

  7. A novel Aerosol-Into-Liquid Collector for online measurements of trace metal and elements in ambient particulate matter (PM)

    NASA Astrophysics Data System (ADS)

    Wang, Dongbin; Shafer, Martin; Schauer, James; Sioutas, Constantinos

    2015-04-01

    A novel monitor for online, in-situ measurement of several important metal species (i.e. Fe, Mn and Cr) in ambient fine and ultrafine particulate matter (PM) is developed based on a recent published high flow rate Aerosol-Into-Liquid Collector. This Aerosol-Into-Liquid Collector collects particles directly as highly concentrated slurry samples, and the concentrations of target metals in slurry samples are subsequently determined in a Micro Volume Flow Cell (MVFC) coupled with absorbance spectrophotometry to detect colored complexes coming from the reactions between target metals and specific reagents. Laboratory tests are conducted to evaluate the performance of the MVFC-absorbance system. The calibration curves of the system are determined using standard solutions prepared by serial dilution. As part of the evaluation, the effects of reaction time, reagent amount and interference on the system are also evaluated. Field evaluations of the online monitor will be performed to validate the ability of this new online sampler in near-continuous collection and measurements. Both laboratory and field evaluations of the novel monitor will indicate that it is an effective and valuable technology for PM collection and characterization of important metal species in ambient aerosols.

  8. SOURCE SAMPLING FINE PARTICULATE MATTER: STATIONARY SOURCE CHARACTERIZATION TESTING OF A SMELT TANK AT A PULP AND PAPER FACILITY, VOLUMES 1 AND 2.

    EPA Science Inventory

    Fine particulate matter of aerodynamic diameter 2.5 m or less (PM-2.5) has been found harmful to human health, and a National Ambient Air Quality Standard for PM-2.5 was promulgated by the U.S. Environmental Protection Agency in July 1997. A national network of ambient monitorin...

  9. SOURCE SAMPLING FINE PARTICULATE MATTER: A KRAFT PROCESS HOGGED FUEL BOILER AT A PULP AND PAPER FACILITY, VOLUMES 1 AND 2

    EPA Science Inventory

    Fine particulate matter of aerodynamic diameter 2.5 m or less (PM-2.5) has been found harmful to human health, and a National Ambient Air Quality Standard for PM-2.5 was promulgated by the U.S. Environmental Protection Agency in July 1997. A national network of ambient monitorin...

  10. The short-term association of selected components of fine particulate matter and mortality in the Denver Aerosol Sources and Health (DASH) study

    EPA Science Inventory

    Associations of short-term exposure to fine particulate matter (PM2.5) with daily mortality may be due to specific PM2.5 chemical components. Objectives: Daily concentrations of PM2.5 chemical species were measured over five consecutive years in Denver, CO to investigate whethe...

  11. Soluble Ions with ICP-MS are Superior to Total Elements with XRF in Assessing Component-specific Cardiovascular Effects of Fine Particulate Matter

    EPA Science Inventory

    Background: We previously reported that total fine particulate matter (PM2.5) was associated with flow-mediated dilation (FMD), interleukin-6 (lL-6) and tumor-necrosisfactor-alpha (TNFa) in 22 individuals with type 2 diabetes. Objectives: We now compare two laboratory methods of ...

  12. A conditional Poisson analysis of fine particulate matter and U.S. Medicare hospitalization, 1999-2010, by individual-level chronic health conditions.

    EPA Science Inventory

    Background/Aim: A previous analysis suggested that U.S. counties with higher county-level prevalence of chronic conditions had stronger associations of mortality with fine particulate matter (PM2.5). This study assesses the modification of the effect of PM2.5 on daily hospitaliz...

  13. Engineering system for simultaneous inhalation exposures of rodents to fine and ultrafine concentrated ambient particulate matter from a common air source

    EPA Science Inventory

    Exposure to elevated levels of ambient particulate matter (PM) smaller than 2.5 11m (PM2.5) has been associated with adverse health effects in both humans and animals. Specific properties of either fine (0.1-2.5 11m), or ultrafine « 0.1 11m) PM responsible for exposure related he...

  14. The short-term association of selected components of fine particulate matter and mortality in the Denver Aerosol Sources and Health (DASH) study

    EPA Science Inventory

    Associations of short-term exposure to fine particulate matter (PM2.5) with daily mortality may be due to specific PM2.5 chemical components. Objectives: Daily concentrations of PM2.5 chemical species were measured over five consecutive years in Denver, CO to investigate whethe...

  15. EVALUATION OF THE CMB AND PMF MODELS USING ORGANIC MOLECULAR MARKERS IN FINE PARTICULATE MATTER COLLECTED DURING THE PITTSBURGH AIR QUALITY STUDY

    EPA Science Inventory

    This research investigated different strategies for source apportionment of airborne fine particulate matter (PM2.5) collected as part of the Pittsburgh Air Quality Study. Two source receptor models were used, the EPA Chemical Mass Balance 8.2 (CMB) and EPA Positive Matrix Facto...

  16. EVALUATION OF THE CMB AND PMF MODELS USING ORGANIC MOLECULAR MARKERS IN FINE PARTICULATE MATTER COLLECTED DURING THE PITTSBURGH AIR QUALITY STUDY

    EPA Science Inventory

    This research investigated different strategies for source apportionment of airborne fine particulate matter (PM2.5) collected as part of the Pittsburgh Air Quality Study. Two source receptor models were used, the EPA Chemical Mass Balance 8.2 (CMB) and EPA Positive Matrix Facto...

  17. EVALUATION OF AN ANNUAL SIMULATION OF OZONE AND FINE PARTICULATE MATTER OVER THE CONTINENTAL UNITED STATES - WHICH TEMPORAL FEATURES ARE CAPTURED?

    EPA Science Inventory

    Motivated by growing concerns about the detrimental effects of fine particulate matter (PM2.5) on human health, the U.S. Environmental Protection Agency (EPA) recently promulgated a National Ambient Air Quality Standard (NAAQS) for PM2.5. The PM2.5 standard includes a 24-hour li...

  18. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    EPA Science Inventory

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  19. Soluble Ions with ICP-MS are Superior to Total Elements with XRF in Assessing Component-specific Cardiovascular Effects of Fine Particulate Matter

    EPA Science Inventory

    Background: We previously reported that total fine particulate matter (PM2.5) was associated with flow-mediated dilation (FMD), interleukin-6 (lL-6) and tumor-necrosisfactor-alpha (TNFa) in 22 individuals with type 2 diabetes. Objectives: We now compare two laboratory methods of ...

  20. A comparison of osteocyte bioactivity in fine particulate bone powder grafts vs larger bone grafts in a rat bone repair model.

    PubMed

    Sun, Yuan-Xin; Sun, Cheng-Li; Tian, Ye; Xu, Wen-Xiao; Zhou, Chang-Long; Xi, Chun-Yang; Yan, Jing-Long; Wang, Xin-Tao

    2014-07-01

    The osteogenic potential for bone grafts is based on numbers and activities of cells that survive transplantation. In this study, we compared the bioactivity of osteocytes in 300-500 μm fine particulate bone powder grafts to 2 mm larger bone grafts in a rat radial defect model. Expression levels of bone morphogenetic protein-2 (BMP-2), transforming growth factor-beta 1 (TGF-β1), alkaline phosphatase (ALP), and collagen I were semi-quantified by both immunohistochemistry and RT-PCR at days 1 and 4, as well as weeks 1, 2, 4, 6 and 10 post-transplantation. Within two weeks post-transplantation, more cells stained positively for BMP-2, TGF-β1, ALP, and collagen I within the bone grafts and in the surrounding tissues in the group transplanted with the fine particulate bone powder grafts than in those with larger bone grafts (P<0.05). The mRNA levels of all four markers in the group transplanted with fine particulate bone powder graft peaked earlier and were expressed more highly than in the larger bone graft group, suggesting that fine particulate bone powder grafts provide more viable and active osteocytes to accelerate bone defect healing than larger bone grafts. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Engineering system for simultaneous inhalation exposures of rodents to fine and ultrafine concentrated ambient particulate matter from a common air source

    EPA Science Inventory

    Exposure to elevated levels of ambient particulate matter (PM) smaller than 2.5 11m (PM2.5) has been associated with adverse health effects in both humans and animals. Specific properties of either fine (0.1-2.5 11m), or ultrafine « 0.1 11m) PM responsible for exposure related he...

  2. EVALUATION OF AN ANNUAL SIMULATION OF OZONE AND FINE PARTICULATE MATTER OVER THE CONTINENTAL UNITED STATES - WHICH TEMPORAL FEATURES ARE CAPTURED?

    EPA Science Inventory

    Motivated by growing concerns about the detrimental effects of fine particulate matter (PM2.5) on human health, the U.S. Environmental Protection Agency (EPA) recently promulgated a National Ambient Air Quality Standard (NAAQS) for PM2.5. The PM2.5 standard includes a 24-hour li...

  3. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    EPA Science Inventory

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  4. SOURCE SAMPLING FINE PARTICULATE MATTER: STATIONARY SOURCE CHARACTERIZATION TESTING OF A SMELT TANK AT A PULP AND PAPER FACILITY, VOLUMES 1 AND 2.

    EPA Science Inventory

    Fine particulate matter of aerodynamic diameter 2.5 m or less (PM-2.5) has been found harmful to human health, and a National Ambient Air Quality Standard for PM-2.5 was promulgated by the U.S. Environmental Protection Agency in July 1997. A national network of ambient monitorin...

  5. Apportionment of ambient primary and secondary fine particulate matter during a 2001 summer intensive study at the CMU Supersite and NETL Pittsburgh site.

    PubMed

    Eatough, Delbert J; Mangelson, Nolan F; Anderson, Richard R; Martello, Donald V; Pekney, Natalie J; Davidson, Cliff I; Modey, William K

    2007-10-01

    Gaseous and particulate pollutant concentrations associated with five samples per day collected during a July 2001 summer intensive study at the Pittsburgh Carnegie Mellon University (CMU) Supersite were used to apportion fine particulate matter (PM2.5) into primary and secondary contributions using PMF2. Input to the PMF2 analysis included the concentrations of PM2.5 nonvolatile and semivolatile organic material, elemental carbon (EC), ammonium sulfate, trace element components, gas-phase organic material, and NO(x), NO2, and O3 concentrations. A total of 10 factors were identified. These factors are associated with emissions from various sources and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. In addition, four secondary sources were identified, three of which were associated with secondary products of local emissions and were dominated by organic material and one of which was dominated by secondary ammonium sulfate transported to the CMU site from the west and southwest. The three largest contributors to PM2.5 were secondary transported material (dominated by ammonium sulfate) from the west and southwest (49%), secondary material formed during midday photochemical processes (24%), and gasoline combustion emissions (11%). The other seven sources accounted for the remaining 16% of the PM2.5. Results obtained at the CMU site were comparable to results previously reported at the National Energy Technology Laboratory (NETL), located approximately 18 km south of downtown Pittsburgh. The major contributor at both sites was material transported from the west and southwest. Some difference in nearby sources could be attributed to meteorology as evaluated by HYSPLIT model back-trajectory calculations. These findings are consistent with the majority of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport, and thus decoupled from local

  6. Apportionment of ambient primary and secondary fine particulate matter during a 2001 summer intensive study at the CMU Supersite and NETL Pittsburgh Site

    SciTech Connect

    Delbert J. Eatough; Nolan F. Mangelson; Richard R. Anderson

    2007-10-15

    Gaseous and particulate pollutant concentrations associated with five samples per day collected during a July 2001 summer intensive study at the Pittsburgh Carnegie Mellon University (CMU) Supersite were used to apportion fine particulate matter (PM2.5) into primary and secondary contributions using PMF2. Input to the PMF2 analysis included the concentrations of PM2.5 nonvolatile and semivolatile organic material, elemental carbon (EC), ammonium sulfate, trace element components, gas-phase organic material, and NOx, NO{sub 2}, and O{sub 3} concentrations. A total of 10 factors were identified. These factors are associated with emissions from various sources and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. In addition, four secondary sources were identified, three of which were associated with secondary products of local emissions and were dominated by organic material and one of which was dominated by secondary ammonium sulfate transported to the CMU site from the west and southwest. The three largest contributors to PM2.5 were secondary transported material (dominated by ammonium sulfate) from the west and southwest from sources including coal-fired power plants, coke processing plants and steel mills, (49%), secondary material formed during midday photochemical processes (24%), and gasoline combustion emissions (11%). The other seven sources accounted for the remaining 16% of the PM2.5. Results obtained at the CMU site were comparable to results previously reported at the National Energy Technology Laboratory (NETL), located approximately 18 km south of downtown Pittsburgh. The major contributor at both sites was material transported from the west and southwest. Some difference in nearby sources could be attributed to meteorology as evaluated by HYSPLIT model back-trajectory calculations. 27 refs., 16 figs., 1 tab.

  7. Physical characterization of fine particulate matter inside the public transit buses fueled by biodiesel in Toledo, Ohio.

    PubMed

    Shandilya, Kaushik K; Kumar, Ashok

    2011-06-15

    This study presents the physical characteristics of fine particulate matter (PM) collected inside the urban-public transit buses in Toledo, OH. These buses run on 20% biodiesel blended with ultra-low sulfur diesel (ULSD) (B20). For risk analysis, it is crucial to know the modality of the size distribution and the shape factor of PM collected inside the bus. The number-size distribution, microstructure, and aspect ratio of fine PM filter samples collected in the urban-public transit buses were measured for three years (2007-2009), using an environmental scanning electron microscope (ESEM) coupled with energy dispersive X-ray spectrometry (EDX). Only the reproducible results from repeated experiments on ESEM and size distribution obtained by the GRIMM dust monitor were used in this study. The size distribution was found bi-modal in the winter and fall months and was primarily uni-modal during spring and summer. The aspect ratio for different filter samples collected inside the bus range from 2.4 to 3.6 in average value, with standard deviation ranging from 0.9 to 7.4. The square-shaped and oblong-shaped particles represent the single inhalable particle's morphology characteristics in the air of the Toledo transit buses. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A Simple Model for Fine Structure Transitions in Alkali-Metal Noble-Gas Collisions

    DTIC Science & Technology

    2015-03-01

    A SIMPLE MODEL FOR FINE STRUCTURE TRANSITIONS IN ALKALI - METAL NOBLE-GAS COLLISIONS THESIS Joseph A. Cardoza, Captain, USAF AFIT-ENP-MS-15-M-079... ALKALI - METAL NOBLE-GAS COLLISIONS THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air...AFIT-ENP-MS-15-M-079 A SIMPLE MODEL FOR FINE STRUCTURE TRANSITIONS IN ALKALI - METAL NOBLE-GAS COLLISIONS Joseph A. Cardoza, BS Captain, USAF Committee

  9. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    SciTech Connect

    Dr. Charles E. Kolb Dr. Douglas R. Worsnop Dr. Manjula R. Canagaratna Dr. Scott C. Herndon Dr. John T. Jayne Dr. W. Berk Knighton Dr. Timothy B. Onasch Dr. Ezra C. Wood Dr. Miguel Zavala

    2008-03-31

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen

  10. Contribution of long range transport to local fine particulate matter concerns

    NASA Astrophysics Data System (ADS)

    Wagstrom, K. M.; Pandis, S. N.

    2011-05-01

    We have utilized the Particulate Matter Source Apportionment Technology (PSAT) in PMCAMx (a regional chemical transport model) to quantify the contributions from local emissions and short range (under 100 km), mid range (100-550 km) and long range (over 550 km) pollutant transport to both primary and secondary particulate matter concentrations using the Eastern United States as a test case. We have studied these contributions for two urban (Pittsburgh, Pennsylvania and Atlanta, Georgia) and one rural area (Great Smoky Mountains National Park) during all seasons. The local emissions impacts to elemental carbon (EC) in major urban areas were found to be substantial with approximately 50% of the EC coming from local sources and 80% emitted within 200 km of the receptor. The local sources are even more important during the night contributing around 60% of the EC and then dropping to around 40% during the early afternoon. The EC in the rural Great Smoky Mountains was mainly the result of sources 100-550 km away. The seasonal variation of the EC source area contributions is small. There was also little difference between high and low EC concentration days. The contributions to secondary aerosol species were found to be more regional with more than 50% of the sulfate and secondary organic aerosol (SOA) originating from SO 2 and VOC sources that were more than 200 km away from the receptor. The importance of sources further away increased during the winter because of the lower photochemical activity. While mid range transport dominated in the summer the sulfate and SOA levels in all areas, long range transport became the most important sulfate and SOA source during the winter in the colder Northeastern US and of sulfate in the warmer South.

  11. Metals in Nile perch (Lates niloticus) and suspended particulate matter from Lake Victoria, Tanzania.

    PubMed

    Machiwa, John F

    2005-01-01

    A study was conducted to assess the levels of pollutant metals in suspended particulate matter and Nile perch from Lake Victoria. The metals in particulate matter were determined to ascertain their concentrations at the base of the food chain. Nile perch samples were collected in September 2003 from five major fish processing factories at the shores of Lake Victoria in Mwanza and Musoma. The concentrations of total Hg, Pb, Cd, and Cu were generally low in particulate matter and in most locations were close to or below their limits of detection. The concentrations of Zn were high in suspended particulate matter, the highest being 219.4 +/- 153.0 microg L(-1) found in particulate matter from Nungwe Bay in the southern part of Lake Victoria. Nile perch generally contained low levels of heavy metals; the range for Pb was <0.01-0.08 microg g(-1) ww, Cd was <0.001-0.04 microg g(-1) ww, Cu was 0.01-0.97 microg g(-1) ww, and Zn was <0.01-18.94 microg g(-1) ww. The concentration of total mercury ranged between 31.0 and 684.2 ng g(-1) ww; generally, it was below the Food and Agriculture Organization of the United Nations/World Health Organization (1000 ng total Hg g(-1) ww for piscivorous fish species) maximum allowable level. Indeed, all Nile perch samples that weighed less than 10 kg had less than 200 ng total Hg g(-1) ww and therefore are safe for regular consumption by at-risk groups such as children and pregnant women. Levels of mercury and other heavy metals in Nile perch at present is, therefore, not a severe environmental issue; however, urgent regulatory measures should be taken to minimize metal input into the lake to maintain the current levels in the fish.

  12. Metal contents of phytoplankton and labile particulate material in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Twining, Benjamin S.; Rauschenberg, Sara; Morton, Peter L.; Vogt, Stefan

    2015-09-01

    Phytoplankton contribute significantly to global C cycling and serve as the base of ocean food webs. Phytoplankton require trace metals for growth and also mediate the vertical distributions of many metals in the ocean. We collected bulk particulate material and individual phytoplankton cells from the upper water column (<150 m) of the North Atlantic Ocean as part of the US GEOTRACES North Atlantic Zonal Transect cruise (GEOTRACES GA03). Particulate material was first leached to extract biogenic and potentially-bioavailable elements, and the remaining refractory material was digested in strong acids. The cruise track spanned several ocean biomes and geochemical regions. Particulate concentrations of metals associated primarily with lithogenic phases (Fe, Al, Ti) were elevated in surface waters nearest North America, Africa and Europe, and elements associated primarily with biogenic material (P, Cd, Zn, Ni) were also found at higher concentrations near the coasts. However metal/P ratios of labile particulate material were also elevated in the middle of the transect for Fe, Ni, Co, Cu, and V. P-normalized cellular metal quotas measured with synchrotron X-ray fluorescence (SXRF) were generally comparable to ratios in bulk labile particles but did not show mid-basin increases. Manganese and Fe ratios and cell quotas were higher in the western part of the section, nearest North America, and both elements were more enriched in bulk particles, relative to P, than in cells, suggesting the presence of labile oxyhydroxide particulate phases. Cellular Fe quotas thus did not increase in step with aeolian dust inputs, which are highest near Africa; these data suggest that the dust inputs have low bioavailability. Copper and Ni cell quotas were notably higher nearest the continental margins. Overall mean cellular metal quotas were similar to those measured in the Pacific and Southern Oceans except for Fe, which was approximately 3-fold higher in North Atlantic cells. Cellular Fe

  13. Involvement of TLR2 and TLR4 in inflammatory immune responses induced by fine and coarse ambient air particulate matter

    PubMed Central

    Shoenfelt, Joanna; Mitkus, Robert J.; Zeisler, Rolf; Spatz, Rabia O.; Powell, Jan; Fenton, Matthew J.; Squibb, Katherine A.; Medvedev, Andrei E.

    2009-01-01

    Induction of proinflammatory mediators by alveolar macrophages exposed to ambient air particulate matter has been suggested to be a key factor in the pathogenesis of inflammatory and allergic diseases in the lungs. However, receptors and mechanisms underlying these responses have not been fully elucidated. In this study, we examined whether TLR2, TLR4, and the key adaptor protein, MyD88, mediate the expression of proinflammatory cytokines and chemokines by mouse peritoneal macrophages exposed to fine and coarse PM. TLR2 deficiency blunted macrophage TNF-α and IL-6 expression in response to fine (PM2.5), while not affecting cytokine-inducing ability of coarse NIST Standard Reference Material (SRM 1648) particles. In contrast, TLR4−/− macrophages showed inhibited cytokine expression upon stimulation with NIST SRM 1648 but exhibited normal responses to PM2.5. Preincubation with polymyxin B markedly suppressed the capacity of NIST SRM 1648 to elicit TNF-α and IL-6, indicating endotoxin as a principal inducer of cytokine responses. Overexpression of TLR2 in TLR2/4-deficient human embryonic kidney 293 cells imparted PM2.5 sensitivity, as judged by IL-8 gene expression, whereas NIST SRM 1648, but not PM2.5 elicited IL-8 expression in 293/TLR4/MD-2 transfectants. Engagement of TLR4 by NIST SRM 1648 induced MyD88-independent expression of the chemokine RANTES, while TLR2-reactive NIST IRM PM2.5 failed to up-regulate this response. Consistent with the shared use of MyD88 by TLR2 and TLR4, cytokine responses of MyD88−/− macrophages to both types of air PM were significantly reduced. These data indicate differential utilization of TLR2 and TLR4 but shared use of MyD88 by fine and coarse air pollution particles. PMID:19406832

  14. Spatial and temporal variability of sources of ambient fine particulate matter (PM2.5) in California

    NASA Astrophysics Data System (ADS)

    Hasheminassab, S.; Daher, N.; Saffari, A.; Wang, D.; Ostro, B. D.; Sioutas, C.

    2014-11-01

    To identify major sources of ambient fine particulate matter (PM2.5, dp < 2.5 μm) and quantify their contributions in the state of California, a positive matrix factorization (PMF) receptor model was applied on Speciation Trends Network (STN) data, collected between 2002 and 2007 at eight distinct sampling locations, including El Cajon, Rubidoux, Los Angeles, Simi Valley, Bakersfield, Fresno, San Jose, and Sacramento. Between five to nine sources of fine PM were identified at each sampling site, several of which were common among multiple locations. Secondary aerosols, including secondary ammonium nitrate and ammonium sulfate, were the most abundant contributor to ambient PM2.5 mass at all sampling sites, except for San Jose, with an annual average cumulative contribution of 26 to 63%, across the state. On an annual average basis, vehicular emissions (including both diesel and gasoline vehicles) were the largest primary source of fine PM at all sampling sites in southern California (17-18% of total mass), whereas in Fresno and San Jose, biomass burning was the most dominant primary contributor to ambient PM2.5 (27 and 35% of total mass, respectively), in general agreement with the results of previous source apportionment studies in California. In Bakersfield and Sacramento, vehicular emissions and biomass burning displayed relatively equal annual contributions to ambient PM2.5 mass (12 and 25%, respectively). Other commonly identified sources at all sites included aged and fresh sea salt and soil, which contributed to 0.5-13%, 2-27%, and 1-19% of the total mass, respectively, across all sites and seasons. In addition, a few minor sources were identified exclusively at some of the sites (e.g., chlorine sources, sulfate-bearing road dust, and different types of industrial emissions). These sources overall accounted for a small fraction of the total PM mass across the sampling locations (1 to 15%, on an annual average basis).

  15. Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign

    NASA Astrophysics Data System (ADS)

    Minguillón, María Cruz; Campos, Arturo Alberto; Cárdenas, Beatriz; Blanco, Salvador; Molina, Luisa T.; Querol, Xavier

    2014-05-01

    This work was carried out in the framework of the Cal-Mex project, which focuses on investigating the atmosphere along Mexico-California border region. Sampling was carried out at two sites located in Tijuana urban area: Parque Morelos and Metales y Derivados. PM2.5 and PM10 24 h samples were collected every three days from 17th May 2010 to 27th June 2010, and were used for gravimetric and chemical analyses (major and minor elements, inorganic ions, organic and elemental carbon) of PM. A subsequent Positive Matrix Factorization (PMF) analysis was performed. PM2.5 and PM10 average concentrations during Cal-Mex were relatively lower compared to usual annual averages. Trace elements concentrations recorded in the present study were lower than those recorded in Mexico City in 2006, with the exception of Pb at Metales y Derivados, attributed to the influence of a specific industrial source, which also includes As, Cd and Tl. Apart from this industrial source, both urban sites were found to be affected by similar sources with respect to bulk PM. Fine PM (PM2.5) was mainly apportioned by fueloil and biomass combustion and secondary aerosols, and road traffic. Coarse PM (PM2.5-10) was mainly apportioned by a mineral source (sum of road dust resuspension, construction emissions and natural soil) and fresh and aged sea salt. The road traffic was responsible for more than 60% of the fine elemental carbon and almost 40% of the fine organic matter.

  16. Studies on surface pitting during laser assisted removal of translucent ellipsoidal particulates from metallic substrates

    NASA Astrophysics Data System (ADS)

    Sugathan, Bijoy; Nilaya, J. Padma; Pillai, V. P. Mahadevan; Biswas, D. J.

    2017-04-01

    We report on the manifestation of field enhanced surface absorption during laser assisted removal of translucent particulates of ellipsoidal geometry from a metallic substrate surface. The surface pitting caused due to this effect has been experimentally probed as a function of the ratio of minor to major axis of the ellipsoid and the behavioral trend has been theoretically interpreted by invoking the principle of geometrical optics. The study also includes the effect of fluence and wavelength of the incident coherent radiation on the surface pitting. Probing of the surface topography has helped gain insight into the formation of multiple pits by a single particulate following its removal post laser exposure.

  17. Airborne exposure to heavy metals and total particulate during abrasive blasting using copper slag abrasive.

    PubMed

    Stephenson, Dale; Spear, Terry; Seymour, Marie; Cashell, Lori

    2002-06-01

    This research investigates occupational exposure to metal and total particulate aerosols during abrasive blasting operations using one substitute abrasive, copper slag. Airborne exposures to metal (As, Be, Pb, Cr, Cd, V, and Ti) and total particulate aerosols from two copper slag sources are evaluated by the collection and analysis of personal breathing zone samples during abrasive blasting operations in both indoor and outdoor settings. Results from this research indicate that abrasive blasting operations using copper slag abrasive can generate, in a relatively short time, total particulate, lead, arsenic, and chromium exposures that exceed permissible exposure limits (PELs) set by the Occupational Safety and Health Administration (OSHA). Results also show statistically significant differences in exposure concentrations between slag sources. A correlation between total particulate concentrations and metal concentrations is indicated in both slag sources and in both indoor and outdoor settings. Results of this research allow occupational health and safety professionals to make a more informed determination of the degree of health risk posed to workers during abrasive blasting operations using commercially obtained copper slag abrasive.

  18. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    PubMed

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice.

  19. The fine and coarse particulate matter at four major Mediterranean cities: local and regional sources

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2013-11-01

    Particulate air pollution is associated with adverse health effects to the population exposed. The aim of this paper is the identification of local and regional sources, affecting PM10 and PM2.5 levels in four large cities of southern Europe, namely: Lisbon, Madrid, Marseille, and Rome. Air pollution data from seven sampling sites of the European Union network were used. These stations were selected due to their ability of monitoring PM2.5 concentrations and providing reliable series of data. Each station's background was also taken into account. Pearson correlation coefficients and primal component analysis components were extracted separately for cold and warm periods in order to define the relationships among particle matters (PMs) and gaseous pollutants (CO, NO2, SO2, and O3) and evaluate the contributions of local sources. Possible seasonal variations of PM2.5/PM10 ratio daily values were also used as markers of PM sources, influencing particulate size distribution. Particle emissions were primarily attributed to traffic and secondarily to natural sources. Minimum daily values of PM2.5/PM10 ratio were observed during warm periods, particularly at suburban stations with rural background, due to dust resuspension and also due to the increase of biogenic coarse PM (pollen, dust, etc.). Hybrid Single-Particle Lagrangian Integrated Trajectory Model trajectory model was used in order to compute the 4-day backward trajectories of the air masses that affected the four cities which are under study during days with recorded PM10 exceedances, within a 5-year period (2003-2007), at 300, 750, and 1,500 m above ground level (AGL). The trajectories were then divided to clusters with a K-means analysis. In all four cities, the influence of slow-moving air masses was associated with a large fraction of PM10 exceedances and with high average and maximum daily mean PM10 concentrations, principally at the 300 m AGL analysis. As far the issue of the increased PM10 concentrations

  20. Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes

    SciTech Connect

    Kleeman, M.J.; Schauer, J.J.; Cass, G.R.

    1999-10-15

    A dilution source sampling system is augmented to measure the size-distributed chemical composition of fine particle emissions from air pollution sources. Measurements are made using a laser optical particle counter (OPC), a differential mobility analyzer/condensation nucleus counter (DMA/CNC) combination, and a pair of microorifice uniform deposit impactors (MOUDIs). The sources tested with this system include wood smoke (pine, oak, eucalyptus), meat charbroiling, and cigarettes. The particle mass distributions from all wood smoke sources have a single mode that peaks at approximately 0.1--0.2 {micro}m particle diameter. The smoke from meat charbroiling shows a major peak in the particle mass distribution at 0.1--0.2 {micro}m particle diameter, with some material present at larger particle sizes. Particle mass distributions from cigarettes peak between 0.3 and 0.4 {micro}m particle diameter. Chemical composition analysis reveals that particles emitted from the sources tested here are largely composed of organic compounds. Noticeable concentrations of elemental carbon are found in the particles emitted from wood burning. The size distributions of the trace species emissions from these sources also are presented, including data for Na, K, Ti, Fe, Br, Ru, Cl, Al, Zn, Ba, Sr, V, Mn, Sb, La, Ce, as well as sulfate, nitrate, and ammonium ion when present in statistically significant amounts. These data are intended for use with air quality models that seek to predict the size distribution of the chemical composition of atmospheric fine particles.

  1. A land use regression model for predicting ambient fine particulate matter across Los Angeles, CA.

    PubMed

    Moore, D K; Jerrett, M; Mack, W J; Künzli, N

    2007-03-01

    Land use regression (LUR) models have been used successfully for predicting local variation in traffic pollution, but few studies have explored this method for deriving fine particle exposure surfaces. The primary purpose of this method is to develop a LUR model for predicting fine particle or PM(2.5) mass over the five county metropolitan statistical area (MSA) of Los Angeles. PM(2.5) includes all particles with diameter less than or equal to 2.5 microns. In the Los Angeles MSA, 23 monitors of PM(2.5) were available in the year 2000. This study uses GIS to integrate data regarding land use, transportation and physical geography to derive a PM(2.5) dataset covering Los Angeles. Multiple linear regression was used to create the model for predicting the PM(2.5) surface. Our parsimonious model explained 69% of the variance in PM(2.5) with three predictors: (1) traffic density within 300 m, (2) industrial land area within 5000 m, and (3) government land area within 5000 m of the monitoring site. These results suggest the LUR method can refine exposure models for epidemiologic studies in a North American context.

  2. Method for manufacturing metal from fine-grain metal-oxide material

    SciTech Connect

    Edstrom, J.O.; Gorling, K.G.

    1984-02-28

    A method for producing fine-grain iron-containing metal oxide material, the method comprising a first reduction stage wherein the oxide material is at least partially reduced in a fluidized state at a temperature of approximately 1025/sup 0/-1275/sup 0/ K. by a reducing gas which is carbon monoxide or carbon monoxide mixed with hydrogen, followed by a smelting and final reduction stage to form a metal melt, the reducing gas used for the first reduction stage obtained from the smelting and final reduction stage. Prior to the first reduction stage, relatively large cakes or shaped pieces are formed from the fine-grain metal-oxide material in the presence of moisture and a hydraulic binder and the cakes or pieces caused to harden. The hardened oxide material is disintegrated and classified to form the starting material for the first reduction stage and is given a particle size distribution such that the material forms a fluidized bed which is substantially stationary at the considerable gas velocity required to carrying out the reduction process without bogging at the temperature selected for the first reduction stage.

  3. Processes affecting concentrations of fine particulate matter (PM 2.5) in the UK atmosphere

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.; Laxen, Duncan; Moorcroft, Stephen; Laxen, Kieran

    2012-01-01

    PM 2.5 is now subject to a limit value and exposure-reduction targets across the European Union. This has led to a rapid expansion in PM 2.5 monitoring across Europe and this paper reviews data collected in the United Kingdom in 2009. The expected gradient between rural, urban background and roadside sites is observed, although the roadside increment is generally rather small except for heavily trafficked street canyon locations. PM 2.5:PM 10 ratios decline from around 0.8 in southeast England to below 0.6 in Scotland consistent with a higher contribution of secondary particulate matter in southeast England. Average diurnal profiles of PM 2.5 differ around the UK but have a common feature in a nocturnal minimum and a peak during the morning rush hour. Central and southern UK sites also show an evening peak following a concentration reduction during the mid afternoon which is not seen at northern UK sites and is attributed to evaporation of semi-volatile components, particularly ammonium nitrate. Concentrations of PM 2.5 are typically highest in the winter months and lowest in the mid-summer consistent with better mixing and volatilisation of semi-volatile components in the warmer months of the year. Directional analysis shows a stronger association of PM 2.5 with easterly winds associated with air masses from the European mainland than with the direction of local traffic sources.

  4. Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter

    PubMed Central

    Liu, Xiaozhen; Frey, H. Christopher

    2012-01-01

    A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000

  5. A novel methodology for determining low-cost fine particulate matter street sweeping routes.

    PubMed

    Blazquez, Carola A; Beghelli, Alejandra; Meneses, Veronica P

    2012-02-01

    This paper addresses the problem of low-cost PM10 (particulate matter with aerodynamic diameter < 10 microm) street sweeping route. In order to do so, only a subset of the streets of the urban area to be swept is selected for sweeping, based on their PM10 emission factor values. Subsequently, a low-cost route that visits each street in the set is computed. Unlike related problems of waste collection where streets must be visited once (Chinese or Rural Postman Problem, respectively), in this case, the sweeping vehicle route must visit each selected street exactly as many times as its number of street sides, since the vehicle can sweep only one street side at a time. Additionally, the route must comply with traffic flow and turn constraints. A novel transformation of the original arc routing problem into a node routing problem is proposed in this paper. This is accomplished by building a graph that represents the area to sweep in such a way that the problem can be solved by applying any known solution to the Traveling Salesman Problem (TSP). As a way of illustration, the proposed method was applied to the northeast area of the Municipality of Santiago (Chile). Results show that the proposed methodology achieved up to 37% savings in kilometers traveled by the sweeping vehicle when compared to the solution obtained by solving the TSP problem with Geographic Information Systems (GIS)--aware tools.

  6. Source apportionment of fine particulate matter in the southeastern United States

    SciTech Connect

    Sangil Lee; Armistead G. Russell; Karsten Baumann

    2007-09-15

    Particulate matter (PM) less than 2.5 {mu}m in size (PM2.5) source apportionment by chemical mass balance receptor modeling was performed to enhance regional characterization of source impacts in the southeastern United States. Secondary particles, such as NH{sub 4}HSO{sub 4}, (NH{sub 4}){sub 2}SO{sub 4}, NH{sub 4}NO{sub 3}, and secondary organic carbon (OC) (SOC), formed by atmospheric photochemical reactions, contribute the majority ({gt} 50%) of ambient PM2.5 with strong seasonality. Source apportionment results indicate that motor vehicle and biomass burning are the two main primary sources in the southeast, showing relatively more motor vehicle source impacts rather than biomass burning source impacts in populated urban areas and vice versa in less urbanized areas. Spatial distributions of primary source impacts show that each primary source has distinctively different spatial source impacts. For coal combustion, higher concentrations occur in areas close to source and are highest at Jefferson (Birmingham), AL where industrial facilities use coal for fuel. Pulp and paper mills contribute high sources along the coast where oil combustion contribution is also high. Results also find impacts from shipping activities along the coast. Spatiotemporal correlations indicate that secondary particles are more regionally distributed, as are biomass burning and dust, whereas impacts of other primary sources are more local. 60 refs., 7 figs., 1 tab.

  7. Characterization and seasonal variations of levoglucosan in fine particulate matter in Xi'an, China.

    PubMed

    Zhang, Ting; Cao, Jun-Ji; Chow, Judith C; Shen, Zhen-xing; Ho, Kin-Fai; Ho, Steven Sai Hang; Liu, Sui-Xin; Han, Yong-Ming; Watson, John G; Wang, Ge-Hui; Huang, Ru-Jin

    2014-11-01

    PM2.5 (particulate matter with an aerodynamic diameter <2.5 microm) samples (n = 58) collected every sixth day in Xi'an, China, from 5 July 2008 to 27 June 2009 are analyzed for levoglucosan (1,6-anhydro-beta-D-glucopyranose) to evaluate the impacts of biomass combustion on ambient concentrations. Twenty-four-hour levoglucosan concentrations displayed clear summer minima and winter maxima that ranged from 46 to 1889 ng m(-3), with an average of 428 +/- 399 ng m(-3). Besides agricultural burning, biomass/biofuel combustion for household heating with straws and branches appears to be of regional importance during the heating season in northwestern China. Good correlations (0.70 < R < 0.91) were found between levoglucosan relative to water- soluble K+, Cl-, organic carbon (OC), elemental carbon (EC), and glyoxal. The highest levoglucosan/OC ratio of2.3% wasfound in winter, followed by autumn (1.5%). Biomass burning contributed to 5.1-43.8% of OC (with an average of 17.6 +/- 8.4%).

  8. Spatiotemporal prediction of fine particulate matter during the 2008 northern California wildfires using machine learning.

    PubMed

    Reid, Colleen E; Jerrett, Michael; Petersen, Maya L; Pfister, Gabriele G; Morefield, Philip E; Tager, Ira B; Raffuse, Sean M; Balmes, John R

    2015-03-17

    Estimating population exposure to particulate matter during wildfires can be difficult because of insufficient monitoring data to capture the spatiotemporal variability of smoke plumes. Chemical transport models (CTMs) and satellite retrievals provide spatiotemporal data that may be useful in predicting PM2.5 during wildfires. We estimated PM2.5 concentrations during the 2008 northern California wildfires using 10-fold cross-validation (CV) to select an optimal prediction model from a set of 11 statistical algorithms and 29 predictor variables. The variables included CTM output, three measures of satellite aerosol optical depth, distance to the nearest fires, meteorological data, and land use, traffic, spatial location, and temporal characteristics. The generalized boosting model (GBM) with 29 predictor variables had the lowest CV root mean squared error and a CV-R2 of 0.803. The most important predictor variable was the Geostationary Operational Environmental Satellite Aerosol/Smoke Product (GASP) Aerosol Optical Depth (AOD), followed by the CTM output and distance to the nearest fire cluster. Parsimonious models with various combinations of fewer variables also predicted PM2.5 well. Using machine learning algorithms to combine spatiotemporal data from satellites and CTMs can reliably predict PM2.5 concentrations during a major wildfire event.

  9. Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers.

    PubMed

    Chellali, M R; Abderrahim, H; Hamou, A; Nebatti, A; Janovec, J

    2016-07-01

    Neural network (NN) models were evaluated for the prediction of suspended particulates with aerodynamic diameter less than 10-μm (PM10) concentrations. The model evaluation work considered the sequential hourly concentration time series of PM10, which were measured at El Hamma station in Algiers. Artificial neural network models were developed using a combination of meteorological and time-scale as input variables. The results were rather satisfactory, with values of the coefficient of correlation (R (2)) for independent test sets ranging between 0.60 and 0.85 and values of the index of agreement (IA) between 0.87 and 0.96. In addition, the root mean square error (RMSE), the mean absolute error (MAE), the normalized mean squared error (NMSE), the absolute relative percentage error (ARPE), the fractional bias (FB), and the fractional variance (FS) were calculated to assess the performance of the model. It was seen that the overall performance of model 3 was better than models 1 and 2.

  10. Associations between Source-Specific Fine Particulate Matter and Emergency Department Visits for Respiratory Disease in Four U.S. Cities

    PubMed Central

    Krall, Jenna R.; Mulholland, James A.; Russell, Armistead G.; Balachandran, Sivaraman; Winquist, Andrea; Tolbert, Paige E.; Waller, Lance A.; Sarnat, Stefanie Ebelt

    2016-01-01

    Background: Short-term exposure to ambient fine particulate matter (PM2.5) concentrations has been associated with increased mortality and morbidity. Determining which sources of PM2.5 are most toxic can help guide targeted reduction of PM2.5. However, conducting multicity epidemiologic studies of sources is difficult because source-specific PM2.5 is not directly measured, and source chemical compositions can vary between cities. Objectives: We determined how the chemical composition of primary ambient PM2.5 sources varies across cities. We estimated associations between source-specific PM2.5 and respiratory disease emergency department (ED) visits and examined between-city heterogeneity in estimated associations. Methods: We used source apportionment to estimate daily concentrations of primary source-specific PM2.5 for four U.S. cities. For sources with similar chemical compositions between cities, we applied Poisson time-series regression models to estimate associations between source-specific PM2.5 and respiratory disease ED visits. Results: We found that PM2.5 from biomass burning, diesel vehicle, gasoline vehicle, and dust sources was similar in chemical composition between cities, but PM2.5 from coal combustion and metal sources varied across cities. We found some evidence of positive associations of respiratory disease ED visits with biomass burning PM2.5; associations with diesel and gasoline PM2.5 were frequently imprecise or consistent with the null. We found little evidence of associations with dust PM2.5. Conclusions: We introduced an approach for comparing the chemical compositions of PM2.5 sources across cities and conducted one of the first multicity studies of source-specific PM2.5 and ED visits. Across four U.S. cities, among the primary PM2.5 sources assessed, biomass burning PM2.5 was most strongly associated with respiratory health. Citation: Krall JR, Mulholland JA, Russell AG, Balachandran S, Winquist A, Tolbert PE, Waller LA, Sarnat SE. 2017

  11. Characterisation of particulate matter in the Royal Museum of Fine Arts, Antwerp, Belgium

    NASA Astrophysics Data System (ADS)

    Gysels, Kristin; Deutsch, Felix; Grieken, René Van

    Aerosol samples were collected during two campaigns in February and July 1999 both inside and outside the Koninklijk Museum voor Schone Kunsten (KMSK, Royal Museum of Fine Arts) in Antwerp. Bulk aerosol concentrations, as well as the composition of the individual particles, were determined. The influence of the outdoor aerosol was clearly visible. In winter, restoration and construction works constituted an additional indoor source of Ca-rich and Ca-Si particles. Along with sea salt, these were the main particle types identified in this season. In summer, S-rich particles were most frequent. The summer abundances of Ca-rich particles remained low, even though the museum is situated in a limestone building. Moreover, dry deposition samples were collected in order to determine what amount of particles could actually be deposited onto the works of art.

  12. Fine particulate matter source apportionment for the Chemical speciation Trends Network site at Birmingham, Alabama, using Positive Matrix Factorization.

    PubMed

    Baumann, Karsten; Jayanty, R K M; Flanagan, James B

    2008-01-01

    The Positive Matrix Factorization (PMF) receptor model version 1.1 was used with data from the fine particulate matter (PM2.5) Chemical Speciation Trends Network (STN) to estimate source contributions to ambient PM2.5 in a highly industrialized urban setting in the southeastern United States. Model results consistently resolved 10 factors that are interpreted as two secondary, five industrial, one motor vehicle, one road dust, and one biomass burning sources. The STN dataset is generally not corrected for field blank levels, which are significant in the case of organic carbon (OC). Estimation of primary OC using the elemental carbon (EC) tracer method applied on a seasonal basis significantly improved the model's performance. Uniform increase of input data uncertainty and exclusion of a few outlier samples (associated with high potassium) further improved the model results. However, it was found that most PMF factors did not cleanly represent single source types and instead are "contaminated" by other sources, a situation that might be improved by controlling rotational ambiguity within the model. Secondary particulate matter formed by atmospheric processes, such as sulfate and secondary OC, contribute the majority of ambient PM2.5 and exhibit strong seasonality (37 +/- 10% winter vs. 55 +/- 16% summer average). Motor vehicle emissions constitute the biggest primary PM2.5 mass contribution with almost 25 +/- 2% long-term average and winter maximum of 29 +/- 11%. PM2.5 contributions from the five identified industrial sources vary little with season and average 14 +/- 1.3%. In summary, this study demonstrates the utility of the EC tracer method to effectively blank-correct the OC concentrations in the STN dataset. In addition, examination of the effect of input uncertainty estimates on model results indicates that the estimated uncertainties currently being provided with the STN data may be somewhat lower than the levels needed for optimum modeling results.

  13. Assessment of Inter-Individual and Geographic Variability in Human Exposure to Fine Particulate Matter in Environmental Tobacco Smoke

    PubMed Central

    Cao, Y; Frey, HC

    2010-01-01

    Environmental tobacco smoke (ETS) is a major contributor to indoor human exposures to fine particulate matter of 2.5 microns or smaller (PM2.5). The Stochastic Human Exposure and Dose Simulation for Particulate Matter (SHEDS-PM) model developed by the US Environmental Protection Agency estimates distributions of outdoor and indoor PM2.5 exposure for a specified population based on ambient concentrations and indoor emissions sources. A critical assessment was conducted of the methodology and data used in SHEDS-PM for estimation of indoor exposure to ETS. For the residential microenvironment, SHEDS uses a mass-balance approach which is comparable to best practices. The default inputs in SHEDS-PM were reviewed and more recent and extensive data sources were identified. Sensitivity analysis was used to determine which inputs should be prioritized for updating. Data regarding the proportion of smokers and “other smokers,” and cigarette emission rate were found to be important. SHEDS-PM does not currently account for in-vehicle ETS exposure; however, in-vehicle ETS-related PM2.5 levels can exceed those in residential microenvironments by a factor of 10 or more. Therefore, a mass-balance based methodology for estimating in-vehicle ETS PM2.5 concentration is evaluated. Recommendations are made regarding updating of input data and algorithms related to ETS exposure in the SHEDS-PM model. Inter-individual variability for ETS exposure was quantified. Geographic variability in ETS exposure was quantified based on the varying prevalence of smokers in five selected locations in the U.S. PMID:21039708

  14. Short-Term Effects of Fine Particulate Matter and Temperature on Lung Function among Healthy College Students in Wuhan, China

    PubMed Central

    Zhang, Yunquan; He, Mingquan; Wu, Simin; Zhu, Yaohui; Wang, Suqing; Shima, Masayuki; Tamura, Kenji; Ma, Lu

    2015-01-01

    Ambient fine particulate matter (PM) has been associated with impaired lung function, but the effect of temperature on lung function and the potential interaction effect between PM and temperature remain uncertain. To estimate the short-term effects of PM2.5 combined with temperature on lung function, we measured the daily peak expiratory flow (PEF) in a panel of 37 healthy college students in four different seasons. Meanwhile, we also monitored daily concentrations of indoor and outdoor PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm), ambient temperature and relative humidity of the study area, where the study participants lived and attended school. Associations of air pollutants and temperature with lung function were assessed by generalized estimating equations (GEEs). A 10 μg/m3 increase of indoor PM2.5 was associated with a change of −2.09 L/min in evening PEF (95%CI: −3.73 L/min–−0.51 L/min) after adjusting for season, height, gender, temperature and relative humidity. The changes of −2.17 L/min (95%CI: −3.81 L/min– −0.52 L/min) and −2.18 L/min (95%CI: −3.96 L/min–−0.41 L/min) in evening PEF were also observed after adjusting for outdoor SO2 and NO2 measured by Environmental Monitoring Center 3 kilometers away, respectively. An increase in ambient temperature was found to be associated with a decrease in lung function and our results revealed a small but significant antagonistic interactive effect between PM2.5 and temperature. Our findings suggest that ambient PM2.5 has an acute adverse effect on lung function in young healthy adults, and that temperature also plays an important role. PMID:26184254

  15. The Southeastern Aerosol Research and Characterization Study, Part 3: Continuous measurements of fine particulate matter mass and composition

    SciTech Connect

    Edgerton, E.S.; Hartsell, B.E.; Saylor, R.D.; Jansen, J.J.; Hansen, D.A.; Hidy, G.M.

    2006-09-15

    Deployment of continuous analyzers in the Southeastern Aerosol Research and Characterization Study (SEARCH) network began in 1998 and continues today as new technologies are developed. Measurement of fine particulate matter (PM2.5) mass is performed using a dried, 30 {sup o}C tapered element oscillating microbalance (TEOM). TEOM measurements are complemented by observations of light scattering by nephelometry. Measurements of major constituents include: (1) SO{sub 4}{sup 2-} via reduction to SO{sub 2}; (2) NH{sub 4}{sup +} and NO{sub 3}{sup -} via respective catalytic oxidation and reduction to NO, (3) black carbon (BC) by optical absorption,(4) total carbon by combustion to CO{sup 2}, and (5) organic carbon by difference between the latter two measurements. Several illustrative examples of continuous data from the SEARCH network are presented. A distinctive composite annual average diurnal pattern is observed for PM2.5 mass, nitrate, and BC, likely indicating the influence of traffic-related emissions, growth, and break up of the boundary layer and formation of ammonium nitrate. Examination of PM2.5 components indicates the need to better understand the continuous composition of the unmeasured 'other' category, because it contributes a significant fraction to total mass during periods of high PM2.5 loading. Selected episodes are presented to illustrate applications of SEARCH data. An SO{sub 2} conversion rate of 0.2%/hr is derived from an observation of a plume from a coal-fired power plant during early spring, and the importance of local, rural sources of NH{sub 3} to the formation of ammonium nitrate in particulate matter (PM) is demonstrated. 41 refs., 15 figs., 3 tabs.

  16. Assessing the spatial and temporal variability of fine particulate matter components in Israeli, Jordanian, and Palestinian cities

    NASA Astrophysics Data System (ADS)

    Sarnat, Jeremy A.; Moise, Tamar; Shpund, Jacob; Liu, Yang; Pachon, Jorge E.; Qasrawi, Radwan; Abdeen, Ziad; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Schauer, James J.

    2010-07-01

    This manuscript presents results from an extensive, multi-country comparative monitoring study of fine particulate matter (PM 2.5) and its primary chemical components in Israeli, Jordanian and Palestinian cities. This study represented the first time that researchers from these countries have worked together to examine spatial and temporal relationships for PM 2.5 and its major components among the study sites. The findings indicated that total PM 2.5 mass was relatively homogenous among many of the 11 sites as shown from strong between-site correlations. Mean annual concentrations ranged from 19.9 to 34.9 μg m -3 in Haifa and Amman, respectively, and exceeded accepted international air quality standards for annual PM 2.5 mass. Similarity of total mass was largely driven by SO 42- and crustal PM 2.5 components. Despite the close proximity of the seven, well correlated sites with respect to PM 2.5, there were pronounced differences among the cities for EC and, to a lesser degree, OC. EC, in particular, exhibited spatiotemporal trends that were indicative of strong local source contributions. Interestingly, there were moderate to strong EC correlations ( r > 0.65) among the large metropolitan cities, West Jerusalem, Tel Aviv and Amman. For these relatively large cities, (i.e., West Jerusalem, Tel Aviv and Amman), EC sources from the fleet of buses and cars typical for many urban areas predominate and likely drive spatiotemporal EC distributions. As new airshed management strategies and public health interventions are implemented throughout the Middle East, our findings support regulatory strategies that target integrated regional and local control strategies to reduce PM 2.5 mass and specific components suspected to drive adverse health effects of particulate matter exposure.

  17. Short-Term Effects of Fine Particulate Matter and Temperature on Lung Function among Healthy College Students in Wuhan, China.

    PubMed

    Zhang, Yunquan; He, Mingquan; Wu, Simin; Zhu, Yaohui; Wang, Suqing; Shima, Masayuki; Tamura, Kenji; Ma, Lu

    2015-07-10

    Ambient fine particulate matter (PM) has been associated with impaired lung function, but the effect of temperature on lung function and the potential interaction effect between PM and temperature remain uncertain. To estimate the short-term effects of PM2.5 combined with temperature on lung function, we measured the daily peak expiratory flow (PEF) in a panel of 37 healthy college students in four different seasons. Meanwhile, we also monitored daily concentrations of indoor and outdoor PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm), ambient temperature and relative humidity of the study area, where the study participants lived and attended school. Associations of air pollutants and temperature with lung function were assessed by generalized estimating equations (GEEs). A 10 μg/m3 increase of indoor PM2.5 was associated with a change of -2.09 L/min in evening PEF (95%CI: -3.73 L/min--0.51 L/min) after adjusting for season, height, gender, temperature and relative humidity. The changes of -2.17 L/min (95%CI: -3.81 L/min- -0.52 L/min) and -2.18 L/min (95%CI: -3.96 L/min--0.41 L/min) in evening PEF were also observed after adjusting for outdoor SO2 and NO2 measured by Environmental Monitoring Center 3 kilometers away, respectively. An increase in ambient temperature was found to be associated with a decrease in lung function and our results revealed a small but significant antagonistic interactive effect between PM2.5 and temperature. Our findings suggest that ambient PM2.5 has an acute adverse effect on lung function in young healthy adults, and that temperature also plays an important role.

  18. Assessment of interindividual and geographic variability in human exposure to fine particulate matter in environmental tobacco smoke.

    PubMed

    Cao, Ye; Frey, H Christopher

    2011-04-01

    Environmental tobacco smoke (ETS) is a major contributor to indoor human exposures to fine particulate matter of 2.5 μm or smaller (PM(2.5) ). The Stochastic Human Exposure and Dose Simulation for Particulate Matter (SHEDS-PM) Model developed by the U.S. Environmental Protection Agency estimates distributions of outdoor and indoor PM(2.5) exposure for a specified population based on ambient concentrations and indoor emissions sources. A critical assessment was conducted of the methodology and data used in SHEDS-PM for estimation of indoor exposure to ETS. For the residential microenvironment, SHEDS uses a mass-balance approach, which is comparable to best practices. The default inputs in SHEDS-PM were reviewed and more recent and extensive data sources were identified. Sensitivity analysis was used to determine which inputs should be prioritized for updating. Data regarding the proportion of smokers and "other smokers" and cigarette emission rate were found to be important. SHEDS-PM does not currently account for in-vehicle ETS exposure; however, in-vehicle ETS-related PM(2.5) levels can exceed those in residential microenvironments by a factor of 10 or more. Therefore, a mass-balance-based methodology for estimating in-vehicle ETS PM(2.5) concentration is evaluated. Recommendations are made regarding updating of input data and algorithms related to ETS exposure in the SHEDS-PM model. Interindividual variability for ETS exposure was quantified. Geographic variability in ETS exposure was quantified based on the varying prevalence of smokers in five selected locations in the United States. © 2010 Society for Risk Analysis.

  19. Simulating the fine and coarse inorganic particulate matter concentrations in a polluted megacity

    NASA Astrophysics Data System (ADS)

    Karydis, Vlassis A.; Tsimpidi, Alexandra P.; Fountoukis, Christos; Nenes, Athanasios; Zavala, Miguel; Lei, Wenfang; Molina, Luisa T.; Pandis, Spyros N.

    2010-02-01

    A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM 1 (fine) and PM 1-10 (coarse) inorganic components and determine the effect of mineral dust on their formation. The aerosol thermodynamic model ISORROPIA-II is used to explicitly simulate the effect of Ca, Mg, and K from dust on semi-volatile partitioning and water uptake. The hybrid approach is applied to simulate the inorganic components, assuming that the smallest particles are in thermodynamic equilibrium, while describing the mass transfer to and from the larger ones. The official MCMA 2004 emissions inventory with improved dust and NaCl emissions is used. The comparison between the model predictions and measurements during a week of April of 2003 at Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA) "Supersite" shows that the model reproduces reasonably well the fine mode composition and its diurnal variation. Sulfate predicted levels are relatively uniform in the area (approximately 3 μg m -3), while ammonium nitrate peaks in Mexico City (approximately 7 μg m -3) and its concentration rapidly decreases due to dilution and evaporation away from the urban area. In areas of high dust concentrations, the associated alkalinity is predicted to increase the concentration of nitrate, chloride and ammonium in the coarse mode by up to 2 μg m -3 (a factor of 10), 0.4 μg m -3, and 0.6 μg m -3 (75%), respectively. The predicted ammonium nitrate levels inside Mexico City for this period are sensitive to the physical state (solid versus liquid) of the particles during periods with RH less than 50%.

  20. Heavy metals in particulate and colloidal matter from atmospheric deposition of urban Guangzhou, South China.

    PubMed

    Huang, Wen; Duan, Dandan; Zhang, Yulong; Cheng, Hefa; Ran, Yong

    2014-08-30

    Suspended particulate matter (SPM) and colloidal matter (COM) in annual dry and wet deposition samples in urban Guangzhou were for the first time collected, and their trace metals were investigated by using inductively coupled plasma mass spectrometry (ICP-MS). The deposition flux of SPM and of metal elements varied largely among the investigated seasons, and reached the maximum in spring. The correlation analysis indicated that significant correlations existed among some of the metal elements in the deposition samples. The enrichment factors (EF) of metals in COM in the deposition ranging from 79.66 to 130,000 were much higher than those of SPM ranging from 1.65 to 286.48, indicating the important role of COM. The factor analysis showed that emissions from street dust, non-ferrous metal production, and heavy fuel oil were major sources of the trace metals. Positive matrix factorization (PMF) model was used to quantitatively estimate anthropogenic source.

  1. Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment

    NASA Astrophysics Data System (ADS)

    Khan, M. F.; Latif, M. T.; Saw, W. H.; Amil, N.; Nadzir, M. S. M.; Sahani, M.; Tahir, N. M.; Chung, J. X.

    2016-01-01

    The health implications of PM2.5 in the tropical region of Southeast Asia (SEA) are significant as PM2.5 can pose serious health concerns. PM2.5 concentration and sources here are strongly influenced by changes in the monsoon regime from the south-west quadrant to the north-east quadrant in the region. In this work, PM2.5 samples were collected at a semi-urban area using a high-volume air sampler at different seasons on 24 h basis. Analysis of trace elements and water-soluble ions was performed using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. Apportionment analysis of PM2.5 was carried out using the United States Environmental Protection Agency (US EPA) positive matrix factorization (PMF) 5.0 and a mass closure model. We quantitatively characterized the health risks posed to human populations through the inhalation of selected heavy metals in PM2.5. 48 % of the samples collected exceeded the World Health Organization (WHO) 24 h PM2.5 guideline but only 19 % of the samples exceeded 24 h US EPA National Ambient Air Quality Standard (NAAQS). The PM2.5 concentration was slightly higher during the north-east monsoon compared to south-west monsoon. The main trace metals identified were As, Pb, Cd, Ni, Mn, V, and Cr while the main ions were SO42-, NO3-, NH4+, and Na. The mass closure model identified four major sources of PM2.5 that account for 55 % of total mass balance. The four sources are mineral matter (MIN) (35 %), secondary inorganic aerosol (SIA) (11 %), sea salt (SS) (7 %), and trace elements (TE) (2 %). PMF 5.0 elucidated five potential sources: motor vehicle emissions coupled with biomass burning (31 %) were the most dominant, followed by marine/sulfate aerosol (20 %), coal burning (19 %), nitrate aerosol (17 %), and mineral/road dust (13 %). The hazard quotient (HQ) for four selected metals (Pb, As, Cd, and Ni) in PM2.5 mass was highest in PM2.5 mass from the coal burning source and least in PM2.5 mass

  2. Fine Particulate Matter in Urban Environments: A Trigger of Respiratory Symptoms in Sensitive Children

    PubMed Central

    Dunea, Daniel; Iordache, Stefania; Pohoata, Alin

    2016-01-01

    The overall objective of this research was to study children’s respiratory illness levels in Targoviste (Romania) in relationship to the outdoor concentrations of airborne particulate matter with an aerodynamic diameter below 2.5 µm (PM2.5). We monitored and analysed the PM2.5 concentrations according to a complex experimental protocol. The health trial was conducted over three months (October–December 2015) and required the active cooperation of the children’s parents to monitor carefully the respiratory symptoms of the child, i.e., coughing, rhinorrhoea, wheezing, and fever, as well as their outdoor program. We selected the most sensitive children (n = 25; age: 2–10 years) with perturbed respiratory health, i.e., wheezing, asthma, and associated symptoms. The estimated average PM2.5 doses were 0.8–14.5 µg·day−1 for weekdays, and 0.4–6.6 µg·day−1 for the weekend. The frequency and duration of the symptoms decreased with increasing age. The 4- to 5-year old children recorded the longest duration of symptoms, except for rhinorrhoea, which suggested that this age interval is the most vulnerable to exogenous trigger agents (p < 0.01) compared to the other age groups. PM2.5 air pollution was found to have a direct positive correlation with the number of wheezing episodes (r = 0.87; p < 0.01) in November 2015. Monitoring of wheezing occurrences in the absence of fever can provide a reliable assessment of the air pollution effect on the exacerbation of asthma and respiratory disorders in sensitive children. PMID:27983715

  3. Source apportionment of fine particulate matter in Phoenix, AZ, using positive matrix factorization

    SciTech Connect

    Steven G. Brown; Anna Frankel; Sean M. Raffuse; Paul T. Roberts; Hilary R. Hafner; Darcy J. Anderson

    2007-06-15

    Speciated particulate matter PM2.5 data collected as Part. of the Interagency Monitoring of Protected Visual Environments (IMPROVE) program in Phoenix, AZ, from April 2001 through October 2003 were analyzed using the multivariate receptor model, positive matrix factorization (PMF). Over 250 samples and 24 species were used, including the organic carbon and elemental carbon analytical temperature fractions from the thermal optical reflectance method. A two-step approach was used. First, the species excluding the carbon fractions were used, and initially eight factors were identified; non-soil potassium was calculated and included to better refine the burning factor. Next, the mass associated with the burning factor was removed, and the data set rerun with the carbon fractions. Results were very similar (i.e., within a few percent), but this step enabled a separation of the mobile factor into gasoline and diesel vehicle emissions. The identified factors were burning (on average 2% of the mass), secondary transport (7%), regional power generation (13%), dust (25%), nitrate (9%), industrial As/Pb/Se (2%), Cu/Ni/V (7%), diesel (9%), and general mobile (26%). Most of the long-range transport of emissions emanates from south of Phoenix in Southeastern Arizona, West Texas, and Mexico, which are significant source regions of SO{sub 2} emissions from coal- and oil-fired power plants. The overall contribution from mobile sources also increased, as some mass (OC and nitrate) from the nitrate and regional power generation factors were apportioned with the mobile factors. This approach allowed better apportionment of carbon as well as total mass. Additionally, the use of multiple supporting analyses, including air mass trajectories, activity trends, and emission inventory information, helped increase confidence in factor identification. 86 refs., 10 figs., 2 tabs.

  4. Concentrations and source insights for trace elements in fine and coarse particulate matter

    NASA Astrophysics Data System (ADS)

    Clements, Nicholas; Eav, Jenny; Xie, Mingjie; Hannigan, Michael P.; Miller, Shelly L.; Navidi, William; Peel, Jennifer L.; Schauer, James J.; Shafer, Martin M.; Milford, Jana B.

    2014-06-01

    The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study is a multi-year study focused on characterizing the mass, composition and sources of coarse particulate matter (PM10-2.5) in Denver and Greeley, CO. Between the two cities, Denver is expected to have greater influence of industry and motor vehicles as sources of PM10-2.5. Greeley is a smaller city with greater expected influence of agricultural activity. As part of the CCRUSH study, we collected integrated 24-h samples of PM from four sites in Denver and Greeley at six day intervals from February 2010 to March 2011. Dichotomous samplers with Teflon filters were used to obtain samples for gravimetric and elemental analysis. Magnetic Sector Inductively Coupled Plasma-Mass Spectroscopy (SF-ICP-MS) was used to analyze digests of monthly composited filter samples for 49 elements. Thirty-nine elements were retained for statistical analysis after excluding those with low signal-to-noise ratios. The elements Sb, Cd, Zn, Mo, As, B, Cu, Pb, and W had crustal enrichment factors greater than 10 in the PM2.5 and PM10-2.5 size ranges in both Denver and Greeley. Using positive matrix factorization (PMF) with bootstrap uncertainty estimation, we identified five factors influencing the element concentrations: a crustal factor contributing to both PM2.5 and PM10-2.5; a sodium-dominated PM10-2.5 factor likely associated with road salt; a vehicle abrasion factor contributing in both size ranges; a regional sulfur factor contributing mainly to PM2.5 and likely associated with coal combustion; and a local catalyst factor identified with high Ce and La enrichment in PM2.5 at one of the sites in Denver.

  5. Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals

    NASA Technical Reports Server (NTRS)

    Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel

    2014-01-01

    To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.

  6. Fine particulate matter components and emergency department visits among a privately insured population in Greater Houston.

    PubMed

    Liu, Suyang; Ganduglia, Cecilia M; Li, Xiao; Delclos, George L; Franzini, Luisa; Zhang, Kai

    2016-10-01

    Although adverse health effects of PM2.5 (particulate matter with aerodynamic diameter less than 2.5μm) mass have been extensively studied, it remains unclear regarding which PM2.5 components are most harmful. No studies have reported the associations between PM2.5 components and adverse health effects among a privately insured population. In our study, we estimated the short-term associations between exposure to PM2.5 components and emergency department (ED) visits for all-cause and cause-specific diseases in Greater Houston, Texas, during 2008-2013 using ED visit data extracted from a private insurance company (Blue Cross Blue Shield Texas [BCBSTX]). A total of 526,453 ED visits were included in our assessment, with an average of 236 (±63) visits per day. We selected 20 PM2.5 components from the U.S. Environmental Protection Agency's Chemical Speciation Network site located in Houston, and then applied Poisson regression models to assess the previously mentioned associations. Interquartile range increases in bromine (0.003μg/m(3)), potassium (0.048μg/m(3)), sodium ion (0.306μg/m(3)), and sulfate (1.648μg/m(3)) were statistically significantly associated with the increased risks in total ED of 0.71% (95% confidence interval (CI): 0.06, 1.37%), 0.71% (95% CI: 0.21, 1.22%), 1.28% (95% CI: 0.34, 2.24%), and 1.22% (95% CI: 0.23, 2.23%), respectively. Seasonal analysis suggested strongest associations occurred during the warm season. Our findings suggest that a privately insured population, presumably healthier than the general population, may be still at risk of adverse health effects due to exposure to ambient PM2.5 components. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The molecular distribution of fine particulate organic matter emitted from Western-style fast food cooking

    NASA Astrophysics Data System (ADS)

    Zhao, Yunliang; Hu, Min; Slanina, Sjaak; Zhang, Yuanhang

    The emissions from food cooking could be a significant contributor to atmospheric particulate organic matter (POM) and its chemical composition would vary with different cooking styles. In this study, the chemical composition of POM emitted from Western-style fast food cooking was investigated. A total of six PM 2.5 samples was collected from a commercial restaurant and determined by gas chromatography-mass spectrometry (GC-MS). It is found that the total amount of quantified compounds of per mg POM in Western-style fast food cooking is much higher than that in Chinese cooking. The predominant homologue is fatty acids, accounting for 78% of total quantified POM, with the predominant one being palmitic acid. Dicarboxylic acids display the second highest concentration in the quantified homologues with hexanedioic acid being predominant, followed by nonanedioic acid. Cmax of n-alkanes occurs at C25, but they still appear relative higher concentrations at C29 and C31. In addition, both levoglucosan and cholesterol are quantified. The relationship of concentrations of unsaturated fatty acids (C16 and C18) with a double bond at C9 position and C9 acids indicates the reduction of the unsaturated fatty acids in the emissions could form the C9 acids. Moreover, the nonlinear fit indicates that other C9 species or other compounds are also produced, except for the C9 acids. The potential candidates of tracers for the emissions from Western-fast food cooking could be: tetradecanoic acid, hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, nonanal, lactones, levoglucosan, hexanedioic acid and nonanedioic acid.

  8. Prenatal fine particulate exposure and early childhood asthma: Effect of maternal stress and fetal sex.

    PubMed

    Lee, Alison; Leon Hsu, Hsiao-Hsien; Mathilda Chiu, Yueh-Hsiu; Bose, Sonali; Rosa, Maria José; Kloog, Itai; Wilson, Ander; Schwartz, Joel; Cohen, Sheldon; Coull, Brent A; Wright, Robert O; Wright, Rosalind J

    2017-08-08

    The impact of prenatal ambient air pollution on child asthma may be modified by maternal stress, child sex, and exposure dose and timing. We prospectively examined associations between coexposure to prenatal particulate matter with an aerodynamic diameter of less than 2.5 microns (PM2.5) and maternal stress and childhood asthma (n = 736). Daily PM2.5 exposure during pregnancy was estimated using a validated satellite-based spatiotemporally resolved prediction model. Prenatal maternal negative life events (NLEs) were dichotomized around the median (high: NLE ≥ 3; low: NLE < 3). We used Bayesian distributed lag interaction models to identify sensitive windows for prenatal PM2.5 exposure on children's asthma by age 6 years, and determine effect modification by maternal stress and child sex. Bayesian distributed lag interaction models identified a critical window of exposure (19-23 weeks' gestation, cumulative odds ratio, 1.15; 95% CI, 1.03-1.26; per interquartile range [1.7 μg/m(3)] increase in prenatal PM2.5 level) during which children concomitantly exposed to prenatal PM2.5 and maternal stress had increased risk of asthma. No significant association was seen in children born to women reporting low prenatal stress. When examining modifying effects of prenatal stress and fetal sex, we found that boys born to mothers with higher prenatal stress were most vulnerable (19-21 weeks' gestation; cumulative odds ratio, 1.28; 95% CI, 1.15-1.41; per interquartile range increase in PM2.5). Prenatal PM2.5 exposure during sensitive windows is associated with increased risk of child asthma, especially in boys concurrently exposed to elevated maternal stress. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  9. Diagnosis of Chemical Reactivity and Pollution Sources from Particulate Trace Metal Distributions in Estuaries

    NASA Astrophysics Data System (ADS)

    Turner, A.

    1999-02-01

    A simple approach is outlined for the diagnosis of chemical reactivity and pollution sources from distributions of suspended particulate constituents in estuaries of low turbidity and limited bed-water column particle exchange. The approach is demonstrated using acetic acid-extractable particulate trace metal data for the Clyde Estuary, where water and particle mixing in the vertical is restricted by a strong pycnocline, resuspension is limited by slow subsurface currents and internal sediment cycling is inhibited by the topography of the outer estuary. The salinity distributions of particulate Fe and Mn result from end-member particle mixing, modified by the geochemical mechanisms controlling their particle-water exchange (salt-induced flocculation of riverine, Fe-bearing colloidal material and autocatalytic oxidation-sorption of dissolved Mn). The axial distributions of particulate Cu, Cr, Pb and Zn are, additionally, affected by external inputs to the tidal estuary. The magnitudes of internal (e.g. particle-water exchange) or external (e.g. pollution) sources are calculated from the deviation of metal concentrations from a theoretical dilution line adjoining estuarine end-members, via chemical mass balances and empirical equations defining particle-water partitioning as a function of salinity. Calculated particle-water exchanges of Fe and Mn are compatible with independent dissolved metal measurements in the Clyde Estuary. Calculated external sources of Cu and Pb are in reasonable agreement with monitored trace metal input data to the estuary, but discrepancies exist between calculated and monitored external sources of Cr and Zn because of the significance of unmonitored inputs and chemical reactivity for these metals. Although suspended particulate trace metal concentrations in the Clyde are among the highest of industrialized estuaries in the U.K., it is argued that this, in part, reflects the inability of the Clyde to buffer pollution inputs because of the

  10. Polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters in Nanjing, China: Distributions, sources and meteorological influences

    NASA Astrophysics Data System (ADS)

    He, Jiabao; Fan, Shuxian; Meng, Qingzi; Sun, Yu; Zhang, Jian; Zu, Fan

    2014-06-01

    A study of 16 polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters at suburban and urban sites in Nanjing was carried out each season from November 2009 to July 2010. At the suburban and urban sites, the concentrations of total PAHs (T-PAHs) were in the ranges of 30.76-102.26 ng/m3 and 25.92-90.80 ng/m3, respectively. This paper elucidates the distributions, sources of PAHs and meteorological influences: 1) PAHs concentrations at the two sites were close to each other and similarity between PAHs profiles of the two sites indicated they had common sources, which were attributed to the combined effect of regional transport and local emission. 2) At both sites, the profiles displayed obvious seasonal variations, as a result of the seasonality of sources and meteorological influences. The T-PAHs concentrations were in the order of winter > spring > autumn > summer. 3) Source apportionment showed vehicle exhaust (72.93-87.24%) was the greatest contributor in all seasons. The coal combustion and coke production (coal/coke) (10.02-18.63%) were identified in all but summer seasons, because of the low collection efficiency of PAHs markers of coal/coke under high temperature. For autumn, biomass burning (10.58%) was an extra contributor. 4) Regarding meteorological parameters, a negative effect of temperature over PAHs was confirmed, with a correlation coefficient of -0.51 (p < 0.05). Precipitation could remove PAHs to some extent. Both positive and negative correlations between PAHs concentration and wind speed in each season were analyzed in combination with air mass back-trajectories so as to evaluate the effects of regional air transport. The results showed that polluted air from ENE-S and NNW-NE brought in outside sources to the study area and played a major role in the accumulation of fine-particulate PAHs in spring and winter respectively, while clean air from southwest contributed to the dilution in summer.

  11. The Association between Ambient Fine Particulate Air Pollution and Lung Cancer Incidence: Results from the AHSMOG-2 Study.

    PubMed

    Gharibvand, Lida; Shavlik, David; Ghamsary, Mark; Beeson, W Lawrence; Soret, Samuel; Knutsen, Raymond; Knutsen, Synnove F

    2017-03-01

    There is a positive association between ambient fine particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) and incidence and mortality of lung cancer (LC), but few studies have assessed the relationship between ambient PM2.5 and LC among never smokers. We assessed the association between PM2.5 and risk of LC using the Adventist Health and Smog Study-2 (AHSMOG-2), a cohort of health conscious nonsmokers where 81% have never smoked. A total of 80,285 AHSMOG-2 participants were followed for an average of 7.5 years with respect to incident LC identified through linkage with U.S. state cancer registries. Estimates of ambient air pollution levels at participants' residences were obtained for 2000 and 2001, the years immediately prior to the start of the study. A total of 250 incident LC cases occurred during 598,927 person-years of follow-up. For each 10-μg/m(3) increment in PM2.5, adjusted hazard ratio (HR) with 95% confidence interval (CI) for LC incidence was 1.43 (95% CI: 1.11, 1.84) in the two-pollutant multivariable model with ozone. Among those who spent > 1 hr/day outdoors or who had lived 5 or more years at their enrollment address, the HR was 1.68 (95% CI: 1.28, 2.22) and 1.54 (95% CI: 1.17, 2.04), respectively. Increased risk estimates of LC were observed for each 10-μg/m(3) increment in ambient PM2.5 concentration. The estimate was higher among those with longer residence at enrollment address and those who spent > 1 hr/day outdoors. Citation: Gharibvand L, Shavlik D, Ghamsary M, Beeson WL, Soret S, Knutsen R, Knutsen SF. 2017. The association between ambient fine particulate air pollution and lung cancer incidence: results from the AHSMOG-2 study. Environ Health Perspect 125:378-384; http://dx.doi.org/10.1289/EHP124.

  12. Chemical characterization and sources of personal exposure to fine particulate matter in the general population of Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Cui; Jahn, Heiko J.; Engling, Guenter; Ward, Tony J.; Kraemer, Alexander; Ho, Kin-Fai; Hung-Lam Yim, Steve; Chan, Chuen-Yu

    2017-04-01

    Fine particulate matter pollution severely deteriorates the environmental conditions and negatively impacts human health in the Chinese megacity Guangzhou. Concurrent ambient and personal measurements of fine particulate matter (PM2.5) were conducted in Guangzhou, China. Personal-to-ambient (P-C) relationships of PM2.5 chemical components were determined and sources of personal PM2.5 exposure were evaluated using principal component analysis along with a mixed-effects model. Water-soluble inorganic ions (mainly secondary inorganic ions) and anhydrosugars exhibited median personal-to-ambient (P/C) ratios < 1 accompanied by strong P-C correlations, indicating that these constituents in personal PM2.5 were significantly affected by ambient sources. Conversely, elemental carbon (EC) and calcium (Ca2+) showed median P/C ratios greater than unity, which indicated that among subjects who spent a great amount of time indoors, aside from particles of ambient origin, individual's total exposure to PM2.5 includes contributions of non-ambient exposure while indoors and outdoors (e.g., local traffic, indoor sources, personal activities). SO42- displayed very low coefficient of divergence (COD) values coupled with strong P-C correlations, implying a uniform distribution of SO42- in the urban area of Guangzhou. EC, Ca2+, and levoglucosan were otherwise heterogeneously distributed across individuals in different districts. Regional air pollution (50.4 ± 0.9%), traffic-related particles (8.6 ± 0.7%), dust-related particles (5.8 ± 0.7%), and biomass burning emissions (2.0 ± 0.2%) were moderate to high positive sources of personal PM2.5 exposure in Guangzhou. The observed positive and significant contribution of Ca2+ to personal PM2.5 exposure, highlighting indoor sources and/or personal activities, were driving factors determining personal exposure to dust-related particles. Considerable discrepancies (COD values ranging from 0.42 to 0.50) were shown between ambient

  13. Sources of Fine Particulate Matter and Risk of Preterm Birth in Connecticut, 2000–2006: A Longitudinal Study

    PubMed Central

    Bell, Michelle L.; Lee, Hyung Joo; Koutrakis, Petros; Belanger, Kathleen

    2014-01-01

    Background: Previous studies have examined fine particulate matter (≤ 2.5 μm; PM2.5) and preterm birth, but there is a dearth of longitudinal studies on this topic and a paucity of studies that have investigated specific sources of this exposure. Objectives: Our aim was to assess whether anthropogenic sources are associated with risk of preterm birth, comparing successive pregnancies to the same woman. Methods: Birth certificates were used to select women who had vaginal singleton live births at least twice in Connecticut during 2000–2006 (n = 23,123 women, n = 48,208 births). We procured 4,085 daily samples of PM2.5 on Teflon filters from the Connecticut Department of Environmental Protection for six cities in Connecticut. Filters were analyzed for chemical composition, and Positive Matrix Factorization was used to determine contributions of PM2.5 sources. Risk estimates were calculated with conditional logistic regression, matching pregnancies to the same women. Results: Odds ratios of preterm birth per interquartile range increase in whole pregnancy exposure to dust, motor vehicle emissions, oil combustion, and regional sulfur PM2.5 sources were 1.01 (95% CI: 0.93, 1.09), 1.01 (95% CI: 0.92, 1.10), 1.00 (95% CI: 0.89, 1.12), and 1.09 (95% CI: 0.97, 1.22), respectively. Conclusion: This was the first study of PM2.5 sources and preterm birth, and the first matched analysis, that better addresses individual-level confounding potentially inherent in all past studies. There was insufficient evidence to suggest that sources were statistically significantly associated with preterm birth. However, elevated central estimates and previously observed associations with mass concentration motivate the need for further research. Future studies would benefit from high source exposure settings and longitudinal study designs, such as that adopted in this study. Citation: Pereira G, Bell ML, Lee HJ, Koutrakis P, Belanger K. 2014. Sources of fine particulate matter and risk

  14. Distribution of metals between particulate and gaseous forms in a volcanic plume

    USGS Publications Warehouse

    Hinkley, T.K.

    1991-01-01

    In order to gain information on the distribution of metals between particles and gaseous forms in the plume of Kilauea volcano, a filter designed to collect metals associated with particles was followed in series by two other collectors intended to trap metals present in gaseous (atomic, molecular, or complexed) form: first an acid-bubbler bath and then a cold trap. Of the six metals measured, all of the In, Tl and Bi, and almost all of the Cd, Pb and Cu were found on the filter. None of any of the metals was detected in the acid-bubbler bath. Masses equivalent to 0.3% of the amount of Cd on the filter, 0.4% of the amount of Pb, and 9.3% of the Cu, were measured in the cold trap. The results indicate that all or nearly all of the six metals were partitioned to the particulate portion of the physical mixture of gases and particles that constitutes a volcanic plume, but that there may be systematic differences between chalcophile metals in the ways they are partitioned between particulate and gaseous phases in a cooled plume, and possibly differences in the acidity or other chemical properties of the molecular phases. ?? 1991 Springer-Verlag.

  15. Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter.

    PubMed

    Saeedi, M; Li, L Y; Karbassi, A R; Zanjani, A J

    2013-02-01

    Fractionation of metals in natural sediment and suspended particulate matter (SPM) of Tadjan River is investigated. Competitive sorption, sorption capacities of sediment and SPM as well as fractionation of metal-loaded sediment and SPM are also examined. A risk assessment code (RAC) is applied to estimate the risk of heavy metals release into the environment during the sorption process. Results revealed that sediments and SPM containing more than 25 % of clay minerals and higher amounts of calcite have great capacity of metal sorption, particularly for Cu, Ni, and Mn. Assessing the risk of metals release prior to and following sorption tests indicates that RAC of metals would significantly increase from the level of no or low risk in natural sediment and SPM to high or very high risk after sorption. The Langmuir model reveals that the highest affinity for Cu, Mn, and Ni in sediment is the organic fraction. The classic isotherm models of Freundlich and Langmuir can fit the data from chemical extraction studies of adsorbed metals, indicating that although sorption was apparently a physical and chemical process in the river, isotherm models can be used to simulate the sorption and accumulation in different geochemical phases within the particulate matter.

  16. Fine-scale estimation of carbon monoxide and fine particulate matter concentrations in proximity to a road intersection by using wavelet neural network with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Zhanyong; Lu, Feng; He, Hong-di; Lu, Qing-Chang; Wang, Dongsheng; Peng, Zhong-Ren

    2015-03-01

    At road intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly in the green-light period, which generates higher velocity fluctuation and thus higher emission rates. Additionally, the frequent changes of wind direction further add the highly variable dispersion of pollutants at the street scale. It is, therefore, very difficult to estimate the distribution of pollutant concentrations using conventional deterministic causal models. For this reason, a hybrid model combining wavelet neural network and genetic algorithm (GA-WNN) is proposed for predicting 5-min series of carbon monoxide (CO) and fine particulate matter (PM2.5) concentrations in proximity to an intersection. The proposed model is examined based on the measured data under two situations. As the measured pollutant concentrations are found to be dependent on the distance to the intersection, the model is evaluated in three locations respectively, i.e. 110 m, 330 m and 500 m. Due to the different variation of pollutant concentrations on varied time, the model is also evaluated in peak and off-peak traffic time periods separately. Additionally, the proposed model, together with the back-propagation neural network (BPNN), is examined with the measured data in these situations. The proposed model is found to perform better in predictability and precision for both CO and PM2.5 than BPNN does, implying that the hybrid model can be an effective tool to improve the accuracy of estimating pollutants' distribution pattern at intersections. The outputs of these findings demonstrate the potential of the proposed model to be applicable to forecast the distribution pattern of air pollution in real-time in proximity to road intersection.

  17. A scripted activity study of the impact of protective advice on personal exposure to ultra-fine and fine particulate matter and volatile organic compounds.

    PubMed

    Stieb, David M; Evans, Gregory J; Sabaliauskas, Kelly; Chen, L I; Campbell, Monica E; Wheeler, Amanda J; Brook, Jeffrey R; Guay, Mireille

    2008-09-01

    We evaluated the impact on personal exposure to air pollutants of following advice which typically accompanies air quality advisories and indices. Scripts prescribed the time, location, duration and nature of activities intended to simulate daily activity patterns for adults and children. Scripts were paired such that one individual would proceed with usual activities (base scenario), whereas the other (intervention scenario) would alter activities as if following advice. Other than commuting, where the intervention group walked or used public transportation rather than riding in personal vehicles, this group generally spent less time outdoors. Ultra-fine particles (UFPs), particulate matter of median aerodynamic diameter less than 2.5 mum (PM(2.5)) and total volatile organic compounds (VOCs) were measured using samplers carried by individuals during the course of daily activities. During daytime activities (e.g., work, daycare) constituting the largest share of sampling time (approximately 6 h per day), the intervention group experienced a 14% reduction in exposure to UFPs (P=0.01), a 21% reduction in exposure to PM(2.5) (P=0.08), and an 86% increase in exposure to VOCs (P=0.02). Other findings included an 89% increase in exposure to UFPs (P=0.02) and a threefold increase in exposure to VOCs (P=0.08) in the intervention group during evening cooking. Following smog advisory advice results in reduced exposures to some pollutants, while at the same time increasing exposure to others. Advice needs to be refined giving consideration to overall personal exposure.

  18. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-05-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2=0.79, n=52, Ea=126±10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2=0.60, n=56, Ea=84±9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  19. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-08-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated aerosol samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2 = 0.79, n = 52, Ea = 126 ± 10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2 = 0.60, n = 56, Ea = 84 ± 9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  20. Temporal and spatial distributions of summer-time ground-level fine particulate matters in Baltimore-DC region

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Greenwald, R.; Sarnat, J.; Hu, X.; Kewada, P.; Morales, Y.; Goldman, G.; Redman, J.; Russell, A. G.

    2011-12-01

    Environmental epidemiological studies have established a robust association between chronic exposure to ambient level fine particulate matters (PM2.5) and adverse health effects such as COPD, cardiorespiratory diseases, and premature death. Population exposure to PM2.5 has historically been estimated using ground measurements which are often sparse and unevenly distributed. There has been much interest as well as suspicion in both the air quality management and research communities regarding the value of satellite retrieved AOD as particle air pollution indicators. A critical step towards the future use of satellite aerosol products in air quality monitoring and management is to better understand the AOD-PM2.5 association. The existing EPA and IMPROVE networks are insufficient to validate AOD-estimated PM2.5 surface especially when higher resolution satellite products become available in the near future. As part of DISCOVER-AQ mission, we deployed 15 portable filter-based samplers alongside of ground-based sun photometers of the Distributed Regional Aerosol Gridded Observation Network (DRAGON) in July 2011. Gravimetric analyses were conducted to estimate 24h PM2.5 mass concentrations, using Teflon filters and Personal Environmental Monitors (PEMs) operated at a flow rate of 4 LPM. Pre- and post-sampling filters were weighed at our weigh room laboratory facilities at the Georgia Institute of Technology. Our objectives are (1) to examine if AOD measured by ground-based sun-photometers with the support from ground-based lidars can provide the fine scale spatial heterogeneity observed by ground PM monitors, and (2) whether PM2.5 levels estimated by satellite AOD agree with this true PM2.5 surface. Study design, instrumentation, and preliminary results of measured PM2.5 spatial patterns in July 2011 will be presented as well as discussion of further data analysis and model development.

  1. Ultrafine and fine particulate matter inhalation decreases exercise performance in healthy subjects.

    PubMed

    Rundell, Kenneth W; Caviston, Renee

    2008-01-01

    The purpose of this study was to investigate effects of PM1 (particulate matter with aerodynamic diameter 0.02-2 microm) inhalation on exercise performance in healthy subjects. Inhalation of internal combustion-derived PM is associated with adverse effects to the pulmonary and muscle microcirculation. No data are available concerning air pollution and exercise performance. Fifteen healthy college-aged males performed 4 maximal effort 6-min cycle ergometer trials while breathing low or high PM1 to achieve maximal work accumulation (kJ). Low PM1 inhalation trials 1 and 2 were separated by 3 days; then after a 7 day washout, trials 3 and 4 (separated by 3 days) were done while breathing high PM1 generated from a gasoline engine; CO was kept below 10 ppm. Lung function was done after trial 1 to verify nonasthmatic status. Lung function was normal before and after low PM1 exercise. PM1 number counts were not different between high PM1 trials (336,730 +/- 149,206 and 396,200 +/- 82,564 for trial 3 and 4, respectively) and were different from low PM1 trial number counts (2,260 +/- 500) (P < 0.0001). Mean heart rate was not different between trials (189 +/- 6.0, 188 +/- 7.6, 188 +/- 7.6, 187 +/- 7.4, for low and high PM1 trials; respectively). Work accumulated was not different between low PM1 trials (96.1 +/- 9.38 versus 96.6 +/- 10.83 kJ) and the first high PM1 trial (trial 3, 96.8 +/- 10.65 kJ). Work accumulated in the second high PM1 trial 4, 91.3 +/- 10.04 kJ) was less than in low PM1 trials 1 and 2, and high PM1 trial 3 (P = 0.004, P = 0.003, P = 0.0008; respectively). Acute inhalation of high (PM1) typical of many urban environments could impair exercise performance.

  2. Fuel-based fine particulate and black carbon emission factors from a railyard area in Atlanta.

    PubMed

    Galvis, Boris; Bergin, Mike; Russell, Armistead

    2013-06-01

    Railyards have the potential to influence localfine particulate matter (aerodynamic diameter < or = 2.5 microm; PM2.5) concentrations through emissions from diesel locomotives and supporting activities. This is of concern in urban regions where railyards are in proximity to residential areas. Northwest of Atlanta, Georgia, Inman and Tilford railyards are located beside residential neighborhoods, industries, and schools. The PM2.5 concentrations near the railyards is the highest measured amongst the state-run monitoring sites (Georgia Environmental Protection Division, 2012; http://www.georgiaair.org/amp/report.php). The authors estimated fuel-based black carbon (BC) and PM2.5 emission factors for these railyards in order to help determine the impact of railyard activities on PM2.5 concentrations, and for assessing the potential benefits of replacing current locomotive engines with cleaner technologies. High-time-resolution measurements of BC, PM2.5, CO2, and wind speed and direction were made at two locations, north and south of the railyards. Emissions factors (i.e., the mass of BC or PM2.5 per gallon of fuel burned) were estimated by using the downwind/upwind difference in concentrations, wavelet analysis, and an event-based approach. By the authors' estimates, diesel-electric engines used in the railyards have average emission factors of 2.8 +/- 0.2 g of BC and 6.0 +/- 0.5 g of PM2.5 per gallon of diesel fuel burned. A broader mix of railyard supporting activities appear to lead to average emission factors of 0.7 +/- 0.03 g of BC and 1.5 +/- 0.1 g of PM2.5 per gallon of diesel fuel burned. Railyard emissions appear to lead to average enhancements of approximately 1.7 +/- 0.1 microg/m3 of PM2.5 and approximately 0.8 +/- 0.01 microg/m3 of BC in neighboring areas on an annual average basis. Uncertainty not quantified in these results could arise mainly from variability in downwind/upwind differences, differences in emissions of the diverse zones within the

  3. Ambient Fine Particulate Matter, Outdoor Temperature, and Risk of Metabolic Syndrome.

    PubMed

    Wallwork, Rachel S; Colicino, Elena; Zhong, Jia; Kloog, Itai; Coull, Brent A; Vokonas, Pantel; Schwartz, Joel D; Baccarelli, Andrea A

    2017-01-01

    Ambient air pollution and temperature have been linked with cardiovascular morbidity and mortality. Metabolic syndrome and its components-abdominal obesity, elevated fasting blood glucose concentration, low high-density lipoprotein cholesterol concentration, hypertension, and hypertriglyceridemia-predict cardiovascular disease, but the environmental causes are understudied. In this study, we prospectively examined the long-term associations of air pollution, defined as particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5), and temperature with the development of metabolic syndrome and its components. Using covariate-adjustment Cox proportional hazards models, we estimated associations of mean annual PM2.5 concentration and temperature with risk of incident metabolic dysfunctions between 1993 and 2011 in 587 elderly (mean = 70 (standard deviation, 7) years of age) male participants in the Normative Aging Study. A 1-μg/m(3) increase in mean annual PM2.5 concentration was associated with a higher risk of developing metabolic syndrome (hazard ratio (HR) = 1.27, 95% confidence interval (CI): 1.06, 1.52), an elevated fasting blood glucose level (HR = 1.20, 95% CI: 1.03, 1.39), and hypertriglyceridemia (HR = 1.14, 95% CI: 1.00, 1.30). Our findings for metabolic syndrome and high fasting blood glucose remained significant for PM2.5 levels below the Environmental Protection Agency's health-safety limit (12 μg/m(3)). A 1°C increase in mean annual temperature was associated with a higher risk of developing elevated fasting blood glucose (HR = 1.33, 95% CI: 1.14, 1.56). Men living in neighborhoods with worse air quality-with higher PM2.5 levels and/or temperatures than average-showed increased risk of developing metabolic dysfunctions. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. [Indoor air pollution by fine particulate matter in the homes of newborns].

    PubMed

    Barría, René Mauricio; Calvo, Mario; Pino, Paulina

    Air pollution by particulate matter (PM) is a major public health problem. In Chile, the study has focused on outdoor air and PM10, rather than indoor air and PM2.5. Because newborns and infants spend most of their time at home, it is necessary to evaluate the exposure to indoor air pollution in this susceptible population. To determine concentration of PM2.5 in the homes of newborns and identify the emission sources of the pollutants. The PM2.5 concentration ([PM2.5]) was collected over a 24hour period in 207 households. Baseline sociodemographic information and environmental factors (heating, ventilation, smoking and house cleaning), were collected. The median [PM2.5] was 107.5μg/m(3). Family history of asthma was associated with lower [PM2.5] (P=.0495). Homes without heating showed a lower median [PM2.5], 58.6μg/m(3), while those using firewood, kerosene, and electricity ranged between 112.5 and 114.9, and coal users' homes reached 162.9μg/m(3). Wood using homes had significant differences (P=.0164) in median [PM2.5] whether the stove had complete combustion (98.2μg/m(3)) vs. incomplete (112.6μg/m(3)), or a salamander stove (140.6μg/m(3)). Cigarette smoking was reported in 8.7% of the households, but was not associated with the [PM2.5]. Ventilation was associated with a higher median [PM2.5] (120.6 vs. 99.1μg/m(3), P=.0039). We found homes with high [PM2.5]. Residential wood consumption was almost universal, and it is associated with the [PM2.5]. Natural ventilation increased MP2.5, probably due to infiltration from outside. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Composition and secondary formation of fine particulate matter in the Salt Lake Valley: winter 2009.