A Narrative Evaluation of Mandarin-Speaking Children With Language Impairment.
Hao, Ying; Sheng, Li; Zhang, Yiwen; Jiang, Fan; de Villiers, Jill; Lee, Wendy; Liu, Xueman Lucy
2018-02-15
We aimed to study narrative skills in Mandarin-speaking children with language impairment (LI) to compare with children with LI speaking Indo-European languages. Eighteen Mandarin-speaking children with LI (mean age 6;2 [years;months]) and 18 typically developing (TD) age controls told 3 stories elicited using the Mandarin Expressive Narrative Test (de Villiers & Liu, 2014). We compared macrostructure-evaluating descriptions of characters, settings, initiating events, internal responses,plans, actions, and consequences. We also studied general microstructure, including productivity, lexical diversity, syntactic complexity, and grammaticality. In addition, we compared the use of 6 fine-grained microstructure elements that evaluate particular Mandarin linguistic features. Children with LI exhibited weaknesses in 5 macrostructure elements, lexical diversity, syntactic complexity, and 3 Mandarin-specific, fine-grained microstructure elements. Children with LI and TD controls demonstrated comparable performance on 2 macrostructure elements, productivity, grammaticality, and the remaining 3 fine-grained microstructure features. Similarities and differences are noted in narrative profiles of children with LI who speak Mandarin versus those who speak Indo-European languages. The results are consistent with the view that profiles of linguistic deficits are shaped by the ambient language. Clinical implications are discussed.
Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation
NASA Astrophysics Data System (ADS)
Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel
2016-05-01
In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.
NASA Astrophysics Data System (ADS)
Morrow, Benjamin M.; Lienert, Thomas J.; Knapp, Cameron M.; Sutton, Jacob O.; Brand, Michael J.; Pacheco, Robin M.; Livescu, Veronica; Carpenter, John S.; Gray, George T.
2018-05-01
Recent work in both 304L and 316L stainless steel produced by additive manufacturing (AM) has shown that in addition to the unique, characteristic microstructures formed during the process, a fine dispersion of sub-micron particles, with a chemistry different from either the powder feedstock or the expected final material, are evident in the final microstructure. Such fine-scale features can only be resolved using transmission electron microscopy (TEM) or similar techniques. The present work uses electron microscopy to study both the initial powder feedstock and microstructures in final AM parts. Special attention is paid to the chemistry and origin of these nanoscale particles in several different metal alloys, and their impact on the final build. Comparisons to traditional, wrought material will be made.
The effects of magnetic and mechanical microstructures on the twinning stress in Ni-Mn-Ga
NASA Astrophysics Data System (ADS)
Faran, Eilon; Benichou, Itamar; Givli, Sefi; Shilo, Doron
2015-12-01
The ferromagnetic 10M Ni-Mn-Ga alloy exhibits complex magnetic and mechanical microstructures, which are expected to form barriers for motion of macro twin boundaries. Here, the contributions of both microstructures to the magnitude of the twinning stress property are investigated experimentally. A series of uniaxial loading-unloading curves are taken under different orientation angles of a constant magnetic field. The different 180 ° magnetic domains microstructures that are formed across the twin boundary in each case are visualised using a magneto optical film. Analysis of the different loading curves and the corresponding magnetic microstructures show that the latter does not contribute to the barriers for twin boundary motion. In accordance, the internal resisting stress for twin boundary motion under any magnetic field can be taken as the twinning stress measured in the absence of an external field. In addition, a statistical analysis of the fine features in the loading profiles reveals that the barrier for twinning is associated with a μ m sized characteristic length scale. This length scale corresponds to the typical thickness of micro-twinning laminates that constitute a mechanical microstructure. These findings indicate that the magnitude of the twinning stress in 10M Ni-Mn-Ga is determined by the characteristic fine twinned mechanical microstructure of this alloy.
Microstructures of ancient and modern cast silver–copper alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Northover, S.M., E-mail: s.m.northover@open.ac.uk; Northover, J.P., E-mail: peter.northover@materials.ox.ac.uk
The microstructures of modern cast Sterling silver and of cast silver objects about 2500 years old have been compared using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray microanalysis (EDX) and electron backscatter diffraction (EBSD). Microstructures of both ancient and modern alloys were typified by silver-rich dendrites with a few pools of eutectic and occasional cuprite particles with an oxidised rim on the outer surface. EBSD showed the dendrites to have a complex internal structure, often involving extensive twinning. There was copious intragranular precipitation within the dendrites, in themore » form of very fine copper-rich rods which TEM, X-ray diffraction (XRD), SEM and STEM suggest to be of a metastable face-centred-cubic (FCC) phase with a cube–cube orientation relationship to the silver-rich matrix but a higher silver content than the copper-rich β in the eutectic. Samples from ancient objects displayed a wider range of microstructures including a fine scale interpenetration of the adjoining grains not seen in the modern material. Although this study found no unambiguous evidence that this resulted from microstructural change produced over archaeological time, the copper supersaturation remaining after intragranular precipitation suggests that such changes, previously proposed for wrought and annealed material, may indeed occur in ancient silver castings. - Highlights: • Similar twinned structures and oxidised surfaces seen in ancient and modern cast silver • General precipitation of fine Cu-rich rods apparently formed by discontinuous precipitation is characteristic of as-cast silver. • The fine rods are cube-cube related to the matrix in contrast with the eutectic. • The silver-rich phase remains supersaturated with copper. • Possibly age-related grain boundary features seen in ancient cast silver.« less
NASA Astrophysics Data System (ADS)
Manigandan, K.; Srivatsan, T. S.
2015-06-01
In this paper, the results of an experimental study that focused on evaluating the conjoint influence of microstructure and test specimen orientation on fully reversed strain-controlled fatigue behavior of the high alloy steel X2M are presented and discussed. The cyclic stress response of this high-strength alloy steel revealed initial hardening during the first few cycles followed by gradual softening for most of fatigue life. Cyclic strain resistance exhibited a linear trend for the variation of elastic strain amplitude with reversals to failure, and plastic strain amplitude with reversals to failure. Fracture morphology was the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, the alloy steel revealed fracture to be essentially ductile with features reminiscent of predominantly "locally" ductile and isolated brittle mechanisms. The mechanisms governing stress response at the fine microscopic level, fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.
Layered Manufacturing: Challenges and Opportunities
2003-04-01
quality of the surface finish, eliminating residual stress , controlling local composition and microstructure, achieving fine feature size and...applications. Some methods have achieved commercial status, having graduated from the university level, others are in various stages of research. However...Road * Sintering * Co-firing * Shrinkage * Gas dimensions + Powder or + Resin * Residual stress precursors * Layer wire feeding infiltration * Distortion
NASA Astrophysics Data System (ADS)
Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.
2016-01-01
In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.
NASA Astrophysics Data System (ADS)
Gaur, Rishi; Gupta, R. K.; AnilKumar, V.; Banwait, S. S.
2018-05-01
Mechanical behavior of Ti-4Al-1Mn titanium alloy has been studied in annealed, cold-rolled and heat-treated conditions. Room temperature tensile strength as well as % elongation has been found to be low with increasing amount of cold rolling. Lowering of strength in cold worked condition is attributed to premature failure. However, the same has been mitigated after heat treatment. Significant effect of cooling media (air and water) from heat treatment temperature on microstructure was not found except for the degree of fineness of α plates. Optimum properties (strength as well as ductility) were exhibited by samples subjected to 15% cold rolling and heat treatment below β transus temperature, which can be attributed to presence of recrystallized microstructure. In cold worked condition, the microstructure shows fine fragmented α plates/Widmanstätten morphology with high dislocation density along with a large amount of strain fields and twinning, which gets transformed to recrystallized equiaxed microstructure and with plate-like morphology after near β heat treatment. Prior cold work is found to have a significant effect on mechanical properties supported by evolution of microstructure. Twinning is found to be assisting in deformation as well as in recrystallization through the formation of deformation and annealing twins during cold working and heat treatment. Fracture analysis of the tested sample with prior cold work and heat-treated condition revealed quasi-ductile failure as compared to only ductile failure features seen for samples heat treated without prior cold work.
2007-02-01
fabrication of dense thin sheets of gamma titanium aluminide . Polarized light microscopy revealed a fine-grained microstructure but a few isolated...HIPed (near-gamma) microstructure occurred. 15. SUBJECT TERMS gamma titanium aluminide , thin sheet, tape casting, hot isostatic pressing 16...sheets (250–300 μm thick) of gamma titanium aluminide (γ-TiAl). Polarized light microscopy revealed a fine-grained microstructure (average grain
NASA Astrophysics Data System (ADS)
Sun, Pei; Fang, Zhigang Zak; Koopman, Mark; Xia, Yang; Paramore, James; Ravi Chandran, K. S.; Ren, Yang; Lu, Jun
2015-12-01
The hydrogen sintering and phase transformation (HSPT) process is a novel powder metallurgy method for producing Ti alloys, particularly the Ti-6Al-4V alloy, with ultra-fine microstructure in the as-sintered state. The ultra-fine microstructure is obtained as a direct result of the use of H2 gas during sintering. The refinement of the microstructure during HSPT is similar to that of thermal hydrogen processing (THP) of bulk Ti alloys. For both THP and HSPT of Ti-6Al-4V alloy, the mechanisms of the grain refinement depend on the phase equilibria and phase transformations in the presence of hydrogen, which are surprisingly still not well established to date and are still subjected to research and debate. In recent work by the present authors, a pseudo-binary phase diagram of (Ti-6Al-4V)-H has been determined by using in situ synchrotron XRD and TGA/DSC techniques. Aided by this phase diagram, the current paper focuses on the series of phase transformations during sintering and cooling of Ti-6Al-4V in a hydrogen atmosphere and the mechanisms for the formation of the ultra-fine microstructures obtained. Using experimental techniques, including in situ synchrotron XRD, SEM, EBSD, and TEM, the microstructural refinement was found to be the result of (1) the precipitation of ultra-fine α/α2 within coarse β grains during an isothermal hold at intermediate temperatures, and (2) the eutectoid transformation of β → α + δ at approximately 473 K (200 °C).
NASA Astrophysics Data System (ADS)
Blau, P. J.; Howe, J. Y.; Coffey, D. W.; Trejo, R. M.; Kenik, E. D.; Jolly, B. C.; Yang, N.
2012-08-01
Fine holes in metal alloys are employed for many important technological purposes, including cooling and the precise atomization of liquids. For example, they play an important role in the metering and delivery of fuel to the combustion chambers in energy-efficient, low-emission diesel engines. Electro-discharge machining (EDM) is one process employed to produce such holes. Since the hole shape and bore morphology can affect fluid flow, and holes also represent structural discontinuities in the tips of the spray nozzles, it is important to understand the microstructures adjacent to these holes, the features of the hole walls, and the nanomechanical properties of the material that was in some manner altered by the EDM hole-making process. Several techniques were used to characterize the structure and properties of spray-holes in a commercial injector nozzle. These include scanning electron microscopy, cross sectioning and metallographic etching, bore surface roughness measurements by optical interferometry, scanning electron microscopy, and transmission electron microscopy of recast EDM layers extracted with the help of a focused ion beam.
Microstructural analysis of aluminum high pressure die castings
NASA Astrophysics Data System (ADS)
David, Maria Diana
Microstructural analysis of aluminum high pressure die castings (HPDC) is challenging and time consuming. Automating the stereology method is an efficient way in obtaining quantitative data; however, validating the accuracy of this technique can also pose some challenges. In this research, a semi-automated algorithm to quantify microstructural features in aluminum HPDC was developed. Analysis was done near the casting surface where it exhibited fine microstructure. Optical and Secondary electron (SE) and backscatter electron (BSE) SEM images were taken to characterize the features in the casting. Image processing steps applied on SEM and optical micrographs included median and range filters, dilation, erosion, and a hole-closing function. Measurements were done on different image pixel resolutions that ranged from 3 to 35 pixel/μm. Pixel resolutions below 6 px/μm were too low for the algorithm to distinguish the phases from each other. At resolutions higher than 6 px/μm, the volume fraction of primary α-Al and the line intercept count curves plateaued. Within this range, comparable results were obtained validating the assumption that there is a range of image pixel resolution relative to the size of the casting features at which stereology measurements become independent of the image resolution. Volume fraction within this curve plateau was consistent with the manual measurements while the line intercept count was significantly higher using the computerized technique for all resolutions. This was attributed to the ragged edges of some primary α-Al; hence, the algorithm still needs some improvements. Further validation of the code using other castings or alloys with known phase amount and size may also be beneficial.
Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal
NASA Astrophysics Data System (ADS)
Cao, R.; Zhang, X. B.; Wang, Z.; Peng, Y.; Du, W. S.; Tian, Z. L.; Chen, J. H.
2014-02-01
The microstructural features that control the impact toughness of weld metals of a 980 MPa 8 pct Ni high-strength steel are investigated using instrumented Charpy V tester, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), electron back-scattered diffraction (EBSD), and finite-element method (FEM) calculation. The results show that the critical event for cleavage fracture in this high-strength steel and weld metals is the propagation of a bainite packet-sized crack across the packet boundary into contiguous packets, and the bainitic packet sizes control the impact toughness. The high-angle misorientation boundaries detected in a bainite packet by EBSD form fine tear ridges on fracture surfaces. However, they are not the decisive factors controlling the cleavage fracture. The effects of Ni content are essential factors for improving the toughness. The extra large cleavage facets seriously deteriorate the toughness, which are formed on the interfaces of large columnar crystals growing in welding pools with high heat input.
NASA Astrophysics Data System (ADS)
Lui, E. W.; Xu, W.; Pateras, A.; Qian, M.; Brandt, M.
2017-12-01
Recent progress has shown that Ti-6Al-4V fabricated by selective laser melting (SLM) can achieve a fully lamellar α + β microstructure using 60 µm layer thickness in the as-built state via in situ martensite decomposition by manipulating the processing parameters. The potential to broaden the processing window was explored in this study by increasing the layer thickness to the less commonly used 90 µm. Fully lamellar α + β microstructures were produced in the as-built state using inter-layer times in the range of 1-12 s. Microstructural features such as the α-lath thickness and morphology were sensitive to both build height and inter-layer time. The α-laths produced using the inter-layer time of 1 s were much coarser than those produced with the inter-layer time of 12 s. The fine fully lamellar α + β structure resulted in tensile ductility of 11% and yield strength of 980 MPa. The tensile properties can be further improved by minimizing the presence of process-induced defects.
NASA Astrophysics Data System (ADS)
Chabak, Yu. G.; Efremenko, V. G.; Shimizu, K.; Lekatou, A.; Pastukhova, T. V.; Azarkhov, A. Yu.; Zurnadzhy, V. I.
2018-02-01
The effect of pulsed plasma deposition (by an electrothermal axial plasma accelerator) followed by post-heat treatment on the structure and microhardness of a 28 wt.% Cr white cast iron is analyzed and discussed with respect to the microstructure of the conventionally cast monolithic counterpart. The cast iron (as deposited on a 14 wt.% Cr cast iron substrate) had a microhardness of 630-750 HV0.05; it had layered light contrast/dark contrast structure where dark contrast layers contain fine carbide network. Pulsed plasma deposition followed by heat treatment resulted in a substantial refinement of the microstructure: eutectic M7C3 coarse acicular plates in the conventional cast iron were replaced by fine M7C3, M3C2, M3C particles (Cr depleted in favor of Fe), while the initial carbide particle of 2-3 μm was reduced to 0.6 μm. Secondary dendrite arm spacing decreased from 15 to 1.3 μm, accordingly. The carbide volume fraction in the post-heat-treated coating remarkably increased with respect to the conventional counterpart resulting in a substantial increase in the coating hardness (1300-1750 HV0.05). The heat-treated coating displayed higher resistance to three-body abrasion than the as-deposited coating and similar resistance with that of the conventionally cast iron.
Fabrication of fine-grain tantalum diffusion barrier tube for Nb3Sn conductors
NASA Astrophysics Data System (ADS)
Hartwig, K. T.; Balachandran, S.; Mezyenski, R.; Seymour, N.; Robinson, J.; Barber, R. E.
2014-01-01
Diffusion barriers used in Nb3Sn wire are often fabricated by wrapping Ta sheet into a tube with an overlap seam. A common result of such practice is non-uniform deformation in the Ta sheet as it thins by wire drawing because of non-uniform grain size and texture in the original Ta sheet. Seamless Ta tube with a fine-grain and uniform microstructure would be much better for the diffusion barrier application, but such material is expensive and difficult to manufacture. This report presents results on a new fabrication strategy for Ta tube that shows promise for manufacture of less costly tube with an improved microstructure. The fabrication method begins with seam-welded tube but gives a fine-grain uniform microstructure with little difference between the longitudinal seam weld region and the parent metal after post-weld processing. Severe plastic deformation processing (SPD) applied by area reduction extrusion and tube equal channel angular extrusion (tECAE) are used to refine and homogenize the microstructure. Microstructure and mechanical property results are presented for Ta tubes fabricated by this new processing strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, C.H.
1992-12-01
The effects of microstructure and temperature on tensile and fracture behavior were explored for the titanium aluminide alloy Ti-25Al-lONb-3V-lMo (atomic percent). Three microstructures were selected for this study in an attempt to determine the role of the individual microstructural constituents. the three microstructures studied were an alpha-2 + beta processed microstructure with a fine Widmanstaetten microstructure, a beta processed microstructure with a fine Widmanstaetten microstructure, and a beta processed microstructure with a coarse Widmanstaetten microstructure. Tensile testing of both round and flat specimens was conducted in vacuum at elevated temperature and in air at room and elevated temperatures. Extensive fractographymore » and specimen sectioning were used to study tensile deformation and the effects of environment on this alloy. Room temperature fracture toughness testing using compact tension specimens was conducted. Elevated temperature toughness testing was performed using J-bend bar specimens in an air environment. Again, extensive fractography and specimen sectioning were used to study the elevated temperature toughening mechanisms of this alloy.... Titanium, Titanium aluminide, Intermetallic, Fracture toughness, Tensile behavior, Fractography environmental interaction.« less
NASA Technical Reports Server (NTRS)
Spanos, G.; Ayers, J. D.; Vold, C. L.; Locci, I. E.
1993-01-01
A study is presented to determine if fine microstructures could be achieved using rapid solidification to produce a fine-grained fully austenitic starting structure and then using thermal processing cycles to produce an even finer ferrite-cementite structure. The evolution, mechanisms of grain refinement, and crystallography of the resultant microstructures were examined by TEM. A thermal processing cycle consisted of quenching the ribbon in liquid nitrogen, tempering at 600 C for 10 sec, 'upquenching' to 750 C for 10 sec, and subsequently quenching again in liquid nitrogen. The heat-treatment resulted in martensite grains with sizes of about 1 micron or less in both length and thickness and cementite particles of 0.4 micron or less. It is concluded that these microstructures could be used for producing fine-grained ultrahigh carbon steels of very high strength without the brittleness associated with the formation of coarse carbide particles of the loss of strength due to graphite formation.
A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys
Hamad, Kotiba; Ko, Young Gun
2016-01-01
Magnesium alloys have recently attracted great interest due their lightweight and high specific strength. However, because of their hexagonal close-packed structure, they have few active slip systems, resulting in poor ductility and high mechanical anisotropy at room temperature. In the present work, we used a cross-shear deformation imposed by a differential speed rolling (DSR) technique to improve the room temperature strength and ductility of AZ31 magnesium alloy sheets. To introduce the cross-shear deformation, the sheets were rotated 180° around their longitudinal axis between the adjacent passes of DSR. The sheets of the AZ31 alloy subjected to the cross-shear deformation showed a uniform fine microstructure (1.2 ± 0.1 μm) with weak basal textures. The fabricated sheets showed a simultaneous high ultimate tensile strength and elongation-to-failure, i.e., ~333 MPa and ~21%, respectively. These were explained based on the structural features evolved due to the cross-shear deformation by DSR. The high strength was attributed to the uniform fine microstructure, whereas the high ductility was explained based on the basal texture weakening. PMID:27406685
Role of Microstructure on the Performance of UHTCs
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Gasch, Matthew J.; Lawson, John W.; Gusman, Michael I.; Stackpoole, Mairead
2010-01-01
We have investigated a number of methods to control microstructure. We have routes to form: a) in situ "composites" b) Very fine microstructures. Arcjet testing and other characterization of monolithic materials. Control oxidation through microstructure and composition. Beginning to incorporate these materials as matrices for composites. Modeling effort to facilitate material design and characterization.
Nano-Sized Grain Refinement Using Friction Stir Processing
2013-03-01
friction stir weld is a very fine grain microstructure produced as a result of dynamic recrystallization. The friction stir ... Friction Stir Processing, Magnesium, Nano-size grains Abstract A key characteristic of a friction stir weld is a very fine grain microstructure...state process developed on the basis of the friction stir welding (FSW) technique invented by The Welding Institute (TWI) in 1991 [2]. During
Marchese, Giulio; Basile, Gloria; Bassini, Emilio; Aversa, Alberta; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara
2018-01-11
Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions typically less than 1 µm, coupled with the formation of sub-micrometric carbides, the largest ones were mainly distributed along the interdendritic regions and grain boundaries. From the microstructural analyses, it appeared that the formation of intergranular carbides provided weaker zones, which combined with high thermal residual stresses resulted in hot cracks formation along the grain boundaries. The carbides were extracted from the austenitic matrix and characterized by combining different techniques, showing the formation of various types of Mo-rich carbides, classified as M₆C, M 12 C and M n C m type. The first two types of carbides are typically found in HX alloy, whereas the last one is a metastable carbide probably generated by the very high cooling rates of the process.
Basile, Gloria; Bassini, Emilio; Ugues, Daniele; Fino, Paolo
2018-01-01
Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions typically less than 1 µm, coupled with the formation of sub-micrometric carbides, the largest ones were mainly distributed along the interdendritic regions and grain boundaries. From the microstructural analyses, it appeared that the formation of intergranular carbides provided weaker zones, which combined with high thermal residual stresses resulted in hot cracks formation along the grain boundaries. The carbides were extracted from the austenitic matrix and characterized by combining different techniques, showing the formation of various types of Mo-rich carbides, classified as M6C, M12C and MnCm type. The first two types of carbides are typically found in HX alloy, whereas the last one is a metastable carbide probably generated by the very high cooling rates of the process. PMID:29324658
NASA Astrophysics Data System (ADS)
Zhang, Chi; Shen, Wenfei; Zhang, Liwen; Xia, Yingnan; Li, Ruiqin
2017-04-01
A gamma prime ( γ') precipitation ( 35% in volume)-hardened powder metallurgy (P/M) superalloy FGH96 was welded using inertia friction welding (IFW). The microstructure and γ' distributions in the joints in two conditions, hot isostatic pressed state and solution-treated and aged state, were characterized. The recrystallization of grains, the dissolution and re-precipitation of γ' in the joints were discussed in terms of the temperature evolutions which were calculated by finite element model analysis. Regardless of the initial states, fully recrystallized fine grain structure formed at welded zone. Meanwhile, very fine γ' precipitations were re-precipitated at the welded zone. These recrystallized grain structure and fine re-precipitated γ' resulted in increasing hardness of IFW joint while making the hardness dependent on the microstructure and γ' precipitation.
Evolution of Grain Boundary Precipitates in an Al-Cu-Li Alloy During Aging
NASA Astrophysics Data System (ADS)
Ott, Noémie; Kairy, Shravan K.; Yan, Yuanming; Birbilis, Nick
2017-01-01
The grain boundary microstructure of Al-Cu-Li alloy AA2050 was investigated for different isothermal aging times to rationalize intergranular corrosion (IGC) characteristics. In the underaged condition, the dominant grain boundary precipitates are fine T1 (Al2CuLi). Extended aging revealed that grain boundaries were decorated by large T1 precipitates and S' phase (Al2CuMg), with S' growth not dimensionally constrained. Such a transition in the precipitate type at grain boundaries is a unique feature of the Al-Cu-Li system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongil Chun; Dohyeon Kim; Kwangyong Eun
TiC-Ni-Mo cermet specimens were prepared by using a mixture of fine (1.5 [mu]m) and coarse (30 [mu]m) TiC powders. When the fraction of fine TiC particles was 80%, a (Ti,Mo,Ni)C complex carbide phase was observed deposited on the coarse TiC particles and resulted in a typical cored structure. As the fraction of fine TiC particles decreased, the coarse TiC particles exhibited a unique microstructural evolution with the development of a concave interface. This microstructural change of the coarse TiC grains can be explained in terms of the coherency strain energy.
Heavy Deformation of Patented Near-Eutectoid Steel
NASA Astrophysics Data System (ADS)
Khanchandani, Heena; Banerjee, M. K.
2018-01-01
Evolution of microstructure in the patented near-eutectoid steel, forged under varying situations, is critically examined in the present investigation. Steel with 0.74 wt.% carbon is isothermally annealed at 500 °C to obtain fine pearlite microstructure. Steel samples, so patented, are subjected to mechanical deformation by forging at various temperatures with different amount of thickness reduction. Microstructural analyses have revealed that mechanical deformation by forging at lower temperatures brings about partial dissolution of cementite, which is followed by the formation of ɛ-carbide in the microstructures. In contrast, cementite is precipitated within ferrite matrix upon warm or hot forging at higher temperatures. It is further observed that increasing deformation percent during low-temperature forging reduces interlamellar spacing of pearlite, whereas an opposite trend is noticed in case of deformation at higher temperature; moreover, deformation induced the change in interlamellar spacing and formation of fine carbide phases in microstructures has caused appreciable enhancement in hardness of the steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Judy; Dong, Lei; Howe, Jane Y
2011-01-01
The microstructure of the secondary deformation zone (SDZ) near the cutting surface in metal chips of Ti-6Al-4V formed during machining was investigated using focused ion beam (FIB) specimen preparation and transmission electron microscopy (TEM) imaging. Use of the FIB allowed precise extraction of the specimen across this region to reveal its inhomogeneous microstructure resulting from the non-uniform distribution of strain, strain rate, and temperature generated during the cutting process. Initial imaging from conventional TEM foil preparation revealed microstructures ranging from heavily textured to regions of fine grains. Using FIB preparation, the transverse microstructure could be interpreted as fine grains nearmore » the cutting surface which transitioned to coarse grains toward the free surface. At the cutting surface a 10 nm thick recrystallized layer was observed capping a 20 nm thick amorphous layer.« less
Chieco, C; Rotondi, A; Morrone, L; Rapparini, F; Baraldi, R
2013-02-01
The use of formalin constitutes serious health hazards for laboratory workers. We investigated the suitability and performance of the ethanol-based fixative, FineFIX, as a substitute for formalin for anatomical and cellular structure investigations of leaves by light microscopy and for leaf surface and ultrastructural analysis by scanning electron microscopy (SEM). We compared the anatomical features of leaf materials prepared using conventional formalin fixation with the FineFIX. Leaves were collected from ornamental tree species commonly used in urban areas. FineFIX was also compared with glutaraldehyde fixation and air drying normally used for scanning electron microscopy to develop a new method for evaluating leaf morphology and microstructure in three ornamental tree species. The cytological features of the samples processed for histological analysis were well preserved by both fixatives as demonstrated by the absence of nuclear swelling or shrinkage, cell wall detachment or tissue flaking, and good presentation of cytoplasmic vacuolization. In addition, good preservation of surface details and the absence of shrinkage artefacts confirmed the efficacy of FineFIX fixation for SEM analysis. Cuticular wax was preserved only in air dried samples. Samples treated with chemical substances during the fixation and dehydration phases showed various alterations of the wax structures. In some air dried samples a loss of turgidity of the cells was observed that caused general wrinkling of the epidermal surfaces. Commercial FineFIX is an adequate substitute for formalin in histology and it can be applied successfully also for SEM investigation, while reducing the health risks of glutaraldehyde or other toxic fixatives. To investigate the potential for plants to absorb and capture particulates in air, which requires preservation of the natural morphology of trichomes and epicuticular waxes, a combination of FineFIX fixation and air drying is recommended.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stráská, Jitka, E-mail: straska.jitka@gmail.com; Janeček, Miloš, E-mail: janecek@met.mff.cuni.cz; Čížek, Jakub, E-mail: jcizek@mbox.troja.mff.cuni.cz
Thermal stability of the ultra-fine grained (UFG) microstructure of magnesium AZ31 alloy was investigated. UFG microstructure was achieved by a combined two-step severe plastic deformation process: the extrusion (EX) and subsequent equal-channel angular pressing (ECAP). This combined process leads to refined microstructure and enhanced microhardness. Specimens with UFG microstructure were annealed isochronally at temperatures 150–500 °C for 1 h. The evolution of microstructure, mechanical properties and dislocation density was studied by electron backscatter diffraction (EBSD), microhardness measurements and positron annihilation spectroscopy (PAS). The coarsening of the fine-grained structure at higher temperatures was accompanied by a gradual decrease of the microhardnessmore » and decrease of dislocation density. Mechanism of grain growth was studied by general equation for grain growth and Arrhenius equation. Activation energies for grain growth were calculated to be 115, 33 and 164 kJ/mol in temperature ranges of 170–210 °C, 210–400 °C and 400–500 °C (443–483 K, 483–673 K and 673–773 K), respectively. - Highlights: • Microhardness of UFG AZ31 alloy decreases with increasing annealing temperature. • This fact has two reasons: dislocation annihilations and/or grain growth. • The activation energies for grain growth were calculated for all temperature ranges.« less
The effect of microstructure on 650 C fatigue crack growth in P/M Astroloy
NASA Technical Reports Server (NTRS)
Gayda, J.; Miner, R. V.
1983-01-01
The effect of microstructure on fatigue crack propagation at 650 C has been studied in a P/M nickel-base superalloy, Astroloy. Crack propagation data were obtained in air and vacuum at 20 cpm with a modified compact tension specimen. The rate of crack growth, da/dn, was correlated with the stress intensity range. Key microstructural variables examined were grain size and the distribution and size of the strengthening gamma prime phase. A fine grain size less than 20 microns always promoted rapid, intergranular failure, while a large grain size promoted slower, transgranular failure which decreased as the size and volume fraction of aging gamma prime was manipulated so as to increase alloy strength. The rapid, intergranular mode of failure of the fine grain microstructures was suppressed in vacuum.
Fabrication of simulated DUPIC fuel
NASA Astrophysics Data System (ADS)
Kang, Kweon Ho; Song, Ki Chan; Park, Hee Sung; Moon, Je Sun; Yang, Myung Seung
2000-12-01
Simulated DUPIC fuel provides a convenient way to investigate the DUPIC fuel properties and behavior such as thermal conductivity, thermal expansion, fission gas release, leaching, and so on without the complications of handling radioactive materials. Several pellets simulating the composition and microstructure of DUPIC fuel are fabricated by resintering the powder, which was treated through OREOX process of simulated spent PWR fuel pellets, which had been prepared from a mixture of UO2 and stable forms of constituent nuclides. The key issues for producing simulated pellets that replicate the phases and microstructure of irradiated fuel are to achieve a submicrometre dispersion during mixing and diffusional homogeneity during sintering. This study describes the powder treatment, OREOX, compaction and sintering to fabricate simulated DUPIC fuel using the simulated spent PWR fuel. The homogeneity of additives in the powder was observed after attrition milling. The microstructure of the simulated spent PWR fuel agrees well with the other studies. The leading structural features observed are as follows: rare earth and other oxides dissolved in the UO2 matrix, small metallic precipitates distributed throughout the matrix, and a perovskite phase finely dispersed on grain boundaries.
NASA Astrophysics Data System (ADS)
Lee, Kee-Ahn; Gwon, Jin-Han; Yoon, Tae-Sik
2018-03-01
This study investigated the microstructure and the room and high temperature mechanical properties of Fe-Cr-B alloy manufactured by metal injection molding. In addition, hot isostatic pressing was performed to increase the density of the material, and a comparison of properties was made. Microstructural observation confirmed a bi-continuous structure composed of a three-dimensional network of α-Fe phase and (Cr,Fe)2B phase. The HIPed specimen featured a well-formed adhesion between the α-Fe phase and boride, and the number of fine pores was significantly reduced. The tensile results confirmed that the HIPed specimen (RT to 900 °C) had higher strengths compared to the as-sintered specimen, and the change of elongation starting from 700 °C was significantly greater in the HIPed specimen. Fractography suggested that cracks propagated mostly along the interface between the α-Fe matrix and boride in the as-sintered specimen, while direct fracture of boride was observed in addition to interface separation in the HIPed specimen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Pei; Fang, Zhigang Zak; Koopman, Mark
The hydrogen sintering and phase transformation (HSPT) process is a novel powder metallurgy method for producing Ti alloys, particularly the Ti-6Al-4V alloy, with ultra-fine microstructure in the as-sintered state. The ultra-fine microstructure is obtained as a direct result of the use of H-2 gas during sintering. The refinement of the microstructure during HSPT is similar to that of thermal hydrogen processing (THP) of bulk Ti alloys. For both THP and HSPT of Ti-6Al-4V alloy, the mechanisms of the grain refinement depend on the phase equilibria and phase transformations in the presence of hydrogen, which are surprisingly still not well establishedmore » to date and are still subjected to research and debate. In recent work by the present authors, a pseudo-binary phase diagram of (Ti-6Al-4V)-H has been determined by using in situ synchrotron XRD and TGA/DSC techniques. Aided by this phase diagram, the current paper focuses on the series of phase transformations during sintering and cooling of Ti-6Al-4V in a hydrogen atmosphere and the mechanisms for the formation of the ultra-fine microstructures obtained. Using experimental techniques, including in situ synchrotron XRD, SEM, EBSD, and TEM, the microstructural refinement was found to be the result of (1) the precipitation of ultra-fine alpha/alpha(2) within coarse beta grains during an isothermal hold at intermediate temperatures, and (2) the eutectoid transformation of beta -> alpha + delta d at approximately 473 K (200 degrees C). (C) The Minerals, Metals & Materials Society and ASM International 2015« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, W.; Zhou, L.; Kassen, A. G.
2015-05-25
Fine Alnico 8 spherical powder produced by gas atomization was consolidated through hot pressing (HP), hot isostatic pressing (HIP), and compression molding and subsequent sintering (CMS) techniques. The effects of different fabrication techniques and processing parameters on microstructure and magnetic properties were analyzed and compared. The HP, HIP, and CMS magnets exhibited different features in microstructures and magnetic properties. Magnetically annealed at 840°C for 10 min and subsequently tempered at 650°C for 5h and 580°C for 15h, the HIP sample achieved the best coercivity (H cj =1845 Oe) due to spinodally decomposed (SD) phases with uniform and well-faceted mosaic morphology.more » As a result, the CMS sample had a lower Hcj than HIP and HP samples, but a higher remanence and thus the best energy product (6.5 MGOe) due to preferential grain alignment induced by abnormal grain growth.« less
Microstructural Developments and Tensile Properties of Lean Fe-Mn-Al-C Lightweight Steels
NASA Astrophysics Data System (ADS)
Sohn, S. S.; Lee, S.; Lee, B.-J.; Kwak, J.-H.
2014-09-01
Concepts of Fe-Al-Mn-C-based lightweight steels are fairly simple, but primary metallurgical issues are complicated. In this study, recent studies on lean-composition lightweight steels were reviewed, summarized, and emphasized by their microstructural development and mechanical properties. The lightweight steels containing a low-density element of Al were designed by thermodynamic calculation and were manufactured by conventional industrial processes. Their microstructures consisted of various secondary phases as κ-carbide, martensite, and austenite in the ferrite matrix according to manufacturing and annealing procedures. The solidification microstructure containing segregations of C, Mn, and Al produced a banded structure during the hot rolling. The (ferrite + austenite) duplex microstructure was formed after the annealing, and the austenite was retained at room temperature. It was because the thermal stability of austenite nucleated from fine κ-carbide was quite high due to fine grain size of austenite. Because these lightweight steels have outstanding properties of strength and ductility as well as reduced density, they give a promise for automotive applications requiring excellent properties.
Bhattacharjee, T; Wani, I S; Sheikh, S; Clark, I T; Okawa, T; Guo, S; Bhattacharjee, P P; Tsuji, N
2018-02-19
Nano-lamellar (L1 2 + B2) AlCoCrFeNi 2.1 eutectic high entropy alloy (EHEA) was processed by cryo-rolling and annealing. The EHEA developed a novel hierarchical microstructure featured by fine lamellar regions consisting of FCC lamellae filled with ultrafine FCC grains (average size ~200-250 nm) and B2 lamellae, and coarse non-lamellar regions consisting of ultrafine FCC (average size ~200-250 nm), few coarse recrystallized FCC grains and rather coarse unrecrystallized B2 phase (~2.5 µm). This complex and hierarchical microstructure originated from differences in strain-partitioning amongst the constituent phases, affecting the driving force for recrystallization. The hierarchical microstructure of the cryo-rolled and annealed material resulted in simultaneous enhancement in strength (Yield Strength/YS: 1437 ± 26 MPa, Ultimate Tensile Strength/UTS: 1562 ± 33 MPa) and ductility (elongation to failure/e f ~ 14 ± 1%) as compared to the as-cast as well as cold-rolled and annealed materials. The present study for the first time demonstrated that cryo-deformation and annealing could be a novel microstructural design strategy for overcoming strength-ductility trade off in multiphase high entropy alloys.
Hao, Liang
2014-01-01
In situ reaction was activated in the powder mixture of Al/5 wt.%Fe2O3 by using selective laser melting (SLM) to directly fabricate aluminium metal matrix composite parts. The microstructural characteristics of these in situ consolidated parts through SLM were investigated under the influence of thick powder bed, 75 μm layer thickness, and 50 μm layer thickness in various laser powers and scanning speeds. It was found that the layer thickness has a strong influence on microstructural outcome, mainly attributed to its impact on oxygen content of the matrix. Various microstructural features (such as granular, coralline-like, and particulate appearance) were observed depending on the layer thickness, laser power, and scanning speed. This was associated with various material combinations such as pure Al, Al-Fe intermetallics, and Al(-Fe) oxide phases formed after in situ reaction and laser rapid solidification. Uniformly distributed very fine particles could be consolidated in net-shape Al composite parts by using lower layer thickness, higher laser power, and lower scanning speed. The findings contribute to the new development of advanced net-shape manufacture of Al composites by combining SLM and in situ reaction process. PMID:24526879
Influence of processing on the microstructure and mechanical properties of 14YWT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoelzer, D. T.; Unocic, K. A.; Sokolov, Mikhail A.
2016-04-25
The investigation of the mechanical alloying (MA) conditions for producing the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy led to significant improvements in balancing the strength, ductility and fracture toughness properties while still maintaining the salient microstructural features consisting of ultra-fine grains and high concentration of Y-, Ti- and O-enriched nanoclusters. The implemented changes to the processing conditions included reducing the contamination of the powder during ball milling, applying a pre-extrusion annealing treatment on the ball milled powder and exploring different extrusion temperatures at 850 C (SM170 heat), 1000 C (SM185) and 1150 C (SM200). The microstructural studies ofmore » the three 14YWT heats showed similarities in the dispersion of nanoclusters and sub-micron size grains, indicating the microstructure was insensitive to the different extrusion conditions. Compared to past 14YWT heats, the three new heats showed lower strength, but higher ductility levels between 25 and 800 C and significantly higher fracture toughness values between 25 C and 700 C. The lower contamination levels of O, C and N achieved with improved ball milling conditions plus the slightly larger grain size were identified as important factors for improving the balance in mechanical properties of the three heats of 14YWT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafarzadegan, M.; State Key Laboratory of Advanced Welding Production Technology, School of Materials Science and Eng., Harbin Institute of Technology, P.O. Box: 150001, Harbin; Feng, A.H.
2012-12-15
In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure withmore » some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.« less
Bourbia, A; Draissia, M; Bedboudi, H; Boulkhessaim, S; Debili, M Y
2010-01-01
This article deals with the microstructural strengthening mechanisms of aluminium by means of hard alpha-Al(2)O(3) alumina fine particles. A broad of understanding views covering materials preparations, elaboration process, characterization techniques and associated microstructural characteristic parameters measurements is given. In order to investigate the microstructural characteristic parameters and the mechanical strengthening mechanisms of pure aluminium by hard fine particles, a set of Al-(alpha-Al(2)O(3)) alloys samples were made under vacuum by high fusion temperature melting, the high frequency (HF) process, and rapidly solidified under ambient temperature from a mixture of cold-compacted high-pure fine Al and alpha-Al(2)O(3) powders. The as-solidified Al-(alpha-Al(2)O(3)) alloys were characterized by means of X-ray diffraction (XRD) analyses, optical microscopy observations and Vickers microhardness tests in both brut and heat-treated states. It was found that the as-solidified HF Al-(alpha-Al(2)O(3)) alloys with compositions below 4 wt.% (alpha-Al(2)O(3)) are single-phase microstructures of the solid solution FCC Al phase and over two-phase microstructures of the solid solution FCC Al and the Rhombohedral alpha-Al(2)O(3) phases. The optical micrographs reveal the presence of a grain size refinement in these alloys. Vickers microhardness of the as-solidified Al-(alpha-Al(2)O(3)) is increased by means of pure fine alpha-Al(2)O(3) alumina particles. These combined effects of strengthening and grain size refinement observed in the as-solidified Al-(alpha-Al(2)O(3)) alloys are essentially due to a strengthening of Al by the alpha-Al(2)O(3) alumina particles insertion in the (HF) melted and rapidly solidified alloys.
Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference
NASA Astrophysics Data System (ADS)
Nakazumi, Tomoka; Sato, Tadatake; Narazaki, Aiko; Niino, Hiroyuki
2016-09-01
For crack-free marking of glass materials, a beam-scanning laser-induced backside wet etching (LIBWE) process by a beam spot with a fine periodic structure was examined. The fine periodic structure was produced within a beam spot by means of a Mach-Zehnder interferometer incorporated to the optical setup for the beam-scanning LIBWE. A fine structure with a period of 9 µm was observed within the microstructures with a diameter of ca. 40 µm fabricated by a laser shot under double-beam irradiation, and they could be homogeneously fabricated within an area of 800 × 800 µm. The area filled with the microstructures, including fine periodic structures, could be observed in high contrast under a diffuse, on-axis illumination that was used in commercial QR code readers.
Quantitative characterization of microstructure of asphalt mixtures
DOT National Transportation Integrated Search
2010-10-01
The microstructure of the fine aggregate matrix has a significant influence on the : mechanical properties and evolution of damage in an asphalt mixture. However, very little : work has been done to define and quantitatively characterize the microstr...
Microstructural Evolution of Al2O3-ZrO2 (Y2O3) Composites and its Correlation with Toughness
NASA Astrophysics Data System (ADS)
Kim, Hee Seung; Seo, Mi Young; Kim, Ik Jin
2008-02-01
The microstructure of zirconia (ZrO2) toughened alumina (Al2O3) ceramics was carefully controlled so as to obtain dense and fine-grained ceramics, thereby improving the properties and reliability of the ceramics for capillary applications in semiconductor bonding technology. Al2O3-ZrO2(Y2O3) composite was produced via Ceramic Injection Molding (CIM) technology, followed by Sinter-HIP process. Room temperature strength, hardness, Young's modulus, thermal expansion coefficient and toughness were determined, as well as surface strengthening induced by the fine grained homogenous microstructure and the thermal treatment. The changes in alumina/zirconia grain size, sintering condition and HIP treatment were found to be correlated.
Cui, Guodong; Wei, Xialu; Olevsky, Eugene A.; German, Randall M.; Chen, Junying
2016-01-01
High porosity (>40 vol %) iron specimens with micro- and nanoscale isotropic pores were fabricated by carrying out free pressureless spark plasma sintering (FPSPS) of submicron hollow Fe–N powders at 750 °C. Ultra-fine porous microstructures are obtained by imposing high heating rates during the preparation process. This specially designed approach not only avoids the extra procedures of adding and removing space holders during the formation of porous structures, but also triggers the continued phase transitions of the Fe–N system at relatively lower processing temperatures. The compressive strength and energy absorption characteristics of the FPSPS processed specimens are examined here to be correspondingly improved as a result of the refined microstructure. PMID:28773617
Effect of Different Cooling Rates on the Corrosion Behavior of High-Carbon Pearlitic Steel
NASA Astrophysics Data System (ADS)
Katiyar, Prvan Kumar; Misra, Sudhir; Mondal, K.
2018-03-01
The present work discusses the effect of pearlitic morphology on the corrosion behavior of high-carbon fully pearlitic steel in 3.5% NaCl solution. Four different types of pearlitic steels (furnace-cooled, as-received, air-cooled and forced-air-cooled) consisting of coarse, medium, fine and very fine microstructures, respectively, were tested. Electrochemical behavior of these steels was studied with the help of dynamic and linear polarization and AC impedance spectroscopic tests. The corrosion resistance improved with fineness of the microstructure in general. However, with further reduction in interlamellar spacing beyond a limit, the corrosion resistance reduced slightly. Formation of homogeneous distribution of microgalvanic cells between cementite and ferrite lamellae of fine pearlitic steel improved the corrosion resistance. However, entanglement of the lamellae of pearlite in very fine pearlitic structure as well as breaking of cementite lamellae due to finer pearlitic colonies was attributed to the higher corrosion of the forced-air-cooled steel as compared to the air-cooled steel.
Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Tchein, Gnofam Jacques; Jacquin, Dimitri; Coupard, Dominique; Lacoste, Eric; Girot Mata, Franck
2018-06-01
This paper is focused on the genesis of microstructures in friction stir welding (FSW) of the Ti-6Al-4V alloy. Several titanium joints, initially prepared with four different preheat treatments, were processed by FSW. Detailed microstructural analyses were performed in order to investigate change in the microstructure during the process. In this work, the FSW processing allows a controlled and stable microstructure to be produced in the stirring zone, regardless of the initial heat treatment or the welding conditions. The welded material undergoes a severe thermomechanical treatment which can be divided into two steps. First, the friction in the shoulder and the plastic strain give rise to the necessary conditions to allow a continuous dynamic recrystallization of the β phase. This operation produces a fine and equiaxed β grain structure. Second, once the pin has moved away, the temperature decreases, and the material undergoes a heat treatment equivalent to air quenching. The material thus exhibits a β → β + α transformation with germination of a fine intergranular Widmanstätten phase within the ex-fully-recrystallized- β grains.
Birosca, S; Ding, R; Ooi, S; Buckingham, R; Coleman, C; Dicks, K
2015-06-01
Nowadays flow-forming has become a desired near net shape manufacturing method as it provides excellent mechanical properties with improved surface finish and significant manufacturing cost reduction. However, the material is subjected to excessive plastic deformation during flow-forming process, generating a very fine and complex microstructure. In addition, the intense dislocation density and residual stress that is generated in the component during processing makes the microstructure characterisation using conventional micro-analytical tools challenging. Thus, the microstructure/property relationship study in such a material is rather difficult. In the present study a flow-formed Cr-Mo-V steel nanostructure and crystallographic texture were characterised by means of Transmission Kikuchi Diffraction (TKD). Here, TKD is shown to be a powerful technique in revealing very fine martensite laths within an austenite matrix. Moreover, fine precipitates in the order of 20-70 nm on the martensite lath boundaries were clearly imaged and characterised. This greatly assisted in understanding the preferable site formation of the carbides in such a complex microstructure. The results showed that the actual TKD spatial resolution was in the range of 5-10 nm using 25 kV for flow-formed Cr-Mo-V steel. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Guodong; Wei, Xialu; Olevsky, Eugene
2016-06-01
High porosity (>40 vol %) iron specimens with micro- and nanoscale isotropic pores were fabricated by carrying out free pressureless spark plasma sintering (FPSPS) of submicron hollow Fe–N powders at 750 °C. Ultra-fine porous microstructures are obtained by imposing high heating rates during the preparation process. This specially designed approach not only avoids the extra procedures of adding and removing space holders during the formation of porous structures, but also triggers the continued phase transitions of the Fe–N system at relatively lower processing temperatures. In conclusion, the compressive strength and energy absorption characteristics of the FPSPS processed specimens are examinedmore » here to be correspondingly improved as a result of the refined microstructure.« less
NASA Astrophysics Data System (ADS)
Yang, X. G.; Xu, Q. T.; Wu, C. L.; Chen, Y. S.
2017-12-01
The relationship between the microstructure of the continuous casting slab (CCS) and quality defects of the steel products, as well as evolution and characteristics of the fine equiaxed, columnar, equiaxed zones and crossed dendrites of CCS were systematically investigated in this study. Different microstructures of various CCS samples were revealed. The dendrite etching method was proved to be quite efficient for the analysis of solidified morphologies, which are essential to estimate the material characteristics, especially the CCS microstructure defects.
Influence of processing on the microstructure and mechanical properties of 14YWT
Hoelzer, David T.; Unocic, Kinga A.; Sokolov, Mikhail A.; ...
2015-12-15
In this study, the investigation of the mechanical alloying (MA) conditions for producing the advanced oxide dispersion strengthened (ODS) 14YWT ferritic alloy led to significant improvements in balancing the strength, ductility and fracture toughness properties while still maintaining the salient microstructural features consisting of ultra-fine grains and high concentration of Y-, Ti- and O-enriched nanoclusters. The implemented changes to the processing conditions included reducing the contamination of the powder during ball milling, applying a pre-extrusion annealing treatment on the ball milled powder and exploring different extrusion temperatures at 850 °C (SM170 heat), 1000 °C (SM185) and 1150 °C (SM200). Themore » microstructural studies of the three 14YWT heats showed similarities in the dispersion of nanoclusters and sub-micron size grains, indicating the microstructure was insensitive to the different extrusion conditions. Compared to past 14YWT heats, the three new heats showed lower strength, but higher ductility levels between 25 and 800 °C and significantly higher fracture toughness values between 25 °C and 700 °C. The lower contamination levels of O, C and N achieved with improved ball milling conditions plus the slightly larger grain size were identified as important factors for improving the balance in mechanical properties of the three heats of 14YWT.« less
Constrained Sintering in Fabrication of Solid Oxide Fuel Cells
Lee, Hae-Weon; Park, Mansoo; Hong, Jongsup; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Lee, Jong-Ho; Kim, Byung-Kook
2016-01-01
Solid oxide fuel cells (SOFCs) are inevitably affected by the tensile stress field imposed by the rigid substrate during constrained sintering, which strongly affects microstructural evolution and flaw generation in the fabrication process and subsequent operation. In the case of sintering a composite cathode, one component acts as a continuous matrix phase while the other acts as a dispersed phase depending upon the initial composition and packing structure. The clustering of dispersed particles in the matrix has significant effects on the final microstructure, and strong rigidity of the clusters covering the entire cathode volume is desirable to obtain stable pore structure. The local constraints developed around the dispersed particles and their clusters effectively suppress generation of major process flaws, and microstructural features such as triple phase boundary and porosity could be readily controlled by adjusting the content and size of the dispersed particles. However, in the fabrication of the dense electrolyte layer via the chemical solution deposition route using slow-sintering nanoparticles dispersed in a sol matrix, the rigidity of the cluster should be minimized for the fine matrix to continuously densify, and special care should be taken in selecting the size of the dispersed particles to optimize the thermodynamic stability criteria of the grain size and film thickness. The principles of constrained sintering presented in this paper could be used as basic guidelines for realizing the ideal microstructure of SOFCs. PMID:28773795
NASA Astrophysics Data System (ADS)
Hong, Seokmin; Song, Jaemin; Kim, Min-Chul; Choi, Kwon-Jae; Lee, Bong-Sang
2016-03-01
The effects of microstructural changes in heavy-section Mn-Mo-Ni low alloy steel on Charpy impact properties were investigated using a 210 mm thick reactor pressure vessel. Specimens were sampled from 5 different positions at intervals of 1/4 thickness from the inner surface to the outer surface. A detailed microstructural analysis of impact-fractured specimens showed that coarse carbides along the lath boundaries acted as fracture initiation sites, and cleavage cracks deviated at prior-austenite grain boundaries and bainite lath boundaries. Upper shelf energy was higher and energy transition temperature was lower at the surface positon, where fine bainitic microstructure with homogeneously distributed fine carbides were present. Toward the center, coarse upper bainite and precipitation of coarse inter-lath carbides were observed, which deteriorated impact properties. At the 1/4T position, the Charpy impact properties were worse than those at other positions owing to the combination of elongated-coarse inter-lath carbides and large effective grain size.
NASA Astrophysics Data System (ADS)
Young, John Paul
The low density and high strength to weight ratio of magnesium alloys makes them ideal candidates to replace many of the heavier steel and aluminum alloys currently used in the automotive and other industries. Although cast magnesium alloys components have a long history of use in the automotive industry, the integration of wrought magnesium alloys components has been hindered by a number of factors. Grain refinement through thermomechanical processing offers a possible solution to many of the inherent problems associated with magnesium alloys. This work explores the development of several thermomechanical processing techniques and investigates their impact on the microstructural and mechanical properties of magnesium alloys. In addition to traditional thermomechanical processing, this work includes the development of new severe plastic deformation techniques for the production of fine grain magnesium plate and pipe and develops a procedure by which the thermal microstructural stability of severely plastically deformed microstructures can be assessed.
NASA Astrophysics Data System (ADS)
Marr, Michael; Kesler, Olivera
2012-12-01
Yttria-stabilized zirconia electrolyte coatings for solid oxide fuel cells were deposited by suspension plasma spraying using a range of spray conditions and a variety of substrates, including finely structured porous stainless steel disks and cathode layers on stainless steel supports. Electrolyte permeability values and trends were found to be highly dependent on which substrate was used. The most gas-tight electrolyte coatings were those deposited directly on the porous metal disks. With this substrate, permeability was reduced by increasing the torch power and reducing the stand-off distance to produce dense coating microstructures. On the substrates with cathodes, electrolyte permeability was reduced by increasing the stand-off distance, which reduced the formation of segmentation cracks and regions of aligned and concentrated porosity. The formation mechanisms of the various permeability-related coating features are discussed and strategies for reducing permeability are presented. The dependences of electrolyte deposition efficiency and surface roughness on process conditions and substrate properties are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hai-Tao, E-mail: liuht@ral.neu.edu.cn; Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625, Jiangsu; Yao, Sheng-Jie
2015-08-15
In the present work, a regular grade GO sheet was produced successively by strip casting, hot rolling, normalizing annealing, two-stage cold rolling with intermediate annealing, primary recrystallization annealing, secondary recrystallization annealing and purification. The aim of this paper was to characterize the evolution of microstructure, texture and inhibitor along the new processing route by comprehensive utilization of optical microscopy, X-ray diffraction and transmission electron microscopy. It was found that a fine microstructure with the ferrite grain size range of 7–12 μm could be obtained in the primary recrystallization annealed sheet though a very coarse microstructure was produced in the initialmore » as-cast strip. The main finding was that the “texture memory” effect on Goss texture started on the through-thickness intermediate annealed strip after first cold rolling, which was not similar to the “texture memory” effect on Goss texture starting on the surface layers of the hot rolled strip in the conventional production route. As a result, the origin of Goss nuclei capable of secondary recrystallization lied in the grains already presented in Goss orientation in the intermediate annealed strip after first cold rolling. Another finding was that fine and dispersive inhibitors (mainly AlN) were easy to be produced in the primary recrystallization microstructure due to the initial rapid solidification during strip casting and the subsequent rapid cooling, and the very high temperature reheating usually used before hot rolling in the conventional production route could be avoided. - Highlights: • A regular grade grain-oriented electrical steel was produced. • Evolution of microstructure, texture and inhibitor was characterized. • Origin of Goss nuclei lied in the intermediate annealed strip. • A fine primary recrystallization microstructure could be produced. • Effective inhibitors were easy to be obtained in the new processing route.« less
Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting.
Qian, B; Saeidi, K; Kvetková, L; Lofaj, F; Xiao, C; Shen, Z
2015-12-01
CrCoMo alloy specimens were successfully fabricated using selective laser melting (SLM). The aim of this study was to carefully investigate microstructure of the SLM specimens in order to understand the influence of their structural features inter-grown on different length scales ranging from nano- to macro-levels on their mechanical properties. Two different sets of processing parameters developed for building the inner part (core) and the surface (skin) of dental prostheses were tested. Microstructures were characterized by SEM, EBSD and XRD analysis. The elemental distribution was assessed by EDS line profile analysis under TEM. The mechanical properties of the specimens were measured. The microstructures of both specimens were characterized showing formation of grains comprised of columnar sub-grains with Mo-enrichment at the sub-grain boundaries. Clusters of columnar sub-grains grew coherently along one common crystallographic direction forming much larger single crystal grains which are intercrossing in different directions forming an overall dendrite-like microstructure. Three types of microstructural defects were occasionally observed; small voids (<10 μm), fine cracks at grain boundaries (<10 μm) and cracks at weld line boundaries (>10 μm). Despite the presence of these defects, the yield and the ultimate tensile strength (UTS) were 870 and 430MPa and 1300MPa and 1160MPa, respectively, for the skin and core specimens which are higher than casted dental alloy. Although the formation of microstructural defects is hard to be avoided during the SLM process, the SLM CoCrMo alloys can achieve improved mechanical properties than their casted counterparts, implying they are "defect-tolerant". Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Steel alloys with lower bainite microstructures for use in railroad cars and track
DOT National Transportation Integrated Search
2002-01-01
In-line hardening of railroad rails to produce a very fine pearlite microstructure has become a commercial reality. A question that this report seeks to answer is whether or not it is possible to find an alloy composition that will permit the develop...
NASA Astrophysics Data System (ADS)
Liang, Taosha; Wang, Lei; Liu, Yang; Song, Xiu
2018-05-01
The microstructure and mechanical properties of the laser welded joint of DZ125L and IN718 nickel base superalloys were investigated. The results show that the fusion zone (FZ) mainly consists of fine dendrite structure with fine γ', Laves phases and MC carbides inhomogeneously distributed. The high welding temperature induces the partial dissolution of γ' in the heat-affected zone (HAZ) of DZ125L and liquation of grain boundaries in both of the HAZs. After post-weld heat treatment (PWHT), fine γ″ and γ' phases precipitate in the FZ, IN718 HAZ and IN718 base metal (BM), and fine γ' precipitate in the γ channel of the HAZ and BM of DZ125L. With tensile testing, the joints after PWHT show higher strengths than that of the weaker DZ125L alloy. Plastic deformation mainly concentrates in the weaker DZ125L and the joint finally fails in the DZ125L BM.
Effects of space environment on structural materials
NASA Technical Reports Server (NTRS)
Miglionico, C.; Stein, C.; Roybal, R.; Robertson, R.; Murr, L. E.; Quinones, S.; Rivas, J.; Marquez, B.; Advani, A. H.; Fisher, W. W.
1992-01-01
A preliminary study of materials exposed in space in a low Earth orbit for nearly six years has revealed a wide range of micrometeorite or microparticle impact craters ranging in size from 1 to 1000 micron in diameter, debris particles from adjacent and distant materials systems, reaction products, and other growth features on the specimen surfaces, and related phenomena. The exposed surface features included fine grained and nearly amorphous materials as well as a large array of single crystal particles. A replication type, lift off technique was developed to remove reaction products and debris from the specimen surfaces in order to isolate them from the background substrate without creating microchemical or microstructural artifacts or alterations. This resulted in surface features resting on a carbon support film which was virtually invisible to observation by electron microscopy and nondispersive x ray analysis. Some evidence for blisters on leading edge aluminum alloy surfaces and a high surface region concentration of oxygen determined by Auger electron spectrometry suggests oxygen effects where fluences exceed 10(exp 21) atoms/sq cm.
Microstructural Aspects of Localized Corrosion Behavior of Mg Alloys
NASA Astrophysics Data System (ADS)
Chu, Peng-Wei
Combining high specific strength and unique electrochemical properties, magnesium (Mg) alloys are promising lightweight materials for various applications from automotive, consumer electronics, biomedical body implant, to battery electrodes. Engineering solutions such as coatings have enabled the use of Mg alloys, despite their intrinsic low corrosion resistance. Consequently, the fundamental mechanisms responsible for the unique localized corrosion behavior of bare Mg alloys, the associated abnormal hydrogen evolution response, and the relationships between corrosion behavior and alloy microstructure are still unsolved. This thesis aims to uncover the specificities of Mg corrosion and the roles of alloy chemistry and microstructure. To this end, multiscale site-specific microstructure characterization techniques, including in situ optical microscopy, scanning electron microscopy with focused ion beam milling, and transmission electron microscopy, combined with electrochemical analysis and hydrogen evolution rate monitoring, were performed on pure Mg and selected Mg alloys under free corrosion and anodic polarization, revealing key new information on the propagation mode of localized corrosion and the role of alloy microstructures, thereby confirming or disproving the validity of previously proposed corrosion models. Uniform surface corrosion film on Mg alloys immersed in NaCl solution consisted a bi-layered structure, with a porous Mg(OH)2 outer layer on top of a MgO inner layer. Presence of fine scale precipitates in Mg alloys interacted with the corrosion reaction front, reducing the corrosion rate and surface corrosion film thickness. Protruding hemispherical dome-like corrosion products, accompanied by growing hydrogen bubbles, formed on top of the impurity particles in Mg alloys by deposition of Mg(OH)2 via a microgalvanic effect. Localized corrosion on Mg alloys under both free immersion and anodic polarization was found to be governed by a common mechanism, with the corrosion front propagating laterally a few mum inside the alloy and underneath the surface corrosion film, with finger-like features aligned with (0001) Mg basal planes at the localized corrosion/alloy interface. Rising streams of hydrogen bubbles were found to follow the anodic dissolution of Mg and formation of Mg(OH)2 corrosion products at the propagating localized corrosion fronts. Alloying elements segregation to the grain boundaries showed the ability to stop localized corrosion propagation momentarily. By revealing the microstructure of corrosion features on Mg alloys, a descriptive model was proposed. Relationships between the corrosion behavior and alloy microstructures were also identified. This microscopic information can serve as a guideline for future development of Mg alloys by tailoring the microstructure to achieve proper corrosion responses for applications under different environments.
Quantitative analysis and feature recognition in 3-D microstructural data sets
NASA Astrophysics Data System (ADS)
Lewis, A. C.; Suh, C.; Stukowski, M.; Geltmacher, A. B.; Spanos, G.; Rajan, K.
2006-12-01
A three-dimensional (3-D) reconstruction of an austenitic stainless-steel microstructure was used as input for an image-based finite-element model to simulate the anisotropic elastic mechanical response of the microstructure. The quantitative data-mining and data-warehousing techniques used to correlate regions of high stress with critical microstructural features are discussed. Initial analysis of elastic stresses near grain boundaries due to mechanical loading revealed low overall correlation with their location in the microstructure. However, the use of data-mining and feature-tracking techniques to identify high-stress outliers revealed that many of these high-stress points are generated near grain boundaries and grain edges (triple junctions). These techniques also allowed for the differentiation between high stresses due to boundary conditions of the finite volume reconstructed, and those due to 3-D microstructural features.
Controlling the intermediate structure of an ionic liquid for f-block element separations
Abney, Carter W.; Do, Changwoo; Luo, Huimin; ...
2017-04-19
Recent research has revealed molecular structure beyond the inner coordination sphere is essential in defining the performance of separations processes, but nevertheless remains largely unexplored. Here we apply small angle neutron scattering (SANS) and x-ray absorption fine structure (XAFS) spectroscopy to investigate the structure of an ionic liquid system studied for f-block element separations. SANS data reveal dramatic changes in the ionic liquid microstructure (~150 Å) which we demonstrate can be controlled by judicious selection of counter ion. Mesoscale structural features (> 500 Å) are also observed as a function of metal concentration. XAFS analysis supports formation of extended aggregatemore » structures, similar to those observed in traditional solvent extraction processes, and suggest additional parallels may be drawn from further study. As a result, achieving precise tunability over the intermediate features is an important development in controlling mesoscale structure and realizing advanced new forms of soft matter.« less
NASA Technical Reports Server (NTRS)
Gilman, P. S.; Sankaran, K. K.
1988-01-01
Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.
NASA Technical Reports Server (NTRS)
Kim, Y. G.; Merrick, H. F.
1980-01-01
MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.
New-type steel plate with ultra high crack-arrestability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, T.; Nomiyama, Y.; Hagiwara, Y.
1995-12-31
A new-type steel plate has been developed by controlling the microstructure of the surface layers. The surface layer consists of ultra fine grain ferrite microstructure, which provides excellent fracture toughness even at cryogenic temperature. When an unstable brittle crack propagates in the developed steel plate, shear-lips can be easily formed due to the surface layers with ultra fine grain microstructure. Since unstable running crack behavior is strongly affected by side-ligaments (shear-lips), which are associated with extensive plastic deformation, enhanced formation of the shear-lips can improve crack arrestability. This paper describes the developed steel plates of HT500MPa tensile strength class formore » shipbuilding use. Fracture mechanics investigations using large-scale fracture testings (including ultrawide duplex ESSO tests) clarified that the developed steel plates have ultra high crack-arrestability. It was also confirmed that the plates possess sufficient properties, including weldability and workability, for ship building use.« less
NASA Astrophysics Data System (ADS)
Chen, Cunguang; Wang, Wenwen; Guo, Zhimeng; Sun, Chunbao; Volinsky, Alex A.; Paley, Vladislav
2018-03-01
Microstructure evolution and variations in mechanical properties of Al-Al2O3 nanocomposite produced by powder metallurgy were investigated and compared with commercially pure aluminum (Al-1050) after furnace annealing. Fine gas-atomized Al powder compacts were first sintered in flowing nitrogen, subsequently consolidated into wires by rotary swaging and eventually annealed at 300 and 500 °C for 24 h each. Scanning and transmission electron microscopy with energy-dispersive spectroscopy was utilized to document the microstructure evolution. Rotary swaging was proven to lead to a marked decrease in grain size. After heavy swaging to true deformation degree of φ = 6 and annealing at 500 °C, obvious recrystallization was observed at Al-1050's existing grain boundaries and the crystals began to grow perpendicular to the flow direction. In the Al-Al2O3 nanocomposite, fabricated from d 50 = 6 μm Al powder, recrystallization partially occurred, while grains were still extremely fine. Due to the dual role of fine-grained Al2O3 dispersion strengthening, the nanocomposite showed improved mechanical performance in terms of tensile strength, approximately twice higher than Al-1050 after annealing at 500 °C.
Hot deformation behavior of uniform fine-grained GH4720Li alloy based on its processing map
NASA Astrophysics Data System (ADS)
Yu, Qiu-ying; Yao, Zhi-hao; Dong, Jian-xin
2016-01-01
The hot deformation behavior of uniform fine-grained GH4720Li alloy was studied in the temperature range from 1040 to 1130°C and the strain-rate range from 0.005 to 0.5 s-1 using hot compression testing. Processing maps were constructed on the basis of compression data and a dynamic materials model. Considerable flow softening associated with superplasticity was observed at strain rates of 0.01 s-1 or lower. According to the processing map and observations of the microstructure, the uniform fine-grained microstructure remains intact at 1100°C or lower because of easily activated dynamic recrystallization (DRX), whereas obvious grain growth is observed at 1130°C. Metallurgical instabilities in the form of non-uniform microstructures under higher and lower Zener-Hollomon parameters are induced by local plastic flow and primary γ' local faster dissolution, respectively. The optimum processing conditions at all of the investigated strains are proposed as 1090-1130°C with 0.08-0.5 s-1 and 0.005-0.008 s-1 and 1040-1085°C with 0.005-0.06 s-1.
Microstructure and Mechanical Properties of HSLA-100 Steel
1990-12-01
hardenability of HSLA-100 steel through the shifting of the nose of the CCT diagram to the right (Figure 2 from Ref. 10) and lowering the B, temperature as seen...of the CCT diagram by increasing the hardenability of the alloy and quenching. The object of the quench is to produce a finely-grained microstructure
NASA Astrophysics Data System (ADS)
Ogawa, Toshio; Dannoshita, Hiroyuki; Maruoka, Kuniaki; Ushioda, Kohsaku
2017-08-01
Microstructural evolution during cold rolling and subsequent annealing of low-carbon steel with different initial microstructures was investigated from the perspective of the competitive phenomenon between recrystallization of ferrite and reverse phase transformation from ferrite to austenite. Three kinds of hot-rolled sheet specimens were prepared. Specimen P consisted of ferrite and pearlite, specimen B consisted of bainite, and specimen M consisted of martensite. The progress of recovery and recrystallization of ferrite during annealing was more rapid in specimen M than that in specimens P and B. In particular, the recrystallized ferrite grains in specimen M were fine and equiaxed. The progress of ferrite-to-austenite phase transformation during intercritical annealing was more rapid in specimen M than in specimens P and B. In all specimens, the austenite nucleation sites were mainly at high-angle grain boundaries, such as those between recrystallized ferrite grains. The austenite distribution was the most uniform in specimen M. Thus, we concluded that fine equiaxed recrystallized ferrite grains were formed in specimen M, leading to a uniform distribution of austenite.
NASA Technical Reports Server (NTRS)
Singh, J.; Jerman, G.; Bhat, B.; Poorman, R.
1993-01-01
Microstructure of wrought, laser, and electron-beam glazed NARloy-Z(Cu-3 wt.% Ag-0.5 wt.% Zr) was investigated for thermal stability at elevated temperatures (539 to 760 C (1,100 to 1,400 F)) up to 94 h. Optical and scanning electron microscopy and electron probe microanalysis were employed for studying microstructural evolution and kinetics of precipitation. Grain boundary precipitation and precipitate free zones (PFZ's) were observed in the wrought alloy after exposing to temperatures above 605 C (1,120 F). The fine-grained microstructure observed in the laser and electron-beam glazed NARloy-Z was much more stable at elevated temperatures. Microstructural changes correlated well with hardness measurements.
Cryomilled and spark plasma sintered titanium: the evolution of microstructure
NASA Astrophysics Data System (ADS)
Kozlík, Jiří; Becker, Hanka; Harcuba, Petr; Stráský, Josef; Janeček, Milos
2017-05-01
Bulk ultra-fine grained (UFG) commercially pure Ti was prepared by cryogenic milling in liquid argon and subsequent spark plasma sintering (SPS). During cryogenic milling, individual powder particles are repetitively severely deformed by attrition forces. Powder particles were not significantly refined, but due to severe repetitive plastic deformation, ultra-fine grained microstructure emerges within each powder particle. Cryogenic milling can be therefore considered as a specific severe plastic deformation (SPD) method. Compactization of cryomilled powder by SPS technique (also referred to as field assisted sintering technique - FAST) requires significantly lower sintering temperatures and shorter sintering times for successful compaction when compared to any other sintering technique. This is crucial for maintaining the UFG microstructure due to its limited thermal stability. Several specimens were prepared by varying processing parameters, in particular the sintering temperature. The microstructure of powders and compacted samples was observed by scanning electron microscopy (SEM). Increased sintering temperature results in recrystallization and grain growth. A trade-off relationship between the density of compacted material and grain size was identified. Microhardness of the material was found to depend on residual porosity rather than grain size. This contribution presents cryogenic milling and spark plasma sintering as a viable alternative for achieving UFG microstructure in commercially pure Ti.
NASA Astrophysics Data System (ADS)
Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.
2016-03-01
17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tadayyon, Ghazal, E-mail: Ghazal.tadayyon@gmail.co
The main objective of this work was to investigate the thermomechanical behavior and microstructural changes of a Ti-rich NiTi shape memory alloy (SMA). The microstructural and texture evolution of aged NiTi alloy at different degrees of deformation were elicited by transmission electron microscopy (TEM). An effort was made to correlate results obtained from the tensile test with results from microstructure studies. The undeformed sample reveals a self-accommodated morphology with straight and well defined twin boundaries. At different stages of deformation, diverse mechanisms were involved. These mechanisms include marstraining, detwinning accompanied by dislocation movement, and finally, severe plastic deformation, subdivision andmore » amorphization of the matrix. Under increasing strains, high density lattice defects were generated and the morphology of B19’ became disordered. - Graphical abstract: The summary of microstructure changes of the martensite twins during tensile deformation in polycrystalline NiTi SMAs. - Highlights: • Initial elastic response, dislocation avalanche and deformation bands were studied. • < 011 > Type II twin accompanied by detwinned area after 2% cold work was observed. • Visible parallel fine stacking faults showed plastic flow of the material. • At higher strains, subgrains changed to recrystallized, finely amorphous structure.« less
NASA Technical Reports Server (NTRS)
Jemian, W. A.
1986-01-01
The objective was to determine the cause and significance of the weld radiograph enigma, which is a linear anomaly in the features of the X-ray film. By observing features on available radiographs and in studying published reports of similar features it was possible to conclude that there are many manifestations of the enigma, and that they are all specific features of fine structure in radiographs due to natural processes connected with welding and to specific X-ray absorption and diffraction phenomena. These processes include the thermal distribution and liquid metal flow in welding, the development of microstructure, morpohology, second phase particles and porosity due to the solidification process and to the pattern of residual stresses after the weld metal has cooled to the ambient temperature. Microdensitometer traces were made across weld radiographs of standard and enigmatic types. Similar patterns were produced by computer simulation. These show that the enigma is a relatively low contrast feature compared to real weld defects, such as undercuts or centerline cracks. The enigma can be distinguished from weld defects by these microdensitometer traces. The enigma effect on weld properties is not known but is expected to be minor.
NASA Technical Reports Server (NTRS)
Jemian, W. A.
1986-01-01
The cause and significance of the weld radiograph enigma, which is a linear anomaly in the features of the X-ray film is examined. By observing features on available radiographs and in studying published reports of similar features, it was possible to conclude that there are many manifestations of the enigma, and that they are all specific features of fine structure in radiographs due to natural processes connected with welding and to specific X-ray absorption and diffraction phenomena. These processes include the thermal distribution and liquid metal flow in welding, the development of microstructure, morphology, second phase particles and porosity due to the solidification process, and to the pattern of residual stresses after the weld metal has cooled to the ambient temperature. Microdensitometer traces were made across weld radiographs of standard enigmatic types. Similar patterns were produced by computer simulation. These show that the enigma is a relatively low contrast feature compared to real weld defects, such as undercuts or centerline cracks. The enigma can be distinguished from weld defects by these microdensitometer traces. The enigma effect on weld properties is not known but is expected to be minor.
Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel
Anton, Donald L.; Lemkey, Franklin D.
1988-01-01
A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.
NASA Astrophysics Data System (ADS)
Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.
2018-02-01
A series of calcium-based ceramic cores for casting titanium alloy were prepared by mixing different amounts of coarse and fine powders through injection molding. The effects of particle size on the microstructures and properties of the ceramic cores were investigated using quantitative and statistical analysis methods. It is found that the shrinkage and room-temperature strength of the ceramic cores were enhanced as increasing the contents of fine particles. Moreover, the creep resistance of the ceramic cores increased initially and then decreased. The increase in the fine particle content of the cores reduced the number and mean diameter of pores after sintering. The grain boundary density decreased firstly and then increased. The flexural strength of the ceramic cores at room temperature decreased with increasing porosity of ceramic cores, whereas the creep resistance increased with decreasing grain boundary density. A core exhibiting the optimal property was obtained when mixing 65 wt% of coarse powders (75-150 μm) and 35 wt% of fine powders (25-48 μm).
NASA Astrophysics Data System (ADS)
Puelles, Pablo; Ábalos, Benito; Fernández-Armas, Sergio
2013-04-01
The Badajoz-Córdoba Shear Zone is a is 30-40 km wide and 400 km long, NW-SE trending structure located at the boundary between the Ossa-Morena and Central-Iberian Zones of the Iberian Massif. Two elongated domains can be differentiated inside: the Obejo-Valsequillo domain to the NE and the Ductile Shear Belt (DSB) to the SW. The former exhibits Precambrian to Cambrian volcano-sedimentary rocks unconformably overlaying a Neoproterozoic basement formed by the "Serie Negra". The latter, 5-15 km wide, is composed mainly of metamorphic tectonites including the "Serie Negra" and other units located structurally under it. The petrofabric of "Serie Negra" black quartzites from the DSB is analyzed in this study with the Electron Back-Scattered Diffraction technique (EBSD). Black quartzites represent originally siliceous, chemical-biochemical shallow-water marine deposits, currently composed almost exclusively of quartz and graphite. Macroscopically they exhibit an outstanding planolinear tectonic fabric. Petrographically, coarse- and fine-grained dynamically recrystallized quartz bands alternate. The former contain quartz grains with irregular shapes, mica inclusions and "pinning" grain boundaries. Oriented mica grains and graphite particles constrain irregular quartz grain shapes. Quartz ribbons with chessboard microstructures also occur, indicating recrystallization under elevated temperatures coeval with extreme stretching. Fine-grained recrystallized quartz bands are dominated by quartz grains with straight boundaries, triple junctions, a scarcer evidence of bulging, and a higher concentration of dispersed, minute graphite grains. Quartz lattice-preferred orientation (LPO) patterns permit to identify two well-developed maxima for [c] axes: one close to the Y structural direction and the other one around Z, and -axes girdles normal to Y and Z. Although both [c] axis maxima appear in the coarse- and fine-grained bands, subsets can be isolated with grain cluster orientations around Y and Z. Quartz [c]-axis orientations close to Y predominate in coarser-grained bands, whereas [c]-axes scatter around Z in fine-grained zones. A relationship between microstructure and crystal orientation can thus be unraveled. In both fabric types the asymmetry of the LPOs with respect to the external XYZ reference unravel non-coaxial deformation components. Microstructural and LPO evidences indicate that two intracrystalline quartz deformation modes have operated in the "Serie Negra" black quartzites in parallel domains interleaved at the mm- to cm scale. Unless one of them took place under higher-temperature conditions ({m} slip in the high-T amphibolite-facies) and is a relic feature, both modes should have operated simultaneously. Thus, high-temperature boundary migration and the dispersed inclusion pattern of small mica and graphite grains constrained the pinning grain boundary microstructures, the {m} intracrystalline slip, and the larger size of some quartz crystals. Simultaneously, a larger concentration of disseminated graphite led to formation of finer-grained quartz aggregates (due to grain growth) deformed by the (0001) intracrystalline slip systems, that dominate lower-T quartz plasticity (under greenschist- to amphibolite-facies conditions). Arguably, this intracrystalline slip system partitioning was initially constrained by primary variations in inclusion concentration. Likely, these induced a domainal variation in the rate of plastic strain accommodation that led to the current banded microstructural and fabric organization.
NASA Astrophysics Data System (ADS)
Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.
2014-02-01
Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divya, V.D., E-mail: dv272@cam.ac.uk; Muñoz-Moreno, R.; Messé, O.M.D.M.
2016-04-15
The selective laser melting of high temperature alloys is of great interest to the aerospace industry as it offers the prospect of producing more complex geometries than can be achieved with other manufacturing methods. In this study, the microstructure of the nickel-based superalloy, CM247LC, has been characterised following selective laser melting and after a post deposition heat treatment below the γ′ solvus temperature. In the as-deposited state, scanning electron microscopy with electron backscatter diffraction revealed a fine, cellular microstructure with preferential alignment of 〈001〉 along the build direction. A high dislocation density was seen at the periphery of the cells,more » indicating substantial localised deformation of the material. Fine primary MC carbides were also observed in the inter-cellular regions. High-resolution transmission electron microscopy identified the occurrence of very fine γ′ precipitates, approximately 5 nm in diameter, dispersed within the gamma phase. After heat treatment, the elongated cell colonies were observed to partially coalesce, accompanied by a decrease in dislocation density, producing columnar grains along the build direction. Cuboidal γ′ precipitates approximately 500 nm in diameter were observed to form in the recrystallised grains, accompanied by larger γ′ precipitates on the grain boundaries.« less
NASA Astrophysics Data System (ADS)
Lee, Tae-Kyu; Ma, Hongtao; Liu, Kuo-Chuan; Xue, Jie
2010-12-01
The interaction between isothermal aging and the long-term reliability of fine-pitch ball grid array (BGA) packages with Sn-3.0Ag-0.5Cu (wt.%) solder ball interconnects was investigated. In this study, 0.4-mm fine-pitch packages with 300- μm-diameter Sn-Ag-Cu solder balls were used. Two different package substrate surface finishes were selected to compare their effects on the final solder composition, especially the effect of Ni, during thermal cycling. To study the impact on thermal performance and long-term reliability, samples were isothermally aged and thermally cycled from 0°C to 100°C with 10 min dwell time. Based on Weibull plots for each aging condition, package lifetime was reduced by approximately 44% by aging at 150°C. Aging at 100°C showed a smaller impact but similar trend. The microstructure evolution was observed during thermal aging and thermal cycling with different phase microstructure transformations between electrolytic Ni/Au and organic solderability preservative (OSP) surface finishes, focusing on the microstructure evolution near the package-side interface. Different mechanisms after aging at various conditions were observed, and their impacts on the fatigue lifetime of solder joints are discussed.
NASA Astrophysics Data System (ADS)
Václavová, K.; Stráský, J.; Zháňal, P.; Veselý, J.; Polyakova, V.; Semenova, I.; Janeček, M.
2017-05-01
Processing of metastable titanium alloys by severe plastic deformation provides an opportunity to achieve exceptional grain refinement, to enhance the strength and to affect phase transformations occurring during thermal treatment. The main aim of this study is to investigate the microstructure of ultra-fine grained (UFG) material and effect of microstructural changes on phase transformations in metastable β-Ti alloy Ti-15Mo. Metastable β-Ti alloys are currently the most studied Ti-based materials with prospective use in medicine. Ti-15Mo alloy after solution treatment contains metastable β-phase. Metastable ω-phase and stable α-phase particles are formed upon annealing,. Solution treated Ti-15Mo alloy was deformed by high pressure torsion (HPT) at room temperature. Severely deformed structure after HPT with grain size of ~200 nm was studied by transmission electron microscopy. In-situ electrical resistance measurements showed significant changes in undergoing phase transformations when compared to coarse-grained (CG) material. Scanning electron microscopy revealed heterogeneous precipitation of α-particles at grain boundaries (GB). Due to the high density of GBs in UFG structure, these precipitates are very fine and equiaxed. The study demonstrates that SPD is capable of enhancing mechanical properties due to grain refinement and via affecting precipitation processes in metastable β-Ti alloys.
Aluminum-Scandium: A Material for Semiconductor Packaging
NASA Astrophysics Data System (ADS)
Geissler, Ute; Thomas, Sven; Schneider-Ramelow, Martin; Mukhopadhyay, Biswajit; Lang, Klaus-Dieter
2016-10-01
A well-known aluminum-scandium (Al-Sc) alloy, already used in lightweight sports equipment, is about to be established for use in electronic packaging. One application for Al-Sc alloy is manufacture of bonding wires. The special feature of the alloy is its ability to harden by precipitation. The new bonding wires with electrical conductivity similar to pure Al wires can be processed on common wire bonders for aluminum wedge/wedge (w/w) bonding. The wires exhibit very fine-grained microstructure. Small Al3Sc particles are the main reason for its high strength and prevent recrystallization and grain growth at higher temperatures (>150°C). After the wire-bonding process, the interface is well closed. Reliability investigations by active power cycling demonstrated considerably improved lifetime compared with pure Al heavy wires. Furthermore, the Al-Sc alloy was sputter-deposited onto silicon wafer to test it as chip metallization in copper (Cu) ball/wedge bonding technology. After deposition, the layers exhibited fine-grained columnar structure and small coherent Al3Sc particles with dimensions of a few nanometers. These particles inhibit softening processes such as Al splashing in fine wire bonding processes and increase the thickness of remnant Al under the copper balls to 85% of the initial thickness.
Microstructure characterization of heat affected zone after welding in Mod.9Cr–1Mo steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawada, K., E-mail: sawada.kota@nims.go.jp; Hara, T.; Tabuchi, M.
2015-03-15
The microstructure of the heat affected zone after welding was investigated in Mod.9Cr–1Mo steel, using TEM and STEM-EDX. The microstructure of thin foil was observed at the fusion line, and at the positions of 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm to the base metal side of the fusion line. Martensite structure with very fine lath and high dislocation density was confirmed at all positions. Twins with a twin plane of (112) were locally observed at all positions. Elemental mapping was obtained for all positions by means of STEM-EDX. Inclusions of mainlymore » Si were formed at the fusion line but not at the other positions. No precipitates could be detected at the fusion line or at the position of 0.5 mm. On the other hand, MX particles were observed at the positions of 1.0 mm, 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm even after welding. M{sub 23}C{sub 6} particles were also confirmed at the positions of 2.0 mm, 2.5 mm, 3.0 mm and 3.5 mm. Very fine equiaxed grains were locally observed at the positions of 2.0 mm and 2.5 mm. The Cr content of the equiaxed grains was about 12 mass%, although the martensite area included about 8 mass% Cr. - Graphical abstract: Display Omitted - Highlights: • Nonequilibrium microstructure of heat affected zone was observed after welding in Mod.9Cr–1Mo steel. • Inclusions containing Si were detected at the fusion line. • Undissolved M{sub 23}C{sub 6} and MX particles were confirmed in heat affected zone. • Twins with a twin plane of (112) were locally observed at all positions. • Very fine ferrite grains with high Cr content were observed in fine grained heat affected zone.« less
Frankowiak, Katarzyna; Kret, Sławomir; Mazur, Maciej; Meibom, Anders; Kitahara, Marcelo V; Stolarski, Jarosław
2016-01-01
Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators-none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil coral of this age. The regularity of its growth banding strongly suggests that the coral was symbiotic with zooxanthellates.
Frankowiak, Katarzyna; Kret, Sławomir; Mazur, Maciej; Meibom, Anders; Kitahara, Marcelo V.; Stolarski, Jarosław
2016-01-01
Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators—none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil coral of this age. The regularity of its growth banding strongly suggests that the coral was symbiotic with zooxanthellates. PMID:26751803
NASA Astrophysics Data System (ADS)
Rubinos, David A.; Valcárcel, Víctor; Spagnoli, Giovanni; Barral, María Teresa
2017-09-01
The microstructural characteristics of red mud (RM), especially specific surface area (SSA) and mesoporosity, and the effects of various representative fluids, namely methanol (80% v/v), trichloroethylene (TCE) (1100 mg/L), acetic acid (pH 2), and CaCl2 (5% w/v) aqueous solutions, were studied using N2-gas adsorption. The effect of compaction was also assessed. RM powder exhibited a moderate Brunauer-Emmet-Teller (BET)-SSA and is mostly a mesoporous (large mesopores, 200-500 Å) and a macroporous material. Compaction affected the macro and large, but not the fine, mesopores. Among the fluids, CaCl2 and acetic acid induced notable and opposing changes in RM microstructural characteristics. CaCl2 decreased SSA and suppressed fine mesoporosity, whereas acetic acid greatly enhanced them. Fractal analysis further indicated increasing surface roughness and heterogeneity of pore structure during acid exposure, altogether envisaging an improvement of adsorption capacity and a decrease of permeability of the RM.
Burst Testing and Analysis of Superalloy Disks With a Dual Grain Microstructure
NASA Technical Reports Server (NTRS)
Gayda, John; Kantzos, Pete
2006-01-01
Elastic-plastic finite element analyses of room temperature burst tests on four superalloy disks were conducted and reported in this paper. Two alloys, Rene 104 (General Electric Aircraft Engines) and Alloy 10 (Honeywell Engines & Systems), were studied. For both alloys an advanced dual microstructure disk, fine grain bore and coarse grain rim, were analyzed and compared with conventional disks with uniform microstructures, coarse grain for Rene 104 and fine grain for Alloy 10. The analysis and experimental data were in good agreement up to burst. At burst, the analysis underestimated the speed and growth of the Rene 104 disks, but overestimated the speed and growth of the Alloy 10 disks. Fractography revealed that the Alloy 10 disks displayed significant surface microcracking and coalescence in comparison to Rene 104 disks. This phenomenon may help explain the differences between the Alloy 10 disks and the Rene 104 disks, as well as the observed deviations between analytical and experimental data at burst.
Kesler, Michael S.; Goyel, Sonalika; Ebrahimi, Fereshteh; ...
2016-11-15
The mechanical properties of novel alloys with two-phase γ-TiAl + σ-Nb 2Al microstructures were evaluated under compression at room temperature. Microstructures of varying scales were developed through solutionizing and aging heat treatments and the volume fraction of phases were varied with changes in composition. Ultra-fine, aged γ+σ microstructures were achieved for the alloys which affectively retained high volume fractions of the parent β-phase upon quenching from the solutionizing temperature. The yield strength and compressive strain to failure of these alloys show a strong dependence on the relative scale and volume fraction of phases. Surprisingly, the hard brittle σ-phase particles weremore » not found to control fracture in the refined microstructures.« less
Microstructural examination of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelles, D.S.
Microstructural examination results are reported for four heats of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment to {approximately}4 dpa at {approximately}200 and 300 C to provide an understanding of the microstructural evolution that may be associated with degradation of mechanical properties. Fine precipitates were observed in high density intermixed with small defect clusters for all conditions examined following the irradiation. The irradiation-induced precipitation does not appear to be affected by preirradiation heat treatment or composition.
Advanced composite applications for sub-micron biologically derived microstructures
NASA Technical Reports Server (NTRS)
Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas
1991-01-01
A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.
NASA Astrophysics Data System (ADS)
Dai, Donghua; Gu, Dongdong; Zhang, Han; Xiong, Jiapeng; Ma, Chenglong; Hong, Chen; Poprawe, Reinhart
2018-02-01
Selective laser melting additive manufacturing of the AlSi12 material parts through the re-melting of the previously solidified layer using the continuous two layers 90° rotate scan strategy was conducted. The influence of the re-melting behavior and scan strategy on the formation of the ;track-track; and ;layer-layer; molten pool boundaries (MPBs), dimensional accuracy, microstructure feature, tensile properties, microscopic sliding behavior and the fracture mechanism as loaded a tensile force has been studied. It showed that the defects, such as the part distortion, delamination and cracks, were significantly eliminated with the deformation rate less than 1%. The microstructure of a homogeneous distribution of the Si phase, no apparent grain orientation on both sides of the MPBs, was produced in the as-fabricated part, promoting the efficient transition of the load stress. Cracks preferentially initiate at the ;track-track; MPBs when the tensile stress increases to a certain value, resulting in the formation of the cleavage steps along the tensile loading direction. The cracks propagate along the ;layer-layer; MPBs, generating the fine dimples. The mechanical behavior of the SLM-processed AlSi12 parts can be significantly enhanced with the ultimate tensile strength, yield strength and elongation of 476.3 MPa, 315.5 MPa and 6.7%, respectively.
Pecho, Omar M.; Stenzel, Ole; Iwanschitz, Boris; Gasser, Philippe; Neumann, Matthias; Schmidt, Volker; Prestat, Michel; Hocker, Thomas; Flatt, Robert J.; Holzer, Lorenz
2015-01-01
This study investigates the influence of microstructure on the effective ionic and electrical conductivities of Ni-YSZ (yttria-stabilized zirconia) anodes. Fine, medium, and coarse microstructures are exposed to redox cycling at 950 °C. FIB (focused ion beam)-tomography and image analysis are used to quantify the effective (connected) volume fraction (Φeff), constriction factor (β), and tortuosity (τ). The effective conductivity (σeff) is described as the product of intrinsic conductivity (σ0) and the so-called microstructure-factor (M): σeff = σ0 × M. Two different methods are used to evaluate the M-factor: (1) by prediction using a recently established relationship, Mpred = εβ0.36/τ5.17, and (2) by numerical simulation that provides conductivity, from which the simulated M-factor can be deduced (Msim). Both methods give complementary and consistent information about the effective transport properties and the redox degradation mechanism. The initial microstructure has a strong influence on effective conductivities and their degradation. Finer anodes have higher initial conductivities but undergo more intensive Ni coarsening. Coarser anodes have a more stable Ni phase but exhibit lower YSZ stability due to lower sintering activity. Consequently, in order to improve redox stability, it is proposed to use mixtures of fine and coarse powders in different proportions for functional anode and current collector layers. PMID:28793523
NASA Astrophysics Data System (ADS)
Arulmurugan, B.; Manikandan, M.
2018-02-01
In the present study, microstructure and the corrosion behavior of Nickel based superalloy 686 and its weld joints has been investigated by synthetic sea water environment. The weldments were fabricated by Gas Tungsten Arc Welding (GTAW) and Pulsed Current Gas Tungsten Arc Welding (PCGTAW) techniques with autogenous mode and three different filler wires (ERNiCrMo-4, ERNiCrMo-10 and ERNiCrMo-14). Microstructure and Scanning electron microscope examination was carried out to evaluate the structural changes in the fusion zones of different weldments. Energy Dispersive X-ray Spectroscopy (EDS) analysis was carried out to evaluate the microsegregation of alloying elements in the different weld joints. Potentiodynamic polarization study was experimented on the base metal and weld joints in the synthetic sea water environment to evaluate the corrosion rate. Tafel’s interpolation technique was used to obtain the corrosion rate. The microstructure examination revealed that the fine equiaxed dendrites were observed in the pulsed current mode. EDS analysis shows the absence of microsegregation in the current pulsing technique. The corrosion rates of weldments are compared with the base metal. The results show that the fine microstructure with the absence of microsegregation in the PCGTA weldments shows improved corrosion resistance compared to the GTAW. Autogenous PCGTAW shows higher corrosion resistance irrespective of all weldments employed in the present study.
Rogalla, N.S.; Carter, J.G.; Pojeta, J.
2003-01-01
The Late Carboniferous bransoniid conocardioidean Apotocardium lanterna (Branson, 1965) had an entirely aragonitic shell with a finely prismatic outer shell layer, a predominantly crossed lamellar to complex crossed lamellar middle shell layer, and an "inner" shell layer of finely textured porcelaneous and/or matted structure. This "inner" layer is probably homologous with the inner part of the middle shell layer and the inner layer sensu stricto of bivalved molluscs. Shell morphological and microstructural convergences between conocardioids and living heart cockles suggest that at least some conocardioids may have farmed algal endosymbionts in their posterior mantle margins. This symbiosis may have helped conocardioids compete with the biomechanically more efficient bivalves during the latter part of the Paleozoic.
Relationships between microstructure and microfissuring in alloy 718
NASA Technical Reports Server (NTRS)
Thompson, R. G.
1985-01-01
Microfissures which occur in the weld heat affected zone of alloy 718 can be a limiting factor in the material's weldability. Several studies have attempted to relate microfissuring susceptibility to processing conditions, microstructure, and/or heat-to-heat chemistry differences. The present investigation studies the relationships between microstructure and microfissuring by isolating a particular microstructural feature and measuring microfissuring as a function of that feature. Results to date include the identification of a microstructure-microfissure sequence, microfissuring susceptibility as a function of grain size, and microfissuring susceptibility as a function of solution annealing time.
Mueller, Inga; Rementeria, Rosalia; Caballero, Francisca G.; Kuntz, Matthias; Sourmail, Thomas; Kerscher, Eberhard
2016-01-01
The recently developed nanobainitic steels show high strength as well as high ductility. Although this combination seems to be promising for fatigue design, fatigue properties of nanostructured bainitic steels are often surprisingly low. To improve the fatigue behavior, an understanding of the correlation between the nanobainitic microstructure and the fatigue limit is fundamental. Therefore, our hypothesis to predict the fatigue limit was that the main function of the microstructure is not necessarily totally avoiding the initiation of a fatigue crack, but the microstructure has to increase the ability to decelerate or to stop a growing fatigue crack. Thus, the key to understanding the fatigue behavior of nanostructured bainite is to understand the role of the microstructural features that could act as barriers for growing fatigue cracks. To prove this hypothesis, we carried out fatigue tests, crack growth experiments, and correlated these results to the size of microstructural features gained from microstructural analysis by light optical microscope and EBSD-measurements. Finally, we were able to identify microstructural features that influence the fatigue crack growth and the fatigue limit of nanostructured bainitic steels. PMID:28773953
1988-10-07
from experiments on wet clay minerals by using the EC technique.(3,4) Layer lattice image of fully hydrated tubular halloysite could be clearly observed...in wet air environment. Tubular and spherical halloysite and their hydrazine complexes were observed both in wet air and in vacuum, and their
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, S.T., E-mail: xst-2007@163.com; Liu, Z.Y.; Wang, Z.
Quenching-partitioning-tempering (Q-P-T) process was used to treat a Ti-microalloyed low-carbon stainless steel after cold rolling. In addition to martensite, ferrite and retained austenite, TiN, coarse TiC, fine TiC, (Fe,Cr){sub 3}C and ultra-fine TiC precipitates were formed after the Q-P-T treatment. Based on field emission-scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations, thermodynamic, crystallographic and statistical analyses were used to reveal the precipitation behaviors of these particles. The effects of partitioning-tempering (P-T) temperature and time on the microstructure and mechanical properties of Q-P-T treated specimens were specially studied. The coarsening and spheroidization of (Fe,Cr){sub 3}C particles during P-T stagemore » were obviously retarded by large Cr addition. The retained austenite was obtained significantly with appropriate P-T parameters. The precipitation of ultra-fine TiC particles in the martensite during the P-T stage at 500 °C induced a secondary hardening. - Highlights: • Some fine TiC with 30–70 nm precipitated in austenite during partial austenization. • A part of fine TiC had K-S OR with martensite after Q-P-T treatment. • A part of fine TiC had a OR specially deviating from K-S OR with martensite. • Coarsening and spheroidization of (Fe,Cr){sub 3}C were retarded during P-T stage. • Ultra-fine TiC with < 10 nm precipitated in martensite during P-T stage at 500 °C.« less
NASA Technical Reports Server (NTRS)
Louis, Pascal; Gokhale, Arun M.
1995-01-01
A number of microstructural processes are sensitive to the spatial arrangements of features in microstructure. However, very little attention has been given in the past to the experimental measurements of the descriptors of microstructural distance distributions due to the lack of practically feasible methods. We present a digital image analysis procedure to estimate the micro-structural distance distributions. The application of the technique is demonstrated via estimation of K function, radial distribution function, and nearest-neighbor distribution function of hollow spherical carbon particulates in a polymer matrix composite, observed in a metallographic section.
Kockmann, Norbert; Gottsponer, Michael; Zimmermann, Bertin; Roberge, Dominique M
2008-01-01
Microstructured devices offer unique transport capabilities for rapid mixing, enhanced heat and mass transfer and can handle small amounts of dangerous or unstable materials. The integration of reaction kinetics into fluid dynamics and transport phenomena is essential for successful application from process design in laboratory to chemical production. Strategies to implement production campaigns up to tons of pharmaceutical chemicals are discussed, based on Lonza projects.
Kwan, Charles C F; Wang, Zhirui
2013-08-13
Accumulative Roll-Bonding (ARB) is one of the more recently developed techniques capable of producing bulk ultra-fine grained (ufg) metals. There are still many aspects of the behavior of ufg metals that lacks an in-depth understanding, such as a generalized view of the factors that govern the cyclic deformation mechanism(s). This study aims to advance the understanding of the cyclic deformation behavior of ufg metals through the systematic investigation of ARB processed aluminum upon cyclic loading. It was found that the cyclic softening response often reported for ufg metals is largely influenced by the microstructure stability as the cyclic softening response is facilitated by grain coarsening which becomes inhibited with highly stable microstructure. On one hand, shear bands resembling braids of dislocations trespassing multiple grains have been observed to operate for the accommodation of the imposed cyclic strain in cases where grain coarsening is largely restricted. On the other hand, it was found that the microstructure stability can be overcome at higher applied cyclic plastic strain levels, leading to grain coarsening and thus a cyclic softening response. The findings in this study have further confirmed that the cyclic softening behavior found in many ufg metals, which may be detrimental in practical applications, can be inhibited by improvements in the microstructure stability.
Kwan, Charles C.F.; Wang, Zhirui
2013-01-01
Accumulative Roll-Bonding (ARB) is one of the more recently developed techniques capable of producing bulk ultra-fine grained (ufg) metals. There are still many aspects of the behavior of ufg metals that lacks an in-depth understanding, such as a generalized view of the factors that govern the cyclic deformation mechanism(s). This study aims to advance the understanding of the cyclic deformation behavior of ufg metals through the systematic investigation of ARB processed aluminum upon cyclic loading. It was found that the cyclic softening response often reported for ufg metals is largely influenced by the microstructure stability as the cyclic softening response is facilitated by grain coarsening which becomes inhibited with highly stable microstructure. On one hand, shear bands resembling braids of dislocations trespassing multiple grains have been observed to operate for the accommodation of the imposed cyclic strain in cases where grain coarsening is largely restricted. On the other hand, it was found that the microstructure stability can be overcome at higher applied cyclic plastic strain levels, leading to grain coarsening and thus a cyclic softening response. The findings in this study have further confirmed that the cyclic softening behavior found in many ufg metals, which may be detrimental in practical applications, can be inhibited by improvements in the microstructure stability. PMID:28811446
Microstructure and Microhardness of 17-4PH Deposited with Co-based Alloy Hardfacing Coating
NASA Astrophysics Data System (ADS)
Deng, D. W.; Zhang, C. P.; Chen, R.; Xia, H. F.
Hardfacing is widely used to improve the performance of components exposed to severe service conditions. In this paper, the surface modification was evaluated for precipitation hardening martensitic stainless steel 17-4PH deposited with Co-based alloy stellite12 by the plasma-transferred arc welding (PTAW). The microstructure and microhardness of coating and heat affected zone(HAZ) of base metal were characterized by optical microscope (OM), scanning electron scanning microscope (SEM), X-ray diffractometer and hardness tester. The results show that the interface between weld metal and base metal is favorable without pore and crack, at the same time elements diffusion is observed in the fusion area. However, as the distance from the interface increases, HAZ comprises three different microstructural zones, namely, zones of coarse overheated structures, quenching martensite and martensite, ferrite. The microhardness decreases gradually from the HAZ near interface to the base metal, except the zone of coarse overheated structures. The microhardness of the coating improves a lot and fluctuates in a definitive range, and microstructural gradient is observed including the fusion area (the planar region and the bulky dendrite in a direction perpendicular to the weld interface), the transition zone (the dendrite in a multi-direction way) and the fine grain zone near the surface in the coating (fine equiaxial structure).
Effect of Low Cu Amounts and Pre-Deformation on the Precipitation in Al-Mg-Si Alloys
NASA Astrophysics Data System (ADS)
Saito, Takeshi; Muraishi, Shinji; Marioara, Calin D.; Holmestad, Randi
Transmission electron microscopy (TEM) studies were performed on two Al-Mg-Si alloys with low Cu additions (0.01 and 0.10 wt%) in order to investigate the effect of Cu and 10% pre-deformation on precipitate microstructure and its connection to mechanical properties. After 300 minutes aging at 190°C, fine microstructures associated with high hardness were observed in the alloy with 0.10% Cu. Pre-deformation led to heterogeneous distributions of precipitates along dislocations, causing microstructure coarsening. This effect was less pronounced in the alloy with the higher Cu amount.
Spectral structure and stability studies on microstructure-fiber continuum
NASA Astrophysics Data System (ADS)
Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.
2003-07-01
Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.
NASA Astrophysics Data System (ADS)
Chu, Ya-jie; Chen, Jian; Li, Xiao-quan; Wu, Shen-qing; Yang, Zong-hui
2012-10-01
Thermomechanical treatments were carried out to improve the properties of AZ31B joints prepared by gas tungsten arc welding. The microstructures of the joints were studied by optical microscopy and scanning electron microscopy with energy-dispersive spectrometry. Tensile tests and hardness tests were performed to investigate the effects of thermomechanical treatments on the mechanical properties of the joints. It is found that the thermomechanical-treated joints show superior mechanical properties against the as-welded joints, and their ultimate tensile strength can reach more than 92% of the base material. This mainly attributes to the formation of fine equiaxed grains in the fusion zone. After thermomechanical treatments the dendrites are transformed to fine spherical grains, and the dendritic segregation can be effectively eliminated.
Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Parish, Chad M.; Saleh, Tarik A.
Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, themore » synergies between ' and fine-scale and moderate-scale cavity formation is investigated.« less
Characterization of ultrafine grained Cu-Ni-Si alloys by electron backscatter diffraction
NASA Astrophysics Data System (ADS)
Altenberger, I.; Kuhn, H. A.; Gholami, M.; Mhaede, M.; Wagner, L.
2014-08-01
A combination of rotary swaging and optimized precipitation hardening was applied to generate ultra fine grained (UFG) microstructures in low alloyed high performance Cu-based alloy CuNi3Si1Mg. As a result, ultrafine grained (UFG) microstructures with nanoscopically small Ni2Si-precipitates exhibiting high strength, ductility and electrical conductivity can be obtained. Grain boundary pinning by nano-precipitates enhances the thermal stability. Electron channeling contrast imaging (ECCI) and especially electron backscattering diffraction (EBSD) are predestined to characterize the evolving microstructures due to excellent resolution and vast crystallographic information. The following study summarizes the microstructure after different processing steps and points out the consequences for the most important mechanical and physical properties such as strength, ductility and conductivity.
NASA Technical Reports Server (NTRS)
Stahl, D. R.; Antolovich, S. D.; Mirdamadi, M.; Zamrik, S. Y.
1988-01-01
Specimens of Waspaloy of two different microstructures were tested in uniaxial and torsional low-cycle fatigue at 24 and 649 C. For all specimens, deformation and failure mechanisms are found to be independent of stress state at 24 C; in both microstructures, failure is associated with the formation of shear cracks. At 649 C, deformation and failure mechanisms for the fine-grain large gamma-prime specimens are independent of stress state, and the mechanisms are similar to those observed at 24 C. For the coarse-grain small gamma-prime specimens, however, failure occurs on principal planes in torsion and on shear plane in uniaxial tension. The results are interpreted in terms of deformation mode and microstructural instability.
NASA Astrophysics Data System (ADS)
Koneshlou, Mahdi; Meshinchi Asl, Kaveh; Khomamizadeh, Farzad
2011-01-01
This paper focuses on the effects of low temperature (subzero) treatments on microstructure and mechanical properties of H13 hot work tool steel. Cryogenic treatment at -72 °C and deep cryogenic treatment at -196 °C were applied and it was found that by applying the subzero treatments, the retained austenite was transformed to martensite. As the temperature was decreased more retained austenite was transformed to martensite and it also led to smaller and more uniform martensite laths distributed in the microstructure. The deep cryogenic treatment also resulted in precipitation of more uniform and very fine carbide particles. The microstructural modification resulted in a significant improvement on the mechanical properties of the H13 tool steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.
In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modifiedmore » alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.« less
5. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
5. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING NORTH-NORTHEAST. OFFICE/WAREHOUSE (FEATURE 23) SHOWN ON LEFT EDGE OF PHOTOGRAPH. HEADFRAME AND STORAGE TANKS (FEATURE 18) AND CRUSHING PLANT (FEATURE 19) VISIBLE IN BACKGROUND. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
The Impact of Seed Layer Structure on the Recrystallization of ECD Cu and its Alloys
NASA Astrophysics Data System (ADS)
O'Brien, Brendan B.
Despite the significant improvements originally offered by the use of Cu over Al as the interconnect material for semiconductor devices, the continued down-scaling of interconnects has presented significant challenges for semiconductor engineers. As the metal line widths shrink, both the conductivity and reliability of lines decrease due to a stubbornly fine-grained microstructure in narrow lines. Understanding microstructural transformation of the ECD Cu in narrow features which leads to this polygranular microstructure is the first focus of this dissertation. As in the case of Cu films, the underlying seed layer strongly influences progress of transformation. Unlike films, however, the seed layer is not homogenous in patterned substrates, but differs according to the size of the trench and the location within the trench (field, bottom, and sidewall). Based on these findings, and the known influence of texture on the transformation of ECD Cu, a rapid trench initiated transformation process was posited for narrow interconnect lines. Time-resolved TEM observation of the ECD Cu in 48 nm lines during the transformation process confirmed the hypothesis. In fact, the TEM images revealed that the transformation was even faster than anticipated, and that the microstructure of the Cu inside the lines was stagnant after a mere 1.5 hours at room temperature. Studies of the transformation at elevated temperatures found that, despite anneals at 250°C for up to an hour, the grain size distribution for the Cu in narrow lines for all times converged, whether annealed at room temperature or 250°C. These data suggest that process was being driven by the 'consumable' internal energy stored in the as-plated microstructure. This is different than the transformation of the overburden, which is driven by a competition between surface energy and internal stress buildup due to film densification and relief due to the secondary growth of a 200 texture component. Based on these findings, two methods for manipulating the microstructure of the ECD Cu in the narrow lines were explored, including changes to the seed layer through ion implantation, and altering the as-plated Cu microstructure through co-ECD of alloys. The influence on the microstructure and applicability of both of these techniques to BEOL processing will also be discussed.
Serial sectioning of grain microstructures under junction control: An old problem in a new guise
NASA Astrophysics Data System (ADS)
Zöllner, D.; Streitenberger, P.
2015-04-01
In the present work the importance of 3D and 4D microstructure analyses are shown. To that aim, we study polycrystalline grain microstructures obtained by grain growth under grain boundary, triple line and quadruple point control. The microstructures themselves are obtained by mesoscopic computer simulations, which enjoy a far greater control over the kinetic and thermodynamic parameters affecting grain growth than can be realized experimentally. In extensive simulation studies we find by 3D respectively 4D microstructure analyses that metrical and topological properties of the microstructures depend strongly on the microstructural feature controlling the growth kinetics. However, the differences between the growth kinetics vanish when we look at classical 2D sections of the 3D ensembles making a differentiation of the controlling grain feature near impossible.
Dong, Zuo-chao; Xia, Jun-wu; Duan, Xiao-mu; Cao, Ji-chang
2016-03-01
By using X-ray diffraction (XRD) and environmental scanning electron microscope (SEM) analysis method, we stud- ied the activity of coal gangue fine aggregate under different calcination temperature. In view of the activity of the highest-700 degrees C high temperature calcined coal gangue fine aggregate mortar of hydration products, microstructure and strength were discussed in this paper, and the change laws of mortar strength with curing age (3, 7, 14, 28, 60 and 90 d) growth were analyzed. Test results showed that coal gangue fine aggregate with the increase of calcination temperature, the active gradually increases. When the calcination temperature reaches 700 degrees C, the activity of coal gangue fine aggregate is the highest. When calcining temperature continues to rise, activity falls. After 700 degrees C high temperature calcined coal gangue fine aggregate has obvious ash activity, the active components of SiO2 and Al2 O3 can be with cement hydration products in a certain degree of secondary hydration reaction. Through on the top of the activity of different curing age 700 degrees C high temperature calcined coal gangue fine aggregate mortar, XRD and SEM analysis showed that with the increase of curing age, secondary hydration reaction will be more fully, and the amount of hydration products also gradually increases. Compared with the early ages of the cement mortar, the products are more stable hydration products filling in mortar microscopic pore, which can further improve the microstructure of mortar, strengthen the interface performance of the mortar. The mortar internal structure is more uniform, calcined coal gangue fine aggregate and cement mortar are more of a strong continuous whole, which increase the later strength of hardened cement mortar, 700 degrees C high temperature calcined coal gangue fine aggregate pozzolanic effect is obvious.
Microstructure design for fast oxygen conduction
Aidhy, Dilpuneet S.; Weber, William J.
2015-11-11
Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations aremore » other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.« less
Advanced Steel Microstructural Classification by Deep Learning Methods.
Azimi, Seyed Majid; Britz, Dominik; Engstler, Michael; Fritz, Mario; Mücklich, Frank
2018-02-01
The inner structure of a material is called microstructure. It stores the genesis of a material and determines all its physical and chemical properties. While microstructural characterization is widely spread and well known, the microstructural classification is mostly done manually by human experts, which gives rise to uncertainties due to subjectivity. Since the microstructure could be a combination of different phases or constituents with complex substructures its automatic classification is very challenging and only a few prior studies exist. Prior works focused on designed and engineered features by experts and classified microstructures separately from the feature extraction step. Recently, Deep Learning methods have shown strong performance in vision applications by learning the features from data together with the classification step. In this work, we propose a Deep Learning method for microstructural classification in the examples of certain microstructural constituents of low carbon steel. This novel method employs pixel-wise segmentation via Fully Convolutional Neural Network (FCNN) accompanied by a max-voting scheme. Our system achieves 93.94% classification accuracy, drastically outperforming the state-of-the-art method of 48.89% accuracy. Beyond the strong performance of our method, this line of research offers a more robust and first of all objective way for the difficult task of steel quality appreciation.
Laser-induced patterns on metals and polymers for biomimetic surface engineering
NASA Astrophysics Data System (ADS)
Kietzig, Anne-Marie; Lehr, Jorge; Matus, Luke; Liang, Fang
2014-03-01
One common feature of many functional surfaces found in nature is their modular composition often exhibiting several length scales. Prominent natural examples for extreme behaviors can be named in various plant leaf (rose, peanut, lotus) or animal toe surfaces (Gecko, tree frog). Influence factors of interest are the surface's chemical composition, its microstructure, its organized or random roughness and hence the resulting surface wetting and adhesion character. Femtosecond (fs) laser micromachining offers a possibility to render all these factors in one single processing step on metallic and polymeric surfaces. Exemplarily, studies on Titanium and PTFE are shown, where the dependence of the resulting feature sizes on lasing intensity is investigated. While Ti surfaces show rigid surface patterns of micrometer scaled features with superimposed nanostructures, PTFE exhibits elastic hairy structures of nanometric diameter, which upon a certain threshold tend to bundle to larger features. Both surface patterns can be adjusted to mimic specific wetting and flow behaviour as seen on natural examples. Therefore, fs-laser micromachining is suggested as an interesting industrially scalable technique to pattern and fine-tune the surface wettability of a surface to the desired extends in one process step. Possible applications can be seen with surfaces, which require specific wetting, fouling, icing, friction or cell adhesion behaviour.
Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.; ...
2017-01-07
Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.
Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less
Properties of HIPed stainless steel powder
NASA Astrophysics Data System (ADS)
Dellis, Ch.; Le Marois, G.; Gentzbittel, J. M.; Robert, G.; Moret, F.
1996-10-01
In the current design of ITER primary wall, 316LN stainless steel is the reference structural material. Austenitic stainless steel is used for water-cooling channels and structures. As material data on hot isostatic pressed (HIP) 316LN were not available in open literature and from powder producers, the main properties of unirradiated samples have been measured in CEA/CEREM. Fully dense material without any porosity is obtained when appropriate HIP parameters are applied. Microstructural examination and mechanical properties are confirmed that the HIPed 316LN material is equivalent to a very good fine-grain, isotropic and uniformly forged 316LN. Moreover, ultrasonic inspection showed that this fine and uniform microstructure produced a remarkably low noise, which allow the use of transverse waves at very high frequencies (4 MHz). Defects undetectable in forged material will be easily detected in HIPed material.
NASA Technical Reports Server (NTRS)
Smialek, James L.; Garg, Anita
2010-01-01
The surface structure of scales formed on Ni(Pt)Al coatings was characterized by SEM/EDS/BSE in plan view. Two nominally identical {100} samples of aluminide coated CMSX4 single crystal were oxidized at 1150 C for 2000 1-h cycles and were found to produce somewhat disparate behavior. One sample, with less propensity for coating grain boundary ridge deformation, presented primarily alpha-Al2O3 scale structures, with minimal weight loss and spallation. The original scale structure, still retained over most of the sample, consisted of the classic theta-alpha transformation-induced ridge network structure, with approx. 25 nm crystallographic steps and terraces indicative of surface rearrangement to low energy alumina planes. The scale grain boundary ridges were often decorated with a fine, uniform distribution of (Hf,Ti)O2 particles. Another sample, producing steady state weight losses, exhibited much interfacial spallation and a complex assortment of different structures. Broad areas of interfacial spalling, crystallographically-faceted (Ni,Co)(Al,Cr)2O4 spinel, with an alpha-Al2O3 base scale, were the dominant features. Other regions exhibited nodular spinel grains, with fine or (Ta,Ti)-rich (rutile) particles decorating or interspersed with the spinel. While these features were consistent with a coating that presented more deformation at extruded grain boundaries, the root cause of the different behavior between the duplicate samples could not be conclusively identified.
NASA Astrophysics Data System (ADS)
Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.
2016-05-01
Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.
Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.
2016-03-03
Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can revealmore » salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.« less
Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed
NASA Technical Reports Server (NTRS)
Gayda, John
2002-01-01
Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the photomicrographs. The fine grain size in the bore can be contrasted with the coarse grain size in the rim. Testing (at NASA Glenn) of coupons machined from these disks showed that the DMHT approach did indeed produce a high-strength, fatigue resistant bore and a creep-resistant rim. This combination of properties was previously unobtainable using conventional heat treatments, which produced disks with a uniform grain size. Future plans are in place to spin test a DMHT disk under the Ultra Safe Propulsion Project to assess the viability of this technology at the component level. This testing will include measurements of disk growth at a high temperature as well as the determination of burst speed at an intermediate temperature.
NASA Astrophysics Data System (ADS)
Patel, Jayesh B.; Yang, Xinliang; Mendis, Chamini L.; Fan, Zhongyun
2017-04-01
Casting is the first step toward the production of majority of metal products whether the final processing step is casting or other thermomechanical processes such as extrusion or forging. The high shear melt conditioning provides an easily adopted pathway to producing castings with a more uniform fine-grained microstructure along with a more uniform distribution of the chemical composition leading to fewer defects as a result of reduced shrinkage porosities and the presence of large oxide films through the microstructure. The effectiveness of high shear melt conditioning in improving the microstructure of processes used in industry illustrates the versatility of the high shear melt conditioning technology. The application of high shear process to direct chill and twin roll casting process is demonstrated with examples from magnesium melts.
Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI
Farooq, Hamza; Xu, Junqian; Nam, Jung Who; Keefe, Daniel F.; Yacoub, Essa; Georgiou, Tryphon; Lenglet, Christophe
2016-01-01
Diffusion MRI (dMRI) reveals microstructural features of the brain white matter by quantifying the anisotropic diffusion of water molecules within axonal bundles. Yet, identifying features such as axonal orientation dispersion, density, diameter, etc., in complex white matter fiber configurations (e.g. crossings) has proved challenging. Besides optimized data acquisition and advanced biophysical models, computational procedures to fit such models to the data are critical. However, these procedures have been largely overlooked by the dMRI microstructure community and new, more versatile, approaches are needed to solve complex biophysical model fitting problems. Existing methods are limited to models assuming single fiber orientation, relevant to limited brain areas like the corpus callosum, or multiple orientations but without the ability to extract detailed microstructural features. Here, we introduce a new and versatile optimization technique (MIX), which enables microstructure imaging of crossing white matter fibers. We provide a MATLAB implementation of MIX, and demonstrate its applicability to general microstructure models in fiber crossings using synthetic as well as ex-vivo and in-vivo brain data. PMID:27982056
1. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
1. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING SOUTH. CONCRETE BASE FOR FUEL TANKS (FEATURE 21) VISIBLE IN FOREGROUND. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
System and method for the detection of anomalies in an image
Prasad, Lakshman; Swaminarayan, Sriram
2013-09-03
Preferred aspects of the present invention can include receiving a digital image at a processor; segmenting the digital image into a hierarchy of feature layers comprising one or more fine-scale features defining a foreground object embedded in one or more coarser-scale features defining a background to the one or more fine-scale features in the segmentation hierarchy; detecting a first fine-scale foreground feature as an anomaly with respect to a first background feature within which it is embedded; and constructing an anomalous feature layer by synthesizing spatially contiguous anomalous fine-scale features. Additional preferred aspects of the present invention can include detecting non-pervasive changes between sets of images in response at least in part to one or more difference images between the sets of images.
NASA Astrophysics Data System (ADS)
Pace, M. L.; Guarnaccio, A.; Dolce, P.; Mollica, D.; Parisi, G. P.; Lettino, A.; Medici, L.; Summa, V.; Ciancio, R.; Santagata, A.
2017-10-01
The ability of processing through laser beams different kinds of metallic powders for direct production of 3D components with complex geometries has been gaining an impressive and growing attention for specific industrial applications. The process which can be distinguished as Selective Laser Sintering or Selective Laser Melting is even considered, more generally, as Additive Manufacturing where layer by layer material is built by the interaction between a laser beam and a powder bed. The rapid heating of the powder due to the laser beam energy transfer process followed by a rapid cooling rate induces within the manufactured material a cellular structure with fine sub-grains, which are in the range of few hundreds of micrometers. These metastable structures, which are smaller than the grain size in conventionally manufactured 316L stainless steel components, can undertake towards a recrystallization process due to either heat or mechanical treatments. For instance, when sub-grain boundaries of the cells are enriched with Mo and higher concentration of dislocation, dynamical processes occur generating local residual stresses. In these circumstances the segregation of Mo in cell boundaries is out of thermodynamic equilibrium conditions so that microstructures and phases are metastable. In the range of 1100-1400 °C heat treatments a complete dissolution of Mo in the Fe matrix with a gradual disappearance of sub-microns cell is observed feeding the growth of larger austenitic sub-grains formation. It follows a higher degree of Mo dissolution in the material matrix and a decrease of dislocation's concentration (Saeidi et al., 2015) [1]. In the work here presented we point out which are the microstructural features of stainless steel 316L components realized by Additive Manufacturing. Furthermore, the occurrence of a microstructural evolution is presented after experiencing to fatigue of 80000 cycles some door joints obtained by this technique. A decrease of dislocation's number, an increase of twinning due to the growth of grains and to the release of local stresses can be hypothesized following that an important role could be played by the presence of dislocations in cell boundaries as well as oxides nano-inclusion formed in-situ during the Additive Manufacturing process (Saeidi et al., 2015) [2]. From these outcomes it is going to be presented how the 3D components produced by Additive Manufacturing could change and improve their features for potential industrial applications during life cycles and enhance such a behavior by taking carefully into account the laser parameters and its scanning speed.
3. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
3. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING SOUTHWEST. DUPLEXES (FEATURES 8 AND 9) ARE VISIBLE AT RIGHT EDGE OF PHOTOGRAPH. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
Characteristics of Laser Beam and Friction Stir Welded AISI 409M Ferritic Stainless Steel Joints
NASA Astrophysics Data System (ADS)
Lakshminarayanan, A. K.; Balasubramanian, V.
2012-04-01
This article presents the comparative evaluation of microstructural features and mechanical properties of friction stir welded (solid-state) and laser beam welded (high energy density fusion welding) AISI 409M grade ferritic stainless steel joints. Optical microscopy, microhardness testing, transverse tensile, and impact tests were performed. The coarse ferrite grains in the base material were changed to fine grains consisting duplex structure of ferrite and martensite due to the rapid cooling rate and high strain induced by severe plastic deformation caused by frictional stirring. On the other hand, columnar dendritic grain structure was observed in fusion zone of laser beam welded joints. Tensile testing indicates overmatching of the weld metal relative to the base metal irrespective of the welding processes used. The LBW joint exhibited superior impact toughness compared to the FSW joint.
NASA Astrophysics Data System (ADS)
Xia, Jinian; Huo, Xiangdong; Li, Liejun; Peng, Zhengwu; Chen, Songjun
2017-12-01
In this study, the TMCP parameters including non-recrystallization temperature (Tnr) and optimal isothermal temperature were determined by thermal simulation experiments, and a new Ti microalloyed high strength steel plate was developed by controlling thermo-mechanical control process (TMCP) schedule. The effects of TMCP process on microstructural features, precipitation behavior and mechanical properties of Ti microalloyed high strength steel plate were investigated. The results revealed that the double-stage rolling process consist of rolling in the γ recrystallization region and the γ non-recrystallization region was benefical to promoting the mechanical properties of Ti microalloyed steel by achieving grain refinement. It was also found that large amounts of fine TiC (<10 nm) particles were precipitated during the isothermal treatment at 600 °C, which generated a 215 MPa precipitation strengthening effect.
Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures
NASA Astrophysics Data System (ADS)
Ozturk, Tugce; Rollett, Anthony D.
2018-02-01
The present study is devoted to the creation of a process-structure-property database for dual phase titanium alloys, through a synthetic microstructure generation method and a mesh-free fast Fourier transform based micromechanical model that operates on a discretized image of the microstructure. A sensitivity analysis is performed as a precursor to determine the statistically representative volume element size for creating 3D synthetic microstructures based on additively manufactured Ti-6Al-4V characteristics, which are further modified to expand the database for features of interest, e.g., lath thickness. Sets of titanium hardening parameters are extracted from literature, and The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions.
Yablinsky, C. A.; Tippey, K. E.; Vaynman, S.; ...
2014-11-11
In this study, the development of oxide dispersion strengthened ferrous alloys has shown that microstructures designed for excellent irradiation resistance and thermal stability ideally contain stable nanoscale precipitates and dislocation sinks. Based upon this understanding, the microstructures of conventionally manufactured ferritic and ferritic-martensitic steels can be designed to include controlled volume fractions of fine, stable precipitates and dislocation sinks via specific alloying and processing paths. The concepts proposed here are categorized as advanced high-Cr ferritic-martensitic (AHCr-FM) and novel tailored precipitate ferritic (TPF) steels, which have the potential to improve the in-reactor performance of conventionally manufactured alloys. AHCr-FM steels have modifiedmore » alloy content relative to current reactor materials (such as alloy NF616/P92) to maximize desirable precipitates and control phase stability. TPF steels are designed to incorporate nickel aluminides, in addition to microalloy carbides, in a ferritic matrix to produce fine precipitate arrays with good thermal stability. Both alloying concepts may also benefit from thermomechanical processing to establish dislocation sinks and modify phase transformation behaviors. Alloying and processing paths toward designed microstructures are discussed for both AHCr-FM and TPF material classes.« less
Reassessing the improbability of a muscular crinoid stem
Gorzelak, Przemysław; Głuchowski, Edward; Salamon, Mariusz A.
2014-01-01
Muscular articulations in modern stalked crinoids are only present in the arms. Although it has been suggested that certain coiled-stemmed fossil taxa may have been functionally adapted to utilize muscles, evidence supporting this interpretation is lacking. Here, we use cathodoluminescence and SEM to reveal the skeletal microstructure of the enigmatic coiled-stemmed taxon Ammonicrinus (Flexibilia). Based on the well-established link between skeletal microstructure and the nature of infilling soft tissues in modern echinoderms, we reconstructed the palaeoanatomy of the Middle Devonian ammonicrinids. We show that their median columnals with elongated lateral columnal enclosure extensions (LCEE) have stereom microstructure unexpectedly resembling that in the crinoid muscular arm plates. In particular, large ligamentary facets, that are present on each side of a transverse ridge, are mainly comprised of fine galleried stereom that is indicative of the mutable collagenous tissues. In contrast, fine labyrinthic stereom, commonly associated with muscles, is situated in the periphery on each side of the surface of elongated LCEE. Our findings thus strongly suggest that the muscles may have also been present in the stem of ammonicrinids. These results reassess the previous hypotheses about evolution of muscles in crinoids and provide new insights into the mode of life of Ammonicrinus. PMID:25116414
Reassessing the improbability of a muscular crinoid stem
NASA Astrophysics Data System (ADS)
Gorzelak, Przemysław; Głuchowski, Edward; Salamon, Mariusz A.
2014-08-01
Muscular articulations in modern stalked crinoids are only present in the arms. Although it has been suggested that certain coiled-stemmed fossil taxa may have been functionally adapted to utilize muscles, evidence supporting this interpretation is lacking. Here, we use cathodoluminescence and SEM to reveal the skeletal microstructure of the enigmatic coiled-stemmed taxon Ammonicrinus (Flexibilia). Based on the well-established link between skeletal microstructure and the nature of infilling soft tissues in modern echinoderms, we reconstructed the palaeoanatomy of the Middle Devonian ammonicrinids. We show that their median columnals with elongated lateral columnal enclosure extensions (LCEE) have stereom microstructure unexpectedly resembling that in the crinoid muscular arm plates. In particular, large ligamentary facets, that are present on each side of a transverse ridge, are mainly comprised of fine galleried stereom that is indicative of the mutable collagenous tissues. In contrast, fine labyrinthic stereom, commonly associated with muscles, is situated in the periphery on each side of the surface of elongated LCEE. Our findings thus strongly suggest that the muscles may have also been present in the stem of ammonicrinids. These results reassess the previous hypotheses about evolution of muscles in crinoids and provide new insights into the mode of life of Ammonicrinus.
Improving precipitation hardening behavior of Mg−Zn based alloys with Ce−Ca microalloying additions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langelier, B., E-mail: langelb@mcmaster.ca
2016-10-15
The precipitation hardening behavior of newly developed Mg−Zn−Ca−Ce alloys, with modified texture and improved ductility, is studied to delineate the microstructural characteristics that lead to effective hardening upon ageing treatments. Advanced electron microscopy and atom probe techniques are used to analyze the structural characteristics in relevance to the hardening potential. It has been found that the formation of a new basal precipitate phase, which evolves from a single atomic layer GP zone, and is finely distributed in both under-aged and peak-aged microstructures, has a significant impact in the improvement of the hardening response compared with the base Mg−Zn alloys. Itmore » has also been found that the β′{sub 1} rod precipitates, commonly formed during ageing treatments of Mg−Zn alloys, have their size and distribution significantly refined in the Ca−Ce containing alloys. The role of alloy chemistry in the formation of the fine basal plate GP zones and the refinement in β′{sub 1} precipitation and their relationships to the hardening behavior are discussed. It is proposed that Ca microalloying governs the formation of the GP zones and the enhancement of hardening, particularly in the under-aged conditions, but that this is aided by a beneficial effect from Ce. - Highlights: • Ce−Ca microalloying additions improve hardening in Mg−Zn, over Ce or Ca alone. • Improved hardening is due to refined β′{sub 1} rods, and fine basal plate precipitates. • Atom probe tomography identifies Ca in both β′{sub 1} and the fine basal plates. • The fine basal plates originate as ordered monolayer GP zones with 1:1 Zn:Ca (at.%). • With ageing GP zones become more Zn-rich and transform to the fine basal plates.« less
Tools for Material Design and Selection
NASA Astrophysics Data System (ADS)
Wehage, Kristopher
The present thesis focuses on applications of numerical methods to create tools for material characterization, design and selection. The tools generated in this work incorporate a variety of programming concepts, from digital image analysis, geometry, optimization, and parallel programming to data-mining, databases and web design. The first portion of the thesis focuses on methods for characterizing clustering in bimodal 5083 Aluminum alloys created by cryomilling and powder metallurgy. The bimodal samples analyzed in the present work contain a mixture of a coarse grain phase, with a grain size on the order of several microns, and an ultra-fine grain phase, with a grain size on the order of 200 nm. The mixing of the two phases is not homogeneous and clustering is observed. To investigate clustering in these bimodal materials, various microstructures were created experimentally by conventional cryomilling, Hot Isostatic Pressing (HIP), Extrusion, Dual-Mode Dynamic Forging (DMDF) and a new 'Gradient' cryomilling process. Two techniques for quantitative clustering analysis are presented, formulated and implemented. The first technique, the Area Disorder function, provides a metric of the quality of coarse grain dispersion in an ultra-fine grain matrix and the second technique, the Two-Point Correlation function, provides a metric of long and short range spatial arrangements of the two phases, as well as an indication of the mean feature size in any direction. The two techniques are implemented on digital images created by Scanning Electron Microscopy (SEM) and Electron Backscatter Detection (EBSD) of the microstructures. To investigate structure--property relationships through modeling and simulation, strategies for generating synthetic microstructures are discussed and a computer program that generates randomized microstructures with desired configurations of clustering described by the Area Disorder Function is formulated and presented. In the computer program, two-dimensional microstructures are generated by Random Sequential Adsorption (RSA) of voxelized ellipses representing the coarse grain phase. A simulated annealing algorithm is used to geometrically optimize the placement of the ellipses in the model to achieve varying user-defined configurations of spatial arrangement of the coarse grains. During the simulated annealing process, the ellipses are allowed to overlap up to a specified threshold, allowing triple junctions to form in the model. Once the simulated annealing process is complete, the remaining space is populated by smaller ellipses representing the ultra-fine grain phase. Uniform random orientations are assigned to the grains. The program generates text files that can be imported in to Crystal Plasticity Finite Element Analysis Software for stress analysis. Finally, numerical methods and programming are applied to current issues in green engineering and hazard assessment. To understand hazards associated with materials and select safer alternatives, engineers and designers need access to up-to-date hazard information. However, hazard information comes from many disparate sources and aggregating, interpreting and taking action on the wealth of data is not trivial. In light of these challenges, a Framework for Automated Hazard Assessment based on the GreenScreen list translator is presented. The framework consists of a computer program that automatically extracts data from the GHS-Japan hazard database, loads the data into a machine-readable JSON format, transforms the JSON document in to a GreenScreen JSON document using the GreenScreen List Translator v1.2 and performs GreenScreen Benchmark scoring on the material. The GreenScreen JSON documents are then uploaded to a document storage system to allow human operators to search for, modify or add additional hazard information via a web interface.
TEM characterization of the fine scale microstructure of a Roman ferrous nail
NASA Astrophysics Data System (ADS)
Douin, J.; Henry, O.; Dabosi, F.; Sciau, P.
2010-07-01
This paper describes the microstructure of a Roman ferrous nail through its observation by transmission electron microscopy. The morphologies of pearlitic colonies and ferritic grains are detailed and the relationship between pearlitic colonies and ferrite in Roman nails is explicitly demonstrated for the first time. Observations also confirm the presence of dislocations in ferritic grains and attest to the existence of very small carbide precipitates that have not been pointed out previously in standard archaeometric studies.
Ranzieri, Paolo; Campanini, Marco; Fabbrici, Simone; Nasi, Lucia; Casoli, Francesca; Cabassi, Riccardo; Buffagni, Elisa; Grillo, Vincenzo; Magén, Cesar; Celegato, Federica; Barrera, Gabriele; Tiberto, Paola; Albertini, Franca
2015-08-26
Giant magnetically induced twin variant reorientation, comparable in intensity with bulk single crystals, is obtained in epitaxial magnetic shape-memory thin films. It is found to be tunable in intensity and spatial response by the fine control of microstructural patterns at the nanoscopic and microscopic scales. A thorough experimental study (including electron holography) allows a multiscale comprehension of the phenomenon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
2. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING NORTH-NORTHWEST. PORTION OF HEADFRAME AND STORAGE TANKS (FEATURE 18) VISIBLE IN UPPER RIGHT CORNER OF PHOTOGRAPH. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
NASA Astrophysics Data System (ADS)
Liu, Xiaoqi; Wang, Chengliang; Bai, Jianying; Liao, Guobin
2018-02-01
Portal hypertensive gastropathy (PHG) is common in gastrointestinal (GI) diseases, and a severe stage of PHG (S-PHG) is a source of gastrointestinal active bleeding. Generally, the diagnosis of PHG is made visually during endoscopic examination; compared with traditional endoscopy, (wireless capsule endoscopy) WCE with noninvasive and painless is chosen as a prevalent tool for visual observation of PHG. However, accurate measurement of WCE images with PHG is a difficult task due to faint contrast and confusing variations in background gastric mucosal tissue for physicians. Therefore, this paper proposes a comprehensive methodology to automatically detect S-PHG images in WCE video to help physicians accurately diagnose S-PHG. Firstly, a rough dominatecolor-tone extraction approach is proposed for better describing global color distribution information of gastric mucosa. Secondly, a hybrid two-layer texture acquisition model is designed by integrating co-occurrence matrix into local binary pattern to depict complex and unique gastric mucosal microstructure local variation. Finally, features of mucosal color and microstructure texture are merged into linear support vector machine to accomplish this automatic classification task. Experiments were implemented on an annotated data set including 1,050 SPHG and 1,370 normal images collected from 36 real patients of different nationalities, ages and genders. By comparison with three traditional texture extraction methods, our method, combined with experimental results, performs best in detection of S-PHG images in WCE video: the maximum of accuracy, sensitivity and specificity reach 0.90, 0.92 and 0.92 respectively.
TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louthan, M
2007-07-17
Traditional metallurgical processes are among the many ''old fashion'' practices that use nanoparticles to control the behavior of materials. Many of these practices were developed long before microscopy could resolve nanoscale features, yet the practitioners learned to manipulate and control microstructural elements that they could neither see nor identify. Furthermore, these early practitioners used that control to modify microstructures and develop desired material properties. Centuries old colored glass, ancient high strength steels and medieval organ pipes derived many of their desirable features through control of nanoparticles in their microstructures. Henry Sorby was among the first to recognize that the propertiesmore » of rocks, minerals, metals and organic materials were controlled by microstructure. However, Mr. Sorby was accused of the folly of trying to study mountains with a microscope. Although he could not resolve nanoscale microstructural features, Mr. Sorby's observations revolutionized the study of materials. The importance of nanoscale microstructural elements should be emphasized, however, because the present foundation for structural materials was built by manipulating those features. That foundation currently supports several multibillion dollar industries but is not generally considered when the nanomaterials revolution is discussed. This lecture demonstrates that using nanotechnologies to control the behavior of metallic materials is almost as old as the practice of metallurgy and that many of the emergent nanomaterials technologists are walking along pathways previously paved by traditional metallurgists.« less
NASA Astrophysics Data System (ADS)
Liu, Bert; Vivek, Anupam; Presley, Michael; Daehn, Glenn S.
2018-03-01
The ability to weld high-strength aluminum to high-strength steel is highly desired for vehicle lightweighting but difficult to attain by conventional means. In this work, vaporizing foil actuator welding was used to successfully weld four Al/Fe combinations consisting of high-strength alloys: AA5052-H32, AA6111-T4, DP980, and 22MnB5. Flyer velocities up to 727 m/s were reached using 10 kJ input energy. In lap-shear testing, samples primarily failed in base aluminum near the aluminum's native strength, showing that the welds were stronger than a base metal and that the base metal was not significantly weakened by the welding process. A particularly strong weld area was studied by transmission electron microscopy to shed light on the microstructural features of strong impact welds. It was found to be characterized by a continuously bonded, fully crystalline interface, extremely fine (nanoscale) grains, mesoscopic as well as microscopic wavy features, and lack of large continuous intermetallic compounds.
Singh, Alok
2014-01-01
The occurrence of a stable icosahedral (i-) phase, which is quasicrystalline with an icosahedral (fivefold) symmetry, on the equilibrium phase diagram of Mg–Zn–RE (RE = Y, Gd, Tb, Dy, Ho or Er) alloys opened up an interesting possibility of developing a new series of magnesium alloys for structural applications. Alloys based on the i-phase have been studied for the past 14 years. Ultra-high strengths combined with good ductility have been shown. Here we show two strategies for tailoring microstructures for very high strengths in Mg–Zn–Y alloys. One of them involves strengthening by a fine distribution of rod-like precipitates, where the matrix grain size is not critical. The alloy is solutionized at a high temperature of 480 °C to dissolve a large part of the i-phase, followed by a high temperature extrusion (∼430 °C) and a low temperature ageing to reprecipitate phases with fine size distribution. At first, phase transformations involved in this procedure are described. The closeness of the structure of the precipitates to the i-phase is brought out. By this procedure, tensile yield strengths of over 370 MPa are obtained in grain sizes of 20 μm. In another strategy, the alloys are chill cast and then extruded at low temperatures of about 250 °C. Ultra-fine grains are produced by enhanced recrystallization due to presence of the i-phase. At the same time nano-sized precipitates are precipitated dynamically during extrusion from the supersaturated matrix. Ultra-high tensile strengths of up to 400 MPa are obtained in combination with ductility of 12 to 16%. Analysis of the microstructure shows that strengthening by the i-phase occurs by enhanced recrystallization during extrusion. It produces ultra-fine grain sizes to give very high strengths, and moderate texture for good ductility. Fine distribution of the i-phase and precipitates contribute to strengthening and provide microstructre stability. Ultra-high strength over a very wide range of grain sizes is thus demonstrated, by utilizing different strengthening effects. PMID:27877701
Research on Microstructure and Properties of Welded Joint of High Strength Steel
NASA Astrophysics Data System (ADS)
Zhu, Pengxiao; Li, Yi; Chen, Bo; Ma, Xuejiao; Zhang, Dongya; Tang, Cai
2018-01-01
BS960 steel plates were welded by Laser-MAG and MAG. The microstructure and properties of the welded joints were investigated by optical microscope, micro-hardness tester, universal tensile testing machine, impact tester, scanning electron microscope (SEM) and fatigue tester. By a series of experiments, the following results were obtained: The grain size of the coarse grain zone with Laser-MAG welded joint is 20μm, and that with MAG welded joint is about 32μm, both of the fine grain region are composed of fine lath martensite and granular bainite; the width of the heat affected region with Laser-MAG is lower than that with MAG. The strength and impact energy of welded joints with Laser-MAG is higher than that with MAG. The conditioned fatigue limit of welded joint with Laser-MAG is 280MPa; however, the conditioned fatigue limit of welded joint with MAG is 250MPa.
Forging of Advanced Disk Alloy LSHR
NASA Technical Reports Server (NTRS)
Gabb, Timothy P.; Gayda, John; Falsey, John
2005-01-01
The powder metallurgy disk alloy LSHR was designed with a relatively low gamma precipitate solvus temperature and high refractory element content to allow versatile heat treatment processing combined with high tensile, creep and fatigue properties. Grain size can be chiefly controlled through proper selection of solution heat treatment temperatures relative to the gamma precipitate solvus temperature. However, forging process conditions can also significantly influence solution heat treatment-grain size response. Therefore, it is necessary to understand the relationships between forging process conditions and the eventual grain size of solution heat treated material. A series of forging experiments were performed with subsequent subsolvus and supersolvus heat treatments, in search of suitable forging conditions for producing uniform fine grain and coarse grain microstructures. Subsolvus, supersolvus, and combined subsolvus plus supersolvus heat treatments were then applied. Forging and subsequent heat treatment conditions were identified allowing uniform fine and coarse grain microstructures.
The microstructure and properties of rapidly solidified, dispersion-strengthened NiAl
NASA Technical Reports Server (NTRS)
Jha, S. C.; Ray, R.
1990-01-01
An advanced rapid solidification technology for processing reactive and refractory alloys, utilized to produce large quantities of melt-spun filaments of NiAl, is presented. The melt-spun filaments are pulverized to fine particle sizes, and subsequently consolidated by hot extrusion or hot isostatic pressing. Rapid solidification process gives rise to very fine-grained microstructures. However, exposure to elevated temperature during hot consolidation leads to grain growth. Alloying agents such as borides, carbides, and tungsten can pin the grain boundaries and retard the grain growth. Various alloy compositions are investigated. The eventual goal is to utilize the hot-extruded and forged stock to grow single-crystal NiAl blades for advanced gas-turbine engine applications. Single-crystal NiAl, containing a uniform dispersion of carbide strengthening precipitates, is expected to lead to highly creep-resistant turbine blades, and is of considerable interest to the aerospace propulsion industry.
The Effect of Solution Heat Treatment on an Advanced Nickel-Base Disk Alloy
NASA Technical Reports Server (NTRS)
Gayda, J.; Gabb, T. P.; Kantzos, P. T.
2004-01-01
Five heat treat options for an advanced nickel-base disk alloy, LSHR, have been investigated. These included two conventional solution heat treat cycles, subsolvus/oil quench and supersolvus/fan cool, which yield fine grain and coarse grain microstructure disks respectively, as well as three advanced dual microstructure heat treat (DMHT) options. The DMHT options produce disks with a fine grain bore and a coarse grain rim. Based on an overall evaluation of the mechanical property data, it was evident that the three DMHT options achieved a desirable balance of properties in comparison to the conventional solution heat treatments for the LSHR alloy. However, one of the DMHT options, SUB/DMHT, produced the best set of properties, largely based on dwell crack growth data. Further evaluation of the SUB/DMHT option in spin pit experiments on a generic disk shape demonstrated the advantages and reliability of a dual grain structure at the component level.
Crystal plasticity assisted prediction on the yield locus evolution and forming limit curves
NASA Astrophysics Data System (ADS)
Lian, Junhe; Liu, Wenqi; Shen, Fuhui; Münstermann, Sebastian
2017-10-01
The aim of this study is to predict the plastic anisotropy evolution and its associated forming limit curves of bcc steels purely based on their microstructural features by establishing an integrated multiscale modelling approach. Crystal plasticity models are employed to describe the micro deformation mechanism and correlate the microstructure with mechanical behaviour on micro and mesoscale. Virtual laboratory is performed considering the statistical information of the microstructure, which serves as the input for the phenomenological plasticity model on the macroscale. For both scales, the microstructure evolution induced evolving features, such as the anisotropic hardening, r-value and yield locus evolution are seamlessly integrated. The predicted plasticity behaviour by the numerical simulations are compared with experiments. These evolutionary features of the material deformation behaviour are eventually considered for the prediction of formability.
Effect of local void morphology on the reaction initiation mechanism in the case of pressed HMX
NASA Astrophysics Data System (ADS)
Roy, Sidhartha; Rai, Nirmal; Udaykumar, H. S.
2017-06-01
The microstructural characteristics of pressed HMX has a significant effect on its sensitivity under shock loading. The microstructure of pressed HMX contains voids of various orientation and aspect ratio. Subject to shock loading, these voids can collapse forming hotspots and initiate chemical reaction. This work shows how the ignition and growth of chemical reaction is dependent on the local microstructural features of the voids. Morphological quantities like size, aspect ratio and orientations are extracted from the real microstructural images of Class III and Class V pressed HMX. These morphological quantities are correlated with the ignition and growth rates of the chemical reaction. The dependency of the sensitivity of a given HMX sample on the local morphological features shows that these local features can create a mocroscale physical response.
Effect of microstructure on the thermoelectric performance of La{sub 1−x}Sr{sub x}CoO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viskadourakis, Z.; Department of Mechanical and Manufacturing Engineering, University of Cypruss, 75 Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia; Athanasopoulos, G.I.
We present a case where the microstructure has a profound effect on the thermoelectric properties of oxide compounds. Specifically, we have investigated the effect of different sintering treatments on La{sub 1−x}Sr{sub x}CoO{sub 3} samples synthesized using the Pechini method. We found that the samples, which are dense and consist of inhomogeneously-mixed grains of different size, exhibit both higher Seebeck coefficient and thermoelectric figure of merit than the samples, which are porous and consist of grains with almost identical size. The enhancement of Seebeck coefficient in the dense samples is attributed to the so-called “energy-filtering” mechanism that is related to themore » energy barrier of the grain boundary. On the other hand, the thermal conductivity for the porous compounds is significantly reduced in comparison to the dense compounds. It is suggested that a fine-manipulation of grain size ratio combined with a fine-tuning of porosity could considerably enhance the thermoelectric performance of oxides. - Graphical abstract: The enhancement of the dimensionless thermoelectric figure ZT of merit is presented for two equally Sr-doped LaCoO3 compounds, possessing different microstructure, indicating the effect of the latter to the thermoelectric performance of the La{sub 1−x}Sr{sub x}CoO{sub 3} solid solution. - Highlights: • Electrical and thermal transport properties are affected by the microstructure in La{sub 1−x}Sr{sub x}CoO{sub 3} polycrystalline materials. • Coarse/fine grain size distribution enhances the Seebeck coefficient. • Porosity reduces the thermal conductivity in La{sub 1−x}Sr{sub x}CoO{sub 3} polycrystalline samples. • The combination of large/small grain ratio distribution with the high porosity may result to the enhancement of the thermoelectric performance of the material.« less
NASA Astrophysics Data System (ADS)
Park, Duck-Gun; Kim, Cheol Gi; Hong, Jun-Hwa
2000-06-01
Magnetic Barkhausen noise and permeability spectra have been measured to characterize different microstructure regions such as coarse-grain region, fine-grain region, intercritical structure (composed of tempered martensite and bainite) within the heat-affected zone (HAZ) of SA508-3 steel weldments using simulated HAZ microstructure sample. The intercritical region and coarse-grained region can be distinguished from the BNE and relaxation frequency. The BNE was decreased in the martensite regions and increased in the bainite regions by the post-weld heat treatment (PWHT). The change of relaxation frequency also showed similar trends, but the rate of change was less than that of BNE. The behavior of BNE and permeability spectra on the corresponding microstructure can be explained in terms of carbide morphology and residual stress related with domain wall motion.
Thomas, Alyssa R; Lacadie, Cheryl; Vohr, Betty; Ment, Laura R; Scheinost, Dustin
2017-01-01
Adolescents born preterm (PT) with no evidence of neonatal brain injury are at risk of deficits in visual memory and fine motor skills that diminish academic performance. The association between these deficits and white matter microstructure is relatively unexplored. We studied 190 PTs with no brain injury and 92 term controls at age 16 years. The Rey-Osterrieth Complex Figure Test (ROCF), the Beery visual-motor integration (VMI), and the Grooved Pegboard Test (GPT) were collected for all participants, while a subset (40 PTs and 40 terms) underwent diffusion-weighted magnetic resonance imaging. PTs performed more poorly than terms on ROCF, VMI, and GPT (all P < 0.01). Mediation analysis showed fine motor skill (GPT score) significantly mediates group difference in ROCF and VMI (all P < 0.001). PTs showed a negative correlation (P < 0.05, corrected) between fractional anisotropy (FA) in the bilateral middle cerebellar peduncles and GPT score, with higher FA correlating to lower (faster task completion) GPT scores, and between FA in the right superior cerebellar peduncle and ROCF scores. PTs also had a positive correlation (P < 0.05, corrected) between VMI and left middle cerebellar peduncle FA. Novel strategies to target fine motor skills and the cerebellum may help PTs reach their full academic potential. © The Author 2017. Published by Oxford University Press.
Interpreting U-Pb data from primary and secondary features in lunar zircon
NASA Astrophysics Data System (ADS)
Grange, M. L.; Pidgeon, R. T.; Nemchin, A. A.; Timms, N. E.; Meyer, C.
2013-01-01
In this paper, we describe primary and secondary microstructures and textural characteristics found in lunar zircon and discuss the relationships between these features and the zircon U-Pb isotopic systems and the significance of these features for understanding lunar processes. Lunar zircons can be classified according to: (i) textural relationships between zircon and surrounding minerals in the host breccias, (ii) the internal microstructures of the zircon grains as identified by optical microscopy, cathodoluminescence (CL) imaging and electron backscattered diffraction (EBSD) mapping and (iii) results of in situ ion microprobe analyses of the Th-U-Pb isotopic systems. Primary zircon can occur as part of a cogenetic mineral assemblage (lithic clast) or as an individual mineral clast and is unzoned, or has sector and/or oscillatory zoning. The age of primary zircon is obtained when multiple ion microprobe analyses across the polished surface of the grain give reproducible and essentially concordant data. A secondary set of microstructures, superimposed on primary zircon, include localised recrystallised domains, localised amorphous domains, crystal-plastic deformation, planar deformation features and fractures, and are associated with impact processes. The first two secondary microstructures often yield internally consistent and close to concordant U-Pb ages that we interpret as dating impact events. Others secondary microstructures such as planar deformation features, crystal-plastic deformation and micro-fractures can provide channels for Pb diffusion and result in partial resetting of the U-Pb isotopic systems.
NASA Astrophysics Data System (ADS)
Worth, Brian D.; Jones, J. Wayne; Allison, John E.
1995-11-01
The influence of microstructure on creep deformation was examined in the near-y TiAl alloy Ti-49A1-1V. Specifically, microstructures with varying volume fractions of lamellar constituent were produced through thermomechanical processing. Creep studies were conducted on these various microstructures under constant load in air at temperatures between 760 °C and 870 °C and at stresses ranging from 50 to 200 MPa. Microstructure significantly influences the creep behavior of this alloy, with a fully lamellar microstructure yielding the highest creep resistance of the microstructures examined. Creep resistance is dependent on the volume fraction of lamellar constituent, with the lowest creep resistance observed at intermediate lamellar volume fractions. Examination of the creep deformation structure revealed planar slip of dislocations in the equiaxed y microstructure, while subboundary formation was observed in the duplex microstructure. The decrease in creep resistance of the duplex microstructure, compared with the equiaxed y microstructure, is attributed to an increase in dislocation mobility within the equiaxed y constituent, that results from partitioning of oxygen from the γ phase to the α2 phase. Dislocation motion in the fully lamellar microstructure was confined to the individual lamellae, with no evidence of shearing of γ/γ or γ/α2 interfaces. This suggests that the high creep resistance of the fully lamellar microstructure is a result of the fine spacing of the lamellar structure, which results in a decreased effective slip length for dislocation motion over that found in the duplex and equiaxed y microstructures.
NASA Astrophysics Data System (ADS)
Han, Seung Youb; Shin, Sang Yong; Seo, Chang-Hyo; Lee, Hakcheol; Bae, Jin-Ho; Kim, Kisoo; Lee, Sunghak; Kim, Nack J.
2009-08-01
In this study, four API X80 pipeline steels were fabricated by varying Mo, Cr, and V additions, and their microstructures and crystallographic orientations were analyzed to investigate the effects of their alloying compositions on tensile properties and Charpy impact properties. Because additions of Mo and V promoted the formation of fine acicular ferrite (AF) and granular bainite (GB) while prohibiting the formation of coarse GB, they increased the strength and upper-shelf energy (USE) and decreased the energy transition temperature (ETT). The addition of Cr promoted the formation of coarse GB and hard secondary phases, thereby leading to an increased effective grain size, ETT, and strength, and a decreased USE. The addition of V resulted in a higher strength, a higher USE, a smaller effective grain size, and a lower ETT, because it promoted the formation of fine and homogeneous of AF and GB. The steel that contains 0.3 wt pct Mo and 0.06 wt pct V without Cr had the highest USE and the lowest ETT, because its microstructure was composed of fine AF and GB while its maintained excellent tensile properties.
NASA Astrophysics Data System (ADS)
Chou, Tzu-Ting; Chen, Wei-Yu; Fleshman, Collin Jordon; Duh, Jenq-Gong
2018-03-01
A fine-grain structure with random orientations of lead-free solder joints was successfully obtained in this study. The Sn-Ag-Cu solder alloys doped with minor Ni were reflowed with Ni-based or Cu-based substrates to fabricate the joints containing different Ni content. Adding 0.1 wt.% Ni into the solder effectively promoted the formation of fine Sn grains, and reflowing with Ni-based substrates further enhanced the effects of β-Sn grain refinement. The crystallographic characteristics and the microstructures were analyzed to identify the solidification mechanism of different types of microstructure in the joints. The phase precipitating order in the joint altered as the solder composition were modified by elemental doping and changing substrate, which significantly affected the efficiency of grain refinement and the final grain structure. The formation mechanism of fine β-Sn grains in the Ni-doped joint with a Ni-based substrate is attributable to the heterogeneous nucleation by Ni, whereas the Ni in the joint using ChouCu-based substrate is consumed to form an intermetallic compound and thus retard the effect of grain refining.
4. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
4. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING SOUTHEAST. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
Solidification of undercooled liquids
NASA Technical Reports Server (NTRS)
Perepezko, J. H.; Shiohara, Y.; Paik, J. S.; Flemmings, M. C.
1982-01-01
During rapid solidification processing (RSP) the amount of liquid undercooling is an important factor in determining microstructural development by controlling phase selection during nucleation and morphological evolution during crystal growth. While undercooling is an inherent feature of many techniques of RSP, the deepest undercoolings and most controlled studies have been possible in carefully prepared fine droplet samples. From past work and recent advances in studies of nucleation kinetics it has become clear that the initiation of crystallization during RSP is governed usually by heterogeneous sites located at surfaces. With known nucleant sites, it has been possible to identify specific pathways of metastable phase formation and microstructural development in alloys. These advances have allowed for a clearer assessment of the interplay between undercooling, cooling rate and particle size statistics in structure formation. New approaches to the examination of growth processes have been developed to follow the thermal behavior and morphology in small samples in the period of rapid crystallization and recalescence. Based upon the new experimental information from these studies, useful models can be developed for the overall solidification process to include nucleation behavior, thermodynamic constraints, thermal history, growth kinetics, solute redistribution and resulting structures. From the refinement of knowledge concerning the underlying factors that govern RSP a basis is emerging for an effective alloy design and processing strategy.
A laboratory means to produce tough aluminum sheet from powder
NASA Technical Reports Server (NTRS)
Singleton, O. R.; Royster, D. M.; Thomas, J. R.
1990-01-01
The rapid solidification of aluminum alloys as powder and the subsequent fabrication processes can be used to develop and tailor alloys to satisfy specific aerospace design requirements, including high strength and toughness. Laboratory procedures to produce aluminum powder-metallurgy (PM) materials are efficient but require evidence that the laboratory methods used can produce a product with superior properties. This paper describes laboratory equipment and procedures which can be used to produce tough aluminum PM sheet. The processing of a 2124 + 0.9 percent Zr aluminum alloy powder is used as an example. The fully hardened sheet product is evaluated in terms of properties and microstructure. The key features of the vacuum hot press pressing operation used to consolidate the powder are described. The 2124 + 0.9 percent Zr - T8 temper aluminum sheet produced was both strong (460-490 MPa yield strength) and tough (Kahn Tear unit-propagation- energy values over three times those typical for ingot metallurgy 2024-T81). Both the longitudinal and longitudinal-transverse directions of the sheet were tested. The microstructure was well refined with subgrains of one or two micrometers. Fine dispersoids of Al3Zr in the precipitate free regions adjacent to boundaries are believed to contribute to the improved toughness.
The use of cold sprayed alloys for metallic stents
NASA Astrophysics Data System (ADS)
AL-Mangour, Bandar
With the invention of the coronary stent, which is a wire metal mesh tube designed to keep the arteries open in the treatment of heart diseases, promising clinical outcomes were generated. However, the long term successes of stents have been delayed by significant in-stent restenosis (blockages) and stent fracture. In this research work, it has been proposed to use Cold Gas Dynamic Spraying (CGDS) coating material as an alternative choice to manufacture metallic stent. In CGDS, fine particles are accelerated to a high velocity and undergo solid-state plastic deformation upon impact on the substrate, which leads to particle-particle bonding. The feature of CGDS distinct from other thermal spray techniques is that the processing gas temperature is below the melting point of the feedstock. Therefore, unwanted effects of high temperatures, such as oxidation, grain growth and thermal stresses, are absent. In response to the fact that the majority of stents are made from stainless steel (316L) or Co-Cr alloy (L605), this study specifically addresses the development and characterization of 316L and 316L mixed with L605 coatings produced by the CGDS process. Scanning electron microscopy and electron backscatter diffraction were used to investigate the microstructural changes of these coatings before and after annealing. The effect of gas type on the microstructure of 316L coatings and the role of post-heat treatment in the microstructure and properties are also studied. Of particular interest are grain refinement, heat treatment, mechanical properties and corrosion behavior of the cold sprayed material.
Sethmann, Ingo; Wendt-Nordahl, Gunnar; Knoll, Thomas; Enzmann, Frieder; Simon, Ludwig; Kleebe, Hans-Joachim
2017-06-01
Randall's plaques (RP) are preferred sites for the formation of calcium oxalate monohydrate (COM) kidney stones. However, although processes of interstitial calcium phosphate (CaP) plaque formation are not well understood, the potential of plaque microstructures as indicators of CaP precipitation conditions received only limited attention. We investigated RP-associated COM stones for structural details of the calcified tissues and microstructural features of plaque-stone interfaces as indicators of the initial processes of stone formation. Significantly increased CaP supersaturation can be expected for interstitial fluid, if reabsorbed ions from the tubular system continuously diffuse into the collagenous connective tissue. Densely packed, fine-grained CaP particles were found in dense textures of basement membranes while larger, laminated particles were scattered in coarse-meshed interstitial tissue, which we propose to be due to differential spatial confinements and restrictions of ion diffusion. Particle morphologies suggest an initial precipitation as metastable amorphous calcium phosphate (ACP). Morphologies and arrangements of first COM crystals at the RP-stone interface ranged from stacked euhedral platelets to skeletal morphologies and even porous, dendritic structures, indicating, in this order, increasing levels of COM supersaturation. Furthermore, these first COM crystals were often coated with CaP. On this basis, we propose that ions from CaP-supersaturated interstitial fluid may diffuse through porous RP into the urine, where a resulting local increase in COM supersaturation could trigger crystal nucleation and, hence, initiate stone formation. Ion-depleted fluid in persistent pores of initial COM layers may get replenished from interstitial fluid, leading to CaP precipitation in porous COM.
NASA Astrophysics Data System (ADS)
Skvortsova, E. B.; Shein, E. V.; Abrosimov, K. N.; Romanenko, K. A.; Yudina, A. V.; Klyueva, V. V.; Khaidapova, D. D.; Rogov, V. V.
2018-02-01
With the help of computed X-ray microtomography with a resolution of 2.75 μm, changes in the microstructure and pore space of aggregates of 3 mm in diameter from the virgin soddy-podzolic soil (Glossic Retisol (Loamic)) in the air-dry, capillary-moistened, and frozen states after five freeze-thaw cycles were studied in a laboratory experiment. The freezing of the samples was performed at their capillary moistening. It was shown that capillary moistening of initially air-dry samples from the humus (AY), eluvial (EL), and illuvial (BT1) horizons at room temperature resulted in the development of the platy, fine vesicular, and angular blocky microstructure, respectively. The total volume of tomographically visible pores >10 μm increased by 1.3, 2.2, and 3.4 times, respectively. After freeze-thaw cycles, frozen aggregates partly preserved the structural arrangement formed during the capillary moistening. At the same time, in the frozen aggregate from the AY horizon, the total tomographic porosity decreased to the initial level of the air-dry soil. In the frozen aggregate from the EL horizon, large vesicular pores were formed, owing to which the total pore volume retained its increased values. The resistance of aggregate shape to the action of freeze-thaw cycles differed. The aggregate from the EL horizon completely lost its original configuration by the end of the experiment. The aggregate from the AY horizon displayed definite features of sagging after five freeze-thaw cycles, whereas the aggregate from the BT1 horizon preserved its original configuration.
Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro
2008-02-01
Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirras, G., E-mail: dirras@univ-paris13.fr; Ouarem, A.; Couque, H.
2011-05-15
Polycrystalline Zn with an average grain size of about 300 {mu}m was deformed by direct impact Hopkinson pressure bar at a velocity of 29 m/s. An inhomogeneous grain structure was found consisting of a center region having large average grain size of 20 {mu}m surrounded by a fine-grained rim with an average grain size of 6 {mu}m. Transmission electron microscopy investigations showed a significant dislocation density in the large-grained area while in the fine-grained rim the dislocation density was negligible. Most probably, the higher strain yielded recrystallization in the outer ring while in the center only recovery occurred. The hardeningmore » effect of dislocations overwhelms the smaller grain size strengthening in the center part resulting in higher nanohardness in this region than in the outer ring. - Graphical Abstract: (a): EBSD micrograph showing the initial microstructure of polycrystalline Zn that was subsequently submitted to high strain rate impact. (b): an inhomogeneous grain size refinement was obtained which consists of a central coarse-grained area, surrounded by a fine-grained recrystallized rim. The black arrow points to the disc center. Research Highlights: {yields} A polycrystalline Zn specimen was submitted to high strain rate impact loading. {yields} Inhomogeneous grain refinement occurred due to strain gradient in impacted sample. {yields} A fine-grained recrystallized rim surrounded the coarse-grained center of specimen. {yields} The coarse-grained center exhibited higher hardness than the fine-grained rim. {yields} The higher hardness of the center was caused by the higher dislocation density.« less
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1987-01-01
A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature.
NASA Astrophysics Data System (ADS)
Kavousi Sisi, A.; Mirsalehi, S. E.
2015-04-01
In the present paper, influences of normalization heat treatment on microstructural and mechanical properties of high-frequency induction welded (HFIW) joints of X52 steel have been investigated. HFIW joints were post-weld heat treated at different times and temperatures. The microstructure and mechanical properties of the heat treated joints were then comprehensively investigated. Based on the results, a proper normalization of the primary fine grain steel caused the grain size to increase; but because of converting brittle microstructure into ductile microstructure, it caused the toughness to increase also. In addition, the ductility of the joints was enhanced. Nevertheless, tensile strength, yield strength, and hardness were reduced. The results showed that 950 °C was the optimum normalization temperature from the standpoint of fracture toughness for the X52 steel joints. At 1050 °C, the carbides and/or nitrides in the steel dissolved, and excessive grain growth occurred. Hence, the maximum allowable temperature for normalization was found to be 1000 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Cong, E-mail: xucong55555@gmail.com; Xiao, Wenlong, E-mail: wlxiao@buaa.edu.cn; Hanada, Shuji
2015-12-15
Effect of scandium (Sc) additions on the microstructure, mechanical properties and fracture behavior of Al–Si–Mg casting alloy (F357) were systematically investigated. It was found that Sc addition caused a multi-refining efficiency on the microstructure of as-cast F357 alloy, including refinement of grains and secondary dendrite arm spacing (SDAS), modification of eutectic Si and harmless disposal of β-Al{sub 5}FeSi phase. Subsequent T6 heat treatment had further induced the complete spheroidization of eutectic Si and precipitation of fine secondary Al{sub 3}Sc dispersoids in the Sc modified alloys. Thus the mechanical properties, especially the ductility, were significantly enhanced by the addition of Scmore » combined with the heat treatment. The highest ultimate tensile strength, yield strength and elongation were achieved in 0.8 wt.% Sc modified F357 alloy combined with T6 heat treatment. Furthermore, fractographic examinations indicated that the ductile fracture mechanism served as a dominate role in the modified alloys due to the formation of fine, deep and uniformly distributed dimples. - Highlights: • Detailed characterization of the multi-refining microstructure of Sc modified F357 alloy was performed. • The multi-refinement was proposed to refine grain and SDAS, modify eutectic Si and β-phase. • Sc modifier combined with T6 treatment is effective in improving tensile properties. • Modification of eutectic Si in F357 alloy with Sc is consistent with the IIT mechanism.« less
Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; ...
2017-11-06
The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. In order to resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. Here, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled withmore » a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.« less
NASA Astrophysics Data System (ADS)
Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; Lim, Hojun; Littlewood, David J.
2018-02-01
The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro
The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. In order to resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. Here, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled withmore » a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.« less
Mechanical Properties and Microstructural Evolution of Welded Eglin Steel
NASA Astrophysics Data System (ADS)
Leister, Brett M.
Eglin steel is a new ultra-high strength steel that has been developed at Eglin Air Force Base in the early 2000s. This steel could be subjected to a variety of processing steps during fabrication, each with its own thermal history. This article presents a continuous cooling transformation diagram developed for Eglin steel to be used as a guideline during processing. Dilatometry techniques performed on a Gleeble thermo-mechanical simulator were combined with microhardness results and microstructural characterization to develop the diagram. The results show that four distinct microstructures form within Eglin steel depending on the cooling rate. At cooling rates above about 1 °C/s, a predominately martensitic microstructure is formed with hardness of ˜520 HV. Intermediate cooling rates of 1 °C/s to 0.2 °C/s produce a mixed martensitic/bainitic microstructure with a hardness that ranges from 520 - 420 HV. Slower cooling rates of 0.1 °C/s to 0.03 °C/s lead to the formation of a bainitic microstructure with a hardness of ˜420 HV. The slowest cooling rate of 0.01 °C/s formed a bainitic microstructure with pearlite at the prior austenite grain boundaries. A comprehensive study was performed to correlate the mechanical properties and the microstructural evolution in the heat affected zone of thermally simulated Eglin steel. A Gleeble 3500 thermo-mechanical simulator was used to resistively heat samples of wrought Eglin steel according to calculated thermal cycles with different peak temperatures at a heat input of 1500 J/mm. These samples underwent mechanical testing to determine strength and toughness, in both the `as-simulated' condition and also following post-weld heat treatments. Mechanical testing has shown that the inter-critical heat affected zone (HAZ) has the lowest strength following thermal simulation, and the fine-grain and coarse-grain heat affected zone having an increased strength when compared to the inter-critical HAZ. The toughness of the heat affected zone in the as-simulated condition is lower than that of the base metal. Post-weld heat treatments (PWHT) have been shown to increase the toughness of the HAZ, but at the expense of strength. In addition, certain combinations of PWHTs within specific HAZ regions have exhibited low toughness caused by tempered martensite embrittlement or intergranular failure. Synchrotron X-ray diffraction data has shown that Eglin steel has retained austenite in the fine-grain HAZ in the as-simulated condition. In addition, alloy carbides (M23C 6, M2C, M7C3) have been observed in the diffraction spectra for the fine-grain and coarse-grain HAZ following a PWHT of 700 °C / 4 hours. A first attempt at thermodynamic modeling has been undertaken using MatCalc to try to predict the evolution of carbides in the HAZ following thermal cycling and PWHT.
Microstructural observations in rapidly-solidified and heat-treated Ni3Al-Cr alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carro, G.; Flanagan, W.F.
1992-08-01
The microstructural development following heat treatments of several rapidly-solidified Ni3Al-Cr and Ni3Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100 percent gamma-prime phase - in the form of fine antiphase domains (APD) - or a mixture of gamma-prime (APDs) and beta phases. Upon annealing, the as-solidified microstructures transform to either APD-free gamma-prime or mixtures of gamma and gamma-prime phases. For those compositions where the quenched microstructures were 100 percent gamma-prime it was observed that APD coarsening followed conventional grain-growth kinetics, but when gamma phase precipitated on the APD boundaries the rate constant changed abruptly while themore » time exponent remained unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr5B3. 14 refs.« less
Microstructural observations in rapidly-solidified and heat-treated Ni sub 3 Al-Cr alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carro, G.; Flanagan, W.F.
1992-01-01
In this paper , the microstructural development following heat treatments of several rapidly-solidified Ni{sub 3}Al-Cr and Ni{sub 3}Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100% {gamma} phase-in the form of fine anti-phase domains (APD)-or a mixture of {gamma} (APDs) and {beta} phases. Upon annealing, the as-solidified microstructures transform to either APD-free {gamma}or mixtures of {gamma}and {gamma}{prime} phases. For those compositions where the quenched microstructures were 100{gamma}{prime} it was observed that APD coarsening followed conventional grain-growth kinetics, but when {gamma} phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remainedmore » unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr{sub 5}B{sub 3}.« less
Microstructural observations in rapidly-solidified and heat-treated Ni3Al-Cr alloys
NASA Technical Reports Server (NTRS)
Carro, G.; Flanagan, W. F.
1992-01-01
The microstructural development following heat treatments of several rapidly-solidified Ni3Al-Cr and Ni3Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100 percent gamma-prime phase - in the form of fine antiphase domains (APD) - or a mixture of gamma-prime (APDs) and beta phases. Upon annealing, the as-solidified microstructures transform to either APD-free gamma-prime or mixtures of gamma and gamma-prime phases. For those compositions where the quenched microstructures were 100 percent gamma-prime it was observed that APD coarsening followed conventional grain-growth kinetics, but when gamma phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remained unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr5B3.
NASA Astrophysics Data System (ADS)
Jang, Jae-Myeong; Kim, Sung-Joon; Kang, Nam Hyun; Cho, Kyung-Mox; Suh, Dong-Woo
2009-12-01
The effects of annealing conditions on microstructural evolution and mechanical properties have been investigated in low carbon, manganese TRIP (Mn TRIP) steel based on a 0.12C-6Mn-0.5Si-3Al alloy system. The microstructure of cold-rolled sheet subjected to annealing at 760 °C to 800 °C for 30 s to 1800 s consists of a recrystallized ferrite matrix and fine-grained austenite with a phase fraction of 25 % to 35 %. Variation of the annealing conditions remarkably influenced the characteristics of constituent phases and thus affected the tensile strength and elongation. Optimization of microstructural parameters such as grain size and fraction of constituent phases, which control the yield strength, overall work hardening, and the kinetics of strain-induced martensite formation, is thus critical for obtaining an exceptional mechanical balance of the alloy.
Deformation-Induced Dynamic Precipitation and Resulting Microstructure in a Mg-Zn-Ca Alloy
NASA Astrophysics Data System (ADS)
Du, Yuzhou; Zheng, Mingyi; Jiang, Bailing; Zhou, Kesong
2018-05-01
The microstructure of an Mg-Zn-Ca extrusion was investigated by transmission electron microscopy, and the interaction between dynamic precipitation and dynamic recrystallization was analyzed. The results showed that dynamic precipitation significantly affected the microstructure of the as-extruded Mg-Zn-Ca alloy. The pinning effects of precipitates on dislocations effectively prohibited dynamic recrystallization processes, while the grain boundary precipitate Ca2Mg6Zn3, inhibited the growth of dynamically recrystallized grains. Consequently, a bimodal microstructure with fine dynamically recrystallized (DRXed) grains and elongated deformed regions was obtained for the Mg-Zn-Ca extrusion. High-resolution transmission electron microscopy indicated that the intragranular precipitate MgZn2 had a crystal orientation relationship with α-Mg in the form of (0002)Mg//(10-13)MgZn2 and [1-100]Mg//[1-210]MgZn2, which was beneficial for strength improvement.
An Experimental Investigation on Hardness and Microstructure of Heat Treated EN 9 Steel
NASA Astrophysics Data System (ADS)
Biswas, Palash; Kundu, Arnab; Mondal, Dhiraj
2017-08-01
In the modern engineering world, extensive research has led to the development of some special grades of steel, often suited for enhanced functions. EN 9 steel is one such grade, having major applications in power plants, automobile and aerospace industry. Different heat treatment processes are employed to achieve high hardness and high wear resistance, but machinability subsequently decreases. Existing literature is not sufficient to achieve a balance between hardness and machinability. The aim of this experimental work is to determine the hardness values and observe microstructural changes in EN9 steel, when it is subjected to annealing, normalizing and quenching. Finally, the effects of tempering after each of these heat treatments on hardness and microstructure have also been shown. It is seen that the tempering after normalizing the specimen achieved satisfactory results. The microstructure was also observed to be consisting of fine grains.
Method of producing improved microstructure and properties for ceramic superconductors
Singh, Jitendra P.; Guttschow, Rob A.; Dusek, Joseph T.; Poeppel, Roger B.
1996-01-01
A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2). The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C. resulted in a fine-grain microstructure, with an average grain size of approximately 4 .mu.m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity.
Method of producing improved microstructure and properties for ceramic superconductors
Singh, J.P.; Guttschow, R.A.; Dusek, J.T.; Poeppel, R.B.
1996-06-11
A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa{sub 2}Cu{sub 3}O{sub x} indicates that sintering kinetics are enhanced at reduced p(O{sub 2}). The density of specimens sintered at 910 C increased from 79 to 94% theoretical when p(O{sub 2}) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O{sub 2}) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910 C resulted in a fine-grain microstructure, with an average grain size of approximately 4 {micro}m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity. 20 figs.
Continuous Cooling Transformations in Nuclear Pressure Vessel Steels
NASA Astrophysics Data System (ADS)
Pous-Romero, Hector; Bhadeshia, Harry K. D. H.
2014-10-01
A class of low-alloy steels often referred to as SA508 represent key materials for the manufacture of nuclear reactor pressure vessels. The alloys have good properties, but the scatter in properties is of prime interest in safe design. Such scatter can arise from microstructural variations but most studies conclude that large components made from such steels are, following heat treatment, fully bainitic. In the present work, we demonstrate with the help of a variety of experimental techniques that the microstructures of three SA508 Gr.3 alloys are far from homogeneous when considered in the context of the cooling rates encountered in practice. In particular, allotriomorphic ferrite that is expected to lead to a deterioration in toughness, is found in the microstructure for realistic combinations of austenite grain size and the cooling rate combination. Parameters are established to identify the domains in which SA508 Gr.3 steels transform only into the fine bainitic microstructures.
[Microstructure and mechanical property of a new IPS-Empress 2 dental glass-ceramic].
Luo, Xiao-ping; Watts, D C; Wilson, N H F; Silsons, N; Cheng, Ya-qin
2005-03-01
To investigate the microstructure and mechanical properties of a new IPS-Empress 2 dental glass-ceramic. AFM, SEM and XRD were used to analyze the microstructure and crystal phase of IPS-Empress 2 glass-ceramic. The flexural strength and fracture toughness were tested using 3-point bending method and indentation method respectively. IPS-Empress 2 glass-ceramic mainly consisted of lithium disilicate crystal, lithium phosphate and glass matrix, which formed a continuous interlocking structure. The crystal phases were not changed before and after hot-pressed treatment. AFM showed nucleating agent particles of different sizes distributed on the highly polished ceramic surface. The strength and fracture toughness were 300 MPa and 3.1 MPam(1/2). The high strength and fracture toughness of IPS-Empress 2 glass ceramic are attributed to the fine lithium disilicate crystalline, interlocking microstructure and crack deflection.
Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils
NASA Astrophysics Data System (ADS)
Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching
2017-08-01
Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.
Correlation of Rupture Life, Creep Rate, and Microstructure for Type 304 Stainless Steel
NASA Technical Reports Server (NTRS)
Swindeman, R. W.; Moteff, J.
1983-01-01
The stress and temperature sensitivites of the rupture life and secondary creep rate were examined in detail for a single heat of type 304 stainless steel (9T2796). Assuming that the rupture life has a power law stress dependency, relatively small differences in the stress exponent were observed over a broad range of stress and temperature. In contrast, large changes were observed for equivalent parameter for secondary creep rate. As a result of these differences, the Monkman-Grant correlation was sensitive to stress and temperature below 650 C. Metallurgical studies based on light and transmission electron microscopy suggested that the temperature and stress sensitivities of secondary creep rate at temperatures below 650 C were related to features of the substructure not present at higher temperature. Specifically, the presence of a fine dislocation network stabilized by precipitates altered the stress and temperature sensitivities relative to what might be expected from high temperature studies.
Microstructural control of FeCrAl alloys using Mo and Nb additions
Sun, Zhiqian; Bei, Hongbin; Yamamoto, Yukinori
2017-08-14
The effects of Mo and Nb additions on the microstructure and mechanical properties of two FeCrAl alloys were studied in this paper. Fine and uniform recrystallized grain structures (~ 20–30 μm) were achieved in both alloys through suitable annealing after warm-rolling. The formation of Fe 2Nb-type Laves phase precipitates in the Nb-containing FeCrAl alloy effectively stabilized the deformed and recrystallized microstructures. The Mo-containing FeCrAl alloy exhibited strong γ texture fiber after annealing at 650–900 °C, whereas the annealed Nb-containing FeCrAl alloy had much weaker texture. Finally, both strength and ductility decreased as the grain size increased in both alloys.
NASA Astrophysics Data System (ADS)
Fonda, R. W.; Spanos, G.
2000-09-01
The transformation behavior and microstructural evolution of the as-deposited weld metal from an ultra-low-carbon (ULC) weldment were characterized by dilatometry, optical microscopy, transmission electron microscopy, and microhardness measurements. These results were used to construct a continuous cooling transformation (CCT) diagram for this weld metal. The major microconstituents observed in this ULC weldment were (in order of decreasing cooling rate) coarse autotempered martensite, fine lath martensite, lath ferrite, and degenerate lath ferrite. No polygonal ferrite was observed. These results were also used to develop criteria to differentiate between the two predominant microstructures in these ULC steels, lath martensite, and lath ferrite, which can look quite similar but have very different properties.
Microstructural Characterization of Melt Extracted High-Nb-Containing TiAl-Based Fiber
Zhang, Shuzhi; Zhang, Shuling; Chen, Yanfei; Han, Jianchao; Zhang, Changjiang; Wang, Xiaopeng; Chen, Yuyong
2017-01-01
The microstructure of melt extracted Ti-44Al-8Nb-0.2W-0.2B-1.5Si fiber were investigated. When the rotation speed increased from 2000 to 2600 r/min, the appearance of the wire was uniform with no Rayleigh-wave default. The structure was mainly composed of fine α2 (α) phase dendritic crystal and a second phase between dendrite arms and grain boundaries. The precipitated second phases were confirmed to be Ti5Si3 from the eutectic reaction L→Ti5Si3 + α and TiB. As the lower content of Si and higher cooling rate, a divorced eutectic microstructure was obtained. Segregation of Ti, Nb, B, Si, and Al occurred during rapid solidification. PMID:28772555
NASA Astrophysics Data System (ADS)
Krishna, S. Chenna; Gangwar, Narendra Kumar; Jha, Abhay K.; Pant, Bhanu; George, Koshy M.
2015-04-01
The microstructure and hardness of a nitrogen-containing martensitic stainless steel were investigated as a function of heat treatment using optical microscopy, electron microscopy, amount of retained austenite, and hardness measurement. The steel was subjected to three heat treatments: hardening, cryo treatment, and tempering. The hardness of the steel in different heat-treated conditions ranged within 446-620 HV. The constituents of microstructure in hardened condition were lath martensite, retained austenite, M23C6, M7C3, MC carbides, and M(C,N) carbonitrides. Upon tempering at 500 °C, two new phases have precipitated: fine spherical Mo2C carbides and needle-shaped Cr2N particles.
NASA Astrophysics Data System (ADS)
Lu, Xiao; Li, Jia; Zhu, Jian-Gang; Laughlin, David E.; Zhu, Jingxi
2018-06-01
Templated growth of two-phase thin films can achieve desirably ordered microstructures. In such cases, the microstructure of the growing films follows the topography of the template. By combining the Potts model Monte Carlo simulation and the "level set" method, an attempt was previously made to understand the physical mechanism behind the templated growth process. In the current work, this model is further used to study the effect of two parameters within the templated growth scenario, namely, the temperature and the geometric features of the template. The microstructure of the thin film grown with different lattice temperatures and domes is analyzed. It is found that within a moderate temperature range, the effect of geometric features took control of the ordering of the microstructure by its influence on the surface energy gradient. Interestingly, within this temperature range, as the temperature is increased, an ordered microstructure forms on a template without the optimal geometric features, which seems to be a result of competition between the kinetics and the thermodynamics during deposition. However, when the temperature was either above or below this temperature range, the template provided no guide to the whole deposition so that no ordered microstructure formed.
Research on Submarine Pipeline Steel with High Performance
NASA Astrophysics Data System (ADS)
Ren, Yi; Liu, Wenyue; Zhang, Shuai; Wang, Shuang; Gao, Hong
Submarine pipeline steel has largely uniform elongation, low yield ratio and good balance between high strength and high plasticity because of the microstructure with dual phase. In this work, the microstructure and properties of the submarine pipeline steel are studied. The results show that the matrix structure is consisted of ferrite, bainite and martensite -austenite islands. The structure has a tight relationship with the thermal-mechanical controlled process. Fine dual phase shows good plasticity and low yield ratio, which can support the good balance between high strength and high plasticity.
Impact Ignition of Low Density Mechanically Activated and Multilayer Foil Ni/Al
NASA Astrophysics Data System (ADS)
Beason, Matthew; Mason, B.; Son, Steven; Groven, Lori
2013-06-01
Mechanical activation (MA) via milling of reactive materials provides a means of lowering the ignition threshold of shock initiated reactions. This treatment provides a finely mixed microstructure with wide variation in the resulting scales of the intraparticle microstructure that makes model validation difficult. In this work we consider nanofoils produced through vapor deposition with well defined periodicity and a similar degree of fine scale mixing. This allows experiments that may be easier to compare with computational models. To achieve this, both equimolar Ni/Al powder that has undergone MA using high energy ball milling and nanofoils milled into a powder using low energy ball milling were used. The Asay Shear impact experiment was conducted on both MA Ni/Al and Ni/Al nanofoil-based powders at low densities (<60%) to examine their impact response and reaction behavior. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were used to verify the microstructure of the materials. The materials' mechanical properties were evaluated using nano-indentation. Onset temperatures were evaluated using differential thermal analysis/differential scanning calorimetry. Impact ignition thresholds, burning rates, temperature field, and ignition delays are reported. Funding from the Defense Threat Reduction Agency (DTRA) Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Gao, Zhongtang; Hu, Rui; Guo, Wei; Zhang, Chuanwei
2018-04-01
The combination of liquidus casting and thermal control solidification furnace was applied to obtain a fine-grained ingot. A rapid quenching method and x-ray diffraction measurement were used to investigate the effect of authigenic inoculation on grain refinement. The structure factor S(Q) of liquid Ni-Cr-W superalloy at 1400 °C (Liquidus temperature) and bright-field image of the microstructures quenched from 1400 °C have been measured by the high-temperature x-ray diffractometer and the transmission electron microscopy (TEM), respectively. The results show that a pre-peak exists on a S(Q) curve at the liquidus temperature. The clusters of atom in rapidly quenched microstructures obtained by isothermal heat treatment at 1400 °C were studied using TEM. Meanwhile, the effect of isothermal different temperatures on rapidly quenched microstructures was studied. The results also show that there are only the globular, equiaxed grains distributed in the solidification structure. These particles are inherited from the medium-range order structure, which is beneficial for grain refinement. The normalized work-hardening rate-strain curve indicates the work-hardening rate of fine grain is higher than that of conventional grain at the same temperature and the same deformation.
NASA Astrophysics Data System (ADS)
Gao, Zhongtang; Hu, Rui; Guo, Wei; Zhang, Chuanwei
2018-05-01
The combination of liquidus casting and thermal control solidification furnace was applied to obtain a fine-grained ingot. A rapid quenching method and x-ray diffraction measurement were used to investigate the effect of authigenic inoculation on grain refinement. The structure factor S( Q) of liquid Ni -Cr-W superalloy at 1400 °C (Liquidus temperature) and bright-field image of the microstructures quenched from 1400 °C have been measured by the high-temperature x-ray diffractometer and the transmission electron microscopy (TEM), respectively. The results show that a pre-peak exists on a S( Q) curve at the liquidus temperature. The clusters of atom in rapidly quenched microstructures obtained by isothermal heat treatment at 1400 °C were studied using TEM. Meanwhile, the effect of isothermal different temperatures on rapidly quenched microstructures was studied. The results also show that there are only the globular, equiaxed grains distributed in the solidification structure. These particles are inherited from the medium-range order structure, which is beneficial for grain refinement. The normalized work-hardening rate-strain curve indicates the work-hardening rate of fine grain is higher than that of conventional grain at the same temperature and the same deformation.
NASA Astrophysics Data System (ADS)
Zhang, Baicheng; Bi, Guijun; Nai, Sharon; Sun, Chen-nan; Wei, Jun
2016-06-01
In this study, micron-size TiB2 particles were utilized to reinforce Inconel 625 produced by selective laser melting. Exceptional microhardness 600-700 HV0.3 of the composite was obtained. In further investigation, the microstructure and mechanical properties of Inconel 625/TiB2 composite can be significantly influenced by addition of TiB2 particles during SLM. It was found that the long directional columnar grains observed from SLM-processed Inconel 625 were totally changed to fine dendritic matrix due to the addition of TiB2 particles. Moreover, with laser energy density (LED) of 1200 J/m, a Ti, Mo rich interface around TiB2 particles with fine thickness can be observed by FESEM and EDS. The microstructure evolution can be determined by different laser energy density (LED): under 1200 J/m, γ phase in dendrite grains; under 600 J/m, γ phase in combination of dendritic and acicular grains; under 400 J/m, γ phase acicular grains. Under optimized LED 1200 J/m, the dynamic nanohardness (8.62 GPa) and elastic modulus (167 GPa) of SLM-processed Inconel 625/TiB2 composite are higher compared with those of SLM-processed Inconel 625 (3.97 GPa and 135 GPa, respectively).
Small-scale shear measurements during the Fine and Microstructure Experiment (Fame)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gargett, A.E.; Osborn, T.R.
1981-03-20
The turbulent kinetic energy dissipation rate e is estimated from measurements of small-scale shear taken with a vertical profiler during the Fine and Microstructure Experiment (Fame). Typical profiles of e are presented for the different oceanographic regions sampled, the Gulf Stream, a mid-Sargasso site, and locations withoutin and with the 100 fathom (approx.2000 m) contour about the island of Bermuda. Heavily averaged values of e are presented as a funtion of mean Vaeisaela frequency N-bar, a fundamental scaling parameter for the oceanic internal wave field. A dependence of e-barproportionalN-bar is found for an ensemble of stations near Bermuda: functional dependencemore » for an ensemble of stations at the mid-Sargasso site is less clear, with results exhibiting an undersirable sensitivity to infrequent large events. Dissipation is found to increase as the island of Bermuda is approached from any direction: the density of measurements is insufficient to determine any azimuthal variation resulting from the anisotropic mean flow field about the island at the time. A set of three profiles across the Gulf Stream suggests that this is not a region of abnormally high dissipation, a conclusion supported by previous and concurrent measurements of temperature finestructure and microstructure.« less
NASA Astrophysics Data System (ADS)
Lin, Yinghua; Yao, Jianhua; Wang, Liang; Zhang, Qunli; Li, Xueqiao; Lei, Yongping; Fu, Hanguang
2018-03-01
In this study, particle and short fiber-reinforced titanium matrix composite coatings are prepared via laser in situ technique using (0.5 and 50 μm) TiB2 and Ti powder as cladding materials. The microstructure and properties of the composite coatings are studied, and the changing mechanism of the microstructure is discussed. The results reveal that particle agglomeration is prone to appear with using fine TiB2 particles. Decomposition of the particles preferentially occurs with using coarse TiB2 particles. The cracks and pores on the surface of the coating are formed at a lower laser energy density. With the increase in the laser energy density, cracking on the surface of the coating diminishes, but the coating exhibits depression behavior. The depression extent of the coating using fine TiB2 particle as the reinforcement is much less than that of the coating using coarse TiB2 particle. Moreover, the size of the aggregate and the tendency of cracking can be reduced with the increase in Ti addition. Meanwhile, short TiB fiber bundles are formed by the diffusion mechanism of rod aggregate, and randomly oriented TiB short fibers are formed mainly by the dissolution-precipitation mechanism of fine TiB2 particles. Moreover, the growth of short TiB fibers can be in an alternating manner between B27 and Bf structures. The micro-hardness and wear resistance of the coatings are evidently higher than that of the titanium alloy substrate. The wear resistance of the large size TiB2 coating is higher than that of the small size TiB2 coating under the condition of low load.
Multi-scale Multi-dimensional Imaging and Characterization of Oil Shale Pyrolysis
NASA Astrophysics Data System (ADS)
Gao, Y.; Saif, T.; Lin, Q.; Al-Khulaifi, Y.; Blunt, M. J.; Bijeljic, B.
2017-12-01
The microstructural evaluation of fine grained rocks is challenging which demands the use of several complementary methods. Oil shale, a fine-grained organic-rich sedimentary rock, represents a large and mostly untapped unconventional hydrocarbon resource with global reserves estimated at 4.8 trillion barrels. The largest known deposit is the Eocene Green River Formation in Western Colorado, Eastern Utah, and Southern Wyoming. An improved insight into the mineralogy, organic matter distribution and pore network structure before, during and after oil shale pyrolysis is critical to understanding hydrocarbon flow behaviour and improving recovery. In this study, we image Mahogany zone oil shale samples in two dimensions (2-D) using scanning electron microscopy (SEM), and in three dimensions (3-D) using focused ion beam scanning electron microscopy (FIB-SEM), laboratory-based X-ray micro-tomography (µCT) and synchrotron X-ray µCT to reveal a complex and variable fine grained microstructure dominated by organic-rich parallel laminations which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 300-500°C with the formation of micron-scale connected pore channels developing principally along the kerogen-rich lamellar structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Z.
Electron Backscatter Diffraction technique is used to characterize the microstructure of 316L steel generated by Surface Mechanical Attrition Treatment (SMAT) before and after low cycle fatigue tests. A grain size gradient is generated from the top surface to the interior of the samples after SMAT so that three main regions can be distinguished below the treated surface: (i) the ultra-fine grain area within 5 μm under the top surface with preferably oriented grains, (ii) the intermediate area where the original grains are partially transformed, and (iii) the edge periphery area where the original grains are just mechanically deformed with themore » presence of plastic slips. Fatigue tests show that cyclic loading does not change the grain orientation spread and does not activate any plastic slip in the ultra-fine grain top surface area induced by SMAT. On the opposite, in the plastically SMAT affected region including the intermediate area and the edge periphery area, new slip systems are activated by low cycle fatigue while the grain orientation spread is increased. These results represent a first very interesting step towards the characterization and understanding of mechanical mechanisms involved during the fatigue of a grain size gradient material. - Highlights: •LCF tests are carried out on specimens processed by SMAT. •EBSD is used to investigate microstructural changes induced by LCF. •A grain size gradient is generated by SMAT from surface to the bulk of the fatigue samples. •New slip systems are activated by LCF and GOS is increased in plastically deformed region. •However, these phenomena are not observed in the top surface ultra-fine grain area.« less
NASA Technical Reports Server (NTRS)
Telesman, J.
1984-01-01
Literature survey was conducted to determine the effects of different microstructural features and different load histories on fatigue crack initiation and propagation of aluminum alloys. Comparison of microstructure and monotonic and cyclic properties between powder metallurgy (P/M) and ingot metallurgy (I/M) alloys is presented. The two alloys that are representative of each process on which the comparison is focused are X7091 and 7050. Included is a detailed description of the microstructure produced through the P/M and I/M proesses. The effect of each pertinent microstructural feature on monotonic and cyclic properties, such as yield strength, toughness, crack initiation and propagation is discussed. Also discussed are the proposed mechanisms for crack initiation and propagation, as well as the effects of aggressive environments on these cyclic properties. The effects of variable amplitude loadin on fatigue crack propagation and the various models proposed to predict load interaction effects are discussed.
Effect of Long-Term Service on Microstructure and Mechanical Properties of Martensitic 9% Cr Steel
NASA Astrophysics Data System (ADS)
Golański, Grzegorz; Zielińska-Lipiec, Anna; Zieliński, Adam; Sroka, Marek
2017-03-01
The paper presents the results of research on the X10CrMoVNbN9-1 (T91) steel after long-term service. The material for testing was taken from a pipe section of a boiler superheater coil serviced for around 105,000 h at the temperature of 540 °C, at the pressure of 12.5 MPa. A quantitative analysis including the measurement of mean diameter of subgrains and precipitates as well as the density of dislocations of the examined steel was performed by means of TEM. The microscopic tests of T91 steel were complemented with the results of tests on mechanical properties which included also the short creep tests. After service, the investigated steel was characterized by a retained lath microstructure of tempered martensite with fine subgrain and quite large density of dislocations as well as numerous precipitates. In the microstructure, apart from the particles of M23C6 and MX (VX, NbC, V-wings), the precipitates of Laves phase and single particles of Z phase were revealed. It has been shown that the extent of degradation of the T91 steel microstructure was minor, which resulted from its low temperature of service. Performed tests of mechanical properties showed that these properties fulfilled the minimum requirements for this steel in the as-received condition. A favorable influence of fine precipitates of Laves phase on mechanical properties was observed. Moreover, an insignificant influence of single precipitates of Z phase on the creep resistance of the examined steel was stated.
An, Jing; Song, Jinpeng; Liang, Guoxing; Gao, Jiaojiao; Xie, Juncai; Cao, Lei; Wang, Shiying; Lv, Ming
2017-01-01
The effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials were investigated. The results showed that the HfB2 additive not only can inhibit the TiB2 grain growth but can also change the morphology of some TiB2 grains from bigger polygons to smaller polygons or longer ovals that are advantageous for forming a relatively fine microstructure, and that the HfN additive had a tendency toward agglomeration. The improvement of flexural strength and Vickers hardness of the TiB2-HfB2 ceramics was due to the relatively fine microstructure; the decrease of fracture toughness was ascribed to the formation of a weaker grain boundary strength due to the brittle rim phase and the poor wettability between HfB2 and Ni. The decrease of the flexural strength and Vickers hardness of the TiB2-HfN ceramics was due to the increase of defects such as TiB2 coarse grains and HfN agglomeration; the enhancement of fracture toughness was mainly attributed to the decrease of the pore number and the increase of the rim phase and TiB2 coarse grains. The toughening mechanisms of TiB2-HfB2 ceramics mainly included crack bridging and transgranular fracture, while the toughening mechanisms of TiB2-HfN ceramics mainly included crack deflection, crack bridging, transgranular fracture, and the core-rim structure. PMID:28772821
Shock induced damage in copper: A before and after, three-dimensional study
NASA Astrophysics Data System (ADS)
Menasche, David B.; Lind, Jonathan; Li, Shiu Fai; Kenesei, Peter; Bingert, John F.; Lienert, Ulrich; Suter, Robert M.
2016-04-01
We report on the microstructural features associated with the formation of incipient spall and damage in a fully recrystallized, high purity copper sample. Before and after ballistic shock loading, approximately 0.8 mm3 of the sample's crystal lattice orientation field is mapped using non-destructive near-field High Energy Diffraction Microscopy. Absorption contrast tomography is used to image voids after loading. This non-destructive interrogation of damage initiation allows for novel characterization of spall points vis-a-vis microstructural features and a fully 3D examination of microstructural topology and its influence on incipient damage. The spalled region is registered with and mapped back onto the pre-shock orientation field. As expected, the great majority of voids occur at grain boundaries and higher order microstructural features; however, we find no statistical preference for particular grain boundary types. The damaged region contains a large volume of Σ-3 (60 °<111 >) connected domains with a large area fraction of incoherent Σ-3 boundaries.
Grain refinement of 7075Al alloy microstructures by inoculation with Al-Ti-B master alloy
NASA Astrophysics Data System (ADS)
Hotea, V.; Juhasz, J.; Cadar, F.
2017-05-01
This paper aims to bring some clarification on grain refinement and modification of high strength alloys used in aerospace technique. In this work it was taken into account 7075 Al alloy, and the melt treatment was carried out by placing in the form of master alloy wire ternary AlTiB the casting trough at 730°C. The morphology of the resulting microstructures was characterized by optical microscopy. Micrographs unfinished and finished with pre-alloy containing ternary Al5Ti1B evidence fine crystals, crystal containing no columnar structure and highlights the size of the dendrites, and intermetallic phases occurring at grain boundaries in Al-Zn-Mg-Cu alloy. It has been found that these intermetallic compounds are MgZn2 type. AlTiB master alloys finishing ensures a fine eutectic structure, which determines the properties of hardware and improving the mechanical properties of aluminum alloys used in aeronautical engineering.
Fu, Wei; Watanabe, Yurika; Inoue, Keita; Moriguchi, Natsumi; Fusa, Kazunao; Yanagisawa, Yuya; Mutoh, Takaaki; Nakamura, Takashi
2018-04-15
The effect of pre-cooked cheeses of different emulsifying conditions on the viscosities, mechanical properties, fat globules, and microstructure of processed cheese was investigated, and changes in protein network relating to the creaming effect and the occurrence of yielding point were discussed. The addition of pre-cooked cheeses with a short stirring time had no obvious impact on the fat globules and protein network. The random network brought low viscosities and a gradual increase in the fracture stress/strain curve. The addition of pre-cooked cheeses with the long stirring time caused protein network to become fine-stranded. The fine-stranded network caused creaming effect, and brought yielding points in the mechanical properties. The pre-cooked cheese with the small fat globules also caused fat globules to become smaller, and give the processed cheese more firmness. This study provides a potential solution to control the functional properties of processed cheese by using a variety of pre-cooked cheeses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings
NASA Astrophysics Data System (ADS)
Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine
2010-03-01
Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.
Physical and Microstructure Properties of MgAl2C2 Matrix Composite Coating on Titanium
NASA Astrophysics Data System (ADS)
Li, Peng
2014-12-01
This work is based on the dry sliding wear of the MgAl2C2-TiB2-FeSi composite coating deposited on a pure Ti using a laser cladding technique. Scanning electron microscope images indicate that the nanocrystals and amorphous phases are produced in such coating. X-ray diffraction result indicated that such coating mainly consists of MgAl2C2, Ti-B, Ti-Si, Fe-Al, Ti3SiC2, TiC and amorphous phases. The high resolution transmission electron microscope image indicated that the TiB nanorods were produced in the coating, which were surrounded by other fine precipitates, favoring the formation of a fine microstructure. With increase of the laser power from 0.85 kW to 1.00 kW, the micro-hardness decreased from 1350 1450 HV0.2 to 1200 1300 HV0.2. The wear volume loss of the laser clad coating was 1/7 of pure Ti.
Two-Step Sintering Behavior of Sol-Gel Derived Dense and Submicron-Grained YIG Ceramics
NASA Astrophysics Data System (ADS)
Chen, Ruoyuan; Zhou, Jijun; Zheng, Liang; Zheng, Hui; Zheng, Peng; Ying, Zhihua; Deng, Jiangxia
2018-04-01
In this work, dense and submicron-grain yttrium iron garnet (YIG, Y3Fe5O12) ceramics were fabricated by a two-step sintering (TSS) method using nano-size YIG powder prepared by a citrate sol-gel method. The densification, microstructure, magnetic properties and ferromagnetic resonance (FMR) linewidth of the ceramics were investigated. The sample prepared at 1300°C in T 1, 1225°C in T 2 and 18 h holding time has a density higher than 98% of the theoretical value and exhibits a homogeneous microstructure with fine grain size (0.975 μm). In addition, the saturation magnetization ( M S) of this sample reaches 27.18 emu/g. High density and small grain size can also achieve small FMR linewidth. Consequently, these results show that the sol-gel process combined with the TSS process can effectively suppress grain-boundary migration while maintaining active grain-boundary diffusion to obtain dense and fine-grained YIG ceramics with appropriate magnetic properties.
NASA Technical Reports Server (NTRS)
Smith, T. M.; Kloesel, M. F.; Sudbrack, C. K.
2017-01-01
Powder-bed additive manufacturing processes use fine powders to build parts layer by layer. For selective laser melted (SLM) Alloy 718, the powders that are available off-the-shelf are in the 10-45 or 15-45 micron size range. A comprehensive investigation of sixteen powders from these typical ranges and two off-nominal-sized powders is underway to gain insight into the impact of feedstock on processing, durability and performance of 718 SLM space-flight hardware. This talk emphasizes an aspect of this work: the impact of powder variability on the microstructure and defects observed in the as-fabricated and full heated material, where lab-scale components were built using vendor recommended parameters. These typical powders exhibit variation in composition, percentage of fines, roughness, morphology and particle size distribution. How these differences relate to the melt-pool size, porosity, grain structure, precipitate distributions, and inclusion content will be presented and discussed in context of build quality and powder acceptance.
Microstructure Characterization of Weakly Textured and Fine Grained AZ61 Sheet
NASA Astrophysics Data System (ADS)
Berman, T. D.; Donlon, W.; Hung, C. K.; Milligan, P.; Decker, R.; Pollock, T. M.; Jones, J. W.
Formability in magnesium alloy sheet is strongly limited by a strong basal texture in the as-rolled material, which is difficulty to remove by thermal processing. We introduce a new process to the control of texture by combining Thixomolding and Thermomechanical Processing (TTMP). Plates of AZ61L with a divorced β-Mg17Al12 eutectic are produced by Thixomolding, resulting in a non-textured, fine grained (2.8 µm) precursor. Sheet produced from the plate by single pass warm-rolling exhibits a weaker texture, and more isotropic tensile deformation than generally observed in AZ-series alloy sheet. Recrystallization annealing produces a further reduction in texture and average grain size (2.3 µm) and results in nearly isotropic room temperature deformation, a yield strength of 220 MPa, and an elongation of 23%. Particle stimulated nucleation of new grains by the β-phase during both dynamic and static recrystallization, is critical for achieving the low levels of texture. The influence of β-phase distribution in microstructure development is discussed.
Theoretical Studies of Strongly Interacting Fine Particle Systems
NASA Astrophysics Data System (ADS)
Fearon, Michael
Available from UMI in association with The British Library. A theoretical analysis of the time dependent behaviour of a system of fine magnetic particles as a function of applied field and temperature was carried out. The model used was based on a theory assuming Neel relaxation with a distribution of particle sizes. This theory predicted a linear variation of S_{max} with temperature and a finite intercept, which is not reflected by experimental observations. The remanence curves of strongly interacting fine-particle systems were also investigated theoretically. It was shown that the Henkel plot of the dc demagnetisation remanence vs the isothermal remanence is a useful representation of interactions. The form of the plot was found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is investigated. These results are consistent with a previous experimental study. Finally the results of the noise power spectral density for erased and saturated recording media are presented, so that characterisation of interparticle interactions may be carried out with greater accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plotkowski, A.; Rios, O.; Sridharan, N.
Our present research in metal additive manufacturing (AM) focuses on designing processing parameters around existing alloys designed for traditional manufacturing. However, to maximize the benefits of AM, alloys should be designed to specifically take advantage of the unique thermal conditions of these processes. Furthermore, our study focuses on the development of a design methodology for alloys in AM, using a newly developed Al-Ce alloy as an initial case study. To evaluate the candidacy of this system for fusion based additive manufacturing, single-line laser melts were made on cast Al-12Ce plates using three different beam velocities (100, 200, and 300 mm/min).more » The microstructure was evaluated in the as-melted and heat treated conditions (24 hrs at 300°C). An extremely fine microstructure was observed within the weld pools, evolving from eutectic at the outer solid-liquid boundaries to a primary Al FCC dendritic/cellular structure nearer the melt-pool centerline. We rationalized the observed microstructures through the construction of a microstructure selection map for the Al-Ce binary system, which will be used to enable future alloy design. Interestingly, the heat treated samples exhibited no microstructural coarsening.« less
Mathematical modeling of microstructural development in hypoeutectic cast iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maijer, D.; Cockcroft, S.L.; Patt, W.
A mathematical heat-transfer/microstructural model has been developed to predict the evolution of proeutectic austenite, white iron eutectic, and gray iron eutectic during solidification of hypoeutectic cast iron, based on the commercial finite-element code ABAQUS. Specialized routines which employ relationships describing nucleation and growth of equiaxed primary austenite, gray iron eutectic, and white iron eutectic have been formulated and incorporated into ABAQUS through user-specified subroutines. The relationships used in the model to describe microstructural evolution have been adapted from relationships describing equiaxed growth in the literature. The model has been validated/fine tuned against temperature data collected from a QuiK-Cup sample, whichmore » contained a thermocouple embedded approximately in the center of the casting. The phase distribution predicted with the model has been compared to the measured phase distribution inferred from the variation in hardness within the QuiK-Cup sample and from image analysis of photomicrographs of the polished and etched microstructure. Overall, the model results were found to agree well with the measured distribution of the microstructure.« less
NASA Astrophysics Data System (ADS)
Prakash; Vanaja, J.; Laha, K.; Nageswara Rao, G. V. S.
2018-03-01
The present study focuses on the evaluation of microstructure and mechanical properties of reduced activation ferritic-martensitic (RAFM) steel (9Cr-1W-0.06Ta) subjected to thermo-mechanical treatment (TMT) in ferritic phase field. The results obtained were compared with the steel in conventional normalised plus tempered (N+T) condition. The microstructure of the steel in N+T and TMT conditions was assessed by optical and scanning electron microscopes. Hardness, tensile and creep studies were carried out and the results were correlated with the microstructural studies. While the TMT processed steel resulted in coarser prior austenite grains and exhibited ferritic microstructure with large distribution of fine M23C6 and MX precipitates, the N+T steel reveals tempered martensitic structure with finer prior austenitic grains with coarser M23C6 and MX precipitates. Although ferritic structure is present in TMT processed steel, it exhibits better tensile and creep rupture strengths than N+T steel due to the presence of increased dislocation density and finer distribution of precipitates.
Method to fabricate multi-level silicon-based microstructures via use of an etching delay layer
Manginell, Ronald P.; Schubert, W. Kent; Shul, Randy J.
2005-08-16
New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Structures having features with different depth can be formed thereby in a single etching step.
Palmero, Paola; Fornabaio, Marta; Montanaro, Laura; Reveron, Helen; Esnouf, Claude; Chevalier, Jérôme
2015-05-01
In order to fulfill the clinical requirements for strong, tough and stable ceramics used in dental applications, we designed and developed innovative zirconia-based composites, in which equiaxial α-Al2O3 and elongated SrAl12O19 phases are dispersed in a ceria-stabilized zirconia matrix. The composite powders were prepared by an innovative surface coating route, in which commercial zirconia powders were coated by inorganic precursors of the second phases, which crystallize on the zirconia particles surface under proper thermal treatment. Samples containing four different ceria contents (in the range 10.0-11.5 mol%) were prepared by carefully tailoring the amount of the cerium precursor during the elaboration process. Slip cast green bodies were sintered at 1450 °C for 1 h, leading to fully dense materials. Characterization of composites by SEM and TEM analyses showed highly homogeneous microstructures with an even distribution of both equiaxial and elongated-shape grains inside a very fine zirconia matrix. Ce content plays a major role on aging kinetics, and should be carefully controlled: sample with 10 mol% of ceria were transformable, whereas above 10.5 mol% there is negligible or no transformation during autoclave treatment. Thus, in this paper we show the potential of the innovative surface coating route, which allows a perfect tailoring of the microstructural, morphological and compositional features of the composites; moreover, its processing costs and environmental impacts are limited, which is beneficial for further scale-up and real use in the biomedical field. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Xiaolei; Yu, Zhiwei; Cui, Liying; Niu, Xinjun; Cai, Tao
2016-02-01
The hot-rolled 304 stainless steel with γ-austenite and approximately 5 pct α-ferrite elongated along the rolling direction was plasma-nitrided at a low temperature of 693 K (420 °C). X-ray diffraction results revealed that the nitrided layer was mainly composed of the supersaturated solid solution of nitrogen in austenite ( γ N). Transmission electron microscopy (TEM) observations showed that the microstructure of the γ N phase exhibited "fracture factor contrast" reflective of the occurrence of fine pre-precipitations in γ N by the continuous precipitation. The occurrence of a diffuse scattering effect on the electron diffraction spots of γ N indicated that the pre-precipitation took place in γ N in the form of strongly bonded Cr-N clusters or pairs due to a strong attractive interaction of nitrogen with chromium. Scanning electron microscopy and TEM observations indicated that the discontinuous precipitation initiated from the γ/ α interfaces and grew from the austenite boundaries into austenite grains to form a lamellar structure consisting of CrN and ferrite. The orientation relationship between CrN and ferrite corresponded to a Baker-Nutting relationship: (100)CrN//(100) α ; [011]CrN//[001] α . A zigzag boundary line following the banded structure of alternating γ-austenite and elongated α-ferrite was presented between the nitrided layer and the substrate to form a continuous varying layer thickness, which resulted from the difference in diffusivities of nitrogen in α-ferrite and γ-austenite, along the γ/ α interfaces and through the lattice. Microstructural features similar to the γ N were also revealed in the ferrite of the nitrided layer by TEM. It was not excluded that a supersaturated solid solution of nitrogen in ferrite ( α N) formed in the nitrided layer.
Qian, Dan; Zhang, Anfeng; Zhu, Jianxue; ...
2016-09-09
Here in this letter, microstructural and mechanical inhomogeneities, a great concern for single crystal Ni-based superalloys repaired by laser assisted 3D printing, have been probed near the epitaxial interface. Nanoindentation tests show the hardness to be uniformly lower in the bulk of the substrate and constantly higher in the epitaxial cladding layer. A gradient of hardness through the heat affected zone is also observed, resulting from an increase in dislocation density, as indicated by the broadening of the synchrotron X-ray Laue microdiffraction reflections. Lastly, the hardening mechanism of the claddin g region, on the other hand, is shown to originatemore » not only from high dislocation density but also and more importantly from the fine γ/γ' microstructure.« less
Seikh, Asiful H; Sherif, El-Sayed M; Khan Mohammed, Sohail M A; Baig, Muneer; Alam, Mohammad Asif; Alharthi, Nabeel
2018-01-01
The aim of this study is to find out the microstructure, hardness, and corrosion resistance of Pb-5%Sb spine alloy. The alloy has been produced by high pressure die casting (HPDC), medium pressure die casting (AS) and low pressure die casting (GS) methods, respectively. The microstructure was characterized by using optical microscopy and scanning electron microscopy (SEM). The hardness was also reported. The corrosion resistance of the spines in 0.5M H2SO4 solution has been analyzed by measuring the weight loss, impedance spectroscopy and the potentiodynamic polarization techniques. It has been found that the spine produced by HPDC has defect-free fine grain structure resulting improvement in hardness and excellent corrosion resistance.
Baig, Muneer; Alam, Mohammad Asif; Alharthi, Nabeel
2018-01-01
The aim of this study is to find out the microstructure, hardness, and corrosion resistance of Pb-5%Sb spine alloy. The alloy has been produced by high pressure die casting (HPDC), medium pressure die casting (AS) and low pressure die casting (GS) methods, respectively. The microstructure was characterized by using optical microscopy and scanning electron microscopy (SEM). The hardness was also reported. The corrosion resistance of the spines in 0.5M H2SO4 solution has been analyzed by measuring the weight loss, impedance spectroscopy and the potentiodynamic polarization techniques. It has been found that the spine produced by HPDC has defect-free fine grain structure resulting improvement in hardness and excellent corrosion resistance. PMID:29668709
The spinodal decomposition in 17-4PH stainless steel subjected to long-term aging at 350 deg. C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jun; Zou Hong; Li Cong
2008-05-15
The influence of aging time on the microstructure evolution of 17-4 PH martensitic stainless steel was studied by transmission electron microscopy (TEM). Results showed that the martensite decomposed by a spinodal decomposition mechanism after the alloy was subjected to long-term aging at 350 deg. C. The fine scale spinodal decomposition of {alpha}-ferrite brought about a Cr-enriched bright stripe and a Fe-enriched dark stripe, i.e., {alpha}' and {alpha} phases, separately, which were perpendicular to the grain boundary. The spinodal decomposition started at the grain boundary. Then with prolonged aging time, the decomposition microstructure expanded from the grain boundary to interior. Themore » wavelength of the spinodally decomposed microstructure changed little with extended aging time.« less
Recrystallization and superplasticity at 300 C in an aluminum-magnesium alloy
NASA Technical Reports Server (NTRS)
Hales, S. J.; Mcnelley, T. R.; Mcqueen, H. J.
1991-01-01
Variations in thermomechanical processing (TMP) which regulate the microstructural characteristics and superplastic response of an Al-10Mg-0.1Zr alloy at 300 C were evaluated. Mechanical property data revealed that the superplastic ductility can be enhanced by simultaneously increasing the total rolling strain, the reduction per pass, and the duration of reheating intervals between passes during isothermal rolling. Texture and microscopy data were consistent with the development of a refined microstructure by recovery-dominated processes, i.e., continuous recrystallization, during the processing. The mechanisms by which a refined substructure can be progressively converted into a fine-grained structure during repeated cycles of deformation and annealing are addressed. A qualitative description of the complex sequence of developments leading to a microstructure better suited to support superplastic response is presented.
Can grain size sensitive creep lubricate faults during earthquake propagation?
NASA Astrophysics Data System (ADS)
De Paola, N.; Holdsworth, R.; Viti, C.; Collettini, C.; Bullock, R. J.; Faoro, I.
2014-12-01
In the shallow portion of crustal fault zones, fracturing and cataclasis are thought to be the dominant processes during earthquake propagation. In the lower crust/upper mantle, viscous flow is inferred to facilitate aseismic creep along shear zones. Recent studies show that slip zones (SZs), in natural and experimental carbonate seismic faults, are made of nanograins with a polygonal texture, a microstructure consistent with deformation by grain boundary sliding (GBS) mechanisms. Friction experiments performed on calcite fine-grained gouges, at speed v = 1 ms-1, normal stress sn = 18 MPa, displacements d = 0.009-1.46 m, and room temperature and humidity, show a four stage-evolution of the fault strength: SI) attainment of initial value, f = 0.67; SII) increase up to peak value f = 0.82; SIII) sudden decrease to low steady-state value, f = 0.18; and SIV) sudden increase to final value, f = 0.44, during sample deceleration. Samples recovered at the end of each displacement-controlled experiments (Stages I-IV) show the following microstructures evolution of the SZ material, which is: SI) poorly consolidated, and made of fine-grained (1 < D < 5 microns), angular clasts formed by brittle fracturing and cataclasis; SII) cohesive, and made of larger clasts of calcite (D ≈ 1 microns), exhibiting a high density of free dislocations and hosting subgrains (D ≤ 200 nm), dispersed within calcite nanograins. SIII) made of nanograin aggregates exhibiting polygonal grain boundaries, and 120° triple junctions between equiaxial grains. The grains display no preferred elongation, no crystal preferred orientation and low free dislocation densities, possibly due to high temperature (> 900 C) GBS creep deformation. Our microstructural observations suggest that GBS mechanisms can operate in geological materials deformed at high strain rates along frictionally heated seismogenic slip surfaces. The observed microstructures in experimental slip zones are strikingly similar to those predicted by theoretical studies, and to those observed during experiments on metals and fine-grained carbonates deformed at T > 900 °C, where superplastic behaviour due to GBS has been inferred. A regime of frictionally-induced GBS could thus account for the dynamic weakening of carbonate faults during earthquake propagation in nature.
Automated Camera Array Fine Calibration
NASA Technical Reports Server (NTRS)
Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang
2008-01-01
Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.
Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui
2016-08-10
Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials.
Dong, Yang; He, Honghui; He, Chao; Zhou, Jialing; Zeng, Nan; Ma, Hui
2016-01-01
Silk fibers suffer from microstructural changes due to various external environmental conditions including daily washings. In this paper, we take the backscattering Mueller matrix images of silk samples for non-destructive and real-time quantitative characterization of the wavelength-scale microstructure and examination of the effects of washing by different detergents. The 2D images of the 16 Mueller matrix elements are reduced to the frequency distribution histograms (FDHs) whose central moments reveal the dominant structural features of the silk fibers. A group of new parameters are also proposed to characterize the wavelength-scale microstructural changes of the silk samples during the washing processes. Monte Carlo (MC) simulations are carried out to better understand how the Mueller matrix parameters are related to the wavelength-scale microstructure of silk fibers. The good agreement between experiments and simulations indicates that the Mueller matrix polarimetry and FDH based parameters can be used to quantitatively detect the wavelength-scale microstructural features of silk fibers. Mueller matrix polarimetry may be used as a powerful tool for non-destructive and in situ characterization of the wavelength-scale microstructures of silk based materials. PMID:27517919
NASA Astrophysics Data System (ADS)
Li, Qiangguo; Huang, Xuefei; Huang, Weigang
2017-12-01
A multiphase microstructure of bainite, martensite and retained austenite in a 0.3C bainitic steel was obtained by a novel bainite isothermal transformation plus quenching and partitioning (B-QP) process. The correlations between microstructural features and toughness were investigated by electron backscatter diffraction (EBSD), and the results showed that the multiphase microstructure containing approximately 50% bainite exhibits higher strength (1617 MPa), greater elongation (18.6%) and greater impact toughness (103 J) than the full martensite. The EBSD analysis indicated that the multiphase microstructure with a smaller average local misorientation (1.22°) has a lower inner stress concentration possibility and that the first formed bainitic ferrite plates in the multiphase microstructure can refine subsequently generated packets and blocks. The corresponding packet and block average size decrease from 11.9 and 2.3 to 8.4 and 1.6 μm, respectively. A boundary misorientation analysis indicated that the multiphase microstructure has a higher percentage of high-angle boundaries (67.1%) than the full martensite (57.9%) because of the larger numbers and smaller sizes of packets and blocks. The packet boundary obstructs crack propagation more effectively than the block boundary.
Castable high-temperature Ce-modified Al alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rios, Orlando; King, Alexander H.; McCall, Scott K.
2018-05-08
A cast alloy includes aluminum and from about 5 to about 30 weight percent of at least one material selected from the group consisting of cerium, lanthanum, and mischmetal. The cast alloy has a strengthening Al 11X 3 intermetallic phase in an amount in the range of from about 5 to about 30 weight percent, wherein X is at least one of cerium, lanthanum, and mischmetal. The Al 11X 3 intermetallic phase has a microstructure that includes at least one of lath features and rod morphological features. The morphological features have an average thickness of no more than 700 ummore » and an average spacing of no more than 10 um, the microstructure further comprising an eutectic microconstituent that comprises more than about 10 volume percent of the microstructure.« less
Correlation Between Intercritical Heat-Affected Zone and Type IV Creep Damage Zone in Grade 91 Steel
NASA Astrophysics Data System (ADS)
Wang, Yiyu; Kannan, Rangasayee; Li, Leijun
2018-04-01
A soft zone in Cr-Mo steel weldments has been reported to accompany the infamous Type IV cracking, the highly localized creep damage in the heat-affected zone of creep-resistant steels. However, the microstructural features and formation mechanism of this soft zone are not well understood. In this study, using microhardness profiling and microstructural verification, the initial soft zone in the as-welded condition was identified to be located in the intercritical heat-affected zone of P91 steel weldments. It has a mixed structure, consisting of Cr-rich re-austenitized prior austenite grains and fine Cr-depleted, tempered martensite grains retained from the base metal. The presence of these further-tempered retained grains, originating from the base metal, is directly responsible for the hardness reduction of the identified soft zone in the as-welded condition. The identified soft zone exhibits a high location consistency at three thermal stages. Local chemistry analysis and thermodynamic calculation show that the lower chromium concentrations inside these retained grains thermodynamically decrease their potentials for austenitic transformation during welding. Heterogeneous grain growth is observed in the soft zone during postweld heat treatment. The mismatch of strengths between the weak Cr-depleted grains and strong Cr-rich grains enhances the creep damage. Local deformation of the weaker Cr-depleted grains accelerates the formation of creep cavities.
Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics
NASA Astrophysics Data System (ADS)
Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru
2018-05-01
Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.
Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy
NASA Astrophysics Data System (ADS)
Shi, Xiaohui; Zeng, Weidong; Sun, Yu; Han, Yuanfei; Zhao, Yongqing; Guo, Ping
2015-04-01
Finding the quantitative microstructure-tensile properties correlations is the key to achieve performance optimization for various materials. However, it is extremely difficult due to their non-linear and highly interactive interrelations. In the present investigation, the lamellar microstructure features-tensile properties correlations of the Ti-6Al-4V alloy are studied using an error back-propagation artificial neural network (ANN-BP) model. Forty-eight thermomechanical treatments were conducted to prepare the Ti-6Al-4V alloy with different lamellar microstructure features. In the proposed model, the input variables are microstructure features including the α platelet thickness, colony size, and β grain size, which were extracted using Image Pro Plus software. The output variables are the tensile properties, including ultimate tensile strength, yield strength, elongation, and reduction of area. Fourteen hidden-layer neurons which can make ANN-BP model present the most excellent performance were applied. The training results show that all the relative errors between the predicted and experimental values are within 6%, which means that the trained ANN-BP model is capable of providing precise prediction of the tensile properties for Ti-6Al-4V alloy. Based on the corresponding relations between the tensile properties predicted by ANN-BP model and the lamellar microstructure features, it can be found that the yield strength decreases with increasing α platelet thickness continuously. However, the α platelet thickness exerts influence on the elongation in a more complicated way. In addition, for a given α platelet thickness, the yield strength and the elongation both increase with decreasing β grain size and colony size. In general, the β grain size and colony size play a more important role in affecting the tensile properties of Ti-6Al-4V alloy than the α platelet thickness.
NASA Astrophysics Data System (ADS)
Génio, Luciana; Kiel, Steffen; Cunha, Marina R.; Grahame, John; Little, Crispin T. S.
2012-06-01
The increasing number of bathymodiolin mussel species being described from deep-sea chemosynthetic environments worldwide has raised many questions about their evolutionary history, and their systematics is still being debated. Mussels are also abundant in fossil chemosynthetic assemblages, but their identification is problematic due to conservative shell morphology within the group and preservation issues. Potential resolution of bathymodiolin taxonomy requires new character sets, including morphological features that are likely to be preserved in fossil specimens. To investigate the phylogenetic significance of shell microstructural features, we studied the shell microstructure and mineralogy of 10 mussel species from hydrothermal vents and hydrocarbon seeps, and 15 taxa from sunken wood and bone habitats, and compared these observations with current molecular phylogenies of the sub-family Bathymodiolinae. In addition, we analyzed the shell microstructure in Adipicola chickubetsuensis from fossil whale carcasses, and in Bathymodiolus cf. willapaensis and “Modiola exbrocchii” from fossil cold seeps, and discussed the usefulness of these characters for identification of fossil chemosymbiotic mussels. Microstructural shell features are quite uniform among vent, seep, wood and bone mussel taxa, and therefore established bathymodiolin lineages cannot be discriminated, nor can the relations between fossil and modern species be determined with these characters. Nevertheless, the uniformity of shell microstructures observed among chemosymbiotic mussels and the similarity with its closest relative, Modiolus modiolus, does not challenge the monophyly of the group. Slight differences are found between the large vent and seep mussels and the small mytilids commonly found in habitats enriched in organic matter. Together with previous data, these results indicate that a repeated pattern of paedomorphism characterizes the evolutionary history of deep-sea mussels, and the occurrence of neotenous features should be considered in the taxonomic revision of this group.
NASA Astrophysics Data System (ADS)
Shu-sen, Wang; Yuan-wang, Zhang; Da-wei, Yao
2018-04-01
In this work, the Cu-0.5 wt% Ag alloy was prepared and then sold solution treated at 760 °C for 4 h and aged at 400 °C for 4 h. The severe cold plastic deformation treatment with a maximum true strain of 11.48 was applied to obtain the Cu-0.5 wt%Ag fine wires with the diameter of 0.087 mm. Then the fine wires were given eight intermediate heat treatments at 300 °C–350 °C for 10–60 min. Properties of the fine wires with different annealing heat treatments were analyzed, results showed that after the annealing process of 350 °C, 20 min was applied to Cu-0.5 wt% Ag fine wires, their conductivity, tensile strength and elongation could reach 98.6%IACS, 367 MPa and 8%, respectively. This demonstrated that the Cu-0.5 wt% Ag processes high strength and high conductivity properties and was a promising conductive material.
Fattahi, M; Gholami, A R; Eynalvandpour, A; Ahmadi, E; Fattahi, Y; Akhavan, S
2014-09-01
In the present study, different amounts of graphene nanosheets (GNSs) were added to the 4043 aluminum alloy powders by using the mechanical alloying method to produce the composite filler wires. With each of the produced composite filler wires, one all-weld metal coupon was welded using the gas tungsten arc (GTA) welding process. The microstructure, mechanical properties and fracture surface morphology of the weld metals have been evaluated and the results are compared. As the amount of GNSs in the composition of filler wire is increased, the microstructure of weld metal was changed from the dendritic structure to fine equiaxed grains. Furthermore, the tensile strength and microhardness of weld metal was improved, and is attributed to the augmented nucleation and retarded growth. From the results, it was seen that the GNSs/Al composite filler wire can be used to improve the microstructure and mechanical properties of GTA weld metals of aluminum and its alloys. Copyright © 2014 Elsevier Ltd. All rights reserved.
Microstructural development of cobalt ferrite ceramics and its influence on magnetic properties
NASA Astrophysics Data System (ADS)
Kim, Gi-Yeop; Jeon, Jae-Ho; Kim, Myong-Ho; Suvorov, Danilo; Choi, Si-Young
2013-11-01
The microstructural evolution and its influence on magnetic properties in cobalt ferrite were investigated. The cobalt ferrite powders were prepared via a solid-state reaction route and then sintered at 1200 °C for 1, 2, and 16 h in air. The microstructures from sintered samples represented a bimodal distribution of grain size, which is associated with abnormal grain growth behavior. And thus, with increasing sintering time, the number and size of abnormal grains accordingly increased but the matrix grains were frozen with stagnant grain growth. In the sample sintered for 16 h, all of the matrix grains were consumed and the abnormal grains consequently impinged on each other. With the appearance of abnormal grains, the magnetic coercivity significantly decreased from 586.3 Oe (1 h sintered sample) to 168.3 Oe (16 h sintered sample). This is due to the magnetization in abnormal grains being easily flipped. In order to achieve high magnetic coercivity of cobalt ferrite, it is thus imperative to fabricate the fine and homogeneous microstructure.
Ductility Improvement of an AZ61 Magnesium Alloy through Two-Pass Submerged Friction Stir Processing
Luo, Xicai; Cao, Genghua; Zhang, Wen; Qiu, Cheng; Zhang, Datong
2017-01-01
Friction stir processing (FSP) has been considered as a novel technique to refine the grain size and homogenize the microstructure of metallic materials. In this study, two-pass FSP was conducted under water to enhance the cooling rate during processing, and an AZ61 magnesium alloy with fine-grained and homogeneous microstructure was prepared through this method. Compared to the as-cast material, one-pass FSP resulted in grain refinement and the β-Mg17Al12 phase was broken into small particles. Using a smaller stirring tool and an overlapping ratio of 100%, a finer and more uniform microstructure with an average grain size of 4.6 μm was obtained through two-pass FSP. The two-pass FSP resulted in a significant improvement in elongation of 37.2% ± 4.3%, but a slight decrease in strength compared with one-pass FSP alloy. Besides the microstructure refinement, the texture evolution in the stir zone is also considered responsible for the ductility improvement. PMID:28772614
Strong, ductile, and thermally stable Cu-based metal-intermetallic nanostructured composites.
Dusoe, Keith J; Vijayan, Sriram; Bissell, Thomas R; Chen, Jie; Morley, Jack E; Valencia, Leopolodo; Dongare, Avinash M; Aindow, Mark; Lee, Seok-Woo
2017-01-09
Bulk metallic glasses (BMGs) and nanocrystalline metals (NMs) have been extensively investigated due to their superior strengths and elastic limits. Despite these excellent mechanical properties, low ductility at room temperature and poor microstructural stability at elevated temperatures often limit their practical applications. Thus, there is a need for a metallic material system that can overcome these performance limits of BMGs and NMs. Here, we present novel Cu-based metal-intermetallic nanostructured composites (MINCs), which exhibit high ultimate compressive strengths (over 2 GPa), high compressive failure strain (over 20%), and superior microstructural stability even at temperatures above the glass transition temperature of Cu-based BMGs. Rapid solidification produces a unique ultra-fine microstructure that contains a large volume fraction of Cu 5 Zr superlattice intermetallic compound; this contributes to the high strength and superior thermal stability. Mechanical and microstructural characterizations reveal that substantial accumulation of phase boundary sliding at metal/intermetallic interfaces accounts for the extensive ductility observed.
Timpel, M; Wanderka, N; Vinod Kumar, G S; Banhart, J
2011-05-01
Strontium-modified Al-15 wt%Si casting alloys were investigated after 5 and 60 min of melt holding. The eutectic microstructures were studied using complementary methods at different length scales: focused ion beam-energy selective backscattered tomography, transmission electron microscopy and 3D atom probe. Whereas the samples after 5 min of melt holding show that the structure of eutectic Si changes into a fine fibrous morphology, the increase of prolonged melt holding (60 min) leads to the loss of Sr within the alloy with an evolution of an unmodified eutectic microstructure displaying coarse interconnected Si plates. Strontium was found at the Al/Si eutectic interfaces on the side of the eutectic Al region, measured by 3D atom probe. The new results obtained using 3D atom probe shed light on the location of Sr within the Al-Si eutectic microstructure. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mertens, R.; Vrancken, B.; Holmstock, N.; Kinds, Y.; Kruth, J.-P.; Van Humbeeck, J.
Powder bed preheating is a promising development in selective laser melting (SLM), mainly applied to avoid large thermal stresses in the material. This study analyses the effect of in-process preheating on microstructure, mechanical properties and residual stresses during SLM of H13 tool steel. Sample parts are produced without any preheating and are compared to the corresponding parts made with preheating at 100°, 200°, 300°, and 400°C. Interestingly, internal stresses at the top surface of the parts evolve from compressive (-324MPa) without preheating to tensile stresses (371MPa) with preheating at 400°C. Nevertheless, application of powder bed preheating results in a more homogeneous microstructure with better mechanical properties compared to H13 SLM parts produced without preheating. The fine bainitic microstructure leads to hardness values of 650-700Hv and ultimate tensile strength of 1965MPa, which are comparable to or even better than those of conventionally made and heat treated H13 tool steel.
Keratin sponge/hydrogel part 1. fabrication and characterization
USDA-ARS?s Scientific Manuscript database
Keratin sponge/hydrogel products formed by either the oxidation or reduction of U.S. domestic fine- or coarse-grade wool exhibited distinctively different topologies and molecular weights of 6- 8 kDa and 40-60 kDa, each with unique macro-porous structure and microstructural behaviors. The sponge/ ...
A TEM Investigation of the Fine-Grained Matrix of the Martian Basaltic Breccia NWA 7034
NASA Technical Reports Server (NTRS)
Muttik, N.; Keller, L. P.; Agee, C. B.; McCubbin, F. M.; Santos, A. R.; Rahman, Z.
2014-01-01
The martian basaltic breccia NWA 7034 is characterized by fine-grained groundmass containing several different types of mineral grains and lithologic clasts. The matrix composition closely resembles Martian crustal rock and soil composition measured by recent rover and orbiter missions. The first results of NWA 7034 suggest that the brecciation of this martian meteorite may have formed due to eruptive volcanic processes; however, impact related brecciation processes have been proposed for paired meteorites NWA 7533 and NWA 7475]. Due to the very fine grain size of matrix, its textural details are difficult to resolve by optical and microprobe observations. In order to examine the potential nature of brecciation, transmission electron microscopy (TEM) studies combined with focused ion-beam technique (FIB) has been undertaken. Here we present the preliminary observations of fine-grained groundmass of NWA 7034 from different matrix areas by describing its textural and mineralogical variations and micro-structural characteristics.
NASA Astrophysics Data System (ADS)
Goto, Sota; Nakata, Hiroshi; Toyoda, Shunsuke; Okabe, Takatoshi; Inoue, Tomohiro
2017-10-01
This paper describes development of heavy-walled API X80 grade high-frequency electric resistance-welded (HFW) line pipes and conductor-casing pipes with wall thicknesses up to 20.6 mm. A fine bainitic-ferrite microstructure, which is preferable for low-temperature toughness, was obtained by optimizing the carbon content and applying the thermomechanical controlled hot-rolling process. As a result, the Charpy ductile-brittle transition temperature (DBTT) was well below 227 K (-46 °C) in the base metal of the HFW line pipe. When the controlled hot-rolling ratio (CR) was increased from 23 to 48 pct, the area average grain size decreased from 15 to 8 μm. The dependence of CTOD properties on CR was caused by the largest grain which is represented by the area average grain size. No texture development due to the increase of CR from 23 to 48 pct was observed. In addition, because controlled in-line heat treatment of the longitudinal weld seam also produced the fine bainitic-ferrite microstructure at the weld seam, DBTT was lower than 227 K (-46 °C) at the weld portion. The developed pipes showed good girth weldability without preheat treatment, and fracture in the tensile test initiated from the base metal in all cases.
NASA Astrophysics Data System (ADS)
Thomas Paul, V.; Sudha, C.; Saroja, S.
2015-08-01
9Cr-Reduced Activation Ferritic-Martensitic steels with 1 and 1.4 wt pct tungsten are materials of choice for the test blanket module in fusion reactors. The steels possess a tempered martensite microstructure with a decoration of inter- and intra-lath carbides, which undergoes extensive modification on application of heat. The change in substructure and precipitation behavior on welding and subsequent thermal exposure has been studied using both experimental and computational techniques. Changes i.e., formation of various phases, their volume fraction, size, and morphology in different regions of the weldment due to prolonged thermal exposure was influenced not only by the time and temperature of exposure but also the prior microstructure. Laves phase of type Fe2W was formed in the high tungsten steel, on aging the weldment at 823 K (550 °C). It formed in the fine-grained heat-affected zone (HAZ) at much shorter durations than in the base metal. The accelerated kinetics has been understood in terms of enhanced precipitation of carbides at lath/grain boundaries during aging and the concomitant depletion of carbon and chromium and enrichment of tungsten in the vicinity of the carbides. Therefore, the fine-grained HAZ in the weldment was identified as a region susceptible for failure during service.
Structural, microstructural and magnetic evolution in cryo milled carbon doped MnAl.
Fang, Hailiang; Cedervall, Johan; Hedlund, Daniel; Shafeie, Samrand; Deledda, Stefano; Olsson, Fredrik; von Fieandt, Linus; Bednarcik, Jozef; Svedlindh, Peter; Gunnarsson, Klas; Sahlberg, Martin
2018-02-06
The low cost, rare earth free τ-phase of MnAl has high potential to partially replace bonded Nd 2 Fe 14 B rare earth permanent magnets. However, the τ-phase is metastable and it is experimentally difficult to obtain powders suitable for the permanent magnet alignment process, which requires the fine powders to have an appropriate microstructure and high τ-phase purity. In this work, a new method to make high purity τ-phase fine powders is presented. A high purity τ-phase Mn 0.55 Al 0.45 C 0.02 alloy was synthesized by the drop synthesis method. The drop synthesized material was subjected to cryo milling and followed by a flash heating process. The crystal structure and microstructure of the drop synthesized, cryo milled and flash heated samples were studied by X-ray in situ powder diffraction, scanning electron microscopy, X-ray energy dispersive spectroscopy and electron backscatter diffraction. Magnetic properties and magnetic structure of the drop synthesized, cryo milled, flash heated samples were characterized by magnetometry and neutron powder diffraction, respectively. The results reveal that the 2 and 4 hours cryo milled and flash heated samples both exhibit high τ-phase purity and micron-sized round particle shapes. Moreover, the flash heated samples display high saturation magnetization as well as increased coercivity.
Awd, Mustafa; Tenkamp, Jochen; Hirtler, Markus; Siddique, Shafaqat; Bambach, Markus; Walther, Frank
2017-12-23
The second-generation aluminum-magnesium-scandium (Al-Mg-Sc) alloy, which is often referred to as Scalmalloy ® , has been developed as a high-strength aluminum alloy for selective laser melting (SLM). The high-cooling rates of melt pools during SLM establishes the thermodynamic conditions for a fine-grained crack-free aluminum structure saturated with fine precipitates of the ceramic phase Al₃-Sc. The precipitation allows tensile and fatigue strength of Scalmalloy ® to exceed those of AlSi10Mg by ~70%. Knowledge about properties of other additive manufacturing processes with slower cooling rates is currently not available. In this study, two batches of Scalmalloy ® processed by SLM and laser metal deposition (LMD) are compared regarding microstructure-induced properties. Microstructural strengthening mechanisms behind enhanced strength and ductility are investigated by scanning electron microscopy (SEM). Fatigue damage mechanisms in low-cycle (LCF) to high-cycle fatigue (HCF) are a subject of study in a combined strategy of experimental and statistical modeling for calculation of Woehler curves in the respective regimes. Modeling efforts are supported by non-destructive defect characterization in an X-ray computed tomography (µ-CT) platform. The investigations show that Scalmalloy ® specimens produced by LMD are prone to extensive porosity, contrary to SLM specimens, which is translated to ~30% lower fatigue strength.
Awd, Mustafa; Tenkamp, Jochen; Hirtler, Markus; Siddique, Shafaqat; Bambach, Markus; Walther, Frank
2017-01-01
The second-generation aluminum-magnesium-scandium (Al-Mg-Sc) alloy, which is often referred to as Scalmalloy®, has been developed as a high-strength aluminum alloy for selective laser melting (SLM). The high-cooling rates of melt pools during SLM establishes the thermodynamic conditions for a fine-grained crack-free aluminum structure saturated with fine precipitates of the ceramic phase Al3-Sc. The precipitation allows tensile and fatigue strength of Scalmalloy® to exceed those of AlSi10Mg by ~70%. Knowledge about properties of other additive manufacturing processes with slower cooling rates is currently not available. In this study, two batches of Scalmalloy® processed by SLM and laser metal deposition (LMD) are compared regarding microstructure-induced properties. Microstructural strengthening mechanisms behind enhanced strength and ductility are investigated by scanning electron microscopy (SEM). Fatigue damage mechanisms in low-cycle (LCF) to high-cycle fatigue (HCF) are a subject of study in a combined strategy of experimental and statistical modeling for calculation of Woehler curves in the respective regimes. Modeling efforts are supported by non-destructive defect characterization in an X-ray computed tomography (µ-CT) platform. The investigations show that Scalmalloy® specimens produced by LMD are prone to extensive porosity, contrary to SLM specimens, which is translated to ~30% lower fatigue strength. PMID:29295528
NASA Astrophysics Data System (ADS)
Shimada, Hiroyuki; Yamaguchi, Toshiaki; Sumi, Hirofumi; Nomura, Katsuhiro; Yamaguchi, Yuki; Fujishiro, Yoshinobu
2017-02-01
A solid oxide fuel cell (SOFC) for high power density operation was developed with a microstructure-controlled cathode using a nano-composite powder of Sr-doped LaMnO3 (LSM) and Y2O3-stabilized ZrO2 (YSZ) synthesized by spray pyrolysis. The individual LSM-YSZ nano-composite particles, formed by crystalline and amorphous nano-size LSM and YSZ particles, showed spherical morphology with uniform particle size. The use of this powder for cathode material led to an extremely fine microstructure, in which all the LSM and YSZ grains (approximately 100-200 nm) were highly dispersed and formed their own network structures. This microstructure was due to the two phase electrode structure control using the powder, namely, nano-order level in each particle and micro-order level between particles. An anode-supported SOFC with the LSM-YSZ cathode using humidified H2 as fuel and ambient air as oxidant exhibited high power densities, such as 1.29 W cm-2 under a voltage of 0.75 V and a maximum power density of 2.65 W cm-2 at 800 °C. Also, the SOFC could be stably operated for 250 h with no degradation, even at a high temperature of 800 °C.
NASA Astrophysics Data System (ADS)
Chun, Eun-Joon; Park, Changkyoo; Nishikawa, Hiroshi; Kim, Min-Su
2018-06-01
The microstructural characterization of thermal-sprayed Ni-based self-fluxing alloy (Metco-16C®) after laser-assisted homogenization treatment was performed. To this end, a high-power diode laser system was used. This supported the real-time control of the target homogenization temperature at the substrate surface. Non-homogeneities of the macrosegregation of certain elements (C and Cu) and the local concentration of Cr-based carbides and borides in certain regions in the as-sprayed state could be enhanced with the application of homogenization. After homogenization at 1423 K, the hardness of the thermal-sprayed layer was found to have increased by 1280 HV from the as-sprayed state (750 HV). At this homogenization temperature, the microstructure of the thermal-sprayed layer consisted of a lamellar structuring of the matrix phase (austenite and Ni3Si) with fine (<5 μm) carbides and borides (the rod-like phase of Cr5B3, the lumpy phase of M23C6, and the extra-fine phase of M7C3). Despite the formation of several kinds of carbides and borides during homogenization at 1473 K, the lowest hardness level was found to be less than that of the as-sprayed state, because of the liquid-state homogenization treatment without formation of lamellar structuring between austenite and Ni3Si.
Microstructure and Hardness Profiles of Bifocal Laser-Welded DP-HSLA Steel Overlap Joints
NASA Astrophysics Data System (ADS)
Grajcar, A.; Matter, P.; Stano, S.; Wilk, Z.; Różański, M.
2017-04-01
The article presents results related to the bifocal laser welding of overlap joints made of HSLA and DP high-strength steels. The joints were made using a disk laser and a head enabling the 50-50% distribution of laser power. The effects of the laser welding rates and the distance between laser spots on morphological features and hardness profiles were analyzed. It was established that the positioning of beams at angles of 0° or 90° determined the hardness of the individual zones of the joints, without causing significant differences in microstructures of the steels. Microstructural features were inspected using scanning electron microscopy. Both steels revealed primarily martensitic-bainitic microstructures in the fusion zone and in the heat-affected zone. Mixed multiphase microstructures were revealed in the inter-critical heat-affected zone of the joint. The research involved the determination of parameters making it possible to reduce the hardness of joints and prevent the formation of the soft zone in the dual-phase steel.
NASA Astrophysics Data System (ADS)
Kobayashi, M.; Miura, H.; Toda, H.
2015-08-01
Anisotropy of mechanical responses depending on crystallographic orientation causes inhomogeneous deformation on the mesoscopic scale (grain size scale). Investigation of the local plastic strain development is important for discussing recrystallization mechanisms, because the sites with higher local plastic strain may act as potential nucleation sites for recrystallization. Recently, high-resolution X-ray tomography, which is non-destructive inspection method, has been utilized for observation of the materials structure. In synchrotron radiation X-ray tomography, more than 10,000 microstructural features, like precipitates, dispersions, compounds and hydrogen pores, can be observed in aluminium alloys. We have proposed employing these microstructural features as marker gauges to measure local strains, and then have developed a method to calculate the three-dimensional strain distribution by tracking the microstructural features. In this study, we report the development of local plastic strain as a function of the grain microstructure in an aluminium alloy by means of this three-dimensional strain measurement technique. Strongly heterogeneous strain development was observed during tensile loading to 30%. In other words, some parts of the sample deform little whereas another deforms a lot. However, strain in the whole specimen was keeping harmony. Comparing the microstructure with the strain concentration that is obtained by this method has a potential to reveal potential nucleation sites of recrystallization.
NASA Astrophysics Data System (ADS)
Ditenberg, I. A.; Tymentsev, A. N.; Korznikov, A. V.
2015-04-01
Using the method of transmission electron microscopy, peculiar features of evolution of microstructure and variations in microhardness of Та are investigated under torsional loading in the Bridgman anvil as a function of plastic deformation at room temperature. A quantitative examination of grain and defect's structure of the material under study and the values of local internal stresses is performed in different loading stages. The mechanisms of formation of submicrocrystalline and nanostructured states are analyzed and so is the microstructure variation as a function of the defect-structure characteristics, strain level, and spacing from the axis of torsion.
Oxidizing annealing effects on VO2 films with different microstructures
NASA Astrophysics Data System (ADS)
Dou, Yan-Kun; Li, Jing-Bo; Cao, Mao-Sheng; Su, De-Zhi; Rehman, Fida; Zhang, Jia-Song; Jin, Hai-Bo
2015-08-01
Vanadium dioxide (VO2) films have been prepared by direct-current magnetron sputter deposition on m-, a-, and r-plane sapphire substrates. The obtained VO2 films display different microstructures depending on the orientation of sapphire substrates, i.e. mixed microstructure of striped grains and equiaxed grains on m-sapphire, big equiaxed grains on a-sapphire and fine-grained microstructure on r-sapphire. The VO2 films were treated by the processes of oxidation in air. The electric resistance and infrared transmittance of the oxidized films were characterized to examine performance characteristics of VO2 films with different microstructures in oxidation environment. The oxidized VO2 films on m-sapphire exhibit better electrical performance than the other two films. After air oxidization for 600 s at 450 °C, the VO2 films on m-sapphire show a resistance change of 4 orders of magnitude over the semiconductor-to-metal transition. The oxidized VO2 films on a-sapphire have the highest optical modulation efficiency in infrared region compared to other samples. The different performance characteristics of VO2 films are understood in terms of microstructures, i.e. grain size, grain shape, and oxygen vacancies. The findings reveal the correlation of microstructures and performances of VO2 films, and provide useful knowledge for the design of VO2 materials to different applications.
Barchuk, Mykhailo; Motylenko, Mykhaylo; Lukin, Gleb; Pätzold, Olf; Rafaja, David
2017-04-01
The microstructure of polar GaN layers, grown by upgraded high-temperature vapour phase epitaxy on [001]-oriented sapphire substrates, was studied by means of high-resolution X-ray diffraction and transmission electron microscopy. Systematic differences between reciprocal-space maps measured by X-ray diffraction and those which were simulated for different densities of threading dislocations revealed that threading dislocations are not the only microstructure defect in these GaN layers. Conventional dark-field transmission electron microscopy and convergent-beam electron diffraction detected vertical inversion domains as an additional microstructure feature. On a series of polar GaN layers with different proportions of threading dislocations and inversion domain boundaries, this contribution illustrates the capability and limitations of coplanar reciprocal-space mapping by X-ray diffraction to distinguish between these microstructure features.
Semi-solid processing of high-chromium tool steel to obtain microstructures without carbide network
NASA Astrophysics Data System (ADS)
Jirková, H.; Aišman, D.; Rubešová, K.; Opatová, K.; Mašek, B.
2017-02-01
Treatment of high-alloy tool steels that involves transition to the semi-solid state can transform the sharp-edged primary carbides which usually form during solidification. These carbides severely impair toughness and are virtually impossible to eliminate by conventional treatment routes. Upon classical semi-solid processing which dissolves these carbides, the resulting microstructure consists of polyhedral and super-saturated austenite embedded in lamellar austenite-carbide network. This type of microstructure reflects in the mechanical properties, predominantly in material behaviour under tensile loading. Such a network, however, can be removed by appropriate thermomechanical treatment. In the present experiment, various procedures involving heating to the semi-solid state were tested on X210Cr12 tool steel. The feedstock was heated to the temperature range of 1220 - 1280 °C. The heating was followed by procedures involving either water quenching to the forming temperature, room temperature or temperature from the range from 500 °C to 1000 °C followed by reheating to the forming temperature. It was found that the development of the lamellar network strongly depends on the temperature of heating to semi-solid state. Thermomechanical treatment produced microstructures in which the matrix consisted of a mixture of polyhedral austenite grains and the M-A constituent. In addition, the initial lamellar eutectic network was partially or even completely melted and substituted with a mixture of very fine recrystallized austenite grains and precipitates of chromium carbides. Some fine M7C3 carbides were present in the austenitic-martensitic matrix as well. When appropriate processing parameters were chosen, very good mechanical properties were obtained, among them a hardness of 860 HV10.
NASA Astrophysics Data System (ADS)
Desbois, Guillaume; Urai, Janos L.; de Bresser, Johannes H. P.
2012-10-01
We used a combination of broad ion beam cross-sectioning and cryogenic SEM to image polished surfaces and corresponding pairs of fractured grain boundaries in an investigation of grain boundary microstructures and fluid distribution in naturally deformed halite from the Qom Kuh salt glacier (central Iran). At the scale of observations, four types of fluid-filled grain boundary can be distinguished by morphology (from straight to wavy), thickness (from 5000 to 50 nm) and the presence of fluid inclusions. The mobility of the brine is shown after cutting the inclusions by broad ion beam (BIB) in vacuum and fine-grained halite forms efflorescence and precipitates on internal walls of inclusions. At cryogenic temperature, grain boundary brine is shown either as continuous film or in isolated inclusions. The halite-halite grain boundary between isolated fluid inclusions is interpreted to have formed by fluid-assisted grain boundary healing. Preliminary experiments on the samples at shear stress conditions of natural salt glacier show very slow strain rates (7.4 × 10-10 s-1 and 1 × 10-9 s-1), which are less than expected for pressure solution creep. Both microstructures and deformation experiments suggest interfacial energy-driven grain boundary healing and therefore rendering inactive the pressure solution creep in our samples. This result disagrees with previous microstructural studies of the same sample, which showed microstructural evidence for pressure solution (and dislocation creep). Different explanations are discussed, which imply that both healing and reactivation of grain boundaries are important in salt glaciers, leading to heterogeneous distribution of deformation mechanisms and strain rates in both space and time.
Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface
Pu, Xia; Li, Guangji; Huang, Hanlu
2016-01-01
ABSTRACT Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS)-embedded elastomeric stamping (PEES) method. Scanning electron microscopy (SEM) was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface. PMID:26941105
Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface.
Pu, Xia; Li, Guangji; Huang, Hanlu
2016-04-15
Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS)-embedded elastomeric stamping (PEES) method. Scanning electron microscopy (SEM) was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface. © 2016. Published by The Company of Biologists Ltd.
Effects of microstructures on the performance of rare-earth-free MnBi magnetic materials and magnets
NASA Astrophysics Data System (ADS)
Nguyen, Vuong Van; Nguyen, Truong Xuan
2018-03-01
Since the solidification of MnBi alloys is peritectic, their microstructures always consist of the starting phases of Mn and Bi and the productive phase MnBi. The high performance of MnBi bulk magnets requires appropriate routes of preparing MnBi powders of high spontaneous magnetization Ms and large coercivity iHc as well a route of producing bulk magnets thereof. In these routes, the microstructures of arc-melted alloys, annealed alloys and magnets strongly related to the quality of powders and the performance of magnets. The paper proves that: i) The microstructure of fine Mn-inclusions embedded in the matrix of Bi is preferred for arc-melted alloys to realize the rapid evolution of the ferromagnetic phase inside them during their sequent annealing process; ii) The time-controlled annealing process plays a key role in controlling the microstructure with the main ferromagnetic phase matrix, in which the rest of Mn and the Bi accumulations are embedded; iii) The cold (in-liquid-nitrogen) ball milling annealed alloys is required for preparing a high quality powders with the preferred sub-micrometer microstructure without a Bi-decomposition; iv) The short-time warm compaction is crucial to fabricate dense, highly textured bulk magnets with the micrometer microstructure. The realization and control of these preferred microstructures figured in these routes enhance the chance of preparing MnBi bulk magnets with the energy product (BH)max larger than 8 MGOe.
Yang, Jingwei; Cao, Biao; Lu, Qinghua
2017-01-01
The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed. PMID:28772553
Effect of Process Variables on the Inertia Friction Welding of Superalloys LSHR and Mar-M247
NASA Astrophysics Data System (ADS)
Mahaffey, D. W.; Senkov, O. N.; Shivpuri, R.; Semiatin, S. L.
2016-08-01
The effect of inertia friction welding process parameters on microstructure evolution, weld plane quality, and the tensile behavior of welds between dissimilar nickel-base superalloys was established. For this purpose, the fine-grain, powder metallurgy alloy LSHR was joined to coarse-grain cast Mar-M247 using a fixed level of initial kinetic energy, but different combinations of the flywheel moment of inertia and initial rotation speed. It was found that welds made with the largest moment of inertia resulted in a sound bond with the best microstructure and room-temperature tensile strength equal to or greater than that of the parent materials. A relationship between the moment of inertia and weld process efficiency was established. The post-weld tensile behavior was interpreted in the context of observed microstructure gradients and weld-line defects.
Investigation of Hydrogen Embrittlement Susceptibility of X80 Weld Joints by Thermal Simulation
NASA Astrophysics Data System (ADS)
Peng, Huangtao; An, Teng; Zheng, Shuqi; Luo, Bingwei; Wang, Siyu; Zhang, Shuai
2018-05-01
The objective of this study was to investigate the hydrogen embrittlement (HE) susceptibility and influence mechanism of X80 weld joints. Slow strain rate testing (SSRT) under in situ H-charging, combined with microstructure and fracture analysis, was performed on the base metal (BM), weld metal (WM), thermally simulated fine-grained heat-affected zone (FGHAZ) and coarse-grained heat-affected zone (CGHAZ). Results showed that the WM and simulated HAZ had a greater degree of high local strain distribution than the BM; compared to the CGHAZ, the FGHAZ had lower microhardness and more uniformly distributed stress. SSRT results showed that the weld joint was highly sensitive to HE; the HE index decreased in the following sequence: FGHAZ, WM, CGHAZ and BM. The effect of the microstructure on HE was mainly reflected in microstructure, local stress distribution and microhardness.
Yang, Jingwei; Cao, Biao; Lu, Qinghua
2017-02-16
The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed.
NASA Astrophysics Data System (ADS)
Syha, M.; Rheinheimer, W.; Loedermann, B.; Graff, A.; Trenkle, A.; Baeurer, M.; Weygand, D.; Ludwig, W.; Gumbsch, P.
The microstructural evolution of polycrystalline strontium titanate was investigated in three dimensions (3D) using X-ray diffraction contrast tomography (DCT) before and after ex-situ annealing at 1600°C. Post-annealing, the specimen was additionally subjected to phase contrast tomography (PCT) in order to finely resolve the porosities. The resulting microstructure reconstructions were studied with special emphasis on morphology and interface orientation during microstructure evolution. Subsequently, cross-sections of the specimen were studied using electron backscatter diffraction (EBSD). Corresponding cross-sections through the 3D reconstruction were identified and the quality of the reconstruction is validated with special emphasis on the spatial resolution at the grain boundaries, the size and location of pores contained in the material and the accuracy of the orientation determination.
Fabrication, strength and oxidation of molybdenum-silicon-boron alloys from reaction synthesis
NASA Astrophysics Data System (ADS)
Middlemas, Michael Robert
Mo-Si-B alloys are a leading candidate for the next generation of jet turbine engine blades and have the potential to raise the operating temperatures by 300-400°C, which would dramatically increase power and efficiency. The alloys of interest are a three-phase mixture of the molybdenum solid solution (Moss) and two intermetallic phases, Mo3Si (A15) and Mo5SiB2 (T2). A novel powder metallurgical method was developed which uses the reaction of molybdenum, silicon nitride (Si3N4) and boron nitride (BN) powders to synthesize a fine dispersion of the intermetallic phases in a Moss matrix. The covalent nitrides are stable in oxidizing environments up to 1000ºC, allowing for fine particle processing without the formation of silicon and boron oxides. The process developed uses standard powder processing techniques to create Mo-Si-B alloys in a less complex and expensive manner than previously demonstrated. The formation of the intermetallic phases was examined by thermo-gravimetric analysis and x-ray diffraction. The start of the reactions to form the T2 and A15 phases were observed at 1140°C and 1193°C and the reactions have been demonstrated to be complete in as little as two hours at 1300°C. This powder metallurgy approach yields a fine dispersion of intermetallics in the Moss matrix, with average grain sizes of 2-4mum. Densities up to 95% of theoretical were attained from pressureless sintering at 1600°C and full theoretical density was achieved by hot-isostatic pressing (HIP). Low temperature sintering and HIPing was attempted to limit grain growth and to reduce the equilibrium silicon concentration in the Moss matrix. Sintering and HIPing at 1300°C reduced the grain sizes of all three phases by over a factor of two. Powder metallurgy provides an opportunity for microstructure control through changes in raw materials and processing parameters. Microstructure examination by electron back-scatter diffraction (EBSD) imaging was used to precisely define the location of all three phases and to measure the volume fractions and grain size distributions. Microstructural quantification techniques including two-point correlation functions were used to quantify microstructural features and correlate the BN powder size and morphology to the distribution of the intermetallic phases. High-temperature tensile tests were conducted and yield strengths of 580MPa at 1100°C and 480MPa at 1200°C were measured for the Mo-2Si-1B wt.% alloy. The yield strength of the Mo-3Si-1B wt.% alloy was 680MPa at 1100°C and 420MPa at 1300°C. A review of the pertinent literature reveals that these are among the highest yield strengths measured for these compositions. The oxidation resistance in air at 1000 and 1100°C was found to be comparable to the best values reported in the literature. The protective borosilicate surface layer was formed quickly due to the close spacing of intermetallic particles and pre-oxidation treatment was developed to further limit the transient oxidation behavior. An oxidation model was developed which factors in the different stages of oxidation to predict compositions which minimize the total metal recession due to oxidation.
NASA Astrophysics Data System (ADS)
Grobner, P. J.; Blšs, V.
1984-07-01
Metallographic studies have been conducted on a 0.024 pct C-16 pct Cr-1.5 pct Mo-5 pct Ni stainless steel to study the phase reactions associated with heat treatments and investigate the strengthening mechanisms of the steel. In the normalized condition, air cooled from 1010 °C, the microstructure consists of 20 pct ferrite and 80 pct martensite. Tempering in a temperature range between 500 and 600 °C results in a gradual transformation of martensite to a fine mixture of ferrite and austenite. At higher tempering temperatures, between 600 and 800 °C, progressively larger quantities of austenite form and are converted during cooling to proportionally increasing amounts of fresh martensite. The amount of retained austenite in the microstructure is reduced to zero at 800 °C, and the microstructure contains 65 pct re-formed martensite and 35 pct total ferrite. Chromium rich M23C6 carbides precipitate in the single tempered microstructures. The principal strengthening is produced by the presence of martensite in the microstructure. Additional strengthening is provided by a second tempering treatment at 400 °C due to the precipitation of ultrafine (Cr, Mo) (C,N) particles in the ferrite.
NASA Technical Reports Server (NTRS)
Domack, Marcia S.; Tainger, Karen M.
2006-01-01
The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.
Imaging brain tumour microstructure.
Nilsson, Markus; Englund, Elisabet; Szczepankiewicz, Filip; van Westen, Danielle; Sundgren, Pia C
2018-05-08
Imaging is an indispensable tool for brain tumour diagnosis, surgical planning, and follow-up. Definite diagnosis, however, often demands histopathological analysis of microscopic features of tissue samples, which have to be obtained by invasive means. A non-invasive alternative may be to probe corresponding microscopic tissue characteristics by MRI, or so called 'microstructure imaging'. The promise of microstructure imaging is one of 'virtual biopsy' with the goal to offset the need for invasive procedures in favour of imaging that can guide pre-surgical planning and can be repeated longitudinally to monitor and predict treatment response. The exploration of such methods is motivated by the striking link between parameters from MRI and tumour histology, for example the correlation between the apparent diffusion coefficient and cellularity. Recent microstructure imaging techniques probe even more subtle and specific features, providing parameters associated to cell shape, size, permeability, and volume distributions. However, the range of scenarios in which these techniques provide reliable imaging biomarkers that can be used to test medical hypotheses or support clinical decisions is yet unknown. Accurate microstructure imaging may moreover require acquisitions that go beyond conventional data acquisition strategies. This review covers a wide range of candidate microstructure imaging methods based on diffusion MRI and relaxometry, and explores advantages, challenges, and potential pitfalls in brain tumour microstructure imaging. Copyright © 2018. Published by Elsevier Inc.
Pecho, Omar M; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J; Holzer, Lorenz
2015-10-21
3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance ( R pol ). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance . However, the quantitative results also show that there is no simplistic relationship between TPB and R pol . The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and R pol . In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPB active by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPB active , effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.
Pecho, Omar M.; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J.; Holzer, Lorenz
2015-01-01
3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance (Rpol). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship between TPB and Rpol. The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and Rpol. In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPBactive by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPBactive, effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer. PMID:28793624
Zou, Yun; Zhang, Lehao; Li, Yang; ...
2017-12-06
Limitations of strength and formability are the major obstacles to the industrial application of magnesium alloys. Here, we demonstrate, by producing the duplex phases and fine intermetallic particles in composition-optimized superlight Mg-Li-Al alloys, a unique approach to simultaneously improve the comprehensive mechanical properties (a strength-ductility balance). In conclusion, the phase components and microstructures, including the size, morphology, and distribution of precipitated-intermetallic particles can be optimized by tuning the Li content, which strongly influences the work-hardening behavior and tension-compression yield asymmetry.
NASA Astrophysics Data System (ADS)
Au, Peter
A process for fabricating advanced aerospace titanium aluminide alloys starting from metal powders (the hot isostatically consolidated P/M process) is presented in this thesis. This process does not suffer the difficulties of chemical inhomogeneities and coarse grain structure of castings. In addition heat treatments which take advantage of the refined structure of HIP processed materials are developed to achieve microstructure control and subsequent mechanical property control. It is shown that a better "property balance" is possible after the heat treatment of HIP consolidated materials than it is with alternative processing. It is well understood that the standard microstructures (near-gamma, duplex, nearly lamellar, and fully lamellar) do not have the balanced mechanical properties (tensile, yield, creep and fatigue strength, ductility and fracture toughness) necessary for optimal performance in aero engine and automotive applications. In this work a fine-grained fully lamellar (FGFL) microstructure is developed for property control and in particular for achieving a much improved property balance. A heat treatment procedure for this purpose which consists of cyclic processing in the alpha transus temperature region to achieve an FGFL structure with grain sizes in the range of 50 mum to 150 mum is presented. Compared with conventional duplex structured materials, the minimum creep rate is an order of magnitude lower with only a 10% loss in tensile yield strength. Moreover, a three-fold increase in tensile elongation is possible by converting to an FGFL structure with only a 30% loss in minimum creep rate. These are attractive trade-offs when considering the use of these alloys for aerospace purposes. A thorough literature review of the mechanisms of formation of standard microstructures and their deformation under mechanical loading is contained in the thesis. In addition, conventional techniques to produce FGFL microstructures in wrought and cast materials are discussed in detail. Beyond the review, the results of experiments are described for determining the alpha transus temperature, the phase transformation kinetics in this region and the effects of heat treatment time and cooling rate on microstructure. Based on this preliminary work, a heat treatment to achieve a FGFL microstructure with grain sizes in the range of 50 mum to 150 mum is proposed and confirmed. The room temperature and high temperature mechanical properties of these materials are compared with those of conventional duplex and fully lamellar structures. The results of this experimentation are discussed in terms of the fundamental mechanisms for controlling microstructure and mechanical properties in these materials. The potential for applying cyclic heat treatments to cast and wrought materials to improve the mechanical property balance in engineering practice is discussed.
NASA Astrophysics Data System (ADS)
Verma, Jagesvar; Taiwade, Ravindra V.; Sapate, Sanjay G.; Patil, Awanikumar P.; Dhoble, Ashwinkumar S.
2017-10-01
Microstructure, mechanical properties and corrosion resistance of dissimilar friction stir-welded aluminum and magnesium alloys were investigated by applying three different rotational speeds at two different travel speeds. Sound joints were obtained in all the conditions. The microstructure was examined by an optical and scanning electron microscope, whereas localized chemical information was studied by energy-dispersive spectroscopy. Stir zone microstructure showed mixed bands of Al and Mg with coarse and fine equiaxed grains. Grain size of stir zone reduced compared to base metals, indicated by dynamic recrystallization. More Al patches were observed in the stir zone as rotational speed increased. X-ray diffraction showed the presence of intermetallics in the stir zone. Higher tensile strength and hardness were obtained at a high rotational speed corresponding to low travel speed. Tensile fractured surface indicated brittle nature of joints. Dissimilar friction stir weld joints showed different behaviors in different corrosive environments, and better corrosion resistance was observed at a high rotational speed corresponding to low travel speed (FW3) in a sulfuric and chloride environments. Increasing travel speed did not significantly affect on microstructure, mechanical properties and corrosion resistance as much as the rotational speed.
Evaluation of an Al-Ce alloy for laser additive manufacturing
Plotkowski, A.; Rios, O.; Sridharan, N.; ...
2016-12-27
Our present research in metal additive manufacturing (AM) focuses on designing processing parameters around existing alloys designed for traditional manufacturing. However, to maximize the benefits of AM, alloys should be designed to specifically take advantage of the unique thermal conditions of these processes. Furthermore, our study focuses on the development of a design methodology for alloys in AM, using a newly developed Al-Ce alloy as an initial case study. To evaluate the candidacy of this system for fusion based additive manufacturing, single-line laser melts were made on cast Al-12Ce plates using three different beam velocities (100, 200, and 300 mm/min).more » The microstructure was evaluated in the as-melted and heat treated conditions (24 hrs at 300°C). An extremely fine microstructure was observed within the weld pools, evolving from eutectic at the outer solid-liquid boundaries to a primary Al FCC dendritic/cellular structure nearer the melt-pool centerline. We rationalized the observed microstructures through the construction of a microstructure selection map for the Al-Ce binary system, which will be used to enable future alloy design. Interestingly, the heat treated samples exhibited no microstructural coarsening.« less
Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alihosseini, H., E-mail: hamid.alihossieni@gmail.com; Materials Science and Engineering Department, Engineering School, Amirkabir University, Tehran; Faraji, G.
2012-06-15
In the present work, the microstructural evolutions and microhardness of AA1050 subjected to one, two and three passes of accumulative back extrusion (ABE) were investigated. The microstructural evolutions were characterized using transmission electron microscopy. The results revealed that applying three passes of accumulative back extrusion led to significant grain refinement. The initial grain size of 47 {mu}m was refined to the grains of 500 nm after three passes of ABE. Increasing the number of passes resulted in more decrease in grain size, better microstructure homogeneity and increase in the microhardness. The cross-section of ABEed specimen consisted of two different zones:more » (i) shear deformation zone, and (ii) normal deformation zone. The microhardness measurements indicated that the hardness increased from the initial value of 31 Hv to 67 Hv, verifying the significant microstructural refinement via accumulative back extrusion. - Highlights: Black-Right-Pointing-Pointer A significant grain refinement can be achieved in AA1050, Al alloy by applying ABE. Black-Right-Pointing-Pointer Microstructural homogeneity of ABEed samples increased by increasing the number of ABE cycles. Black-Right-Pointing-Pointer A substantial increase in the hardness, from 31 Hv to 67 Hv, was recorded.« less
Microstructure Evolution and Composition Control During the Processing of Thin-Gage Metallic Foil
NASA Astrophysics Data System (ADS)
Semiatin, S. L.; Gross, M. E.; Matson, D. W.; Bennett, W. D.; Bonham, C. C.; Ustinov, A. I.; Ballard, D. L.
2012-12-01
The manufacture of thin-gage superalloy and gamma-titanium-aluminide foil products via near-conventional thermomechanical processing and two different vapor-deposition methods was investigated. Thermomechanical processing was based on hot-pack rolling of plate and sheet. Foils of the superalloy LSHR and the near-gamma titanium aluminide Ti-45.5Al-2Cr-2Nb made by this approach exhibited excellent gage control and fine two-phase microstructures. The vapor-phase techniques used magnetron sputtering (MS) of a target of the desired product composition or electron-beam physical vapor deposition (EBPVD) of separate targets of the specific alloying elements. Thin deposits of LSHR and Ti-48Al-2Cr-2Nb made by MS showed uniform thickness/composition and an ultrafine microstructure. However, systematic deviations from the specific target composition were found. During subsequent heat treatment, the microstructure of the MS samples showed various degrees of grain growth and coarsening. Foils of Ti-43Al and Ti-51Al-1V fabricated by EBPVD were fully dense. The microstructures developed during EBPVD were interpreted in terms of measured phase equilibria and the dependence of evaporant flux on temperature.
Microstructure and Charpy impact properties of 12 14Cr oxide dispersion-strengthened ferritic steels
NASA Astrophysics Data System (ADS)
Oksiuta, Z.; Baluc, N.
2008-02-01
This paper describes the microstructure and Charpy impact properties of 12-14 Cr ODS ferritic steels fabricated by mechanical alloying of pure Fe, Cr, W, Ti and Y 2O 3 powders in a Retsch ball mill in argon atmosphere, followed by hot isostatic pressing at 1100 °C under 200 MPa for 4 h and heat treatment at 850 °C for 1 h. Weak Charpy impact properties were obtained in the case of both types of as-hipped materials. In the case of 14Cr materials, the weak Charpy properties appeared related to a bimodal grain size distribution and a heterogeneous dislocation density between the coarse and fine grains. No changes in microstructure were evidenced after heat treatment at 850 °C. Significant improvement in the transition temperature and upper shelf energy of 12Cr materials was obtained by heat treatment at 850 °C for 1 h, which was attributed to the formation of smaller grains, homogenous in size and containing fewer dislocations, with respect to the as-hipped microstructure. This modified microstructure results in a good compromise between strength and Charpy impact properties.
Processing, Microstructure, and Tensile Properties of the Ti-6Al-4V-1.55B Eutectic Alloy (Preprint)
2007-02-01
compositions via induction skull melting using a water-cooled segmented copper crucible . The charge was incrementally added to give chemical homogeneity...achieved near the water-cooled wall of the segmented copper crucible . The regular eutectic arrangement was destroyed and an irregular distribution of fine
Ren, Fuzeng; Zhu, Weiwei; Chu, Kangjie
2016-07-01
Nickel and carbides free Co-28Cr-6Mo alloy was fabricated by combination of mechanical alloying and warm pressing. The microstructure, mechanical properties, pin-on-disk dry sliding wear and corrosion behavior in simulated physiological solution were investigated. The produced Co-28Cr-6Mo alloy has elongated ultra-fine grained (UFG) structure of ε-phase with average grain size of 600nm in length and 150nm in thickness. The hardness and modulus were determined to be 8.87±0.56GPa and 198.27±7.02GPa, respectively. The coefficient of friction upon dry sliding against alumina is pretty close to that of the forged Co-29Cr-6Mo alloy. The initial ε-phase and UFG microstructure contribute to reduce the depth of severe plastic deformation region during wear and enable the alloy with excellent wear resistance. The corrosion potential of such UFG Co-Cr-Mo alloy has more positive corrosion potential and much lower corrosion current density than those of ASTM alloy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Use of additives to improve microstructures and fracture resistance of silicon nitride ceramics
Becher, Paul F [Oak Ridge, TN; Lin, Hua-Tay [Oak Ridge, TN
2011-06-28
A high-strength, fracture-resistant silicon nitride ceramic material that includes about 5 to about 75 wt-% of elongated reinforcing grains of beta-silicon nitride, about 20 to about 95 wt-% of fine grains of beta-silicon nitride, wherein the fine grains have a major axis of less than about 1 micron; and about 1 to about 15 wt-% of an amorphous intergranular phase comprising Si, N, O, a rare earth element and a secondary densification element. The elongated reinforcing grains have an aspect ratio of 2:1 or greater and a major axis measuring about 1 micron or greater. The elongated reinforcing grains are essentially isotropically oriented within the ceramic microstructure. The silicon nitride ceramic exhibits a room temperature flexure strength of 1,000 MPa or greater and a fracture toughness of 9 MPa-m.sup.(1/2) or greater. The silicon nitride ceramic exhibits a peak strength of 800 MPa or greater at 1200 degrees C. Also included are methods of making silicon nitride ceramic materials which exhibit the described high flexure strength and fracture-resistant values.
TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding
Liu, Yanhui; Qu, Weicheng; Su, Yu
2016-01-01
In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α-Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage. PMID:28773934
Effects of neutron irradiation on deformation behavior of nickel-base fastener alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajaj, R.; Mills, W.J.; Kammenzind, B.F.
1999-07-01
This paper presents the effects of neutron irradiation on the fracture behavior and deformation microstructure of high-strength nickel-base alloy fastener materials, Alloy X-750 and Alloy 625. Alloy X-750 in the HTH condition, and Alloy 625 in the direct aged condition were irradiated to a fluence of 2.4x10{sup 20} n/cm{sup 2} at 264 C in the Advanced Test Reactor. Deformation structures at low strains were examined. It was previously shown that Alloy X-750 undergoes hardening, a significant degradation in ductility and an increase in intergranular fracture. In contrast, Alloy 625 had shown softening with a concomitant increase in ductility and transgranularmore » failure after irradiation. The deformation microstructures of the two alloys were also different. Alloy X-750 deformed by a planar slip mechanism with fine microcracks forming at the intersections of slip bands with grain boundaries. Alloy 625 showed much more homogeneous deformation with fine, closely spaced slip bands and an absence of microcracks. The mechanism(s) of irradiation assisted stress corrosion cracking (IASCC) are discussed.« less
Microstructures and Properties of Laser Cladding Al-TiC-CeO2 Composite Coatings
Kong, Dejun; Song, Renguo
2018-01-01
Al-TiC-CeO2 composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV0.2. In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance. PMID:29373555
Microstructures and Properties of Laser Cladding Al-TiC-CeO₂ Composite Coatings.
He, Xing; Kong, Dejun; Song, Renguo
2018-01-26
Al-TiC-CeO₂ composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV 0.2 . In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance.
TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding.
Liu, Yanhui; Qu, Weicheng; Su, Yu
2016-09-30
In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α -Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.
High Strength Discontinuously Reinforced Aluminum For Rocket Applications
NASA Technical Reports Server (NTRS)
Pandey, A. B.; Shah, S. R.; Shadoan, M.
2003-01-01
This study presents results on the development of a new aluminum alloy with very high strength and ductility. Five compositions of Al-Mg-Sc-Gd-Zr alloy were selected for this purpose. These alloys were also reinforced with 15 volume percent silicon-carbide and boron-carbide particles to produce Discontinuously Reinforced Aluminum (DRA) materials. Matrix alloys and DRA were processed using a powder metallurgy process. The helium gas atomization produced very fine powder with cellular-dentritic microstructure. The microstructure of matrix alloys showed fine Al3Sc based precipitate which provides significant strengthening in these alloys. DRA showed uniform distribution of reinforcement in aluminum matrix. DRA materials were tested at -320 F, 75 F in air and 7S F in gaseous hydrogen environments and matrix alloys were tested at 75 F in air. DRA showed high strengths in the range of 89-111 ksi (614-697 MPa) depending on alloy compositions and test environments. Matrix alloys had a good combination of strength, 84-89 ksi (579-621 MPa) and ductility, 4.5-6.5%. The properties of these materials can further be improved by proper control of processing parameters.
Solidification of Al-Sn-Cu Based Immiscible Alloys under Intense Shearing
NASA Astrophysics Data System (ADS)
Kotadia, H. R.; Doernberg, E.; Patel, J. B.; Fan, Z.; Schmid-Fetzer, R.
2009-09-01
The growing importance of Al-Sn based alloys as materials for engineering applications necessitates the development of uniform microstructures with improved performance. Guided by the recently thermodynamically assessed Al-Sn-Cu system, two model immiscible alloys, Al-45Sn-10Cu and Al-20Sn-10Cu, were selected to investigate the effects of intensive melt shearing provided by the novel melt conditioning by advanced shear technology (MCAST) unit on the uniform dispersion of the soft Sn phase in a hard Al matrix. Our experimental results have confirmed that intensive melt shearing is an effective way to achieve fine and uniform dispersion of the soft phase without macro-demixing, and that such dispersed microstructure can be further refined in alloys with precipitation of the primary Al phase prior to the demixing reaction. In addition, it was found that melt shearing at 200 rpm and 60 seconds will be adequate to produce fine and uniform dispersion of the Sn phase, and that higher shearing speed and prolonged shearing time can only achieve minor further refinement.
NASA Astrophysics Data System (ADS)
Kim, Y. H.; Kim, W. J.
2015-03-01
This study reported that a combination of strip casting and high-ratio differential speed rolling (HRDSR) can produce flame-resistant Mg alloy sheets (0.7 wt%Ca-AZ31: 0.7Ca-AZ31) with good room-temperature mechanical properties and high-temperature formability. HRDSR effectively refined the coarse microstructure of the strip-casting processed 0.7Ca-AZ31 alloy. As the result, the (true) grain size was reduced to as small as 2.7 μm and the (Mg, Al)2Ca phase was broken up to fine particles with an average sizes of 0.5 μm. Due to the advantage of having such a highly refined microstructure, the HRDSR-processed 0.7Ca-AZ31 alloy sheet exhibited a high yield stress over 300 MPa and good superplasticity at elevated temperatures. The deformation mechanism of the fine-grained 0.7Ca-AZ31 alloy in the superplastic regime was identified to be grainboundary-diffusion or lattice-diffusion controlled grain boundary sliding.
NASA Astrophysics Data System (ADS)
Crispini, L.; Scambelluri, M.; Capponi, G.
2013-12-01
Recent friction experiments on calcite-bearing systems reproduce pseudotachylyte structures, that are diagnostic of dinamic calcite recrystallization related to seismic slip in the shallow crust. Here we provide the study of a pseudotachylyte (PT) bearing low angle oblique-slip fault. The fault is linked to the exhumation of Alpine HP-ophiolites and it is syn- to post-metamorphic with respect to retrograde greenschist facies metamorphism. The observed microstructures developed at the brittle-ductile transition and suggest that seismic and interseismic slip was enhanced by interaction with fluids. The fault zone is in-between high-pressure eclogite-facies metabasites (hangingwall) and calcite bearing metasediments (footwall). The mafic rocks largely consist of upper greenschist facies hornblende, albite, chlorite, epidote with relict eclogitic garnet, Na-pyroxene and rutile; metasediments correspond to calcschist and micaschist with quartz, phengite, zoisite, chlorite, calcite and relics of garnet. Key features of the oucrop are: the thickness and geometry of the PT and gouge; the multiple production of PT characterized by overprinting plastic and brittle deformation; the occurrence in footwall metasediments of mm-thick bands of finely recrystallized calcite coeval with PT development in the hangingwall. The damage zone is ca. 2 m-thick and is characterized by two black, ultra-finegrained straight and sharp Principal Slip Zones (PSZ) marked by PT. The damage zone shows a variety of fault rocks (cataclasite and ultracataclasite, gouge and PT) with multiple crosscutting relationships. Within the two main PSZ, PT occurs in 10-20 cm thick layer, in small scale injection veins and in microfractures. In the mafic hanging wall, the PT is recrystallized and does not preserve glass: it shows flow structures with subrounded, embayed and rebsorbed quartz in a fine grained matrix composed of isotropic albite + chlorite + quartz + epidote + titanite, suggesting recrystallization at ca. 270-300°C, 8-10 km of the original glass. PT show plastic deformations overprinted by shear bands and fracturing. The matrix of cataclastic layers has the same mineral assemblage as PT and clasts of recrystallised PT, to indicate polyphase PSZ formation. In the metasedimentary footwall, the original foliation is deflected parallel to the PSZ and is cut by cm-spaced shear bands parallel to PSZ. Deformation propagates in the footwall through mm-thick injections veins, shear bans, P-shears and veins. Pockets of recrystallized PT occur along the pre-existing mylonitic foliation of metasediments. Worthnote is the presence of mm-thick deformation bands (CDB) that are post-mylonitic foliation and mainly composed of fine grained calcite bounded by dissolution seams or ribbon grains of deformed calcite. CDB are characterised by subrounded embayed and rebsorbed quartz grains rimmed by new Ca-Mg amphibole, K-feldspar (90-93%K), in a dinamic recrystallized calcite 2-10 micron in size and slightly elongated. The features of the CDB suggest that these structures can be considered as diagnostic of localised deformation during coesismic slip in metasedimentary rocks.
NASA Astrophysics Data System (ADS)
Lay, E.; Metcalfe, C.; Kesler, O.
2012-11-01
The Solution Precursor Plasma Spray (SPPS) process was successfully used to deposit cermet coatings that exhibit fine microstructures with high surface area. MgO addition in Ni-YSZ and Ni-SDC cermets results in (Ni,Mg)O solid solution formation, and nickel particles after reduction are finer than in coatings without magnesia. The influence of MgO on the chemical stability of cermets in anodic operating conditions is discussed. It was found that a sufficient amount of magnesia addition (Ni0.9(MgO)0.1) helps to reduce carbon deposition in dry methane.
Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora
2013-01-01
In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed. PMID:28809344
Manfredi, Diego; Calignano, Flaviana; Krishnan, Manickavasagam; Canali, Riccardo; Ambrosio, Elisa Paola; Atzeni, Eleonora
2013-03-06
In this paper, a characterization of an AlSiMg alloy processed by direct metal laser sintering (DMLS) is presented, from the analysis of the starting powders, in terms of size, morphology and chemical composition, through to the evaluation of mechanical and microstructural properties of specimens built along different orientations parallel and perpendicular to the powder deposition plane. With respect to a similar aluminum alloy as-fabricated, a higher yield strength of about 40% due to the very fine microstructure, closely related to the mechanisms involved in this additive process is observed.
Homogenization kinetics of a nickel-based superalloy produced by powder bed fusion laser sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Levine, Lyle E.; Allen, Andrew J.
2017-04-01
Additively manufactured (AM) metal components often exhibit fine dendritic microstructures and elemental segregation due to the initial rapid solidification and subsequent melting and cooling during the build process, which without homogenization would adversely affect materials performance. In this letter, we report in situ observation of the homogenization kinetics of an AM nickel-based superalloy using synchrotron small angle X-ray scattering. The identified kinetic time scale is in good agreement with thermodynamic diffusion simulation predictions using microstructural dimensions acquired by ex situ scanning electron microscopy. These findings could serve as a recipe for predicting, observing, and validating homogenization treatments in AM materials.
Homogenization Kinetics of a Nickel-based Superalloy Produced by Powder Bed Fusion Laser Sintering.
Zhang, Fan; Levine, Lyle E; Allen, Andrew J; Campbell, Carelyn E; Lass, Eric A; Cheruvathur, Sudha; Stoudt, Mark R; Williams, Maureen E; Idell, Yaakov
2017-04-01
Additively manufactured (AM) metal components often exhibit fine dendritic microstructures and elemental segregation due to the initial rapid solidification and subsequent melting and cooling during the build process, which without homogenization would adversely affect materials performance. In this letter, we report in situ observation of the homogenization kinetics of an AM nickel-based superalloy using synchrotron small angle X-ray scattering. The identified kinetic time scale is in good agreement with thermodynamic diffusion simulation predictions using microstructural dimensions acquired by ex situ scanning electron microscopy. These findings could serve as a recipe for predicting, observing, and validating homogenization treatments in AM materials.
Chen, Dongsheng; Zeng, Nan; Xie, Qiaolin; He, Honghui; Tuchin, Valery V; Ma, Hui
2017-08-01
We investigate the polarization features corresponding to changes in the microstructure of nude mouse skin during immersion in a glycerol solution. By comparing the Mueller matrix imaging experiments and Monte Carlo simulations, we examine in detail how the Mueller matrix elements vary with the immersion time. The results indicate that the polarization features represented by Mueller matrix elements m22&m33&m44 and the absolute values of m34&m43 are sensitive to the immersion time. To gain a deeper insight on how the microstructures of the skin vary during the tissue optical clearing (TOC), we set up a sphere-cylinder birefringence model (SCBM) of the skin and carry on simulations corresponding to different TOC mechanisms. The good agreement between the experimental and simulated results confirm that Mueller matrix imaging combined with Monte Carlo simulation is potentially a powerful tool for revealing microscopic features of biological tissues.
NASA Astrophysics Data System (ADS)
Yin, Ming; Xie, Luofeng; Jiang, Weifeng; Yin, Guofu
2018-05-01
Functional gradient systems have important applications in many areas. Although a 2D dielectric structure that serves as the gradient index medium for controlling electromagnetic waves is well established, it may not be suitable for application in 3D case. In this paper, we present a method to realize functional gradient systems with 3D integrated micro/macrostructure. The homogenization of the structure is studied in detail by conducting band diagram analysis. The analysis shows that the effective medium approximation is valid even when periodicity is comparable to wavelength. The condition to ensure the polarization-invariant, isotropic, and frequency-independent property is investigated. The scheme for the design and fabrication of 3D systems requiring spatial material property distribution is presented. By using the vat photopolymerization process, a large overall size of macrostructure at the system level and precise fine features of microstructure at the unit cell level are realized, thus demonstrating considerable scalability of the system for wave manipulation.
Characterization of X80 and X100 Microalloyed Pipeline Steel Using Quantitative X-ray Diffraction
NASA Astrophysics Data System (ADS)
Wiskel, J. B.; Li, X.; Ivey, D. G.; Henein, H.
2018-06-01
Quantitative X-ray diffraction characterization of four (4) X80 and three (3) X100 microalloyed steels was undertaken. The effect of through-thickness position, processing parameters, and composition on the measured crystallite size, microstrain, and J index (relative magnitude of crystallographic texture) was determined. Microstructure analysis using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron-backscattered diffraction was also undertaken. The measured value of microstrain increased with increasing alloy content and decreasing cooling interrupt temperature. Microstructural features corresponding to crystallite size in the X80 steels were both above and below the detection limit for quantitative X-ray diffraction. The X100 steels consistently exhibited microstructure features below the crystallite size detection limit. The yield stress of each steel increased with increasing microstrain. The increase in microstrain from X80 to X100 is also associated with a change in microstructure from predominantly polygonal ferrite to bainitic ferrite.
NASA Technical Reports Server (NTRS)
Mackay, R. A.; Nathal, M. V.
1986-01-01
Some of the microstructural features which influence the creep properties of directionally solidified and single crystal nickel-base superalloys are discussed. Gamma precipitate size and morphology, gamma-gamma lattice mismatch, phase instability, alloy composition, and processing variations are among the factors considered. Recent experimental results are reviewed and related to the operative deformation mechanisms and to the corresponding mechanical properties. Special emphasis is placed on the creep behavior of single crystal superalloys at high temperatures, where directional gamma coarsening is prominent, and at lower temperatures, where gamma coarsening rates are significantly reduced. It can be seen that very subtle changes in microstructural features can have profound effects on the subsequent properties of these materials.
The microstructure of polar ice. Part II: State of the art
NASA Astrophysics Data System (ADS)
Faria, Sérgio H.; Weikusat, Ilka; Azuma, Nobuhiko
2014-04-01
An important feature of natural ice, in addition to the obvious relevance of glaciers and ice sheets for climate-related issues, is its ability to creep on geological time scales and low deviatoric stresses at temperatures very close to its melting point, without losing its polycrystalline character. This fact, together with its strong mechanical anisotropy and other notable properties, makes natural ice an interesting model material for studying the high-temperature creep and recrystallization of rocks in Earth's interior. After having reviewed the major contributions of deep ice coring to the research on natural ice microstructures in Part I of this work (Faria et al., 2014), here in Part II we present an up-to-date view of the modern understanding of natural ice microstructures and the deformation processes that may produce them. In particular, we analyze a large body of evidence that reveals fundamental flaws in the widely accepted tripartite paradigm of polar ice microstructure (also known as the "three-stage model," cf. Part I). These results prove that grain growth in ice sheets is dynamic, in the sense that it occurs during deformation and is markedly affected by the stored strain energy, as well as by air inclusions and other impurities. The strong plastic anisotropy of the ice lattice gives rise to high internal stresses and concentrated strain heterogeneities in the polycrystal, which demand large amounts of strain accommodation. From the microstructural analyses of ice cores, we conclude that the formation of many and diverse subgrain boundaries and the splitting of grains by rotation recrystallization are the most fundamental mechanisms of dynamic recovery and strain accommodation in polar ice. Additionally, in fine-grained, high-impurity ice layers (e.g. cloudy bands), strain may sometimes be accommodated by diffusional flow (at low temperatures and stresses) or microscopic grain boundary sliding via microshear (in anisotropic ice sheared at high temperatures). Grain boundaries bulged by migration recrystallization and subgrain boundaries are endemic and very frequent at almost all depths in ice sheets. Evidence of nucleation of new grains is also observed at various depths, provided that the local concentration of strain energy is high enough (which is not seldom the case). As a substitute for the tripartite paradigm, we propose a novel dynamic recrystallization diagram in the three-dimensional state space of strain rate, temperature, and mean grain size, which summarizes the various competing recrystallization processes that contribute to the evolution of the polar ice microstructure.
Grain-size-induced weakening of H2O ices I and II and associated anisotropic recrystallization
Stern, L.A.; Durham, W.B.; Kirby, S.H.
1997-01-01
Grain-size-dependent flow mechanisms tend to be favored over dislocation creep at low differential stresses and can potentially influence the rheology of low-stress, low-strain rate environments such as those of planetary interiors. We experimentally investigated the effect of reduced grain size on the solid-state flow of water ice I, a principal component of the asthenospheres of many icy moons of the outer solar system, using techniques new to studies of this deformation regime. We fabricated fully dense ice samples of approximate grain size 2 ?? 1 ??m by transforming "standard" ice I samples of 250 ?? 50 ??m grain size to the higher-pressure phase ice II, deforming them in the ice II field, and then rapidly releasing the pressure deep into the ice I stability field. At T ??? 200 K, slow growth and rapid nucleation of ice I combine to produce a fine grain size. Constant-strain rate deformation tests conducted on these samples show that deformation rates are less stress sensitive than for standard ice and that the fine-grained material is markedly weaker than standard ice, particularly during the transient approach to steady state deformation. Scanning electron microscope examination of the deformed fine-grained ice samples revealed an unusual microstructure dominated by platelike grains that grew normal to the compression direction, with c axes preferentially oriented parallel to compression. In samples tested at T ??? 220 K the elongation of the grains is so pronounced that the samples appear finely banded, with aspect ratios of grains approaching 50:1. The anisotropic growth of these crystallographically oriented neoblasts likely contributes to progressive work hardening observed during the transient stage of deformation. We have also documented remarkably similar microstructural development and weak mechanical behavior in fine-grained ice samples partially transformed and deformed in the ice II field.
Kosmac, T; Oblak, C; Jevnikar, P; Funduk, N; Marion, L
1999-11-01
This study was conducted to evaluate the effect of grinding and sandblasting on the microstructure, biaxial flexural strength and reliability of two yttria stabilized tetragonal zirconia (Y-TZP) ceramics. Two Y-TZP powders were used to produce fine grained and coarse grained microstructures. Sixty discs from each material were randomly divided into six groups of ten. For each group, a different surface treatment was applied: dry grinding, wet grinding, sandblasting, dry grinding + sandblasting, sandblasting + dry grinding and a control group. Biaxial flexural strength was determined and data were analyzed using one-way ANOVA, followed by Tukey's HSD test (p < 0.05). In addition, Weibull statistics was used to analyze the variability of flexural strength. The relative amount of transformed monoclinic zirconia, corresponding transformed zone depth (TZD) and the mean critical defect size Ccr were calculated. There was no difference in mean strength between the as sintered fine and coarse grained Y-TZP. Significant differences (p < 0.05) were found between the control group and ground fine grained material for both wet and dry grinding. Sandblasting significantly increased the strength in fine and coarse grained materials. All surface treatment procedures reduced the Weibull modulus of Y-TZP. For both materials, the highest amount of the monoclinic phase and the largest TZD was found after sandblasting. Lower amounts of the monoclinic phase were obtained after both grinding procedures, where the highest mean critical defect size Ccr was also calculated. Our results indicate that sandblasting may provide a powerful technique for strengthening Y-TZP in clinical practice. In contrast, grinding may lead to substantial strength degradation and reduced reliability of prefabricated zirconia elements, therefore, sandblasting of ground surfaces is suggested.
NASA Astrophysics Data System (ADS)
Gupta, Rajat; Kumar, Rohit; Chaubey, A. K.; Kanpara, Shailesh; Khirwadkar, S. S.
2018-03-01
Five layer W-Cu functionally graded material (FGM) for components in nuclear fusion application was fabricated by a one-step resistance sintering process, known as spark plasma sintering (SPS). In this study effect of sintering temperature (Ts) on physical, mechanical and surface property was investigated. Detailed microstructural study revealed that the graded structure of the composite layers with varying composition from 0 to 100 wt% W and Cu in opposite directions could be well densified after the SPS process. It also indicates that the fine microstructure within functionally graded layers can be maintained because of short sintering time. The sample sintered at 1050°C shows more than 90% theoretical density, hardness greater than 239±5 Hv and excellent surface scratch resistance. The result demonstrates that SPS is promising and more suitable process for fabrication of W-Cu FGM.
Multiphase Microstructure in a Metastability-Assisted Medium Carbon Alloy Steel
NASA Astrophysics Data System (ADS)
Liu, Cheng; Cui, Xixi; Yang, Chen
2018-05-01
A medium carbon alloy steel is processed by austenizing at 900 °C for 30 min, then rapid quenching into a patented quenching liquid and holding at 170 °C for 5 min, finally isothermally holding at 250 °C for different times. The morphology and mechanical properties are performed by using optical microscopy and scanning electron microscopy. A multiphase microstructure characterized by a mixture of lenticular prior martensite (PM), fine needle bainitic ferrite and filmy retained austenite (RA) is obtained. It is found that the PM formed firstly upon quenching can accelerate the subsequent bainitic transformation and promote refinement of multiphase colonies. The results show that an optimum mechanical property of a 4000.9 MPa bending strength and a 2030 MPa tensile strength is achieved at 250 °C for 120 min, which is attributed to the multiphase microstructural characteristics and a high product of the volume fraction of RA and the carbon content of austenite.
[Study on high strength mica-based machinable glass-ceramic].
Li, Hong; Ran, Junguo; Gou, Li; Wang, Fanghu
2004-02-01
The phase constitution, microstructure and properties of a new type of machinable glass-ceramics containing fluorophlogopite-type (FPT) Ca-mica for used in restorative dentistry were investigated. According to the results of X-ray diffraction (XRD) and energy-dispersive spectrometry(EDS), its main crystalline phases were FPT Ca-mica and t-ZrO2, together with few KxCa(1-x)/2Mg2Si4O10F2, m-ZrO2. The flexible strength was 235 MPa, which was nearly two times larger than that of the present mica-based dental materials, and the highest fracture toughness was 2.17 MPa.m1/2. The microstructure had a great effect on properties, the glass-ceramics contained a large volume, and the fine crystals showed higher strength. The material possessed typical microstructure of machinable glass-ceramics and displayed excellent machinability during drilling test and CAD/CAM.
Metallurgical characterization of melt-spun ribbons of U-5.4 wt%Nb alloy
NASA Astrophysics Data System (ADS)
Ma, Rong; Ren, Zhiyong; Tang, Qingfu; Chen, Dong; Liu, Tingyi; Su, Bin; Wang, Zhenhong; Luo, Chao
2018-06-01
The microstructures and micro-mechanical properties of the melt-spun ribbons of U-5.4 wt%Nb alloy were characterized using optical microscopy, scanning electron microscopy, X-ray diffraction and nanoindentation. Observed variations in microstructures and properties are related to the changes in ribbon thicknesses and cooling rates. The microstructures of the melt-spun ribbon consist of fine-scale columnar grains (∼1 μm) adjacent to the chill surface and coarse cellular grains in the remainder of the ribbon. In addition, the formation of inclusions in the ribbon is suppressed kinetically due to the high cooling rate during melt spinning. Compared with the water-quenched specimen prepared by traditional gravity casting and solution heat treatment, the elastic modulus values of the U-5.4 wt%Nb alloy were examined to vary with grain size and exhibited diverse energy dissipation capacities.
Hsiao, Z-W; Chen, D; Kuo, J-C; Lin, D-Y
2017-04-01
This study investigated the influence of deformation on precipitation behaviour and microstructure change during annealing. Here, the prior deformation of high-chromium stainless steel was tensile deformation of 3%, 6% and 10%, and the specimens were then annealed at 700˚C for 10 h. The specimens were subsequently analyzed using backscattered electron image and electron backscattering diffraction measurements with SEM. Compared with the deformation microstructure, the grains revealed no preferred orientation. The precipitates of TiN and NbC were formed homogenously in the grain interior and at grain boundaries after annealing. Fine Laves phase precipitates were observed in grains and along subgrain boundaries as the deformation increased. Furthermore, the volume fraction of Laves phase increased, but the average particle diameter of precipitate was reduced as the deformation increased. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Chen, Lin; Bai, Shu-Lin
2018-04-01
Hastelloy C22 coating was prepared on substrate of Q235 steel by high power multilayer laser cladding. The microstructure, hardness and anti-corrosion properties of coating were investigated. The corrosion tests in 3.5% NaCl solution were carried out with variation of impingement angle and velocity, and vibration frequency of sample. The microstructure of coating changes from equiaxed grain at the top surface to dendrites oriented at an angle of 60° to the substrate inside the coating. The corrosion rate of coating increases with the increase of impingement angle and velocity, and vibrant frequency of sample. Corrosion mechanisms relate to repassivation and depassivation of coating according to electrochemical measurements. Above results show that multilayer laser cladding can endow Hastelloy C22 coating with fine microstructures, high hardness and good anti-corrosion performances.
NASA Astrophysics Data System (ADS)
Hu, Jianjun; Ma, Chaoping; Yang, Xian; Xu, Hongbin; Guo, Ning; Yu, Hongbing
2017-11-01
In this study, induction heating chromizing (IHC) and box-type furnace heating chromizing (BFHC) were conducted on commercial AISI 5140 steels, respectively. Microstructure, microhardness and wear resistance of the chromized samples were characterized. The results show that the IHC samples have thicker Cr coating layer and stronger interface bond due to pre-compressive stress among the packed powders. Three kinds of microstructures including alloyed cementite (AC-layer), fine pearlite zone (FP-zone) and carbon-poor zone (CP-zone) are formed near the interface in the IHC samples. The main reason given for this is that different contents of Cr and C have different effects on pearlite phase and morphology. The IHC sample shows better wear properties due to its stronger interface bonding strength than that of the BFHC sample. The formation mechanism of CP-zone and its influences on microhardness and wear resistance are also discussed.
NASA Astrophysics Data System (ADS)
Rao, D. V.; Takeda, T.; Kawakami, T.; Uesugi, K.; Tsuchiya, Y.; Wu, J.; Lwin, T. T.; Itai, Y.; Zeniya, T.; Yuasa, T.; Akatsuka, T.
2004-05-01
Microtomographic images of rat's lumbar vertebra of different age groups varying from 8, 56 and 78 weeks were obtained at 30 keV using synchrotron X-rays with a spatial resolution of 12 μm. The images are analyzed in terms of 3D visualization and micro-architecture. Density histogram of rat's lumbar vertebra is compared with test phantoms. Rat's lumbar volume and phantom volume are studied at different concentrations of hydroxyapatite with slice number. With the use of 2D slices, 3D images are reconstructed, in order to know the evolution and a state of decline of bone microstructure with aging. Cross-sectional μ-CT images shows that the bone of young rat has a fine trabecular microstructure while that of the old rat has large meshed structure.
Microstructural optimization of solid-state sintered silicon carbide
NASA Astrophysics Data System (ADS)
Vargas-Gonzalez, Lionel R.
Silicon carbide armor, manufactured through solid-state sintering, liquid-phase sintering, and hot-pressing, is being used by the United States Armed Forces for personal and vehicle protection. There is a lack of consensus, however, on which process results in the best-performing ballistic armor. Previous studies have shown that hot-pressed ceramics processed with secondary oxide and/or rare earth oxides, which exhibit high fracture toughness, perform well in handling and under ballistic impact. This high toughness is due to the intergranular nature of the fracture, creating a tortuous path for cracks and facilitating crack deflection and bridging. However, it has also been shown that higher-hardness sintered SiC materials might perform similarly or better to hot-pressed armor, in spite of the large fracture toughness deficit, if the microstructure (density, grain size, purity) of these materials are improved. In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as the sintering aids. SiC batches between 0.25--4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0--2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (˜95.5--96.5%) and a fine, equiaxed microstructure (d50 = 2.525 mum). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These parts exhibited higher density and finer microstructure than a commercially-available sintered SiC from Saint-Gobain (Hexoloy Enhanced, 3.153 g/cm3 and d50 = 4.837 mum). Due to the optimized microstructure, Verco SiC parts exhibited the highest Vickers (2628.30 +/- 44.13 kg/mm 2) and Knoop (2098.50 +/- 24.8 kg/mm2) hardness values of any SiC ceramic, and values equal to those of the "gold standard" hot-pressed boron carbide (PAD-B4C). While the fracture toughness of hot-pressed SiC materials (˜4.5 MPa m ) are almost double that of Verco SiC (2.4 MPa m ), Verco SiC is a better performing ballistic product, implying that the higher hardness of the theoretically-dense, clean-grain boundary, fine-grained SiC is the defining mechanical property for optimization of ballistic behavior.
NASA Astrophysics Data System (ADS)
Viegas, G.; Menegon, L. M.; Archanjo, C. J.
2016-12-01
Quartz axis fabrics are a valuable tool to investigate strain partitioning/distribution in both naturally- and experimentally deformed quartz. Previous works have shown that slip dominates at high temperatures (> 600º C) and water-rich, commonly sub-magmatic conditions, typically associated with large grain sizes and grain boundary migration microstructures. In the Pernambuco shear zone, sheared quartz veins from a protomylonitic granitoid formed during the main amphibolite facies event constrained at mid-crustal conditions (550-600ºC, 5 kbar). The veins contain heterogeneously-deformed primary quartz grains, which typically form both flattened and elongated ribbons as well as more equant porphyroclasts surrounded by aggregates of fine-grained (ca. 20 µm) recrystallized aggregates. Recrystallized quartz with the same fine grain size may also occur in intracrystalline bands within the porphyroclasts. Chessboard extinction is widely observed in the porphyroclasts, and subgrain boundaries are either parallel or normal to the (0001) direction, suggesting slip on both basal and prismatic planes during recrystallization. Crystallographic preferred orientations (CPOs) of porphyroclasts (≥ 100 µm) show maxima of (0001) axes subparallel to Z and X, suggesting coeval glide along both basal and prism planes during shearing. In the recrystallized aggregates, fabric strength tends to become weaker, but still records glide along and directions. These preliminary results suggest that naturally deformed quartz veins record coeval activity of and slip during dynamic recrystallization under amphibolite facies conditions. The microstructure suggests that the CPO of the fine-grained aggregates is host-controlled and results from dominant subgrain rotation recrystallization. To our knowledge, activity of slip in fine-grained recrystallized aggregates has never been reported before. Thus, these preliminary results call into question the general view that slip is expected to be active only during dominant high-T grain boundary migration in the lower crust. In our samples, a fine grain size of dynamically recrystallized quartz associated with slip might indicate high differential stress/strain rates during high-T viscous creep along the Pernambuco shear zone.
NASA Astrophysics Data System (ADS)
Kondo, Masatoshi; Ishii, Masaomi; Norimatsu, Takayoshi; Muroga, Takeo
2017-07-01
The corrosion characteristics of RAFM steel JLF-1 in a non-isothermal Pb-17Li flowing system were investigated by means of the corrosion test using a non-isothermal mixing pot. The corrosion test was performed at 739K with a temperature gradient of 14K for 500 hours. The corrosion tests at a static and a flowing conditions in an isothermal Pb-17Li system were also performed at the same temperature for the same duration with the non-isothermal test. Then, the effect of mass transfer both by the flow and the temperature gradient on the corrosion behaviors was featured by the comparison of these results. The corrosion was caused by the dissolution of Fe and Cr from the steel surface into the flowing Pb-17Li. The specimen surface revealed a fine granular microstructure after the corrosion tests. A large number of pebbleshaped protrusions were observed on the specimen surface. This microstructure was different from the original martensite microstructure of the steel, and might be formed by the influence of the reaction with Li component in the alloy. The formation of the granular microstructure was accelerated by the flow and the temperature gradient. Some pebble-shaped protrusions had gaps at their bases. The removal of these pebble-shaped granules by the flowing Pb-17Li might cause a small-scale corrosion-erosion. The results of metallurgical analysis indicated that a large-scale corrosion-erosion was also caused by their destruction of the corroded layer on the surface. The non-isothermal mixing pot equipped a cold trap by a metal mesh in the low temperature region. The metal elements of Fe and Cr were recovered as they precipitated on the surface of the metal mesh. It was found that a Fe-Cr binary intermetallic compound was formed in the precipitation procedure. The overall mass transfer coefficient for the dissolution type corrosion in the non-isothermal system was much bigger than that in the isothermal system. This model evaluation indicated that the temperature gradient accelerated the corrosion.
NASA Astrophysics Data System (ADS)
Dong, Yang; He, Honghui; He, Chao; Ma, Hui
2017-02-01
Mueller matrix polarimetry is a powerful tool for detecting microscopic structures, therefore can be used to monitor physiological changes of tissue samples. Meanwhile, spectral features of scattered light can also provide abundant microstructural information of tissues. In this paper, we take the 2D multispectral backscattering Mueller matrix images of bovine skeletal muscle tissues, and analyze their temporal variation behavior using multispectral Mueller matrix parameters. The 2D images of the Mueller matrix elements are reduced to the multispectral frequency distribution histograms (mFDHs) to reveal the dominant structural features of the muscle samples more clearly. For quantitative analysis, the multispectral Mueller matrix transformation (MMT) parameters are calculated to characterize the microstructural variations during the rigor mortis and proteolysis processes of the skeletal muscle tissue samples. The experimental results indicate that the multispectral MMT parameters can be used to judge different physiological stages for bovine skeletal muscle tissues in 24 hours, and combining with the multispectral technique, the Mueller matrix polarimetry and FDH analysis can monitor the microstructural variation features of skeletal muscle samples. The techniques may be used for quick assessment and quantitative monitoring of meat qualities in food industry.
SEM stereo-section fractography (SSF) observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X.J.; Tregoning, R.L.; Armstrong, R.W.
1997-12-31
Cleavage initiation in engineering materials is governed by local microstructural inhomogeneities. These features are often the principal reason for the large scatter evident in fracture toughness measurements which, in extreme cases, can mask the fundamental relationship between cracking resistance and global material properties. The SEM stereo-section fractography (SSF) technique can be used to carefully evaluate these local inhomogeneities through simultaneous observation of both the fracture surface and the underlying microstructure. By sectioning the fracture surface close to the cleavage initiation site (within 10 {micro}m), and perpendicular to both the fracture surface and the precrack front, a direct correspondence between initiationmore » and the local microstructure can be established. Information obtained from this technique can provide quantitative input about important, local microstructural features which can then be used to calibrate or create realistic micromechanical models. A compendium of SSF results is presented herein for cleavage cracking in disparate materials (A533B steel plates, MIL-70S multi-pass weldments, and Ti6A14V forgings), under various testing conditions. In each case, the SSF technique was able to unambiguously identify the dominant, local features which triggered cleavage initiation.« less
SEM stereo-section fractography observations. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X.J.; Tregoning, R.L.; Armstrong, R.W.
1998-05-01
Cleavage initiation in engineering materials is governed by local microstructural inhomogeneities. These features are often the principal reason for the large scatter evident in fracture toughness measurements which, in extreme cases, can mask the fundamental relationship between cracking resistance and global material properties. The SEM stereo-section fractography (SSF) technique can be used to carefully evaluate these local inhomogeneities through simultaneous observation of both the fracture surface and the underlying microstructure. By sectioning the fracture surface close to the cleavage initiation site (within 10 microns), and perpendicular to both the fracture surface and the pre crack front, a direct correspondence betweenmore » initiation and the local microstructure can be established. Information obtained from this technique can provide quantitative input about important, local microstructural features which can then be used to calibrate or create realistic micromechanical models. A compendium of SSF results is presented herein for cleavage cracking in disparate materials (A533B steel plates, MIL-70S multi-pass weldments, and Ti6A14V forgings), under various testing conditions. In each case, the SSF technique was able to unambiguously identify the dominant, local features which triggered cleavage initiation.« less
Formation of microstructural features in hot-dip aluminized AISI 321 stainless steel
NASA Astrophysics Data System (ADS)
Huilgol, Prashant; Rajendra Udupa, K.; Udaya Bhat, K.
2018-02-01
Hot-dip aluminizing (HDA) is a proven surface coating technique for improving the oxidation and corrosion resistance of ferrous substrates. Although extensive studies on the HDA of plain carbon steels have been reported, studies on the HDA of stainless steels are limited. Because of the technological importance of stainless steels in high-temperature applications, studies of their microstructural development during HDA are needed. In the present investigation, the HDA of AISI 321 stainless steel was carried out in a pure Al bath. The microstructural features of the coating were studied using scanning electron microscopy and transmission electron microscopy. These studies revealed that the coating consists of two regions: an Al top coat and an aluminide layer at the interface between the steel and Al. The Al top coat was found to consist of intermetallic phases such as Al7Cr and Al3Fe dispersed in an Al matrix. Twinning was observed in both the Al7Cr and the Al3Fe phases. Furthermore, the aluminide layer comprised a mixture of nanocrystalline Fe2Al5, Al7Cr, and Al. Details of the microstructural features are presented, and their formation mechanisms are discussed.
Microstructure Characterization Of Lead-Free Solders Depending On Alloy Composition
NASA Astrophysics Data System (ADS)
Panchenko, Iuliana; Mueller, Maik; Wolter, Klaus-Juergen
2010-11-01
Fatigue and crack nucleation in solder joints is basically associated with changes in the microstructure. Therefore the microstructure evolution of SnAgCu solder joints during solidification and subsequent application is an important subject for reliability investigations and physics of failure analysis. The scope of this study is a systematic overview of the as-cast microstructures in small sized lead-free SnAgCu solder spheres after solidification. A total of 32 alloy compositions have been investigated with varying Ag content from 0 to 5 wt.% and varying Cu content from 0 to 1.2 wt.%. The solder spheres had a diameter of approx. 270 μm and were all manufactured under the similar conditions. Subsequent cross-sectioning was carried out in order to analyze the microstructure by optical and electron microscopy as well as Electron Backscatter Diffraction and Energy Dispersive X-ray Spectroscopy. The results allow a comprehensive overview of the dependence of the as-cast microstructure on the solder composition. It is shown that strong changes in microstructure can be caused by small changes in solder composition. In addition, a solidification phenomenon known as cyclic twinning has been found in the samples. Three different microstructures related to that phenomenon will be presented and detailed characterizations of these structures are given in this study. These microstructures differ in their appearance by solidification morphology, phase distribution as well as grain structure and can be described as follows: 1. large dentritic areas of different grain orientations which are characterized by approx. 60° twin boundaries; 2. areas of small β-Sn cells with approx. 60° twin relation and larger intermetallic precipitates; 3. large grains consisting of a β-Sn matrix with very fine intermetallic precipitates and high angle grain boundaries between adjacent grains.
Sallica-Leva, E; Caram, R; Jardini, A L; Fogagnolo, J B
2016-02-01
Ti-6Al-4V parts obtained by selective laser melting typically have an acicular α' martensitic microstructure whose ductility is low. Thus, post-heat treatments are useful for increasing ductility. In this work, the effects of sub-β-transus heat treatments on the mechanical properties of Ti-6Al-4V parts with porous structures are correlated with martensite α' phase decomposition. The precipitation of β phase and the gradual transformation of α' into α phase by the diffusion of excess vanadium from α' to β phase are proposed to be the main events of martensite α' phase decomposition in parts fabricated by selective laser melting. The heat treatment performed at 650°C for 1h produced no microstructural changes, but the samples treated for at the same temperature 2h showed a fine precipitation of β phase along the α' needle boundaries. The heat treatment performed at 800°C for 1 or 2h produced a fine α+β microstructure, in which β phase are present as particles fewer in number and larger in size, when compared with the ones present in the sample heat-treated at 650°C for 2h. Heat-treatment of the parts at 800°C for 2h proved to be the best condition, which improved the ductility of the samples while only slightly reducing their strength. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ding, Wanwu; Xia, Tiandong; Zhao, Wenjun; Xu, Yangtao
2014-01-01
Al–5Ti–C master alloy was prepared and used to modify hypereutectic Al–20%Si alloy. The microstructure evolution and mechanical properties of hypereutectic Al–20%Si alloy with Al–5Ti–C master alloy additions (0, 0.4, 0.6, 1.0, 1.6 and 2.0 wt%) were investigated. The results show that, Al–5Ti–C master alloy (0.6 wt%, 10 min) can significantly refine both eutectic and primary Si of hypereutectic Al–20%Si alloy. The morphology of the primary Si crystals was significantly refined from a coarse polygonal and star-like shape to a fine polyhedral shape and the grain size of the primary Si was refined from roughly 90–120 μm to 20–50 μm. The eutectic Si phases were modified from a coarse platelet-like/needle-like structure to a fine fibrous structure with discrete particles. The Al–5Ti–C master alloy (0.6 wt%, 30 min) still has a good refinement effect. The ultimate tensile strength (UTS), elongation (El) and Brinell hardness (HB) of Al–20%Si alloy modified by the Al–5Ti–C master alloy (0.6 wt%, 10 min) increased by roughly 65%, 70% and 51%, respectively, due to decreasing the size and changing the morphology on the primary and eutectic Si crystals. The change in mechanical properties corresponds to evolution of the microstructure. PMID:28788509
Aerospace Structural Materials Handbook Supplement GRCop-84
NASA Technical Reports Server (NTRS)
Ellis, David L.; Gray, Hugh R. (Technical Monitor); Nathel, Michael (Technical Monitor)
2001-01-01
GRCop-84 is a high strength-high conductivity copper-based alloy developed at NASA Glenn Research Center for combustion chamber liners of regeneratively cooled rocket engines. It also has promise for other high heat flux applications operating at temperatures up to 700 C (1292 F) and potentially higher. The alloy must be made by powder metallurgy techniques such as gas atomization. Slower cooling rates such as those experienced during casting do not develop a proper microstructure. Once made into powder, the alloy exhibits excellent processability using conventional consolidation and forming techniques, e.g., extrusion and rolling. GRCop-84 is strengthened by a combination of dispersion and precipitation strengthening by fine (50-500 nanometer (2-20 microinch)) Cr2Nb particles and Hall-Petch strengthening from a fine copper grain size. The presence of a high volume fraction of particles prevents grain boundary sliding at high temperatures and contributes to the alloy's overall good high temperature mechanical properties. Maximum thermal conductivity is obtained by using two alloying elements (Cr, Nb) with limited solubility in solid Cu that form a high temperature intermetallic compound with an even lower solid solubility. The resulting matrix of the alloy is nearly pure copper. The limited solubility also minimizes Cr2Nb particle coarsening at elevated temperatures and enhances microstructural and mechanical property stability. Further enhancement of the microstructural stability is obtained by using a high volume fraction (approx. 14 vol.%) of Cr2Nb particles that effectively pin grain growth.
NASA Astrophysics Data System (ADS)
Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.
2014-05-01
The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.
NASA Astrophysics Data System (ADS)
Wu, Zhiwei; Zhou, Fei; Wang, Qianzhi; Zhou, Zhifeng; Yan, Jiwang; Li, Lawrence Kwok-Yan
2015-11-01
CrSiCN coatings with different silicon and carbon contents were deposited on silicon wafers and 316L stainless steels using unbalanced magnetron sputtering via adjusting trimethylsilane (TMS) flow, and their microstructure and mechanical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy(SEM), X-ray photoelectrons spectroscopy(XPS) and nano-indenter, respectively. The tribological properties of CrSiCN coatings sliding against SiC balls in water were investigated using ball-on-disk tribometer. The results showed that the CrSiCN coatings had fine composite microstructure consisting of nanocrystallites of Cr(C, N) crystal and amorphous phases such as a-Si3N4 and a-C(a-CNx). The typical columnar structures changed from fine cluster to coarse ones when the Si content was beyond 3.4 at.%. With an increase in the TMS flow, the hardness and Young's modulus of Corsican coatings all first increased, and then rapidly decreased, but the compressive stress in the coatings varied in the range of 2.8-4.8 GPa. When the TMS flow was 10 sccm, the CrSiCN coatings exhibited the highest hardness of 21.3 GPa and the lowest friction coefficient (0.11) and wear rate (8.4 × 10-8 mm3/N m). But when the TMS flow was beyond 15 sccm, the tribological properties of CrSiCN coatings in water became poor.
NASA Astrophysics Data System (ADS)
Dash, Manmath Kumar; Mythili, R.; Dasgupta, Arup; Saroja, S.
2018-04-01
This paper reports the optimization of consolidation process based on the evolution of microstructure, microtexture and densification in 18%-Cr Oxide Dispersion Strengthened steel. The steel powder of composition Fe-18Cr-0.01C-2W-0.25Ti-0.35Y2O3 has been consolidated by cold isostatic pressing (CIP) for green compaction after mechanical milling. Sintering (1000-1250 °C) and hot isostatic pressing (HIP) at 1150 °C has been employed to achieve good densification on compacted CIP specimen. The effect of sintering temperatures on densification behavior was evaluated and sintering at 1150°C was identified to be optimum for achieving good compaction (92% density) and homogeneous polygonal microstructure with a uniform distribution of fine pores. In addition, HIP of CIP product at 1150°C was found to yield a more homogeneous microstructure as compared to sintered product with 97% density. A static/dynamic recrystallization associated with (1 1 1) texture is observed during consolidation process. A statistical comparison has been made based on frequency of grain boundary distribution and associated texture with its theoretical attributes.
NASA Astrophysics Data System (ADS)
Slimani, Y.; Hannachi, E.; Azzouz, F. Ben; Salem, M. Ben
2018-06-01
We have reported the influence of planetary high energy ball milling parameters on morphology, microstructure and flux pinning capability of polycrystalline Y3Ba5Cu8Oy. Samples were prepared through the standard solid-state reaction by using two different milling methods, ball milling in a planetary crusher and hand grinding in a mortar. Phase analysis by X-ray diffraction (XRD) method, microstructural examination by scanning electron microscope (SEM), electrical resistivity, the global and intra-granular critical current densities measurements are done to characterize the samples. The processing parameters of the planetary milling have a considerable impact on the final product properties. SEM observations show the presence of nanoscale entities submerged within the Y3Ba5Cu8Oy crystallites. The results show that the fine grain microstructure of the Y3Ba5Cu8Oy bulk induced by ball milling process contributes to critical currents density enhancement in the magnetic field and promotes an optimized flux pinning ability.
NASA Astrophysics Data System (ADS)
Ahmadi, S. M.; Jain, R. K. Ashok Kumar; Zadpoor, A. A.; Ayas, C.; Popovich, V. A.
2017-12-01
Titanium and its alloys such as Ti6Al4V play a major role in the medical industry as bone implants. Nowadays, by the aid of additive manufacturing (AM), it is possible to manufacture porous complex structures which mimic human bone. However, AM parts are near net shape and post processing may be needed to improve their mechanical properties. For instance, AM Ti6Al4V samples may be brittle and incapable of withstanding dynamic mechanical loads due to their martensitic microstructure. The aim of this study was to apply two different heat treatment regimes (below and above β-transus) to investigate their effects on the microstructure and mechanical properties of porous Ti6Al4V specimens. After heat treatment, fine acicular α‧ martensitic microstructure was transformed to a mixture of α and β phases. The ductility of the heat-treated specimens, as well as some mechanical properties such as hardness, plateau stress, and first maximum stress changed while the density and elastic gradient of the porous structure remained unchanged.
Strain softening during tension in cold drawn Cu–Ag alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.L., E-mail: lilichang@sdu.edu.cn; Wen, S.; Li, S.L.
2015-10-15
Experiments were conducted on Cu–0.1wt.%Ag alloys to evaluate the influence of producing procedures and annealing conditions on microstructure evolution and mechanical properties of Cu–Ag alloys. Optical microscopy (OM), electron back-scattered diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for microstructural evaluation and mechanical properties were characterized by tensile tests. The results indicated that hot-extruded Cu–Ag alloys had a typical dynamic recrystallized microstructure with equiaxed grains. Cold drawing at room temperature leaded to partial recrystallized microstructure with a mixture of coarse and fine grains. The dominate {001}<100 > cubic texture formed during hot extrusion was changed tomore » be {112}<111 > copper texture by cold drawing. Strain softening occurred during room temperature tension of cold drawn Cu–Ag alloys with an average grain size of 13–19.7 μm. - Highlights: • Strain softening occurred during tension of Cu–Ag alloys with coarse grain size. • Work hardening was observed in hot-extruded and annealed Cu–0.1wt.%Ag alloys. • Strain softening was ascribed to dynamic recovery and dynamic recrystallization.« less
NASA Astrophysics Data System (ADS)
Jiang, M. Z.; Yu, Y. C.; Li, H.; Ren, X.; Wang, S. B.
2017-02-01
Low carbon high manganese steels with different Ce contents were melted in medium frequency vacuum induction furnace. The microstructures and mechanical properties of steels were studied by OM, SEM, EDS and mechanical property testing. The results showed that the microstructures of experimental steels were refined remarkably, inclusions distributed more finely and uniformly, the tensile strength and impact toughness of tested steels both improved greatly after the addition of Ce. Thermodynamic calculation results demonstrated that Ce contained inclusions were Ce2O3 and Ce3S4, which agreed well with the results observed by SEM and EDS. By analysis of two-dimensional lattice disregistry, it was shown that the lattice misfit parameter between δ-Fe and Ce2O3, Ce3S4 are less than 6 %, which indicated that Ce2O3 and Ce3S4 could effectively act as the heterogeneous nuclei of initial δ-Fe. Therefore, the microstructures were refined significantly and the mechanical properties were improved correspondingly in Ce-added low carbon high manganese steels.
Baldenebro-Lopez, Francisco J.; Gomez-Esparza, Cynthia D.; Corral-Higuera, Ramon; Arredondo-Rea, Susana P.; Pellegrini-Cervantes, Manuel J.; Ledezma-Sillas, Jose E.; Martinez-Sanchez, Roberto; Herrera-Ramirez, Jose M.
2015-01-01
In this work, the mechanical properties and microstructural features of an AISI 304L stainless steel in two presentations, bulk and fibers, were systematically studied in order to establish the relationship among microstructure, mechanical properties, manufacturing process and effect on sample size. The microstructure was analyzed by XRD, SEM and TEM techniques. The strength, Young’s modulus and elongation of the samples were determined by tensile tests, while the hardness was measured by Vickers microhardness and nanoindentation tests. The materials have been observed to possess different mechanical and microstructural properties, which are compared and discussed. PMID:28787949
NASA Astrophysics Data System (ADS)
Wanare, S. P.; Kalyankar, V. D.
2018-04-01
Friction stir welding is emerging as a promising technique for joining of lighter metal alloys due to its several advantages over conventional fusion welding processes such as low thermal distortion, good mechanical properties, fine weld joint microstructure, etc. This review article mainly focuses on analysis of microstructure and mechanical properties of friction stir welded joints. Various microstructure characterization techniques used by previous researchers such as optical microscopes, x-ray diffraction, electron probe microscope, transmission electron microscope, scanning electron microscopes with electron back scattered diffraction, electron dispersive microscopy, etc. are thoroughly overviewed and their results are discussed. The effects of friction stir welding process parameters such as tool rotational speed, welding speed, tool plunge depth, axial force, tool shoulder diameter to tool pin diameter ratio, tool geometry etc. on microstructure and mechanical properties of welded joints are studied and critical observations are noted down. The microstructure examination carried out by previous researchers on various zones of welded joints such as weld zone, heat affected zone and base metal are studied and critical remarks have been presented. Mechanical performances of friction stir welded joints based on tensile test, micro-hardness test, etc. are discussed. This article includes exhaustive literature review of standard research articles which may become ready information for subsequent researchers to establish their line of action.
Bernays, Michel; Traube, Caroline
2014-01-01
Timbre is an essential expressive feature in piano performance. Concert pianists use a vast palette of timbral nuances to color their performances at the microstructural level. Although timbre is generally envisioned in the pianistic community as an abstract concept carried through an imaged vocabulary, performers may share some common strategies of timbral expression in piano performance. Yet there may remain further leeway for idiosyncratic processes in the production of piano timbre nuances. In this study, we examined the patterns of timbral expression in performances by four expert pianists. Each pianist performed four short pieces, each with five different timbral intentions (bright, dark, dry, round, and velvety). The performances were recorded with the high-accuracy Bösendorfer CEUS system. Fine-grained performance features of dynamics, touch, articulation and pedaling were extracted. Reduced PCA performance spaces and descriptive performance portraits confirmed that pianists exhibited unique, specific profiles for different timbral intentions, derived from underlying traits of general individuality, while sharing some broad commonalities of dynamics and articulation for each timbral intention. These results confirm that pianists' abstract notions of timbre correspond to reliable patterns of performance technique. Furthermore, these effects suggest that pianists can express individual styles while complying with specific timbral intentions. PMID:24624099
Grain size effect on yield strength of titanium alloy implanted with aluminum ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popova, Natalya, E-mail: natalya-popova-44@mail.ru; Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk; Nikonenko, Elena, E-mail: vilatomsk@mail.ru
2016-01-15
The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a differentmore » effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.« less
NASA Technical Reports Server (NTRS)
Murugan, Muthuvel; Ghoshal, Anindya; Walock, Michael; Nieto, Andy; Bravo, Luis; Barnett, Blake; Pepi, Marc; Swab, Jeffrey; Pegg, Robert Tyler; Rowe, Chris;
2017-01-01
Gas turbine engines for military/commercial fixed-wing and rotary wing aircraft use thermal barrier coatings in the high-temperature sections of the engine for improved efficiency and power. The desire to further make improvements in gas turbine engine efficiency and high power-density is driving the research and development of thermal barrier coatings and the effort of improving their tolerance to fine foreign particulates that may be contained in the intake air. Both commercial and military aircraft engines often are required to operate over sandy regions such as in the Middle-East nations, as well as over volcanic zones. For rotorcraft gas turbine engines, the sand ingestion is adverse during take-off, hovering near ground, and landing conditions. Although, most of the rotorcraft gas turbine engines are fitted with inlet particle separators, they are not 100 percent efficient in filtering fine sand particles of size 75 microns or below. The presence of these fine solid particles in the working fluid medium has an adverse effect on the durability of turbine blade thermal barrier coatings and overall performance of the engine. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The objective of this research is to understand the fine particle interactions with typical ceramic coatings of turbine blades at the microstructure level. A finite-element based microstructure modeling and analysis has been performed to investigate particle-surface interactions, and restitution characteristics. Experimentally, a set of tailored thermal barrier coatings and surface treatments were down-selected through hot burner rig tests and then applied to first stage nozzle vanes of the Gas Generator Turbine of a typical rotorcraft gas turbine engine. Laser Doppler velocity measurements were performed during hot burner rig testing to determine sand particle incoming velocities and their rebound characteristics upon impact on coated material targets. Further, engine sand ingestion tests were carried out to test the CMAS tolerance of the coated nozzle vanes. The findings from this on-going collaborative research to develop the next-gen sand tolerant coatings for turbine blades are presented in this paper.
Mechanical Properties of a Superalloy Disk with a Dual Grain Structure
NASA Technical Reports Server (NTRS)
Gayda, John; Gabb, Timothy; Kantzos, Peter
2003-01-01
Mechanical properties from an advanced, nickel-base superalloy disk, with a dual grain structure consisting of a fine grain bore and coarse grain rim, were evaluated. The dual grain structure was produced using NASA's low cost Dual Microstructure Heat Treatment (DMHT) process. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to a subsolvus (fine grain) heat treated disk, and a creep resistant rim comparable to a supersolvus (coarse grain) heat treated disk. Additional work on subsolvus solutioning before or after the DMHT conversion appears to be a viable avenue for further improvement in disk properties.
NASA Astrophysics Data System (ADS)
Scheid, James Eric
Aluminum-lined shaped charges are used in special applications where jet and / or slug residue in the target is undesired. The three different microstructures of the aluminum liners studied herein resulted from three different manufacturing interpretations of the same design. One interpretation was completely machining the liners from best available annealed round stock. The second was to cold-forge the liners from annealed round-stock in an open-die forge to near-final dimensions, and then machine the liners to the final dimensions. The third variant in this study was to use the above forged liner, but with annealing after the machining. These three manufacturing choices resulted in significant variations in shaped charge performance. The goal of this research was to clarify the relationships between the liner metal microstructure and properties, and the corresponding shaped charge dynamic flow behavior. What began as an investigation into user-reported performance problems associated inherently with liner manufacturing processes and resultant microstructure, resolved into new understandings of the relationships between aluminum liner microstructure and shaped charge collapse kinetics. This understanding was achieved through an extensive literature review and the comprehensive characterization of the material properties of three variants of an 1100 aluminum shaped charge liner with a focus on collapse and nascent jet formation. The machined liner had a microstructure with large millimeter-sized grains and fine particles aligned in bands parallel to the charge axis. The forged liner microstructure consisted of very small one micrometer-sized (1 mum) subgrains and fine particles aligned largely in bands elongated parallel to the liner contour. The annealed liner was characterized by ten micrometer (10 mum) sized equiaxed grains with residual fine particles in the forged alignment. This characterization was enabled by the development, execution and validation of a custom explosive experiment that delivered meaningful, full-scale shock deformed samples for analysis. The experiment arrested the collapse of actual, as-fabricated liners in the first microseconds of development. This experiment, performed with only 2% of the explosive mass of the full charge, revealed new insights into material-dependent variations in liner collapse including a striking image of the formation of a shaped charge jet axial hole. The highly strain-hardened and elongated forged liner was the best performer of the three. Less energy from the explosive was dissipated by dislocation generation. This translated to more efficient flow whereas the softer materials behaved as shock absorbers delaying flow. A set of hypotheses was formulated and critiqued based on these observations. The key findings were the effects of grain size, and shear bands induced in the microstructure through cold work enabled efficient liner flow. These bands provide highly localized dislocation highways enabling the matrix adjacent to the bands to deform plastically at higher velocity. Where such bands are unavailable, the pressure must first develop bands of smaller grains, thus decreasing energy available for flow. Collapse velocities were then associated with the number of shear bands, the organization of mobile dislocations, material strain, and liner geometry. Microstructures with the ability to deform with the direction of liner collapse at lower stresses will form jets with a higher velocity and elongate earlier. The effect is higher performance at shorter standoffs. This relationship can be used to predict material behavior under explosive load, guiding engineering choices while designing with respect to anticipated shock loading. The explosive experiment designed here has obvious application in refining the performance of other warheads, and in the hydrodynamic modeling of material properties.
NASA Astrophysics Data System (ADS)
Chan, J. A.; Liu, J. Z.; Zunger, Alex
2010-07-01
The atomic microstructure of alloys is rarely perfectly random, instead exhibiting differently shaped precipitates, clusters, zigzag chains, etc. While it is expected that such microstructural features will affect the electronic structures (carrier localization and band gaps), theoretical studies have, until now, been restricted to investigate either perfectly random or artificial “guessed” microstructural features. In this paper, we simulate the alloy microstructures in thermodynamic equilibrium using the static Monte Carlo method and study their electronic structures explicitly using a pseudopotential supercell approach. In this way, we can bridge atomic microstructures with their electronic properties. We derive the atomic microstructures of InGaN using (i) density-functional theory total energies of ˜50 ordered structures to construct a (ii) multibody cluster expansion, including strain effects to which we have applied (iii) static Monte Carlo simulations of systems consisting of over 27000 atoms to determine the equilibrium atomic microstructures. We study two types of alloy thermodynamic behavior: (a) under lattice incoherent conditions, the formation enthalpies are positive and thus the alloy system phase-separates below the miscibility-gap temperature TMG , (b) under lattice coherent conditions, the formation enthalpies can be negative and thus the alloy system exhibits ordering tendency. The microstructure is analyzed in terms of structural motifs (e.g., zigzag chains and InnGa4-nN tetrahedral clusters). The corresponding electronic structure, calculated with the empirical pseudopotentials method, is analyzed in terms of band-edge energies and wave-function localization. We find that the disordered alloys have no electronic localization but significant hole localization, while below the miscibility gap under the incoherent conditions, In-rich precipitates lead to strong electron and hole localization and a reduction in the band gap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Dan; Zhang, Anfeng; Zhu, Jianxue
Here in this letter, microstructural and mechanical inhomogeneities, a great concern for single crystal Ni-based superalloys repaired by laser assisted 3D printing, have been probed near the epitaxial interface. Nanoindentation tests show the hardness to be uniformly lower in the bulk of the substrate and constantly higher in the epitaxial cladding layer. A gradient of hardness through the heat affected zone is also observed, resulting from an increase in dislocation density, as indicated by the broadening of the synchrotron X-ray Laue microdiffraction reflections. Lastly, the hardening mechanism of the claddin g region, on the other hand, is shown to originatemore » not only from high dislocation density but also and more importantly from the fine γ/γ' microstructure.« less
Microstructure and Shape Memory Behavior of Ti-Nb Shape Memory Alloy Thin Film
NASA Astrophysics Data System (ADS)
Meng, X. L.; Sun, B.; Sun, J. Y.; Gao, Z. Y.; Cai, W.; Zhao, L. C.
2017-09-01
Ti-Nb shape memory alloy (SMA) thin film is a promising candidate applied as microactuator in biomedical field. In this study, the microstructure and shape memory behavior of Ti-Nb SMA thin films in different heat treatment conditions have been investigated. Fine ω phases embedded in the β phase matrix suppress the martensitic transformation of the films. As a result, the as-deposited and most of the annealed films consist of the β and α″ dual phases. The annealed Ti-Nb thin film shows excellent superelasticity effect when deformed above the reverse martensitic transformation temperature, that is 3.5% total recovery strain can be obtained when 4% pre-strain is loaded.
NASA Astrophysics Data System (ADS)
Belgasam, Tarek M.; Zbib, Hussein M.
2018-06-01
The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.
NASA Astrophysics Data System (ADS)
Belgasam, Tarek M.; Zbib, Hussein M.
2018-03-01
The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.
NASA Astrophysics Data System (ADS)
Wei, Pei; Wei, Zhengying; Chen, Zhen; Du, Jun; He, Yuyang; Li, Junfeng; Zhou, Yatong
2017-06-01
This densification behavior and attendant microstructural characteristics of the selective laser melting (SLM) processed AlSi10Mg alloy affected by the processing parameters were systematically investigated. The samples with a single track were produced by SLM to study the influences of laser power and scanning speed on the surface morphologies of scan tracks. Additionally, the bulk samples were produced to investigate the influence of the laser power, scanning speed, and hatch spacing on the densification level and the resultant microstructure. The experimental results showed that the level of porosity of the SLM-processed samples was significantly governed by energy density of laser beam and the hatch spacing. The tensile properties of SLM-processed samples and the attendant fracture surface can be enhanced by decreasing the level of porosity. The microstructure of SLM-processed samples consists of supersaturated Al-rich cellular structure along with eutectic Al/Si situated at the cellular boundaries. The Si content in the cellular boundaries increases with increasing the laser power and decreasing the scanning speed. The hardness of SLM-processed samples was significantly improved by this fine microstructure compared with the cast samples. Moreover, the hardness of SLM-processed samples at overlaps was lower than the hardness observed at track cores.
Recent Developments in Ultra High Temperature Ceramics at NASA Ames
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Gasch, Matt; Lawson, John W.; Gusman, Michael I.; Stackpole, Margaret M.
2009-01-01
NASA Ames is pursuing a variety of approaches to modify and control the microstructure of UHTCs with the goal of improving fracture toughness, oxidation resistance and controlling thermal conductivity. The overall goal is to produce materials that can perform reliably as sharp leading edges or nose tips in hypersonic reentry vehicles. Processing approaches include the use of preceramic polymers as the SiC source (as opposed to powder techniques), the addition of third phases to control grain growth and oxidation, and the use of processing techniques to produce high purity materials. Both hot pressing and field assisted sintering have been used to make UHTCs. Characterization of the mechanical and thermal properties of these materials is ongoing, as is arcjet testing to evaluate performance under simulated reentry conditions. The preceramic polymer approach has generated a microstructure in which elongated SiC grains grow in the form of an in-situ composite. This microstructure has the advantage of improving fracture toughness while potentially improving oxidation resistance by reducing the amount and interconnectivity of SiC in the material. Addition of third phases, such as Ir, results in a very fine-grained microstructure, even in hot-pressed samples. The results of processing and compositional changes on microstructure and properties are reported, along with selected arcjet results.
Microstructure characteristics of Ni/WC composite cladding coatings
NASA Astrophysics Data System (ADS)
Yang, Gui-rong; Huang, Chao-peng; Song, Wen-ming; Li, Jian; Lu, Jin-jun; Ma, Ying; Hao, Yuan
2016-02-01
A multilayer tungsten carbide particle (WCp)-reinforced Ni-based alloy coating was fabricated on a steel substrate using vacuum cladding technology. The morphology, microstructure, and formation mechanism of the coating were studied and discussed in different zones. The microstructure morphology and phase composition were investigated by scanning electron microscopy, optical microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. In the results, the coating presents a dense and homogeneous microstructure with few pores and is free from cracks. The whole coating shows a multilayer structure, including composite, transition, fusion, and diffusion-affected layers. Metallurgical bonding was achieved between the coating and substrate because of the formation of the fusion and diffusion-affected layers. The Ni-based alloy is mainly composed of γ-Ni solid solution with finely dispersed Cr7C3/Cr23C6, CrB, and Ni+Ni3Si. WC particles in the composite layer distribute evenly in areas among initial Ni-based alloying particles, forming a special three-dimensional reticular microstructure. The macrohardness of the coating is HRC 55, which is remarkably improved compared to that of the substrate. The microhardness increases gradually from the substrate to the composite zone, whereas the microhardness remains almost unchanged in the transition and composite zones.
Thermal stability of the microstructure of an aged Nb-Zr-C alloy
NASA Technical Reports Server (NTRS)
Uz, Mehmet; Titran, Robert H.
1990-01-01
The effects of thermal aging with and without an applied stress on the microstructure of a Nb-Zr-C alloy containing 0.9 wt percent Zr and 0.06 wt percent C were studied. Chemical analysis, metallographic examination, energy dispersive x-ray spectra of the bulk material, and chemical and x-ray analyses of the phase-extracted residue were used to characterize the microstructure. The samples examined were from a creep strength study involving hot and cold working, and various combinations of exposure to temperatures ranging from 1350 to 1755 K with and without applied load for times as long as 34,000 plus hours. The results showed that the initial microstructure consisted primarily of orthorombic precipitates of Nb sub 2 C which were partially or completely transformed to face-centered cubic carbides of nb and Zr, (Zr, Nb)C, upon prolonged exposure to elevated temperatures. Furthermore, it was found that the microstructure of the alloy is extremely stable owing to the very finely distributed precipitates throughout its matrix and along the grain boundaries. The lattice parameters of the cubic carbides were determed to vary from 0.458 to 0.465 nm as the Zr/Nb ratio varied from 38/62 to 75/25.
Li, Na; Yang, Qiao; Liu, Xing; Huang, Xuankai; Zhang, Haiyan; Wang, Chengxin
2017-12-06
Three-dimensional (3D) microstructured building units have replaced layer-to-layer stacked designs in transparent graphene films to fully exploit the advantages of two-dimensional graphene. However, it is still challenging to precisely control the size and microstructures of these building blocks to develop multifunctional graphene-based materials that satisfy the performance requirements of diverse applications. In this study, we propose a controllable method to regulate the microstructures of building units to form structures ranging from opened bubbles and cubes, while the size decreased from 20 to 3 μm, via an in situ template-modulating technology. NaCl was used as either a liquid or solid template by changing the dc bias. The reduced size and dense arrangement of the building units not only provide an improved mass loading for the transparent films but also build multiple pathways for fast ion/electron transmission, enhancing their promise for various practical applications. Generally, we provide a convenient protocol for finely regulating the microstructure and size of these building units, resulting in multifunctional films with a controllable transmittance, which enables the use of these graphene-based architectures as transparent electrodes in various applications and extends the family of multifunctional materials that will present new possibilities for electronics and other devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jimiao; Song, Min
2016-11-15
The microstructure of a high strain-rate rolled Mg−Zn−Mn alloy was investigated by transmission electron microscopy to understand the relationship between the microstructure and mechanical properties. The results indicate that: (1) a bimodal microstructure consisting of the fine dynamic recrystallized grains and the largely deformed grains was formed; (2) a large number of dynamic precipitates including plate-like MgZn{sub 2} phase, spherical MgZn{sub 2} phase and spherical Mn particles distribute uniformly in the grains; (3) the major facets of many plate-like MgZn{sub 2} precipitates deviated several to tens of degrees (3°–30°) from the matrix basal plane. It has been shown that themore » high strength of the alloy is attributed to the formation of the bimodal microstructure, dynamic precipitation, and the interaction between the dislocations and the dynamic precipitates. - Highlights: •A bimodal microstructure was formed in a high strain-rate rolled Mg−Zn−Mn alloy. •Plate-like MgZn{sub 2}, spherical MgZn{sub 2} and spherical Mn phases were observed. •The major facet of the plate-like MgZn{sub 2} deviated from the matrix basal plane.« less
NASA Astrophysics Data System (ADS)
Clark, Daniel; Bache, Martin R.; Whittaker, Mark T.
2010-12-01
Recent trials have produced tungsten-inert-gas (TIG)-welded structures of a suitable scale to allow an evaluation of the technique as an economic and commercial process for the manufacture of complex aeroengine components. The employment of TIG welding is shown to have specific advantages over alternative techniques based on metal inert gas (MIG) systems. Investigations using the nickel-based superalloy 718 have shown that TIG induces a smaller weld pool with less compositional segregation. In addition, because the TIG process involves a pulsed power source, a faster cooling rate is achieved, although this rate, in turn, compromises the deposition rate. The microstructures produced by the two techniques differ significantly, with TIG showing an absence of the detrimental delta and Laves phases typically produced by extended periods at a high temperature using MIG. Instead, an anisotropic dendritic microstructure was evident with a preferred orientation relative to the axis of epitaxy. Niobium was segregated to the interdendritic regions. A fine-scale porosity was evident within the microstructure with a maximum diameter of approximately 5 μm. This porosity often was found in clusters and usually was associated with the interdendritic regions. Subsequent postdeposition heat treatment was shown to have no effect on preexisting porosity and to have a minimal effect on the microstructure.
NASA Astrophysics Data System (ADS)
Wan, Yi
2011-06-01
Chinese wines can be classification or graded by the micrographs. Micrographs of Chinese wines show floccules, stick and granule of variant shape and size. Different wines have variant microstructure and micrographs, we study the classification of Chinese wines based on the micrographs. Shape and structure of wines' particles in microstructure is the most important feature for recognition and classification of wines. So we introduce a feature extraction method which can describe the structure and region shape of micrograph efficiently. First, the micrographs are enhanced using total variation denoising, and segmented using a modified Otsu's method based on the Rayleigh Distribution. Then features are extracted using proposed method in the paper based on area, perimeter and traditional shape feature. Eight kinds total 26 features are selected. Finally, Chinese wine classification system based on micrograph using combination of shape and structure features and BP neural network have been presented. We compare the recognition results for different choices of features (traditional shape features or proposed features). The experimental results show that the better classification rate have been achieved using the combinational features proposed in this paper.
Capturing the Complexity of Additively Manufactured Microstructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
2016-05-12
The underlying mechanisms and kinetics controlling damage nucleation and growth as a function of material microstructure and loading paths are discussed. These experiments indicate that structural features such as grain boundaries, grain size distribution, grain morphology crystallographic texture are all factors that influence mechanical behavior.
Chakraborty, Pritam; Sabharwall, Piyush; Carroll, Mark C.
2016-04-07
The fracture behavior of nuclear grade graphites is strongly influenced by underlying microstructural features such as the character of filler particles, and the distribution of pores and voids. These microstructural features influence the crack nucleation and propagation behavior, resulting in quasi-brittle fracture with a tortuous crack path and significant scatter in measured bulk strength. This paper uses a phase-field method to model the microstructural and multi-axial fracture in H-451, a historic variant of nuclear graphite that provides the basis for an idealized study on a legacy grade. The representative volume elements are constructed from randomly located pores with random sizemore » obtained from experimentally determined log-normal distribution. The representative volume elements are then subjected to simulated multi-axial loading, and a reasonable agreement of the resulting fracture stress with experiments is obtained. Finally, quasi-brittle stress-strain evolution with a tortuous crack path is also observed from the simulations and is consistent with experimental results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koutsokeras, L. E.; Department of Materials Science and Engineering, University of Ioannina, GR-45100 Ioannina; Abadias, G.
2011-08-15
The mechanisms controlling the structural and morphological features (texture and microstructure) of ternary transition metal nitride thin films of the Ti{sub x}Ta{sub 1-x}N system, grown by various physical vapor deposition techniques, are reported. Films deposited by pulsed laser deposition, dual cathode magnetron sputtering, and dual ion beam sputtering have been investigated by means of x-ray diffraction in various geometries and scanning electron microscopy. We studied the effects of composition, energetic, and kinetics in the evolution of the microstructure and texture of the films. We obtain films with single and mixed texture as well as films with columnar ''zone-T'' and globularmore » type morphology. The results have shown that the texture evolution of ternary transition metal nitrides as well as the microstructural features of such films can be well understood in the framework of the kinetic mechanisms proposed for their binary counterparts, thus giving these mechanisms a global application.« less
NASA Astrophysics Data System (ADS)
Cojocaru, Vasile Dănuţ; Răducanu, Doina; Angelescu, Mariana Lucia; Vintilă, Adrian Nicolae; Şerban, Nicolae; Dan, Ioan; Cojocaru, Elisabeta Mirela; Cinca, Ion
2017-08-01
The microstructural changes induced by solution treatment of an industrial forged F53 Super Duplex Stainless Steel alloy were studied, in order to emphasize how component phases are influenced by heat treatment temperature and duration. The solution treatment was done at a temperature of 1100°C, with variable holding times: 0.6 ks (10 min), 3.6 ks (60 min) and 10.8 ks (180 min). Scanning electron microscopy-electron backscattered diffraction was used as main characterization technique, to obtain and analyse data referring to microstructural features, such as: nature and morphology of constituent phases, average grain-size and grain misorientation. It was shown that in all studied cases the microstructure consisted of a mixture of about 45% δ-Fe (ferrite) and 55% γ-Fe (austenite). Besides δ-Fe and γ-Fe phases, other phases were also identified, such as τ-phase (chromium-iron carbide), σ-phase (chromium-iron) and δ-(Cr-Fe) (ferrite).
NASA Astrophysics Data System (ADS)
Wang, Chengpeng; Li, Fuguo; Liu, Juncheng
2018-04-01
The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.
NASA Technical Reports Server (NTRS)
Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew
2006-01-01
The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.
Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI
NASA Astrophysics Data System (ADS)
Nunes, Daniel; Cruz, Tomás L.; Jespersen, Sune N.; Shemesh, Noam
2017-04-01
White Matter (WM) microstructures, such as axonal density and average diameter, are crucial to the normal function of the Central Nervous System (CNS) as they are closely related with axonal conduction velocities. Conversely, disruptions of these microstructural features may result in severe neurological deficits, suggesting that their noninvasive mapping could be an important step towards diagnosing and following pathophysiology. Whereas diffusion based MRI methods have been proposed to map these features, they typically entail the application of powerful gradients, which are rarely available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures - such as axons and extra-axonal spaces, which were here used as a simple model for the microstructure - and that, for axons parallel to the main magnetic field, the axonal density can be extracted. We then experimentally demonstrate in ex-vivo rat spinal cords that its different tracts - characterized by different microstructures - can be clearly contrasted using the MGE-derived maps. When the quantitative results are compared against ground-truth histology, they reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing a potential and usefulness of the approach to map underlying microstructures using a simple and time-efficient MRI sequence. We further show that a simple general-linear-model can predict the average axonal diameters from the four model parameters, and map these average axonal diameters in the spinal cords. While clearly further modelling and theoretical developments are necessary, we conclude that salient WM microstructural features can be extracted from simple, SNR-efficient multi-gradient echo MRI, and that this paves the way towards easier estimation of WM microstructure in vivo.
Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI.
Nunes, Daniel; Cruz, Tomás L; Jespersen, Sune N; Shemesh, Noam
2017-04-01
White Matter (WM) microstructures, such as axonal density and average diameter, are crucial to the normal function of the Central Nervous System (CNS) as they are closely related with axonal conduction velocities. Conversely, disruptions of these microstructural features may result in severe neurological deficits, suggesting that their noninvasive mapping could be an important step towards diagnosing and following pathophysiology. Whereas diffusion based MRI methods have been proposed to map these features, they typically entail the application of powerful gradients, which are rarely available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures - such as axons and extra-axonal spaces, which were here used as a simple model for the microstructure - and that, for axons parallel to the main magnetic field, the axonal density can be extracted. We then experimentally demonstrate in ex-vivo rat spinal cords that its different tracts - characterized by different microstructures - can be clearly contrasted using the MGE-derived maps. When the quantitative results are compared against ground-truth histology, they reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing a potential and usefulness of the approach to map underlying microstructures using a simple and time-efficient MRI sequence. We further show that a simple general-linear-model can predict the average axonal diameters from the four model parameters, and map these average axonal diameters in the spinal cords. While clearly further modelling and theoretical developments are necessary, we conclude that salient WM microstructural features can be extracted from simple, SNR-efficient multi-gradient echo MRI, and that this paves the way towards easier estimation of WM microstructure in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foulk, James W.; Alleman, Coleman N.; Mota, Alejandro
The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multi- scale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeledmore » with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plas- ticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. Beyond cases studies in concurrent multiscale, we explore progress in crystal plastic- ity through modular designs, solution methodologies, model verification, and extensions to Sierra/SM and manycore applications. Advances in conformal microstructures having both hexahedral and tetrahedral workflows in Sculpt and Cubit are highlighted. A structure-property case study in two-phase metallic composites applies the Materials Knowledge System to local metrics for void evolution. Discussion includes lessons learned, future work, and a summary of funded efforts and proposed work. Finally, an appendix illustrates the need for two-way coupling through a single degree of freedom.« less
The effects of behavioral and structural assumptions in artificial stock market
NASA Astrophysics Data System (ADS)
Liu, Xinghua; Gregor, Shirley; Yang, Jianmei
2008-04-01
Recent literature has developed the conjecture that important statistical features of stock price series, such as the fat tails phenomenon, may depend mainly on the market microstructure. This conjecture motivated us to investigate the roles of both the market microstructure and agent behavior with respect to high-frequency returns and daily returns. We developed two simple models to investigate this issue. The first one is a stochastic model with a clearing house microstructure and a population of zero-intelligence agents. The second one has more behavioral assumptions based on Minority Game and also has a clearing house microstructure. With the first model we found that a characteristic of the clearing house microstructure, namely the clearing frequency, can explain fat tail, excess volatility and autocorrelation phenomena of high-frequency returns. However, this feature does not cause the same phenomena in daily returns. So the Stylized Facts of daily returns depend mainly on the agents’ behavior. With the second model we investigated the effects of behavioral assumptions on daily returns. Our study implicates that the aspects which are responsible for generating the stylized facts of high-frequency returns and daily returns are different.
Ganeev, Artur; Nikitina, Marina; Sitdikov, Vil; Islamgaliev, Rinat; Hoffman, Andrew; Wen, Haiming
2018-01-01
Grade 91 (9Cr-1Mo) steel was subjected to various heat treatments and then to high-pressure torsion (HPT) at different temperatures. Its microstructure was studied using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Effects of the tempering temperature and the HPT temperature on the microstructural features and microhardness in the ultrafine-grained (UFG) Grade 91 steel were researched. The study of the UFG structure formation takes into account two different microstructures observed: before HPT in both samples containing martensite and in fully ferritic samples. PMID:29671761
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J
2016-01-01
Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus ([Formula: see text]) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 [Formula: see text]m) and lower pore volume (54.5%).
NASA Astrophysics Data System (ADS)
Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.
2016-01-01
Macroporous ceramics exhibit an intrinsic strength variability caused by the random distribution of defects in their structure. However, the precise role of microstructural features, other than pore volume, on reliability is still unknown. Here, we analyze the applicability of the Weibull analysis to unidirectional macroporous yttria-stabilized-zirconia (YSZ) prepared by ice-templating. First, we performed crush tests on samples with controlled microstructural features with the loading direction parallel to the porosity. The compressive strength data were fitted using two different fitting techniques, ordinary least squares and Bayesian Markov Chain Monte Carlo, to evaluate whether Weibull statistics are an adequate descriptor of the strength distribution. The statistical descriptors indicated that the strength data are well described by the Weibull statistical approach, for both fitting methods used. Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the key microstructural parameter controlling reliability is wall thickness. In contrast, pore volume is the main parameter controlling the strength. The highest Weibull modulus (?) and mean strength (198.2 MPa) were obtained for the samples with the smallest and narrowest wall thickness distribution (3.1 ?m) and lower pore volume (54.5%).
Fine-Granularity Functional Interaction Signatures for Characterization of Brain Conditions
Hu, Xintao; Zhu, Dajiang; Lv, Peili; Li, Kaiming; Han, Junwei; Wang, Lihong; Shen, Dinggang; Guo, Lei; Liu, Tianming
2014-01-01
In the human brain, functional activity occurs at multiple spatial scales. Current studies on functional brain networks and their alterations in brain diseases via resting-state functional magnetic resonance imaging (rs-fMRI) are generally either at local scale (regionally confined analysis and inter-regional functional connectivity analysis) or at global scale (graph theoretic analysis). In contrast, inferring functional interaction at fine-granularity sub-network scale has not been adequately explored yet. Here our hypothesis is that functional interaction measured at fine-granularity subnetwork scale can provide new insight into the neural mechanisms of neurological and psychological conditions, thus offering complementary information for healthy and diseased population classification. In this paper, we derived fine-granularity functional interaction (FGFI) signatures in subjects with Mild Cognitive Impairment (MCI) and Schizophrenia by diffusion tensor imaging (DTI) and rsfMRI, and used patient-control classification experiments to evaluate the distinctiveness of the derived FGFI features. Our experimental results have shown that the FGFI features alone can achieve comparable classification performance compared with the commonly used inter-regional connectivity features. However, the classification performance can be substantially improved when FGFI features and inter-regional connectivity features are integrated, suggesting the complementary information achieved from the FGFI signatures. PMID:23319242
2015-09-30
represent water-mass ( spice ) anomalies on isopycnals so serve as passive tracers. These spectra were compared with existing theories and models. 2 2...isopycnal variability of spice in the North Pacific. J. Geophys. Res. doi: 10.1002/2013JC009421. Ledwell, J.R., A.J. Watson and C.S. Law, 1998
High Cycle Fatigue (HCF) Science and Technology Program 2000 Annual Report
2000-01-01
in an area of deep compressive stress. • Results of industry and government testing have indicated the ability to stop crack initiation and...fatigue crack nucleation process with the cyclic deformation behavior of the alloy for different microstructures and crystallographic texture ... texture combinations investigated, bimodal fine uni-rolled and lamellar cross-rolled displayed superior fatigue properties to the remaining four
Single organic microtwist with tunable pitch.
Chen, Hai-Bo; Zhou, Yan; Yin, Jie; Yan, Jing; Ma, Yuguo; Wang, Lei; Cao, Yong; Wang, Jian; Pei, Jian
2009-05-19
A facile synthesis of previously unknown, well-separated, uniform chiral microstructures from achiral pi-conjugated organic molecules was developed by simple solution process. Detailed characterization and formation mechanism were presented. By simple structure modification or temperature change, the pitch of the chiral structure can be fine tuned. Our result opens new possibilities for novel materials in which structure chirality is coupled to device performance.
NASA Technical Reports Server (NTRS)
Locci, I. E.; Noebe, R. D.; Bowman, R. R.; Miner, R. V.; Nathal, M. V.; Darolia, R.
1991-01-01
The possibility of producing NiAl reinforced with the G-phase (Ni16X6Si7), where X is Zr or Hf, has been investigated. The microstructure of these NiAl alloys have been characterized in the as-cast and annealed conditions. The G-phases are present as fine cuboidal precipitates (10 to 40 nm) and have lattice parameters almost four times that of NiAl. They are coherent with the matrix and fairly resistant to coarsening during annealing heat treatments. Segregation and nonuniform precipitate distribution observed in as-cast materials were eliminated by homogenization at temperatures near 1600 K. Slow cooling from these temperatures resulted in large plate shaped precipitates, denuded zones, and a loss of coherency in some of the large particles. Faster cooling produced a homogeneous fine distribution of cuboidal G-phase particles in the matrix. Preliminary mechanical properties for the Zr-doped alloy are presented and compared to binary single crystal NiAl. The presence of these precipitates appears to have an important strengthening effect at temperatures not less than 1000 K compared to binary NiAl single crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Shaohong, E-mail: uniquelsh@163.com
The microstructural changes and thermal stability of a cobalt-containing martensitic heat resistance bearing steel have been investigated in this paper. The hardness variation showed a progressive hardness decrease associated with coarsening of fine carbides at elevated temperatures. The precipitation of secondary phases during tempering at 500 °C for 10 h and 100 h has been characterized and identified in detail using transmission electron microscopy. The results revealed that the aging treatment induced very fine secondary M{sub 6}C precipitates which were responsible for the secondary hardening peak when tempered at 500 °C for 30 h. But the hardness gradually decreased duemore » to the coarsening of M{sub 6}C carbide and other secondary phases (such as μ phase, σ phase, and χ phase) precipitation when the samples were tempered over 30 h at 500 °C. - Highlights: •Retained austenite fraction was reduced after cryogenic treatment. •Secondary hardening was responsible for M{sub 6}C precipitates. •TEM study to investigate different phases characteristics •Coarsening of carbides during aging has a significant effect on mechanical properties.« less
NASA Astrophysics Data System (ADS)
Jiao, Lei; Yang, Yonggang; Li, Hui; Zhao, Yutao; Wang, Xiaolu
2018-05-01
In this study, the in situ Al3Ti/2024Al composites were successfully fabricated by direct melt reaction method and subjected to forging and friction stir processing (FSP) to achieve superplasticity. Then, the microstructure and superplastic tensile behavior of the composites were investigated. The results show that the reinforcement particles are broken and grains are fine after plastic processing. Particularly, the size of reinforcement particles ranges from 0.2 μm to 5 μm and the average size of fine equiaxed grains is 5 μm after FSP processing. And the superplasticity of the composites was improved apparently. The maximum elongation of 642% was obtained at 0.15 s‑1 and 510 °C for the FSP specimen, with a strain rate sensitive parameter (m) of 0.58, indicating the FSP specimen has obtained excellent high strain rate superplasticity. The strain rate sensitivity parameter, m, ranges from 0.23 to 0.58, and the activation energy was calculated to be 135.24 kJ mol‑1. All results indicated that the main superplastic deformation mechanism was grain boundary sliding (GBS) for the FSP Al3Ti/2024Al composites.
Effect of laser welding parameters on the austenite and martensite phase fractions of NiTi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, J.P., E-mail: jp.oliveira@campus.fct.unl
Although laser welding is probably the most used joining technique for NiTi shape memory alloys there is still a lack of understanding about the effects of laser welding parameters on the microstructural induced changes: in both the heat affected and fusion zones martensite may be present, while the base material is fully austenitic. Synchrotron X-ray diffraction was used for fine probing laser welded NiTi joints. Through Rietveld refinement the martensite and austenite phase fractions were determined and it was observed that the martensite content increases towards the weld centreline. This is related to a change of the local transformation temperaturesmore » on these regions, which occurs due to compositional variation in those regions. The martensite phase fraction in the thermally affected regions may have significant implications on functional properties on these joints. - Highlights: •Synchrotron X-ray diffraction was used for fine probing of the microstructure in laser welded NiTi joints. •Rietveld refinement allowed to determine the content of martensite along the heat affected and fusion zones. •The martensite content increases from the base material towards the weld centreline.« less
Effect of Bimodal Grain Size Distribution on Scatter in Toughness
NASA Astrophysics Data System (ADS)
Chakrabarti, Debalay; Strangwood, Martin; Davis, Claire
2009-04-01
Blunt-notch tests were performed at -160 °C to investigate the effect of a bimodal ferrite grain size distribution in steel on cleavage fracture toughness, by comparing local fracture stress values for heat-treated microstructures with uniformly fine, uniformly coarse, and bimodal grain structures. An analysis of fracture stress values indicates that bimodality can have a significant effect on toughness by generating high scatter in the fracture test results. Local cleavage fracture values were related to grain size distributions and it was shown that the largest grains in the microstructure, with an area percent greater than approximately 4 pct, gave rise to cleavage initiation. In the case of the bimodal grain size distribution, the large grains from both the “fine grain” and “coarse grain” population initiate cleavage; this spread in grain size values resulted in higher scatter in the fracture stress than in the unimodal distributions. The notch-bend test results have been used to explain the difference in scatter in the Charpy energies for the unimodal and bimodal ferrite grain size distributions of thermomechanically controlled rolled (TMCR) steel, in which the bimodal distribution showed higher scatter in the Charpy impact transition (IT) region.
NASA Astrophysics Data System (ADS)
Deirmina, Faraz; Pellizzari, Massimo; Federici, Matteo
2017-04-01
Commercial AISI-H13 gas atomized powders (AT) were mechanically milled (MM) to refine both the particle size and the microstructure. Different volume fractions of coarser grained (CG) AT powders were mixed with the ultra-fine grained (UFG) MM and consolidated by spark plasma sintering to obtain bulks showing a harmonic structure ( i.e. a 3D interconnected network of UFG areas surrounding the CG atomized particles). The low sintering temperature, 1373.15 K (1100 °C) and the short sintering time (30 minutes) made it possible to obtain near full density samples while preserving the refined microstructure induced by MM. A combination of high hardness and significantly improved fracture toughness is achieved by the samples containing 50 to 80 vol pct MM, essentially showing harmonic structure. The design allows to easily achieve specific application oriented properties by varying the MM volume fraction in the initial mixture. Hardness is governed by the fine-grained MM matrix and improved toughening is due to (1) deviatory effect of AT particles and (2) energy dissipation as a result of the decohesion in MM regions or AT and MM interface.
Characterization of Ice for Return-to-Flight of the Space Shuttle. Part 2; Soft Ice
NASA Technical Reports Server (NTRS)
Schulson, Erland M.; Iliescu, Daniel
2005-01-01
In support of characterizing ice debris for return-to-flight (RTF) of NASA's space shuttle, we have determined the microstructure, density and compressive strength (at -10 C at approximately 0.3 per second) of porous or soft ice that was produced from both atmospheric water and consolidated snow. The study showed that the atmospheric material was generally composed of a mixture of very fine (0.1 to 0.3 millimeters) and coarser (5 to 10 millimeter) grains, plus air bubbles distributed preferentially within the more finely-grained part of the microstructure. The snow ice was composed of even finer grains (approximately 0.05 millimeters) and contained more pores. Correspondingly, the snow ice was of lower density than the atmospheric ice and both materials were significantly less dense than hard ice. The atmospheric ice was stronger (approximately 3.8 MPa) than the snow ice (approximately 1.9 MPa), but weaker by a factor of 2 to 5 than pore-free hard ice deformed under the same conditions. Zero Values are given for Young's modulus, compressive strength and Poisson's ratio that can be used for modeling soft ice from the external tank (ET).
3-Dimensional Microstructure of Al-Al3Ti Alloy Severely Deformed by ECAP
NASA Astrophysics Data System (ADS)
Sato, Hisashi; Hishikawa, Takahisa; Makino, Yuuki; Kunimine, Takahiro; Watanabe, Yoshimi
Microstructure of Al-Al3Ti alloy deformed by Equal-Channel-Angular Pressing (ECAP) is 3-dimensionally investigated. Especially, distribution of Al3Ti particles is focused in this study. The Al-Al3Ti alloy has coarse Al3Ti platelet particles in α-Al matrix. When the Al-Al3Ti alloy is deformed by ECAP under route A, fine Al3Ti platelet particles are observed. These Al3Ti platelet particles are aligned along to deformation axis, and its plane normal is perpendicular to the deformation axis. On the other hand, Al-Al3Ti alloy ECAPed under route Bc forms several groups consisted of fine Al3Ti platelet particles. Moreover, longitudinal size of the Al3Ti particle groups is close to that of initial Al3Ti particles with 4-pass ECAP specimen. These distribution behaviors of the Al3Ti particle can be explained by plastic flow of α-Al matrix. Finally, it is concluded that distribution of Al3Ti particle in Al-Al3Ti alloy by ECAP is controlled by plastic deformation of α-Al matrix.
Anderson, Melinda C; Arehart, Kathryn H; Souza, Pamela E
2018-02-01
Current guidelines for adult hearing aid fittings recommend the use of a prescriptive fitting rationale with real-ear verification that considers the audiogram for the determination of frequency-specific gain and ratios for wide dynamic range compression. However, the guidelines lack recommendations for how other common signal-processing features (e.g., noise reduction, frequency lowering, directional microphones) should be considered during the provision of hearing aid fittings and fine-tunings for adult patients. The purpose of this survey was to identify how audiologists make clinical decisions regarding common signal-processing features for hearing aid provision in adults. An online survey was sent to audiologists across the United States. The 22 survey questions addressed four primary topics including demographics of the responding audiologists, factors affecting selection of hearing aid devices, the approaches used in the fitting of signal-processing features, and the strategies used in the fine-tuning of these features. A total of 251 audiologists who provide hearing aid fittings to adults completed the electronically distributed survey. The respondents worked in a variety of settings including private practice, physician offices, university clinics, and hospitals/medical centers. Data analysis was based on a qualitative analysis of the question responses. The survey results for each of the four topic areas (demographics, device selection, hearing aid fitting, and hearing aid fine-tuning) are summarized descriptively. Survey responses indicate that audiologists vary in the procedures they use in fitting and fine-tuning based on the specific feature, such that the approaches used for the fitting of frequency-specific gain differ from other types of features (i.e., compression time constants, frequency lowering parameters, noise reduction strength, directional microphones, feedback management). Audiologists commonly rely on prescriptive fitting formulas and probe microphone measures for the fitting of frequency-specific gain and rely on manufacturers' default settings and recommendations for both the initial fitting and the fine-tuning of signal-processing features other than frequency-specific gain. The survey results are consistent with a lack of published protocols and guidelines for fitting and adjusting signal-processing features beyond frequency-specific gain. To streamline current practice, a transparent evidence-based tool that enables clinicians to prescribe the setting of other features from individual patient characteristics would be desirable. American Academy of Audiology
The effect of spark plasma sintering on lithium disilicate glass-ceramics.
Al Mansour, Fatima; Karpukhina, Natalia; Grasso, Salvatore; Wilson, Rory M; Reece, Mike J; Cattell, Michael J
2015-10-01
To evaluate the effects of spark plasma sintering (SPS) on the microstructure of lithium disilicate glass-ceramics. IPS e.max CAD glass-ceramic samples were processed using spark plasma sintering (SPS) and conventionally sintered (CS) as a comparison. Specimens were sintered at varying temperatures (T1: 840°C, T2: 820°C, T3: 800°C), heating rates (HR1: 150°C/min, HR2: 300°C/min, HR3: 500°C/min) and pressures (P1: 15MPa, P2: 50MPa, P3: 70MPa). IPS e.max Press glass powder samples were densified at 750 and 800°C (50 or 200MPa pressure). Samples were characterized using XRD, HTXRD, and SEM and quantitative image analysis. There was a significant increase in median crystal size (MCS) between the CS and the SPS T1 groups. A statistical difference (p>0.05) in MCS between SPS T1 and SPS T2 groups was observed. The SPS HR3 sample produced a smaller MCS than the CS, SPS HR1 and HR2 groups (p<0.05). The SPS P3 sample had a reduction in MCS compared with the CS group (p<0.05). XRD of the SPS samples revealed major lithium disilicate/lithium metasilicate phases and minor lithium orthophosphate and cristobalite/quartz phases. Densified IPS e.max Press glass samples resulted in fine fibrils or graduated lithium disilicate crystals. The effects of SPS were used to refine the microstructure of IPS e.max CAD lithium disilicate glass-ceramics. Densification by SPS of IPS e.max Press glass resulted in textured and fine nano-crystalline microstructures. SPS generated glass-ceramic microstructures may have unique properties and could be useful in the production of CAD/CAM materials for dentistry. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aslin, J.; Mariani, E.; Dawson, K.
2017-12-01
Micas are one of the most important mineral groups with regard to the strength and rheology of the Earth's crust. This is a result of their distinct weakness relative to other silicate phases coupled with their generally high abundance at mid-crustal conditions. Despite this, relatively little is known regarding the mechanisms of viscous deformation in micas. The samples used in this study were collected from the Cossato-Mergozzo-Brissago (C-M-B) line, an amphibolite facies mylonitic shear zone in Northern Italy. The granitoid and metasedimentary protoliths of this 100 -150 m wide shear zone ensure a high but variable phyllosilicate content within predominantly quartzofelspathic lithologies. Initial microstructural analysis using optical and scanning electron microscopy (SEM) reveals a significant change in biotite deformation behaviour with increasing strain. At low strains kinking and basal glide dominate, however at higher strain biotite undergoes a dramatic grain size reduction which is at first concentrated along grain edges and kink band boundaries but later involves the entire grain. In the highest strain samples examined, biotite only survives as a component of a very fine grained matrix. In contrast, muscovite, also present in these rocks, remains coarse, forming kinked and bent mica fish even to high strains. The comminution of biotite is of critical importance to the microstructural evolution of these mylonites as it facilitates the development of an interconnected network of fine and potentially very weak grains. However, the mechanism responsible is not clear. We use transmission electron microscopy (TEM) to observe and characterise the intracrystalline structure of the biotite in these samples both prior to and after this grain size reduction has taken place. A better understanding of the nano-scale microstructures produced by natural deformation in micas will aid in determining the mechanisms which control the way these important crustal minerals accommodate strain.
Korneva, Janetta V; Jones, Malcolm K; Kuklin, Vadim V
2015-05-01
The organization and fine structure of the complex copulatory apparatus of Tetrabothrius erostris (Tetrabothriidea) is investigated by light and transmission electron microscopy. A diversity of microstructures was found on the surface of genital ducts. The apical surfaces of male gonadoducts possess tubular and blade-like microtriches that have specific structure in each section of the duct. The apical part of the tubular microtriches contains numerous constrictions in the proximal section of the sperm duct; blade-like microtriches of cirrus possess longitudinal striation in the apical part, and their basal part is reinforced with electron-dense strands. Two types of microtriches occur on the surface of cirrus, and their presence may be considered as systematic features. Prostate glands containing granules of medium electron density (up to 130 nm diameter) are localized in the cirrus sac. The genital atrium contains numerous non-ciliated receptors. Paramyosin-like fibers (up to 200 nm) were found in the muscle fibers surrounding the male atrium canal. Microtriches on the surface of the distal region of the male atrial canal are covered by a glycocalyx. Electron-dense, membrane-like structures (up to 40 nm) lie under the apical membrane of the genital atrium and vagina. These structures do not form a continuous layer; its edges turn down and sink into the apical invaginations of epithelium. Hypotheses on the possible ways of copulation in T. erostris based on the observed ultrastructure are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remiens, D.; Ponchel, F.; Legier, J. F.
2011-06-01
A complete study is given in this paper on the structural properties of Ba(Sr,Ti)O{sub 3} (BST) thin films which present various preferred orientations: (111) and (001) fiber and epitaxial textures. The films are deposited in situ at 800 deg. C by sputtering on Si/SiO{sub 2}/TiO{sub x}/Pt substrates and the orientation is controlled by monitoring the concentration of O{sub 2} in the reactive plasma or by prior deposition of a very thin TiO{sub x} buffer layer between BST films and substrates. The epitaxial films are obtained on (001)-alpha-Al{sub 2}O{sub 3} substrates covered with TiO{sub x} buffer layers. In order to analyzemore » finely the preferred orientations, the texture, the microstructural features, and the anisotropy-related quantities such as residual stresses in the films, the conventional Bragg-Brentano {theta} - 2{theta} x-ray diffraction diagrams is shown not to be sufficient. So, we systematically used x-ray combined analysis, a recently developed methodology which gives access to precise determination of the structure (cell parameters and space group) of the films, their orientation distributions (texture strengths and types) and mean crystallite sizes, their residual stresses. This fine structural analysis shows important modifications between the film qualities which induce differences in BST films electrical behavior, permittivity, loss tangent, and tunability.« less
[Coal fineness effect on primary particulate matter features during pulverized coal combustion].
Lü, Jian-yi; Li, Ding-kai
2007-09-01
Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does.
NASA Astrophysics Data System (ADS)
He, Honghui; Dong, Yang; Zhou, Jialing; Ma, Hui
2017-03-01
As one of the salient features of light, polarization contains abundant structural and optical information of media. Recently, as a comprehensive description of polarization property, the Mueller matrix polarimetry has been applied to various biomedical studies such as cancerous tissues detections. In previous works, it has been found that the structural information encoded in the 2D Mueller matrix images can be presented by other transformed parameters with more explicit relationship to certain microstructural features. In this paper, we present a statistical analyzing method to transform the 2D Mueller matrix images into frequency distribution histograms (FDHs) and their central moments to reveal the dominant structural features of samples quantitatively. The experimental results of porcine heart, intestine, stomach, and liver tissues demonstrate that the transformation parameters and central moments based on the statistical analysis of Mueller matrix elements have simple relationships to the dominant microstructural properties of biomedical samples, including the density and orientation of fibrous structures, the depolarization power, diattenuation and absorption abilities. It is shown in this paper that the statistical analysis of 2D images of Mueller matrix elements may provide quantitative or semi-quantitative criteria for biomedical diagnosis.
NASA Astrophysics Data System (ADS)
Bello Yamusa, Yamusa; Yunus, Nor Zurairahetty Mohd; Ahmad, Kamarudin; Rahman, Norhan Abd; Sa'ari, Radzuan
2018-03-01
Laterite soil was investigated to find out the effects of fines content and to identify the micro-structural and molecular characteristics to evaluate its potentiality as a compacted soil landfill liner material. Tests were carried out on natural soil and reconstituted soil by dry weight of soil samples to determine the physical and engineering properties of the soil. All tests were carried out on the samples by adopting the British Standard 1377:1990. The possible mechanisms that contributed to the clay mineralogy were analyzed using spectroscopic and microscopic techniques such as field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) and X-ray diffractometry (XRD). The laterite soil was found to contain kaolinite as the major clay minerals. A minimum of 50% fines content of laterite soil met the required result for hydraulic barriers in waste containment facilities.
Nano Polymeric Carrier Fabrication Technologies for Advanced Antitumor Therapy
Li, Wei; Zhao, Mengxin; Ke, Changhong; Zhang, Ge; Zhang, Li; Li, Huafei; Zhang, Fulei; Sun, Yun; Dai, Jianxin; Wang, Hao; Guo, Yajun
2013-01-01
Comparing with the traditional therapeutic methods, newly developed cancer therapy based on the nanoparticulates attracted extensively interest due to its unique advantages. However, there are still some drawbacks such as the unfavorable in vivo performance for nanomedicine and undesirable tumor escape from the immunotherapy. While as we know that the in vivo performance strongly depended on the nanocarrier structural properties, thus, the big gap between in vitro and in vivo can be overcome by nanocarrier's structural tailoring by fine chemical design and microstructural tuning. In addition, this fine nanocarrier's engineering can also provide practical solution to solve the problems in traditional cancer immunotherapy. In this paper, we review the latest development in nanomedicine, cancer therapy, and nanoimmunotherapy. We then give an explanation why fine nanocanrrie's engineering with special focus on the unique pathology of tumor microenvironments and properties of immunocells can obviously promote the in vivo performance and improve the therapeutic index of nanoimmunotherapy. PMID:24369011
Nano polymeric carrier fabrication technologies for advanced antitumor therapy.
Li, Wei; Zhao, Mengxin; Ke, Changhong; Zhang, Ge; Zhang, Li; Li, Huafei; Zhang, Fulei; Sun, Yun; Dai, Jianxin; Wang, Hao; Guo, Yajun
2013-01-01
Comparing with the traditional therapeutic methods, newly developed cancer therapy based on the nanoparticulates attracted extensively interest due to its unique advantages. However, there are still some drawbacks such as the unfavorable in vivo performance for nanomedicine and undesirable tumor escape from the immunotherapy. While as we know that the in vivo performance strongly depended on the nanocarrier structural properties, thus, the big gap between in vitro and in vivo can be overcome by nanocarrier's structural tailoring by fine chemical design and microstructural tuning. In addition, this fine nanocarrier's engineering can also provide practical solution to solve the problems in traditional cancer immunotherapy. In this paper, we review the latest development in nanomedicine, cancer therapy, and nanoimmunotherapy. We then give an explanation why fine nanocanrrie's engineering with special focus on the unique pathology of tumor microenvironments and properties of immunocells can obviously promote the in vivo performance and improve the therapeutic index of nanoimmunotherapy.
NASA Astrophysics Data System (ADS)
Balsamo, Fabrizio; Storti, Fabrizio
2010-05-01
We studied an extensional fault zone developed in poorly lithified, quartz-rich high porosity sandy sediments of the seismically active Crotone basin (southern Italy). The fault zone cuts across interlayered fine- to coarse-grained sands and consists of a cm-thick, discrete fault core embedded in virtually undeformed wall sediments. Consequently, it can be described as "structurally oversimplified" due to the lack of footwall and hanging wall damage zones. We acquired microstructural, grain size, grain shape, porosity, mineralogical and permeability data to investigate the influence of initial sedimentological characteristics of sands on the final faulted granular products and related hydrologic properties. Faulting evolves by a general grain size and porosity reduction with a combination of intragranular fracturing, spalling, and flaking of grain edges, irrespective of grain mineralogy. The dominance of cataclasis, also confirmed by fractal dimensions >2.6, is generally not expected at a deformation depth <1 km. Coarse-grained sand shows a much higher comminution intensity, grain shape variations and permeability drop than fine-grained sands. This is because coarser aggregates have (i) fewer grain-to-grain contacts for a given area, which results in higher stress concentration at contact points, and (ii) a higher probability of pre-existing intragranular microstructural defects that result in a lower grain strength. The peculiar structural architecture, the dominance of cataclasis over non-destructive particulate flow, and the compositional variations of clay minerals in the fault core, strongly suggest that the studied fault zone developed by a coseismic rupture.
NASA Astrophysics Data System (ADS)
Jin, Chul Kyu; Jang, Chang Hyun; Kang, Chung Gil
2014-01-01
A thin plate (150 × 150 × 1.2 mm) with embedded corrugation is fabricated using the rheoforming method. Semisolid slurry is created using the electromagnetic stirring (EMS) system, and the thin plate is made with the forging die at the 200-ton hydraulic press. The cross sections and microstructures of the slurry with and without stirring are examined. To investigate the effect of the process parameters on the formability, microstructure, and mechanical properties of thin plate the slurry is subjected to 16 types of condition for the forging experiment. The 16 types included the following conditions: Whether the EMS is applied or not, three fractions of the solid phase at 35, 45 and 55 pct; two compression velocities at 30 and 300 mm s-1; and four different compression pressures—100, 150, 200 and 250 MPa. The thin plate's formability is enhanced at higher punch velocity for compressing the slurry, and fine solid particles are uniformly distributed, which in turn, enhances the plate's mechanical properties. The pressure between 150 and 200 MPa is an appropriate condition to form thin plates. A thin plate without defects can be created when the slurry at 35 pct of the solid fraction (f s) was applied at the compression velocity of 300 mm s-1 and 150 MPa of pressure. The surface state of thin plate is excellent with 220 MPa of tensile strength and 13.5 pct of elongation. The primary particles are fine over the entire plate, and there are no liquid segregation-related defects.
NASA Astrophysics Data System (ADS)
Yu, Wen-Tao; Li, Jing; Shi, Cheng-Bin; Zhu, Qin-Tian
2017-02-01
The effects of holding time during both austenitizing and spheroidizing on microstructure and mechanical properties of high-carbon martensitic stainless steel 8Cr13MoV were experimentally studied. The results showed that the amount of carbides and the proportion of fine carbides decrease first and then increase with the increase in austenitizing time ( t 1) in the case of short spheroidizing time ( t 2), whereas the amount of the lamellar carbides increases. In the case of long t 2, both the amount of carbides and the proportion of fine carbides decrease, and the amount of the lamellar carbides did not increase. The hardness of the steel decreases first and then increases with the increase of t 1. Under the conditions of different t 1, the change in the size of carbides and hardness of the steel show a same trend with the variation of t 2. The size of spheroidized carbides increases, whereas the hardness of the steel decreases with increasing t 2. The longer the holding time of austenitizing, the higher is the spheroidizing rate at the earlier stage. However, the spheroidizing rate shows an opposite trend with t 1 at the later stage of spheroidizing. The effect of cooling rate on microstructure is similar with t 2. With increasing cooling rate, the dimension of carbides became smaller, and the amount of lamellar carbides increased. The elongation of the sample fracture exhibits no corresponding relationship with holding time, whereas it is closely related to the precipitation of secondary carbides caused by the alloying elements segregation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.
Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FEmore » meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less
DETECTION OF POLARIZED QUASI-PERIODIC MICROSTRUCTURE EMISSION IN MILLISECOND PULSARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, Kishalay; Sharma, Prateek; Gupta, Yashwant, E-mail: kde@caltech.edu
Microstructure emission, involving short timescale, often quasi-periodic, intensity fluctuations in subpulse emission, is well known in normal period pulsars. In this Letter, we present the first detections of quasi-periodic microstructure emission from millisecond pulsars (MSPs), from Giant Metrewave Radio Telescope observations of two MSPs at 325 and 610 MHz. Similar to the characteristics of microstructure observed in normal period pulsars, we find that these features are often highly polarized and exhibit quasi-periodic behavior on top of broader subpulse emission, with periods of the order of a few μ s. By measuring their widths and periodicities from single pulse intensity profilesmore » and their autocorrelation functions, we extend the microstructure timescale–rotation period relationship by more than an order of magnitude down to rotation periods ∼5 ms, and find it to be consistent with the relationship derived earlier for normal pulsars. The similarity of behavior is remarkable, given the significantly different physical properties of MSPs and normal period pulsars, and rules out several previous speculations about the possible different characteristics of microstructure in MSP radio emission. We discuss the possible reasons for the non-detection of these features in previous high time resolution MSP studies along with the physical implications of our results, both in terms of a geometric beam sweeping model and temporal modulation model for micropulse production.« less
Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.; ...
2016-04-25
Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FEmore » meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less
Hagihara, Koji; Ikenishi, Takaaki; Araki, Haruka; Nakano, Takayoshi
2017-06-21
A (Mo 0.85 Nb 0.15 )Si 2 crystal with an oriented, lamellar, C40/C11 b two-phase microstructure is a promising ultrahigh-temperature (UHT) structural material, but its low room-temperature fracture toughness and low high-temperature strength prevent its practical application. As a possibility to overcome these problems, we first found a development of unique "cross-lamellar microstructure", by the cooping of Cr and Ir. The cross-lamellar microstructure consists of a rod-like C11 b -phase grains that extend along a direction perpendicular to the lamellar interface in addition to the C40/C11 b fine lamellae. In this study, the effectiveness of the cross-lamellar microstructure for improving the high-temperature creep deformation property, being the most essential for UHT materials, was examined by using the oriented crystals. The creep rate significantly reduced along a loading orientation parallel to the lamellar interface. Furthermore, the degradation in creep strength for other loading orientation that is not parallel to the lamellar interface, which has been a serious problem up to now, was also suppressed. The results demonstrated that the simultaneous improvement of high-temperature creep strength and room temperature fracture toughness can be first accomplished by the development of unique cross-lamellar microstructure, which opens a potential avenue for the development of novel UHT materials as alternatives to existing Ni-based superalloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumagai, T.; Abe, E.; Nakamura, M.
1997-12-31
Microstructural development of an extremely fine {alpha}{sub 2}-Ti{sub 32}Al/{gamma}-TiAl lamellar structure, which was formed by ice water quenching after solution-treatment in a high-temperature {alpha}-Ti phase field for a long period of time, was examined during isothermal treatment. In an as-quenched Ti-48at.%Al alloy, the massively transformed {gamma} ({gamma}{sub m}) and untransformed (meaning massively untransformed) fine {alpha}{sub 2}/{gamma} lamellar regions were observed. Fine {gamma} grains, which were similar to {gamma}{sub m}, were generated both within the fine {alpha}{sub 2}/{gamma} lamellae and at the boundary area between the {gamma}{sub m} and the fine {alpha}{sub 2}/{gamma} lamellar regions by aging at low-temperature (1,173 K)more » for a short time (180s). Further aging (1.8ks) caused the coarsening of these newly generated fine {gamma} grains. On the other hand, the coarsening of the {gamma} grains occurred by a high-temperature (1,323 K) aging treatment even for 180s. Fine {alpha}{sub 2} plates and particles, which were aligned to a particular direction, were observed in the {gamma} grain interiors, indicating that the newly generated {gamma} grains grew at the expense of the fine {alpha}{sub 2}/{gamma} lamellae. It can be considered that the {gamma} grain formation through the fine {alpha}{sub 2}/{gamma} lamellae is closely related to the {alpha}{sub 2}{yields}{gamma} reaction of the {alpha}{sub 2} plates sandwiched by the {gamma} plates, and needs the fast heating rate enough to overcome the {alpha}{sub 2}/{gamma}{yields}{gamma}/{gamma} lamellae reaction.« less
Microstructure evolution of heat treated NiTi alloys
NASA Astrophysics Data System (ADS)
Losertová, M.; Štencek, M.; Matýsek, D.; Štefek, O.; Drápala, J.
2017-11-01
Superelastic behavior of off-stoichiometric NiTi alloys is significantly affected by microstructure changes due to heat treatment. Applying appropriate thermal treatments important effects on microstructural changes, transformation temperatures and thermomechanical properties of final NiTi products can be achieved. The experimental samples of NiTi alloy with 55.8 wt.% Ni were submitted to heat treatment and the microstructures before and after the treatment were observed. The thermal regimes consisted of annealing treatment at 600 °C for 1 hour followed by water quenching and of ageing at eight different temperatures (250, 270, 290, 300, 350, 400, 450 and 500 °C) for 30 minutes. Microstructure features studied by means of optical and scanning electron microscopies, EDX microanalyses, X-ray diffraction analyses and microhardness measurement, have shown that higher ageing temperatures led to microstructure changes and corresponding increase in microhardness.
Cao, Zhen; Ren, Kangning; Wu, Hongkai; Yobas, Levent
2012-01-01
We demonstrate monolithic integration of fine cylindrical glass microcapillaries (diameter ∼1 μm) on silicon and evaluate their performance for electrophoretic separation of biomolecules. Such microcapillaries are achieved through thermal reflow of a glass layer on microstructured silicon whereby slender voids are moulded into cylindrical tubes. The process allows self-enclosed microcapillaries with a uniform profile. A simplified method is also described to integrate the microcapillaries with a sample-injection cross without the requirement of glass etching. The 10-mm-long microcapillaries sustain field intensities up to 90 kV/m and limit the temperature excursions due to Joule heating to a few degrees Celsius only. PMID:23874369
The origin of coercivity decrease in fine grained Nd-Fe-B sintered magnets
NASA Astrophysics Data System (ADS)
Li, W. F.; Ohkubo, T.; Hono, K.; Sagawa, M.
2009-04-01
Microstructures of fine grained Nd-Fe-B sintered magnets that were produced by the pressless process were investigated to understand the origin of the sudden coercivity decrease below a certain grain size. The intrinsic coercivity is inversely proportional to ln D2 with the highest coercivity of 17 kOe at D˜4.5 μm, below which the coercivity drops as the grain size decreases. We found that the degradation of the coercivity of the magnet with a grain size of 3 μm was mainly caused by the inhomogeneous distribution of fcc-Nd oxide whose volume fraction increased with respect to the dhcp Nd-rich phase.
Xu, Jie; Li, Jianwei; Zhu, Xiaocheng; Fan, Guohua; Shan, Debin; Guo, Bin
2015-11-04
Micro-forming with ultrafine-grained (UFG) materials is a promising direction for the fabrication of micro-electro-mechanical systems (MEMS) components due to the improved formability, good surface quality, and excellent mechanical properties it provides. In this paper, micro-compression tests were performed using UFG pure aluminum processed by equal-channel angular pressing (ECAP) with subsequent annealing treatment. Microstructural evolution was investigated by electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results show that microstructural evolutions during compression tests at the micro/meso-scale in UFG pure Al are absolutely different from the coarse-grained (CG) materials. A lot of low-angle grain boundaries (LAGBs) and recrystallized fine grains are formed inside of the original large grains in CG pure aluminum after micro-compression. By contrast, ultrafine grains are kept with few sub-grain boundaries inside the grains in UFG pure aluminum, which are similar to the original microstructure before micro-compression. The surface roughness and coordinated deformation ability can be signmicrostructure; micro/meso-forming; ultrafine grains; ECAP; aluminumificantly improved with UFG pure aluminum, which demonstrates that the UFG materials have a strong potential application in micro/meso-forming.
Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.; ...
2018-06-06
AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electronmore » microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. Furthermore, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.« less
Modeling filtration and fouling with a microstructured membrane filter
NASA Astrophysics Data System (ADS)
Cummings, Linda; Sanaei, Pejman
2017-11-01
Membrane filters find widespread use in diverse applications such as A/C systems and water purification. While the details of the filtration process may vary significantly, the broad challenge of efficient filtration is the same: to achieve finely-controlled separation at low power consumption. The obvious resolution to the challenge would appear simple: use the largest pore size consistent with the separation requirement. However, the membrane characteristics (and hence the filter performance) are far from constant over its lifetime: the particles removed from the feed are deposited within and on the membrane filter, fouling it and degrading the performance over time. The processes by which this occurs are complex, and depend on several factors, including: the internal structure of the membrane and the type of particles in the feed. We present a model for fouling of a simple microstructured membrane, and investigate how the details of the microstructure affect the filtration efficiency. Our idealized membrane consists of bifurcating pores, arranged in a layered structure, so that the number (and size) of pores changes in the depth of the membrane. In particular, we address how the details of the membrane microstructure affect the filter lifetime, and the total throughput. NSF DMS 1615719.
NASA Astrophysics Data System (ADS)
Chen, Qiang; Chen, Gang; Han, Fei; Xia, Xiangsheng; Wu, Yang
2017-07-01
Near-net shaping of Mg-RE alloy matrix composites has received increasing attention. In this work, stir casting followed by extrusion was adopted to fabricate Mg-RE alloy (WE43) matrix composites reinforced by micron-sized SiC particles. The microstructural evolutions of SiCp/WE43 composites partially remelted from as-cast and extruded states were studied. Furthermore, the thixoformability of SiCp/WE43 composites in different states was evaluated by thixoextruding a type of double-cup component. The microstructures of as-cast SiCp/WE43 composites were optimized under the comprehensive effects of SiC particles and RE elements. The SiCp/WE43 composite was fully recrystallized during hot extrusion, and the α-Mg matrix consisted of fine equiaxed grains. Although the as-cast SiCp/WE43 composite consisted of satisfactory structures and can be successfully thixoextruded into the final component with good surface quality and no evidence of internal defects, the microstructures, Vickers hardness, tensile mechanical properties, and wear resistance were still inferior to those of the component thixoextruded from extruded composite. Moreover, the thixoextrusion process was analyzed schematically, and an ideal thixoforming process that should contain two stages was proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finfrock, Christopher B.; Exil, Andrea; Carroll, Jay D.
AlSi10Mg tensile bars were additively manufactured using the powder-bed selective laser melting process. Samples were subjected to stress relief annealing and hot isostatic pressing. Tensile samples built using fresh, stored, and reused powder feedstock were characterized for microstructure, porosity, and mechanical properties. Fresh powder exhibited the best mechanical properties and lowest porosity while stored and reused powder exhibited inferior mechanical properties and higher porosity. The microstructure of stress relieved samples was fine and exhibited (001) texture in the z-build direction. Microstructure for hot isostatic pressed samples was coarsened with fainter (001) texture. To investigate surface and interior defects, scanning electronmore » microscopy, optical fractography, and laser scanning microscopy techniques were employed. Hot isostatic pressing eliminated internal pores and reduced the size of surface porosity associated with the selective laser melting process. Hot isostatic pressing tended to increase ductility at the expense of decreasing strength. Furthermore, scatter in ductility of hot isostatic pressed parts suggests that the presence of unclosed surface porosity facilitated fracture with crack propagation inward from the surface of the part.« less
NASA Astrophysics Data System (ADS)
Al-Mohsin, R. A.; Al-Otaibi, A. L.; Almessiere, M. A.; Al-badairy, H.; Slimani, Y.; Ben Azzouz, F.
2018-07-01
Here we compare the microstructure and flux pinning properties of polycrystalline YBa2Cu3O7-d (Y-123 or YBCO) containing either Al2O3 or Zn0.95Mn0.05O nanoparticles. Samples were prepared using a standard solid-state reaction process, and nanoparticles were added up to a concentration of 0.1 wt%. The crystal structure, microstructure, electrical and magnetic properties were analyzed using X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM), and electrical resistivity and DC magnetization measurements, respectively. TEM observations showed that the addition of Zn0.95Mn0.05O resulted in a high density of fine twins and a variety of interacting microstructures, while Al2O3 addition resulted in a high density of Al-rich nanoscale inhomogeneities embedded in the Y-123 matrix. Flux pinning forces were determined, and predominant pinning mechanisms in the prepared samples were proposed. We evaluated the superconducting properties of YBCO considering the effects of adding insulating or magnetic nanoparticles.
Effect of Microstructure on the Mechanical Properties of Extruded Magnesium and a Magnesium Alloy
NASA Astrophysics Data System (ADS)
McGhee, Paul
The main objective of this research was to investigate the relationship between the fatigue behavior and crystallographic texture evolution of magnesium (Mg) alloys with a range of microalloying element content processed under various extrusion conditions. Several Mg alloys were processed under a range of extrusion temperatures, extrusion ratios, and alloying content and tested under monotonic and cyclic fatigue loading conditions: fully-reversed condition tested at strain amplitudes of 0.15% - 1.00% in strain-control mode. After fatigue testing, Mg microstructural analysis was performed using SEM, TEM, optical microscopy, and X-ray diffraction techniques. Microstructural observations revealed significant grain refinement through a combination of zirconium (Zr) addition and hot-extrusion, producing fine equiaxed grain structure with grain sizes ranging between 1-5 microm. Texture analysis and partial compression testing results showed that the initial texture of the extruded alloy gradually evolved upon compressive loading along the c-axes inducing extension twinning creating a strong basal texture along the extrusion direction. Full tensile and compression testing at room temperature showed that the combination of hot extrusion and Zr addition can further refine the grains of the Mg alloys microstructure and enhance the texture while simultaneously enhancing the mechanical properties.
NASA Astrophysics Data System (ADS)
Dash, Manmath Kumar; Karthikeyan, T.; Mythili, R.; Vijayanand, V. D.; Saroja, S.
2017-10-01
This paper presents the results of microstructural evolution and mechanical properties in 304H Cu grade austenite stainless (SS 304HCu) during long-term exposure at high temperatures. The predicted phase composition as a function of temperature obtained using JMatPro® software was confirmed in conjunction with the microstructural evolution characterized by scanning and transmission electron microscopy. Microstructures revealed primary Nb(C,N), M23C6 precipitates at γ-grain boundaries, fine secondary Nb(C,N) intragranular carbides, and a uniform precipitation of <40-nm-sized spherical Cu-rich phase after thermal aging for 10,000 hours at 903 K (630 °C). The impression creep rate at 300 MPa increased by a factor of 20 between 873 K and 923 K (600 °C and 650 °C). The creep rate at 903 K (630 °C) was found to moderately reduce with aging time, signifying the role of Cu-rich phase in improving the creep resistance. The deformation zones and the recrystallization behavior of the plastic zone in creep tested specimen was assessed using Electron backscatter diffraction technique.
NASA Astrophysics Data System (ADS)
Al-Mohsin, R. A.; Al-Otaibi, A. L.; Almessiere, M. A.; Al-badairy, H.; Slimani, Y.; Ben Azzouz, F.
2018-03-01
Here we compare the microstructure and flux pinning properties of polycrystalline YBa2Cu3O7-d (Y-123 or YBCO) containing either Al2O3 or Zn0.95Mn0.05O nanoparticles. Samples were prepared using a standard solid-state reaction process, and nanoparticles were added up to a concentration of 0.1 wt%. The crystal structure, microstructure, electrical and magnetic properties were analyzed using X-ray diffraction, scanning electron microscopy and transmission electron microscopy (TEM), and electrical resistivity and DC magnetization measurements, respectively. TEM observations showed that the addition of Zn0.95Mn0.05O resulted in a high density of fine twins and a variety of interacting microstructures, while Al2O3 addition resulted in a high density of Al-rich nanoscale inhomogeneities embedded in the Y-123 matrix. Flux pinning forces were determined, and predominant pinning mechanisms in the prepared samples were proposed. We evaluated the superconducting properties of YBCO considering the effects of adding insulating or magnetic nanoparticles.
Song, Bo; Wang, Chunpeng; Guo, Ning; Pan, Hucheng; Xin, Renlong
2017-01-01
In this study, AZ91 magnesium alloy rods were used to investigate the effects of torsion deformation on microstructure and subsequent aging behavior. Extruded AZ91 rod has a uniform microstructure and typical fiber texture. Torsion deformation can generate a gradient microstructure on the cross-section of the rod. After torsion, from the center to the edge in the cross-section of the rod, both stored dislocations and area fraction of {10-12} twins gradually increase, and the basal pole of the texture tends to rotate in the ED direction. Direct aging usually generates coarse discontinuous precipitates and fine continuous precipitates simultaneously. Both twin structures and dislocations via torsion deformation can be effective microstructures for the nucleation of continuous precipitates during subsequent aging. Thus, aging after torsion can promote continuous precipitation and generate gradient precipitation characteristics. Both aging treatment and torsion deformation can reduce yield asymmetry, and torsion deformation enhances the aging hardening effect by promoting continuous precipitation. Therefore, combined use of torsion deformation and aging treatment can effectively enhance the yield strength and almost eliminate the yield asymmetry of the present extruded AZ91 rod. Finally, the relevant mechanisms are discussed. PMID:28772638
NASA Astrophysics Data System (ADS)
Guo, Jingfeng; Cao, Tieshan; Cheng, Congqian; Meng, Xianming; Zhao, Jie
2018-04-01
The microstructure and mechanical properties of ethylene cracking furnace tube (HPNb alloy) are investigated by scanning electronic microscopy (SEM), tensile tests and Charpy impact tests at room temperature, tensile tests and creep tests at high temperature in this paper. The primary carbides of HPNb alloy coarsened and formed a continuous network after a five-year service. Furthermore, a lot of fine secondary carbides precipitated in the dendrite interior. The primary carbides M7C3 and NbC transformed into M23C6 and G phase after service, respectively. The furnace tube after service exhibits higher yield strength, lower tensile strength, worse ductility and toughness than as-cast tube at room temperature. At high temperature, the tensile strength and yield strength of service tube are higher than as-cast tube, but its tensile elongation is lower. The creep strength of HPNb alloy at high temperature decreases after a five-year service. Both microstructure and mechanical properties of ethylene cracking furnace tube have deteriorated after a five-year service.
NASA Astrophysics Data System (ADS)
Vijeesh, V.; Narayan Prabhu, K.
2017-01-01
The present work involves the study of the effect of varying concentration of Ce addition on microstructure and mechanical properties of Al-23%Si alloys. Melt-treated alloys were solidified in copper, brass, stainless steel molds to assess the effect of cooling rate. The effect on microstructure was assessed by measuring the fineness of primary silicon and eutectic silicon particle characteristics. The Ce melt treatment transformed the coarse and irregular primary silicon into refined polyhedral silicon crystals, and the effect was more significant at higher cooling rates. Although the melt treatment had refined the eutectic silicon at lower cooling rates, it did not show any considerable effect on the eutectic silicon at higher cooling rates. The mechanical properties of the alloy increased significantly with increase in cooling rates and cerium concentration. Analysis of the results and literature reveals that the refined primary silicon was formed as a result of an invariant reaction between Ce compounds and primary silicon at higher temperatures.
NASA Astrophysics Data System (ADS)
Shi, Chen; Li, Fan; Liang, Gen; Mao, Daheng
2018-01-01
Effects of different power ultrasonic on microstructure and mechanical properties of 35CrMo steel casting were investigated using optical microscopy (OM), scanning electron microscopy (SEM) and hardness testing. A self-developed experiment apparatus was used for the propagation of ultrasonic vibration into the 35CrMo steel melt to carry out ultrasonic treatment. The experimental results showed that compared to the traditional casting, ultrasonic treatment can obviously change the solidification microstructure of 35CrMo steel, which is changed from coarse dendrites to fined dendrites or equiaxed grains. With the increase of ultrasonic power, equiaxed crystal is remarkably refined and its area is broadened. The micro porosity percentage of ingot casting decreases significantly and the porosity defects can be suppressed under ultrasonic treatment. The mechanical properties of 35CrMo steel ingot after heat treatment were enhanced by ultrasonic treatment: the maximum tensile strength is improved by 8.4% and the maximum elongation increased by 1.5 times.
Fe-Based Amorphous Coatings on AISI 4130 Structural Steel for Corrosion Resistance
NASA Astrophysics Data System (ADS)
Katakam, Shravana; Santhanakrishnan, S.; Dahotre, Narendra B.
2012-06-01
The current study focuses on synthesizing a novel functional coating for corrosion resistance applications, via laser surface alloying. The iron-based (Fe48Cr15Mo14Y2C15B) amorphous precursor powder is used for laser surface alloying on AISI 4130 steel substrate, with a continuous wave ytterbium Nd-YAG fiber laser. The corrosion resistance of the coatings is evaluated for different processing conditions. The microstructural evolution and the response of the microstructure to the corrosive environment is studied using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Microstructural studies indicate the presence of face-centered cubic Fe-based dendrites intermixed within an amorphous matrix along with fine crystalline precipitates. The corrosion resistance of the coatings decrease with an increase in laser energy density, which is attributed to the precipitation and growth of chromium carbide. The enhanced corrosion resistance of the coatings processed with low energy density is attributed to the self-healing mechanism of this amorphous system.
NASA Astrophysics Data System (ADS)
Chand, Suresh; Vineetha, S.; Madhusudhan, D.; Sai Krishna, CH; Kusuma Devi, G.; Bhawani; Hemarao, K.; Ganesh Naidu, G.
2018-03-01
The plate of 7.0 mm thickness was double side welded using friction stir welding is investigated. The rotational velocity of friction stir welding tool is used 1400 rpm. The influence of welding speed on the microstructure and microhardness values of Al-0.84Mg-0.69Si-0.76Fe aluminum alloy is presented. Two welding speeds 25 mm/min and 31.5 mm/min are used. The microhardness values of friction stir weld are measured at various locations from the weld interface. The microhardness values in stir zone of weld are found larger than lower welding speed at constant rotational velocity of 1400 rpm of friction stir welding tool. The similar effects on microhardness values are found in the thermo-mechanically affected zone and heat affected zone. The fine microstructure is observed at 31.5 mm/min welding speed compared to the 25 mm/min welding speed at 1400 rpm.
Self-passivating bulk tungsten-based alloys manufactured by powder metallurgy
NASA Astrophysics Data System (ADS)
López-Ruiz, P.; Ordás, N.; Lindig, S.; Koch, F.; Iturriza, I.; García-Rosales, C.
2011-12-01
Self-passivating tungsten-based alloys are expected to provide a major safety advantage compared to pure tungsten, which is at present the main candidate material for the first wall armour of future fusion reactors. WC10Si10 alloys were manufactured by mechanical alloying (MA) in a Planetary mill and subsequent hot isostatic pressing (HIP), achieving densities above 95%. Different MA conditions were studied. After MA under optimized conditions, a core with heterogeneous microstructure was found in larger powder particles, resulting in the presence of some large W grains after HIP. Nevertheless, the obtained microstructure is significantly refined compared to previous work. First MA trials were also performed on the Si-free system WCr12Ti2.5. In this case a very homogeneous structure inside the powder particles was obtained, and a majority ternary metastable bcc phase was found, indicating that almost complete alloying occurred. Therefore, a very fine and homogeneous microstructure can be expected after HIP in future work.
NASA Astrophysics Data System (ADS)
Song, Y. L.; Li, C. S.; Ma, B.; Han, Y. H.
2017-05-01
Asymmetric hot rolling (ASHR) with a mismatch speed ratio of 1.15 in a single pass was applied to Fe-18Mn-18Cr-0.5N steel and was compared with symmetric hot rolling (SHR). The results indicated that a through-thickness microstructure gradient was formed in the plate due to the shear strain (0.36) introduced by ASHR. A fine-grained layer with the average size of 3 μm was achieved at the top surface of ASHR plate, while numerous elongated grains with a few recrystallized grains were presented at the center layer. The texture was distributed randomly at the top surface of ASHR plate, and a weaker intensity of typical hot-rolled texture in austenitic steel was obtained at the center layer of ASHR plate compared to SHR plate. An excellent combination of microhardness, strength and ductility was obtained in the ASHR plate, which was attributed to gradient microstructure induced by ASHR.
Seeking carotenoid pigments in amber-preserved fossil feathers.
Thomas, Daniel B; Nascimbene, Paul C; Dove, Carla J; Grimaldi, David A; James, Helen F
2014-06-09
Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.
Quantitative microstructural imaging by scanning Laue x-ray micro- and nanodiffraction
Chen, Xian; Dejoie, Catherine; Jiang, Tengfei; ...
2016-06-08
We present that local crystal structure, crystal orientation, and crystal deformation can all be probed by Laue diffraction using a submicron x-ray beam. This technique, employed at a synchrotron facility, is particularly suitable for fast mapping the mechanical and microstructural properties of inhomogeneous multiphase polycrystalline samples, as well as imperfect epitaxial films or crystals. As synchrotron Laue x-ray microdiffraction enters its 20th year of existence and new synchrotron nanoprobe facilities are being built and commissioned around the world, we take the opportunity to overview current capabilities as well as the latest technical developments. Fast data collection provided by state-of-the-art areamore » detectors and fully automated pattern indexing algorithms optimized for speed make it possible to map large portions of a sample with fine step size and obtain quantitative images of its microstructure in near real time. Lastly, we extrapolate how the technique is anticipated to evolve in the near future and its potential emerging applications at a free-electron laser facility.« less
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Feng; Li, Xue Wen; Shi, Wen Yong
2018-03-01
Rolling is currently a widely used method for manufacturing and processing high-performance magnesium alloy sheets and has received widespread attention in recent years. Here, we combined continuous variable cross-section direct extrusion (CVCDE) and rolling processes. The microstructure and mechanical properties of the resulting sheets rolled at different temperatures from CVCDE extrudate were investigated by optical microscopy, scanning electron microscope, transmission electron microscopy and electron backscatter diffraction. The results showed that a fine-grained microstructure was present with an average grain size of 3.62 μm in sheets rolled from CVCDE extrudate at 623 K. Dynamic recrystallization and a large strain were induced by the multi-pass rolling, which resulted in grain refinement. In the 573-673 K range, the yield strength, tensile strength and elongation initially increased and then declined as the CVCDE temperature increased. The above results provide an important scientific basis of processing, manufacturing and the active control on microstructure and property for high-performance magnesium alloy sheet.
NASA Astrophysics Data System (ADS)
Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T.; Yoshida, H.; Inagaki, T.; Miura, K.
A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800°C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm 2. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode.
Seeking carotenoid pigments in amber-preserved fossil feathers
NASA Astrophysics Data System (ADS)
Thomas, Daniel B.; Nascimbene, Paul C.; Dove, Carla J.; Grimaldi, David A.; James, Helen F.
2014-06-01
Plumage colours bestowed by carotenoid pigments can be important for visual communication and likely have a long evolutionary history within Aves. Discovering plumage carotenoids in fossil feathers could provide insight into the ecology of ancient birds and non-avian dinosaurs. With reference to a modern feather, we sought chemical evidence of carotenoids in six feathers preserved in amber (Miocene to mid-Cretaceous) and in a feather preserved as a compression fossil (Eocene). Evidence of melanin pigmentation and microstructure preservation was evaluated with scanning electron and light microscopies. We observed fine microstructural details including evidence for melanin pigmentation in the amber and compression fossils, but Raman spectral bands did not confirm the presence of carotenoids in them. Carotenoids may have been originally absent from these feathers or the pigments may have degraded during burial; the preservation of microstructure may suggest the former. Significantly, we show that carotenoid plumage pigments can be detected without sample destruction through an amber matrix using confocal Raman spectroscopy.
Sun, Zhiqian; Edmondson, Philip D.; Yamamoto, Yukinori
2017-11-15
The microstructures and mechanical properties of deformed and annealed Nb-containing FeCrAl alloys were investigated. Fine dispersion of Fe 2Nb-type Laves phase particles was observed in the bcc-Fe matrix after applying a thermomechanical treatment, especially along grain/subgrain boundaries, which effectively stabilized the recovered and recrystallized microstructures compared with the Nb-free FeCrAl alloy. The stability of recovered areas increased with Nb content up to 1 wt%. The recrystallized grain structure in Nb-containing FeCrAl alloys consisted of elongated grains along the rolling direction with a weak texture when annealed below 1100 °C. An abnormal relationship between recrystallized grain size and annealing temperature wasmore » found. Microstructural inhomogeneity in the deformed and annealed states was explained based on the Taylor factor. Annealed Nb-containing FeCrAl alloys showed a good combination of strength and ductility, which is desirable for their application as fuel cladding in light-water reactors.« less
Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression
NASA Astrophysics Data System (ADS)
Huo, Yuanming; He, Tao; Chen, Shoushuang; Wu, Riming
2018-05-01
High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650-850°C and at strain rates of 0.1-10.0 s-1. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650-750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.
Effect of Sr Additive Amount and Holding Time on Microstructure of A390 Aluminum Alloy
NASA Astrophysics Data System (ADS)
Zhang, J. H.; Xing, S. M.; Han, Q. Y.; Guo, Q.; Wang, R. F.
2017-11-01
The microstructure of A390 alloy under different Sr additive amounts and holding times was studied by means of direct reading spectrum analysis, energy spectrum analysis, optical microscope and electron microscope. The results show that Sr has a good modification to eutectic Si, while it has a negative effect on primary silicon. The Sr addition will increase the size of primary silicon. When the addition amount of Al-10Sr alloy is 0.6%, the modification of eutectic silicon is the optimum. The Sr has a short incubation period and a fine modification at 10min, but it is more serious burning rate in small furnace smelting, and the modification effect disappears basically after 100min.
NASA Astrophysics Data System (ADS)
Mondal, Mounarik; Das, Hrishikesh; Ahn, Eun Yeong; Hong, Sung Tae; Kim, Moon-Jo; Han, Heung Nam; Pal, Tapan Kumar
2017-09-01
Friction stir welding (FSW) of dissimilar stainless steels, low nickel austenitic stainless steel and 409M ferritic stainless steel, is experimentally investigated. Process responses during FSW and the microstructures of the resultant dissimilar joints are evaluated. Material flow in the stir zone is investigated in detail by elemental mapping. Elemental mapping of the dissimilar joints clearly indicates that the material flow pattern during FSW depends on the process parameter combination. Dynamic recrystallization and recovery are also observed in the dissimilar joints. Among the two different stainless steels selected in the present study, the ferritic stainless steels shows more severe dynamic recrystallization, resulting in a very fine microstructure, probably due to the higher stacking fault energy.
An assessment of ultra fine grained 316L stainless steel for implant applications.
Muley, Sachin Vijay; Vidvans, Amey N; Chaudhari, Gajanan P; Udainiya, Sumit
2016-01-01
Ultra fine-grained metals obtained by severe plastic deformation exhibit higher specific strength that is useful for many applications and show promise for use as body implants. This work studied the microstructural evolution, mechanical and sliding wear behavior and corrosion behavior of 316L stainless steel warm multi axially forged at 600°C. Microstructural evolution studied using electron backscatter diffraction technique and transmission electron microscopy confirmed the formation of ultra fine-grained structure. Average grain size reduced from 30μm to 0.86μm after nine strain steps. A combination of Hall-Petch strengthening and strain hardening increased the hardness. Improved sliding wear resistance is attributed to a transition from micro cutting to wedge-forming mode of abrasive wear. Load-bearing orthopedic implants often fail from pitting initiated corrosion fatigue. Potentiodynamic tests, cyclic polarization, and FeCl3 immersion tests revealed enhanced pitting resistance of forged steel that is confirmed by Mott-Schottky analysis. This is ascribed to an increase in the grain boundary volume, and homogenization of pit inducing impurities and non-metallic phases due to severe deformation, which influenced the passive film properties. These model studies on 316L steel demonstrate that severely deformed ultra fine-grained metals have potential to deliver improved implant performance. This model study on 316L steel demonstrates that severely deformed ultra fine-grained (UFG) metals have potential to deliver improved load-bearing implant performance. It is as interesting as is unclear as to how such severely deformed UFG material behaves electrochemically in the corrosive body fluids. This work is on studying the inter-relationship between structure, and mechanical, wear, and corrosion behavior of warm multiaxially forged (MAFed) UFG 316L stainless steel. Warm MAF is a bulk processing method capable of yielding large volume of UFG material and is an easily readily adaptable technique in industry. It can be a promising alternative to the expensive metallic alloys available for implant applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Thermal and microstructural properties of fine-grained material at the Viking Lander 1 site
NASA Astrophysics Data System (ADS)
Paton, M. D.; Harri, A.-M.; Savijärvi, H.; Mäkinen, T.; Hagermann, A.; Kemppinen, O.; Johnston, A.
2016-06-01
As Viking Lander 1 touched down on Mars one of its footpads fully penetrated a patch of loose fine-grained drift material. The surrounding landing site, as observed by VL-1, was found to exhibit a complex terrain consisting of a crusted surface with an assortment of rocks, large dune-like drifts and smaller patches of drift material. We use a temperature sensor attached to the buried footpad and covered in fine-grained material to determine the thermal properties of drift material at the VL-1 site. The thermal properties are used to investigate the microstructure of the drift material and understand its relevance to surface-atmosphere interactions. We obtained a thermal inertia value of 103 ± 22 tiu. This value is in the upper range of previous thermal inertia estimates of martian dust as measured from orbit and is significantly lower than the regional thermal inertia of the VL-1 site, of around 283 tiu, obtained from orbit. We estimate a thermal inertia of around 263 ± 29 tiu for the duricrust at the VL-1 site. It was noted the patch of fine-grained regolith around the footpad was about 20-30 K warmer compared to similar material beyond the thermal influence of the lander. An effective diameter of 8 ± 5 μm was calculated for the particles in the drift material. This is larger than atmospheric dust and large compared to previous estimates of the drift material particle diameter. We interpret our results as the presence of a range of particle sizes, <8 μm, in the drift material with the thermal properties being controlled by a small amount of large particles (∼8 μm) and its cohesion being controlled by a large amount of smaller particles. The bulk of the particles in the drift material are therefore likely comparable in size to that of atmospheric dust. The possibility of larger particles being locked into a fine-grained material has implications for understanding the mobilisation of wind blown materials on Mars.
Wang, Xi-Shu; Tang, Hua-Ping; Li, Xu-Dong; Hua, Xin
2009-01-01
This review covers recent advances and work on the microstructure features, mechanical properties and cracking processes of conducting polymer film/coating- substrate structures under different testing conditions. An attempt is made to characterize and quantify the relationships between mechanical properties and microstructure features. In addition, the film cracking mechanism on the micro scale and some influencing factors that play a significant role in the service of the film-substrate structure are presented. These investigations cover the conducting polymer film/coating nucleation process, microstructure-fracture characterization, translation of brittle-ductile fractures, and cracking processes near the largest inherent macromolecule defects under thermal-mechanical loadings, and were carried out using in situ scanning electron microscopy (SEM) observations, as a novel method for evaluation of interface strength and critical failure stress. PMID:20054470
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brinkman, Kyle; Bordia, Rajendra; Reifsnider, Kenneth
This project fabricated model multiphase ceramic waste forms with processing-controlled microstructures followed by advanced characterization with synchrotron and electron microscopy-based 3D tomography to provide elemental and chemical state-specific information resulting in compositional phase maps of ceramic composites. Details of 3D microstructural features were incorporated into computer-based simulations using durability data for individual constituent phases as inputs in order to predict the performance of multiphase waste forms with varying microstructure and phase connectivity.
Step-by-step growth of complex oxide microstructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskos, Panos G.; Cullen, David A.; Sharma, Jaswinder K.
The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. A solution-phase process to synthesize complex silica and silica-titania hybrid microstructures was developed by exploiting the emulsion-droplet-based step-by-step growth featuring shape control. Lastly, the strategy is robust and can be extended to the preparation of complex hybrid structures consisting of two or more materials, with each having its own shape.
Step-by-step growth of complex oxide microstructures
Datskos, Panos G.; Cullen, David A.; Sharma, Jaswinder K.
2015-06-10
The synthesis of complex and hybrid oxide microstructures is of fundamental interest and practical applications. However, the design and synthesis of such structures is a challenging task. A solution-phase process to synthesize complex silica and silica-titania hybrid microstructures was developed by exploiting the emulsion-droplet-based step-by-step growth featuring shape control. Lastly, the strategy is robust and can be extended to the preparation of complex hybrid structures consisting of two or more materials, with each having its own shape.
Computer modelling of grain microstructure in three dimensions
NASA Astrophysics Data System (ADS)
Narayan, K. Lakshmi
We present a program that generates the two-dimensional micrographs of a three dimensional grain microstructure. The code utilizes a novel scanning, pixel mapping technique to secure statistical distributions of surface areas, grain sizes, aspect ratios, perimeters, number of nearest neighbors and volumes of the randomly nucleated particles. The program can be used for comparing the existing theories of grain growth, and interpretation of two-dimensional microstructure of three-dimensional samples. Special features have been included to minimize the computation time and resource requirements.
Influence of convection on microstructure
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Regel, Liya L.
1992-01-01
The primary motivation for this research has been to determine the cause for space processing altering the microstructure of some eutectics, especially the MnBi-Bi eutectic. Prior experimental research at Grumman and here showed that the microstructure of MnBi-Bi eutectic is twice as fine when solidified in space or in a magnetic field, is uninfluenced by interfacial temperature gradient, adjusts very quickly to changes in freezing rate, and becomes coarser when spin-up/spin-down (accelerated crucible rotation technique) is used during solidification. Theoretical work at Clarkson predicted that buoyancy driven convection on earth could not account for the two fold change in fiber spacing caused by solidification in space. However, a lamellar structure with a planar interface was assumed, and the Soret effect was not included in the analysis. Experimental work at Clarkson showed that the interface is not planar, and that MnBi fibers project out in front of the Bi matrix on the order of one fiber diameter. Originally four primary hypotheses were to be tested under this current grant: (1) a fibrous microstructure is much more sensitive to convection than a lamellar microstructure, which was assumed in our prior theoretical treatment; (2) an interface with one phase projecting out into the melt is much more sensitive to convection than a planar interface, which was assumed in our prior theoretical treatment; (3) the Soret effect is much more important in the absence of convection and has a sufficiently large influence on microstructure that its action can explain the flight results; and (4) the microstructure is much more sensitive to convection when the composition of the bulk melt is off eutectic. As reported previously, we have learned that while a fibrous microstructure and a non-planar interface are more sensitive to convection than a lamellar microstructure with a planar interface, the influence of convection remains too small to explain the flight and magnetic field results. Similarly addition of the Soret effect does not explain the flight and magnetic field results.
NASA Astrophysics Data System (ADS)
Ruiz-Vargas, Jose
This thesis reports theoretical and experimental investigations carried out to understand the mechanisms of microstructure formation during isothermal brazing, produced by brazing Inconel 625 and MC2 nickel-based superalloys with filler metal BNi-2. Firstly, studies were made on pure Ni to interpret microstructure's formation with simplified alloy chemistry. Microstructure formation have been studied when varying time at constant temperature (isothermal kinetics), but also when varying temperature for constant hold time (isochronal kinetics). The chemical composition and crystallography of the present phases have been identified, with the following results : (i) the fraction of dissolved base metal has been found proportional to the initial thickness of the brazing alloy, so that the composition of the liquid remains homogeneous with a precise initial equilibrium composition during the whole brazing process, (ii) the melting of the joint occurs in two steps : at lower temperature, it involves only partially melting, and boron diffusion in pure Ni leads to the precipitation of fine Ni3B borides at the interface ; in a second stage, at higher temperature, melting is complete and thermodynamic equilibrium requires significant dissolution of nickel, which also involves the dissolution of part of borides already formed. Secondly, nickel plating technique was used on Inconel 625 nickel-based superalloy. A thin layer of Ni with varying thickness, has been electrodeposited to observe the gradual dissolution of Inconel and microstructural features formation due to the presence of superalloy alloying elements. It has been observed that the nickel coating does not prevent precipitation in the base metal as boron diffuse rapidly through the coating width. In the intermediate nickel plating width, fragile precipitates of nickel borides have been observed, because the contribution of Inconel alloying elements to the melt was very limited. In absence of nickel plating on the superalloy, the formation of Nb and Cr-Mo borides phase has been observed. Efforts have been made to evaluate the accuracy of Boron measurement by energy dispersion X-ray spectroscopy (EDS) in the MC2 superalloy and BNi-2 filler metal. The most accurate method to quantify Boron using EDS is by composition difference. A precision of 5 at.% has been reached when using optimized data acquisition and post processing schemes. Ultimately, Electron Backscatter Diffraction (EBSD) combined with localized EDS analysis has been proven invaluable in conclusively identifying micrometer sized boride precipitates ; thus further improving the characterization of brazed Ni-based superalloys.
Microstructure and Mechanical Properties of Additively Manufactured Parts with Staircase Feature
NASA Astrophysics Data System (ADS)
Keya, Tahmina
This thesis focuses on a part with staircase feature that is made of Inconel 718 and fabricated by SLM process. The objective of the study was to observe build height effect on the microstructure and mechanical properties of the part. Due to the nature of SLM, there is possibility of different microstructure and mechanical properties in different locations depending on the design of the part. The objective was to compare microstructure and mechanical properties from different location and four comparison groups were considered: 1. Effect of thermal cycle; 2. External and internal surfaces; 3. Build height effect and 4. Bottom surfaces. To achieve the goals of this research, standard metallurgical procedure has been performed to prepare samples. Etching was done to reveal the microstructure of SLM processed Inconel 718 parts. Young's modulus and hardness were measured using nanoindentation technique. FEM analysis was performed to simulate nanoindentation. The conclusions drawn from this research are: 1. The microstructure of front and side surface of SLM processed Inconel 718 consists of arc shaped cut ends of melt pools with intermetallic phase at the border of the melt pool; 2. On top surface, melted tracks and scanning patterns can be observed and the average width of melted tracks is 100-150 microm; 3. The microstructure looks similar at different build height; 4. Microstructure on the top of a stair is more defined and organized than the internal surface; 5. The mechanical properties are highest at the bottom. OM images revealed slight difference in microstructure in terms of build height for this specific part, but mechanical properties seem to be vary noticeably. This is something to be kept in mind while designing or determining build orientation. External and internal surfaces of a stair at the same height showed difference in both microstructure and mechanical properties. To minimize that effect and to make it more uniform, gradual elevation can be considered when suitable as far as design modification is concerned. Above all, this study reveals important information about the pattern of microstructure, thus heat transfer mechanism inside a part which is useful to understand the SLM process.
3D Microstructures for Materials and Damage Models
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
2017-02-01
Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less
Quantifying the effect of 3D spatial resolution on the accuracy of microstructural distributions
NASA Astrophysics Data System (ADS)
Loughnane, Gregory; Groeber, Michael; Uchic, Michael; Riley, Matthew; Shah, Megna; Srinivasan, Raghavan; Grandhi, Ramana
The choice of spatial resolution for experimentally-collected 3D microstructural data is often governed by general rules of thumb. For example, serial section experiments often strive to collect at least ten sections through the average feature-of-interest. However, the desire to collect high resolution data in 3D is greatly tempered by the exponential growth in collection times and data storage requirements. This paper explores the use of systematic down-sampling of synthetically-generated grain microstructures to examine the effect of resolution on the calculated distributions of microstructural descriptors such as grain size, number of nearest neighbors, aspect ratio, and Ω3.
Morphology and microstructure of composite materials
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Srinivansan, K.
1991-01-01
Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.
Controlling Hydrogen Embrittlement in Ultra-High Strength Steels
2006-06-01
this tempering temperature, (5) finely distributed, partly coherent M2C (where M = 75 at.% Cr, 13 Fe and 12 Mo) in martensite , averaging 2 nm...states in a complex precipitation hardened martensitic microstructure and is susceptible to severe hydrogen embrittlement (HE) at threshold stress...repartitions to interstitial sites proximate to the highly stressed crack tip and, subsequently, may retrap at martensitic lath interfaces to produce substantial
NASA Astrophysics Data System (ADS)
Shnawah, Dhafer Abdul-Ameer; Said, Suhana Binti Mohd; Sabri, Mohd Faizul Mohd; Badruddin, Irfan Anjum; Hoe, Teh Guan; Che, Fa Xing; Abood, Adnan Naama
2012-08-01
This work investigates the effects of 0.1 wt.% and 0.5 wt.% Al additions on bulk alloy microstructure and tensile properties as well as on the thermal behavior of Sn-1Ag-0.5Cu (SAC105) lead-free solder alloy. The addition of 0.1 wt.% Al reduces the amount of Ag3Sn intermetallic compound (IMC) particles and leads to the formation of larger ternary Sn-Ag-Al IMC particles. However, the addition of 0.5 wt.% Al suppresses the formation of Ag3Sn IMC particles and leads to a large amount of fine Al-Ag IMC particles. Moreover, both 0.1 wt.% and 0.5 wt.% Al additions suppress the formation of Cu6Sn5 IMC particles and lead to the formation of larger Al-Cu IMC particles. The 0.1 wt.% Al-added solder shows a microstructure with coarse β-Sn dendrites. However, the addition of 0.5 wt.% Al has a great effect on suppressing the undercooling and refinement of the β-Sn dendrites. In addition to coarse β-Sn dendrites, the formation of large Sn-Ag-Al and Al-Cu IMC particles significantly reduces the elastic modulus and yield strength for the SAC105 alloy containing 0.1 wt.% Al. On the other hand, the fine β-Sn dendrite and the second-phase dispersion strengthening mechanism through the formation of fine Al-Ag IMC particles significantly increases the elastic modulus and yield strength of the SAC105 alloy containing 0.5 wt.% Al. Moreover, both 0.1 wt.% and 0.5 wt.% Al additions worsen the elongation. However, the reduction in elongation is much stronger, and brittle fracture occurs instead of ductile fracture, with 0.5 wt.% Al addition. The two additions of Al increase both solidus and liquidus temperatures. With 0.5 wt.% Al addition the pasty range is significantly reduced and the differential scanning calorimetry (DSC) endotherm curve gradually shifts from a dual to a single endothermic peak.
Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses
NASA Astrophysics Data System (ADS)
Sarac, Baran
Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology, size, spacing, volume fraction of the second phase, and strength and toughness of the interface. Previous studies suggest these contributions, however, do not provide quantitative experimental evidence. Within this thesis, we paid tribute to the complexity of the toughening mechanism by revealing the correlation between plastic zone size (Rp) and second phase spacing (s ), and the results guided us how to design elasticity through the second phase morphology (AB pore stacking) in MG heterostructures. The second phase elasticity and shear modulus were also found to be contributing to the overall elasticity. We identified the pores' ratio of diameter to spacing (d/s) as one of the major factors controlling the mechanical properties of MG hetero structures, which is most efficient when d/s ≈ 1. Effectiveness of MG heterostructures also depends on the size of the sample, w, in comparison to s. Our experimental findings illuminate the complexity in MG composites, which can be resolved with our artificial microstructure approach. Another subject where we use artificial microstructures is to identify the effect of length scales on structural properties of MG heterostructures. MG structures can be fabricated over 7 orders of magnitude length scale (nm to cm), where the effect of the feature size determines whether the deformation will be homogenous throughout the sample, it will be localized into shear bands, or it will not show any shear bands (no plasticity) during bending and tension. We investigated the deformation modes of Zr-based MGs in hexagonal cellular structures controlled by the relative density, and revealed three distinctive deformation regions: collective buckling, local failure, and global failure which originate from size effects in metallic glasses. The relative density of ˜25.0% was determined as the ideal relative density for energy absorption, strength and plasticity in MG cellular structures. Besides two specific examples studied in detail here, the artificial microstructure concept can be applied to a wide range of problems in microstructures and micro structural architectures of porous and natural materials. Furthermore, it can be used to determine the flaw tolerance, and to investigate the sensitivity of microstructures to imperfections. For example, a mechanistic understanding of shear localization would help address the major shortcoming of metallic glasses and enable predictive models to be developed which would permit one to intelligently design microstructures to exhibit desirable properties.
NASA Astrophysics Data System (ADS)
Jongprateep, Oratai; Sato, Nicha
2018-04-01
Calcium titanate (CaTiO3) has been recognized as a material for fabrication of dielectric components, owing to its moderate dielectric constant and excellent microwave response. Enhancement of dielectric properties of the material can be achieved through doping, compositional and microstructural control. This study, therefore, aimed at investigating effects of powder synthesis techniques on compositions, microstructure, and dielectric properties of Mg-doped CaTiO3. Solution combustion and solid-state reaction were powder synthesis techniques employed in preparation of undoped CaTiO3 and CaTiO3 doped with 5-20 at% Mg. Compositional analysis revealed that powder synthesis techniques did not exhibit a significant effect on formation of secondary phases. When Mg concentration did not exceed 5 at%, the powders prepared by both techniques contained only a single phase. An increase of MgO secondary phase was observed as Mg concentrations increased from 10 to 20 at%. Experimental results, on the contrary, revealed that powder synthesis techniques contributed to significant differences in microstructure. Solution combustion technique produced powders with finer particle sizes, which consequently led to finer grain sizes and density enhancement. High-density specimens with fine microstructure generally exhibit improved dielectric properties. Dielectric measurements revealed that dielectric constants of all samples ranged between 231 and 327 at 1 MHz, and that superior dielectric constants were observed in samples prepared by the solution combustion technique.
Mechanical Properties and Microstructural Characterization of Aged Nickel-based Alloy 625 Weld Metal
NASA Astrophysics Data System (ADS)
Silva, Cleiton Carvalho; de Albuquerque, Victor Hugo C.; Miná, Emerson Mendonça; Moura, Elineudo P.; Tavares, João Manuel R. S.
2018-03-01
The aim of this work was to evaluate the different phases formed during solidification and after thermal aging of the as-welded 625 nickel-based alloy, as well as the influence of microstructural changes on the mechanical properties. The experiments addressed aging temperatures of 650 and 950 °C for 10, 100, and 200 hours. The samples were analyzed by electron microscopy, microanalysis, and X-ray diffraction in order to identify the secondary phases. Mechanical tests such as hardness, microhardness, and Charpy-V impact test were performed. Nondestructive ultrasonic inspection was also conducted to correlate the acquired signals with mechanical and microstructural properties. The results show that the alloy under study experienced microstructural changes when aged at 650 °C. The aging was responsible by the dissolution of the Laves phase formed during the solidification and the appearance of γ″ phase within interdendritic region and fine carbides along the solidification grain boundaries. However, when it was aged at 950 °C, the Laves phase was continuously dissolved and the excess Nb caused the precipitation of the δ-phase (Ni3Nb), which was intensified at 10 hours of aging, with subsequent dissolution for longer periods such as 200 hours. Even when subjected to significant microstructural changes, the mechanical properties, especially toughness, were not sensitive to the dissolution and/or precipitation of the secondary phases.
The effects of annealing on the microstructure and mechanical properties of Fe 28Ni 18Mn 33Al 21
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Fanling; Qiu, Jingwen; Baker, Ian
In this paper, As-cast Fe 28Ni 18Mn 33Al 21, which consists of aligned, 50 nm, (Ni, Al)-rich B2, and (Fe, Mn)-rich f.c.c. phases, was annealed at a variety of temperatures up to 1423 K and the microstructure and mechanical properties were examined. It was shown that the as-cast microstructure arises from a eutectoid transformation at ~1300 K. Annealing at temperatures ≤1073 K produces β-Mn-structured precipitates and hardness values up to 816 HV, while annealing at temperatures >1073 K leads to dramatic coarsening of the two-phase B2/f.c.c. microstructure (up to 5.5 µm after 50 h at 1273 K), but does notmore » lead to β-Mn precipitation. Interestingly, annealing at temperatures >1073 K delays the onset of β-Mn precipitation during subsequent anneals at lower temperatures. Coarsening the B2/f.c.c. lamellar structure by annealing at higher temperatures softens it and leads to increases in ductility from fracture before yield to ~8 % elongation. Finally, the presence of β-Mn precipitates makes the very fine, brittle B2/f.c.c. microstructures even more brittle, but significant ductility (8.4 % elongation) is possible even with β-Mn precipitates present if the B2/f.c.c. matrix is coarse and, hence, more ductile.« less
NASA Astrophysics Data System (ADS)
Igbenehi, H.; Jiguet, S.
2012-09-01
Proton beam lithography a maskless direct-write lithographic technique (well suited for producing 3-Dimensional microstructures in a range of resist and semiconductor materials) is demonstrated as an effective tool in the creation of electrically conductive freestanding micro-structures in an Su 8 + Nano Silver polymer composite. The structures produced show non-ohmic conductivity and fit the percolation theory conduction model of tunneling of separated nanoparticles. Measurements show threshold switching and a change in conductivity of at least 4 orders of magnitude. The predictable range of protons in materials at a given energy is exploited in the creation of high aspect ratio, free standing micro-structures, made from a commercially available SU8 Silver nano-composite (GMC3060 form Gersteltec Inc. a negative tone photo-epoxy with added metallic nano-particles(Silver)) to create films with enhanced electrical properties when exposed and cured. Nano-composite films are directly written on with a finely focused MeV accelerated Proton particle beam. The energy loss of the incident proton beams in the target polymer nano- composite film is concentrated at the end of its range, where damage occurs; changing the chemistry of the nano-composite film via an acid initiated polymerization - creating conduction paths. Changing the energy of the incident beams provide exposed regions with different penetration and damage depth - exploited in the demonstrated cantilever microstructure.
A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream
NASA Astrophysics Data System (ADS)
Rockett, P.; Karagadde, S.; Guo, E.; Bent, J.; Hazekamp, J.; Kingsley, M.; Vila-Comamala, J.; Lee, P. D.
2015-06-01
Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials.
The effects of annealing on the microstructure and mechanical properties of Fe 28Ni 18Mn 33Al 21
Meng, Fanling; Qiu, Jingwen; Baker, Ian; ...
2015-08-20
In this paper, As-cast Fe 28Ni 18Mn 33Al 21, which consists of aligned, 50 nm, (Ni, Al)-rich B2, and (Fe, Mn)-rich f.c.c. phases, was annealed at a variety of temperatures up to 1423 K and the microstructure and mechanical properties were examined. It was shown that the as-cast microstructure arises from a eutectoid transformation at ~1300 K. Annealing at temperatures ≤1073 K produces β-Mn-structured precipitates and hardness values up to 816 HV, while annealing at temperatures >1073 K leads to dramatic coarsening of the two-phase B2/f.c.c. microstructure (up to 5.5 µm after 50 h at 1273 K), but does notmore » lead to β-Mn precipitation. Interestingly, annealing at temperatures >1073 K delays the onset of β-Mn precipitation during subsequent anneals at lower temperatures. Coarsening the B2/f.c.c. lamellar structure by annealing at higher temperatures softens it and leads to increases in ductility from fracture before yield to ~8 % elongation. Finally, the presence of β-Mn precipitates makes the very fine, brittle B2/f.c.c. microstructures even more brittle, but significant ductility (8.4 % elongation) is possible even with β-Mn precipitates present if the B2/f.c.c. matrix is coarse and, hence, more ductile.« less
Mullin, Maria A; Araullo-Peters, Vicente J; Gault, Baptiste; Cairney, Julie M
2015-12-01
Artefacts in atom probe tomography can impact the compositional analysis of microstructure in atom probe studies. To determine the integrity of information obtained, it is essential to understand how the positioning of features influences compositional analysis. By investigating the influence of feature orientation within atom probe data on measured composition in microstructural features within an AA2198 Al alloy, this study shows differences in the composition of T1 (Al2CuLi) plates that indicates imperfections in atom probe reconstructions. The data fits a model of an exponentially-modified Gaussian that scales with the difference in evaporation field between solutes and matrix. This information provides a guide for obtaining the most accurate information possible. Copyright © 2015 Elsevier B.V. All rights reserved.
Detection of fibrils associated with Rickettsia rickettsii.
Todd, W J; Burgdorfer, W; Wray, G P
1983-09-01
The ultrastructural appearance of the "halozone" formed at the interface between the spotted fever agent Rickettsia rickettsii and the cytoplasm of persistently infected cultured vole cells (Microtus pennsylvanicus) was studied by transmission electron microscopy. In sections of epoxy-embedded specimens stained with uranyl acetate and lead citrate, the halozone appeared clear and devoid of ultrastructural features. However, when unembedded preparations of whole infected cells were examined at 1,000 kV, fine structural features were observed within the halozone. These features, associated with the rickettsial outer membrane, were more clearly detectable when the infected cells were extracted with the detergent Triton X-100 before fixation. Under such conditions, long extensions of the rickettsial outer membrane, microfilament-like structures attached to that membrane, and extensive attachments between adjacent rickettsiae were seen. The fine structural features within the rickettsial halozone were also seen at 75 kV when unembedded sections were prepared from polyethylene glycol-embedded specimens. Thus, epoxy-embedding medium obscures the fine structural features within the halozone surrounding the rickettsiae in infected cells.
Detection of fibrils associated with Rickettsia rickettsii.
Todd, W J; Burgdorfer, W; Wray, G P
1983-01-01
The ultrastructural appearance of the "halozone" formed at the interface between the spotted fever agent Rickettsia rickettsii and the cytoplasm of persistently infected cultured vole cells (Microtus pennsylvanicus) was studied by transmission electron microscopy. In sections of epoxy-embedded specimens stained with uranyl acetate and lead citrate, the halozone appeared clear and devoid of ultrastructural features. However, when unembedded preparations of whole infected cells were examined at 1,000 kV, fine structural features were observed within the halozone. These features, associated with the rickettsial outer membrane, were more clearly detectable when the infected cells were extracted with the detergent Triton X-100 before fixation. Under such conditions, long extensions of the rickettsial outer membrane, microfilament-like structures attached to that membrane, and extensive attachments between adjacent rickettsiae were seen. The fine structural features within the rickettsial halozone were also seen at 75 kV when unembedded sections were prepared from polyethylene glycol-embedded specimens. Thus, epoxy-embedding medium obscures the fine structural features within the halozone surrounding the rickettsiae in infected cells. Images PMID:6411620
Fine-tuning convolutional deep features for MRI based brain tumor classification
NASA Astrophysics Data System (ADS)
Ahmed, Kaoutar B.; Hall, Lawrence O.; Goldgof, Dmitry B.; Liu, Renhao; Gatenby, Robert A.
2017-03-01
Prediction of survival time from brain tumor magnetic resonance images (MRI) is not commonly performed and would ordinarily be a time consuming process. However, current cross-sectional imaging techniques, particularly MRI, can be used to generate many features that may provide information on the patient's prognosis, including survival. This information can potentially be used to identify individuals who would benefit from more aggressive therapy. Rather than using pre-defined and hand-engineered features as with current radiomics methods, we investigated the use of deep features extracted from pre-trained convolutional neural networks (CNNs) in predicting survival time. We also provide evidence for the power of domain specific fine-tuning in improving the performance of a pre-trained CNN's, even though our data set is small. We fine-tuned a CNN initially trained on a large natural image recognition dataset (Imagenet ILSVRC) and transferred the learned feature representations to the survival time prediction task, obtaining over 81% accuracy in a leave one out cross validation.
Pseudo-Capacitors: SPPS Deposition and Electrochemical Analysis of α-MoO3 and Mo2N Coatings
NASA Astrophysics Data System (ADS)
Golozar, Mehdi; Chien, Ken; Lian, Keryn; Coyle, Thomas W.
2013-06-01
Solution precursor plasma spraying (SPPS) is a novel thermal spray process in which a solution precursor is injected into the high-temperature zone of a DC-arc plasma jet to allow solvent evaporation from the precursor droplets, solute precipitation, and precipitate pyrolysis prior to substrate impact. This investigation explored the potential of SPPS to fabricate α-MoO3 coatings with fine grain sizes, high porosity levels, and high surface area: characteristics needed for application as pseudo-capacitor electrodes. Since molybdenum nitride has shown a larger electrochemical stability window and higher specific area capacitance, the α-MoO3 deposits were subsequently converted into molybdenum nitride. A multistep heat-treatment procedure resulted in a topotactic phase-transformation mechanism, which retained the high surface area lath-shaped features of the original α-MoO3. The electrochemical behaviors of molybdenum oxide and molybdenum nitride deposits formed under different deposition conditions were studied using cyclic voltammetry to assess the influence of the resulting microstructure on the charge storage behavior and potential for use in pseudo-capacitors.
Martín-Esparza, M E; Raga, A; González-Martínez, C; Albors, A
2018-06-01
The aim of the work was to produce fibre-enriched fresh pasta based on micronised wheat bran and durum wheat semolina with appropriate techno-functional properties. Wheat semolina was replaced with fine particle size (50% below 75 µm) wheat bran - up to 11.54% (w/w). A Box-Behnken design with randomised response surface methodology was used to determine a suitable combination of carboxymethylcellulose, xanthan gum and locust bean gum to improve pasta attributes: minimum cooking loss, maximum values for water gain and swelling index, as well as better colour and texture characteristics before and after cooking. The proximate chemical composition of wheat semolina and bran was determined and the microstructure of uncooked pasta was observed as well. From the response surface methodology analysis, it is recommended to use: (i) xanthan gum over 0.6% w/w as it led to bran-enriched pasta with a better developed structure and superior cooking behaviour, (ii) a combination of xanthan gum (0.8% w/w) and carboxymethylcellulose (over 0.6% w/w) to enhance uncooked pasta yellowness.
Features of radiation damage of vanadium and its alloys at a temperature of 330-340°C
NASA Astrophysics Data System (ADS)
Kazakov, V. A.; Ostrovsky, Z.; Goncharenko, Yu; Chakin, V.
2000-12-01
Microstructural changes of vanadium alloys after irradiation at 340°C to 12 dpa in the BOR-60 reactor in 7Li environment is analyzed. Materials are vanadium and its alloys V-3Ti, V-3Fe, V-6Cr, V-4Cr-4Ti, V-5Cr-10Ti, V-6Cr-1Zr-0.1C. Void formation was observed in the binary alloys V-3Fe, V-3Ti and V-6Cr. It is shown that three-four-fold increase in V-4Cr-4Ti yield stress is produced by the formation of dislocation loops (DLs) and fine radiation-induced precipitates (RIPs) with a density of 1.7×1017 cm-3. It is expected that embrittlement of the welds will be worse because density of DLs and RIPs is 1.4-1.6 times higher. Besides, invisible coherent or semi-coherent RIPs are formed in the fusion zone. Elemental maps of the rupture surface of irradiated V-4Cr-4Ti are presented.
Method to control artifacts of microstructural fabrication
Shul, Randy J.; Willison, Christi G.; Schubert, W. Kent; Manginell, Ronald P.; Mitchell, Mary-Anne; Galambos, Paul C.
2006-09-12
New methods for fabrication of silicon microstructures have been developed. In these methods, an etching delay layer is deposited and patterned so as to provide differential control on the depth of features being etched into a substrate material. Compensation for etching-related structural artifacts can be accomplished by proper use of such an etching delay layer.
NASA Astrophysics Data System (ADS)
Jacques, Kevin; Steentjes, Simon; Henrotte, François; Geuzaine, Christophe; Hameyer, Kay
2018-04-01
This paper demonstrates how the statistical distribution of pinning fields in a ferromagnetic material can be identified systematically from standard magnetic measurements, Epstein frame or Single Sheet Tester (SST). The correlation between the pinning field distribution and microstructural parameters of the material is then analyzed.
NASA Astrophysics Data System (ADS)
Colla, V.; Desanctis, M.; Dimatteo, A.; Lovicu, G.; Valentini, R.
2011-09-01
The purpose of the present work is the implementation and validation of a model able to predict the microstructure changes and the mechanical properties in the modern high-strength dual-phase steels after the continuous annealing process line (CAPL) and galvanizing (Galv) process. Experimental continuous cooling transformation (CCT) diagrams for 13 differently alloying dual-phase steels were measured by dilatometry from the intercritical range and were used to tune the parameters of the microstructural prediction module of the model. Mechanical properties and microstructural features were measured for more than 400 dual-phase steels simulating the CAPL and Galv industrial process, and the results were used to construct the mechanical model that predicts mechanical properties from microstructural features, chemistry, and process parameters. The model was validated and proved its efficiency in reproducing the transformation kinetic and mechanical properties of dual-phase steels produced by typical industrial process. Although it is limited to the dual-phase grades and chemical compositions explored, this model will constitute a useful tool for the steel industry.
NASA Astrophysics Data System (ADS)
Dong, Yang; He, Honghui; He, Chao; Ma, Hui
2016-10-01
Polarized light is sensitive to the microstructures of biological tissues and can be used to detect physiological changes. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information of tissues. In this paper, we take the backscattering polarization Mueller matrix images of bovine skeletal muscle tissues during the 24-hour experimental time, and analyze their multispectral behavior using quantitative Mueller matrix parameters. In the processes of rigor mortis and proteolysis of muscle samples, multispectral frequency distribution histograms (FDHs) of the Mueller matrix elements can reveal rich qualitative structural information. In addition, we analyze the temporal variations of the sample using the multispectral Mueller matrix transformation (MMT) parameters. The experimental results indicate that the different stages of rigor mortis and proteolysis for bovine skeletal muscle samples can be judged by these MMT parameters. The results presented in this work show that combining with the multispectral technique, the FDHs and MMT parameters can characterize the microstructural variation features of skeletal muscle tissues. The techniques have the potential to be used as tools for quantitative assessment of meat qualities in food industry.
Ocklenburg, Sebastian; Hugdahl, Kenneth; Westerhausen, René
2013-12-01
Functional hemispheric asymmetries of speech production and perception are a key feature of the human language system, but their neurophysiological basis is still poorly understood. Using a combined fMRI and tract-based spatial statistics approach, we investigated the relation of microstructural asymmetries in language-relevant white matter pathways and functional activation asymmetries during silent verb generation and passive listening to spoken words. Tract-based spatial statistics revealed several leftward asymmetric clusters in the arcuate fasciculus and uncinate fasciculus that were differentially related to activation asymmetries in the two functional tasks. Frontal and temporal activation asymmetries during silent verb generation were positively related to the strength of specific microstructural white matter asymmetries in the arcuate fasciculus. In contrast, microstructural uncinate fasciculus asymmetries were related to temporal activation asymmetries during passive listening. These findings suggest that white matter asymmetries may indeed be one of the factors underlying functional hemispheric asymmetries. Moreover, they also show that specific localized white matter asymmetries might be of greater relevance for functional activation asymmetries than microstructural features of whole pathways. © 2013.
Sulfur Impurities and the Microstructure of Alumina Scales
NASA Technical Reports Server (NTRS)
Smialek, James L.
1997-01-01
The relationship between the microstructure of alumina scales, adhesion, and sulfur content was examined through a series of nickel alloys oxidized in 1100 to 1200 deg. C cyclic or isothermal exposures in air. In cyclic tests of undoped NiCrAl, adhesion was produced when the sulfur content was reduced, without any change in scale microstructure. Although interfacial voids were not observed in cyclic tests of NiCrAl, they were promoted by long-term isothermal exposures, by sulfur doping, and in most exposures of NiAl. Two single crystal superalloys, PWA 1480 and Rene' N5, were also tested, either in the as-received condition or after the sulfur content had been reduced to less than 1 ppmw by hydrogen annealing. The unannealed alloys always exhibited spalling to bare metal, but interfacial voids were not observed consistently. Desulfurized PWA 1480 and Rene' N5 exhibited remarkable adhesion and no voidage for either isothermal or cyclic exposures. The most consistent microstructural feature was that, for the cases where voids did form, the scale undersides exhibited corresponding areas with ridged oxide grain boundaries. Voids were not required for spallation nor were other microstructural features essential for adhesion. These observations are consistent with the model whereby scale spallation is controlled primarily by interfacial sulfur segregation and the consequent degradation of oxide-metal bonding.
Correlation of Thermally Induced Pores with Microstructural Features Using High Energy X-rays
NASA Astrophysics Data System (ADS)
Menasche, David B.; Shade, Paul A.; Lind, Jonathan; Li, Shiu Fai; Bernier, Joel V.; Kenesei, Peter; Schuren, Jay C.; Suter, Robert M.
2016-11-01
Combined application of a near-field High Energy Diffraction Microscopy measurement of crystal lattice orientation fields and a tomographic measurement of pore distributions in a sintered nickel-based superalloy sample allows pore locations to be correlated with microstructural features. Measurements were carried out at the Advanced Photon Source beamline 1-ID using an X-ray energy of 65 keV for each of the measurement modes. The nickel superalloy sample was prepared in such a way as to generate significant thermally induced porosity. A three-dimensionally resolved orientation map is directly overlaid with the tomographically determined pore map through a careful registration procedure. The data are shown to reliably reproduce the expected correlations between specific microstructural features (triple lines and quadruple nodes) and pore positions. With the statistics afforded by the 3D data set, we conclude that within statistical limits, pore formation does not depend on the relative orientations of the grains. The experimental procedures and analysis tools illustrated are being applied to a variety of materials problems in which local heterogeneities can affect materials properties.
A comparative evaluation of laser and GTA welds in a high-strength titanium alloy -- Ti-6-22-22S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baeslack, W.A. III; Hurley, J.; Paskell, T.
1994-12-31
Titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr-025Si (hereafter designated Ti-6-22-22S)is an alpha-beta titanium alloy developed for deep hardenability, high strength, intermediate temperature creep resistance, and moderate toughness. As a potential structural material for next-generation aircraft and aerospace systems, the weldability of Ti-6-22-22S has recently become a subject of increasing importance and concern. In the welding of titanium sheet, achieving satisfactory ductility is the principal limitation to alloy weldability, with poor ductility promoted by a coarse beta grain structure in the weld fusion and near-heat-affected zones. Square-butt welds were produced in 1.6 mm thick Ti-6-22-22S sheet using automatic GTA and CO{sub 2} laser welding systems.more » Microstructure analysis and DPH hardness traverses were performed on mounted. polished and etched specimens. Three-point bend and tensile tests were performed on transverse-weld and longitudinal-weld oriented specimens. Microstructure analysis of the laser welds revealed a fine, columnar fusion zone beta grain macrostructure and a fully-martensitic transformed-beta microstructure. Consistent with the microstructural similarities, fusion zone hardnesses of the laser welds were comparable (385 and 390 DPG, respectively) and greater than that of the base metal (330 DPH). In general, laser welds did not exhibit markedly superior ductilities relative to the GTAW, which was attributed to differences in the nature of the intragranular transformed-beta microstructures, being coarser and softer for the GTAW, the response of these as-welded microstructures to heat treatment, and interactions between the transformed-beta microstructure and the beta grain macrostructure.« less
Microstructure and texture evolution in cold-rolled and annealed alloy MA-956
NASA Astrophysics Data System (ADS)
Hosoda, Takashi
The microstructural and texture development with thermomechanical processing, performed through a combination of cold-rolling and annealing, in MA-956 plate consisting of a layered and inhomogeneous microstructure was systematically assessed. The alloy contained in mass percent, 20 Cr, 4.8 Al, 0.4 Ti, 0.4 Y2O3, and the balance iron. The starting material was as-hot-rolled plate, 9.7 mm thick. The as-hot-rolled plate was subjected to 40%, 60%, and 80% cold-rolling reduction and subsequently annealed at 1000, 1200, or 1380. Assessment of microstructural and texture developments before and after cold-rolling and annealing was performed using light optical microscopy (LOM), Vickers hardness testing, and electron backscatter diffraction (EBSD). Locally introduced misorientations by cold-rolling in each region were evaluated by Kernel Average Misorientation (KAM) maps. The as-hot-rolled condition contained a layered and inhomogeneous microstructure consisting of thin and coarse elongated grains, and aggregated regions which consisted of fine grains and sub-grains with {100} texture parallel to the longitudinal direction. The microstructure of the 40% cold-rolled condition contained deformation bands, and the 60% and 80% cold-rolled conditions also contained highly deformed regions where the deformation bands were intricately tangled. A predominant orientation of (001) parallel to the rolling direction was developed during cold-rolling, becoming more prominent with increasing reduction. The magnitudes of KAM angles varied through the thickness depending on the initial microstructures. Recrystallization occurred in regions where high KAM angles were dense after annealing and nucleation sites were the aggregation regions, deformation bands, and highly deformed regions. The shape and size of the recrystallized grains varied depending on the nucleation sites.
NASA Astrophysics Data System (ADS)
Maierová, Petra; Lexa, Ondrej; Jeřábek, Petr; Schulmann, Karel; Franěk, Jan
2017-05-01
Most of granulite terrains worldwide are characterized by large mean grain sizes of 1 mm or more. An important exception are the high-pressure felsic granulites in the Bohemian Massif, the European Variscan belt. There, recrystallization of original coarse-grained ternary feldspar led to formation of a fine-grained (∼100 μm) mixed matrix dominated by plagioclase and K-feldspar. This change occurred at temperatures of ∼850 °C and was probably caused by chemically induced decomposition related to slight cooling and enhanced by deformation during continental collision. The resulting microstructure shows indications of diffusion creep assisted by melt-enhanced grain-boundary sliding. Further on, minor coarsening occurred associated with deformation by dislocation creep and aggregation of mineral phases. Using a thermodynamics-based model of grain size evolution we show that stability of the fine-grained microstructure crucially depends on Zener pinning in the two-phase mineral matrix. Pinning efficiently hinders grain growth, and the small grain size that resulted from the ternary feldspar decomposition can be stable even at high temperatures. The late switch from the grain-size-sensitive creep to dislocation creep is rather difficult to explain by temperature and strain rate (or stress) changes only. However, a simple incorporation of melt solidification can successfully simulate this behavior. Alternatively, the switch and the associated grain size growth can be related to mineral phase aggregation at lower pressure-temperature conditions resulting into a decrease of pinning efficiency. This study suggests that the fine grain size of the Bohemian granulites, in contrast to the common coarse-grained type, stems from abrupt recrystallization during the high-pressure high-temperature conditions, and pinning in the fine-grained matrix. Such a process may in some cases significantly and suddenly reduce the strength of the lower continental crust and allow for its efficient redistribution.
Fabrication of ultra-fine grained aluminium tubes by RTES technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jafarzadeh, H., E-mail: h.jafarzadeh@ut.ac.ir; Abrinia, K.
Recently, repetitive tube expansion and shrinking have been exploited as a means for producing ultra-fine grained and nano-crystalline microstructures for magnesium alloy tubes. This method includes two different half-cycles and was based on pressing a tubular part through an angular channel die with two shear zones. Since the aluminium alloys are the most widely used materials in industries, in this study, repetitive tube expansion and shrinking as a new severe plastic deformation technique was applied to commercially pure aluminium for fabricating ultra-fine grained aluminium tubes for the first time and the ability of this process in significant grain refinement ismore » determined even after single cycle. Transmission electron microscopy and X-ray diffraction were used to evaluate the microstructure of the repetitive tube expansion and shrinking processed materials and the examinations showed ultra-fine grains with the average grain size of 320 nm after one cycle of repetitive tube expansion and shrinking. The yield strength, ultimate tensile strength increased notably by the factor of 2.17 and 1.27 respectively, after one cycle of repetitive tube expansion and shrinking, whereas the elongation to failure as well as the uniform elongation decreased. Furthermore, micro-hardness distribution through the part's section proposed the hardness increasing to ~ 55 HV from the initial value of ~ 28 HV after one cycle of repetitive tube expansion and shrinking. - Highlights: • RTES was introduced for fabricating the UFGed AA1050 tubes for the first time. • Nano-grained AA1050 tube was obtained by RTES process. • Grain size of ~ 320 nm was obtained after two half-cycles of RTES process. • Yield and ultimate strength increased by the factor of 2.17 and 1.27 respectively. • The microhardness increased to ~ 55 HV from the initial value of ~ 28 HV.« less
NASA Astrophysics Data System (ADS)
Yuan, Ren-mao; Zhang, Bing-liang; Xu, Xi-wei; Lin, Chuan-yong; Han, Zhu-jun
2015-07-01
The 2008 M w 7.9 Wenchuan earthquake formed two coseismic surface rupture zones with the trend of N35°E, known as the Beichuan-Yingxiu rupture and the Pengguan rupture. The Beichuan-Yingxiu rupture is the principle one with abundant fault gouge development along its length. In the exploratory trench at the Saba village along the Beichuan-Yingxiu rupture, the new fault gouge zone is only ~3 mm wide, which suggests that fault slip was constrained in a very narrow zone. In this study, we thus carried out detailed microstructural and mineral component analysis on the oriented fault gouge samples from the Saba exploratory trench to understand their features and geological implication. The results show that different microstructures of localized brittle deformation can be observed in the fault gouges, including Y-shear, R1-shear, R2-shear, P-shear as well as tension fracture, bookshelf glided structure and so on. These microstructures are commonly recognized as the product of seismic fault slipping. Furthermore, within the area between two parallel Y-shears of the fault gouge, a few of microstructures of distributed ductile deformations were developed, such as P-foliation, elongation and asymmetrical trailing structure of detrital particles. The microstructure features of fault gouges implicate the thrust movement of the fault during the Wenchuan earthquake. In addition, the fault gouge has less quartz and feldspar and more clay than the surrounding rocks, which indicates that some quartz and feldspar in the surrounding rocks were transformed into clay, whereas the fault gouge has more illite and less illite/montmorillonite mixed layers than the surrounding rocks, which shows that the illite/montmorillonite mixed layer was partly converted into illite due to temperature increasing induced by coseismic fault slipping friction (also being affected partly by the chemical action of solutions). Such microstructures features and mineral component changes recorded the information of fault slip and provide criterions for discussing the genesis of fault gouge and recognition of the direction of fault movement.
NASA Astrophysics Data System (ADS)
Rizzolo, Michael
As copper interconnects have scaled to ever smaller dimensions on semiconductor devices, the microstructure has become increasingly detrimental for performance and reliability. Small grains persist in interconnects despite annealing at high temperatures, leading to higher line resistance and more frequent electromigration-induced failures. Conventionally, it was believed that impurities from the electrodeposition pinned grain growth, but limitations in analytical techniques meant the effect was inferred rather than observed. Recent advances in analytical techniques, however, have enabled this work to quantify impurity content, location, and diffusion in relation to microstructural changes in electroplated copper. Surface segregation of impurities during the initial burst of grain growth was investigated. After no surface segregation was observed, a microfluidic plating cell was constructed to plate multilayer films with regions of intentionally high and low impurity concentrations to determine if grain growth could be pinned by the presence of impurities; it was not. An alternate mechanism for grain boundary pinning based on the texture of the seed layer is proposed, supported by time-resolved transmission electron microscopy and transmission electron backscatter diffraction data. The suggested model posits that the seed in narrow features has no preferred orientation, which results in rapid nucleation of subsurface grains in trench regions prior to recrystallization from the overburden down. These rapidly growing grains are able to block off several trenches from the larger overburden grains, inhibiting grain growth in narrow features. With this knowledge in hand, metallic capping layers were employed to address the problematic microstructure in 70nm lines. The capping layers (chromium, nickel, zinc, and tin) were plated on the copper overburden prior to annealing to manipulate the stress gradient and microstructural development during annealing. It appeared that regardless of as-plated stress, nickel capping altered the recrystallized texture of the copper over patterned features. The nickel capping also caused a 2x increase in the number of advantageous 'bamboo' grains that span the entire trench, which effectively block electromigration pathways. These data provides a more fundamental understanding of manipulating the microstructure in copper interconnects using pre-anneal capping layers, and demonstrates a strategy to improve the microstructure beyond the capabilities of simple annealing.
Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process
NASA Astrophysics Data System (ADS)
Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.
2018-05-01
Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Tianyu; Xu, Hongyi; Chen, Wei
Fiber-reinforced polymer composites are strong candidates for structural materials to replace steel and light alloys in lightweight vehicle design because of their low density and relatively high strength. In the integrated computational materials engineering (ICME) development of carbon fiber composites, microstructure reconstruction algorithms are needed to generate material microstructure representative volume element (RVE) based on the material processing information. The microstructure RVE reconstruction enables the material property prediction by finite element analysis (FEA)This paper presents an algorithm to reconstruct the microstructure of a chopped carbon fiber/epoxy laminate material system produced by compression molding, normally known as sheet molding compounds (SMC).more » The algorithm takes the result from material’s manufacturing process as inputs, such as the orientation tensor of fibers, the chopped fiber sheet geometry, and the fiber volume fraction. The chopped fiber sheets are treated as deformable rectangle chips and a random packing algorithm is developed to pack these chips into a square plate. The RVE is built in a layer-by-layer fashion until the desired number of lamina is reached, then a fine tuning process is applied to finalize the reconstruction. Compared to the previous methods, this new approach has the ability to model bended fibers by allowing limited amount of overlaps of rectangle chips. Furthermore, the method does not need SMC microstructure images, for which the image-based characterization techniques have not been mature enough, as inputs. Case studies are performed and the results show that the statistics of the reconstructed microstructures generated by the algorithm matches well with the target input parameters from processing.« less
NASA Astrophysics Data System (ADS)
Wang, X.-N.; Zhang, S.-H.; Zhou, J.; Zhang, M.; Chen, C.-J.; Misra, R. D. K.
2017-04-01
Hybrid fiber laser-arc welding (HLAW) process was applied to a novel hot-rolled Nb-Ti-Mo microalloyed steels of 8 mm thickness. The steel is primarily used to manufacture automotive and construction machinery components, etc. To elucidate the effect of heat input on geometry, microstructure and mechanical properties, different heat inputs (3.90, 5.20 and 7.75 kJ/cm) were used by changing the welding speeds. With increased heat input, the depth/width of penetration was decreased, and the geometry of fusion zone (FZ) changed to "wine cup-like" shape. In regard to the microstructural constituents, the martensite content was decreased, but granular bainite (GB) content was increased. The main microstructural difference was in the FZ cross-section at 7.75 kJ/cm because of the effect of thermal source on the top and bottom. The microstructure of the top part consisted of GB, grain boundary ferrite, and acicular ferrite, while the bottom part was primarily lath martensite. The hardness distribution was similar for different heat inputs. Hardness in FZ, coarse-grained HAZ and mixed-grained HAZ was higher than the base metal (BM), but for the fine-grained HAZ was similar or marginally less than the base metal (BM). Tensile strain was concentrated in the BM such that the fracture occurred in this region. In summary, the geometry, microstructure, and mechanical properties of weld joints were superior at heat input of 5.20 kJ/cm.
Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process
NASA Astrophysics Data System (ADS)
Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.
2017-12-01
Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.
NASA Astrophysics Data System (ADS)
Adabi, Saba; Conforto, Silvia; Hosseinzadeh, Matin; Noe, Shahryar; Daveluy, Steven; Mehregan, Darius; Nasiriavanaki, Mohammadreza
2017-02-01
Optical Coherence Tomography (OCT) offers real-time high-resolution three-dimensional images of tissue microstructures. In this study, we used OCT skin images acquired from ten volunteers, neither of whom had any skin conditions addressing the features of their anatomic location. OCT segmented images are analyzed based on their optical properties (attenuation coefficient) and textural image features e.g., contrast, correlation, homogeneity, energy, entropy, etc. Utilizing the information and referring to their clinical insight, we aim to make a comprehensive computational model for the healthy skin. The derived parameters represent the OCT microstructural morphology and might provide biological information for generating an atlas of normal skin from different anatomic sites of human skin and may allow for identification of cell microstructural changes in cancer patients. We then compared the parameters of healthy samples with those of abnormal skin and classified them using a linear Support Vector Machines (SVM) with 82% accuracy.
Modeling of Casting Defects in an Integrated Computational Materials Engineering Approach
NASA Astrophysics Data System (ADS)
Sabau, Adrian S.
To accelerate the introduction of new cast alloys the modeling and simulation of multiphysical phenomena needs to be considered in the design and optimization of mechanical properties of cast components. The required models related to casting defects, such as microporosity and hot tears are reviewed. Three aluminum alloys are considered A356, 356 and 319. The data on calculated solidification shrinkage is presented and its effects on microporosity levels discussed. Examples are given for predicting microporosity defects and microstructure distribution for a plate casting. Models to predict fatigue life and yield stress are briefly highlighted here for the sake of completion and to illustrate how the length scales of the microstructure features as well as porosity defects are taken into account for modeling the mechanical properties. The data on casting defects including microstructure features, is crucial for evaluating the final performance-related properties of the component.
Hyde, Jonathan M; DaCosta, Gérald; Hatzoglou, Constantinos; Weekes, Hannah; Radiguet, Bertrand; Styman, Paul D; Vurpillot, Francois; Pareige, Cristelle; Etienne, Auriane; Bonny, Giovanni; Castin, Nicolas; Malerba, Lorenzo; Pareige, Philippe
2017-04-01
Irradiation of reactor pressure vessel (RPV) steels causes the formation of nanoscale microstructural features (termed radiation damage), which affect the mechanical properties of the vessel. A key tool for characterizing these nanoscale features is atom probe tomography (APT), due to its high spatial resolution and the ability to identify different chemical species in three dimensions. Microstructural observations using APT can underpin development of a mechanistic understanding of defect formation. However, with atom probe analyses there are currently multiple methods for analyzing the data. This can result in inconsistencies between results obtained from different researchers and unnecessary scatter when combining data from multiple sources. This makes interpretation of results more complex and calibration of radiation damage models challenging. In this work simulations of a range of different microstructures are used to directly compare different cluster analysis algorithms and identify their strengths and weaknesses.
Fractographic ceramic failure analysis using the replica technique
Scherrer, Susanne S.; Quinn, Janet B.; Quinn, George D.; Anselm Wiskott, H. W.
2007-01-01
Objectives To demonstrate the effectiveness of in vivo replicas of fractured ceramic surfaces for descriptive fractography as applied to the analysis of clinical failures. Methods The fracture surface topography of partially failed veneering ceramic of a Procera Alumina molar and an In Ceram Zirconia premolar were examined utilizing gold-coated epoxy poured replicas viewed using scanning electron microscopy. The replicas were inspected for fractographic features such as hackle, wake hackle, twist hackle, compression curl and arrest lines for determination of the direction of crack propagation and location of the origin. Results For both veneering ceramics, replicas provided an excellent reproduction of the fractured surfaces. Fine details including all characteristic fracture features produced by the interaction of the advancing crack with the material's microstructure could be recognized. The observed features are indicators of the local direction of crack propagation and were used to trace the crack's progression back to its initial starting zone (the origin). Drawbacks of replicas such as artifacts (air bubbles) or imperfections resulting from inadequate epoxy pouring were noted but not critical for the overall analysis of the fractured surfaces. Significance The replica technique proved to be easy to use and allowed an excellent reproduction of failed ceramic surfaces. It should be applied before attempting to remove any failed part remaining in situ as the fracture surface may be damaged during this procedure. These two case studies are intended as an introduction for the clinical researcher in using qualitative (descriptive) fractography as a tool for understanding fracture processes in brittle restorative materials and, secondarily, to draw conclusions as to possible design inadequacies in failed restorations. PMID:17270267
Simulation of the hot rolling and accelerated cooling of a C-Mn ferrite-bainite strip steel
NASA Astrophysics Data System (ADS)
Debray, B.; Teracher, P.; Jonas, J. J.
1995-01-01
By means of torsion testing, the microstructures and mechanical properties produced in a 0.14 Pct C-1.18 Pct Mn steel were investigated over a wide range of hot-rolling conditions, cooling rates, and simulated coiling temperatures. The austenite grain size present before accelerated cooling was varied from 10 to 150 μm by applying strains of 0 to 0.8 at temperatures of 850 °C to 1050 °C. Two cooling rates, 55 °C/s and 90 °C/s, were used. Cooling was interrupted at temperatures ranging from 550 °C to 300 °C. Optical microscopy and transmission electron microscopy (TEM) were employed to investigate the microstructures. The mechanical properties were studied by means of tensile testing. When a fine austenite grain size was present before cooling and a high cooling rate (90 °C/s) was used, the microstructure was composed of ferrite plus bainite and a mixture of ferrite and cementite, which may have formed by an interphase mechanism. The use of a lower cooling rate (55 °C/s) led to the presence of ferrite and fine pearlite. In both cases, the cooling interruption temperature and the amount of prior strain had little influence on the mechanical properties. Reheating at 1050 °C, which led to the presence of very coarse austenite, resulted in a stronger influence of the interruption temperature. A method developed at Institut de Recherche Sidérurgique (IRSID, St. Germain-en-Laye, France) for deducing the Continuous-Cooling-Transformation (CCT) diagrams from the cooling data was adapted to the present apparatus and used successfully to interpret the observed influence of the process parameters.
NASA Astrophysics Data System (ADS)
Artini, C.; Castellero, A.; Baricco, M.; Buscaglia, M. T.; Carlini, R.
2018-05-01
Skutterudites are interesting compounds for thermoelectric applications. The main drawback in the synthesis of skutterudites by solidification of the melt is the occurrence of two peritectic reactions requiring long annealing times to form a single phase. Aim of this work is to investigate an alternative route for synthesis, based on rapid solidification by planar flow casting. The effect of cooling rate on phases formation and composition, as well as on structure, microstructure and mechanical properties of the filled Smy(FexNi1-x)4Sb12 (x = 0.45, 0.50, 0.70, 1) skutterudites was studied. Conversely to slowly cooled ingots, rapidly quenched ribbons show skutterudite as the main phase, suggesting that deep undercooling of the liquid prevents the nucleation of high temperature phases, such as (Fe,Ni)Sb and (Fe,Ni)Sb2. In as-quenched samples, a slightly out of equilibrium Sm content is revealed, which does not alter the position of the p/n boundary; nevertheless, it exerts an influence on crystallographic properties, such as the cell parameter and the shape of the Sb4 rings in the structure. As-quenched ribbons show a fine microstructure of the skutterudite phase (grain size of 2-20 μm), which only moderately coarsens after annealing at 873 K for 4 days. Vickers microhardness values (350-400 HV) of the skutterudite phase in as-quenched ribbons are affected by the presence of softer phases (i.e. Sb), which are homogeneously and finely dispersed within the sample. The skutterudite hardens after annealing as a consequence of a moderate grain growth, which limits the matrix effect due to the presence of additional phases.
NASA Astrophysics Data System (ADS)
Yang, Yonggang; Zhao, Yutao; Kai, Xizhou; Zhang, Zhen; Zhang, Hao; Tao, Ran; Chen, Gang; Yin, Houshang; Wang, Min
2018-01-01
The industrial large-scale 7055 aluminum alloy fabricated by spray forming technology was subjected to hot extrusion and heat treatment to achieve high strength and ductility. Microstructure of the as-deposited alloy indicates that higher density billets with equiaxed grains (20-40 μm) were fabricated rather than a typical dendritic microstructure of the as-cast alloy. The grains of the as-extruded alloy exhibit fibrous morphology, the original boundaries disappear and fined second phases with size about 0.5-5 μm distribute along with extrusion direction. Meanwhile, the defects could be eliminated by hot extrusion, which resulted in good strength as well as ductility. The ultimate tensile strength, yield strength and elongation of the as-extruded alloy are 345 MPa, 236 MPa and 18.5%, respectively. After heat treatment, the partial recrystallization is observed around the un-recrystallized grains and sub-grains. And the platelet/rod-shaped precipitates (MgZn2) show a uniform distribution in the matrix alloy. The alloy reaches the maximum tensile strength of 730 MPa after T6 temper treatment, associated with a fine precipitation (MgZn2). However, with further deepen aging degree (from T6 to T73 temper), the size of dominant precipitated phases (MgZn2) grows obviously, the grain boundary precipitates transform from continuous to individual ones and the width of precipitate free zone increases. The result shows that the alloy after T7X temper treatment exhibits higher electrical conductivity (>35 %IACS) and facture toughness (>25.6 MPa m1/2) although a 8%-17% reduction in strength compared with that at T6 temper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yiyu; Kannan, Rangasayee; Li, Leijun, E-mail
Non-equilibrium microstructure of the heat-affected zone (HAZ) in the as-welded modified 9Cr–1Mo–V–Nb pipe steel (P91) weldment deposited by gas tungsten arc welding (GTAW) and flux core arc welding (FCAW) has been characterized by field-emission scanning electron microscope (FESEM) and electron backscatter diffraction (EBSD). The heterogeneous structures in the sub-layers of the as-welded HAZ are attributable to phase transformations caused by the welding thermal cycles and the local structure variations in the as-received base metal. Coarse-grained heat-affected zone (CGHAZ) has a prior austenite grain (PAG) size of 20 μm. Fine uniformly-distributed precipitates and a higher fraction of MX carbonitrides are observedmore » in the CGHAZ. Fine-grained heat-affected zone (FGHAZ) consists of the finest grains (1.22 μm measured by EBSD, 5 μm PAG size), coarse undissolved M{sub 23}C{sub 6} carbides within the PAG boundaries and fine nucleated M{sub 23}C{sub 6} particles within the martensite laths. Inter-critical heat-affected zone (ICHAZ) consists of partially austenitized grains and over-tempered martensite laths. EBSD kernel average misorientation (KAM) map in the FGHAZ close to the ICHAZ illustrates the greatest local strain variations with a moderate normalized KAM value of 0.92°. The majority (88.1%) of the matrix grains in the CGHAZ are classified as deformed grains by EBSD grain average misorientation (GAM) evaluation. The FGHAZ close to the ICHAZ has the most recrystallized grains with an area fraction of 14.4%. The highest density variation of precipitates within grains in the FGHAZ originates from the inhomogeneous chemistry in the base metal. - Highlights: •A comprehensive characterization of the as-welded HAZ of P91 weldment is conducted. •Structural features in the each layer of the HAZ are quantified by EBSD. •Structural heterogenities in HAZ are due to welding cycle and base metal structure. •FGHAZ contains the finest grain structure and largest precipitate density variation.« less
The effect of strain rate on the evolution of microstructure in aluminium alloys.
Leszczyńska-Madej, B; Richert, M
2010-03-01
Intensive deformations influence strongly microstructure. The very well-known phenomenon is the diminishing dimension of grain size by the severe plastic deformation (SPD) methods. The nanometric features of microstructure were discovered after the SPD deformation of various materials, such as aluminium alloys, iron and others. The observed changes depended on the kind of the deformed material, amount of deformation, strain rate, existence of different phases and stacking fault energy. The influence of the strain and strain rate on the microstructure is commonly investigated nowadays. It was found that the high strain rates activate deformation in shear bands, microbands and adiabatic shear bands. It was observed that bands were places of the nucleation of nanograins in the material deformed by SPD methods. In the work, the refinement of microstructure of the aluminium alloys influenced by the high strain rate was investigated. The samples were compressed by a specially designed hammer to the deformation of phi= 0/0.62 with the strain rate in the range of [Formula in text]. The highest reduction of microbands width with the increase of the strain was found in the AlCu4Zr alloy. The influence of the strain rate on the microstructure refinement indicated that the increase of the strain rate caused the reduction of the microbands width in the all investigated materials (Al99.5, AlCu4Zr, AlMg5, AlZn6Mg2.5CuZr). A characteristic feature of the microstructure of the compressed material was large density of the shear bands and microbands. It was found that the microbands show a large misorientation to the surrounds and, except Al99.5, the large density of dislocation.
Laassiri, Said; Bion, Nicolas; Duprez, Daniel; Royer, Sébastien; Alamdari, Houshang
2014-03-07
Microstructural properties of mixed oxides play essential roles in their oxygen mobility and consequently in their catalytic performances. Two families of mixed oxides (perovskite and hexaaluminate) with different microstructural features, such as crystal size and specific surface area, were prepared using the activated reactive synthesis (ARS) method. It was shown that ARS is a flexible route to synthesize both mixed oxides with nano-scale crystal size and high specific surface area. Redox properties and oxygen mobility were found to be strongly affected by the material microstructure. Catalytic activities of hexaaluminate and perovskite materials for methane oxidation were discussed in the light of structural, redox and oxygen mobility properties.
Modeling of Microstructure Evolution During Alloy Solidification
NASA Astrophysics Data System (ADS)
Zhu, Mingfang; Pan, Shiyan; Sun, Dongke
In recent years, considerable advances have been achieved in the numerical modeling of microstructure evolution during solidification. This paper presents the models based on the cellular automaton (CA) technique and lattice Boltzmann method (LBM), which can reproduce a wide variety of solidification microstructure features observed experimentally with an acceptable computational efficiency. The capabilities of the models are addressed by presenting representative examples encompassing a broad variety of issues, such as the evolution of dendritic structure and microsegregation in two and three dimensions, dendritic growth in the presence of convection, divorced eutectic solidification of spheroidal graphite irons, and gas porosity formation. The simulations offer insights into the underlying physics of microstructure formation during alloy solidification.
2012-02-01
the presence of somewhat randomly-distributed carbides and borides (white particles in BSE images), this grain size was comparable to that observed...pinned by carbide/ boride particles (imaging white in Figure 8c). The very fine gamma-prime precipitates likely produced during magnetron sputtering...sputtered material. First, the carbide/ boride particles were nucleated and hence located preferentially at the grain boundaries in the sputtered
Grained composite materials prepared by combustion synthesis under mechanical pressure
Dunmead, Stephen D.; Holt, Joseph B.; Kingman, Donald D.; Munir, Zuhair A.
1990-01-01
Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.
Microstructural Development in HSLA-100 Steel Weld Metals
1990-01-01
martensite or austenitic particles contribute to the "granular appearance" of the ferrite grains. Copper precipitates ... copper precipitation , which conclusively suggests that the polygonal ferrite formation is not fully suppressed in the alloy . For the HSLA- 100 steel with a...Ava’Iablity Codes Avdi rid 1 or Di ’t’CIiJl A1 2 1. INTRODUCTION Precipitation strengthening of steel by finely dispersed copper
On improving the fracture toughness of a NiAl-based alloy by mechanical alloying
NASA Technical Reports Server (NTRS)
Kostrubanic, J.; Koss, D. A.; Locci, I. E.; Nathal, M.
1991-01-01
Mechanical alloying (MA) has been used to process the NiAl-based alloy Ni-35Al-20Fe, such that a fine-grain (about 2 microns) microstructure is obtained through the addition of 2 vol pct Y2O3 particles. When compared to a conventionally processed, coarse-grained (about 28 microns) Ni-35-20 alloy without the Y2O3 particles, the MA alloy exhibits two to three times higher fracture toughness values, despite a 50-percent increase in yield strength. Room-temperature K(O) values as high as 34 MPa sq rt m are observed, accompanied by a yield strength in excess of 1100 MPa. Fractography confirms a change in fracture characteristics of the fine-grained MA alloy.
Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine
2017-01-01
One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized. PMID:28447998
Proust, Gwénaëlle; Trimby, Patrick; Piazolo, Sandra; Retraint, Delphine
2017-04-01
One of the challenges in microstructure analysis nowadays resides in the reliable and accurate characterization of ultra-fine grained (UFG) and nanocrystalline materials. The traditional techniques associated with scanning electron microscopy (SEM), such as electron backscatter diffraction (EBSD), do not possess the required spatial resolution due to the large interaction volume between the electrons from the beam and the atoms of the material. Transmission electron microscopy (TEM) has the required spatial resolution. However, due to a lack of automation in the analysis system, the rate of data acquisition is slow which limits the area of the specimen that can be characterized. This paper presents a new characterization technique, Transmission Kikuchi Diffraction (TKD), which enables the analysis of the microstructure of UFG and nanocrystalline materials using an SEM equipped with a standard EBSD system. The spatial resolution of this technique can reach 2 nm. This technique can be applied to a large range of materials that would be difficult to analyze using traditional EBSD. After presenting the experimental set up and describing the different steps necessary to realize a TKD analysis, examples of its use on metal alloys and minerals are shown to illustrate the resolution of the technique and its flexibility in term of material to be characterized.
Huang, Jinhua; Ran, Guang; Lin, Jianxin; Shen, Qiang; Lei, Penghui; Wang, Xina; Li, Ning
2016-01-01
The microstructural evolution of Dy2O3-TiO2 powder mixtures during ball milling and post-milled annealing was investigated using XRD, SEM, TEM, and DSC. At high ball-milling rotation speeds, the mixtures were fined, homogenized, nanocrystallized, and later completely amorphized, and the transformation of Dy2O3 from the cubic to the monoclinic crystal structure was observed. The amorphous transformation resulted from monoclinic Dy2O3, not from cubic Dy2O3. However, at low ball-milling rotation speeds, the mixtures were only fined and homogenized. An intermediate phase with a similar crystal structure to that of cubic Dy2TiO5 was detected in the amorphous mixtures annealed from 800 to 1000 °C, which was a metastable phase that transformed to orthorhombic Dy2TiO5 when the annealing temperature was above 1050 °C. However, at the same annealing temperatures, pyrochlore Dy2Ti2O7 initially formed and subsequently reacted with the remaining Dy2O3 to form orthorhombic Dy2TiO5 in the homogenous mixtures. The evolutionary mechanism of powder mixtures during ball milling and subsequent annealing was analyzed. PMID:28772375
NASA Astrophysics Data System (ADS)
Ekberg, Johanna; Ganvir, Ashish; Klement, Uta; Creci, Simone; Nordstierna, Lars
2018-02-01
Suspension plasma-sprayed coatings are produced using fine-grained feedstock. This allows to control the porosity and to achieve low thermal conductivity which makes the coatings attractive as topcoats in thermal barrier coatings (TBCs). Used in gas turbine applications, TBCs are exposed to high temperature exhaust gases which lead to microstructure alterations. In order to obtain coatings with optimized thermomechanical properties, microstructure alterations like closing of pores and opening of cracks have to be taken into account. Hence, in this study, TBC topcoats consisting of 4 mol.% yttria-stabilized zirconia were heat-treated in air at 1150 °C and thereafter the coating porosity was investigated using image analysis (IA) and nuclear magnetic resonance (NMR) cryoporometry. Both IA and NMR cryoporometry showed that the porosity changed as a result of the heat treatment for all investigated coatings. In fact, both techniques showed that the fine porosity decreased as a result of the heat treatment, while IA also showed an increase in the coarse porosity. When studying the coatings using scanning electron microscopy, it was noticed that finer pores and cracks disappeared and larger pores grew slightly and achieved a more distinct shape as the material seemed to become more compact.
NASA Astrophysics Data System (ADS)
Lin, Jyung-Dong; Wu, Zhao-Lun
In this study, NiO/YSZ composite powders were synthesized using hydrolysis on two solutions, one contains YSZ particles and Ni 2+ ion, and the other contains NiO particles, Zr 4+, and Y 3+ ions, with the aid of urea. The microstructure of the powders and sintered bulks was further characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicated that various synthesis processes yielded NiO/YSZ powders with different morphologies. The NiO precursors would deposit onto the surface of YSZ particles, and NiO-deposited YSZ composite powders were obtained. Alternatively, it was not observed that YSZ precursors deposited onto the surface of NiO particles, thus, a uniform powder mixture of fine NiO and fine YSZ particles was produced. After sintering and subsequent reduction, these powders would lead to the variations of Ni distribution in the YSZ matrix and conductivity of cermets. Owing to the core-shell structure of the powders and the higher size ratio of YSZ and NiO particles, the conductivity of cermet with NiO-deposited YSZ powders containing 23 wt% NiO is comparable to those with a NiO/YSZ powder mixture containing 50 wt% NiO.
Hierarchical microstructures in CZT
NASA Astrophysics Data System (ADS)
Sundaram, S. K.; Henager, C. H.; Edwards, D. J.; Schemer-Kohrn, A. L.; Bliss, M.; Riley, B. R.; Toloczko, M. B.; Lynn, K. G.
2011-10-01
Advanced characterization tools, such as electron backscatter diffraction and transmitted IR microscopy, are being applied to study critical microstructural features and orientation relations in as-grown CZT crystals to aid in understanding the relation between structure and properties in radiation detectors. Even carefully prepared single crystals of CZT contain regions of slight misorientation, Te-particles, and dislocation networks that must be understood for more accurate models of detector response. This paper describes initial research at PNNL into the hierarchy of microstructures observed in CZT grown via the vertical gradient freeze or vertical Bridgman method at PNNL and WSU.
Chae, In Hye; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Park, Vivian Y; Kwak, Jin Young
2017-07-01
To compare post-biopsy hematoma rates between ultrasound guided-fine needle aspiration and ultrasound guided-core needle biopsy, and to investigate risk factors for post-biopsy hematoma. A total of 5304 thyroid nodules which underwent ultrasound guided biopsy were included in this retrospective study. We compared clinical and US features between patients with and without post-biopsy hematoma. Associations between these features and post-biopsy hematoma were analyzed. Post-biopsy hematoma rate was 0.8% (43/5121) for ultrasound guided-fine needle aspiration and 4.9% (9/183) for ultrasound guided-core needle biopsy (P < 0.001). For ultrasound guided-fine needle aspiration, gender, age, size, presence of vascularity, and suspicious US features were not associated with post-biopsy hematoma according to experience level. Post-biopsy hematoma occurred significantly more with ultrasound guided-core needle biopsy (9/179, 5.0%) than with ultrasound guided-fine needle aspiration (9/1138, 0.8%) (P < 0.001) in experienced performers and ultrasound guided-core needle biopsy was the only significant risk factor for post-biopsy hematoma (adjusted Odds Ratio, 6.458, P < 0.001). Post-biopsy hematoma occurred significantly more in ultrasound guided-core needle biopsy than in ultrasound guided-fine needle aspiration and ultrasound guided-core needle biopsy was the only independent factor of post-biopsy hematoma in thyroid nodules.
Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel
NASA Astrophysics Data System (ADS)
Chen, Y.-S.; Haley, D.; Gerstl, S. S. A.; London, A. J.; Sweeney, F.; Wepf, R. A.; Rainforth, W. M.; Bagot, P. A. J.; Moody, M. P.
2017-03-01
The design of atomic-scale microstructural traps to limit the diffusion of hydrogen is one key strategy in the development of hydrogen-embrittlement-resistant materials. In the case of bearing steels, an effective trapping mechanism may be the incorporation of finely dispersed V-Mo-Nb carbides in a ferrite matrix. First, we charged a ferritic steel with deuterium by means of electrolytic loading to achieve a high hydrogen concentration. We then immobilized it in the microstructure with a cryogenic transfer protocol before atom probe tomography (APT) analysis. Using APT, we show trapping of hydrogen within the core of these carbides with quantitative composition profiles. Furthermore, with this method the experiment can be feasibly replicated in any APT-equipped laboratory by using a simple cold chain.
NASA Astrophysics Data System (ADS)
Luo, Quanshun; Kitchen, Matthew; Patel, Vinay; Filleul, Martin; Owens, Dave
We introduce a new strengthening heat treatment of a Ni-Cr-Mo-V alloyed spring steel by partial isothermal salt-bath and subsequent air-cooling and tempering. Detailed isothermal treatments were made at temperatures below or above the Ms point (230°C). The salt bath time was controlled between 10 and 80 minutes. Through the new treatment, the candidate steel developed ultrahigh tensile strength 2,100 MPa, yield strength 1,800 MPa, elongation 8-10 %, hardness 580-710 HV, and V-notch Charpy toughness 10-12 J. Optical and electron microscopic observations and X-ray diffraction revealed multi-phase microstructures of bainitic/martensitic ferrites, fine carbide precipitates and retained austenite. Carbon partitioning during the bainitic/martensitic transformation was investigated for its remarkable influence on the strengthening mechanism.
NASA Technical Reports Server (NTRS)
Kattamis, T. Z.
1984-01-01
Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.
Densification of LSGM electrolytes using activated microwave sintering
NASA Astrophysics Data System (ADS)
Kesapragada, S. V.; Bhaduri, S. B.; Bhaduri, S.; Singh, P.
Lanthanum gallate doped with alkaline rare earths (LSGM) powders were densified using an activated microwave sintering process for developing a dense stable electrolyte layer for applications in intermediate temperature-solid oxide fuel cells (IT-SOFCs). Due to heat generation in situ, the process of sintering gets activated with faster kinetics compared to a conventional sintering process. The effect of various microwave process parameters on the microstructure and phase formation was studied. The sintered pellets were characterized using scanning electron microscopy-energy dispersive analysis (SEM-EDAX), and X-ray diffraction (XRD). The density of LSGM pellets microwave sintered at 1350 °C for 20 min is greater than 95% theoretical density with a fine grained microstructure (˜2-3 μm) and without the presence of other phase(s).
NASA Technical Reports Server (NTRS)
Tsiveriotis, K.; Brown, R. A.
1993-01-01
A new method is presented for the solution of free-boundary problems using Lagrangian finite element approximations defined on locally refined grids. The formulation allows for direct transition from coarse to fine grids without introducing non-conforming basis functions. The calculation of elemental stiffness matrices and residual vectors are unaffected by changes in the refinement level, which are accounted for in the loading of elemental data to the global stiffness matrix and residual vector. This technique for local mesh refinement is combined with recently developed mapping methods and Newton's method to form an efficient algorithm for the solution of free-boundary problems, as demonstrated here by sample calculations of cellular interfacial microstructure during directional solidification of a binary alloy.
Annealing Effects on Creep and Rupture of Polycrystalline Alumina-Based Fibers
NASA Technical Reports Server (NTRS)
Goldsby, J. C.; Yun, H. M.; Morscher, G. N.; DiCarlo, J. A.
1998-01-01
Continuous-length polycrystalline aluminum-oxide-based fibers are being considered as reinforcements for advanced high-temperature composite materials. For these fine-grained fibers, basic issues arise concerning grain growth and microstructural instability during composite fabrication and the resulting effects on the fiber's thermo-mechanical properties. To examine these issues, commercially available Nextel 610 (alumina) and Altex (alumina-silica) fibers were annealed at 1100 and 1300 C for up to 100 hr in air. Changes in fiber microstructure, fiber tensile creep, stress rupture, and bend stress relaxation (BSR) that occurred with annealing were then determined. BSR tests were also used to compare as-received and annealed fibers to other polycrystalline oxide fibers. Annealing was shown to have a significant effect, particularly on the Altex fiber, and caused it to have increased creep resistance.
A theoretical study of interaction effects on the remanence curves of particulate dispersions
NASA Astrophysics Data System (ADS)
Fearon, M.; Chantrell, R. W.; Wohlfarth, E. P.
1990-05-01
The remanence curves of strongly interacting fine-particle systems are investigated theoretically. It is shown that the Henkel plot of the dc demagnetisation remanence vs. the isothermal remanence is a useful representation of interactions. The form of the plot is found to be a reflection of the magnetic and physical microstructure of the material, which is consistent with experimental data. The relationship between the Henkel plot and the noise of a particulate recording medium, another property dependent on the microstructure, is also considered. The Interaction Field Factor (IFF), a single parameter characterising the non-linearity of the Henkel plot, is also investigated. The results are consistent with a previous experimental study. Finally, the effect of interactions on the Switching Field Distribution are investigated.
Tailoring properties of reticulated vitreous carbon foams with tunable density
NASA Astrophysics Data System (ADS)
Smorygo, Oleg; Marukovich, Alexander; Mikutski, Vitali; Stathopoulos, Vassilis; Hryhoryeu, Siarhei; Sadykov, Vladislav
2016-06-01
Reticulated vitreous carbon (RVC) foams were manufactured by multiple replications of a polyurethane foam template structure using ethanolic solutions of phenolic resin. The aims were to create an algorithm of fine tuning the precursor foam density and ensure an open-cell reticulated porous structure in a wide density range. The precursor foams were pyrolyzed in inert atmospheres at 700°C, 1100°C and 2000°C, and RVC foams with fully open cells and tunable bulk densities within 0.09-0.42 g/cm3 were synthesized. The foams were characterized in terms of porous structure, carbon lattice parameters, mechanical properties, thermal conductivity, electric conductivity, and corrosive resistance. The reported manufacturing approach is suitable for designing the foam microstructure, including the strut design with a graded microstructure.
NASA Astrophysics Data System (ADS)
Hansen, Lars N.
Many features of plate tectonics cannot be explained with standard rheological models of the upper mantle. In particular, the localization of deformation at plate boundaries requires the viscosity of the constituent rocks to evolve spatially and temporally. Such rheological complexity may arise from changing microstructural state variables (e.g., grain size and crystallographic-fabric strength), but the degree to which microstructure contributes to the evolution of viscosity is unclear given our current understanding of deformation mechanisms in mantle minerals. Dislocation-accommodated grain-boundary sliding (GBS) is a potentially critical mechanism for localizing deformation in olivine because it imparts a sensitivity of the viscosity to the state of the microstructure while simultaneously providing mechanisms for changing the microstructure. However, many details of GBS in olivine are currently unknown including 1) the magnitude of the sensitivity of strain rate to crystallographic fabric and grain size, 2) the strength of the crystallographic fabrics produced, and 3) the anisotropy in viscosity of polycrystalline aggregates. Detailed knowledge of these unknowns is necessary to assess the importance of microstructural evolution in the operation of plate tectonics. This dissertation investigates the details of GBS in olivine through four sets of laboratory-based experiments. In Chapter 2, triaxial compressive creep experiments on aggregates of San Carlos olivine are used to develop a flow law for olivine deforming by GBS. Extrapolations of strain rate to geological conditions using the derived flow law indicate that GBS is the dominant deformation mechanism throughout the uppermost mantle. Crystallographic fabrics observed in deformed samples are consistent with upper-mantle seismic anisotropy. In Chapter 3, torsion experiments on iron-rich olivine are used to determine the rheological behavior of olivine deforming by GBS at large strains. The sensitivity of the strain rate to grain size and stress is demonstrated to be consistent with low-strain experiments. Additionally, the sensitivity of strain rate to the development of a crystallographic fabric is determined. Constitutive relationships including microstructural evolution are developed that accurately predict the observed stress as a function of strain. The results of Chapter 3 confirm that significant weakening is associated with both grain-size reduction and crystallographic-fabric development. In Chapter 4, torsion experiments on iron-rich olivine are used to determine if microstructural evolution can lead to strain localization. Experiments were conducted with either constant-strain-rate or constant-stress boundary conditions. Localization is only observed in samples deformed at constant-stress, which suggests boundary conditions affect the critical size of strength perturbation necessary for localization to occur. Strain localization is correlated with fine-grained regions, and a feedback mechanism between grain-size reduction and strain rate is proposed. In Chapter 5, both torsion and tension experiments are used to assess the mechanical anisotropy of previously deformed samples. Based on the direction of the applied stress relative to the orientation of a pre-existing crystallographic fabric, the viscosity is demonstrated to vary by over an order of magnitude. This observation suggests deformation can localize in regions that were previously deformed and retained a strong crystallographic fabric. The results of this dissertation elucidate the interplay between microstructure and deformation of olivine in the GBS regime. Because the viscosity of olivine-rich rocks deforming by GBS is dependent on both grain size and crystallographic fabric, heterogeneities in these microstructural parameters can lead to spatial and temporal variations in viscosity, possibly explaining the large-scale patterns of deformation in the upper mantle. Future numerical simulations can test the importance of microstructure in geodynamic processes by incorporating the constitutive relationships outlined in this dissertation.
NASA Astrophysics Data System (ADS)
Scherillo, Fabio; Astarita, Antonello; di Martino, Daniela; Contaldi, Vincenzo; di Matteo, Luca; di Petta, Paolo; Casarin, Renzo; Squillace, Antonino; Langella, Antonio
2017-10-01
Additive Manufacturing (AM), applied to metal industry, is a family of processes that allow complex shape components to be realized from raw materials in the form of powders. The compaction of the powders can be achieved by local melting of the powder bed or by solid state sintering. Direct Metal Laser Sintering (DMLS) is an additive manufacturing process in which a focalized laser beam is the heat source that allows the powders to be compacted. By DMLS it is possible to realize complex shape components. One of the limits of DMLS, as for every additive layer manufacturing techniques, is the unfeasibility to realize large dimension parts. Due to this limit the study of joining process of parts made via ALM is of great interest. One of the most promising options is the Friction Stir Welding (FSW), a solid state welding technique that has been proven to be very effective in the welding of metals difficult to weld, above all aluminium alloys. Since FSW is a solid-state technique, the microstructure of the various zone of the weld bead depends not only by the process itself but also by the parent microstruct ure of the parts to be welded. Furthermore, parts made of aluminium alloy via DMLS have a particular microstructure that is the result of repeated severe thermal cycles. In the present work the authors, starting from the description of the parent microstructure of parts made of AlSi10Mg aluminium alloy, study the microstructure evolution occurred within the joint made by Friction Stir Welding, analysing in details the microstructure of the main well recognized zone of the weld bead. The structure of the parent material is characterized by the presence of melting pools with a very fine microstructure. In the joint the recrystallization, the grain refinement and, above all, the redistribution of intermetallic phases occurs, resulting in an homogenization of the microstructure and in an increase of micro hardness.