Correlates across the Structural, Functional, and Molecular Phenotypes of Fragile X Syndrome
ERIC Educational Resources Information Center
Beckel-Mitchener, Andrea; Greenough, William T.
2004-01-01
Fragile X syndrome (FXS) is characterized by a pattern of morphological, functional, and molecular characteristics with, in at least some cases, apparent relationships among phenotypic features at different levels. Gross morphology differences in the sizes of some human brain regions are accompanied by fine structural alterations in the shapes and…
Chieco, C; Rotondi, A; Morrone, L; Rapparini, F; Baraldi, R
2013-02-01
The use of formalin constitutes serious health hazards for laboratory workers. We investigated the suitability and performance of the ethanol-based fixative, FineFIX, as a substitute for formalin for anatomical and cellular structure investigations of leaves by light microscopy and for leaf surface and ultrastructural analysis by scanning electron microscopy (SEM). We compared the anatomical features of leaf materials prepared using conventional formalin fixation with the FineFIX. Leaves were collected from ornamental tree species commonly used in urban areas. FineFIX was also compared with glutaraldehyde fixation and air drying normally used for scanning electron microscopy to develop a new method for evaluating leaf morphology and microstructure in three ornamental tree species. The cytological features of the samples processed for histological analysis were well preserved by both fixatives as demonstrated by the absence of nuclear swelling or shrinkage, cell wall detachment or tissue flaking, and good presentation of cytoplasmic vacuolization. In addition, good preservation of surface details and the absence of shrinkage artefacts confirmed the efficacy of FineFIX fixation for SEM analysis. Cuticular wax was preserved only in air dried samples. Samples treated with chemical substances during the fixation and dehydration phases showed various alterations of the wax structures. In some air dried samples a loss of turgidity of the cells was observed that caused general wrinkling of the epidermal surfaces. Commercial FineFIX is an adequate substitute for formalin in histology and it can be applied successfully also for SEM investigation, while reducing the health risks of glutaraldehyde or other toxic fixatives. To investigate the potential for plants to absorb and capture particulates in air, which requires preservation of the natural morphology of trichomes and epicuticular waxes, a combination of FineFIX fixation and air drying is recommended.
Nan, Hongwei; Liang, Jin; Cheng, Xinying; Zhao, ChunZhang; Yin, HuaJun; Yin, ChunYing; Liu, Qing
2017-01-01
Investigating the responses of trees to the heterogeneous distribution of nutrients in soil and simultaneous presence of neighboring roots could strengthen the understanding of an influential mechanism on tree growth and provide a scientific basis for forest management. Here, we conducted two split-pot experiments to investigate the effects of nutrient heterogeneity and intraspecific competition on the fine root morphology and nutrient capture of Picea asperata. The results showed that P. asperata efficiently captured nutrients by increasing the specific root length (SRL) and specific root area (SRA) of first-and second-order roots and decreasing the tissue density of first-order roots to avoid competition for resources and space with neighboring roots. The nutrient heterogeneity and addition of fertilization did not affect the fine root morphology, but enhanced the P and K concentrations in the fine roots in the absence of a competitor. On the interaction between nutrient heterogeneity and competition, competition decreased the SRL and SRA but enhanced the capture of K under heterogeneous soil compared with under homogeneous soil. Additionally, the P concentration, but not the K concentration, was linearly correlated to root morphology in heterogeneous soil, even when competition was present. The results suggested that root morphological features were only stimulated when the soil nutrients were insufficient for plant growth and the nutrients accumulations by root were mainly affected by the soil nutrients more than the root morphology. PMID:29095947
NASA Astrophysics Data System (ADS)
Shi, Wenzhong; Deng, Susu; Xu, Wenbing
2018-02-01
For automatic landslide detection, landslide morphological features should be quantitatively expressed and extracted. High-resolution Digital Elevation Models (DEMs) derived from airborne Light Detection and Ranging (LiDAR) data allow fine-scale morphological features to be extracted, but noise in DEMs influences morphological feature extraction, and the multi-scale nature of landslide features should be considered. This paper proposes a method to extract landslide morphological features characterized by homogeneous spatial patterns. Both profile and tangential curvature are utilized to quantify land surface morphology, and a local Gi* statistic is calculated for each cell to identify significant patterns of clustering of similar morphometric values. The method was tested on both synthetic surfaces simulating natural terrain and airborne LiDAR data acquired over an area dominated by shallow debris slides and flows. The test results of the synthetic data indicate that the concave and convex morphologies of the simulated terrain features at different scales and distinctness could be recognized using the proposed method, even when random noise was added to the synthetic data. In the test area, cells with large local Gi* values were extracted at a specified significance level from the profile and the tangential curvature image generated from the LiDAR-derived 1-m DEM. The morphologies of landslide main scarps, source areas and trails were clearly indicated, and the morphological features were represented by clusters of extracted cells. A comparison with the morphological feature extraction method based on curvature thresholds proved the proposed method's robustness to DEM noise. When verified against a landslide inventory, the morphological features of almost all recent (< 5 years) landslides and approximately 35% of historical (> 10 years) landslides were extracted. This finding indicates that the proposed method can facilitate landslide detection, although the cell clusters extracted from curvature images should be filtered using a filtering strategy based on supplementary information provided by expert knowledge or other data sources.
NASA Astrophysics Data System (ADS)
Kim, H.; Kwon, T.; Cho, G.
2012-12-01
Synthesizing gas hydrate in a fine-grained natural seabed sediment sample, mainly composed of silty-to-clayey soils, has been hardly attempted due to the low permeability. It has been known that hydrate loci in pore spaces and heterogeneity of hydrate growth in core-scale play a critical role in determining physical properties of hydrate-bearing sediments. In the presented study, we attempted to identify the effect of hydrate growth morphology on seismic velocities in natural fine-grained sediments sampled from the Ulleung Basin in East Sea. We synthesized CO2 hydrate in clayey silt sediments in an instrumented oedometric cell and measured seismic velocities during hydrate formation and loading processes. Herein, we present the experiment results on P-wave and S-wave velocities of gas hydrate-bearing fine-grained sediments. It is found that the geophysical properties of gas hydrate-bearing sediments are governed by hydrate saturation and effective stress as well as morphological feature of hydrate formation in sediments.
Børja, Isabella; De Wit, Heleen A; Steffenrem, Arne; Majdi, Hooshang
2008-05-01
We assessed the influence of stand age on fine root biomass and morphology of trees and understory vegetation in 10-, 30-, 60- and 120-year-old Norway spruce stands growing in sandy soil in southeast Norway. Fine root (< 1, 1-2 and 2-5 mm in diameter) biomass of trees and understory vegetation (< 2 mm in diameter) was sampled by soil coring to a depth of 60 cm. Fine root morphological characteristics, such as specific root length (SRL), root length density (RLD), root surface area (RSA), root tip number and branching frequency (per unit root length or mass), were determined based on digitized root data. Fine root biomass and morphological characteristics related to biomass (RLD and RSA) followed the same tendency with chronosequence and were significantly higher in the 30-year-old stand and lower in the 10-year-old stand than in the other stands. Among stands, mean fine root (< 2 mm) biomass ranged from 49 to 398 g m(-2), SLR from 13.4 to 19.8 m g(-1), RLD from 980 to 11,650 m m(-3) and RSA from 2.4 to 35.4 m(2) m(-3). Most fine root biomass of trees was concentrated in the upper 20 cm of the mineral soil and in the humus layer (0-5 cm) in all stands. Understory fine roots accounted for 67 and 25% of total fine root biomass in the 10- and 120-year-old stands, respectively. Stand age had no affect on root tip number or branching frequency, but both parameters changed with soil depth, with increasing number of root tips and decreasing branching frequency with increasing soil depth for root fractions < 2 mm in diameter. Specific (mass based) root tip number and branching density were highest for the finest roots (< 1 mm) in the humus layer. Season (spring or fall) had no effect on tree fine root biomass, but there was a small and significant increase in understory fine root biomass in fall relative to spring. All morphological characteristics showed strong seasonal variation, especially the finest root fraction, with consistently and significantly higher values in spring than in fall. We conclude that fine root biomass, especially in the finest fraction (< 1 mm in diameter), is strongly dependent on stand age. Among stands, carbon concentration in fine root biomass was highest in the 30-year-old stand, and appeared to be associated with the high tree and canopy density during the early stage of stand development. Values of RLD and RSA, morphological features indicative of stand nutrient-uptake efficiency, were higher in the 30-year-old stand than in the other stands.
A new species of Phlebopus (Botales, Basidiomycota) from Mexico
Timothy J. Baroni; Joaquin Cifuentes; Beatriz Ortiz Santana; Silvia Cappello
2015-01-01
A new species, Phlebopus mexicanus, is described from southern tropical rainforests of Mexico based on morphological and molecular characters. Several features distinguish this species from others of Phlebopus including the medium to small basidiomata with olivaceous brown tomentose pileus that becomes finely areolate cracked with age, the dark...
Airborne spectrophotometry of Eta Carinae from 4.5 to 7.5 microns and a model for source morphology
NASA Technical Reports Server (NTRS)
Russell, Ray W.; Lynch, David K.; Hackwell, John A.; Rudy, Richard J.; Rossano, George S.; Castelaz, M. W.
1987-01-01
Spectrophotometric observations of Eta Car between 4.5 and 7.5 microns show a featureless thermal-like spectrum with no fine-structure lines or broad emission or absorption features. The color temperature of the spectrum is approximately 375 K. High spatial resolution maps at 3.5, 4.8, and 10 microns obtained from the ground are used to discuss the dust distribution and temperature structure, and to present a model for general source morphology. The upper limit to the brightness of the forbidden Ar II fine-structure emission line at 6.98 microns is less than 7 x 10 to the -16th W/sq cm, which still allows for a significant overabundance of argon and is consistent with the evolved nature of the source.
Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation
NASA Astrophysics Data System (ADS)
Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.
2018-01-01
Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.
Turning maneuvers in sharks: Predicting body curvature from axial morphology.
Porter, Marianne E; Roque, Cassandra M; Long, John H
2009-08-01
Given the diversity of vertebral morphologies among fishes, it is tempting to propose causal links between axial morphology and body curvature. We propose that shape and size of the vertebrae, intervertebral joints, and the body will more accurately predict differences in body curvature during swimming rather than a single meristic such as total vertebral number alone. We examined the correlation between morphological features and maximum body curvature seen during routine turns in five species of shark: Triakis semifasciata, Heterodontus francisci, Chiloscyllium plagiosum, Chiloscyllium punctatum, and Hemiscyllium ocellatum. We quantified overall body curvature using three different metrics. From a separate group of size-matched individuals, we measured 16 morphological features from precaudal vertebrae and the body. As predicted, a larger pool of morphological features yielded a more robust prediction of maximal body curvature than vertebral number alone. Stepwise linear regression showed that up to 11 features were significant predictors of the three measures of body curvature, yielding highly significant multiple regressions with r(2) values of 0.523, 0.537, and 0.584. The second moment of area of the centrum was always the best predictor, followed by either centrum length or transverse height. Ranking as the fifth most important variable in three different models, the body's total length, fineness ratio, and width were the most important non-vertebral morphologies. Without considering the effects of muscle activity, these correlations suggest a dominant role for the vertebral column in providing the passive mechanical properties of the body that control, in part, body curvature during swimming. (c) 2009 Wiley-Liss, Inc.
Twichell, David C.; McClennen, Charles E.; Butman, Bradford
1981-01-01
A 13,000 km2 area of the southern New England Continental Shelf which is covered by anomalously fine-grained sediment has been surveyed by means of high-resolution, seismic-reflection and side-scan sonar techniques to map its morphology and structure, and a near-bottom instrument system contributed to understanding present activity of the deposit. Seismic-reflection profiles show that the fine-grained deposit, which is as much as 13 m thick, has accumulated during the last transgression because it rests on a reflector that is geomorphically similar to and continuous with the Holocene transgressive sand sheet still exposed on the shelf to the west. The ridge and swale topography comprising the sand sheet on the shelf off New Jersey and Long Island are relict in origin as these same features are found buried under the fine sediment deposit. Southwestward migrating megaripples observed on the sonographs in the eastern part of the deposit are evidence that sediment is still actively accumulating in this area. In the western part of the deposit, where surface sediment is composed of silt plus clay, evidence of present sediment mobility consists of changes in the near-bottom, suspended-matter concentrations primarily associated with storms. Nantucket Shoals and Georges Bank are thought to be the sources for the fine-textured sediment. Storms and strong tidal currents in these shoal areas may still erode available fine-grained material, which then is transported westward by the mean drift to the southern New England Shelf, where a comparatively tranquil environment permits deposition of the fine material.
Craters on Mars: Global Geometric Properties from Gridded MOLA Topography
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Sakimoto, S. E. H.; Frawley, J. J.
2003-01-01
Impact craters serve as natural probes of the target properties of planetary crusts and the tremendous diversity of morphological expressions of such features on Mars attests to their importance for deciphering the history of crustal assembly, modification, and erosion. This paper summarizes the key findings associated with a five year long survey of the three-dimensional properties of approx. 6000 martian impact craters using finely gridded MOLA topography. Previous efforts have treated representative subpopulations, but this effort treats global properties from the largest survey of impact features from the perspective of their topography ever assimilated. With the Viking missions of the mid-1970 s, the most intensive and comprehensive robotic expeditions to any Deep Space location in the history of humanity were achieved, with scientifically stunning results associated with the morphology of impact craters. The relationships illustrated and suggest that martian impact features are remarkably sensitive to target properties and to the local depositional processes.
NASA Astrophysics Data System (ADS)
McClinton, J. T.; White, S. M.; Sinton, J. M.; Rubin, K. H.; Bowles, J. A.
2010-12-01
Differences in axial lava morphology along the Galapagos Spreading Center (GSC) can indicate variations in magma supply and emplacement dynamics due to the influence of the adjacent Galapagos hot spot. Unfortunately, the ability to discriminate fine-scale lava morphology has historically been limited to observations of the small coverage areas of towed camera surveys and submersible operations. This research presents a neuro-fuzzy approach to automated seafloor classification using spatially coincident, high-resolution bathymetry and backscatter data. The classification method implements a Sugeno-type fuzzy inference system trained by a multi-layered adaptive neural network and is capable of rapidly classifying seafloor morphology based on attributes of surface geometry and texture. The system has been applied to the 92°W segment of the western GSC in order to quantify coverage areas and distributions of pillow, lobate, and sheet lava morphology. An accuracy assessment has been performed on the classification results. The resulting classified maps provide a high-resolution view of GSC axial morphology and indicate the study area terrain is approximately 40% pillow flows, 40% lobate and sheet flows, and 10% fissured or faulted area, with about 10% of the study area unclassifiable. Fine-scale features such as eruptive fissures, tumuli, and individual pillowed lava flow fronts are also visible. Although this system has been applied to lava morphology, its design and implementation are applicable to other undersea mapping applications.
Particle shape analysis of volcanic clast samples with the Matlab tool MORPHEO
NASA Astrophysics Data System (ADS)
Charpentier, Isabelle; Sarocchi, Damiano; Rodriguez Sedano, Luis Angel
2013-02-01
This paper presents a modular Matlab tool, namely MORPHEO, devoted to the study of particle morphology by Fourier analysis. A benchmark made of four sample images with different features (digitized coins, a pebble chart, gears, digitized volcanic clasts) is then proposed to assess the abilities of the software. Attention is brought to the Weibull distribution introduced to enhance fine variations of particle morphology. Finally, as an example, samples pertaining to a lahar deposit located in La Lumbre ravine (Colima Volcano, Mexico) are analysed. MORPHEO and the benchmark are freely available for research purposes.
Root features related to plant growth and nutrient removal of 35 wetland plants.
Lai, Wen-Ling; Wang, Shu-Qiang; Peng, Chang-Lian; Chen, Zhang-He
2011-07-01
Morphological, structural, and eco-physiological features of roots, nutrient removal, and correlation between the indices were comparatively studied for 35 emergent wetland plants in small-scale wetlands for further investigation into the hypothesis of two types of wetland plant roots (Chen et al., 2004). Significant differences in root morphological, structural, and eco-physiological features were found among the 35 species. They were divided into two types: fibrous-root plants and thick-root plants. The fibrous-root plants had most or all roots of diameter (D) ≤ 1 mm. Roots of D > 1 mm also had many fine and long lateral roots of D ≤ 1 mm. The roots of these plants were long and had a thin epidermis and a low degree of lignification. The roots of the thick-root plants were almost all thicker than 1 mm, and generally had no further fine lateral roots. The roots were short, smooth, and fleshy, and had a thick epidermis. Root porosity of the fibrous-root plants was higher than that of the thick-root plants (p = 0.001). The aerenchyma of the fibrous-root plants was composed of large cavities which were formed from many small cavities, and distributed radially between the exodermis and vascular tissues. The aerenchyma of the thick-root plants had a large number of small cavities which were distributed in the mediopellis. The fibrous-root plants had a significantly larger root biomass of D ≤ 1 mm, of 1 mm < D < 3 mm, above-ground biomass, total biomass, and longer root system, but shorter root longevity than those of the thick-root plants (p = 0.003, 0.018, 0.020, 0.032, 0.042, 0.001). The fibrous-root plants also had significantly higher radial oxygen loss (ROL), root activity, photosynthetic rate, transpiration rate, and removal rates of total nitrogen and total phosphorus than the thick-root plants (p = 0.001, 0.008, 0.010, 0.004, 0.020, 0.002). The results indicate that significantly different root morphological and structural features existed among different wetland plants, and these features had a close relationship to nutrient removal capacity. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehrez, Loujaine; Ghanem, Roger; Aitharaju, Venkat
Design of non-crimp fabric (NCF) composites entails major challenges pertaining to (1) the complex fine-scale morphology of the constituents, (2) the manufacturing-produced inconsistency of this morphology spatially, and thus (3) the ability to build reliable, robust, and efficient computational surrogate models to account for this complex nature. Traditional approaches to construct computational surrogate models have been to average over the fluctuations of the material properties at different scale lengths. This fails to account for the fine-scale features and fluctuations in morphology, material properties of the constituents, as well as fine-scale phenomena such as damage and cracks. In addition, it failsmore » to accurately predict the scatter in macroscopic properties, which is vital to the design process and behavior prediction. In this work, funded in part by the Department of Energy, we present an approach for addressing these challenges by relying on polynomial chaos representations of both input parameters and material properties at different scales. Moreover, we emphasize the efficiency and robustness of integrating the polynomial chaos expansion with multiscale tools to perform multiscale assimilation, characterization, propagation, and prediction, all of which are necessary to construct the data-driven surrogate models required to design under the uncertainty of composites. These data-driven constructions provide an accurate map from parameters (and their uncertainties) at all scales and the system-level behavior relevant for design. While this perspective is quite general and applicable to all multiscale systems, NCF composites present a particular hierarchy of scales that permits the efficient implementation of these concepts.« less
Magniez, Aurélie; Oudrhiri, Noufissa; Féraud, Olivier; Bacci, Josette; Gobbo, Emilie; Proust, Stéphanie; Turhan, Ali G.
2014-01-01
Abstract The fine analysis of cell components during the generation of pluripotent cells and their comparison to bone fide human embryonic stem cells (hESCs) are valuable tools to understand their biological behavior. In this report, human mesenchymal cells (hMSCs) generated from the human ES cell line H9, were reprogrammed back to induced pluripotent state using Oct-4, Sox2, Nanog, and Lin28 transgenes. Human induced pluripotent stem cells (hIPSCs) were analyzed using electron microscopy and compared with regard to the original hESCs and the hMSCs from which they were derived. This analysis shows that hIPSCs and the original hESCs are morphologically undistinguishable but differ from the hMSCs with respect to the presence of several morphological features of undifferentiated cells at both the cytoplasmic (ribosomes, lipid droplets, glycogen, scarce reticulum) and nuclear levels (features of nuclear plasticity, presence of euchromatin, reticulated nucleoli). We show that hIPSC colonies generated this way presented epithelial aspects with specialized junctions highlighting morphological criteria of the mesenchymal–epithelial transition in cells engaged in a successful reprogramming process. Electron microscopic analysis revealed also specific morphological aspects of partially reprogrammed cells. These results highlight the valuable use of electron microscopy for a better knowledge of the morphological aspects of IPSC and cellular reprogramming. PMID:25371857
Ye, Long; Sun, Kai; Jiang, Wei; Zhang, Shaoqing; Zhao, Wenchao; Yao, Huifeng; Wang, Zhaohui; Hou, Jianhui
2015-05-06
Among the diverse nonfullerene acceptors, perylene bisimides (PBIs) have been attracting much attention due to their excellent electron mobility and tunable molecular and electronic properties by simply engineering the bay and head linkages. Herein, guided by two efficient small molecular acceptors, we designed, synthesized, and characterized a new nonfullerene small molecule PPDI with fine-tailored alkyl chains. Notably, a certificated PCE of 5.40% is realized in a simple structured fullerene-free polymer solar cell comprising PPDI as the electron acceptor and a fine-tailored 2D-conjugated polymer PBDT-TS1 as the electron donor. Moreover, the device behavior, morphological feature, and origin of high efficiency in PBDT-TS1/PPDI-based fullerene-free PSC were investigated. The synchronous selection and design of donor and acceptor materials reported here offer a feasible strategy for realizing highly efficient fullerene-free organic photovoltaics.
Fine root morphological traits determine variation in root respiration of Quercus serrata.
Makita, Naoki; Hirano, Yasuhiro; Dannoura, Masako; Kominami, Yuji; Mizoguchi, Takeo; Ishii, Hiroaki; Kanazawa, Yoichi
2009-04-01
Fine root respiration is a significant component of carbon cycling in forest ecosystems. Although fine roots differ functionally from coarse roots, these root types have been distinguished based on arbitrary diameter cut-offs (e.g., 2 or 5 mm). Fine root morphology is directly related to physiological function, but few attempts have been made to understand the relationships between morphology and respiration of fine roots. To examine relationships between respiration rates and morphological traits of fine roots (0.15-1.4 mm in diameter) of mature Quercus serrata Murr., we measured respiration of small fine root segments in the field with a portable closed static chamber system. We found a significant power relationship between mean root diameter and respiration rate. Respiration rates of roots<0.4 mm in mean diameter were high and variable, ranging from 3.8 to 11.3 nmol CO2 g(-1) s(-1), compared with those of larger diameter roots (0.4-1.4 mm), which ranged from 1.8 to 3.0 nmol CO2 g(-1) s(-1). Fine root respiration rate was positively correlated with specific root length (SRL) as well as with root nitrogen (N) concentration. For roots<0.4 mm in diameter, SRL had a wider range (11.3-80.4 m g(-1)) and was more strongly correlated with respiration rate than diameter. Our results indicate that a more detailed classification of fine roots<2.0 mm is needed to represent the heterogeneity of root respiration and to evaluate root biomass and root morphological traits.
Remote sensing image denoising application by generalized morphological component analysis
NASA Astrophysics Data System (ADS)
Yu, Chong; Chen, Xiong
2014-12-01
In this paper, we introduced a remote sensing image denoising method based on generalized morphological component analysis (GMCA). This novel algorithm is the further extension of morphological component analysis (MCA) algorithm to the blind source separation framework. The iterative thresholding strategy adopted by GMCA algorithm firstly works on the most significant features in the image, and then progressively incorporates smaller features to finely tune the parameters of whole model. Mathematical analysis of the computational complexity of GMCA algorithm is provided. Several comparison experiments with state-of-the-art denoising algorithms are reported. In order to make quantitative assessment of algorithms in experiments, Peak Signal to Noise Ratio (PSNR) index and Structural Similarity (SSIM) index are calculated to assess the denoising effect from the gray-level fidelity aspect and the structure-level fidelity aspect, respectively. Quantitative analysis on experiment results, which is consistent with the visual effect illustrated by denoised images, has proven that the introduced GMCA algorithm possesses a marvelous remote sensing image denoising effectiveness and ability. It is even hard to distinguish the original noiseless image from the recovered image by adopting GMCA algorithm through visual effect.
NASA Astrophysics Data System (ADS)
Xu, Z.; Guan, K.; Peng, B.; Casler, N. P.; Wang, S. W.
2017-12-01
Landscape has complex three-dimensional features. These 3D features are difficult to extract using conventional methods. Small-footprint LiDAR provides an ideal way for capturing these features. Existing approaches, however, have been relegated to raster or metric-based (two-dimensional) feature extraction from the upper or bottom layer, and thus are not suitable for resolving morphological and intensity features that could be important to fine-scale land cover mapping. Therefore, this research combines airborne LiDAR and multi-temporal Landsat imagery to classify land cover types of Williamson County, Illinois that has diverse and mixed landscape features. Specifically, we applied a 3D convolutional neural network (CNN) method to extract features from LiDAR point clouds by (1) creating occupancy grid, intensity grid at 1-meter resolution, and then (2) normalizing and incorporating data into a 3D CNN feature extractor for many epochs of learning. The learned features (e.g., morphological features, intensity features, etc) were combined with multi-temporal spectral data to enhance the performance of land cover classification based on a Support Vector Machine classifier. We used photo interpretation for training and testing data generation. The classification results show that our approach outperforms traditional methods using LiDAR derived feature maps, and promises to serve as an effective methodology for creating high-quality land cover maps through fusion of complementary types of remote sensing data.
Shivali, B.; S., Kataria; Chandramouleeswari, K.; Anita, S.
2013-01-01
Myofibroblastoma (MFB) is a rare mesenchymal tumour, derived from mammary stromal fibro-myofibroblasts, with diverse biological and morphological behaviour. Large and cellular myofibroblastomas, especially those with epitheliod like cells, can mimic various spindle cell lesions and metaplastic carcinomas, thus posing diagnostic challenge. A 50–year woman presented with slow growing, painless lump in the left breast. Fine Needle Aspiration (FNA) smears showed predominant atypical spindle cell population, pleomorphic epithelial like cells and giant cells. Cytodiagnosis of atypical spindle cell lesion with the possibility of metaplastic carcinoma was suggested. Histopathological examination showed fascicles of spindle cell population admixed with epithelial like cells, atypical cells and tumour giant cells, thus raising differential diagnosis of metaplastic carcinoma, low grade spindle cell sarcoma and myofibroblastic tumour. Lymph nodes were negative for metastatic deposits. Immunohistochemistry revealed variable coexpression of markers for vimentin, fibronectin, CD34, SMA (smooth muscle actin), but negative expression for , S-100, CD99, CK7 (cytokeratin 7), HMWK (high molecular weight keratin), ER (oestrogen receptor) and PR(progesterone receptors). Diagnosis of cellular myofibroblastoma with mixed unusual morphological features was defined, based on both histological and immunohistochemical features. MFB may cause a potential diagnostic pitfall while interpreting FNA and histopathological sections due to its wide differential diagnosis. The distinction of MFB from its cytohistological mimics of malignancy is crucial to avoid unnecessary extensive procedures. The case report emphasizes the role of immunohistochemistry as gold standard in diagnosis of MFB. The case is also being presented because of its large size and rare mixed unusual morphological features. PMID:24298520
Mapping, fine mapping, and molecular dissection of quantitative trait Loci in domestic animals.
Georges, Michel
2007-01-01
Artificial selection has created myriad breeds of domestic animals, each characterized by unique phenotypes pertaining to behavior, morphology, physiology, and disease. Most domestic animal populations share features with isolated founder populations, making them well suited for positional cloning. Genome sequences are now available for most domestic species, and with them a panoply of tools including high-density single-nucleotide polymorphism panels. As a result, domestic animal populations are becoming invaluable resources for studying the molecular architecture of complex traits and of adaptation. Here we review recent progress and issues in the positional identification of genes underlying complex traits in domestic animals. As many phenotypes studied in animals are quantitative, we focus on mapping, fine mapping, and cloning of quantitative trait loci.
Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water
Hayashi, Hiromichi; Hakuta, Yukiya
2010-01-01
This paper summarizes specific features of supercritical hydrothermal synthesis of metal oxide particles. Supercritical water allows control of the crystal phase, morphology, and particle size since the solvent's properties, such as density of water, can be varied with temperature and pressure, both of which can affect the supersaturation and nucleation. In this review, we describe the advantages of fine particle formation using supercritical water and describe which future tasks need to be solved. PMID:28883312
NASA Astrophysics Data System (ADS)
Blau, P. J.; Howe, J. Y.; Coffey, D. W.; Trejo, R. M.; Kenik, E. D.; Jolly, B. C.; Yang, N.
2012-08-01
Fine holes in metal alloys are employed for many important technological purposes, including cooling and the precise atomization of liquids. For example, they play an important role in the metering and delivery of fuel to the combustion chambers in energy-efficient, low-emission diesel engines. Electro-discharge machining (EDM) is one process employed to produce such holes. Since the hole shape and bore morphology can affect fluid flow, and holes also represent structural discontinuities in the tips of the spray nozzles, it is important to understand the microstructures adjacent to these holes, the features of the hole walls, and the nanomechanical properties of the material that was in some manner altered by the EDM hole-making process. Several techniques were used to characterize the structure and properties of spray-holes in a commercial injector nozzle. These include scanning electron microscopy, cross sectioning and metallographic etching, bore surface roughness measurements by optical interferometry, scanning electron microscopy, and transmission electron microscopy of recast EDM layers extracted with the help of a focused ion beam.
Multisensor multiresolution data fusion for improvement in classification
NASA Astrophysics Data System (ADS)
Rubeena, V.; Tiwari, K. C.
2016-04-01
The rapid advancements in technology have facilitated easy availability of multisensor and multiresolution remote sensing data. Multisensor, multiresolution data contain complementary information and fusion of such data may result in application dependent significant information which may otherwise remain trapped within. The present work aims at improving classification by fusing features of coarse resolution hyperspectral (1 m) LWIR and fine resolution (20 cm) RGB data. The classification map comprises of eight classes. The class names are Road, Trees, Red Roof, Grey Roof, Concrete Roof, Vegetation, bare Soil and Unclassified. The processing methodology for hyperspectral LWIR data comprises of dimensionality reduction, resampling of data by interpolation technique for registering the two images at same spatial resolution, extraction of the spatial features to improve classification accuracy. In the case of fine resolution RGB data, the vegetation index is computed for classifying the vegetation class and the morphological building index is calculated for buildings. In order to extract the textural features, occurrence and co-occurence statistics is considered and the features will be extracted from all the three bands of RGB data. After extracting the features, Support Vector Machine (SVMs) has been used for training and classification. To increase the classification accuracy, post processing steps like removal of any spurious noise such as salt and pepper noise is done which is followed by filtering process by majority voting within the objects for better object classification.
Sorted bedforms developed on sandy lobes fed by small ephemeral streams (Catalan continental shelf)
NASA Astrophysics Data System (ADS)
Durán, R.; Guillén, J.; Muñoz, A.; Guerrero, Q.
2016-12-01
The morphology and sedimentological characteristics of sorted bedforms identified in the Catalan continental shelf (NW Mediterranean Sea) have been characterized using multibeam echosounder data and sediment samples collected in 2013 within the FORMED project. Bathymetric data was compared with previous data gathered in 2004 within the ESPACE project to assess the decadal stability of these bedforms. The sorted bedforms were observed on the inner shelf at water depths from 10 to 40 m, along a coastal stretch of more than 3 km. They are associated with elongated patches of low backscatter, corresponding to fine sand. The fine-grained sediment patches are located off small bays fed by short, intermittent streams, extending down to 40 m water depth. The sorted bedforms exhibit elongated shapes with subtle relief (up to 1 m) and are oriented nearly perpendicular to the shoreline. In cross-section, the sorted bedforms display lateral symmetry in bathymetric relief and backscatter, with high backscatter corresponding to poorly sorted coarse sand (median size of 0.55-0.96 mm) centered on the bathymetric depression, and low backscatter consisting of well-sorted fine to medium sand (median sized of 0.22-0.35 mm) on the crest. The local input of well-sorted fine sand supplied by ephemeral streams over the coarse sand domain of the infralittoral prograding wedge contributes to the bed sediment heterogeneity (mixture of sediment), which is further reorganized into sorted bedforms. The sorted bedforms are better developed in deeper waters (20-40 m) than near the shoreline, probably due to stronger wave forcing in the shallower shelf that prevents the maintenance of these morphologies. At a decadal time scale, the morphological evolution of these bedforms indicates that they are persistent features, showing small changes in their boundaries, which is in agreement with previous observations and numerical simulations that highlighted the persistence and long-term stability of sorted bedforms at water depths greater than 15-20 m over annual or even decadal timescales.
Geomorphic process fingerprints in submarine canyons
Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.
2013-01-01
Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.
NASA Astrophysics Data System (ADS)
Chan, Kwai H.; Lau, Rynson W.
1996-09-01
Image warping concerns about transforming an image from one spatial coordinate to another. It is widely used for the vidual effect of deforming and morphing images in the film industry. A number of warping techniques have been introduced, which are mainly based on the corresponding pair mapping of feature points, feature vectors or feature patches (mostly triangular or quadrilateral). However, very often warping of an image object with an arbitrary shape is required. This requires a warping technique which is based on boundary contour instead of feature points or feature line-vectors. In addition, when feature point or feature vector based techniques are used, approximation of the object boundary by using point or vectors is required. In this case, the matching process of the corresponding pairs will be very time consuming if a fine approximation is required. In this paper, we propose a contour-based warping technique for warping image objects with arbitrary shapes. The novel idea of the new method is the introduction of mathematical morphology to allow a more flexible control of image warping. Two morphological operators are used as contour determinators. The erosion operator is used to warp image contents which are inside a user specified contour while the dilation operation is used to warp image contents which are outside of the contour. This new method is proposed to assist further development of a semi-automatic motion morphing system when accompanied with robust feature extractors such as deformable template or active contour model.
Sopharak, Akara; Uyyanonvara, Bunyarit; Barman, Sarah
2013-01-01
Microaneurysms detection is an important task in computer aided diagnosis of diabetic retinopathy. Microaneurysms are the first clinical sign of diabetic retinopathy, a major cause of vision loss in diabetic patients. Early microaneurysm detection can help reduce the incidence of blindness. Automatic detection of microaneurysms is still an open problem due to their tiny sizes, low contrast and also similarity with blood vessels. It is particularly very difficult to detect fine microaneurysms, especially from non-dilated pupils and that is the goal of this paper. Simple yet effective methods are used. They are coarse segmentation using mathematic morphology and fine segmentation using naive Bayes classifier. A total of 18 microaneurysms features are proposed in this paper and they are extracted for naive Bayes classifier. The detected microaneurysms are validated by comparing at pixel level with ophthalmologists' hand-drawn ground-truth. The sensitivity, specificity, precision and accuracy are 85.68, 99.99, 83.34 and 99.99%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mesoporous inorganic nanoscale particles for drug adsorption and controlled release.
Cavallaro, Giuseppe; Lazzara, Giuseppe; Fakhrullin, Rawil
2018-03-01
The review provides an overview of the mesoporous inorganic particles employed as drug delivery systems for controlled and sustained release of drugs. We have classified promising nanomaterials for drug delivery on the basis of their natural or synthetic origin. Nanoclays are available in different morphologies (nanotubes, nanoplates and nanofibers) and they are typically available at low cost from natural resources. The surface chemistry of nanoclays is versatile for targeted modifications to control loading and release properties. Synthetic nanomaterials (imogolite, laponite and mesoporous silica) present the advantages of well-established purity and availability with size features that are finely controlled. Both nanoclays and inorganic synthetic nanoparticles can be functionalized forming organic/inorganic architectures with stimuli-responsive features.
Choi, Sora; Kim, Taeho; Ji, Hoyeon; Lee, Hee Jung; Oh, Moonhyun
2016-11-02
The growth of one metal-organic framework (MOF) on another MOF for constructing a heterocompositional hybrid MOF is an interesting research topic because of the curiosity regarding the occurrence of this phenomenon and the value of hybrid MOFs as multifunctional materials or routes for fine-tuning MOF properties. In particular, the anisotropic growth of MOF on MOF is fascinating for the development of MOFs possessing atypical shapes and heterostructures or abnormal properties. Herein, we clarify the understanding of growth behavior of a secondary MOF on an initial MOF template, such as isotropic or anisotropic ways associated with their cell parameters. The isotropic growth of MIL-68-Br on the MIL-68 template results in the formation of core-shell-type MIL-68@MIL-68-Br. However, the unique anisotropic growth of a secondary MOF (MOF-NDC) on the MIL-68 template results in semitubular particles, and structural features of this unknown secondary MOF are successfully speculated for the first time on the basis of its unique growth behavior and morphological characteristics. Finally, the validation of this structural speculation is verified by the powder X-ray diffraction and the selected area electron diffraction studies. The results suggests that the growth behavior and morphological features of MOFs should be considered to be important factors for understanding the MOFs' structures.
Bakker, M R; Jolicoeur, E; Trichet, P; Augusto, L; Plassard, C; Guinberteau, J; Loustau, D
2009-02-01
Effects of fertilization and irrigation on fine roots and fungal hyphae were studied in 13-year-old maritime pine (Pinus pinaster Aït. in Soland), 7 years after the initiation of the treatments. The fertilization trials consisted of a phosphorus treatment, a complete fertilizer treatment (N, P, K, Ca and Mg), and an unfertilized treatment (control). Fertilizers were applied annually and were adjusted according to foliar target values. Two irrigation regimes (no irrigation and irrigation of a set amount each day) were applied from May to October. Root samples to depths of 120 cm were collected in summer of 2005, and the biomass of small roots (diameter 2-20 mm) and fine roots (diameter = 2 mm) and fine root morphology were assessed. Biomass and length of hyphae were studied by a mesh ingrowth bag technique. Total fine root biomass in the litter and in the 0-120 cm soil profile ranged between 111 and 296 g m(-2). Results derived from the measurements of biomass and root length, or root area, showed that both fertilizer treatments reduced the size of the fine root system, especially in the top soil layers, but did not affect small roots. Compared with control treatments, fine root morphology was affected by both fertilizer treatments with the fine roots having increased specific root length/area, and irrigation tended to reinforce this finer morphology. The amount of hyphae in the mesh ingrowth bags was higher in the fertilization and irrigation treatments than in the controls, suggesting further extension of the root system (ectomycorrhizal infection) and thus of the uptake system. Irrigation had no significant effect on the size of the fine root system, but resulted in a shallower rooting system. Total root to shoot ratios were unaffected by the treatments, but fine root mass:needle mass and fine root area index:leaf area index ratios decreased with increasing nutrient supply. Overall, compared with the control fine roots, increased nutrient supply resulted in a lower fine root biomass but the dynamic fraction of the finest roots was greater. Irrigation had only limited effects on fine root size, distribution and morphology.
Comparative ultrastructure of vallate, foliate and fungiform taste buds of golden Syrian hamster.
Miller, R L; Chaudhry, A P
1976-01-01
A fine-structure study of the hamster fungiform, foliate and vallate taste buds was undertaken for comparative purposes. All three taste bud types shared in common composition of the dark cells, light cells, basal cells, nerve fibers and nerve endings and undifferentiated peripheral cells, but morphological difference existed among them. The foliate and vallate taste buds were quite similar in their ultrastructural morphology. Their dark cells displayed long apical necks, long apical microvilli, apical osmiophilic secretory granules and an abundant rough endoplasmic reticulum. The dark cells of the fungiform taste buds, however, showed no neck formation and lacked apical osmiophilic granules. They had short apical microvilli and relatively scant rough endoplasmic reticulum. There was no difference in the fine structure features of the light cells, basal cells and neural elements of different types of taste buds. Both light and dark cells were much more readily distinguishable in foliate and vallate buds than in fungiform buds at both light-and electron-microscopic levels. Foliate and vallate buds demonstrated homogeneous dense substance within the taste pores while fungiform pores were frequently empty. It is speculated that the differences in taste bud morphology may be due to their different lingual locations and/or may be a reflection of the differences in the inductive influences from different nerves. Furthermore, structural differences may be responsible for varying thresholds to different taste modalities.
Linking fine root morphology, hydraulic functioning, and shade tolerance of trees
USDA-ARS?s Scientific Manuscript database
Understanding root traits and trade-offs in their functioning is important for understanding plant functioning in natural ecosystems as well as agricultural systems. The aim of the present study was to determine the relationship between root morphology and the hydraulic characteristics of fine roots...
The role of bedrock in creating habitat in temperate watercourses
NASA Astrophysics Data System (ADS)
Entwistle, N. S.; Heritage, G. L.; Milan, D. J.
2016-12-01
Bedrock influenced rivers are a relatively common yet little studied river type across temperate regions, occurring predominantly in upland areas and in areas where isostatic rebound has promoted rapid watercourse downcutting through resistant bedrock. The presence of bedrock in the bed and banks exerts a major influence on channel development, controlling local flow hydraulics and subsequently influencing in-channel and valley bottom sedimentary feature development. This paper summarises extensive field audit evidence of bedrock influenced features on watercourses in the UK to characterise the diverse morphology of bedrock influenced channels and reviews the bedrock induced hydraulic influences on their development and maintenance. Such features include bedrock waterfalls, steps, rapids and cascades and associated alluvial deposits forming lee bars, bedrock obstruction bars, plunge pool bars and fine sediment drapes and veneers. Bedrock influence on valley bottom features is also reviewed and a functional typology is developed for this river type based on the feature assemblage and degree of bedrock/alluvial influence.
Eolian features in the Western Desert of Egypt and some applications to Mars.
El-Baz, F.; Breed, C.S.; Grolier, M.J.; McCauley, J.F.
1979-01-01
Relations of landform types to wind regimes, bedrock composition, sediment supply, and topography are shown by field studies and satellite photographs of the Western Desert. This desert provides analogs of Martian wind-formed features and sand dunes, alternating light and dark streaks, knob 'shadows' and yardangs. Surface particles have been segregated by wind into dunes, sand sheets, and light streaks, that can be differentiated by their grain size distributions, surface shapes, and colors. Throughgoing sand of mostly fine to medium grain size is migrating S in longitudinal dune belts and barchan chains whose long axes lie parallel to the prevailing W winds, but topographic variations such as scarps and depressions strongly influence the zones of deposition and dune morphology. -from Authors
Sukhikh, Natalia; Souissi, Anissa; Souissi, Sami; Winkler, Gesche; Castric, Vincent; Holl, Anne-Catherine; Alekseev, Victor
2016-01-01
Our understanding of the systematics of the Eurytemora affinis complex developed at a fast pace over the last decades. Formerly considered as a complex of cryptic species, it is now believed to include three valid species: E. affinis, Eurytemora carolleeae, and Eurytemora caspica. American and European representatives have been studied in detail with respect to fine-scale geographic distribution, levels of genetic subdivision, evolutionary and demographic histories. Morphological components have been less explored. In this study, an analysis of the phylogeny and morphology of E. affinis was done, with a special focus on European populations. A total of 447 individuals of E. affinis from Europe were analyzed with genetic tools and 170 individuals according to morphological criteria. Common and new morphological and genetic features were analyzed. For this, we used ML and Bayesian methods to analyze the bar coding mt-DNA gene cytochrome c oxidase I subunit. Both genetic and morphological analyses showed high heterogeneities among the E. affinis populations from Europe. As a result, three local populations of E. affinis in Western Europe, including the European part of Russia, were established. Their genetic and morphological heterogeneity corresponded to the subspecies level. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Jagodzinski, Andrzej M.; Ziółkowski, Jędrzej; Warnkowska, Aleksandra; Prais, Hubert
2016-01-01
There are few data on fine root biomass and morphology change in relation to stand age. Based on chronosequences for beech (9–140 years old), oak (11–140 years) and alder (4–76 years old) we aimed to examine how stand age affects fine root biomass and morphology. Soil cores from depths of 0–15 cm and 16–30 cm were used for the study. In contrast to previously published studies that suggested that maximum fine root biomass is reached at the canopy closure stage of stand development, we found almost linear increases of fine root biomass over stand age within the chronosequences. We did not observe any fine root biomass peak in the canopy closure stage. However, we found statistically significant increases of mean fine root biomass for the average individual tree in each chronosequence. Mean fine root biomass (0–30 cm) differed significantly among tree species chronosequences studied and was 4.32 Mg ha-1, 3.71 Mg ha-1 and 1.53 Mg ha-1, for beech, oak and alder stands, respectively. The highest fine root length, surface area, volume and number of fine root tips (0–30 cm soil depth), expressed on a stand area basis, occurred in beech stands, with medium values for oak stands and the lowest for alder stands. In the alder chronosequence all these values increased with stand age, in the beech chronosequence they decreased and in the oak chronosequence they increased until ca. 50 year old stands and then reached steady-state. Our study has proved statistically significant negative relationships between stand age and specific root length (SRL) in 0–30 cm soil depth for beech and oak chronosequences. Mean SRLs for each chronosequence were not significantly different among species for either soil depth studied. The results of this study indicate high fine root plasticity. Although only limited datasets are currently available, these data have provided valuable insight into fine root biomass and morphology of beech, oak and alder stands. PMID:26859755
Redelstein, Regine; Dinter, Thomas; Hertel, Dietrich; Leuschner, Christoph
2018-01-01
Saltmarsh plants are exposed to multiple stresses including tidal inundation, salinity, wave action and sediment anoxia, which require specific root system adaptations to secure sufficient resource capture and firm anchorage in a temporary toxic environment. It is well known that many saltmarsh species develop large below-ground biomass (roots and rhizomes) but relations between fine roots, in particular, and the abiotic conditions in salt marshes are widely unknown. We studied fine root mass (<2 mm in diameter), fine root depth distribution and fine root morphology in three typical communities (Spartina anglica-dominated pioneer zone, Atriplex portulacoides-dominated lower marsh, Elytrigia atherica-dominated upper marsh) across elevational gradients in two tidal salt marshes of the German North Sea coast [a mostly sandy marsh on a barrier island (Spiekeroog), and a silty-clayey marsh on the mainland coast (Westerhever)]. Fine root mass in the 0–40 cm profile ranged between 750 and 2,500 g m−2 in all plots with maxima at both sites in the lower marsh with intermediate inundation frequency and highest plant species richness indicating an effect of biodiversity on fine root mass. Fine root mass and, even more, total fine root surface area (maximum 340 m2 m−2) were high compared to terrestrial grasslands, and were greater in the nutrient-poorer Spiekeroog marsh. Fine root density showed only a slight or no decrease toward 40 cm depth. We conclude that the standing fine root mass and morphology of these salt marshes is mainly under control of species identity and nutrient availability, but species richness is especially influential. The plants of the pioneer zone and lower marsh possess well adapted fine roots and large standing root masses despite the often water-saturated sediment. PMID:29467778
5. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
5. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING NORTH-NORTHEAST. OFFICE/WAREHOUSE (FEATURE 23) SHOWN ON LEFT EDGE OF PHOTOGRAPH. HEADFRAME AND STORAGE TANKS (FEATURE 18) AND CRUSHING PLANT (FEATURE 19) VISIBLE IN BACKGROUND. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
Machine vision system for measuring conifer seedling morphology
NASA Astrophysics Data System (ADS)
Rigney, Michael P.; Kranzler, Glenn A.
1995-01-01
A PC-based machine vision system providing rapid measurement of bare-root tree seedling morphological features has been designed. The system uses backlighting and a 2048-pixel line- scan camera to acquire images with transverse resolutions as high as 0.05 mm for precise measurement of stem diameter. Individual seedlings are manually loaded on a conveyor belt and inspected by the vision system in less than 0.25 seconds. Designed for quality control and morphological data acquisition by nursery personnel, the system provides a user-friendly, menu-driven graphical interface. The system automatically locates the seedling root collar and measures stem diameter, shoot height, sturdiness ratio, root mass length, projected shoot and root area, shoot-root area ratio, and percent fine roots. Sample statistics are computed for each measured feature. Measurements for each seedling may be stored for later analysis. Feature measurements may be compared with multi-class quality criteria to determine sample quality or to perform multi-class sorting. Statistical summary and classification reports may be printed to facilitate the communication of quality concerns with grading personnel. Tests were conducted at a commercial forest nursery to evaluate measurement precision. Four quality control personnel measured root collar diameter, stem height, and root mass length on each of 200 conifer seedlings. The same seedlings were inspected four times by the machine vision system. Machine stem diameter measurement precision was four times greater than that of manual measurements. Machine and manual measurements had comparable precision for shoot height and root mass length.
Brock, John C.; Krabill, William; Sallenger, Asbury H.
2004-01-01
In order to reap the potential of airborne lidar surveys to provide geological information useful in understanding coastal sedimentary processes acting on various time scales, a new set of analysis methods are needed. This paper presents a multi-temporal lidar analysis of north Assateague Island, Maryland, and demonstrates the calculation of lidar metrics that condense barrier island morphology and morphological change into attributed linear features that may be used to analyze trends in coastal evolution. The new methods proposed in this paper are also of significant practical value, because lidar metric analysis reduces large volumes of point elevations into linear features attributed with essential morphological variables that are ideally suited for inclusion in Geographic Information Systems. A morphodynamic classification of north Assategue Island for a recent 10 month time period that is based on the recognition of simple patterns described by lidar change metrics is presented. Such morphodynamic classification reveals the relative magnitude and the fine scale alongshore variation in the importance of coastal changes over the study area during a defined time period. More generally, through the presentation of this morphodynamic classification of north Assateague Island, the value of lidar metrics in both examining large lidar data sets for coherent trends and in building hypotheses regarding processes driving barrier evolution is demonstrated
NASA Astrophysics Data System (ADS)
Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra
2016-02-01
A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g-1 is realized for the optimised case of binary doping over the entire range of 1 A g-1 to 40 A g-1 with stability of 500 cycles at 40 A g-1. Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.
Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra
2016-02-12
A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g(-1) is realized for the optimised case of binary doping over the entire range of 1 A g(-1) to 40 A g(-1) with stability of 500 cycles at 40 A g(-1). Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.
Wang, Wei-Wei; Huang, Jin-Xue; Chen, Feng; Xiong, De-Cheng; Lu, Zheng-Li; Huang, Chao-Chao; Yang, Zhi-Jie; Chen, Guang-Shui
2014-02-01
Fine roots in the Castanopsis carlesii plantation forest (MZ), the secondary forest of C. carlesii through natural regeneration with anthropogenic promotion (AR), and the secondary forest of C. carlesii through natural regeneration (NR) in Sanming City, Fujian Province, were estimated by soil core method to determine the influence of tree species diversity on biomass, vertical distribution and morphological characteristics of fine roots. The results showed that fine root biomass for the 0-80 cm soil layer in the MZ, AR and NR were (182.46 +/- 10.81), (242.73 +/- 17.85) and (353.11 +/- 16.46) g x m(-2), respectively, showing an increased tendency with increasing tree species diversity. In the three forests, fine root biomass was significantly influenced by soil depth, and fine roots at the 0-10 cm soil layer accounted for more than 35% of the total fine root biomass. However, the interaction of stand type and soil depth on fine-root distribution was not significant, indicating no influence of tree species diversity on spatial niche segregation in fine roots. Root surface area density and root length density were the highest in NR and lowest in the MZ. Specific root length was in the order of AR > MZ > NR, while specific root surface area was in the order of NR > MZ > AR. There was no significant interaction of stand type and soil depth on specific root length and specific root surface area. Fine root morphological plasticity at the stand level had no significant response to tree species diversity.
Non-gynecologic cytology on liquid-based preparations: A morphologic review of facts and artifacts.
Hoda, Rana S
2007-10-01
Liquid-based preparations (LBP) are increasingly being used both for gynecologic (gyn) and non-gynecologic (non-gyn) cytology including fine needle aspirations (FNA). The two FDA-approved LBP currently in use include ThinPrep (TP), (Cytyc Corp, Marlborough, MA) and SurePath (SP), (TriPath Imaging Inc., Burlington, NC). TP was approved for cervico-vaginal (Pap test) cytology in 1996 and SP in 1999 and both have since also been used for non-gyn cytology. In the LBP, instead of being smeared, cells are rinsed into a liquid preservative collection medium and processed on automated devices. Even after a decade of use, the morphological interpretation of LBP remains a diagnostic challenge because of somewhat altered morphology and artifacts or facts resulting from the fixation and processing techniques. These changes include cleaner background with altered or reduced background and extracellular elements; architectural changes such as smaller cell clusters and sheets, breakage of papillae; altered cell distribution with more dyscohesion and changes in cellular morphology with enhanced nuclear features, smaller cell size and slightly more three-dimensional (3-D) clusters. Herein, we review the published literature on morphological aspects of LBP for non-gyn cytology. (c) 2007 Wiley-Liss, Inc.
Ford, Antonia G P; Rüber, Lukas; Newton, Jason; Dasmahapatra, Kanchon K; Balarin, John D; Bruun, Kristoffer; Day, Julia J
2016-12-01
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype-environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large-scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Interannual variability of sorted bedforms in the coastal German Bight (SE North Sea)
NASA Astrophysics Data System (ADS)
Mielck, F.; Holler, P.; Bürk, D.; Hass, H. C.
2015-12-01
Sorted bedforms are ubiquitous on the inner continental shelves worldwide. They are described as spatially-grain-size-sorted features consisting of small rippled medium-to-coarse sand and can remain stable for decades. However, the knowledge about their genesis and development is still fragmentary. For this study, a representative investigation area (water depth<15 m) located on the shelf west of the island of Sylt (SE North Sea, Germany) was periodically surveyed with hydroacoustic means (i.e. sidescan sonar, multibeam echo sounder, and sub-bottom profiler) during 2010-2014. Since this area is influenced by tidal and wind-driven currents, the aim was to detect and examine interannual variabilities in the characteristics of the prevailing sorted bedforms. Our measurements reveal sinuous stripes of rippled medium sand which are embedded in shallow symmetrical depressions. These domains are surrounded by relatively smooth fine-sand areas. These sorted bedforms were identified as flow-transverse features that are maintained by ebb and flood currents of almost equal strengths that flow in opposite directions. This bidirectional flow field generates sharp boundaries between the medium- and fine-sand domains in both current directions. Further to the north, where flood currents are dominant, asymmetric sorted bedforms were detected which show sharp boundaries only in flood-current direction. Comparisons between the measurements of the different years show no significant variations in morphology and distribution of the sorted bedforms. However, variations of the boundaries between the medium and the fine-sand domains were observed. Additionally, new minor sorted bedforms and rippled excavation marks as well as new fine-sand areas developed and disappeared occasionally. It can be supposed that such sediment winnowing and focusing processes take place during periodically recurring storm surges, which change the shapes of the features. Moreover, variations in alignments and sizes of the small ripple formations were detected. They seem to indicate the directions and intensities of previous storm events.
Pan, Zhengwei; Lerch, Sarah J. L.; Xu, Liang; Li, Xufan; Chuang, Yen-Jun; Howe, Jane Y.; Mahurin, Shannon M.; Dai, Sheng; Hildebrand, Mark
2014-01-01
The morphogenesis of the silica cell walls (called frustules) of unicellular algae known as diatoms is one of the most intriguing mysteries of the diatoms. To study frustule morphogenesis, optical, electron and atomic force microscopy has been extensively used to reveal the frustule morphology. However, since silica frustules are opaque, past observations were limited to outer and fracture surfaces, restricting observations of interior structures. Here we show that opaque silica frustules can be converted into electronically transparent graphene replicas, fabricated using chemical vapor deposition of methane. Chemical vapor deposition creates a continuous graphene coating preserving the frustule's shape and fine, complicated internal features. Subsequent dissolution of the silica with hydrofluoric acid yields a free-standing replica of the internal and external native frustule morphologies. Electron microscopy renders these graphene replicas highly transparent, revealing previously unobserved, complex, three-dimensional, interior frustule structures, which lend new insights into the investigation of frustule morphogenesis. PMID:25135739
Interactive Exploration for Continuously Expanding Neuron Databases.
Li, Zhongyu; Metaxas, Dimitris N; Lu, Aidong; Zhang, Shaoting
2017-02-15
This paper proposes a novel framework to help biologists explore and analyze neurons based on retrieval of data from neuron morphological databases. In recent years, the continuously expanding neuron databases provide a rich source of information to associate neuronal morphologies with their functional properties. We design a coarse-to-fine framework for efficient and effective data retrieval from large-scale neuron databases. In the coarse-level, for efficiency in large-scale, we employ a binary coding method to compress morphological features into binary codes of tens of bits. Short binary codes allow for real-time similarity searching in Hamming space. Because the neuron databases are continuously expanding, it is inefficient to re-train the binary coding model from scratch when adding new neurons. To solve this problem, we extend binary coding with online updating schemes, which only considers the newly added neurons and update the model on-the-fly, without accessing the whole neuron databases. In the fine-grained level, we introduce domain experts/users in the framework, which can give relevance feedback for the binary coding based retrieval results. This interactive strategy can improve the retrieval performance through re-ranking the above coarse results, where we design a new similarity measure and take the feedback into account. Our framework is validated on more than 17,000 neuron cells, showing promising retrieval accuracy and efficiency. Moreover, we demonstrate its use case in assisting biologists to identify and explore unknown neurons. Copyright © 2017 Elsevier Inc. All rights reserved.
Fine-needle aspiration cytology of intraductal papillary-mucinous tumors: a retrospective analysis.
Layfield, Lester J; Cramer, Harvey
2005-01-01
Intraductal papillary-mucinous tumor (IPMT) of the pancreas has become the accepted terminology for a group of mucin-producing epithelial proliferations lying within ectatic segments of the main pancreatic duct or its large branches. These neoplasms generally are associated with an indolent course, characteristic endoscopic ultrasonographic (EUS) findings, and a variable histo- and cytomorphology ranging from hyperplasia to carcinoma. Cytological specimens obtained by endoscopic ultrasound-guided or percutaneous fine-needle aspiration (FNA) are characterized by a background containing abundant mucin in which are entrapped single or loosely cohesive clusters of neoplastic cells characteristically showing a goblet-cell morphology. The degree of nuclear atypia, cell crowding, and cell shape varies between smears within a single case and between cases. Cytomorphological examination, when coupled with EUS features, is accurate for the diagnosis of these lesions but often it underdiagnoses the grade of the neoplasm. (c) 2005 Wiley-Liss, Inc.
1. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
1. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING SOUTH. CONCRETE BASE FOR FUEL TANKS (FEATURE 21) VISIBLE IN FOREGROUND. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
System and method for the detection of anomalies in an image
Prasad, Lakshman; Swaminarayan, Sriram
2013-09-03
Preferred aspects of the present invention can include receiving a digital image at a processor; segmenting the digital image into a hierarchy of feature layers comprising one or more fine-scale features defining a foreground object embedded in one or more coarser-scale features defining a background to the one or more fine-scale features in the segmentation hierarchy; detecting a first fine-scale foreground feature as an anomaly with respect to a first background feature within which it is embedded; and constructing an anomalous feature layer by synthesizing spatially contiguous anomalous fine-scale features. Additional preferred aspects of the present invention can include detecting non-pervasive changes between sets of images in response at least in part to one or more difference images between the sets of images.
Comparison of the Cellient(™) automated cell block system and agar cell block method.
Kruger, A M; Stevens, M W; Kerley, K J; Carter, C D
2014-12-01
To compare the Cellient(TM) automated cell block system with the agar cell block method in terms of quantity and quality of diagnostic material and morphological, histochemical and immunocytochemical features. Cell blocks were prepared from 100 effusion samples using the agar method and Cellient system, and routinely sectioned and stained for haematoxylin and eosin and periodic acid-Schiff with diastase (PASD). A preliminary immunocytochemical study was performed on selected cases (27/100 cases). Sections were evaluated using a three-point grading system to compare a set of morphological parameters. Statistical analysis was performed using Fisher's exact test. Parameters assessing cellularity, presence of single cells and definition of nuclear membrane, nucleoli, chromatin and cytoplasm showed a statistically significant improvement on Cellient cell blocks compared with agar cell blocks (P < 0.05). No significant difference was seen for definition of cell groups, PASD staining or the intensity or clarity of immunocytochemical staining. A discrepant immunocytochemistry (ICC) result was seen in 21% (13/63) of immunostains. The Cellient technique is comparable with the agar method, with statistically significant results achieved for important morphological features. It demonstrates potential as an alternative cell block preparation method which is relevant for the rapid processing of fine needle aspiration samples, malignant effusions and low-cellularity specimens, where optimal cell morphology and architecture are essential. Further investigation is required to optimize immunocytochemical staining using the Cellient method. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ventra, Dario; Rodríguez-López, Juan Pedro; de Boer, Poppe L.
2017-05-01
The origin of topographically controlled aeolian landforms in high-relief settings is difficult to synthesize under general models, given the dependence of such accumulations on local morphology. Quaternary sand ramps have been linked to palaeoclimate, regional geomorphology and wind patterns; however, controls on the early development and preservation of such landforms are poorly known. This study describes the morphology and sedimentology of complex sedimentary aprons along steep coastal slopes in the Atacama Desert (Chile). Direct slope accessibility and continuous stratigraphic exposures enable comparisons between active processes and stratigraphic signatures. Stratigraphic facies distribution and its links with patterns of aeolian deposition show that the preservation of wind-laid sediments depends on the morphology and processes of specific slope sectors. The spatial organization of runoff depends on bedrock configuration and directly controls the permanence or erosion of aeolian sediment. The occurrence of either water or mass flows depends on the role of aeolian fines in the rheology of flash floods. In turn, the establishment of a rugged surface topography controlled by patterns of mass-flow deposition creates local accommodation for aeolian fines, sustaining the initial aggradation of a colluvial-aeolian system. By contrast, slopes subject to runoff develop a thin, extensive aeolian mantle whose featureless surface is subject mostly to sediment bypass down- and across-slope; the corresponding stratigraphic record comprises almost exclusively thin debris-flow and sheetflood deposits. Slope morphology and processes are fundamental in promoting or inhibiting aeolian aggradation in mountain settings. Long-term sand-ramp construction depends on climate and regional topography, but the initial development is probably controlled by local geomorphic factors. The observed interactions between wind and topography in the study area may also represent a process analogue for the interpretation of similar geomorphic features on Mars.
Analyzing surface features on icy satellites using a new two-layer analogue model
NASA Astrophysics Data System (ADS)
Morales, K. M.; Leonard, E. J.; Pappalardo, R. T.; Yin, A.
2017-12-01
The appearance of similar surface morphologies across many icy satellites suggests potentially unified formation mechanisms. Constraining the processes that shape the surfaces of these icy worlds is fundamental to understanding their rheology and thermal evolution—factors that have implications for potential habitability. Analogue models have proven useful for investigating and quantifying surface structure formation on Earth, but have only been sparsely applied to icy bodies. In this study, we employ an innovative two-layer analogue model that simulates a warm, ductile ice layer overlain by brittle surface ice on satellites such as Europa and Enceladus. The top, brittle layer is composed of fine-grained sand while the ductile, lower viscosity layer is made of putty. These materials were chosen because they scale up reasonably to the conditions on Europa and Enceladus. Using this analogue model, we investigate the role of the ductile layer in forming contractional structures (e.g. folds) that would compensate for the over-abundance of extensional features observed on icy satellites. We do this by simulating different compressional scenarios in the analogue model and analyzing whether the resulting features resemble those on icy bodies. If the resulting structures are similar, then the model can be used to quantify the deformation by calculating strain. These values can then be scaled up to Europa or Enceladus and used to quantity the observed surface morphologies and the amount of extensional strain accommodated by certain features. This presentation will focus on the resulting surface morphologies and the calculated strain values from several analogue experiments. The methods and findings from this work can then be expanded and used to study other icy bodies, such as Triton, Miranda, Ariel, and Pluto.
NASA Astrophysics Data System (ADS)
Kose, Kivanc; Bozkurt, Alican; Ariafar, Setareh; Alessi-Fox, Christi A.; Gill, Melissa; Dy, Jennifer G.; Brooks, Dana H.; Rajadhyaksha, Milind
2017-02-01
In this study we present a deep learning based classification algorithm for discriminating morphological patterns that appear in RCM mosaics of melanocytic lesions collected at the dermal epidermal junction (DEJ). These patterns are classified into 6 distinct types in the literature: background, meshwork, ring, clod, mixed, and aspecific. Clinicians typically identify these morphological patterns by examination of their textural appearance at 10X magnification. To mimic this process we divided mosaics into smaller regions, which we call tiles, and classify each tile in a deep learning framework. We used previously acquired DEJ mosaics of lesions deemed clinically suspicious, from 20 different patients, which were then labelled according to those 6 types by 2 expert users. We tried three different approaches for classification, all starting with a publicly available convolutional neural network (CNN) trained on natural image, consisting of a series of convolutional layers followed by a series of fully connected layers: (1) We fine-tuned this network using training data from the dataset. (2) Instead, we added an additional fully connected layer before the output layer network and then re-trained only last two layers, (3) We used only the CNN convolutional layers as a feature extractor, encoded the features using a bag of words model, and trained a support vector machine (SVM) classifier. Sensitivity and specificity were generally comparable across the three methods, and in the same ranges as our previous work using SURF features with SVM . Approach (3) was less computationally intensive to train but more sensitive to unbalanced representation of the 6 classes in the training data. However we expect CNN performance to improve as we add more training data because both the features and the classifier are learned jointly from the data. *First two authors share first authorship.
3. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
3. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING SOUTHWEST. DUPLEXES (FEATURES 8 AND 9) ARE VISIBLE AT RIGHT EDGE OF PHOTOGRAPH. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
Fujiyoshi, T; Mogi, G; Watanabe, T; Matsushita, F
1992-01-01
Using a novel method of cutting undecalcified temporal bone specimens, quantitative structural analysis in the human and the Japanese monkey was undertaken. One millimeter thick serial slices made from unembedded temporal bones retained fine structure. Therefore, gross to fine observation could be performed systematically at the macroscopic, light, scanning, and transmission electron microscopic levels. The entire temporal bone three-dimensional reconstruction was completed from embedded sections; consequently, the volume of the tubotympanum and air cell system could be calculated. Available methods by embedding, tungsten carbide sectioning, grinding, and microwave irradiation for decalcification were also examined. These morphologic studies suggest that these novel methods offer timesaving advantages over any presently available techniques, and allow for elucidation of temporal bone morphology with only a few specimens.
NASA Astrophysics Data System (ADS)
Gad, Gunnar
2004-02-01
A new genus and species of Nanaloricidae (Loricifera), Phoeniciloricus simplidigitatus, is described inhabiting fine sand covered by a layer of volcanic ash at a water depth of 1,813 m in the New Ireland Basin near the Kilinailau Trench (north of Papua New Guinea). The described specimen is a postlarva enclosed in a larval exuvium. This is the first report of a species belonging to the Nanaloricidae from the deep sea. This occurrence is surprising, because Nanaloricidae are typical inhabitants of coarse sands in the intertidal or littoral zone. Preference for these shallow water habitats is reflected in many morphological features which characterize the Nanaloricidae, and are not normally found in Loricifera inhabiting fine-grained, clayish, deep-sea bottoms. The postlarva of the new species is characterized by a long narrow mouth tube, an urn-shaped lorica divided into ten plates, and 13 small lorica spikes. Distinguishing features of the Higgins-larva include short spinose toes lacking mucros but having small and slightly enlarged bases, short scalids on the introvert, many thoracic plates arranged in 6-8 rows, numerous small papillate flosculi in the collar and caudal regions, and three pairs of filiform, short locomotory appendages on the ventral side. Some features of the new species, especially of the Higgins-larva, are discussed as adaptations to the deep-sea environment.
2. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
2. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING NORTH-NORTHWEST. PORTION OF HEADFRAME AND STORAGE TANKS (FEATURE 18) VISIBLE IN UPPER RIGHT CORNER OF PHOTOGRAPH. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
Fine-Scale Population Estimation by 3D Reconstruction of Urban Residential Buildings
Wang, Shixin; Tian, Ye; Zhou, Yi; Liu, Wenliang; Lin, Chenxi
2016-01-01
Fine-scale population estimation is essential in emergency response and epidemiological applications as well as urban planning and management. However, representing populations in heterogeneous urban regions with a finer resolution is a challenge. This study aims to obtain fine-scale population distribution based on 3D reconstruction of urban residential buildings with morphological operations using optical high-resolution (HR) images from the Chinese No. 3 Resources Satellite (ZY-3). Specifically, the research area was first divided into three categories when dasymetric mapping was taken into consideration. The results demonstrate that the morphological building index (MBI) yielded better results than built-up presence index (PanTex) in building detection, and the morphological shadow index (MSI) outperformed color invariant indices (CIIT) in shadow extraction and height retrieval. Building extraction and height retrieval were then combined to reconstruct 3D models and to estimate population. Final results show that this approach is effective in fine-scale population estimation, with a mean relative error of 16.46% and an overall Relative Total Absolute Error (RATE) of 0.158. This study gives significant insights into fine-scale population estimation in complicated urban landscapes, when detailed 3D information of buildings is unavailable. PMID:27775670
Fine morphology of frontal filaments in nauplii of cirriped crustaceans.
Obukhova, A L; Voronezhskaya, E E; Malakhov, V V
2016-05-01
Fine morphology of the frontal filaments (FFs) at all nauplius stages of two barnacle species (Verruca stroemia and Hesperibalanus hesperius) has been investigated by scanning electron microscopy. FFs have been detected at the second nauplius stage and persist during all stages. FFs contain a wide proximal and a fine distal parts, but they are not actually separated as segments of the limbs, and the area between them looks like a single cuticular crease. Apical and subapical pores have been found at the top of each FF in the larvae of both species, which may indicate the chemoreceptor function of these organs.
Changes in very fine root respiration and morphology with time since last fire in a boreal forest
NASA Astrophysics Data System (ADS)
Makita, Naoki; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank
2016-04-01
We examined the physiological and morphological responses of individual fine root segments in boreal forests stands with different age since the last fire to determine changes in specific fine root respiration and morphological traits during forest succession. We investigated the respiration of fine roots divided into three diameter classes (<0.5, 0.5-1.0, and 1.0-2.0 mm) in a Finnish boreal Pinus sylvestris L. in forest stands with 5, 45, 63, and 155 years since the last fire. Specific respiration rates of <0.5 mm roots in 155-year-old stands were 74%, 38%, and 31% higher than in 5-, 45-, and 63-year-old stands, respectively. However, the respiration rates of thicker diameter roots did not significantly change among stands with respect to time after fire. Similarly, fire disturbance had a strong impact on morphological traits of <0.5 mm roots, but not on thicker roots. Root respiration rates correlated positively with specific root length (length per unit mass) and negatively with root tissue density (mass per unit volume) in all stand ages. The linear regression lines fitted to the relationships between root respiration and specific root length or root tissue density showed significantly higher intercepts in 63- and 155-year-old than in 5-year-old stands. Significant shifts in the intercept of the common slope of respiration vs. morphology indicate the different magnitude of the changes in physiological performance among the fire age class. Despite a specific small geographic area, we suggest that the recovery of boreal forests following wildfire induces a strategy that favors carbon investment in nutrient and water exploitation efficiency with consequences for higher respiration, length, and lower tissue density of very fine roots.
4. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), ...
4. VIEW OF RUINS OF FINE ORE MILL (FEATURE 20), FACING SOUTHEAST. - Copper Canyon Camp of the International Smelting & Refining Company, Ruins of the Fine Ore Mill, Copper Canyon, Battle Mountain, Lander County, NV
Effects of the New Madrid earthquake series in the Mississippi Alluvial Valley. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saucier, R.T.
1977-02-01
Geological effects of the New Madrid earthquake series of 1811-12 in the upper portion of the Lower Mississippi Valley include land subsidence, uplift or doming, landslides, bank caving, fissuring, and sand blow phenomena. Features resulting from the liquefaction of sand are widespread in the alluvial valley and offer the greatest potential for definitively assessing the effects of major earthquakes on thick alluvial deposits and predicting the recurrence interval of infrequent major earthquakes in the region. However, liquefaction phenomena have not been the subject of detailed geological investigations applying knowledge of alluvial morphology and earth sciences methodology. Comparative aerial photo interpretationmore » has been used to classify liquefaction phenomena according to morphology, distribution, and relationship to major depositional environments. Surface morphology and spatial distribution of sand blows and fissures indicate basic control by drainage lines, water table position, and thickness of fine-grained topstratum deposits, Research efforts have been aimed at locating field test sites where the subsurface expression of the liquefaction phenomena can be investigated through trenching and land planing. Subsurface expression is presumed to be more permanent than surface expression and may permit the recognition of such features in older formations. Evidence of fissures and related phenomena is being sought in older Quaternary deposits to permit estimates of the frequency of past major earthquakes.« less
Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra
2016-01-01
A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g−1 is realized for the optimised case of binary doping over the entire range of 1 A g−1 to 40 A g−1 with stability of 500 cycles at 40 A g−1. Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system. PMID:26867570
Climate, soil and plant functional types as drivers of global fine-root trait variation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.
Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.« less
Climate, soil and plant functional types as drivers of global fine-root trait variation
Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.; ...
2017-03-08
Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.« less
Stefanenko, E V; Miadelets, O D; Kukhnovets, O A; Miadelets, V O
2009-01-01
The objective of this work was to study morphological changes in the Langerhans cells of epidermis and epithelium of hair follicles from subjects who died as a result of general hypothermia. A total of 105 cadaveric skin samples from subjects of either gender aged from 19 to 83 years were available for analysis. Postmortem examination 1-2 days after death was performed at the Department of Forensic Medical Examination for the Vitebsk region. Skin samples were frozen in liquid nitrogen and studied as cryostat sections. Langerhans cells were detected using the ATPase assay as described by Wachstein and Meisel and modified by Robins and Brendon. The Langerhans cells of subjects who died from general hypothermia were shown to undergo marked morphological changes. Moreover, their number significantly decreased as a result of disintegration and transformation into fine-grain material. Surviving cells lost many of their outgrowths and exhibited enhanced ATPase activity in pericarion. The Langerhans cells from dorsal and ventral skin as well as from interfollicular epidermis and the outer sheath of hair follicles underwent virtually identical changes. A unique morphological feature of the skin in those who died from general hypothermia was formation of intraepidermal, subepidermal, and dermal blisters.
NASA Astrophysics Data System (ADS)
Voepel, H.; Ahmed, S. I.; Hodge, R. A.; Leyland, J.; Sear, D. A.
2016-12-01
One of the major causes of uncertainty in estimates of bedload transport rates in gravel bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on bed stability. Furthermore, grain-scale structure varies throughout a channel and over time in ways that have not been fully quantified. Our research aims to quantify variations in sediment structure caused by two key variables; morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel bed with a riffle-pool morphology. The fine sediment content of the bed was incrementally increased over a series of runs from gravel only, to coarse sand, fine sand and two concentrations of clay. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure through metrics including measurement of grain pivot angles, grain exposure and protrusion, and vertical variation in bed porosity and fine sediment content. Metrics derived from the CT data were verified using data from grain counts and tilt-table measurements on co-located samples. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure. These results have implications for the development of sediment entrainment models for gravel bed rivers.
Makita, Naoki; Hirano, Yasuhiro; Sugimoto, Takanobu; Tanikawa, Toko; Ishii, Hiroaki
2015-12-01
Soil N fertility has an effect on belowground C allocation, but the physiological and morphological responses of individual fine root segments to variations in N availability under field conditions are still unclear. In this study, the direction and magnitude of the physiological and morphological function of fine roots in response to variable in situ soil N fertility in a forest site were determined. We measured the specific root respiration (Rr) rate, N concentration and morphology of fine root segments with 1-3 branching orders in a 100-year-old coniferous forest of Chamaecyparis obtusa. Higher soil N fertility induced higher Rr rates, root N concentration, and specific root length (SRL), and lower root tissue density (RTD). In all fertility levels, the Rr rates were significantly correlated positively with root N and SRL and negatively with RTD. The regression slopes of respiration with root N and RTD were significantly higher along the soil N fertility gradient. Although no differences in the slopes of Rr and SRL relationship were found across the levels, there were significant shifts in the intercept along the common slope. These results suggest that a contrasting pattern in intraspecific relationships between specific Rr and N, RTD, and SRL exists among soils with different N fertility. Consequently, substantial increases in soil N fertility would exert positive effects on organ-scale root performance by covarying the Rr, root N, and morphology for their potential nutrient and water uptake.
[Response of fine roots to soil nutrient spatial heterogeneity].
Wang, Qingcheng; Cheng, Yunhuan
2004-06-01
The spatial heterogeneity is the complexity and variation of systems or their attributes, and the heterogeneity of soil nutrients is ubiquitous in all natural ecosystems. The scale of spatial heterogeneity varies considerably among different ecosystems, from tens of centimeters to hundred meters. Some of the scales can be detected by individual plant. Because the growth of individual plants can be strongly influenced by soil heterogeneity, it follows that the inter-specific competition should also be affected. During the long process of evolution, plants developed various plastic responses with their root system, including morphological, physiological and mycorrhizal plasticity, to maximize the nutrient acquisition from heterogeneous soil resources. Morphological plasticity, an adjustment in root system spatial allocation and architecture in response to spatial heterogeneous distribution of available soil resources, has been most intensively studied, and root proliferation in nutrient rich patches has been certified for many species. The species that do respond may have an increased rate of nutrient uptake, leading to a competitive advantage. Scale and precision are two important features employed in describing the size and foraging behavior of root system. It was hypothesized that scale and precision is negatively related, i. e., the species with high scale of root system tend to be a less precise forager. The outcomes of different research work have been diverse, far from reaching a consensus. Species with high scale are not necessarily less precise in fine root allocation, and vice versa. The proliferation of fine root in enriched micro-sites is species dependent, and also affected by other factors, such as patch attributes (size and nutrients concentration), nutrients, and overall soil fertility. Beside root proliferation in nutrient enriched patches, plants can also adapt themselves to the heterogeneous soil environment by altering other root characteristics such as fine root diameter, branch angle, length, and spatial architecture of root system. Physiological and mycorrhizal plasticity can add some influence on the morphological plasticity to some extent, but they are less studied. Roots located in different patches can quickly regulate their nutrient uptake kinetics within different nutrient patches, and increase overall nutrient uptake. Physiological response may, to certain extent, reduce morphological response, and is meaningful for plant growth on soils with frequently changing spatial and temporal heterogeneity. Mycorrhizal plasticity has been least studied so far. Some researches revealed that mycorrhiza, rather than fine root, proliferated in enriched patches. But, it is not the case with other studies. The proliferation of mycorrhiza within enriched patches is more profitable in term of carbon invest. The effect of fine root proliferation on nutrient uptake is complex, depending on ion mobility and whether or not neighboring plant exists. The influence of root plasticity on the growth of plants is species specific. Some species (sensitive species) gain growth benefit, while others don't. The ability of an individual plant to response to heterogeneous resources has significant effect on its competitive ability and its fate within the community, and eventually shapes the composition and structure of the community.
Guarrotxena, Nekane; García, Olga; Quijada-Garrido, Isabel
2018-04-10
The combination of multifunctionality and synergestic effect displayed by hybrid nanoparticles (NPs) has been revealed as an effective stratagem in the development of advanced nanostructures with unique biotechnology and optoelectronic applications. Although important work has been devoted, the demand of facile, versatile and efficient synthetic approach remains still challenging. Herein, we report a feasible and innovative way for polymer-shell assembling onto gold nanoparticles in competitive conditions of hydrophobic/hydrophilic feature and interfacial energy of components to generate core-shell nanohybrids with singular morphologies. The fine control of reaction parameters allows a modulated transformation from concentric to eccentric nanostructure-geometries. In this regard, a rational selection of the components and solvent ratio guarantee the reproducibility and efficiency on hybrid-nanoassembly. Furthermore, the simplicity of the synthetic approach offers the possibility to obtain asymmetric Janus NPs and new morphologies (quizzical-aspheric polymer-shell, named Emoji-N-hybrids) with adjustable surface-coating, leading to new properties and applications that are unavailable to their symmetrical or single components.
Mud Volcanoes - Analogs to Martian Cones and Domes (by the Thousands!)
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Oehler, Dorothy
2010-01-01
Mud volcanoes are mounds formed by low temperature slurries of gas, liquid, sediments and rock that erupt to the surface from depths of meters to kilometers. They are common on Earth, with estimates of thousands onshore and tens of thousands offshore. Mud volcanoes occur in basins with rapidly-deposited accumulations of fine-grained sediments. Such settings are ideal for concentration and preservation of organic materials, and mud volcanoes typically occur in sedimentary basins that are rich in organic biosignatures. Domes and cones, cited as possible mud volcanoes by previous authors, are common on the northern plains of Mars. Our analysis of selected regions in southern Acidalia Planitia has revealed over 18,000 such features, and we estimate that more than 40,000 occur across the area. These domes and cones strongly resemble terrestrial mud volcanoes in size, shape, morphology, associated flow structures and geologic setting. Geologic and mineralogic arguments rule out alternative formation mechanisms involving lava, ice and impacts. We are studying terrestrial mud volcanoes from onshore and submarine locations. The largest concentration of onshore features is in Azerbaijan, near the western edge of the Caspian Sea. These features are typically hundreds of meters to several kilometers in diameter, and tens to hundreds of meters in height. Satellite images show spatial densities of 20 to 40 eruptive centers per 1000 square km. Many of the features remain active, and fresh mud flows as long as several kilometers are common. A large field of submarine mud volcanoes is located in the Gulf of Cadiz, off the Atlantic coasts of Morocco and Spain. High-resolution sonar bathymetry reveals numerous km-scale mud volcanoes, hundreds of meters in height. Seismic profiles demonstrate that the mud erupts from depths of several hundred meters. These submarine mud volcanoes are the closest morphologic analogs yet found to the features in Acidalia Planitia. We are also conducting laboratory analyses of surface samples collected from mud volcanoes in Azerbaijan, Taiwan and Japan. X-ray diffraction, visible / near infrared reflectance spectroscopy and Raman spectroscopy show that the samples are dominated by mixed-layer smectite clays, along with quartz, calcite and pyrite. Thin section analysis by optical and scanning electron microscopy confirms the mineral identifications. These samples also contain chemical and morphological biosignatures, including common microfossils, with evidence of partial replacement by pyrite. The bulk samples contain approximately 1 wt% total organic carbon and 0.4 mg / gm volatile hydrocarbons. The thousands of features in Acidalia Planitia cited as analogous to terrestrial mud volcanoes clearly represent an important element in the sedimentary record of Mars. Their location, in the distal depocenter for massive Hesperian-age floods, suggests that they contain fine-grained sediments from a large catchment area in the martian highlands. We have proposed these features as a new class of exploration target that can provide access to minimally-altered material from significant depth. By analogy to terrestrial mud volcanoes, these features may also be excellent sites for the sampling martian organics and subsurface microbial life, if such exist or ever existed.
Internal Fine Structure of Ellerman Bombs
NASA Astrophysics Data System (ADS)
Hashimoto, Yuki; Kitai, Reizaburo; Ichimoto, Kiyoshi; Ueno, Satoru; Nagata, Shin'ichi; Ishii, Takako T.; Hagino, Masaoki; Komori, Hiroyuki; Nishida, Keisuke; Matsumoto, Takuma; Otsuji, Kenichi; Nakamura, Tahei; Kawate, Tomoko; Watanabe, Hiroko; Shibata, Kazunari
2010-08-01
We conducted coordinated observations of Ellerman bombs (EBs) between Hinode Satellite and Hida Observatory (HOP12). CaII H broad-band filter images of NOAA 10966 on 2007 August 9 and 10 were obtained with the Solar Optical Telescope (SOT) aboard the Hinode Satellite, and many bright points were observed. We identified a total of 4 bright points as EBs, and studied the temporal variation of their morphological fine structures and spectroscopic characteristics. With high-resolution CaII H images of SOT, we found that the EBs, thus far thought of as single bright features, are composed of a few of fine subcomponents. Also, by using Stokes I/V filtergrams with Hinode/SOT, and CaII H spectroheliograms with Hida/Domeless Solar Telescope (DST), our observation showed: (1) The mean duration, the mean width, the mean length, and the mean aspect ratio of the subcomponents were 390 s, 170 km, 450 km, and 2.7, respectively. (2) Subcomponents started to appear on the magnetic neutral lines, and extended their lengths from the original locations. (3) When the CaII H line of EBs showed the characteristic blue asymmetry, they are associated with the appearance or re-brightening of subcomponents. Summarizing our results, we obtained an observational view that elementary magnetic reconnections take place one by one successively and intermittently in EBs, and that their manifestation is the fine subcomponents of the EB phenomena.
Bayes Forest: a data-intensive generator of morphological tree clones
Järvenpää, Marko; Åkerblom, Markku; Raumonen, Pasi; Kaasalainen, Mikko
2017-01-01
Abstract Detailed and realistic tree form generators have numerous applications in ecology and forestry. For example, the varying morphology of trees contributes differently to formation of landscapes, natural habitats of species, and eco-physiological characteristics of the biosphere. Here, we present an algorithm for generating morphological tree “clones” based on the detailed reconstruction of the laser scanning data, statistical measure of similarity, and a plant growth model with simple stochastic rules. The algorithm is designed to produce tree forms, i.e., morphological clones, similar (and not identical) in respect to tree-level structure, but varying in fine-scale structural detail. Although we opted for certain choices in our algorithm, individual parts may vary depending on the application, making it a general adaptable pipeline. Namely, we showed that a specific multipurpose procedural stochastic growth model can be algorithmically adjusted to produce the morphological clones replicated from the target experimentally measured tree. For this, we developed a statistical measure of similarity (structural distance) between any given pair of trees, which allows for the comprehensive comparing of the tree morphologies by means of empirical distributions describing the geometrical and topological features of a tree. Finally, we developed a programmable interface to manipulate data required by the algorithm. Our algorithm can be used in a variety of applications for exploration of the morphological potential of the growth models (both theoretical and experimental), arising in all sectors of plant science research. PMID:29020742
Liu, Airong; Zhang, Wei-xian
2014-09-21
An angstrom-resolution physical model of nanoscale zero-valent iron (nZVI) is generated with a combination of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) on the Fe L-edge. Bright-field (BF), high-angle annular dark-field (HAADF) and secondary electron (SE) imaging of nZVI acquired by a Hitachi HD-2700 STEM show near atomic resolution images and detailed morphological and structural information of nZVI. The STEM-EDS technique confirms that the fresh nZVI comprises of a metallic iron core encapsulated with a thin layer of iron oxides or oxyhydroxides. SAED patterns of the Fe core suggest the polycrystalline structure in the metallic core and amorphous nature of the oxide layer. Furthermore, Fe L-edge of EELS shows varied structural features from the innermost Fe core to the outer oxide shell. A qualitative analysis of the Fe L(2,3) edge fine structures reveals that the shell of nZVI consists of a mixed Fe(II)/Fe(III) phase close to the Fe (0) interface and a predominantly Fe(III) at the outer surface of nZVI.
Fine structure and development of the collar enamel in gars, Lepisosteus oculatus, Actinopterygii
NASA Astrophysics Data System (ADS)
Sasagawa, Ichiro; Ishiyama, Mikio; Yokosuka, Hiroyuki; Mikami, Masato
2008-06-01
The fine structure of collar enamel and the cells constituting the enamel organ during amelogenesis in Lepisosteus oculatus was observed by light, scanning electron and transmission electron microscopy. In the enamel, slender crystals were arranged perpendicular to the surface and the stripes that were parallel to the surface were observed, suggesting that the enamel in Lepisosteus shares common morphological features with that in sarcopterygian fish and amphibians. Ameloblasts containing developed Golgi apparatus, rough endoplasmic reticulum (rER) and secretory granules were found in the secretory stage. In the maturation stage, a ruffled border was not seen at the distal end of the ameloblasts, while many mitochondria and lysosome-like granules were obvious in the distal cytoplasm. The enamel organ consisted of the outer dental epithelial cells, stratum reticulum cells and ameloblasts, but there was no stratum intermedium. It is likely that the ameloblasts have less absorptive function in comparison with the inner dental epithelial cells facing cap enameloid.
Imaging Implicit Morphological Processing: Evidence from Hebrew
ERIC Educational Resources Information Center
Bick, Atira S.; Frost, Ram; Goelman, Gadi
2010-01-01
Is morphology a discrete and independent element of lexical structure or does it simply reflect a fine-tuning of the system to the statistical correlation that exists among orthographic and semantic properties of words? Hebrew provides a unique opportunity to examine morphological processing in the brain because of its rich morphological system.…
NASA Technical Reports Server (NTRS)
Jemian, W. A.
1986-01-01
The cause and significance of the weld radiograph enigma, which is a linear anomaly in the features of the X-ray film is examined. By observing features on available radiographs and in studying published reports of similar features, it was possible to conclude that there are many manifestations of the enigma, and that they are all specific features of fine structure in radiographs due to natural processes connected with welding and to specific X-ray absorption and diffraction phenomena. These processes include the thermal distribution and liquid metal flow in welding, the development of microstructure, morphology, second phase particles and porosity due to the solidification process, and to the pattern of residual stresses after the weld metal has cooled to the ambient temperature. Microdensitometer traces were made across weld radiographs of standard enigmatic types. Similar patterns were produced by computer simulation. These show that the enigma is a relatively low contrast feature compared to real weld defects, such as undercuts or centerline cracks. The enigma can be distinguished from weld defects by these microdensitometer traces. The enigma effect on weld properties is not known but is expected to be minor.
Defect generation in electronic devices under plasma exposure: Plasma-induced damage
NASA Astrophysics Data System (ADS)
Eriguchi, Koji
2017-06-01
The increasing demand for higher performance of ULSI circuits requires aggressive shrinkage of device feature sizes in accordance with Moore’s law. Plasma processing plays an important role in achieving fine patterns with anisotropic features in metal-oxide-semiconductor field-effect transistors (MOSFETs). This article comprehensively addresses the negative aspect of plasma processing — plasma-induced damage (PID). PID naturally not only modifies the surface morphology of materials but also degrades the performance and reliability of MOSFETs as a result of defect generation in the materials. Three key mechanisms of PID, i.e., physical, electrical, and photon-irradiation interactions, are overviewed in terms of modeling, characterization techniques, and experimental evidence reported so far. In addition, some of the emerging topics — control of parameter variability in ULSI circuits caused by PID and recovery of PID — are discussed as future perspectives.
Nelson, Peter A.; McDonald, Richard R.; Nelson, Jonathan M.; Dietrich, William E.
2015-01-01
Riverbeds frequently display a spatial structure where the sediment mixture composing the channel bed has been sorted into discrete patches of similar grain size. Even though patches are a fundamental feature in gravel bed rivers, we have little understanding of how patches form, evolve, and interact. Here we present a two-dimensional morphodynamic model that is used to examine in greater detail the mechanisms responsible for the development of forced bed surface patches and the coevolution of bed morphology and bed surface patchiness. The model computes the depth-averaged channel hydrodynamics, mixed-grain-size sediment transport, and bed evolution by coupling the river morphodynamic model Flow and Sediment Transport with Morphological Evolution of Channels (FaSTMECH) with a transport relation for gravel mixtures and the mixed-grain-size Exner equation using the active layer assumption. To test the model, we use it to simulate a flume experiment in which the bed developed a sequence of alternate bars and temporally and spatially persistent forced patches with a general pattern of coarse bar tops and fine pools. Cross-stream sediment flux causes sediment to be exported off of bars and imported into pools at a rate that balances downstream gradients in the streamwise sediment transport rate, allowing quasi-steady bar-pool topography to persist. The relative importance of lateral gravitational forces on the cross-stream component of sediment transport is a primary control on the amplitude of the bars. Because boundary shear stress declines as flow shoals over the bars, the lateral sediment transport is increasingly size selective and leads to the development of coarse bar tops and fine pools.
Automated Camera Array Fine Calibration
NASA Technical Reports Server (NTRS)
Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang
2008-01-01
Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.
Hasegawa, Tomoka; Li, Minqi; Hara, Kuniko; Sasaki, Muneteru; Tabata, Chihiro; de Freitas, Paulo Henrique Luiz; Hongo, Hiromi; Suzuki, Reiko; Kobayashi, Masatoshi; Inoue, Kiichiro; Yamamoto, Tsuneyuki; Oohata, Noboru; Oda, Kimimitsu; Akiyama, Yasuhiro; Amizuka, Norio
2011-08-01
Osteogenic disorder shionogi (ODS) rats carry a hereditary defect in ascorbic acid synthesis, mimicking human scurvy when fed with an ascorbic acid-deficient (aa-def) diet. As aa-def ODS rats were shown to feature disordered bone formation, we have examined the bone mineralization in this rat model. A fibrous tissue layer surrounding the trabeculae of tibial metaphyses was found in aa-def ODS rats, and this layer showed intense alkaline phosphatase activity and proliferating cell nuclear antigen-immunopositivity. Many osteoblasts detached from the bone surfaces and were characterized by round-shaped rough endoplasmic reticulum (rER), suggesting accumulation of malformed collagen inside the rER. Accordingly, fine, fragile fibrillar collagenous structures without evident striation were found in aa-def bones, which may result from misassembling of the triple helices of collagenous α-chains. Despite a marked reduction in bone formation, ascorbic acid deprivation seemed to have no effect on mineralization: while reduced in number, normal matrix vesicles and mineralized nodules could be seen in aa-def bones. Fine needle-like mineral crystals extended from these mineralized nodules, and were apparently bound to collagenous fibrillar structures. In summary, collagen mineralization seems unaffected by ascorbic acid deficiency in spite of the fine, fragile collagenous fibrils identified in the bones of our animal model.
Gross anatomy of central nervous system in firefly, Pteroptyx tener (Coleoptera: Lampyridae)
NASA Astrophysics Data System (ADS)
Hudawiyah, Nur; Wahida, O. Nurul; Norela, S.
2015-09-01
This paper describes for the first time the organization and fine structure of the central nervous system (CNS) in the fireflies, Pteroptyx tener (Coleoptera: Lampyridae). The morphology of the CNS was examined by using Carl Zeiss AxioScope A1 photomicroscope with iSolution Lite software. Some specific structural features such as the localization of protocerebrum, deutocerebrum and tritocerebrum in the brain region were analyzed. Other than that, the nerve cord and its peripheral structure were also analyzed. This study suggests that, there is a very obvious difference between male and female central nervous system which illustrates that they may differ in function in controlling physiological and behavioral activities.
Ostonen, Ivika; Lõhmus, Krista; Helmisaari, Heljä-Sisko; Truu, Jaak; Meel, Signe
2007-11-01
Variability in short root morphology of the three main tree species of Europe's boreal forest (Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth)) was investigated in four stands along a latitudinal gradient from northern Finland to southern Estonia. Silver birch and Scots pine were present in three stands and Norway spruce was present in all stands. For three fertile Norway spruce stands, fine root biomass and number of root tips per stand area or unit basal area were assessed from north to south. Principal component analysis indicated that short root morphology was significantly affected by tree species and site, which together explained 34.7% of the total variability. The range of variation in mean specific root area (SRA) was 51-74, 60-70 and 84-124 m(2) kg(-1) for Norway spruce, Scots pine and silver birch, respectively, and the corresponding ranges for specific root length were 37-47, 40-48 and 87-97 m g(-1). The range of variation in root tissue density of Norway spruce, Scots pine and silver birch was 113-182, 127-158 and 81-156 kg m(-3), respectively. Sensitivity of short root morphology to site conditions decreased in the order: Norway spruce > silver birch > Scots pine. Short root SRA increased with site fertility in all species. In Norway spruce, fine root biomass and number of root tips per m(2) decreased from north to south. The differences in morphological parameters among sites were significant but smaller than the site differences in fine root biomass and number of root tips.
NASA Astrophysics Data System (ADS)
Singh, K. A. P.; Isobe, H.; Nishida, K.; Shibata, K.
2012-11-01
The Solar Optical Telescope (SOT) on board Hinode allows observations with high spatiotemporal resolution and stable image quality. A λ-shaped chromospheric anemone jet was observed in high resolution with SOT/Hinode. We found that several fine-scale jets were launched from one end of the footpoint to the other. These fine-scale jets (~1.5-2.5 Mm) gradually move from one end of the footpoint to the other and finally merge into a single jet. This process occurs recurrently, and as time progresses the jet activity becomes more and more violent. The time evolution of the region below the jet in Ca II H filtergram images taken with SOT shows that various parts (or knots) appear at different positions. These bright knots gradually merge into each other during the maximum phase. The systematic motion of the fine-scale jets is observed when different knots merge into each other. Such morphology would arise due to the emergence of a three-dimensional twisted flux rope in which the axial component (or the guide field) appears in the later stages of the flux rope emergence. The partial appearance of the knots could be due to the azimuthal magnetic field that appears during the early stage of the flux rope emergence. If the guide field is strong and reconnection occurs between the emerging flux rope and an ambient magnetic field, this could explain the typical feature of systematic motion in chromospheric anemone jets.
Diagnosis of B-Cell Non-Hodgkin Lymphomas with Small-/Intermediate-Sized Cells in Cytopathology
Schwock, Joerg; Geddie, William R.
2012-01-01
Fine needle sampling is a fast, safe, and potentially cost-effective method of obtaining tissue for cytomorphologic assessment aimed at both initial triage and, in some cases, complete diagnosis of patients that present clinically with lymphadenopathy. The cytologic diagnosis of B-cell non-Hodgkin lymphomas composed of small-/intermediate-sized cells, however, has been seen as an area of great difficulty even for experienced observers due to the morphologic overlap between lymphoma and reactive lymphadenopathies as well as between the lymphoma entities themselves. Although ancillary testing has improved diagnostic accuracy, the results from these tests must be interpreted within the morphological and clinical context to avoid misinterpretation. Importantly, the recognition of specific cytologic features is crucial in guiding the appropriate selection of ancillary tests which will either confirm or refute a tentative diagnosis. For these reasons, we here review the cytologic characteristics particular to five common B-cell non-Hodgkin lymphomas which typically cause the most diagnostic confusion based on cytological assessment alone: marginal zone lymphoma, follicular lymphoma, mantle cell lymphoma, chronic lymphocytic leukemia/small lymphocytic lymphoma, and lymphoplasmacytic lymphoma. We summarize the most pertinent cytomorphologic features for each entity as well as for reactive lymphoid hyperplasia, contrast them with each other to facilitate their recognition, and highlight common diagnostic pitfalls. PMID:22693682
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desseroit, M; Cheze Le Rest, C; Tixier, F
2014-06-15
Purpose: Previous studies have shown that CT or 18F-FDG PET intratumor heterogeneity features computed using texture analysis may have prognostic value in Non-Small Cell Lung Cancer (NSCLC), but have been mostly investigated separately. The purpose of this study was to evaluate the potential added value with respect to prognosis regarding the combination of non-enhanced CT and 18F-FDG PET heterogeneity textural features on primary NSCLC tumors. Methods: One hundred patients with non-metastatic NSCLC (stage I–III), treated with surgery and/or (chemo)radiotherapy, that underwent staging 18F-FDG PET/CT images, were retrospectively included. Morphological tumor volumes were semi-automatically delineated on non-enhanced CT using 3D SlicerTM.more » Metabolically active tumor volumes (MATV) were automatically delineated on PET using the Fuzzy Locally Adaptive Bayesian (FLAB) method. Intratumoral tissue density and FDG uptake heterogeneities were quantified using texture parameters calculated from co-occurrence, difference, and run-length matrices. In addition to these textural features, first order histogram-derived metrics were computed on the whole morphological CT tumor volume, as well as on sub-volumes corresponding to fine, medium or coarse textures determined through various levels of LoG-filtering. Association with survival regarding all extracted features was assessed using Cox regression for both univariate and multivariate analysis. Results: Several PET and CT heterogeneity features were prognostic factors of overall survival in the univariate analysis. CT histogram-derived kurtosis and uniformity, as well as Low Grey-level High Run Emphasis (LGHRE), and PET local entropy were independent prognostic factors. Combined with stage and MATV, they led to a powerful prognostic model (p<0.0001), with median survival of 49 vs. 12.6 months and a hazard ratio of 3.5. Conclusion: Intratumoral heterogeneity quantified through textural features extracted from both CT and FDG PET images have complementary and independent prognostic value in NSCLC.« less
NASA Astrophysics Data System (ADS)
Pett-Ridge, J.; Finzi, J. A.; Capone, D. G.; Popa, R.; Nealson, K. H.; Ng, W.; Spormann, A. M.; Hutcheon, I. D.; Weber, P. K.
2007-12-01
Filamentous nitrogen fixing (diazotrophic) cyanobacteria are key players in global nutrient cycling, but the relationship between CO2- and N2-fixation and intercellular exchange of these elements remains poorly understood in many genera. These bacteria are faced with the challenge of isolating regions of N-fixation (O2 inhibited) and photosynthetic (O2 producing) activity. We used isotope labeling in conjunction with a high-resolution isotope and elemental mapping technique (NanoSIMS) to quantitatively describe 13C and 15N uptake and transport in two aquatic cyanobacteria grown on NaH13CO3 and 15N2. The technical challenges of tracing isotopes within individual bacteria can be overcome with high resolution Secondary Ion Mass Spectrometry (NanoSIMS). In NanoSIMS analysis, samples are sputtered with an energetic primary beam (Cs+, O-) liberating secondary ions that are separated by the mass spectrometer and detected in a suite of electron multipliers. Five isotopic species may be analyzed concurrently with spatial resolution as fine as 50nm. A high sensitivity isotope ratio 'map' can then be generated for the analyzed area. Using sequentially harvested cyanobacteria in conjunction with enriched H13CO3 and 15N2 incubations, we measured temporal enrichment patterns that evolve over the course of a day's growth and suggest tightly regulated changes in fixation kinetics. With a combination of TEM, SEM and NanoSIMS analyses, we also mapped the distribution of C, N and Mo (a critical nitrogenase co-factor) isotopes in intact cells. Our results suggest that NanoSIMS mapping of metal enzyme co-factors may be a powerful method of identifying physiological and morphological characteristics within individual bacterial cells, and could be used to provide a 3-dimensional context for more traditional analyses such as immunogold labeling. Finally, we resolved patterns of isotope enrichment at multiple spatial scales: sub-cellular variation, cell-cell differences along filaments, inter-species transfers (with Rhizobium epibionts), and within-cell depth profiles. Spatial enrichment patterns were correlated with morphological features evidenced in TEM images of microtomed filaments. These features indicate how 15N and 13C "hotspots" are dispersed throughout individual cells in different species, and may indicate isolated locations of increased N2 fixation, sites of amino acid/protein synthesis, or cyanophycin storage granules. This combination of Nano-Secondary Ion Mass Spectrometry (NanoSIMS) analysis and high resolution microscopy allows isotopic analysis to be linked to morphological features and holds great promise for fine-scale studies of bacteria metabolism.
Morphological changes of olivine grains reacted with amino acid solutions by impact process
NASA Astrophysics Data System (ADS)
Umeda, Yuhei; Takase, Atsushi; Fukunaga, Nao; Sekine, Toshimori; Kobayashi, Takamichi; Furukawa, Yoshihiro; Kakegawa, Takeshi
2017-03-01
Early oceans on Earth might have contained certain amounts of biomolecules such as amino acids, and they were subjected to meteorite impacts, especially during the late heavy bombardment. We performed shock recovery experiments by using a propellant gun in order to simulate shock reactions among olivine as a representative meteorite component, water and biomolecules in oceans in the process of marine meteorite impacts. In the present study, recovered solid samples were analyzed by using X-ray powder diffraction method, scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy with energy-dispersive X-ray spectrometry. The analytical results on shocked products in the recovered sample showed (1) morphological changes of olivine to fiber- and bamboo shoot-like crystals, and to pulverized grains; and features of lumpy surfaces affected by hot water, (2) the formation of carbon-rich substances derived from amino acids, and (3) the incorporation of metals from container into samples. According to the present results, fine-grained olivine in meteorites might have morphologically changed and shock-induced chemical reactions might have been enhanced so that amino acids related to the origin of life may have transformed to carbon-rich substances by impacts.
Hypersalinity drives physiological and morphological changes in Limia perugiae (Poeciliidae)
Tello, Oscar; Krieger, Jonathan; Marmolejo, Arlen; Weaver, Kathleen F.; Garcia, Jerome V.; Cruz, Alexander
2016-01-01
ABSTRACT A fundamental question in biology is how an organism's morphology and physiology are shaped by its environment. Here, we evaluate the effects of a hypersaline environment on the morphology and physiology of a population of livebearing fish in the genus Limia (Poeciliidae). We sampled from two populations of Limia perugiae (one freshwater and one hypersaline) in the southwest Dominican Republic. We evaluated relative abundance of osmoregulatory proteins using western blot analyses and used a geometric morphometric approach to evaluate fine-scale changes to size and shape. Our data show that gill tissue isolated from hypersaline fish contained approximately two and a half times higher expression of Na+/K+ ATPase proteins. We also show evidence for mitochondrial changes within the gills, with eight times more complex I and four times higher expression of ATP synthase within the gill tissue from the hypersaline population. The energetic consequences to Limia living in saline and hypersaline environments may be a driver for phenotypic diversity, reducing the overall body size and changing the relative size and shape of the head, as well as impeding the growth of secondary sex features among the males. PMID:27402966
The cytologic features of NUT midline carcinoma.
Bellizzi, Andrew M; Bruzzi, Cynthia; French, Christopher A; Stelow, Edward B
2009-12-25
Nuclear protein in testis (NUT) midline carcinoma (NMC) represents an aggressive, high-grade carcinoma typically involving the upper aerodigestive tract or mediastinum. Although the tumor was originally noted in young persons, we have subsequently identified 5 adult cases. To our knowledge, the cytology of NMC has not been systematically described. We recently published a series of NMCs identified by fluorescent in situ hybridization for characteristic NUT rearrangement. Three of these patients had undergone fine-needle aspiration. Patient age, sex, primary tumor location, and aspiration site were noted. Cases were assessed for the following: cellularity, architecture, cytoplasm, cell size, nuclear contours, nucleoli, chromatin, anisonucleosis/cytosis, mitotic activity, background, and nuclear crush. The 3 cases occurred in 2 women and 1 man, ages 31-79 years. Primaries involved the sinonasal tract (2) and larynx. Aspirates were of right neck masses (2) and supraclavicular lymph node. Smears were highly cellular and generally noncohesive. Cytoplasm was scant/delicate, although occasional cells with denser cytoplasm were noted in 1 case. Cells were 2-3 times the diameter of a small lymphocyte with irregular nuclear contours, discrete nucleoli, and fine/granular to vesicular chromatin. Anisonucleosis/cytosis was slight to moderate. Mitotic figures were noted in each case. The background contained naked nuclei and karyorrhectic debris; nuclear crush was noted. NMCs exhibit cytologic features of a poorly differentiated or undifferentiated carcinoma. Although reports mention squamous differentiation as a histologic feature, it is typically focal, and overt squamous differentiation was not identified in our cases. Given morphologic overlap with other high-grade carcinomas, diagnosis requires a high index of suspicion. (c) 2009 American Cancer Society.
Evidence for accretion of fine-grained rims in a turbulent nebula for CM Murchison
NASA Astrophysics Data System (ADS)
Hanna, Romy D.; Ketcham, Richard A.
2018-01-01
We use X-ray computed tomography (XCT) to examine the 3D morphology and spatial relationship of fine-grained rims (FGRs) of Type I chondrules in the CM carbonaceous chondrite Murchison to investigate the formation setting (nebular vs. parent body) of the FGRs. We quantify the sizes, shapes, and orientations of the chondrules and FGRs and develop a new algorithm to examine the 3D variation of FGR thickness around each chondrule. We find that the average proportion of chondrule volume contained in the rim for Murchison chondrules is 35.9%. The FGR volume in relation to the interior chondrule radius is well described by a power law function as proposed for accretion of FGRs in a weakly turbulent nebula by Cuzzi (2004). The power law exponent indicates that the rimmed chondrules behaved as Stokes number Stη > 1 nebular particles in Kolmogorov η scale turbulence. FGR composition as inferred from XCT number appears essentially uniform across interior chondrule types and compositions, making formation by chondrule alteration unlikely. We determine that the FGRs were compressed by the impact event(s) that deformed Murchison (Hanna et al., 2015), resulting in rims that are thicker in the plane of foliation but that still preserve their nebular morphological signature. Finally, we propose that the irregular shape of some chondrules in Murchison is a primary feature resulting from chondrule formation and that chondrules with a high degree of surface roughness accreted a relatively larger amount of nebular dust compared to smoother chondrules.
NASA Astrophysics Data System (ADS)
Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.
2016-01-01
In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.
Culturing In Vivo-like Murine Astrocytes Using the Fast, Simple, and Inexpensive AWESAM Protocol.
Wolfes, Anne C; Dean, Camin
2018-01-10
The AWESAM (a low-cost easy stellate astrocyte method) protocol entails a fast, simple, and inexpensive way to generate large quantities of in vivo-like mouse and rat astrocyte monocultures: Brain cells can be isolated from different brain regions, and after a week of cell culture, non-astrocytic cells are shaken off by placing the culture dishes on a shaker for 6 h in the incubator. The remaining astrocytes are then passaged into new plates with an astrocyte-specific medium (termed NB+H). NB+H contains low concentrations of heparin-binding EGF-like growth factor (HBEGF), which is used in place of serum in medium. After growing in NB+H, AWESAM astrocytes have a stellate morphology and feature fine processes. Moreover, these astrocytes have more in vivo-like gene expression than astrocytes generated by previously published methods. Ca 2+ imaging, vesicle dynamics, and other events close to the membrane can thus be studied in the fine astrocytic processes in vitro, e.g., using live cell confocal or TIRF microscopy. Notably, AWESAM astrocytes also exhibit spontaneous Ca 2+ signaling similar to astrocytes in vivo.
Audio-guided audiovisual data segmentation, indexing, and retrieval
NASA Astrophysics Data System (ADS)
Zhang, Tong; Kuo, C.-C. Jay
1998-12-01
While current approaches for video segmentation and indexing are mostly focused on visual information, audio signals may actually play a primary role in video content parsing. In this paper, we present an approach for automatic segmentation, indexing, and retrieval of audiovisual data, based on audio content analysis. The accompanying audio signal of audiovisual data is first segmented and classified into basic types, i.e., speech, music, environmental sound, and silence. This coarse-level segmentation and indexing step is based upon morphological and statistical analysis of several short-term features of the audio signals. Then, environmental sounds are classified into finer classes, such as applause, explosions, bird sounds, etc. This fine-level classification and indexing step is based upon time- frequency analysis of audio signals and the use of the hidden Markov model as the classifier. On top of this archiving scheme, an audiovisual data retrieval system is proposed. Experimental results show that the proposed approach has an accuracy rate higher than 90 percent for the coarse-level classification, and higher than 85 percent for the fine-level classification. Examples of audiovisual data segmentation and retrieval are also provided.
NASA Astrophysics Data System (ADS)
Guan, Mingfu; Ahilan, Sangaralingam; Yu, Dapeng; Peng, Yong; Wright, Nigel
2018-01-01
Fine sediment plays crucial and multiple roles in the hydrological, ecological and geomorphological functioning of river systems. This study employs a two-dimensional (2D) numerical model to track the hydro-morphological processes dominated by fine suspended sediment, including the prediction of sediment concentration in flow bodies, and erosion and deposition caused by sediment transport. The model is governed by 2D full shallow water equations with which an advection-diffusion equation for fine sediment is coupled. Bed erosion and sedimentation are updated by a bed deformation model based on local sediment entrainment and settling flux in flow bodies. The model is initially validated with the three laboratory-scale experimental events where suspended load plays a dominant role. Satisfactory simulation results confirm the model's capability in capturing hydro-morphodynamic processes dominated by fine suspended sediment at laboratory-scale. Applications to sedimentation in a stormwater pond are conducted to develop the process-based understanding of fine sediment dynamics over a variety of flow conditions. Urban flows with 5-year, 30-year and 100-year return period and the extreme flood event in 2012 are simulated. The modelled results deliver a step change in understanding fine sediment dynamics in stormwater ponds. The model is capable of quantitatively simulating and qualitatively assessing the performance of a stormwater pond in managing urban water quantity and quality.
A geomorphological seabed classification for the Weddell Sea, Antarctica
NASA Astrophysics Data System (ADS)
Jerosch, Kerstin; Kuhn, Gerhard; Krajnik, Ingo; Scharf, Frauke Katharina; Dorschel, Boris
2016-06-01
Sea floor morphology plays an important role in many scientific disciplines such as ecology, hydrology and sedimentology since geomorphic features can act as physical controls for e.g. species distribution, oceanographically flow-path estimations or sedimentation processes. In this study, we provide a terrain analysis of the Weddell Sea based on the 500 m × 500 m resolution bathymetry data provided by the mapping project IBCSO. Seventeen seabed classes are recognized at the sea floor based on a fine and broad scale Benthic Positioning Index calculation highlighting the diversity of the glacially carved shelf. Beside the morphology, slope, aspect, terrain rugosity and hillshade were calculated and supplied to the data archive PANGAEA. Applying zonal statistics to the geomorphic features identified unambiguously the shelf edge of the Weddell Sea with a width of 45-70 km and a mean depth of about 1200 m ranging from 270 m to 4300 m. A complex morphology of troughs, flat ridges, pinnacles, steep slopes, seamounts, outcrops, and narrow ridges, structures with approx. 5-7 km width, build an approx. 40-70 km long swath along the shelf edge. The study shows where scarps and depressions control the connection between shelf and abyssal and where high and low declination within the scarps e.g. occur. For evaluation purpose, 428 grain size samples were added to the seabed class map. The mean values of mud, sand and gravel of those samples falling into a single seabed class was calculated, respectively, and assigned to a sediment texture class according to a common sediment classification scheme.
Piana, Simonetta; Riganti, Fabrizio; Froio, Elisabetta; Andrioli, Massimiliano; Pacella, Claudio M; Valcavi, Roberto
2012-06-01
Ultrasound (US)-guided percutaneous laser ablation (LA) of benign thyroid nodules may be a potential alternative to surgery in patients with compressive symptoms, at high surgical risk, or in patients who refuse to undergo surgery. We evaluated the morphological effects of LA procedure on 22 patients and compared the cytological findings before and after LA with the histological features on surgical specimens. Twenty-two (4.9%; 19 women, three men, mean age 53.2 years) out of 452 patients treated with LA for benign thyroid nodules in our Hospital underwent surgery after LA procedure, either because nodule regrowth (treatment failure, n = 17) or indeterminate cytology (Thy3) after LA (n = 5). Morphological findings varied according to the time between LA and surgical intervention. Within 2 months, the area was occasionally cavitated and filled in with dark amorphous material. The inflammatory response was abundant and composed of neutrophils, lymphocytes, and macrophages. After 18 months or more since LA, the expected laser-induced histologic changes in thyroid morphology consisted of a well-defined area surrounded by a fibrous capsule and filled in by amorphous material. No significant pathologic features were found in the thyroid tissue adjacent to the treated area. Histological evaluation of thyroid tissues after LA shows that thermal damage is restricted to the ablated area, with no involvement of the nearby parenchyma. Our long-term histopathological findings indicate that LA treatment of benign thyroid nodules is safe, and patients undergoing LA may also be followed up by fine needle aspiration.
Goodenberger, Katherine E; Boyer, Doug M; Orr, Caley M; Jacobs, Rachel L; Femiani, John C; Patel, Biren A
2015-03-01
Primate evolutionary morphologists have argued that selection for life in a fine branch niche resulted in grasping specializations that are reflected in the hallucal metatarsal (Mt1) morphology of extant "prosimians", while a transition to use of relatively larger, horizontal substrates explains the apparent loss of such characters in anthropoids. Accordingly, these morphological characters-Mt1 torsion, peroneal process length and thickness, and physiological abduction angle-have been used to reconstruct grasping ability and locomotor mode in the earliest fossil primates. Although these characters are prominently featured in debates on the origin and subsequent radiation of Primates, questions remain about their functional significance. This study examines the relationship between these morphological characters of the Mt1 and a novel metric of pedal grasping ability for a large number of extant taxa in a phylogenetic framework. Results indicate greater Mt1 torsion in taxa that engage in hallucal grasping and in those that utilize relatively small substrates more frequently. This study provides evidence that Carpolestes simpsoni has a torsion value more similar to grasping primates than to any scandentian. The results also show that taxa that habitually grasp vertical substrates are distinguished from other taxa in having relatively longer peroneal processes. Furthermore, a longer peroneal process is also correlated with calcaneal elongation, a metric previously found to reflect leaping proclivity. A more refined understanding of the functional associations between Mt1 morphology and behavior in extant primates enhances the potential for using these morphological characters to comprehend primate (locomotor) evolution. © 2014 Wiley Periodicals, Inc.
Morphology of pulp fiber from hardwoods and influence on paper strength
Richard A. Horn
1978-01-01
The results of this investigation showed that physical properties of sheets made from hardwood fiber are very dependent upon fiber morphology. Chemical variation of pulp fibers did not exhibit an influence on sheet strength. Of the morphological characteristics investigated, those contributing the most were fiber length, L/T ratio, and fibril angle. Hardwood fines (...
Windy Mars: A Dynamic Planet as Seen by the HiRISE Camera
NASA Technical Reports Server (NTRS)
Bridges, N. T.; Geissler, P. E.; McEwen, A. S.; Thomson, B. J.; Chuang, F. C.; Herkenhoff, K. E.; Keszthelyi, L. P.; Martnez-Alonso, S.
2007-01-01
With a dynamic atmosphere and a large supply of particulate material, the surface of Mars is heavily influenced by wind-driven, or aeolian, processes. The High Resolution Imaging Science Experiment (HiRISE) camera on the Mars Reconnaissance Orbiter (MRO) provides a new view of Martian geology, with the ability to see decimeter-size features. Current sand movement, and evidence for recent bedform development, is observed. Dunes and ripples generally exhibit complex surfaces down to the limits of resolution. Yardangs have diverse textures, with some being massive at HiRISE scale, others having horizontal and cross-cutting layers of variable character, and some exhibiting blocky and polygonal morphologies. 'Reticulate' (fine polygonal texture) bedforms are ubiquitous in the thick mantle at the highest elevations.
Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants.
Costa, João B; Silva-Correia, Joana; Oliveira, Joaquim M; Reis, Rui L
2017-11-01
The pursuit for the "perfect" biomimetic and personalized implant for musculoskeletal tissue regeneration remains a big challenge. 3D printing technology that makes use of a novel and promising biomaterials can be part of the solution. In this study, a fast setting enzymatic-crosslinked silk fibroin (SF) bioink for 3D bioprinting is developed. Their properties are fine-tuned and different structures with good resolution, reproducibility, and reliability can be fabricated. Many potential applications exist for the SF bioinks including 3D bioprinted scaffolds and patient-specific implants exhibiting unique characteristics such as good mechanical properties, memory-shape feature, suitable degradation, and tunable pore architecture and morphology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural basis for pulmonary functional imaging.
Itoh, H; Nakatsu, M; Yoxtheimer, L M; Uematsu, H; Ohno, Y; Hatabu, H
2001-03-01
An understanding of fine normal lung morphology is important for effective pulmonary functional imaging. The lung specimens must be inflated. These include (a) unfixed, inflated lung specimen, (b) formaldehyde fixed lung specimen, (c) fixed, inflated dry lung specimen, and (d) histology specimen. Photography, magnified view, radiograph, computed tomography, and histology of these specimens are demonstrated. From a standpoint of diagnostic imaging, the main normal lung structures consist of airways (bronchi and bronchioles), alveoli, pulmonary vessels, secondary pulmonary lobules, and subpleural pulmonary lymphatic channels. This review summarizes fine radiologic normal lung morphology as an aid to effective pulmonary functional imaging.
Multiscale morphological filtering for analysis of noisy and complex images
NASA Astrophysics Data System (ADS)
Kher, A.; Mitra, S.
Images acquired with passive sensing techniques suffer from illumination variations and poor local contrasts that create major difficulties in interpretation and identification tasks. On the other hand, images acquired with active sensing techniques based on monochromatic illumination are degraded with speckle noise. Mathematical morphology offers elegant techniques to handle a wide range of image degradation problems. Unlike linear filters, morphological filters do not blur the edges and hence maintain higher image resolution. Their rich mathematical framework facilitates the design and analysis of these filters as well as their hardware implementation. Morphological filters are easier to implement and are more cost effective and efficient than several conventional linear filters. Morphological filters to remove speckle noise while maintaining high resolution and preserving thin image regions that are particularly vulnerable to speckle noise were developed and applied to SAR imagery. These filters used combination of linear (one-dimensional) structuring elements in different (typically four) orientations. Although this approach preserves more details than the simple morphological filters using two-dimensional structuring elements, the limited orientations of one-dimensional elements approximate the fine details of the region boundaries. A more robust filter designed recently overcomes the limitation of the fixed orientations. This filter uses a combination of concave and convex structuring elements. Morphological operators are also useful in extracting features from visible and infrared imagery. A multiresolution image pyramid obtained with successive filtering and a subsampling process aids in the removal of the illumination variations and enhances local contrasts. A morphology-based interpolation scheme was also introduced to reduce intensity discontinuities created in any morphological filtering task. The generality of morphological filtering techniques in extracting information from a wide variety of images obtained with active and passive sensing techniques is discussed. Such techniques are particularly useful in obtaining more information from fusion of complex images by different sensors such as SAR, visible, and infrared.
Multiscale Morphological Filtering for Analysis of Noisy and Complex Images
NASA Technical Reports Server (NTRS)
Kher, A.; Mitra, S.
1993-01-01
Images acquired with passive sensing techniques suffer from illumination variations and poor local contrasts that create major difficulties in interpretation and identification tasks. On the other hand, images acquired with active sensing techniques based on monochromatic illumination are degraded with speckle noise. Mathematical morphology offers elegant techniques to handle a wide range of image degradation problems. Unlike linear filters, morphological filters do not blur the edges and hence maintain higher image resolution. Their rich mathematical framework facilitates the design and analysis of these filters as well as their hardware implementation. Morphological filters are easier to implement and are more cost effective and efficient than several conventional linear filters. Morphological filters to remove speckle noise while maintaining high resolution and preserving thin image regions that are particularly vulnerable to speckle noise were developed and applied to SAR imagery. These filters used combination of linear (one-dimensional) structuring elements in different (typically four) orientations. Although this approach preserves more details than the simple morphological filters using two-dimensional structuring elements, the limited orientations of one-dimensional elements approximate the fine details of the region boundaries. A more robust filter designed recently overcomes the limitation of the fixed orientations. This filter uses a combination of concave and convex structuring elements. Morphological operators are also useful in extracting features from visible and infrared imagery. A multiresolution image pyramid obtained with successive filtering and a subsampling process aids in the removal of the illumination variations and enhances local contrasts. A morphology-based interpolation scheme was also introduced to reduce intensity discontinuities created in any morphological filtering task. The generality of morphological filtering techniques in extracting information from a wide variety of images obtained with active and passive sensing techniques is discussed. Such techniques are particularly useful in obtaining more information from fusion of complex images by different sensors such as SAR, visible, and infrared.
CFD MODELING OF FINE SCALE FLOW AND TRANSPORT IN THE HOUSTON METROPOLITAN AREA, TEXAS
Fine scale modeling of flows and air quality in Houston, Texas is being performed; the use of computational fluid dynamics (CFD) modeling is being applied to investigate the influence of morphologic structures on the within-grid transport and dispersion of sources in grid models ...
NASA Astrophysics Data System (ADS)
Nyobe, Jules Mbanga; Sababa, Elisé; Bayiga, Elie Constantin; Ndjigui, Paul-Désiré
2018-03-01
This paper is focused on the morphological, mineralogical, and geochemical features of alluvial sediments from the Neoproterozoic Pan-African belt to explore rutile. The fine-grained sediments, which contain a large proportion of rutile, are made up of quartz, rutile, zircon, brookite, tourmaline, andalusite, and kyanite. The high SiO2 and TiO2 contents highlight the predominance of silica minerals in the alluvia from the humid tropical zone. La/Sc, La/Co, Th/Sc and Zr/Cr ratios reflect the contribution of felsic and mafic sources. The highest Ti contents, which occur at the outlet of the Lobo watershed, indicate the resistance of rutile. The REE distribution could be linked to the heavy mineral sorting. The low (La/Yb)N ratios and high Zr contents are attributed to the high proportion of zircon. Chondrite-normalized REE patterns indicate high felsic sources, which are the regional rocks. Ultimately, the Yaoundé Group constitutes a favorable potential target for further rutile exploration.
Jindatip, Depicha; Fujiwara, Ken; Horiguchi, Kotaro; Tsukada, Takehiro; Kouki, Tom; Yashiro, Takashi
2013-09-01
Pericytes are perivascular cells associated with capillaries. We previously demonstrated that pericytes, identified by desmin immunohistochemistry, produce type I and III collagens in the anterior pituitary gland of adult rats. In addition, we recently used desmin immunoelectron microscopy to characterize a novel type of perivascular cell, dubbed a desmin-immunopositive perivascular cell, in the anterior pituitary. These two types of perivascular cells differ in fine structure. The present study attempted to characterize the morphological features of pituitary pericytes and novel desmin-immunopositive perivascular cells during postnatal development, in particular their role in collagen synthesis. Desmin immunostaining revealed numerous perivascular cells at postnatal day 5 (P5) and P10. Transmission electron microscopy showed differences in the fine structure of the two cell types, starting at P5. Pericytes had well-developed rough endoplasmic reticulum and Golgi apparatus at P5 and P10. The novel desmin-immunopositive perivascular cells exhibited dilated cisternae of rough endoplasmic reticulum at P5-P30. In addition, during early postnatal development in the gland, a number of type I and III collagen-expressing cells were observed, as were high expression levels of these collagen mRNAs. We conclude that pituitary pericytes and novel desmin-immunopositive perivascular cells contain well-developed cell organelles and that they actively synthesize collagens during the early postnatal period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, K. A. P.; Nishida, K.; Shibata, K.
The Solar Optical Telescope (SOT) on board Hinode allows observations with high spatiotemporal resolution and stable image quality. A {lambda}-shaped chromospheric anemone jet was observed in high resolution with SOT/Hinode. We found that several fine-scale jets were launched from one end of the footpoint to the other. These fine-scale jets ({approx}1.5-2.5 Mm) gradually move from one end of the footpoint to the other and finally merge into a single jet. This process occurs recurrently, and as time progresses the jet activity becomes more and more violent. The time evolution of the region below the jet in Ca II H filtergrammore » images taken with SOT shows that various parts (or knots) appear at different positions. These bright knots gradually merge into each other during the maximum phase. The systematic motion of the fine-scale jets is observed when different knots merge into each other. Such morphology would arise due to the emergence of a three-dimensional twisted flux rope in which the axial component (or the guide field) appears in the later stages of the flux rope emergence. The partial appearance of the knots could be due to the azimuthal magnetic field that appears during the early stage of the flux rope emergence. If the guide field is strong and reconnection occurs between the emerging flux rope and an ambient magnetic field, this could explain the typical feature of systematic motion in chromospheric anemone jets.« less
Briki, Fatma; Vérine, Jérôme; Doucet, Jean; Bénas, Philippe; Fayard, Barbara; Delpech, Marc; Grateau, Gilles; Riès-Kautt, Madeleine
2011-07-20
Amyloidoses are increasingly recognized as a major public health concern in Western countries. All amyloidoses share common morphological, structural, and tinctorial properties. These consist of staining by specific dyes, a fibrillar aspect in electron microscopy and a typical cross-β folding in x-ray diffraction patterns. Most studies that aim at deciphering the amyloid structure rely on fibers generated in vitro or extracted from tissues using protocols that may modify their intrinsic structure. Therefore, the fine details of the in situ architecture of the deposits remain unknown. Here, we present to our knowledge the first data obtained on ex vivo human renal tissue sections using x-ray microdiffraction. The typical cross-β features from fixed paraffin-embedded samples are similar to those formed in vitro or extracted from tissues. Moreover, the fiber orientation maps obtained across glomerular sections reveal an intrinsic texture that is correlated with the glomerulus morphology. These results are of the highest importance to understanding the formation of amyloid deposits and are thus expected to trigger new incentives for tissue investigation. Moreover, the access to intrinsic structural parameters such as fiber size and orientation using synchrotron x-ray microdiffraction, could provide valuable information concerning in situ mechanisms and deposit formation with potential benefits for diagnostic and therapeutic purposes. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Fine sediment trapping in river lateral cavities
NASA Astrophysics Data System (ADS)
Juez, C.; Maechler, G.; Schleiss, A. J.; Franca, M. J.
2016-12-01
River restoration is nowadays a major issue in the field of hydraulics. The natural course and geometry of the rivers have been artificially changed by human activities for different purposes (land gaining, flood protection, agriculture). From a morphologic point of view, channelized rivers often display a straight path and monotonous river banks. This is in contradiction with natural morphology, where a high diversity can be found across the channel path (meanders) and the banks (pools, riffles). One way to restore rivers consist of transforming the artificial banks by adding macro-roughness elements in the lateral river banks (also called cavities and lateral embayments). The creation of irregularities on the banks causes new flow patterns that diversify the river habitat. However, these lateral cavities may be also responsible of the change of the river morphology, since they may trap the fine sediments travelling within the water. This is particularly important in glacier-fed streams such as the upper Rhone River in Switzerland. These are charged with fine sediments resulting from the erosion of the underlying glaciers bottom. The creation of lateral cavities may affect the sediment and morphological equilibrium of the river since these may trap sediments. This work aims to study the influence of the lateral cavities on the transport of fine sediments in the main channel. A set of laboratory experiments were done which covered a wide range of rectangular cavity configurations. Key parameters such as the flow discharge, the aspect ratio of the cavities and the initial sediment concentration were tested. Surface PIV, sediment samples and turbidity temporal records were collected during the experiments. The trapping efficiency of the cavities and the associated flow patterns were analyzed. The resulting conclusions provide a useful information for the future design of river restoration projects.
Diagnostic pitfalls of infarcted Warthin tumor in frozen section evaluation.
Tan, Yaohong; Kryvenko, Oleksandr N; Kerr, Darcy A; Chapman, Jennifer R; Kovacs, Christina; Arnold, David J; Rosenberg, Andrew E; Gomez-Fernandez, Carmen R
2016-12-01
Warthin tumor (WT) is the second most common benign salivary gland neoplasm and has characteristic cytologic and histologic findings. Fine-needle aspiration is a common and useful preoperative diagnostic technique, which sometimes leads to ischemic injury resulting in the infarction of these lesions. Infarcted WT may demonstrate variable gross and histologic alterations that may render the diagnosis challenging, particularly during intraoperative frozen section evaluation. In this study, we collected 11 resection specimens from 9 patients with infarcted WT. Seven patients were men and 2 were women, ranging from 49 to 85 years (mean, 69). All the patients had fine-needle aspiration before the resection. Macroscopically, the tumors were tan-white and contained soft, yellow, exudative material. The histologic findings were variable and included necrosis, ghosts of papillae, squamous metaplasia, cholesterol clefts, foamy macrophages, multinucleated giant cell reaction, necrotizing granulomas, and fibrosis. Each case predominantly demonstrated 1 or 2 of these histomorphologic features. In the permanent sections, additional sampling revealed foci of residual viable WT in 8 cases. Three cases were completely infarcted; however, they all had ghost-like papillae in which the architecture of WT was evident. Infarcted WT may present a diagnostic challenge during intraoperative frozen section evaluation. Associated morphologic alterations may preclude a definitive diagnosis of WT and may mimic malignancy. Awareness of the gross and microscopic features associated with infarcted WT is important, particularly for accurate frozen section evaluation of these salivary gland tumors. Copyright © 2016 Elsevier Inc. All rights reserved.
[A research on real-time ventricular QRS classification methods for single-chip-microcomputers].
Peng, L; Yang, Z; Li, L; Chen, H; Chen, E; Lin, J
1997-05-01
Ventricular QRS classification is key technique of ventricular arrhythmias detection in single-chip-microcomputer based dynamic electrocardiogram real-time analyser. This paper adopts morphological feature vector including QRS amplitude, interval information to reveal QRS morphology. After studying the distribution of QRS morphology feature vector of MIT/BIH DB ventricular arrhythmia files, we use morphological feature vector cluster to classify multi-morphology QRS. Based on the method, morphological feature parameters changing method which is suitable to catch occasional ventricular arrhythmias is presented. Clinical experiments verify missed ventricular arrhythmia is less than 1% by this method.
NASA Astrophysics Data System (ADS)
Gaur, Rishi; Gupta, R. K.; AnilKumar, V.; Banwait, S. S.
2018-05-01
Mechanical behavior of Ti-4Al-1Mn titanium alloy has been studied in annealed, cold-rolled and heat-treated conditions. Room temperature tensile strength as well as % elongation has been found to be low with increasing amount of cold rolling. Lowering of strength in cold worked condition is attributed to premature failure. However, the same has been mitigated after heat treatment. Significant effect of cooling media (air and water) from heat treatment temperature on microstructure was not found except for the degree of fineness of α plates. Optimum properties (strength as well as ductility) were exhibited by samples subjected to 15% cold rolling and heat treatment below β transus temperature, which can be attributed to presence of recrystallized microstructure. In cold worked condition, the microstructure shows fine fragmented α plates/Widmanstätten morphology with high dislocation density along with a large amount of strain fields and twinning, which gets transformed to recrystallized equiaxed microstructure and with plate-like morphology after near β heat treatment. Prior cold work is found to have a significant effect on mechanical properties supported by evolution of microstructure. Twinning is found to be assisting in deformation as well as in recrystallization through the formation of deformation and annealing twins during cold working and heat treatment. Fracture analysis of the tested sample with prior cold work and heat-treated condition revealed quasi-ductile failure as compared to only ductile failure features seen for samples heat treated without prior cold work.
Jia, Peng-Fei; Li, Hong-Ju; Yang, Wei-Cai
2017-01-01
Peroxisome is an essential single-membrane bound organelle in most eukaryotic cells and functions in diverse cellular processes. De novo formation, division, and turnover of peroxisomes contribute to its biogenesis, morphology, and population regulation. In plants, peroxisome plays multiple roles, including metabolism, development, and stress response. Defective peroxisome biogenesis and development retard plant growth, adaption, and reproduction. Through tracing the subcellular localization of fluorescent reporter tagged matrix protein of peroxisome, fluorescence microscopy is a reliable and fast way to detect peroxisome biogenesis. Further fine-structural observation of peroxisome by TEM enables researchers to observe the detailed ultrastructure of its morphology and spatial contact with other organelles. Pollen grain is a specialized structure where two small sperm cells are enclosed in the cytoplasm of a large vegetative cell. Two features make pollen grain a good system to study peroxisome biogenesis: indispensable requirement of peroxisome for germination on the stigma and homogeneity. Here, we describe the methods of studying peroxisome biogenesis in Arabidopsis pollen grains by fluorescent live-imaging with confocal laser scanning microscopy (CLSM) and by DAB-staining based transmission electron microscopy (TEM).
Liu, Feifei; Zhang, Renya; Wang, Zi-Yu; Xia, Qiuyuan; Shen, Qin; Shi, Shanshan; Tu, Pin; Shi, Qunli; Zhou, Xiaojun; Rao, Qiu
2014-01-01
In this study, we reported the first PEComa arising within the cervix with TFE3 gene rearrangement and aggressive biological behavior. Morphologically, the tumor showed infiltrative growth into the surrounding parenchyma. The majority of tumor cells were arrayed in sheets, alveolar structures, or nests separated by delicate fibrovascular septa. There was marked intratumoral hemorrhage, necrosis, and stromal calcifications. The tumor cells had abundant clear cytoplasm, focally containing finely granular dark brown pigment, morphologically considered to be melanin. Immunohistochemically, the tumor cells demonstrated moderately (2+) or strongly (3+) positive staining for TFE3, HMB45, and Melan A but negative for CKpan, SMA, S100, PAX8, and PAX2. The presence of Ki-67 protein demonstrated a moderate proliferation rate, with a few Ki-67-positive nuclei. Using a recently developed TFE3 split FISH assay, the presence of TFE3 rearrangement was demonstrated. All these clinicopathologic features are suggestive of TFE3-rearranged PEComas of the cervix. Our results both expand the known characteristics of primary cervix PEComas and add to the data regarding TFE3 rearrangement-associated PEComas.
Sun, Shaojie; Hu, Chuanmin; Feng, Lian; Swayze, Gregg A.; Holmes, Jamie; Graettinger, George; MacDonald, Ian R.; Garcia, Oscar; Leifer, Ira
2016-01-01
Using fine spatial resolution (~ 7.6 m) hyperspectral AVIRIS data collected over the Deepwater Horizon oil spill in the Gulf of Mexico, we statistically estimated slick lengths, widths and length/width ratios to characterize oil slick morphology for different thickness classes. For all AVIRIS-detected oil slicks (N = 52,100 continuous features) binned into four thickness classes (≤ 50 μm but thicker than sheen, 50–200 μm, 200–1000 μm, and > 1000 μm), the median lengths, widths, and length/width ratios of these classes ranged between 22 and 38 m, 7–11 m, and 2.5–3.3, respectively. The AVIRIS data were further aggregated to 30-m (Landsat resolution) and 300-m (MERIS resolution) spatial bins to determine the fractional oil coverage in each bin. Overall, if 50% fractional pixel coverage were to be required to detect oil with thickness greater than sheen for most oil containing pixels, a 30-m resolution sensor would be needed.
Yeung, W. K.; Sukhorukova, I. V.; Shtansky, D. V.; Levashov, E. A.; Zhitnyak, I. Y.; Gloushankova, N. A.; Kiryukhantsev-Korneev, P. V.; Petrzhik, M. I.; Matthews, A.
2016-01-01
The enhancement of the biological properties of Ti by surface doping with hydroxyapatite (HA) is of great significance, especially for orthodontic applications. This study addressed the effects of HA particle size in the electrolyte suspension on the characteristics and biological properties of thin titania-based coatings produced on Ti–6Al–4V alloy by plasma electrolytic oxidation (PEO). Detailed morphological investigation of the coatings formed by a single-stage PEO process with two-step control of the electrical parameters was performed using the Minkowski functionals approach. The surface chemistry was studied by glow discharge optical emission spectroscopy and Fourier transform infrared spectroscopy, whereas mechanical properties were evaluated using scratch tests. The biological assessment included in vitro evaluation of the coating bioactivity in simulated body fluid (SBF) as well as studies of spreading, proliferation and osteoblastic differentiation of MC3T3-E1 cells. The results demonstrated that both HA micro- and nanoparticles were successfully incorporated in the coatings but had different effects on their surface morphology and elemental distributions. The micro-particles formed an irregular surface morphology featuring interpenetrated networks of fine pores and coating material, whereas the nanoparticles penetrated deeper into the coating matrix which retained major morphological features of the porous TiO2 coating. All coatings suffered cohesive failure in scratch tests, but no adhesive failure was observed; moreover doping with HA increased the coating scratch resistance. In vitro tests in SBF revealed enhanced bioactivity of both HA-doped PEO coatings; furthermore, the cell proliferation/morphometric tests showed their good biocompatibility. Fluorescence microscopy revealed a well-organised actin cytoskeleton and focal adhesions in MC3T3-E1 cells cultivated on these substrates. The cell alkaline phosphatase activity in the presence of ascorbic acid and β-glycerophosphate was significantly increased, especially in HA nanoparticle-doped coatings. PMID:27019704
A Feathered Dinosaur Tail with Primitive Plumage Trapped in Mid-Cretaceous Amber.
Xing, Lida; McKellar, Ryan C; Xu, Xing; Li, Gang; Bai, Ming; Persons, W Scott; Miyashita, Tetsuto; Benton, Michael J; Zhang, Jianping; Wolfe, Alexander P; Yi, Qiru; Tseng, Kuowei; Ran, Hao; Currie, Philip J
2016-12-19
In the two decades since the discovery of feathered dinosaurs [1-3], the range of plumage known from non-avialan theropods has expanded significantly, confirming several features predicted by developmentally informed models of feather evolution [4-10]. However, three-dimensional feather morphology and evolutionary patterns remain difficult to interpret, due to compression in sedimentary rocks [9, 11]. Recent discoveries in Cretaceous amber from Canada, France, Japan, Lebanon, Myanmar, and the United States [12-18] reveal much finer levels of structural detail, but taxonomic placement is uncertain because plumage is rarely associated with identifiable skeletal material [14]. Here we describe the feathered tail of a non-avialan theropod preserved in mid-Cretaceous (∼99 Ma) amber from Kachin State, Myanmar [17], with plumage structure that directly informs the evolutionary developmental pathway of feathers. This specimen provides an opportunity to document pristine feathers in direct association with a putative juvenile coelurosaur, preserving fine morphological details, including the spatial arrangement of follicles and feathers on the body, and micrometer-scale features of the plumage. Many feathers exhibit a short, slender rachis with alternating barbs and a uniform series of contiguous barbules, supporting the developmental hypothesis that barbs already possessed barbules when they fused to form the rachis [19]. Beneath the feathers, carbonized soft tissues offer a glimpse of preservational potential and history for the inclusion; abundant Fe 2+ suggests that vestiges of primary hemoglobin and ferritin remain trapped within the tail. The new finding highlights the unique preservation potential of amber for understanding the morphology and evolution of coelurosaurian integumentary structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fine-Granularity Functional Interaction Signatures for Characterization of Brain Conditions
Hu, Xintao; Zhu, Dajiang; Lv, Peili; Li, Kaiming; Han, Junwei; Wang, Lihong; Shen, Dinggang; Guo, Lei; Liu, Tianming
2014-01-01
In the human brain, functional activity occurs at multiple spatial scales. Current studies on functional brain networks and their alterations in brain diseases via resting-state functional magnetic resonance imaging (rs-fMRI) are generally either at local scale (regionally confined analysis and inter-regional functional connectivity analysis) or at global scale (graph theoretic analysis). In contrast, inferring functional interaction at fine-granularity sub-network scale has not been adequately explored yet. Here our hypothesis is that functional interaction measured at fine-granularity subnetwork scale can provide new insight into the neural mechanisms of neurological and psychological conditions, thus offering complementary information for healthy and diseased population classification. In this paper, we derived fine-granularity functional interaction (FGFI) signatures in subjects with Mild Cognitive Impairment (MCI) and Schizophrenia by diffusion tensor imaging (DTI) and rsfMRI, and used patient-control classification experiments to evaluate the distinctiveness of the derived FGFI features. Our experimental results have shown that the FGFI features alone can achieve comparable classification performance compared with the commonly used inter-regional connectivity features. However, the classification performance can be substantially improved when FGFI features and inter-regional connectivity features are integrated, suggesting the complementary information achieved from the FGFI signatures. PMID:23319242
Anderson, Melinda C; Arehart, Kathryn H; Souza, Pamela E
2018-02-01
Current guidelines for adult hearing aid fittings recommend the use of a prescriptive fitting rationale with real-ear verification that considers the audiogram for the determination of frequency-specific gain and ratios for wide dynamic range compression. However, the guidelines lack recommendations for how other common signal-processing features (e.g., noise reduction, frequency lowering, directional microphones) should be considered during the provision of hearing aid fittings and fine-tunings for adult patients. The purpose of this survey was to identify how audiologists make clinical decisions regarding common signal-processing features for hearing aid provision in adults. An online survey was sent to audiologists across the United States. The 22 survey questions addressed four primary topics including demographics of the responding audiologists, factors affecting selection of hearing aid devices, the approaches used in the fitting of signal-processing features, and the strategies used in the fine-tuning of these features. A total of 251 audiologists who provide hearing aid fittings to adults completed the electronically distributed survey. The respondents worked in a variety of settings including private practice, physician offices, university clinics, and hospitals/medical centers. Data analysis was based on a qualitative analysis of the question responses. The survey results for each of the four topic areas (demographics, device selection, hearing aid fitting, and hearing aid fine-tuning) are summarized descriptively. Survey responses indicate that audiologists vary in the procedures they use in fitting and fine-tuning based on the specific feature, such that the approaches used for the fitting of frequency-specific gain differ from other types of features (i.e., compression time constants, frequency lowering parameters, noise reduction strength, directional microphones, feedback management). Audiologists commonly rely on prescriptive fitting formulas and probe microphone measures for the fitting of frequency-specific gain and rely on manufacturers' default settings and recommendations for both the initial fitting and the fine-tuning of signal-processing features other than frequency-specific gain. The survey results are consistent with a lack of published protocols and guidelines for fitting and adjusting signal-processing features beyond frequency-specific gain. To streamline current practice, a transparent evidence-based tool that enables clinicians to prescribe the setting of other features from individual patient characteristics would be desirable. American Academy of Audiology
NASA Astrophysics Data System (ADS)
McClinton, J. T.; White, S. M.; Colman, A.; Sinton, J. M.
2011-12-01
The Galápagos Spreading Center (GSC) displays a range of axial morphology due to increased magma supply from the adjacent Galápagos mantle plume. Over 30 years of scientific exploration has also documented the associated variations in volcanic terrain, crustal thickness, and geochemistry of erupted basalts, but until recently the fine-scale ("lava flow scale") volcanic features of the GSC had not been investigated. Using the Alvin submersible and aided by near-bottom photographic surveys by TowCam and sub-meter-scale sonar surveys by AUV Sentry, we mapped and sampled 12 individual eruptive units covering ~16km2 of seafloor on the ridge axis of the GSC at 92°W. Variations in AUV Sentry bathymetry and DSL-120A backscatter enabled us to characterize the fine-scale surface morphology within each eruptive unit. Lava flow morphologies within each unit were identified using a neuro-fuzzy classifier which assigns pixels as pillows, lobates, sheets, or fissures by using attributes derived from high-resolution sonar bathymetry and backscatter (McClinton et al., submitted PE&RS). An accuracy assessment indicates approximately 90% agreement between the lava morphology map and an independent set of visual observations. The result of this classification effort is that we are able to quantitatively examine the spatial distribution of lava flow morphology as it relates to the emplacement of lava flows within each eruptive unit at a mid-ocean ridge. Preliminary analyses show that a large, segment-centered volcanic cone which straddles the axial summit graben (the "Empanada") is constructed mostly of pillow lavas, while volcanism in the rifted center of the cone consists of lobate and sheet flows. Conversely, along the rest of the segment, on-axis eruptions consist mainly of pillow lava with most sheet and lobate flows found outside of a small axial summit graben. At least some of these sheet flows are fed by lava channels, suggesting emplacement over distances up to 1km, while pillow lava within the summit graben form low mounds; we speculate that eruption effusion rates decreased over the eruptive episode, producing changes in lava morphology within the larger eruptive units. Many axial mounds are also cut by the graben faults. The relatively young appearance of the lava surfaces at 92°W argues for a close relationship between volcanism and graben faulting on this part of the ridge.
[Coal fineness effect on primary particulate matter features during pulverized coal combustion].
Lü, Jian-yi; Li, Ding-kai
2007-09-01
Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does.
Plant traits and decomposition: are the relationships for roots comparable to those for leaves?
Birouste, Marine; Kazakou, Elena; Blanchard, Alain; Roumet, Catherine
2012-01-01
Background and Aims Fine root decomposition is an important determinant of nutrient and carbon cycling in grasslands; however, little is known about the factors controlling root decomposition among species. Our aim was to investigate whether interspecific variation in the potential decomposition rate of fine roots could be accounted for by root chemical and morphological traits, life history and taxonomic affiliation. We also investigated the co-ordinated variation in root and leaf traits and potential decomposition rates. Methods We analysed potential decomposition rates and the chemical and morphological traits of fine roots on 18 Mediterranean herbaceous species grown in controlled conditions. The results were compared with those obtained for leaves in a previous study conducted on similar species. Key Results Differences in the potential decomposition rates of fine roots between species were accounted for by root chemical composition, but not by morphological traits. The root potential decomposition rate varied with taxonomy, but not with life history. Poaceae, with high cellulose concentration and low concentrations of soluble compounds and phosphorus, decomposed more slowly than Asteraceae and Fabaceae. Patterns of root traits, including decomposition rate, mirrored those of leaf traits, resulting in a similar species clustering. Conclusions The highly co-ordinated variation of roots and leaves in terms of traits and potential decomposition rate suggests that changes in the functional composition of communities in response to anthropogenic changes will strongly affect biogeochemical cycles at the ecosystem level. PMID:22143881
Surface properties of ancient cratered terrain in the northern hemisphere of Mars
NASA Technical Reports Server (NTRS)
Zimbelman, J. R.; Greeley, R.
1982-01-01
Viking high resolution IR data is used in an examination of the hilly and cratered material of Scott and Carr (1978), supposed to be the oldest extensively exposed surface on Mars. Measured nighttime temperatures at 11 and 20 microns indicate inertia blocks, surrounded by lower thermal inertia soil. Geologic features crossed by the Viking data generally show no difference from the regional properties. Imaging data from within and around the Arabia low thermal inertia region indicate that subdued surface morphology is not always associated with low thermal inertias. The mantling of ancient northern hemisphere cratered terrain by fine grained material does not allow thermal measurements to be directly related to rock unit properties, but less mantling may be present in southern hemisphere locations of this material.
Windy Mars: A dynamic planet as seen by the HiRISE camera
Bridges, N.T.; Geissler, P.E.; McEwen, A.S.; Thomson, B.J.; Chuang, F.C.; Herkenhoff, K. E.; Keszthelyi, L.P.; Martinez-Alonso, S.
2007-01-01
With a dynamic atmosphere and a large supply of particulate material, the surface of Mars is heavily influenced by wind-driven, or aeolian, processes. The High Resolution Imaging Science Experiment (HiRISE) camera on the Mars Reconnaissance Orbiter (MRO) provides a new view of Martian geology, with the ability to see decimeter-size features. Current sand movement, and evidence for recent bedform development, is observed. Dunes and ripples generally exhibit complex surfaces down to the limits of resolution. Yardangs have diverse textures, with some being massive at HiRISE scale, others having horizontal and cross-cutting layers of variable character, and some exhibiting blocky and polygonal morphologies. "Reticulate" (fine polygonal texture) bedforms are ubiquitus in the thick mantle at the highest elevations. Copyright 2007 by the American Geophysical Union.
Tree species diversity interacts with elevated CO2 to induce a greater root system response.
Smith, Andrew R; Lukac, Martin; Bambrick, Michael; Miglietta, Franco; Godbold, Douglas L
2013-01-01
As a consequence of land-use change and the burning of fossil fuels, atmospheric concentrations of CO2 are increasing and altering the dynamics of the carbon cycle in forest ecosystems. In a number of studies using single tree species, fine root biomass has been shown to be strongly increased by elevated CO2 . However, natural forests are often intimate mixtures of a number of co-occurring species. To investigate the interaction between tree mixture and elevated CO2 , Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free-air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 (580 μmol mol(-1) ) for 4 years. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were measured. Fine root biomass and morphology responded differentially to the elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots to a depth of 20 cm, and fine root area index to a depth of 30 cm. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our data suggest that existing biogeochemical cycling models parameterized with data from species grown in monoculture may be underestimating the belowground response to global change. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Cheng, Tianhai; Gu, Xingfa; Wu, Yu; Chen, Hao; Yu, Tao
2013-08-01
Applying sphere aerosol models to replace the absorbing fine-sized dominated aerosols can potentially result in significant errors in the climate models and aerosol remote sensing retrieval. In this paper, the optical properties of absorbing fine-sized dominated aerosol were modeled, which are taking into account the fresh emitted soot particles (agglomerates of primary spherules), aged soot particles (semi-externally mixed with other weakly absorbing aerosols), and coarse aerosol particles (dust particles). The optical properties of the individual fresh and aged soot aggregates are calculated using the superposition T-matrix method. In order to quantify the morphology effect of absorbing aerosol models on the aerosol remote sensing retrieval, the ensemble averaged optical properties of absorbing fine-sized dominated aerosols are calculated based on the size distribution of fine aerosols (fresh and aged soot) and coarse aerosols. The corresponding optical properties of sphere absorbing aerosol models using Lorenz-Mie solutions were presented for comparison. The comparison study demonstrates that the sphere absorbing aerosol models underestimate the absorption ability of the fine-sized dominated aerosol particles. The morphology effect of absorbing fine-sized dominated aerosols on the TOA radiances and polarized radiances is also investigated. It is found that the sphere aerosol models overestimate the TOA reflectance and polarized reflectance by approximately a factor of 3 at wavelength of 0.865 μm. In other words, the fine-sized dominated aerosol models can cause large errors in the retrieved aerosol properties if satellite reflectance measurements are analyzed using the conventional Mie theory for spherical particles.
DISTINCTIVE FINE-SCALE MORPHOLOGY OF HYDRATE RIDGE
NASA Astrophysics Data System (ADS)
Conlin, D.; Paull, C. K.; Caress, D. W.; Thomas, H.; Ussler, W.; Lundsten, E.; Thompson, D.
2009-12-01
High-resolution multibeam bathymetry (vertical precision of 0.15 m and horizontal resolution of 1.0 m) collected using an autonomous underwater vehicle (AUV) reveals in unprecedented detail the fine-scale morphology of the ridge crests on Hydrate Ridge, offshore Oregon. An inertial navigation system combined with a doppler velocity sonar allowed the AUV to fly pre-programmed grids with 150 m line spacing at 3 knots while maintaining an altitude of 50 m above the bottom. The data were collected on two 17.5-hour-long dives, one covering a 4.3 x 1.9 km area on the southern crest of Hydrate Ridge (769 to 930 m water depths) and the other covering a 5.2 x 2 km area on the northern crest of Hydrate Ridge (584 to 985 m water depths). These surveys cover the seafloor associated with gas hydrate research boreholes at ODP Sites 891 and 1245 to 1250). The southern crest of Hydrate Ridge is an area being considered for a cable-connected seafloor observatory. The surface of southern Hydrate Ridge is generally smooth except for two approximately circular patches with maximum diameters of 350 m and 500 m associated with a distinctive hummocky topography. The geometric relationships indicate that the edges of these patches are surrounded with small apparently erosional scarps and thus the strata exposed within the patches are stratigraphically lower than the surrounding smooth seafloor. The fine scale-topography within these patches is characterized by a highly irregular surface formed by small, sometimes circular ~0.5 m deep pits, local highs and lows separated by ~0.5 high ledges that could be formed by irregularly eroded bedding surfaces. Similar shapes also occur at larger scales. For example, a previously described feature called the “pinnacle” is a ~15 m topographic high in the center of one of these hummocky patches. The surface of northern Hydrate Ridge has similar patches of hummocky topography. However, the patches are more numerous, associated with greater relief, elongated in a NE-SW direction, and up to 1400 m long. Again, these patches appear to consist of more resistant strata that have been exposed by erosion. One crater-like feature is roughly circular with a raised rim surrounding a 40 m deep depression that is 300 m in diameter. A ridge extends over 600 m to the SW from the SW flank of this depression. This ridge has a trough near its crest that suggests it is an open crack associated with seafloor expansion formed when seafloor was up-lifted to form the ridge. Previous ROV and manned submersible dives indicate that methane-derived carbonates, chemosynthetic biological communities and near seafloor gas hydrate occurrences are associated with the patches of seafloor we now know are characterized by the distinctive hummocky topography. Apparently, these distinctive textures and seafloor features are produced by processes which are focused at methane-rich seafloor sites; however, previously available survey tools have not had the resolution to adequately image these features.
NASA Astrophysics Data System (ADS)
Manigandan, K.; Srivatsan, T. S.
2015-06-01
In this paper, the results of an experimental study that focused on evaluating the conjoint influence of microstructure and test specimen orientation on fully reversed strain-controlled fatigue behavior of the high alloy steel X2M are presented and discussed. The cyclic stress response of this high-strength alloy steel revealed initial hardening during the first few cycles followed by gradual softening for most of fatigue life. Cyclic strain resistance exhibited a linear trend for the variation of elastic strain amplitude with reversals to failure, and plastic strain amplitude with reversals to failure. Fracture morphology was the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, the alloy steel revealed fracture to be essentially ductile with features reminiscent of predominantly "locally" ductile and isolated brittle mechanisms. The mechanisms governing stress response at the fine microscopic level, fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.
NASA Astrophysics Data System (ADS)
Stanke, J.; Trauth, D.; Feuerhack, A.; Klocke, F.
2017-09-01
Die roll is a morphological feature of fine blanked sheared edges. The die roll reduces the functional part of the sheared edge. To compensate for the die roll thicker sheet metal strips and secondary machining must be used. However, in order to avoid this, the influence of various fine blanking process parameters on the die roll has been experimentally and numerically studied, but there is still a lack of knowledge on the effects of some factors and especially factor interactions on the die roll. Recent changes in the field of artificial intelligence motivate the hybrid use of the finite element method and artificial neural networks to account for these non-considered parameters. Therefore, a set of simulations using a validated finite element model of fine blanking is firstly used to train an artificial neural network. Then the artificial neural network is trained with thousands of experimental trials. Thus, the objective of this contribution is to develop an artificial neural network that reliably predicts the die roll. Therefore, in this contribution, the setup of a fully parameterized 2D FE model is presented that will be used for batch training of an artificial neural network. The FE model enables an automatic variation of the edge radii of blank punch and die plate, the counter and blank holder force, the sheet metal thickness and part diameter, V-ring height and position, cutting velocity as well as material parameters covered by the Hensel-Spittel model for 16MnCr5 (1.7131, AISI/SAE 5115). The FE model is validated using experimental trails. The results of this contribution is a FE model suitable to perform 9.623 simulations and to pass the simulated die roll width and height automatically to an artificial neural network.
Farrand, W. H.; Gaddis, L.R.; Keszthelyi, L.
2005-01-01
Domes and cones with summit pits located in Acidalia Planitia and Cydonia Mensae were studied using MOC and THEMIS images and a TES-derived thermal inertia map. North of 40.5??N latitude, the features have a dome-like morphology, and south of that latitude, the morphology is more cone-like. Layering is apparent in the summit craters of fresher looking southern cones, and asymmetric aprons were observed in some instances. Some of the northern domes also display layering in their summit craters, but asymmetric aprons were not observed. The northern domes can also display multiple summit pits or no summit pits at all and can occur in association with higher-albedo "pancake" features. The northern domes are higher in albedo but have apparent thermal inertias that are lower than the surrounding plains. The apparent thermal inertia values of the southern cones range from values comparable to the surrounding plains to slightly lower. From the TES thermal inertia map, we infer that the thermal inertia values of the pitted cones are between those of basaltic fine dust and sand, while those of the surrounding plains are closer to that of basaltic sand. While a unique interpretation of the origin of the pitted cones is not possible with the available data, we do not find compelling evidence to suggest an origin related to either basaltic volcanism or ground-ice. Instead, an origin for these features through some combination of mud volcanism and evaporite deposition around geysers and/or springs is most consistent with the observations. Copyright 2005 by the American Geophysical Union.
A Corner-Point-Grid-Based Voxelization Method for Complex Geological Structure Model with Folds
NASA Astrophysics Data System (ADS)
Chen, Qiyu; Mariethoz, Gregoire; Liu, Gang
2017-04-01
3D voxelization is the foundation of geological property modeling, and is also an effective approach to realize the 3D visualization of the heterogeneous attributes in geological structures. The corner-point grid is a representative data model among all voxel models, and is a structured grid type that is widely applied at present. When carrying out subdivision for complex geological structure model with folds, we should fully consider its structural morphology and bedding features to make the generated voxels keep its original morphology. And on the basis of which, they can depict the detailed bedding features and the spatial heterogeneity of the internal attributes. In order to solve the shortage of the existing technologies, this work puts forward a corner-point-grid-based voxelization method for complex geological structure model with folds. We have realized the fast conversion from the 3D geological structure model to the fine voxel model according to the rule of isocline in Ramsay's fold classification. In addition, the voxel model conforms to the spatial features of folds, pinch-out and other complex geological structures, and the voxels of the laminas inside a fold accords with the result of geological sedimentation and tectonic movement. This will provide a carrier and model foundation for the subsequent attribute assignment as well as the quantitative analysis and evaluation based on the spatial voxels. Ultimately, we use examples and the contrastive analysis between the examples and the Ramsay's description of isoclines to discuss the effectiveness and advantages of the method proposed in this work when dealing with the voxelization of 3D geologic structural model with folds based on corner-point grids.
Detection of fibrils associated with Rickettsia rickettsii.
Todd, W J; Burgdorfer, W; Wray, G P
1983-09-01
The ultrastructural appearance of the "halozone" formed at the interface between the spotted fever agent Rickettsia rickettsii and the cytoplasm of persistently infected cultured vole cells (Microtus pennsylvanicus) was studied by transmission electron microscopy. In sections of epoxy-embedded specimens stained with uranyl acetate and lead citrate, the halozone appeared clear and devoid of ultrastructural features. However, when unembedded preparations of whole infected cells were examined at 1,000 kV, fine structural features were observed within the halozone. These features, associated with the rickettsial outer membrane, were more clearly detectable when the infected cells were extracted with the detergent Triton X-100 before fixation. Under such conditions, long extensions of the rickettsial outer membrane, microfilament-like structures attached to that membrane, and extensive attachments between adjacent rickettsiae were seen. The fine structural features within the rickettsial halozone were also seen at 75 kV when unembedded sections were prepared from polyethylene glycol-embedded specimens. Thus, epoxy-embedding medium obscures the fine structural features within the halozone surrounding the rickettsiae in infected cells.
Detection of fibrils associated with Rickettsia rickettsii.
Todd, W J; Burgdorfer, W; Wray, G P
1983-01-01
The ultrastructural appearance of the "halozone" formed at the interface between the spotted fever agent Rickettsia rickettsii and the cytoplasm of persistently infected cultured vole cells (Microtus pennsylvanicus) was studied by transmission electron microscopy. In sections of epoxy-embedded specimens stained with uranyl acetate and lead citrate, the halozone appeared clear and devoid of ultrastructural features. However, when unembedded preparations of whole infected cells were examined at 1,000 kV, fine structural features were observed within the halozone. These features, associated with the rickettsial outer membrane, were more clearly detectable when the infected cells were extracted with the detergent Triton X-100 before fixation. Under such conditions, long extensions of the rickettsial outer membrane, microfilament-like structures attached to that membrane, and extensive attachments between adjacent rickettsiae were seen. The fine structural features within the rickettsial halozone were also seen at 75 kV when unembedded sections were prepared from polyethylene glycol-embedded specimens. Thus, epoxy-embedding medium obscures the fine structural features within the halozone surrounding the rickettsiae in infected cells. Images PMID:6411620
Fine-tuning convolutional deep features for MRI based brain tumor classification
NASA Astrophysics Data System (ADS)
Ahmed, Kaoutar B.; Hall, Lawrence O.; Goldgof, Dmitry B.; Liu, Renhao; Gatenby, Robert A.
2017-03-01
Prediction of survival time from brain tumor magnetic resonance images (MRI) is not commonly performed and would ordinarily be a time consuming process. However, current cross-sectional imaging techniques, particularly MRI, can be used to generate many features that may provide information on the patient's prognosis, including survival. This information can potentially be used to identify individuals who would benefit from more aggressive therapy. Rather than using pre-defined and hand-engineered features as with current radiomics methods, we investigated the use of deep features extracted from pre-trained convolutional neural networks (CNNs) in predicting survival time. We also provide evidence for the power of domain specific fine-tuning in improving the performance of a pre-trained CNN's, even though our data set is small. We fine-tuned a CNN initially trained on a large natural image recognition dataset (Imagenet ILSVRC) and transferred the learned feature representations to the survival time prediction task, obtaining over 81% accuracy in a leave one out cross validation.
Somova, L M; Plekhova, N G; Puzdaev, V I
2008-12-01
Experimental morphological study of the postoperative cicatrix forming after the use of scalpel made from a crystal material was carried out. The skin healed much sooner and the resultant cicatrix was more fine in comparison with the wound inflicted by a common metal scalpel.
Spatial structure of morphological and neutral genetic variation in Brook Trout
Kazyak, David C.; Hilderbrand, Robert H.; Keller, Stephen R.; Colaw, Mark C.; Holloway, Amanda E.; Morgan, Raymond P.; King, Timothy L.
2015-01-01
Brook Trout Salvelinus fontinalis exhibit exceptional levels of life history variation, remarkable genetic variability, and fine-scale population structure. In many cases, neighboring populations may be highly differentiated from one another to an extent that is comparable with species-level distinctions in other taxa. Although genetic samples have been collected from hundreds of populations and tens of thousands of individuals, little is known about whether differentiation at neutral markers reflects phenotypic differences among Brook Trout populations. We compared differentiation in morphology and neutral molecular markers among populations from four geographically proximate locations (all within 24 km) to examine how genetic diversity covaries with morphology. We found significant differences among and/or within streams for all three morphological axes examined and identified the source stream of many individuals based on morphology (52.3% classification efficiency). Although molecular and morphological differentiation among streams ranged considerably (mean pairwise FST: 0.023–0.264; pairwise PST: 0.000–0.339), the two measures were not significantly correlated. While in some cases morphological characters appear to have diverged to a greater extent than expected by neutral genetic drift, many traits were conserved to a greater extent than were neutral genetic markers. Thus, while Brook Trout exhibit fine-scale spatial patterns in both morphology and neutral genetic diversity, these types of biological variabilities are being structured by different ecological and evolutionary processes. The relative influences of genetic drift versus selection and phenotypic plasticity in shaping morphology appear to vary among populations occupying nearby streams.
NASA Astrophysics Data System (ADS)
Ramos-Larios, G.; Guerrero, M. A.; Nigoche-Netro, A.; Olguín, L.; Gómez-Muñoz, M. A.; Sabin, L.; Vázquez, R.; Akras, S.; Ramírez Vélez, J. C.; Chávez, M.
2018-03-01
With its bright and wide equatorial waist seen almost edge-on (`the butterfly body') and the faint and broad bipolar extensions (`the butterfly wings'), NGC 650-1 is the archetypical example of bipolar planetary nebula (PN) with butterfly morphology. We present here deep high-resolution broad- and narrow-band optical images that expose the rich and intricate fine structure of this bipolar PN, with small-scale bubble-like features and collimated outflows. A SHAPE spatio-kinematic model indicates that NGC 650-1 has a broad central torus with an inclination angle of 75° with respect to the line of sight, whereas that of the bipolar lobes, which are clearly seen in the position-velocity maps, is 85°. Large field of view deep images show, for first time, an arc-like diffuse envelope in low- and high-excitation emission lines located up to 180 arcsec towards the east-south-east of the central star, well outside the main nebula. This morphological component is confirmed by Spitzer MIPS and WISE infrared imaging, as well as by long-slit low- and high-dispersion optical spectroscopic observations. Hubble Space Telescope images of NGC 650-1 obtained at two different epochs ˜14 yr apart reveal the proper motion of the central star along this direction. We propose that this motion of the star through the interstellar medium compresses the remnant material of a slow asymptotic giant branch wind, producing this bow-shock-like feature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhi-jie; Dai, Le-yang; Yang, De-zheng
Highlights: • A novel and high efficiency synthesizing AlN powders method combining mechanical ball milling and DBDP has been developed. • The particle size, the crystallite size, the lattice distortion, the morphology of Al{sub 2}O{sub 3} powders, and the AlN conversion rate are investigated and compared under the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP. • The ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermalmore » temperature. - Abstract: In this paper, aluminum nitride (AlN) powers have been produced with a novel and high efficiency method by thermal annealing at 1100–1600 °C of alumina (Al{sub 2}O{sub 3}) powders which were previously ball milled for various time up to 40 h with and without the assistant of dielectric barrier discharge plasma (DBDP). The ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP and the corresponding synthesized AlN powers are characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscopy. From the characteristics of the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP, it can be seen that the ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. Meanwhile, the synthesized AlN powders can be known as hexagonal AlN with fine crystal morphology and irregular lump-like structure, and have uniform distribution with the average particle size of about between 500 nm and 1000 nm. This provides an important method for fabricating ultra fine powders and synthesizing nitrogen compounds.« less
Yu, Kaixin; Wang, Xuetong; Li, Qiongling; Zhang, Xiaohui; Li, Xinwei; Li, Shuyu
2018-01-01
Morphological brain network plays a key role in investigating abnormalities in neurological diseases such as mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, most of the morphological brain network construction methods only considered a single morphological feature. Each type of morphological feature has specific neurological and genetic underpinnings. A combination of morphological features has been proven to have better diagnostic performance compared with a single feature, which suggests that an individual morphological brain network based on multiple morphological features would be beneficial in disease diagnosis. Here, we proposed a novel method to construct individual morphological brain networks for two datasets by calculating the exponential function of multivariate Euclidean distance as the evaluation of similarity between two regions. The first dataset included 24 healthy subjects who were scanned twice within a 3-month period. The topological properties of these brain networks were analyzed and compared with previous studies that used different methods and modalities. Small world property was observed in all of the subjects, and the high reproducibility indicated the robustness of our method. The second dataset included 170 patients with MCI (86 stable MCI and 84 progressive MCI cases) and 169 normal controls (NC). The edge features extracted from the individual morphological brain networks were used to distinguish MCI from NC and separate MCI subgroups (progressive vs. stable) through the support vector machine in order to validate our method. The results showed that our method achieved an accuracy of 79.65% (MCI vs. NC) and 70.59% (stable MCI vs. progressive MCI) in a one-dimension situation. In a multiple-dimension situation, our method improved the classification performance with an accuracy of 80.53% (MCI vs. NC) and 77.06% (stable MCI vs. progressive MCI) compared with the method using a single feature. The results indicated that our method could effectively construct an individual morphological brain network based on multiple morphological features and could accurately discriminate MCI from NC and stable MCI from progressive MCI, and may provide a valuable tool for the investigation of individual morphological brain networks.
High-resolution mapping of the 1998 lava flows at Axial Seamount
NASA Astrophysics Data System (ADS)
Chadwick, B.; Clague, D. A.; Embley, R. W.; Caress, D. W.; Paduan, J. B.; Sasnett, P.
2011-12-01
Axial Seamount (an active hotspot volcano on the Juan de Fuca Ridge) last erupted in 1998 and produced two lava flows (a "northern" and a "southern" flow) along the upper south rift zone separated by a distance of 4 km. Geologic mapping of the 1998 lava flows has been carried out with a combination of visual observations from multiple submersible dives since 1998, and with high-resolution bathymetry, most recently collected with the MBARI mapping AUV (the D. Allan B.) since 2007. The new mapping results revise and update the previous preliminary flow outlines, areas, and volumes. The high-resolution bathymetry (1-m grid cell size) allows eruptive fissures fine-scale morphologic features to be resolved with new and remarkable clarity. The morphology of both lava flows can be interpreted as a consequence of a specific sequence of events during their emplacement. The northern sheet flow is long (4.6 km) and narrow (500 m), and erupted in the SE part of Axial caldera, where it temporarily ponded and inflated on relatively flat terrain before draining out southward toward steeper slopes. The inflation and drain-out of this sheet flow by ~ 3.5 m over 2.5 hours was previously documented by a monitoring instrument that was caught in the lava flow. Our geologic mapping shows that the morphology of the northern sheet flow varies along its length primarily due to gradients in the underlying slope and processes active during flow emplacement. The original morphology of the sheet flow where it ponded is lobate, with pillows near the margins, whereas the central axis of drain-out and collapse is floored with lineated, ropy, and jumbled lava morphologies. The southern lava flow, in contrast, is mostly pillow lava where it cascaded down the steep slope on the east flank of the south rift zone, but also has a major area of collapse where lava ponded temporarily near the rift axis. These results show that submarine lava flows have more subsurface hydraulic connectivity than has previously been supposed. For example, a common morphologic feature at the downslope ends of the 1998 lava flows (and on many older flows at Axial) is large lobes covered with pillows that are 200-500-m in diameter, 10-20-m thick, and are capped with centered, dendritic collapse areas 5-10 m deep. These large lobes show clear evidence of inflation and drain-out, and are often arranged in a shingle-like fashion, implying progressive emplacement at decreasing distance from the eruptive vent with time. Such features are impossible to discern from visual observations alone and are only revealed by high-resolution bathymetry.
Magnetic field and radiative transfer modelling of a quiescent prominence
NASA Astrophysics Data System (ADS)
Gunár, S.; Schwartz, P.; Dudík, J.; Schmieder, B.; Heinzel, P.; Jurčák, J.
2014-07-01
Aims: The aim of this work is to analyse the multi-instrument observations of the June 22, 2010 prominence to study its structure in detail, including the prominence-corona transition region and the dark bubble located below the prominence body. Methods: We combined results of the 3D magnetic field modelling with 2D prominence fine structure radiative transfer models to fully exploit the available observations. Results: The 3D linear force-free field model with the unsheared bipole reproduces the morphology of the analysed prominence reasonably well, thus providing useful information about its magnetic field configuration and the location of the magnetic dips. The 2D models of the prominence fine structures provide a good representation of the local plasma configuration in the region dominated by the quasi-vertical threads. However, the low observed Lyman-α central intensities and the morphology of the analysed prominence suggest that its upper central part is not directly illuminated from the solar surface. Conclusions: This multi-disciplinary prominence study allows us to argue that a large part of the prominence-corona transition region plasma can be located inside the magnetic dips in small-scale features that surround the cool prominence material located in the dip centre. We also argue that the dark prominence bubbles can be formed because of perturbations of the prominence magnetic field by parasitic bipoles, causing them to be devoid of the magnetic dips. Magnetic dips, however, form thin layers that surround these bubbles, which might explain the occurrence of the cool prominence material in the lines of sight intersecting the prominence bubbles. Movie and Appendix A are available in electronic form at http://www.aanda.org
Berdan, J.M.
1984-01-01
Leperditicopid ostracodes from the Ordovician formations of Kentucky occur in micritic to fine-grained carbonate rocks believed to represent shallow-water facies. They are found at widely separated horizons in the Middle Ordovician High Bridge Group, the Middle and Upper Ordovician Lexington Limestone, and the Upper Ordovician Ashlock, Bull Fork, and Drakes Formations. In this sequence, the leperditicopes are represented by two genera of leperditiids, Eoleperditia Swartz, 1949 and Bivia Berdan, 1976, and six isochilinid genera, Isochilina Jones, 1858, Teichochilina Swartz, 1949, Ceratoleperditia Harris, 1960, Parabriartina n. gen., Kenodontochilina n. gen., and Saffordellina Bassler and Kellett, 1934; the type species of the hitherto poorly known genus Saffordellina, S. muralis (Ulrich and Bassler, 1923), is redescribed and refigured. In all, 18 taxa, of which 2 are in open nomenclature, are described and illustrated. In addition, the family Isochilinidae Swartz, 1949 is redefined to include genera without marginal brims and with straight ventral contact margins. The morphological characteristics of leperditicopid genera are discussed, and a table listing described genera and their diagnostic features is included.
NASA Astrophysics Data System (ADS)
Zhang, Shijun; Jing, Zhongliang; Li, Jianxun
2005-01-01
The rotation invariant feature of the target is obtained using the multi-direction feature extraction property of the steerable filter. Combining the morphological operation top-hat transform with the self-organizing feature map neural network, the adaptive topological region is selected. Using the erosion operation, the topological region shrinkage is achieved. The steerable filter based morphological self-organizing feature map neural network is applied to automatic target recognition of binary standard patterns and real-world infrared sequence images. Compared with Hamming network and morphological shared-weight networks respectively, the higher recognition correct rate, robust adaptability, quick training, and better generalization of the proposed method are achieved.
The Rac-GAP alpha2-chimaerin regulates hippocampal dendrite and spine morphogenesis.
Valdez, Chris M; Murphy, Geoffrey G; Beg, Asim A
2016-09-01
Dendritic spines are fine neuronal processes where spatially restricted input can induce activity-dependent changes in one spine, while leaving neighboring spines unmodified. Morphological spine plasticity is critical for synaptic transmission and is thought to underlie processes like learning and memory. Significantly, defects in dendritic spine stability and morphology are common pathogenic features found in several neurodevelopmental and neuropsychiatric disorders. The remodeling of spines relies on proteins that modulate the underlying cytoskeleton, which is primarily composed of filamentous (F)-actin. The Rho-GTPase Rac1 is a major regulator of F-actin and is essential for the development and plasticity of dendrites and spines. However, the key molecules and mechanisms that regulate Rac1-dependent pathways at spines and synapses are not well understood. We have identified the Rac1-GTPase activating protein, α2-chimaerin, as a critical negative regulator of Rac1 in hippocampal neurons. The loss of α2-chimaerin significantly increases the levels of active Rac1 and induces the formation of aberrant polymorphic dendritic spines. Further, disruption of α2-chimaerin signaling simplifies dendritic arbor complexity and increases the presence of dendritic spines that appear poly-innervated. Our data suggests that α2-chimaerin serves as a "brake" to constrain Rac1-dependent signaling to ensure that the mature morphology of spines is maintained in response to network activity. Copyright © 2016 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Producing fine, good quality rice flour is more difficult than wheat flour because the rice grain is harder. In this study, we analyzed the relationship between the morphology and starch of kernels from genetically different rice varieties that can be used to make dry-milled flour. The non-glutinous...
Aerosol jet printed silver nanowire transparent electrode for flexible electronic application
NASA Astrophysics Data System (ADS)
Tu, Li; Yuan, Sijian; Zhang, Huotian; Wang, Pengfei; Cui, Xiaolei; Wang, Jiao; Zhan, Yi-Qiang; Zheng, Li-Rong
2018-05-01
Aerosol jet printing technology enables fine feature deposition of electronic materials onto low-temperature, non-planar substrates without masks. In this work, silver nanowires (AgNWs) are proposed to be printed into transparent flexible electrodes using a Maskless Mesoscale Material Deposition Aerosol Jet® printing system on a glass substrate. The influence of the most significant process parameters, including printing cycles, printing speed, and nozzle size, on the performance of AgNW electrodes was systematically studied. The morphologies of printed patterns were characterized by scanning electron microscopy, and the transmittance was evaluated using an ultraviolet-visible spectrophotometer. Under optimum conditions, high transparent AgNW electrodes with a sheet resistance of 57.68 Ω/sq and a linewidth of 50.9 μm were obtained, which is an important step towards a higher performance goal for flexible electronic applications.
Rapid mounting of adult Drosophila structures in Hoyer's medium.
Stern, David L; Sucena, Elio
2012-01-01
The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. This protocol describes a procedure for mounting adult cuticles in Hoyer's medium, a useful mountant for both larval and adult cuticles. The medium digests soft tissues rapidly, leaving the cuticle cleared for observation. In addition, samples can be transferred directly from water to Hoyer's medium. However, specimens mounted in Hoyer's medium degrade over time. For example, the fine denticles on the larval dorsum are best observed soon after mounting; they begin to fade after 1 week, and can disappear completely after several months. More robust features, such as the ventral denticle belts, will persist for a longer period of time. Because adults cannot profitably be mounted whole in Hoyer's medium, some dissection is necessary.
Lensfree super-resolution holographic microscopy using wetting films on a chip
NASA Astrophysics Data System (ADS)
Mudanyali, Onur; Bishara, Waheb; Ozcan, Aydogan
2011-08-01
We investigate the use of wetting films to significantly improve the imaging performance of lensfree pixel super-resolution on-chip microscopy, achieving < 1 μm spatial resolution over a large imaging area of ~24 mm2. Formation of an ultra-thin wetting film over the specimen effectively creates a micro-lens effect over each object, which significantly improves the signal-to-noise-ratio and therefore the resolution of our lensfree images. We validate the performance of this approach through lensfree on-chip imaging of various objects having fine morphological features (with dimensions of e.g., ≤0.5 μm) such as Escherichia coli (E. coli), human sperm, Giardia lamblia trophozoites, polystyrene micro beads as well as red blood cells. These results are especially important for the development of highly sensitive field-portable microscopic analysis tools for resource limited settings.
Visible rodent brain-wide networks at single-neuron resolution
Yuan, Jing; Gong, Hui; Li, Anan; Li, Xiangning; Chen, Shangbin; Zeng, Shaoqun; Luo, Qingming
2015-01-01
There are some unsolvable fundamental questions, such as cell type classification, neural circuit tracing and neurovascular coupling, though great progresses are being made in neuroscience. Because of the structural features of neurons and neural circuits, the solution of these questions needs us to break through the current technology of neuroanatomy for acquiring the exactly fine morphology of neuron and vessels and tracing long-distant circuit at axonal resolution in the whole brain of mammals. Combined with fast-developing labeling techniques, efficient whole-brain optical imaging technology emerging at the right moment presents a huge potential in the structure and function research of specific-function neuron and neural circuit. In this review, we summarize brain-wide optical tomography techniques, review the progress on visible brain neuronal/vascular networks benefit from these novel techniques, and prospect the future technical development. PMID:26074784
Pattern Recognition Approaches for Breast Cancer DCE-MRI Classification: A Systematic Review.
Fusco, Roberta; Sansone, Mario; Filice, Salvatore; Carone, Guglielmo; Amato, Daniela Maria; Sansone, Carlo; Petrillo, Antonella
2016-01-01
We performed a systematic review of several pattern analysis approaches for classifying breast lesions using dynamic, morphological, and textural features in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Several machine learning approaches, namely artificial neural networks (ANN), support vector machines (SVM), linear discriminant analysis (LDA), tree-based classifiers (TC), and Bayesian classifiers (BC), and features used for classification are described. The findings of a systematic review of 26 studies are presented. The sensitivity and specificity are respectively 91 and 83 % for ANN, 85 and 82 % for SVM, 96 and 85 % for LDA, 92 and 87 % for TC, and 82 and 85 % for BC. The sensitivity and specificity are respectively 82 and 74 % for dynamic features, 93 and 60 % for morphological features, 88 and 81 % for textural features, 95 and 86 % for a combination of dynamic and morphological features, and 88 and 84 % for a combination of dynamic, morphological, and other features. LDA and TC have the best performance. A combination of dynamic and morphological features gives the best performance.
Chae, In Hye; Kim, Eun-Kyung; Moon, Hee Jung; Yoon, Jung Hyun; Park, Vivian Y; Kwak, Jin Young
2017-07-01
To compare post-biopsy hematoma rates between ultrasound guided-fine needle aspiration and ultrasound guided-core needle biopsy, and to investigate risk factors for post-biopsy hematoma. A total of 5304 thyroid nodules which underwent ultrasound guided biopsy were included in this retrospective study. We compared clinical and US features between patients with and without post-biopsy hematoma. Associations between these features and post-biopsy hematoma were analyzed. Post-biopsy hematoma rate was 0.8% (43/5121) for ultrasound guided-fine needle aspiration and 4.9% (9/183) for ultrasound guided-core needle biopsy (P < 0.001). For ultrasound guided-fine needle aspiration, gender, age, size, presence of vascularity, and suspicious US features were not associated with post-biopsy hematoma according to experience level. Post-biopsy hematoma occurred significantly more with ultrasound guided-core needle biopsy (9/179, 5.0%) than with ultrasound guided-fine needle aspiration (9/1138, 0.8%) (P < 0.001) in experienced performers and ultrasound guided-core needle biopsy was the only significant risk factor for post-biopsy hematoma (adjusted Odds Ratio, 6.458, P < 0.001). Post-biopsy hematoma occurred significantly more in ultrasound guided-core needle biopsy than in ultrasound guided-fine needle aspiration and ultrasound guided-core needle biopsy was the only independent factor of post-biopsy hematoma in thyroid nodules.
High resolution telescope and spectrograph observations of solar fine structure in the 1600 A region
NASA Technical Reports Server (NTRS)
Cook, J. W.; Brueckner, G. E.; Bartoe, J.-D. F.
1983-01-01
High spatial resolution spectroheliograms of the 1600 A region obtained during the HRTS rocket flight of 1978 February 13 are presented. The morphology, fine structure, and temporal behavior of emission bright points (BPs) in active and quiet regions are illustrated. In quiet regions, network elements persist as morphological units, although individual BPs may vary in intensity while usually lasting the flight duration. In cell centers, the BPs are highly variable on a 1 minute time scale. BPs in plages remain more constant in brightness over the observing sequence. BPs cover less than 4 percent of the quiet surface. The lifetime and degree of packing of BPs vary with the local strength of the magnetic field.
Predictive Value of Morphological Features in Patients with Autism versus Normal Controls
ERIC Educational Resources Information Center
Ozgen, H.; Hellemann, G. S.; de Jonge, M. V.; Beemer, F. A.; van Engeland, H.
2013-01-01
We investigated the predictive power of morphological features in 224 autistic patients and 224 matched-pairs controls. To assess the relationship between the morphological features and autism, we used the receiver operator curves (ROC). In addition, we used recursive partitioning (RP) to determine a specific pattern of abnormalities that is…
Ultrasonography of thyroid nodules: a pictorial review.
Xie, Cheng; Cox, Peter; Taylor, Nia; LaPorte, Sarah
2016-02-01
Thyroid nodules are a common occurrence in the general population, and these incidental thyroid nodules are often referred for ultrasound (US) evaluation. US provides a safe and fast method of examination. It is sensitive for the detection of thyroid nodules, and suspicious features can be used to guide further investigation/management decisions. However, given the financial burden on the health service and unnecessary anxiety for patients, it is unrealistic to biopsy every thyroid nodule to confirm diagnosis. The British Thyroid Association (BTA) has recently produced a US classification (U1-U5) of thyroid nodules to facilitate the decision-making process regarding the need to perform fine-needle aspiration cytology (FNAC) for suspicious cases. In this pictorial review, we provide a complete series of sonographic images to illustrate benign and malignant features of thyroid nodules according to the U1-5 classification. Specifically, we highlight morphologic characteristic of the nodule, including its echo signal in relation to its consistency, nodular size, number and contour. Additional diagnostic features such as halo, colloid, calcification and vascular patterns are also discussed in detail. The aim is to assist radiologists and clinicians in recognising sonographic patterns of benign, suspicious and malignant nodules based on U1-5 criteria, and in planning for further investigations. • Ultrasound is sensitive in identifying suspicious features, which require aspiration. • Whether nodules require aspiration should be based on sonographic features and clinical findings. • U1-5 classification of sonographic findings can help determine whether aspiration is necessary.
Effect of nickel seed layer on growth of α-V2O5 nanostructured thin films
NASA Astrophysics Data System (ADS)
Sharma, Rabindar Kumar; Kant, Chandra; Kumar, Prabhat; Singh, Megha; Reddy, G. B.
2015-08-01
In this communication, we reported the role of Ni seed layer on the growth of vanadium pentoxide (α-V2O5) nanostructured thin films (NSTs) using plasma assisted sublimation process (PASP). Two different substrates, simple glass substrate and the Ni coated glass substrate (Ni thickness ˜ 100 nm) are employing in the present work. The influence of seed layer on structural, morphological, and vibrational properties have been studied systematically. The structural analysis divulged that both films deposited on simple glass as well as on Ni coated glass shown purely orthorhombic phase, no other phases are detected. The morphological studies of V2O5 film deposited on both substrates are carried out by SEM, revealed that features of V2O5 NSTs is completely modified in presence of Ni seed layer and the film possessing the excellent growth of nanorods (NRs) on Ni coated glass rather than simple glass. The HRTEM analysis of NRs is performed at very high magnification, shows very fine fringe pattern, which confirmed the single crystalline nature of nanorods. The vibrational study of NRs is performed using micro-Raman spectroscopy, which strongly support the XRD observations.
NASA Astrophysics Data System (ADS)
Di Martino, S. F.; Thewlis, G.
2014-02-01
Transformation characteristics and morphological features of ferrite/carbide aggregate (FCA) in low carbon-manganese steels have been investigated. Work shows that FCA has neither the lamellae structure of pearlite nor the lath structure of bainite and martensite. It consists of a fine dispersion of cementite particles in a smooth ferrite matrix. Carbide morphologies range from arrays of globular particles or short fibers to extended, branched, and densely interconnected fibers. Work demonstrates that FCA forms over similar cooling rate ranges to Widmanstätten ferrite. Rapid transformation of both phases occurs at temperatures between 798 K and 973 K (525 °C and 700 °C). FCA reaction is not simultaneous with Widmanstätten ferrite but occurs at temperatures intermediate between Widmanstätten ferrite and bainite. Austenite carbon content calculations verify that cementite precipitation is thermodynamically possible at FCA reaction temperatures without bainite formation. The pattern of precipitation is confirmed to be discontinuous. CCT diagrams have been constructed that incorporate FCA. At low steel manganese content, Widmanstätten ferrite and bainite bay sizes are significantly reduced so that large amounts of FCA are formed over a wide range of cooling rates.
Unearthing the Fossorial Tadpoles of the Indian Dancing Frog Family Micrixalidae.
Senevirathne, Gayani; Garg, Sonali; Kerney, Ryan; Meegaskumbura, Madhava; Biju, S D
2016-01-01
Tadpoles of the monotypic Indian dancing frog family Micrixalidae have remained obscure for over 125 years. Here we report the discovery of the elusive tadpoles of Micrixalus herrei from the sand beds of a forested stream in southern Western Ghats, and confirm their identity through DNA barcoding. These actively burrowing tadpoles lead an entirely fossorial life from eggs to late metamorphic stages. We describe their internal and external morphological characters while highlighting the following features: eel-like appearance, extensively muscularized body and tail, reduced tail fins, skin-covered eyes, delayed development of eye pigmentation in early pre-metamorphic stages (Gosner stages 25-29), prominent tubular sinistral spiracle, large transverse processes on vertebrae II and III, ankylosed ribs on transverse processes of vertebra II, notochord terminating before the atlantal cotyle-occipital condyle junction, absence of keratodonts, serrated well-formed jaw sheaths, and extensive calcified endolymphatic sacs reaching sacrum posteriorly. The tadpole gut contains mostly fine sediments and sand. We discuss the eel-like morphology and feeding habits of M. herrei in the context of convergence with other well-known fossorial tadpoles. This discovery builds the knowledge base for further comparative analyses and conservation of Micrixalus, an ancient and endemic lineage of Indian frogs.
NASA Astrophysics Data System (ADS)
Paul, Subir; Nagesh Kumar, D.
2018-04-01
Hyperspectral (HS) data comprises of continuous spectral responses of hundreds of narrow spectral bands with very fine spectral resolution or bandwidth, which offer feature identification and classification with high accuracy. In the present study, Mutual Information (MI) based Segmented Stacked Autoencoder (S-SAE) approach for spectral-spatial classification of the HS data is proposed to reduce the complexity and computational time compared to Stacked Autoencoder (SAE) based feature extraction. A non-parametric dependency measure (MI) based spectral segmentation is proposed instead of linear and parametric dependency measure to take care of both linear and nonlinear inter-band dependency for spectral segmentation of the HS bands. Then morphological profiles are created corresponding to segmented spectral features to assimilate the spatial information in the spectral-spatial classification approach. Two non-parametric classifiers, Support Vector Machine (SVM) with Gaussian kernel and Random Forest (RF) are used for classification of the three most popularly used HS datasets. Results of the numerical experiments carried out in this study have shown that SVM with a Gaussian kernel is providing better results for the Pavia University and Botswana datasets whereas RF is performing better for Indian Pines dataset. The experiments performed with the proposed methodology provide encouraging results compared to numerous existing approaches.
A comparative study of new and current methods for dental micro-CT image denoising
Lashgari, Mojtaba; Qin, Jie; Swain, Michael
2016-01-01
Objectives: The aim of the current study was to evaluate the application of two advanced noise-reduction algorithms for dental micro-CT images and to implement a comparative analysis of the performance of new and current denoising algorithms. Methods: Denoising was performed using gaussian and median filters as the current filtering approaches and the block-matching and three-dimensional (BM3D) method and total variation method as the proposed new filtering techniques. The performance of the denoising methods was evaluated quantitatively using contrast-to-noise ratio (CNR), edge preserving index (EPI) and blurring indexes, as well as qualitatively using the double-stimulus continuous quality scale procedure. Results: The BM3D method had the best performance with regard to preservation of fine textural features (CNREdge), non-blurring of the whole image (blurring index), the clinical visual score in images with very fine features and the overall visual score for all types of images. On the other hand, the total variation method provided the best results with regard to smoothing of images in texture-free areas (CNRTex-free) and in preserving the edges and borders of image features (EPI). Conclusions: The BM3D method is the most reliable technique for denoising dental micro-CT images with very fine textural details, such as shallow enamel lesions, in which the preservation of the texture and fine features is of the greatest importance. On the other hand, the total variation method is the technique of choice for denoising images without very fine textural details in which the clinician or researcher is interested mainly in anatomical features and structural measurements. PMID:26764583
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-01-01
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification. PMID:28025525
Singha, Mrinal; Wu, Bingfang; Zhang, Miao
2016-12-22
Accurate and timely mapping of paddy rice is vital for food security and environmental sustainability. This study evaluates the utility of temporal features extracted from coarse resolution data for object-based paddy rice classification of fine resolution data. The coarse resolution vegetation index data is first fused with the fine resolution data to generate the time series fine resolution data. Temporal features are extracted from the fused data and added with the multi-spectral data to improve the classification accuracy. Temporal features provided the crop growth information, while multi-spectral data provided the pattern variation of paddy rice. The achieved overall classification accuracy and kappa coefficient were 84.37% and 0.68, respectively. The results indicate that the use of temporal features improved the overall classification accuracy of a single-date multi-spectral image by 18.75% from 65.62% to 84.37%. The minimum sensitivity (MS) of the paddy rice classification has also been improved. The comparison showed that the mapped paddy area was analogous to the agricultural statistics at the district level. This work also highlighted the importance of feature selection to achieve higher classification accuracies. These results demonstrate the potential of the combined use of temporal and spectral features for accurate paddy rice classification.
Rajbongshi, Nijara; Bora, Kangkana; Nath, Dilip C; Das, Anup K; Mahanta, Lipi B
2018-01-01
Cytological changes in terms of shape and size of nuclei are some of the common morphometric features to study breast cancer, which can be observed by careful screening of fine needle aspiration cytology (FNAC) images. This study attempts to categorize a collection of FNAC microscopic images into benign and malignant classes based on family of probability distribution using some morphometric features of cell nuclei. For this study, features namely area, perimeter, eccentricity, compactness, and circularity of cell nuclei were extracted from FNAC images of both benign and malignant samples using an image processing technique. All experiments were performed on a generated FNAC image database containing 564 malignant (cancerous) and 693 benign (noncancerous) cell level images. The five-set extracted features were reduced to three-set (area, perimeter, and circularity) based on the mean statistic. Finally, the data were fitted to the generalized Pearsonian system of frequency curve, so that the resulting distribution can be used as a statistical model. Pearsonian system is a family of distributions where kappa (κ) is the selection criteria computed as functions of the first four central moments. For the benign group, kappa (κ) corresponding to area, perimeter, and circularity was -0.00004, 0.0000, and 0.04155 and for malignant group it was 1016942, 0.01464, and -0.3213, respectively. Thus, the family of distribution related to these features for the benign and malignant group were different, and therefore, characterization of their probability curve will also be different.
Lee, Ki-Wook; Kim, Yeun; Perinpanayagam, Hiran; Lee, Jong-Ki; Yoo, Yeon-Jee; Lim, Sang-Min; Chang, Seok Woo; Ha, Byung-Hyun; Zhu, Qiang; Kum, Kee-Yeon
2014-03-01
Micro-computed tomography (MCT) shows detailed root canal morphology that is not seen with traditional tooth clearing. However, alternative image reformatting techniques in MCT involving 2-dimensional (2D) minimum intensity projection (MinIP) and 3-dimensional (3D) volume-rendering reconstruction have not been directly compared with clearing. The aim was to compare alternative image reformatting techniques in MCT with tooth clearing on the mesiobuccal (MB) root of maxillary first molars. Eighteen maxillary first molar MB roots were scanned, and 2D MinIP and 3D volume-rendered images were reconstructed. Subsequently, the same MB roots were processed by traditional tooth clearing. Images from 2D, 3D, 2D + 3D, and clearing techniques were assessed by 4 endodontists to classify canal configuration and to identify fine anatomic structures such as accessory canals, intercanal communications, and loops. All image reformatting techniques in MCT showed detailed configurations and numerous fine structures, such that none were classified as simple type I or II canals; several were classified as types III and IV according to Weine classification or types IV, V, and VI according to Vertucci; and most were nonclassifiable because of their complexity. The clearing images showed less detail, few fine structures, and numerous type I canals. Classification of canal configuration was in 100% intraobserver agreement for all 18 roots visualized by any of the image reformatting techniques in MCT but for only 4 roots (22.2%) classified according to Weine and 6 (33.3%) classified according to Vertucci, when using the clearing technique. The combination of 2D MinIP and 3D volume-rendered images showed the most detailed canal morphology and fine anatomic structures. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Role of alveolar topology on acinar flows and convective mixing.
Hofemeier, Philipp; Sznitman, Josué
2014-06-01
Due to experimental challenges, computational simulations are often sought to quantify inhaled aerosol transport in the pulmonary acinus. Commonly, these are performed using generic alveolar topologies, including spheres, toroids, and polyhedra, to mimic the complex acinar morphology. Yet, local acinar flows and ensuing particle transport are anticipated to be influenced by the specific morphological structures. We have assessed a range of acinar models under self-similar breathing conditions with respect to alveolar flow patterns, convective flow mixing, and deposition of fine particles (1.3 μm diameter). By tracking passive tracers over cumulative breathing cycles, we find that irreversible flow mixing correlates with the location and strength of the recirculating vortex inside the cavity. Such effects are strongest in proximal acinar generations where the ratio of alveolar to ductal flow rates is low and interalveolar disparities are most apparent. Our results for multi-alveolated acinar ducts highlight that fine 1 μm inhaled particles subject to alveolar flows are sensitive to the alveolar topology, underlining interalveolar disparities in particle deposition patterns. Despite the simplicity of the acinar models investigated, our findings suggest that alveolar topologies influence more significantly local flow patterns and deposition sites of fine particles for upper generations emphasizing the importance of the selected acinar model. In distal acinar generations, however, the alveolar geometry primarily needs to mimic the space-filling alveolar arrangement dictated by lung morphology.
NASA Astrophysics Data System (ADS)
Polishchuk, S.
2015-11-01
We have conducted investigations of ultra-fine metals biological activity with lab non-pedigree white rats, rabbits breed “Soviet chinchilla” and cattle young stock of the black and white breed as the most widely spread in the central part of Russia. One can see the possibility of using microelements of ultra-fine iron, cobalt and copper as cheap, non-toxic and highly effective biological catalyst of biochemical processes in the organism that improve physiological state, morphological and biochemical blood parameters increasing activity of the experimental animals’ ferment systems and their productivity and meat biological value. We have proved the ultra-fine powders safety when adding them to the animals’ diet.
Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network.
Chi, Jianning; Walia, Ekta; Babyn, Paul; Wang, Jimmy; Groot, Gary; Eramian, Mark
2017-08-01
With many thyroid nodules being incidentally detected, it is important to identify as many malignant nodules as possible while excluding those that are highly likely to be benign from fine needle aspiration (FNA) biopsies or surgeries. This paper presents a computer-aided diagnosis (CAD) system for classifying thyroid nodules in ultrasound images. We use deep learning approach to extract features from thyroid ultrasound images. Ultrasound images are pre-processed to calibrate their scale and remove the artifacts. A pre-trained GoogLeNet model is then fine-tuned using the pre-processed image samples which leads to superior feature extraction. The extracted features of the thyroid ultrasound images are sent to a Cost-sensitive Random Forest classifier to classify the images into "malignant" and "benign" cases. The experimental results show the proposed fine-tuned GoogLeNet model achieves excellent classification performance, attaining 98.29% classification accuracy, 99.10% sensitivity and 93.90% specificity for the images in an open access database (Pedraza et al. 16), while 96.34% classification accuracy, 86% sensitivity and 99% specificity for the images in our local health region database.
Moore, J G; Bocklage, T
1998-07-01
Primary undifferentiated carcinoma of the salivary glands is a rare, high-grade neoplasm which accounts for a very small number (1-5.5%) of malignant salivary gland tumors. The large-cell variant (LCU) is less well-characterized than the small-cell form. We report on the fine-needle aspiration (FNA) biopsy findings of 2 cases of LCU, one arising in the parotid gland, and the other in a buccal mucosa accessory salivary gland. The 2 cases were similar in composition: isolated and loosely cohesive large cells with abundant cytoplasm, and variability pleomorphic nuclei with prominent nucleoli. One case also featured multinucleated tumor giant cells and macrophage polykaryons; the latter has not previously been described in FNA biopsies of LCU. There was no evidence of squamous, myoepithelial, or widespread mucinous differentiation by morphological, cytochemical, or immunohistochemical analyses (focal rare mucin production identified on special stains in one case). The differential diagnosis is lengthy and consists of other high-grade primary salivary gland malignancies as well as metastatic lesions, including melanoma. The pattern of immunohistochemical reactivity (positive keratin, negative S-100, and HMB-45 antigens), and lack of conspicuous mucin production of significant lymphoidinfiltrate, were useful in establishing the correct diagnosis.
The decomposition of fine and coarse roots: their global patterns and controlling factors
Zhang, Xinyue; Wang, Wei
2015-01-01
Fine root decomposition represents a large carbon (C) cost to plants, and serves as a potential soil C source, as well as a substantial proportion of net primary productivity. Coarse roots differ markedly from fine roots in morphology, nutrient concentrations, functions, and decomposition mechanisms. Still poorly understood is whether a consistent global pattern exists between the decomposition of fine (<2 mm root diameter) and coarse (≥2 mm) roots. A comprehensive terrestrial root decomposition dataset, including 530 observations from 71 sampling sites, was thus used to compare global patterns of decomposition of fine and coarse roots. Fine roots decomposed significantly faster than coarse roots in middle latitude areas, but their decomposition in low latitude regions was not significantly different from that of coarse roots. Coarse root decomposition showed more dependence on climate, especially mean annual temperature (MAT), than did fine roots. Initial litter lignin content was the most important predictor of fine root decomposition, while lignin to nitrogen ratios, MAT, and mean annual precipitation were the most important predictors of coarse root decomposition. Our study emphasizes the necessity of separating fine roots and coarse roots when predicting the response of belowground C release to future climate changes. PMID:25942391
Terrace aggradation during the 1978 flood on Powder River, Montana, USA
Moody, J.A.; Meade, R.H.
2008-01-01
Flood processes no longer actively increase the planform area of terraces. Instead, lateral erosion decreases the area. However, infrequent extreme floods continue episodic aggradation of terraces surfaces. We quantify this type of evolution of terraces by an extreme flood in May 1978 on Powder River in southeastern Montana. Within an 89-km study reach of the river, we (1) determine a sediment budget for each geomorphic feature, (2) interpret the stratigraphy of the newly deposited sediment, and (3) discuss the essential role of vegetation in the depositional processes. Peak flood discharge was about 930??m3 s- 1, which lasted about eight??days. During this time, the flood transported 8.2??million tons of sediment into and 4.5??million tons out of the study reach. The masses of sediment transferred between features or eroded from one feature and redeposited on the same feature exceeded the mass transported out of the reach. The flood inundated the floodplain and some of the remnants of two terraces along the river. Lateral erosion decreased the planform area of the lower of the two terraces (~ 2.7??m above the riverbed) by 3.2% and that of the higher terrace (~ 3.5??m above the riverbed) by 4.1%. However, overbank aggradation, on average, raised the lower terrace by 0.16??m and the higher terrace by 0.063??m. Vegetation controlled the type, thickness, and stratigraphy of the aggradation on terrace surfaces. Two characteristic overbank deposits were common: coarsening-upward sequences and lee dunes. Grass caused the deposition of the coarsening-upward sequences, which had 0.02 to 0.07??m of mud at the base, and in some cases, the deposits coarsened upwards to coarse sand on the top. Lee dunes, composed of fine and very fine sand, were deposited in the wake zone downstream from the trees. The characteristic morphology of the dunes can be used to estimate some flood variables such as suspended-sediment particle size, minimum depth, and critical shear velocity. Information about depositional processes during extreme floods is rare, and therefore, the results from this study aid in interpreting the record of terrace stratigraphy along other rivers.
NASA Astrophysics Data System (ADS)
Godbold, Douglas; Smith, Andrew; Lukac, Martin
2013-04-01
Free Air Carbon dioxide Enrichment (FACE) has often been used predict the response of forest ecosystems to a future high CO2 world. Many of these investigations have been restricted to exposure of single species or genotypes to elevated CO2. To investigate the interaction between tree mixture and elevated CO2, Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free-air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 for 4 years. Aboveground woody biomass was increased in polyculture under both ambient and elevated CO2, but the response to elevated CO2 was smaller in polyculture than in the monocultures. In some years, a longer leaf retention was shown under high CO2, and is an indication that environmental factors may moderate tree response to high CO2. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were also measured. Fine root biomass and morphology responded differentially to the elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots, and fine root area index. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our results show that the aboveground and belowground response to elevated CO2 is significantly affected by intra- and inter-specific competition, and that elevated CO2 response may be reduced in forest communities comprised of tree species with contrasting functional traits but also that other environmental factors may induce previously unseen effects.
Kimberlite emplacement record in diamond morphology
NASA Astrophysics Data System (ADS)
Fedortchouk, Y.; Chinn, I.
2015-12-01
Diamond resorption morphology reflects conditions and events in the host kimberlite magma and in diamond sources in subcratonic mantle. Recent experimental studies on diamond dissolution enable us now to use surface features of diamonds to examine magmatic fluid in kimberlites. This study uses optical and scanning electron microscopy examination of ~750 macro-diamonds from two kimberlites in Orapa cluster, Botswana. Kimberlite A is a simple body filled with coherent kimberlite facies (CK); kimberlite B is a complex body with two facies of coherent kimberlite and a massive volcaniclastic kimberlite facies (MVK). Distinction between kimberlite-induced and mantle-derived resorption was based on: the type of the most abundant resorption style, morphology of crystals with attached kimberlite fragments, and the study of pseudohemimorphic diamonds. Kimberlite-induced resorption is the focus of this work. The three facies in the pipe B show three contrasting diamond resorption types. Resorption in MVK facies leads to glossy rounded surfaces with fine striation and hillocks, and is identical to the resorption style in CK facies of pipe A. This type of resorption is typical for volcaniclastic facies and indicates emplacement in the presence of abundant COH fluid with high H2O:CO2 ratio (>50mol% of H2O). We propose that pipe A is a root zone supplying material to a larger kimberlite body filled with VK. The two CK in pipe B have very different resorption style. One forms similar glossy surfaces but with regular small cavities of rounded outline, while the other seems more corrosive and develops extremely rough features and deep cavities. Comparison to the experimental data suggests that the former had almost pure H2O fluid at low pressure (where solubility of SiO2 is low). The later CK facies was emplaced in the absence or very low abundance of a free fluid, and possibly in melt closer to carbonatitic composition.
NASA Astrophysics Data System (ADS)
Vonlanthen, Pierre; Rausch, Juanita; Ketcham, Richard A.; Putlitz, Benita; Baumgartner, Lukas P.; Grobéty, Bernard
2015-02-01
The morphology of small volcanic ash particles is fundamental to our understanding of magma fragmentation, and in transport modeling of volcanic plumes and clouds. Until recently, the analysis of 3D features in small objects (< 250 μm) was either restricted to extrapolations from 2D approaches, partial stereo-imaging, or CT methods having limited spatial resolution and/or accessibility. In this study, an X-ray computed-tomography technique known as SEM micro-CT, also called 3D X-ray ultramicroscopy (3D XuM), was used to investigate the 3D morphology of small volcanic ash particles (125-250 μm sieve fraction), as well as their vesicle and microcrystal distribution. The samples were selected from four stratigraphically well-established tephra layers of the Meerfelder Maar (West Eifel Volcanic Field, Germany). Resolution tests performed on a Beametr v1 pattern sample along with Monte Carlo simulations of X-ray emission volumes indicated that a spatial resolution of 0.65 μm was obtained for X-ray shadow projections using a standard thermionic SEM and a bulk brass target as X-ray source. Analysis of a smaller volcanic ash particle (64-125 μm sieve fraction) showed that features with volumes > 20 μm3 (~ 3.5 μm in diameter) can be successfully reconstructed and quantified. In addition, new functionalities of the Blob3D software were developed to allow the particle shape factors frequently used as input parameters in ash transport and dispersion models to be calculated. This study indicates that SEM micro-CT is very well suited to quantify the various aspects of shape in fine volcanic ash, and potentially also to investigate the 3D morphology and internal structure of any object < 0.1 mm3.
Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra
2013-01-01
Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only subtle modification by Holocene processes active during the present sea-level high-stand.
Morphology evolution in high-performance polymer solar cells processed from nonhalogenated solvent
Cai, Wanzhu; Liu, Peng; Jin, Yaocheng; ...
2015-05-26
A new processing protocol based on non-halogenated solvent and additive is developed to produce polymer solar cells with power conversion efficiencies better than those processed from commonly used halogenated solvent-additive pair. Morphology studies show that good performance correlates with a finely distributed nanomorphology with a well-defined polymer fibril network structure, which leads to balanced charge transport in device operation.
Brush Plating of Nickel-Tungsten Alloy for Engineering Application
2012-08-01
ASETS Defense ‘12 1 Brush Plating of Nickel-Tungsten Alloy for Engineering Application Zhimin Zhong & Sid Clouser Report Documentation Page Form...COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Brush Plating of Nickel-Tungsten Alloy for Engineering Application 5a. CONTRACT NUMBER...6 Surface morphology Visual appearance, scanning electron and optical microscope images. Smooth, fine grained, micro- cracked surface morphology
NASA Astrophysics Data System (ADS)
Tsagkrasoulis, Dimosthenis; Hysi, Pirro; Spector, Tim; Montana, Giovanni
2017-04-01
The human face is a complex trait under strong genetic control, as evidenced by the striking visual similarity between twins. Nevertheless, heritability estimates of facial traits have often been surprisingly low or difficult to replicate. Furthermore, the construction of facial phenotypes that correspond to naturally perceived facial features remains largely a mystery. We present here a large-scale heritability study of face geometry that aims to address these issues. High-resolution, three-dimensional facial models have been acquired on a cohort of 952 twins recruited from the TwinsUK registry, and processed through a novel landmarking workflow, GESSA (Geodesic Ensemble Surface Sampling Algorithm). The algorithm places thousands of landmarks throughout the facial surface and automatically establishes point-wise correspondence across faces. These landmarks enabled us to intuitively characterize facial geometry at a fine level of detail through curvature measurements, yielding accurate heritability maps of the human face (www.heritabilitymaps.info).
Speckle-modulating optical coherence tomography in living mice and humans.
Liba, Orly; Lew, Matthew D; SoRelle, Elliott D; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M; Chu, Steven; de la Zerda, Adam
2017-06-20
Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin-features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, W.; Zhou, L.; Kassen, A. G.
2015-05-25
Fine Alnico 8 spherical powder produced by gas atomization was consolidated through hot pressing (HP), hot isostatic pressing (HIP), and compression molding and subsequent sintering (CMS) techniques. The effects of different fabrication techniques and processing parameters on microstructure and magnetic properties were analyzed and compared. The HP, HIP, and CMS magnets exhibited different features in microstructures and magnetic properties. Magnetically annealed at 840°C for 10 min and subsequently tempered at 650°C for 5h and 580°C for 15h, the HIP sample achieved the best coercivity (H cj =1845 Oe) due to spinodally decomposed (SD) phases with uniform and well-faceted mosaic morphology.more » As a result, the CMS sample had a lower Hcj than HIP and HP samples, but a higher remanence and thus the best energy product (6.5 MGOe) due to preferential grain alignment induced by abnormal grain growth.« less
Speckle-modulating optical coherence tomography in living mice and humans
Liba, Orly; Lew, Matthew D.; SoRelle, Elliott D.; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M.; Chu, Steven; de la Zerda, Adam
2017-01-01
Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner’s corpuscle in the human fingertip skin—features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods. PMID:28632205
A subcortical inhibitory signal for behavioral arrest in the thalamus
Dugué, Guillaume P.; Bokor, Hajnalka; Rousseau, Charly V.; Maglóczky, Zsófia; Havas, László; Hangya, Balázs; Wildner, Hendrik; Zeilhofer, Hanns Ulrich; Dieudonné, Stéphane; Acsády, László
2016-01-01
Organization of behavior requires rapid coordination of brainstem and forebrain activity. The exact mechanisms of effective communication between these regions are presently unclear. The intralaminar thalamus (IL) probably serves as a central hub in this circuit by connecting the critical brainstem and forebrain areas. Here we found that GABAergic/glycinergic fibers ascending from the pontine reticular formation (PRF) of the brainstem evoke fast and reliable inhibition in the IL thalamus via large, multisynaptic terminals. This inhibition was fine-tuned through heterogeneous GABAergic/glycinergic receptor ratios expressed at individual synapses. Optogenetic activation of PRF axons in the IL of freely moving mice led to behavioral arrest and transient interruption of awake cortical activity. An afferent system with comparable morphological features was also found in the human IL. These data reveal an evolutionarily conserved ascending system which gates forebrain activity through fast and powerful synaptic inhibition of the IL thalamus. PMID:25706472
Speckle-modulating optical coherence tomography in living mice and humans
NASA Astrophysics Data System (ADS)
Liba, Orly; Lew, Matthew D.; Sorelle, Elliott D.; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M.; Chu, Steven; de La Zerda, Adam
2017-06-01
Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin--features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.
Water soluble cations and the fluvial history of Mars
NASA Technical Reports Server (NTRS)
Silverman, M. P.; Munoz, E. F.
1975-01-01
The electrical conductivity and water soluble Na, K, Ca, and Mg of aqueous solutions of terrestrial soils and finely divided igneous and metamorphic rocks were determined. Soils from dry terrestrial basins with a history of water accumulation as well as soils from the topographic lows of valleys accumulated water soluble cations, particularly Na and Ca. These soils as a group can be distinguished from the rocks or a second group of soils (leached upland soils and soils from sites other than the topographic lows of valleys) by significant differences in their mean electrical conductivity and water-soluble Na + Ca content. Similar measurements on multiple samples from the surface of Mars, collected by an automated long-range roving vehicle along a highlands-to-basin transect at sites with morphological features resembling dry riverlike channels, are suggested to determine the fluvial history of the planet.
Selective Convolutional Descriptor Aggregation for Fine-Grained Image Retrieval.
Wei, Xiu-Shen; Luo, Jian-Hao; Wu, Jianxin; Zhou, Zhi-Hua
2017-06-01
Deep convolutional neural network models pre-trained for the ImageNet classification task have been successfully adopted to tasks in other domains, such as texture description and object proposal generation, but these tasks require annotations for images in the new domain. In this paper, we focus on a novel and challenging task in the pure unsupervised setting: fine-grained image retrieval. Even with image labels, fine-grained images are difficult to classify, letting alone the unsupervised retrieval task. We propose the selective convolutional descriptor aggregation (SCDA) method. The SCDA first localizes the main object in fine-grained images, a step that discards the noisy background and keeps useful deep descriptors. The selected descriptors are then aggregated and the dimensionality is reduced into a short feature vector using the best practices we found. The SCDA is unsupervised, using no image label or bounding box annotation. Experiments on six fine-grained data sets confirm the effectiveness of the SCDA for fine-grained image retrieval. Besides, visualization of the SCDA features shows that they correspond to visual attributes (even subtle ones), which might explain SCDA's high-mean average precision in fine-grained retrieval. Moreover, on general image retrieval data sets, the SCDA achieves comparable retrieval results with the state-of-the-art general image retrieval approaches.
Dark-field microscopic image stitching method for surface defects evaluation of large fine optics.
Liu, Dong; Wang, Shitong; Cao, Pin; Li, Lu; Cheng, Zhongtao; Gao, Xin; Yang, Yongying
2013-03-11
One of the challenges in surface defects evaluation of large fine optics is to detect defects of microns on surfaces of tens or hundreds of millimeters. Sub-aperture scanning and stitching is considered to be a practical and efficient method. But since there are usually few defects on the large aperture fine optics, resulting in no defects or only one run-through line feature in many sub-aperture images, traditional stitching methods encounter with mismatch problem. In this paper, a feature-based multi-cycle image stitching algorithm is proposed to solve the problem. The overlapping areas of sub-apertures are categorized based on the features they contain. Different types of overlapping areas are then stitched in different cycles with different methods. The stitching trace is changed to follow the one that determined by the features. The whole stitching procedure is a region-growing like process. Sub-aperture blocks grow bigger after each cycle and finally the full aperture image is obtained. Comparison experiment shows that the proposed method is very suitable to stitch sub-apertures that very few feature information exists in the overlapping areas and can stitch the dark-field microscopic sub-aperture images very well.
NASA Astrophysics Data System (ADS)
Voepel, Hal; Ahmed, Sharif; Hodge, Rebecca; Leyland, Julian; Sear, David
2017-04-01
One of the major causes of uncertainty in estimates of bedload transport rates in gravel-bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on the force required to entrain sediment. There are at least two factors that standard entrainment models do not consider. The first is the way in which the spatial arrangement and orientation of grains and the resultant forces varies throughout a channel and over time, ways that have yet to be fully quantified. The second is that sediment entrainment is a 3D process, yet calculations of entrainment thresholds for sediment grains are typically based on 2D diagrams where we calculate static moments of force vectors about a pivot angle, represented as a single point rather than as a more realistic axis of rotation. Our research addresses these limitations by quantifying variations in 3D sediment structure and entrainment force requirements across two key parameters: morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel-bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel-bed with a riffle-pool morphology containing varying amounts of fine sediment. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure and entrainment force requirements through measurement of 3D metrics including grain pivot angles, grain exposure and protrusion. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure and entrainment force requirement. These results have implications for the development of sediment entrainment models for gravel-bed rivers. Keywords: fluvial sediment, geomorphology, entrainment models, X-ray computed tomography, 3D imaging, vector mechanics
Zhumadilov, Zhaxybay
2006-02-01
The risk of radiation-induced nodules is higher than the risk for radiation-induced cancer. Risk factors and specific modifiers of the dose-response relationship may vary among different populations and not be well recognized. Many thyroid studies have considered thyroid nodularity itself, but not specific morphological types of thyroid nodules. There are many specific types of thyroid nodules which follow a morphological classification of thyroid lesions, including some congenital and tumor-like conditions. Modern equipment and technique can help us to identify particular specific types of thyroid nodules. In this study we report some results of a clinically applicable approach to materials derived from three studies. From 1999 through 2002, we have screened 571 current residents from 4 exposed and 1 control village near the Semipalatinsk Nuclear Test Site area, who were of similar ages (<20) at the time of major radiation fallout events at the SNTS. Prevalent nodules were identified by ultrasound and fine-needle aspiration biopsy, cytopathology results. Analysis of ultrasound images and cytopathology of thyroid lesions among exposed and non-exposed population allowed us to distinguish some interesting ultrasound features for specific types of thyroid nodules. We believe that it would be interesting and possibly more informative for thyroid dosimetry studies to consider specific morphological types of thyroid nodules. We need more detailed research to clarify the feasibility of applying these findings for study of the dose-response relationship.
Synthesis, morphology, optical and photocatalytic performance of nanostructured β-Ga{sub 2}O{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Girija, K.; DRDO – BU CLS, Bharathiar University, Coimbatore 641046; Thirumalairajan, S.
2013-06-01
Highlights: ► Nanostructures of β-Ga{sub 2}O{sub 3} were prepared using facile reflux condensation process. ► The pH of the reaction mixture shows evident influence on the size and shape of the nanostructures formed. ► The nanostructures exhibited good photocatalytic activity toward Rhodamine B and was found to be superior for higher pH value. - Abstract: Fine powders of β-Ga{sub 2}O{sub 3} nanostructures were prepared via low temperature reflux condensation method by varying the pH value without using any surfactant. The pH value of reaction mixture had great influence on the morphology of final products. High crystalline single phase β-Ga{sub 2}O{submore » 3} nanostructures were obtained by thermal treatment at 900 °C which was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis revealed rod like nanostructures at lower and higher pH values of 6 and 10, while spindle like structures were obtained at pH = 8. The phase purity and presence of vibrational bands were identified using Fourier transform infrared spectroscopy. The optical absorbance spectrum showed intense absorption features in the UV spectral region. A broad blue emission peak centered at 441 nm due to donor–acceptor gallium–oxygen vacancy pair recombination appeared. The photocatalytic activity toward Rhodamine B under visible light irradiation was higher for nanorods at pH 10.« less
Jurmu, Michael C
2002-12-01
Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.
Optimal Design of Experiments by Combining Coarse and Fine Measurements
NASA Astrophysics Data System (ADS)
Lee, Alpha A.; Brenner, Michael P.; Colwell, Lucy J.
2017-11-01
In many contexts, it is extremely costly to perform enough high-quality experimental measurements to accurately parametrize a predictive quantitative model. However, it is often much easier to carry out large numbers of experiments that indicate whether each sample is above or below a given threshold. Can many such categorical or "coarse" measurements be combined with a much smaller number of high-resolution or "fine" measurements to yield accurate models? Here, we demonstrate an intuitive strategy, inspired by statistical physics, wherein the coarse measurements are used to identify the salient features of the data, while the fine measurements determine the relative importance of these features. A linear model is inferred from the fine measurements, augmented by a quadratic term that captures the correlation structure of the coarse data. We illustrate our strategy by considering the problems of predicting the antimalarial potency and aqueous solubility of small organic molecules from their 2D molecular structure.
NASA Astrophysics Data System (ADS)
Pau, M.; Hammer, Ø.; Chand, S.; Gisler, G. R.
2015-12-01
Pockmarks are crater-like seabed depressions commonly resulting from focused fluid escape from soft, fine-grained sediments. Typically measuring 20-50 m across with depths of 2-10 m, these features often occur in extensive fields containing hundreds of them per square kilometre. They are prominent hazards for offshore installations such as oil rigs and pipelines, affecting vast areas worldwide. Besides, they represent a major geological source of methane, and their importance has been pointed out as contributors to the global climate variability.Sedimentological and biostratigraphic analyses of sediment cores were coupled with shallow seismic images to investigate the origin and evolution of a pockmark field in the southwestern Barents Sea, an epicontinental sea part of the Arctic Ocean. The pockmarks formed as a result of reduced sedimentation above active gas seeps near the retreating edge of the Barents Sea ice sheet about 15,000 years ago. The seepage is ascribed to climate change-induced dissociation of methane hydrates. These findings strengthen the case that pockmarks, worldwide, recorded the release of massive quantities of methane from the seafloor into the ocean during the last deglaciation. No evidence was found for current upward methane flux, so the pockmarks in the study area appear as inactive seabed features. Field measurements of currents and sediment fluxes in pockmarks in the Oslofjord, Norway, along with an experimental hydrodynamics study, provide insight into the mechanisms responsible for the long-term maintenance of inactive pockmarks. Near-bed currents may control the net sedimentation rate in these depressions by inhibiting the sedimentation from suspended transport. Enhanced turbulence and more intense biological activity suggest that the suspended fines are supported in the water column more easily in the pockmarks than on the surrounding bed, and can be transported away before settling. Moreover, upwelling generated by flow deflection over the pockmark morphology may winnow out the settling fine material. These mechanisms are proposed to be responsible for the lack of sediment infill that is often reported in inactive pockmarks, as well as for the frequently observed lag deposit of coarse material.
NASA Astrophysics Data System (ADS)
Khuller, A. R.; Kerber, L.
2017-12-01
The Medusae Fossae Formation (MFF) is a voluminous, fine-grained deposit thought to be of pyroclastic origin. While it contains widespread, well-preserved inverted fluvial features, its pervasive cover of dust means that little is known about its composition, and indirect means must be used to characterize its material properties. This project aims to correlate fluvial features in the Western MFF with other indicators of material strength: yardang morphology and crater depth-to-diameter ratios. For this work, Context Camera (CTX) images were used to map features of fluvial origin (inverted channels, sinuous ridges, alluvial fans). The presence of rounded, meso-yardangs in close proximity to fluvial features was also mapped. Crater depth-diameter (d/D) ratios (for craters 1-512km) were analyzed using a global Mars crater database (Robbins and Hynek, 2012) as a proxy for material strength. Approximately 1400 fluvial segments were mapped, with the most populous cluster located in Aeolis and Zephyria Plana. Rounded meso-yardangs were found to be common in areas that also have fluvial features. In agreement with previous work (Barlow, 1993), MFF craters were found to have a greater d/D ratio (0.0523) than the global mean (0.0511). Ratios between MFF lobes differ significantly, providing insight into the heterogeneity of induration within the formation. The deepest craters are found in Eumenides Dorsum and the shallowest in Aeolis Planum, consistent with a greater degree of induration and reworking in the western part of the formation where the fluvial features and "salt-playa" meso-yardangs are found. It also suggests that Eumenides, which is the tallest MFF outcrop, could also be the least compacted. The presence of long, complex, and sometimes overlapping branching networks imply multiple relative episodes of channel formation. Rounded meso-yardangs, which are associated with salt playa surfaces on Earth, provide additional evidence for the presence of liquid water during the history of the MFF. The preservation of fluvial activity, through inversion and negative relief as well as the `protection' provided by the layers of friable MFF deposits indicates that some of the most well-preserved stratigraphy could perhaps be accessed by future Martian surface exploration missions within the MFF.
de Oliveira, Ricardo Sonsim; Palácio, Soraya Moreno; da Silva, Edson Antonio; Mariani, Filipe Quadros; Reinehr, Thiago Olinek
2017-04-01
This study evaluated the feasibility of production of briquettes using fine charcoal, sewage sludge, and mixtures thereof for use in energy production. The briquettes of 7-8 cm diameter and 20 cm length were produced in the conical press extruder type, mixing sewage sludge to charcoal fines in different ratios: 0:100, 25:75, 50:50, 75:25, and 100:0, with the addition of a binder (glue flour) in a ratio of 8 mass% prepared for briquetting. After air drying (temperatures between 24 and 30°C) for 48 h, the mechanical, thermal, and morphological characterizations were performed. The morphological properties of the briquettes were evaluated by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The briquettes produced had mechanical strength, with values between 210 and 420 kgf, and densities between 0.75 and 0.91 g cm -3 . The calorific value of briquettes was in the range from 13.21 to 23.10 MJ kg -1 , in which there was an increase with the increase of concentration of charcoal fines in the mixture. Thermogravimetric analysis showed mass losses that occurred in the temperature range between 150 and 740 °C. The results of the mechanical and thermal properties showed the feasibility of using fine charcoal briquettes from sewage sludge as well as mixtures thereof, for the production of energy. The fine charcoal briquette was the one with the highest calorific value, but not showed the highest resistance to mechanical shock.
Xiao, Yue; Wang, Feng; Cui, Peide; Lei, Lei; Lin, Juntao; Yi, Mingwei
2018-05-29
Micro-surfacing is a widely used pavement preventive maintenance technology used all over the world, due to its advantages of fast construction, low maintenance cost, good waterproofness, and skid-resistance performance. This study evaluated the fine aggregate morphology and surface texture of micro-surfacing by AIMS (aggregate image measurement system), and explored the effect of aggregate morphology on skid-resistance of single-grade micro-surfacing. Sand patch test and British pendulum test were also used to detect skid-resistance for comparison with the image-based method. Wet abrasion test was used to measure skid-resistance durability for feasibility verification of single-grade micro-surfacing. The results show that the effect of Form2D on the skid-resistance of micro-surfacing is much stronger than that of angularity. Combining the feasibility analysis of durability and skid-resistance, 1.18⁻2.36 grade micro-surfacing meets the requirements of durability and skid-resistance at the same time. This study also determined that, compared with British pendulum test, the texture result obtained by sand patch test fits better with results of image method.
Familiari, Giuseppe; Heyn, Rosemarie; Relucenti, Michela; Nottola, Stefania A; Sathananthan, A Henry
2006-01-01
This study describes the updated, fine structure of human gametes, the human fertilization process, and human embryos, mainly derived from assisted reproductive technology (ART). As clearly shown, the ultrastructure of human reproduction is a peculiar multistep process, which differs in part from that of other mammalian models, having some unique features. Particular attention has been devoted to the (1) sperm ultrastructure, likely "Tygerberg (Kruger) strict morphology criteria"; (2) mature oocyte, in which the MII spindle is barrel shaped, anastral, and lacking centrioles; (3) three-dimensional microarchitecture of the zona pellucida with its unique supramolecular filamentous organization; (4) sperm-egg interactions with the peculiarity of the sperm centrosome that activates the egg and organizes the sperm aster and mitotic spindles of the embryo; and (5) presence of viable cumulus cells whose metabolic activity is closely related to egg and embryo behavior in in vitro as well as in vivo conditions, in a sort of extraovarian "microfollicular unit." Even if the ultrastructural morphodynamic features of human fertilization are well understood, our knowledge about in vivo fertilization is still very limited and the complex sequence of in vivo biological steps involved in human reproduction is only partially reproduced in current ART procedures.
Adaptive fine root foraging patterns in climate experiments and natural gradients
NASA Astrophysics Data System (ADS)
Ostonen, Ivika; Truu, Marika; Parts, Kaarin; Truu, Jaak
2017-04-01
Site based manipulative experiments and studies along climatic gradients have long been keystones of ecological research. We aimed to compare the response of ectomycorrhizal (EcM) and fine roots in manipulative studies and along climate gradient to describe the universal trends in root traits and to raise hypotheses about general mechanisms in fine root system adaptation of forest trees in global change. The root traits from two climate manipulation experiments - Bangor FACE and FAHM in Estonia, manipulated by CO2 concentration and relative air humidity in silver birch forest ecosystems, respectively and the data for three most ubiquitous tree species - Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and silver birch (Betula pendula) stands along natural gradient encompassing different climate and forest zones in Northern Europe were analysed. There are two main strategies in response of fine root system of trees: A) an extensive increase in absorptive root biomass, surface area and length, or B) a greater reliance on root-associated EcM fungi and bacterial communities with a smaller investment to absorptive root biomass. Trees in all studies tended to increase the EcM root biomass and the proportion of EcM root biomass of total fine root biomass towards harsh (northern boreal forests) or changed conditions (stress created by the increase in CO2 concentration or relative air humidity). We envisage a role of trilateral relation between the morphological traits of absorptive fine roots, exploration types of colonising EcM fungi and rhizosphere and bulk soil bacterial community structure. A significant change in EcM absorptive fine root biomass in all experiments and for all studied tree species coincided with changes in absorptive root morphology, being longer and thinner root tips with higher root tissue density in poor/treated sites. These changes were associated with significant shifts in community structure of dominating EcM fungi as well as soil and rhizosphere bacterial communities. We suggest a multidimensional concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in root-mycorhizosphere along environmental gradients and in climate experiments.
Comprehensive Computational Pathological Image Analysis Predicts Lung Cancer Prognosis.
Luo, Xin; Zang, Xiao; Yang, Lin; Huang, Junzhou; Liang, Faming; Rodriguez-Canales, Jaime; Wistuba, Ignacio I; Gazdar, Adi; Xie, Yang; Xiao, Guanghua
2017-03-01
Pathological examination of histopathological slides is a routine clinical procedure for lung cancer diagnosis and prognosis. Although the classification of lung cancer has been updated to become more specific, only a small subset of the total morphological features are taken into consideration. The vast majority of the detailed morphological features of tumor tissues, particularly tumor cells' surrounding microenvironment, are not fully analyzed. The heterogeneity of tumor cells and close interactions between tumor cells and their microenvironments are closely related to tumor development and progression. The goal of this study is to develop morphological feature-based prediction models for the prognosis of patients with lung cancer. We developed objective and quantitative computational approaches to analyze the morphological features of pathological images for patients with NSCLC. Tissue pathological images were analyzed for 523 patients with adenocarcinoma (ADC) and 511 patients with squamous cell carcinoma (SCC) from The Cancer Genome Atlas lung cancer cohorts. The features extracted from the pathological images were used to develop statistical models that predict patients' survival outcomes in ADC and SCC, respectively. We extracted 943 morphological features from pathological images of hematoxylin and eosin-stained tissue and identified morphological features that are significantly associated with prognosis in ADC and SCC, respectively. Statistical models based on these extracted features stratified NSCLC patients into high-risk and low-risk groups. The models were developed from training sets and validated in independent testing sets: a predicted high-risk group versus a predicted low-risk group (for patients with ADC: hazard ratio = 2.34, 95% confidence interval: 1.12-4.91, p = 0.024; for patients with SCC: hazard ratio = 2.22, 95% confidence interval: 1.15-4.27, p = 0.017) after adjustment for age, sex, smoking status, and pathologic tumor stage. The results suggest that the quantitative morphological features of tumor pathological images predict prognosis in patients with lung cancer. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Klijn, Marieke E; Hubbuch, Jürgen
2018-04-27
Protein phase diagrams are a tool to investigate cause and consequence of solution conditions on protein phase behavior. The effects are scored according to aggregation morphologies such as crystals or amorphous precipitates. Solution conditions affect morphological features, such as crystal size, as well as kinetic features, such as crystal growth time. Common used data visualization techniques include individual line graphs or symbols-based phase diagrams. These techniques have limitations in terms of handling large datasets, comprehensiveness or completeness. To eliminate these limitations, morphological and kinetic features obtained from crystallization images generated with high throughput microbatch experiments have been visualized with radar charts in combination with the empirical phase diagram (EPD) method. Morphological features (crystal size, shape, and number, as well as precipitate size) and kinetic features (crystal and precipitate onset and growth time) are extracted for 768 solutions with varying chicken egg white lysozyme concentration, salt type, ionic strength and pH. Image-based aggregation morphology and kinetic features were compiled into a single and easily interpretable figure, thereby showing that the EPD method can support high throughput crystallization experiments in its data amount as well as its data complexity. Copyright © 2018. Published by Elsevier Inc.
Tan, Bingyao; Wong, Alexander; Bizheva, Kostadinka
2018-01-01
A novel image processing algorithm based on a modified Bayesian residual transform (MBRT) was developed for the enhancement of morphological and vascular features in optical coherence tomography (OCT) and OCT angiography (OCTA) images. The MBRT algorithm decomposes the original OCT image into multiple residual images, where each image presents information at a unique scale. Scale selective residual adaptation is used subsequently to enhance morphological features of interest, such as blood vessels and tissue layers, and to suppress irrelevant image features such as noise and motion artefacts. The performance of the proposed MBRT algorithm was tested on a series of cross-sectional and enface OCT and OCTA images of retina and brain tissue that were acquired in-vivo. Results show that the MBRT reduces speckle noise and motion-related imaging artefacts locally, thus improving significantly the contrast and visibility of morphological features in the OCT and OCTA images. PMID:29760996
Solidification of undercooled liquids
NASA Technical Reports Server (NTRS)
Perepezko, J. H.; Shiohara, Y.; Paik, J. S.; Flemmings, M. C.
1982-01-01
During rapid solidification processing (RSP) the amount of liquid undercooling is an important factor in determining microstructural development by controlling phase selection during nucleation and morphological evolution during crystal growth. While undercooling is an inherent feature of many techniques of RSP, the deepest undercoolings and most controlled studies have been possible in carefully prepared fine droplet samples. From past work and recent advances in studies of nucleation kinetics it has become clear that the initiation of crystallization during RSP is governed usually by heterogeneous sites located at surfaces. With known nucleant sites, it has been possible to identify specific pathways of metastable phase formation and microstructural development in alloys. These advances have allowed for a clearer assessment of the interplay between undercooling, cooling rate and particle size statistics in structure formation. New approaches to the examination of growth processes have been developed to follow the thermal behavior and morphology in small samples in the period of rapid crystallization and recalescence. Based upon the new experimental information from these studies, useful models can be developed for the overall solidification process to include nucleation behavior, thermodynamic constraints, thermal history, growth kinetics, solute redistribution and resulting structures. From the refinement of knowledge concerning the underlying factors that govern RSP a basis is emerging for an effective alloy design and processing strategy.
Effect of nickel seed layer on growth of α-V{sub 2}O{sub 5} nanostructured thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rabindar Kumar; Kant, Chandra; Kumar, Prabhat
In this communication, we reported the role of Ni seed layer on the growth of vanadium pentoxide (α-V{sub 2}O{sub 5}) nanostructured thin films (NSTs) using plasma assisted sublimation process (PASP). Two different substrates, simple glass substrate and the Ni coated glass substrate (Ni thickness ∼ 100 nm) are employing in the present work. The influence of seed layer on structural, morphological, and vibrational properties have been studied systematically. The structural analysis divulged that both films deposited on simple glass as well as on Ni coated glass shown purely orthorhombic phase, no other phases are detected. The morphological studies of V{sub 2}O{submore » 5} film deposited on both substrates are carried out by SEM, revealed that features of V{sub 2}O{sub 5} NSTs is completely modified in presence of Ni seed layer and the film possessing the excellent growth of nanorods (NRs) on Ni coated glass rather than simple glass. The HRTEM analysis of NRs is performed at very high magnification, shows very fine fringe pattern, which confirmed the single crystalline nature of nanorods. The vibrational study of NRs is performed using micro-Raman spectroscopy, which strongly support the XRD observations.« less
Dual Anterograde and Retrograde Viral Tracing of Reciprocal Connectivity.
Haberl, Matthias G; Ginger, Melanie; Frick, Andreas
2017-01-01
Current large-scale approaches in neuroscience aim to unravel the complete connectivity map of specific neuronal circuits, or even the entire brain. This emerging research discipline has been termed connectomics. Recombinant glycoprotein-deleted rabies virus (RABV ∆G) has become an important tool for the investigation of neuronal connectivity in the brains of a variety of species. Neuronal infection with even a single RABV ∆G particle results in high-level transgene expression, revealing the fine-detailed morphology of all neuronal features-including dendritic spines, axonal processes, and boutons-on a brain-wide scale. This labeling is eminently suitable for subsequent post-hoc morphological analysis, such as semiautomated reconstruction in 3D. Here we describe the use of a recently developed anterograde RABV ∆G variant together with a retrograde RABV ∆G for the investigation of projections both to, and from, a particular brain region. In addition to the automated reconstruction of a dendritic tree, we also give as an example the volume measurements of axonal boutons following RABV ∆G-mediated fluorescent marker expression. In conclusion RABV ∆G variants expressing a combination of markers and/or tools for stimulating/monitoring neuronal activity, used together with genetic or behavioral animal models, promise important insights in the structure-function relationship of neural circuits.
Ghafar, Abdul; Parikka, Kirsti; Tenkanen, Maija; Suuronen, Jussi-Petteri
2017-01-01
This study investigates the impact of ice-templating conditions on the morphological features of composite polysaccharide aerogels in relation to their mechanical behavior and aims to get a better insight into the parameters governing these properties. We have prepared polysaccharide aerogels of guar galactomannan (GM) and tamarind seed xyloglucan (XG) by enzymatic oxidation with galactose oxidase (GaO) to form hydrogels, followed by conventional and unidirectional ice-templating (freezing) methods and lyophilization to form aerogels. Composite polysaccharide aerogels were prepared by incorporating nanofibrillated cellulose (NFC) into polysaccharide solutions prior to enzymatic oxidation and gel formation; such a cross linking technique enabled the homogeneous distribution of the NFC reinforcement into the gel matrix. We conducted phase-enhanced synchrotron X-ray microtomography (XMT) scans and visualized the internal microstructure of the aerogels in three-dimensional (3D) space. Volume-weighted pore-size and pore-wall thickness distributions were quantitatively measured and correlated to the aerogels’ mechanical properties regarding ice-templating conditions. Pore-size distribution and orientation depended on the ice-templating methods and the NFC reinforcement that significantly determined the mechanical and shape-recovery behavior of the aerogels. The results obtained will guide the design of the microporous structure of polysaccharide aerogels with optimal morphology and mechanical behavior for life-sciences applications. PMID:28773235
Conforto, Egle; Joguet, Nicolas; Buisson, Pierre; Vendeville, Jean-Eudes; Chaigneau, Carine; Maugard, Thierry
2015-02-01
The aim of this paper is to describe an optimized methodology to study the surface characteristics and internal structure of biopolymer capsules using scanning electron microscopy (SEM) in environmental mode. The main advantage of this methodology is that no preparation is required and, significantly, no metallic coverage is deposited on the surface of the specimen, thus preserving the original capsule shape and its surface morphology. This avoids introducing preparation artefacts which could modify the capsule surface and mask information concerning important feature like porosities or roughness. Using this method gelatin and mainly fatty coatings, difficult to be analyzed by standard SEM technique, unambiguously show fine details of their surface morphology without damage. Furthermore, chemical contrast is preserved in backscattered electron images of unprepared samples, allowing visualizing the internal organization of the capsule, the quality of the envelope, etc... This study provides pointers on how to obtain optimal conditions for the analysis of biological or sensitive material, as this is not always studied using appropriate techniques. A reliable evaluation of the parameters used in capsule elaboration for research and industrial applications, as well as that of capsule functionality is provided by this methodology, which is essential for the technological progress in this domain. Copyright © 2014 Elsevier B.V. All rights reserved.
Geomorphological Mapping on the Southern Hemisphere of Comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Lee, Jui-Chi; Massironi, Matteo; Giacomini, Lorenza; Ip, Wing-Huen; El-Maarry, Mohamed R.
2016-04-01
Since its rendezvous with comet 67P/Churyumov-Gerasimenko on the sixth of August, 2014, the Rosetta spacecraft has carried out close-up observations of the nucleus and coma of this Jupiter family comet. The OSIRIS, the Scientific Imaging Camera System onboard the Rosetta spacecraft, which consists of a narrow-angle and wide-angle camera (NAC and WAC), has made detailed investigations of the physical properties and surface morphology of the comet. From May 2015, the southern hemisphere of the comet became visible and the adaptical resolution was high enough for us to do a detailed analysis of the surface. Previous work shows that the fine particle deposits are the most extensive geomorphological unit in the northern hemisphere. On the contrary, southern hemisphere is dominated by rocky-like stratified terrain. The southern hemisphere of the nucleus surface reveals quite different morphologies from the northern hemisphere. This could be linked to the different insolation condition between northern and southern hemisphere. As a result, surface geological processes could operate with a diverse intensity on the different sides of the comet nucleus. In this work, we provide the geomorphological maps of the southern hemisphere with linear features and geological units identified. The geomorphological maps described in this study allow us to understand the processes and the origin of the comet.
Unearthing the Fossorial Tadpoles of the Indian Dancing Frog Family Micrixalidae
Senevirathne, Gayani; Garg, Sonali; Kerney, Ryan; Meegaskumbura, Madhava; Biju, S. D.
2016-01-01
Tadpoles of the monotypic Indian dancing frog family Micrixalidae have remained obscure for over 125 years. Here we report the discovery of the elusive tadpoles of Micrixalus herrei from the sand beds of a forested stream in southern Western Ghats, and confirm their identity through DNA barcoding. These actively burrowing tadpoles lead an entirely fossorial life from eggs to late metamorphic stages. We describe their internal and external morphological characters while highlighting the following features: eel-like appearance, extensively muscularized body and tail, reduced tail fins, skin-covered eyes, delayed development of eye pigmentation in early pre-metamorphic stages (Gosner stages 25–29), prominent tubular sinistral spiracle, large transverse processes on vertebrae II and III, ankylosed ribs on transverse processes of vertebra II, notochord terminating before the atlantal cotyle-occipital condyle junction, absence of keratodonts, serrated well-formed jaw sheaths, and extensive calcified endolymphatic sacs reaching sacrum posteriorly. The tadpole gut contains mostly fine sediments and sand. We discuss the eel-like morphology and feeding habits of M. herrei in the context of convergence with other well-known fossorial tadpoles. This discovery builds the knowledge base for further comparative analyses and conservation of Micrixalus, an ancient and endemic lineage of Indian frogs. PMID:27027870
Fine structure of the Arabidopsis stem cuticle: effects of fixation and changes over development.
Shumborski, Sarah J; Samuels, A Lacey; Bird, David A
2016-10-01
The Arabidopsis cuticle, as observed by electron microscopy, consists primarily of the cutin/cutan matrix. The cuticle possesses a complex substructure, which is correlated with the presence of intracuticular waxes. The plant cuticle is composed of an insoluble polyester, cutin, and organic solvent soluble cuticular waxes, which are embedded within and coat the surface of the cutin matrix. How these components are arranged in the cuticle is not well understood. The Arabidopsis cuticle is commonly understood as 'amorphous,' lacking in ultrastructural features, and is often observed as a thin (~80-100 nm) electron-dense layer on the surface of the cell wall. To examine this cuticle in more detail, we examined cuticles from both rapidly elongating and mature sections of the stem and compared the preservation of the cuticles using conventional chemical fixation methods and high-pressure freezing/freeze-substitution (HPF/FS). We found that HPF/FS preparation revealed a complex cuticle substructure, which was more evident in older stems. We also found that the cuticle increases in thickness with development, indicating an accretion of polymeric material, likely in the form of the non-hydrolyzable polymer, cutan. When wax was extracted by chloroform immersion prior to sample preparation, the contribution of waxes to cuticle morphology was revealed. Overall, the electron-dense cuticle layer was still visible but there was loss of the cuticle substructure. Furthermore, the cuticle of cer6, a wax-deficient mutant, also lacked this substructure, suggesting that these fine striations were dependent on the presence of cuticular waxes. Our findings show that HPF/FS preparation can better preserve plant cuticles, but also provide new insights into the fine structure of the Arabidopsis cuticle.
NASA Astrophysics Data System (ADS)
Preziosi-Ribero, A.; Fox, A.; Packman, A. I.; Escobar-Vargas, J.; Donado-Garzon, L. D.; Li, A.; Arnon, S.
2017-12-01
Exchange of mass, momentum and energy between surface water and groundwater is a driving factor for the biology, ecology and chemistry of rivers and water bodies in general. Nonetheless, this exchange is dominated by different factors like topography, bed morphology, and large-scale hydraulic gradient. In the particular case of fine sediments like clay, conservative tracer modeling is impossible because they are trapped in river beds for long periods, thus the normal advection dispersion approach leads to errors and results do not agree with reality. This study proposes a numerical particle tracking model that represents the behavior of kaolinite in a sand flume, and how its deposition varies according to different flow conditions, namely losing and gaining flow. Since fine particles do not behave like solutes, kaolinite dynamics are represented using settling velocity and a filtration coefficient allowing the particles to be trapped in the bed. This approach allows us to use measurable parameters directly related with the fine particle features as size and shape, and hydraulic parameters. Results are then compared with experimental results from lab experiments obtained in a recirculating flume, in order to assess the impact of losing and gaining conditions on sediment transport and deposition. Furthermore, our model is able to identify the zones where kaolinite deposition concentrates over the flume due to the bed geometry, and later relate these results with clogging of the bed and hence changes in the bed's hydraulic conductivity. Our results suggest that kaolinite deposition is higher under losing conditions since the vertical velocity of the flow is added to the deposition velocity of the particles modeled. Moreover, the zones where kaolinite concentrates varies under different flow conditions due to the difference in pressure and velocity in the river bed.
New Features for Neuron Classification.
Hernández-Pérez, Leonardo A; Delgado-Castillo, Duniel; Martín-Pérez, Rainer; Orozco-Morales, Rubén; Lorenzo-Ginori, Juan V
2018-04-28
This paper addresses the problem of obtaining new neuron features capable of improving results of neuron classification. Most studies on neuron classification using morphological features have been based on Euclidean geometry. Here three one-dimensional (1D) time series are derived from the three-dimensional (3D) structure of neuron instead, and afterwards a spatial time series is finally constructed from which the features are calculated. Digitally reconstructed neurons were separated into control and pathological sets, which are related to three categories of alterations caused by epilepsy, Alzheimer's disease (long and local projections), and ischemia. These neuron sets were then subjected to supervised classification and the results were compared considering three sets of features: morphological, features obtained from the time series and a combination of both. The best results were obtained using features from the time series, which outperformed the classification using only morphological features, showing higher correct classification rates with differences of 5.15, 3.75, 5.33% for epilepsy and Alzheimer's disease (long and local projections) respectively. The morphological features were better for the ischemia set with a difference of 3.05%. Features like variance, Spearman auto-correlation, partial auto-correlation, mutual information, local minima and maxima, all related to the time series, exhibited the best performance. Also we compared different evaluators, among which ReliefF was the best ranked.
Why should we investigate the morphological disparity of plant clades?
Oyston, Jack W.; Hughes, Martin; Gerber, Sylvain; Wills, Matthew A.
2016-01-01
Background Disparity refers to the morphological variation in a sample of taxa, and is distinct from diversity or taxonomic richness. Diversity and disparity are fundamentally decoupled; many groups attain high levels of disparity early in their evolution, while diversity is still comparatively low. Diversity may subsequently increase even in the face of static or declining disparity by increasingly fine sub-division of morphological ‘design’ space (morphospace). Many animal clades reached high levels of disparity early in their evolution, but there have been few comparable studies of plant clades, despite their profound ecological and evolutionary importance. This study offers a prospective and some preliminary macroevolutionary analyses. Methods Classical morphometric methods are most suitable when there is reasonable conservation of form, but lose traction where morphological differences become greater (e.g. in comparisons across higher taxa). Discrete character matrices offer one means to compare a greater diversity of forms. This study explores morphospaces derived from eight discrete data sets for major plant clades, and discusses their macroevolutionary implications. Key Results Most of the plant clades in this study show initial, high levels of disparity that approach or attain the maximum levels reached subsequently. These plant clades are characterized by an initial phase of evolution during which most regions of their empirical morphospaces are colonized. Angiosperms, palms, pines and ferns show remarkably little variation in disparity through time. Conifers furnish the most marked exception, appearing at relatively low disparity in the latest Carboniferous, before expanding incrementally with the radiation of successive, tightly clustered constituent sub-clades. Conclusions Many cladistic data sets can be repurposed for investigating the morphological disparity of plant clades through time, and offer insights that are complementary to more focused morphometric studies. The unique structural and ecological features of plants make them ideally suited to investigating intrinsic and extrinsic constraints on disparity. PMID:26658292
Why should we investigate the morphological disparity of plant clades?
Oyston, Jack W; Hughes, Martin; Gerber, Sylvain; Wills, Matthew A
2016-04-01
Disparity refers to the morphological variation in a sample of taxa, and is distinct from diversity or taxonomic richness. Diversity and disparity are fundamentally decoupled; many groups attain high levels of disparity early in their evolution, while diversity is still comparatively low. Diversity may subsequently increase even in the face of static or declining disparity by increasingly fine sub-division of morphological 'design' space (morphospace). Many animal clades reached high levels of disparity early in their evolution, but there have been few comparable studies of plant clades, despite their profound ecological and evolutionary importance. This study offers a prospective and some preliminary macroevolutionary analyses. Classical morphometric methods are most suitable when there is reasonable conservation of form, but lose traction where morphological differences become greater (e.g. in comparisons across higher taxa). Discrete character matrices offer one means to compare a greater diversity of forms. This study explores morphospaces derived from eight discrete data sets for major plant clades, and discusses their macroevolutionary implications. Most of the plant clades in this study show initial, high levels of disparity that approach or attain the maximum levels reached subsequently. These plant clades are characterized by an initial phase of evolution during which most regions of their empirical morphospaces are colonized. Angiosperms, palms, pines and ferns show remarkably little variation in disparity through time. Conifers furnish the most marked exception, appearing at relatively low disparity in the latest Carboniferous, before expanding incrementally with the radiation of successive, tightly clustered constituent sub-clades. Many cladistic data sets can be repurposed for investigating the morphological disparity of plant clades through time, and offer insights that are complementary to more focused morphometric studies. The unique structural and ecological features of plants make them ideally suited to investigating intrinsic and extrinsic constraints on disparity. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Color and shape changing polymeric ribbons and sheets
Stevens, Raymond C.; Cheng, Quan; Song, Jie
2006-05-23
The present invention herein provides the design, synthesis and characterization of compositions comprising asymmetric bolaamphiphilic lipids that form extended polymeric ribbons and wide sheets. These compositions may be doped, or interspersed, with various compounds to fine-tune the fluidity and rigidity of the bolaamphiphilic lipid composition, and promote other morphologies of the composition, including fluid vesicles and truncated flat sheets. Upon an increase in pH these compositions undergo a calorimetric and morphological transformation.
Scaling laws for coastal overwash morphology
NASA Astrophysics Data System (ADS)
Lazarus, Eli D.
2016-12-01
Overwash is a physical process of coastal sediment transport driven by storm events and is essential to landscape resilience in low-lying barrier environments. This work establishes a comprehensive set of scaling laws for overwash morphology: unifying quantitative descriptions with which to compare overwash features by their morphological attributes across case examples. Such scaling laws also help relate overwash features to other morphodynamic phenomena. Here morphometric data from a physical experiment are compared with data from natural examples of overwash features. The resulting scaling relationships indicate scale invariance spanning several orders of magnitude. Furthermore, these new relationships for overwash morphology align with classic scaling laws for fluvial drainages and alluvial fans.
NASA Astrophysics Data System (ADS)
Riquier, Jérémie; Piégay, Hervé; Lamouroux, Nicolas; Vaudor, Lise
2017-10-01
The restoration of side channels (also referred to as abandoned channels, former channels, floodplain channels, or side arms) is increasingly implemented to improve the ecological integrity of river-floodplain systems. However, the design of side channel restoration projects remains poorly informed by theory or empirical observations despite the increasing number of projects. Moreover, feedback regarding the hydromorphological adjustment of restored channels is rarely documented, making it difficult to predict channel persistence as aquatic habitats. In this study, we analyze the spatial and temporal patterns of fine sediment deposition (< 2 mm) in 16 side channels of the Rhône River, France, restored in 1999-2006 by a combination of dredging and/or partial to full reconnection of their extremities and as a by-product of an increase in minimum flow through the bypassed main channels. We develop prediction tools to assess the persistence of restored channels as aquatic habitats, using between five and seven monitoring surveys per channel (spanning 7-15 years after restoration). Observed channel-averaged sedimentation rates ranged from 0 to 40.3 cm·y- 1 and reached 90.3 cm·y- 1 locally. Some channels exhibited a significant decline of sedimentation rates through time, whereas others maintained rather constant rates. Scouring processes (i.e., self-rejuvenation capacity) were occasionally documented in 15 channels. Six of the 16 studied channels appeared to be self-sustaining. The 10 others accumulated more and more fine sediment deposits after restoration. Parametric modeling of sedimentation rates suggested that among these 10 channels, four have long life-durations (i.e., more than a century), three have intermediate life-durations (i.e., likely between three and nine decades), and three others have short life-durations (i.e., likely between two and five decades). Observed channel-averaged sedimentation rates can be predicted from the frequency and magnitude (i.e., maximum shear stress) of upstream overflow events and the maximum intensity of backflow events (i.e., maximum backflow capacity). These predictors reflect the dominant role of side channel geometry (i.e., morphology of the upstream alluvial plug, slope conditions) in controlling their flooding regime. These models applied successfully to a wide range of channel morphologies and can be used to quantify a priori the likely effects and the sustainability of side channel restoration.
2015-12-15
Keypoint Density-based Region Proposal for Fine-Grained Object Detection and Classification using Regions with Convolutional Neural Network ... Convolutional Neural Networks (CNNs) enable them to outperform conventional techniques on standard object detection and classification tasks, their...detection accuracy and speed on the fine-grained Caltech UCSD bird dataset (Wah et al., 2011). Recently, Convolutional Neural Networks (CNNs), a deep
Dänicke, Sven; Beineke, Andreas; Berk, Andreas; Kersten, Susanne
2017-01-01
The common feed contaminant deoxynivalenol (DON) was reported to influence the morphology of the pars nonglandularis (PN) of porcine stomach. Moreover, finely ground feed is known to trigger the development of ulcers and other pathologies of PN while coarsely ground feed protects from such lesions. The interactions between grinding fineness and DON contamination of feed were not examined so far. Therefore, both finely and coarsely ground feeds were tested either in the absence or presence of a DON contaminated wheat on growth performance and health of rearing piglets, including stomach integrity. DON contamination significantly reduced feed intake and serum albumin concentration with this effect being more pronounced after feeding the coarsely ground feed. Albeit at a higher level, albumin concentration was also reduced after feeding the finely ground and uncontaminated feed. Finely ground and DON-contaminated feed caused a significantly more pronounced lymphoplasmacytic infiltration both of PN and pars glandularis , partly paralleled by lymph follicle formation and detritus filled foveolae and tubes suggesting a local immune response probably triggered by epithelial lesions. It is concluded that DON contamination of feed exacerbates the adverse effects of finely ground feed on stomach mucosal integrity.
Dänicke, Sven; Beineke, Andreas; Berk, Andreas; Kersten, Susanne
2017-01-01
The common feed contaminant deoxynivalenol (DON) was reported to influence the morphology of the pars nonglandularis (PN) of porcine stomach. Moreover, finely ground feed is known to trigger the development of ulcers and other pathologies of PN while coarsely ground feed protects from such lesions. The interactions between grinding fineness and DON contamination of feed were not examined so far. Therefore, both finely and coarsely ground feeds were tested either in the absence or presence of a DON contaminated wheat on growth performance and health of rearing piglets, including stomach integrity. DON contamination significantly reduced feed intake and serum albumin concentration with this effect being more pronounced after feeding the coarsely ground feed. Albeit at a higher level, albumin concentration was also reduced after feeding the finely ground and uncontaminated feed. Finely ground and DON-contaminated feed caused a significantly more pronounced lymphoplasmacytic infiltration both of PN and pars glandularis, partly paralleled by lymph follicle formation and detritus filled foveolae and tubes suggesting a local immune response probably triggered by epithelial lesions. It is concluded that DON contamination of feed exacerbates the adverse effects of finely ground feed on stomach mucosal integrity. PMID:28045426
NASA Astrophysics Data System (ADS)
Skalak, K. J.; Pizzuto, J. E.
2006-12-01
The purpose of this research is to examine the origin, occurrence, persistence, residence time and general significance of fine-grained channel margin storage in South River, a steep gravel-bedded stream in western Virginia. Fine-grained channel margin (FGCM) deposits in this study refers to specific in-channel deposits of mud and sand. These deposits occur primarily in the margins and near-banks regions of the channel. Fine- grained sediment storage in the near-bank regions is a result of reduced velocity caused by the bank obstructions. Nearly all of these obstructions consist of LWD accumulations in the channel. Storage occurs in four different geomorphic settings: 1) long pooled sections caused by bedrock or old mill dams, 2) the upstream ends of pools in channel margins with LWD accumulations, 3) bank obstructions usually caused by trees, 4) side channel backwaters where flow separates around islands. In approximately 38 km of river, there is 3000 m3 of fine-grained sediment stored in these features. The channel stores approximately 15 percent its total annual suspended load as fine-grained channel margin deposits. Consequently, these features represent a significant component of an annual sediment budget for this river. On average, the FGCM deposits are about 35 cm deep, 20 m long, and 4 m wide. They average 30 percent mud, 68 percent sand, and 2 percent gravel. These deposits have been cored and analyzed for Hg, grain size, loss-on-ignition, and bomb radiocarbon. Results from bomb radiocarbon analysis indicate that these features have an average age of 13 years. High Hg concentrations in fish tissue are an ongoing problem along South River, further motivating detailed study of these deposits.
Effect of Different Cooling Rates on the Corrosion Behavior of High-Carbon Pearlitic Steel
NASA Astrophysics Data System (ADS)
Katiyar, Prvan Kumar; Misra, Sudhir; Mondal, K.
2018-03-01
The present work discusses the effect of pearlitic morphology on the corrosion behavior of high-carbon fully pearlitic steel in 3.5% NaCl solution. Four different types of pearlitic steels (furnace-cooled, as-received, air-cooled and forced-air-cooled) consisting of coarse, medium, fine and very fine microstructures, respectively, were tested. Electrochemical behavior of these steels was studied with the help of dynamic and linear polarization and AC impedance spectroscopic tests. The corrosion resistance improved with fineness of the microstructure in general. However, with further reduction in interlamellar spacing beyond a limit, the corrosion resistance reduced slightly. Formation of homogeneous distribution of microgalvanic cells between cementite and ferrite lamellae of fine pearlitic steel improved the corrosion resistance. However, entanglement of the lamellae of pearlite in very fine pearlitic structure as well as breaking of cementite lamellae due to finer pearlitic colonies was attributed to the higher corrosion of the forced-air-cooled steel as compared to the air-cooled steel.
NASA Astrophysics Data System (ADS)
McLachlan, R. L.; Ogston, A. S.; Allison, M. A.
2017-09-01
River gauging stations are often located upriver of tidal propagation where sediment transport processes and storage are impacted by widely varying ratios of marine to freshwater influence. These impacts are not yet thoroughly understood. Therefore, sediment fluxes measured at these stations may not be suitable for predicting changes to coastal morphology. To characterize sediment transport dynamics in this understudied zone, flow velocity, salinity, and suspended-sediment properties (concentration, size, and settling velocity) were measured within the tidal Sông Hậu distributary of the lower Mekong River, Vietnam. Fine-sediment aggregation, settling, and trapping rates were promoted by seasonal and tidal fluctuations in near-bed shear stress as well as the intermittent presence of a salt wedge and estuary turbidity maximum. Beginning in the tidal river, fine-grained particles were aggregated in freshwater. Then, in the interface zone between the tidal river and estuary, impeded near-bed shear stress and particle flux convergence promoted settling and trapping. Finally, in the estuary, sediment retention was further encouraged by stratification and estuarine circulation which protected the bed against particle resuspension and enhanced particle aggregation. These patterns promote mud export ( 1.7 t s-1) from the entire study area in the high-discharge season when fluvial processes dominate and mud import ( 0.25 t s-1) into the estuary and interface zone in the low-discharge season when estuarine processes dominate. Within the lower region of the distributaries, morphological change in the form of channel abandonment was found to be promoted within minor distributaries by feedbacks between channel depth, vertical mixing, and aggregate trapping. In effect, this field study sheds light on the sediment trapping capabilities of the tidal river - estuary interface zone, a relatively understudied region upstream of where traditional concepts place sites of deposition, and predicts how fine-sediment dynamics and morphology of large tropical deltas such as the Mekong will respond to changing fluvial and marine influences in the future.
Baumgärtner, Benjamin; Möller, Hendrik; Neumann, Thomas
2017-01-01
A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol–gel-processing of silica precursors is used to deposit a silica coating directly on the fiber’s surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes. PMID:28685115
Baumgärtner, Benjamin; Möller, Hendrik; Neumann, Thomas; Volkmer, Dirk
2017-01-01
A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol-gel-processing of silica precursors is used to deposit a silica coating directly on the fiber's surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes.
NASA Astrophysics Data System (ADS)
Kouzmanov, Kalin; Bailly, Laurent; Ramboz, Claire; Rouer, Olivier; Bény, Jean-Michel
2002-08-01
Pyrite samples from the Radka epithermal, replacement type, volcanic rock-hosted copper deposit, Bulgaria, have been studied using near-infrared (IR) microscopy. Two generations of pyrite based on their textures, composition and behaviour in IR light can be distinguished. Electron microprobe analyses, X-ray elemental mapping and Fourier transform infrared spectroscopy were used to study the relationship between crystal zoning, trace element contents and IR transmittance of pyrite. The observed crystal zoning is related to variable arsenic contents in massive fine-grained and colloform pyrite from the early pyrite-quartz assemblage, and cobalt contents in pyrite crystals from the late quartz-pyrite vein assemblage. There is a negative correlation between trace element content and IR transmittance of pyrite. The IR transparency of pyrite is thus a sensitive indicator of changes in trace element concentrations. Fluid inclusions have only been found in the second pyrite generation. Scanning electron microscopy observations on open fluid inclusion cavities permitted the crystallographic features of vacuoles to be determined. A characteristic feature of primary fluid inclusions in pyrite is a negative crystal habit, shaped mainly by {100}, {111} and {210}. This complicated polyhedral morphology is the reason for the observed opacity of some isometric primary inclusions. Secondary fluid inclusion morphology depends on the nature of the surface of the healed fracture. Recognition of the primary or secondary origin of fluid inclusions is enhanced by using crystallographically oriented sections. Microthermometric measurements of primary inclusions indicate that the second pyrite generation was deposited at maximum P-T conditions of 400 °C and 430 bar and from a fluid of low bulk salinity (3.5-4.6 wt%), possibly KCl-dominant. There are large ranges for homogenisation temperatures in secondary inclusions because of necking-down processes. Decrepitation features of some of pyrite-hosted inclusions and of all inclusions in associated quartz indicate reheating of the veins to 500-550 °C. The late cobalt-rich quartz-pyrite vein assemblage in the Radka deposit may be the shallow manifestation of deeper and genetically related porphyry copper mineralisation. This is a common observation of many intermediate- to high-sulfidation epithermal replacement-type ore bodies in this ore district and possibly the Cretaceous Banat-Srednogorie metallogenic belt in general.
2003-01-09
Erosion of the interior layered deposits of Melas Chasma, part of the huge Valles Marineris canyon system, has produced cliffs with examples of spur and gulley morphology and exposures of finely layered sediments, as seen in this NASA Mars Odyssey image.
Chaudhary, R S; Patel, C; Sevak, V; Chan, M
2018-01-01
The study evaluates use of Kollidon VA ® 64 and a combination of Kollidon VA ® 64 with Kollidon VA ® 64 Fine as excipient in direct compression process of tablets. The combination of the two grades of material is evaluated for capping, lamination and excessive friability. Inter particulate void space is higher for such excipient due to the hollow structure of the Kollidon VA ® 64 particles. During tablet compression air remains trapped in the blend exhibiting poor compression with compromised physical properties of the tablets. Composition of Kollidon VA ® 64 and Kollidon VA ® 64 Fine is evaluated by design of experiment (DoE). A scanning electron microscopy (SEM) of two grades of Kollidon VA ® 64 exhibits morphological differences between coarse and fine grade. The tablet compression process is evaluated with a mix consisting of entirely Kollidon VA ® 64 and two mixes containing Kollidon VA ® 64 and Kollidon VA ® 64 Fine in ratio of 77:23 and 65:35. A statistical modeling on the results from the DoE trials resulted in the optimum composition for direct tablet compression as combination of Kollidon VA ® 64 and Kollidon VA ® 64 Fine in ratio of 77:23. This combination compressed with the predicted parameters based on the statistical modeling and applying main compression force between 5 and 15 kN, pre-compression force between 2 and 3 kN, feeder speed fixed at 25 rpm and compression range of 45-49 rpm produced tablets with hardness ranging between 19 and 21 kp, with no friability, capping, or lamination issue.
Facilities Guidelines for Fine Arts Programs.
ERIC Educational Resources Information Center
Maryland State Dept. of Education, Baltimore.
This manual of facility guidelines examines the planning process and design features and considerations for public school fine arts programs in Maryland. Planning concepts and trends are highlighted followed by planning guidelines for dance, music, theater, visual arts, general education, and performance spaces. General design considerations…
Klinker, Matthew W.; Marklein, Ross A.; Lo Surdo, Jessica L.; Wei, Cheng-Hong
2017-01-01
Human mesenchymal stromal cell (MSC) lines can vary significantly in their functional characteristics, and the effectiveness of MSC-based therapeutics may be realized by finding predictive features associated with MSC function. To identify features associated with immunosuppressive capacity in MSCs, we developed a robust in vitro assay that uses principal-component analysis to integrate multidimensional flow cytometry data into a single measurement of MSC-mediated inhibition of T-cell activation. We used this assay to correlate single-cell morphological data with overall immunosuppressive capacity in a cohort of MSC lines derived from different donors and manufacturing conditions. MSC morphology after IFN-γ stimulation significantly correlated with immunosuppressive capacity and accurately predicted the immunosuppressive capacity of MSC lines in a validation cohort. IFN-γ enhanced the immunosuppressive capacity of all MSC lines, and morphology predicted the magnitude of IFN-γ–enhanced immunosuppressive activity. Together, these data identify MSC morphology as a predictive feature of MSC immunosuppressive function. PMID:28283659
Riede, Tobias; Goller, Franz
2010-10-01
Song production in songbirds is a model system for studying learned vocal behavior. As in humans, bird phonation involves three main motor systems (respiration, vocal organ and vocal tract). The avian respiratory mechanism uses pressure regulation in air sacs to ventilate a rigid lung. In songbirds sound is generated with two independently controlled sound sources, which reside in a uniquely avian vocal organ, the syrinx. However, the physical sound generation mechanism in the syrinx shows strong analogies to that in the human larynx, such that both can be characterized as myoelastic-aerodynamic sound sources. Similarities include active adduction and abduction, oscillating tissue masses which modulate flow rate through the organ and a layered structure of the oscillating tissue masses giving rise to complex viscoelastic properties. Differences in the functional morphology of the sound producing system between birds and humans require specific motor control patterns. The songbird vocal apparatus is adapted for high speed, suggesting that temporal patterns and fast modulation of sound features are important in acoustic communication. Rapid respiratory patterns determine the coarse temporal structure of song and maintain gas exchange even during very long songs. The respiratory system also contributes to the fine control of airflow. Muscular control of the vocal organ regulates airflow and acoustic features. The upper vocal tract of birds filters the sounds generated in the syrinx, and filter properties are actively adjusted. Nonlinear source-filter interactions may also play a role. The unique morphology and biomechanical system for sound production in birds presents an interesting model for exploring parallels in control mechanisms that give rise to highly convergent physical patterns of sound generation. More comparative work should provide a rich source for our understanding of the evolution of complex sound producing systems. Copyright © 2009 Elsevier Inc. All rights reserved.
The structural bases of long-term anabiosis in non-spore-forming bacteria
NASA Astrophysics Data System (ADS)
Suzina, Natalia E.; Mulyukin, Andrey L.; Dmitriev, Vladimir V.; Nikolaev, Yury A.; Shorokhova, Anna P.; Bobkova, Yulia S.; Barinova, Ekaterina S.; Plakunov, Vladimir K.; El-Registan, Galina I.; Duda, Vitalii I.
2006-01-01
Peculiarities of the structural organization in non-spore-forming bacteria associated with long-term anabiosis were revealed both in laboratory cultures and in natural populations isolated from 1 3-Myr-old Eastern Siberian permafrost and tundra soil. Different advanced methods were used, including (a) high-resolution electron microscopy; (b) simulation of in situ conditions in the laboratory by varying the composition of growth medium and cultivation conditions; (c) low-temperature fractionation to isolate and concentrate microbial cells from natural soils; (d) comparative morphological analysis of microbial cells in model cultures and natural soils (in situ). Under laboratory conditions, the intense formation of resting cells by representatives of various taxa of eubacteria and halophilic archaea occurred in 2 9-month-old cultures grown in carbon-, nitrogen-, or phosphorus-limited media, in starved cell suspensions in the presence of sodium silicate, or on soil agar. Among resting cells, we revealed cystlike forms having a complicated structure and common features. These included a thick capsule; a thickened and multiprofile cell wall; the presence of large intramembrane particles on PF- and EF-fracture surfaces; fine-grained or lumpy cytoplasm; and a condensed nucleoid. The general morphological properties, ultrastructural organization, physiological features of cystlike cells, and their ability to germinate under the appropriate conditions suggest the existence of constitutive dormancy in non-spore-forming bacteria. It was found that the majority of microorganisms in permafrost and tundra soil are cystlike cells, very similar to those in laboratory cultures. Anabiotic (resting) cystlike cells are responsible for the survival of non-spore-formers in extreme Earth habitats and may be regarded as possible analogs of extraterrestrial forms of microbial life.
Misirli, Zulal; Oner, Ebru Toksoy; Kirdar, Betul
2007-01-01
The combined application of electron microscopy (EM) is frequently used for the microstructural investigation of biological specimens and plays two important roles in the quantification and in gaining an improved understanding of biological phenomena by making use of the highest resolution capability provided by EM. The possibility of imaging wet specimens in their "native" states in the environmental scanning electron microscope (ESEM) at high resolution and large depth of focus in real time is discussed in this paper. It is demonstrated here that new features can be discovered by the elimination of even the least hazardous approaches in some preparation techniques, that destroy the samples. Since the analysis conditions may influence the morphology and the extreme surface sensitivity of living biological systems, the results obtained from the same cultured cell with two different ESEM modes (Lvac mode and wet mode) were compared. This offers new opportunities compared with ESEM-wet/Lvac-mode imaging, since wet-mode imaging involves a real contrast and gives an indication of the changes in cell morphology and structure required for cell viability. In this study, wet-mode imaging was optimized using the unique ability of cell quantities for microcharacterization in situ giving very fine features of topological effects. Accordingly, the progress is reported by comparing the results of these two modes, which demonstrate interesting application details. In general, the functional comparisons have revealed that the fresh unprocessed Saccharomyces cerevisiae cells (ESEM-wet mode) were essentially unaltered with improved and minimal specimen preparation timescales, and the optimal cell viability degree was visualized and also measured quantitatively while the cell size remained unchanged with continuous images.
Du, Yuncheng; Budman, Hector M; Duever, Thomas A
2017-06-01
Accurate and fast quantitative analysis of living cells from fluorescence microscopy images is useful for evaluating experimental outcomes and cell culture protocols. An algorithm is developed in this work to automatically segment and distinguish apoptotic cells from normal cells. The algorithm involves three steps consisting of two segmentation steps and a classification step. The segmentation steps are: (i) a coarse segmentation, combining a range filter with a marching square method, is used as a prefiltering step to provide the approximate positions of cells within a two-dimensional matrix used to store cells' images and the count of the number of cells for a given image; and (ii) a fine segmentation step using the Active Contours Without Edges method is applied to the boundaries of cells identified in the coarse segmentation step. Although this basic two-step approach provides accurate edges when the cells in a given image are sparsely distributed, the occurrence of clusters of cells in high cell density samples requires further processing. Hence, a novel algorithm for clusters is developed to identify the edges of cells within clusters and to approximate their morphological features. Based on the segmentation results, a support vector machine classifier that uses three morphological features: the mean value of pixel intensities in the cellular regions, the variance of pixel intensities in the vicinity of cell boundaries, and the lengths of the boundaries, is developed for distinguishing apoptotic cells from normal cells. The algorithm is shown to be efficient in terms of computational time, quantitative analysis, and differentiation accuracy, as compared with the use of the active contours method without the proposed preliminary coarse segmentation step.
NASA Astrophysics Data System (ADS)
Taleb, F.; Garziglia, S.; Sultan, N.
2017-12-01
Expanding needs for energy resources and concerns about climate change have moved industrial and academic interests towards regions where specific thermobaric conditions allow the formation of gas hydrates (GH). While significant advances have been made to characterize the fabric and structure of these metastable geo-compounds, considerable uncertainty remains regarding the impact of their mechanical properties on the seafloor morphology and stability. This is particularly true for gas hydrates-bearing fine-grained sediments, which remain challenging to preserve or synthesise prior to laboratory testing. As a step towards understanding the mechanical consequences of the concentration and distribution of GH in this type of sediments, this work uses acoustic and geotechnical in situ measurements collected in a high gas flux system offshore Nigeria. Acoustic measurements of compressional wave velocity were shown to be convenient means of both detecting and quantifying gas hydrates in marine sediments. Geotechnical data derived from piezocone readings and their distribution in normalised soil classification charts allowed identifying distinct features of gas hydrates-bearing clayey sediments; such as a mechanical behaviour sharing similarities with that of cemented clays. Correlations between acoustic and piezocone data showed that the stiffness and strength tend to generally increase with increasing GH concentrations. However, several sediment intervals sharing the same hydrates concentration have revealed different features of mechanical behaviour. This was linked to the presence of various GH morphologies within the marine sediments such as groups of hydrate veins or massive hydrate nodules. This in-situ approach allowing both understanding the heterogeneous distribution of GH and characterising their host sediment seems key to assess the potential link between seafloor stability and GH dissociation/dissolution caused by human activities or by natural environmental changes.
Sarkisian, B A; Azarov, P A
2014-01-01
The objective of the present work was to study the morphological features of skin wounds inflicted by joinery hand saws designed for longitudinal, transverse, and mixed sawing. A total of 60 injuries to the thigh skin inflicted by the recurring and reciprocating saw movements were simulated. The hand saws had 5 mm high "sharp" and "blunt"-tipped teeth. The analysis of the morphological features of the wounds revealed differences in their length and depth, shape of edge cuts and defects, and the relief of the walls depending on the sawtooth sharpness and the mode of sawing. It is concluded that morphological features of the wounds may be used to determine the type of the saw, the sharpness of its teeth, the direction and frequency of its movements.
Legacy effects of land-use modulate tree growth responses to climate extremes.
Mausolf, Katharina; Härdtle, Werner; Jansen, Kirstin; Delory, Benjamin M; Hertel, Dietrich; Leuschner, Christoph; Temperton, Vicky M; von Oheimb, Goddert; Fichtner, Andreas
2018-05-10
Climate change can impact forest ecosystem processes via individual tree and community responses. While the importance of land-use legacies in modulating these processes have been increasingly recognised, evidence of former land-use mediated climate-growth relationships remain rare. We analysed how differences in former land-use (i.e. forest continuity) affect the growth response of European beech to climate extremes. Here, using dendrochronological and fine root data, we show that ancient forests (forests with a long forest continuity) and recent forests (forests afforested on former farmland) clearly differ with regard to climate-growth relationships. We found that sensitivity to climatic extremes was lower for trees growing in ancient forests, as reflected by significantly lower growth reductions during adverse climatic conditions. Fine root morphology also differed significantly between the former land-use types: on average, trees with high specific root length (SRL) and specific root area (SRA) and low root tissue density (RTD) were associated with recent forests, whereas the opposite traits were characteristic of ancient forests. Moreover, we found that trees of ancient forests hold a larger fine root system than trees of recent forests. Our results demonstrate that land-use legacy-mediated modifications in the size and morphology of the fine root system act as a mechanism in regulating drought resistance of beech, emphasising the need to consider the 'ecological memory' of forests when assessing or predicting the sensitivity of forest ecosystems to global environmental change.
Measures of fine motor skills in people with tremor disorders: appraisal and interpretation.
Norman, Kathleen E; Héroux, Martin E
2013-01-01
People with Parkinson's disease, essential tremor, or other movement disorders involving tremor have changes in fine motor skills that are among the hallmarks of these diseases. Numerous measurement tools have been created and other methods devised to measure such changes in fine motor skills. Measurement tools may focus on specific features - e.g., motor skills or dexterity, slowness in movement execution associated with parkinsonian bradykinesia, or magnitude of tremor. Less obviously, some tools may be better suited than others for specific goals such as detecting subtle dysfunction early in disease, revealing aspects of brain function affected by disease, or tracking changes expected from treatment or disease progression. The purpose of this review is to describe and appraise selected measurement tools of fine motor skills appropriate for people with tremor disorders. In this context, we consider the tools' content - i.e., what movement features they focus on. In addition, we consider how measurement tools of fine motor skills relate to measures of a person's disease state or a person's function. These considerations affect how one should select and interpret the results of these tools in laboratory and clinical contexts.
Chimaeric sounds reveal dichotomies in auditory perception
Smith, Zachary M.; Delgutte, Bertrand; Oxenham, Andrew J.
2008-01-01
By Fourier's theorem1, signals can be decomposed into a sum of sinusoids of different frequencies. This is especially relevant for hearing, because the inner ear performs a form of mechanical Fourier transform by mapping frequencies along the length of the cochlear partition. An alternative signal decomposition, originated by Hilbert2, is to factor a signal into the product of a slowly varying envelope and a rapidly varying fine time structure. Neurons in the auditory brainstem3–6 sensitive to these features have been found in mammalian physiological studies. To investigate the relative perceptual importance of envelope and fine structure, we synthesized stimuli that we call ‘auditory chimaeras’, which have the envelope of one sound and the fine structure of another. Here we show that the envelope is most important for speech reception, and the fine structure is most important for pitch perception and sound localization. When the two features are in conflict, the sound of speech is heard at a location determined by the fine structure, but the words are identified according to the envelope. This finding reveals a possible acoustic basis for the hypothesized ‘what’ and ‘where’ pathways in the auditory cortex7–10. PMID:11882898
Hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions
NASA Astrophysics Data System (ADS)
Yang, Bingqiao; Huang, Pengliang; Song, Shaoxian; Luo, Huihua; Zhang, Yi
2018-06-01
In this work, the hydrophobic agglomeration of apatite fines induced by sodium oleate in aqueous solutions has been investigated through the measurement of agglomeration degree and fractal dimension. The results showed that the agglomeration degree of apatite fines and agglomerates morphology was strongly depended on sodium oleate concentration, pH, stirring speed and time. Better agglomeration degree and more regular agglomerates were achieved at sodium oleate concentration of 5 × 10-5 mol/L under neutral condition. The critical stirring speed for agglomerates rupture was 1000 rev/min, above which, prolonged stirring time would cause breakage and restructure of the agglomerates after a certain stirring time, resulting in lower agglomeration degree and more regular agglomerates. The agglomeration degree of apatite fines could be greatly enhanced with the addition of emulsified kerosene, but only if the apatite surface was hydrophobic enough.
Morphological and Surgical Overview of Adolescent Testis Affected by Varicocele
Santoro, Giuseppe
2013-01-01
Varicocele is a common pathology of the testis frequently associated with infertility. For its management, a fine morphological study of the testis, both macroscopically and microscopically, and an accurate choice of surgical procedure are mandatory. The present review focuses its attention on the anatomic substrates of adolescent varicocele and its pathophysiologic modifications. The comprehensive assessment of all the reported alterations should be considered by the clinician before deciding the type of treatment and the timing. PMID:24348160
Urban, Forest, and Agricultural AIS Data: Fine Spectral Structure
NASA Technical Reports Server (NTRS)
Vanderbilt, V. C.
1985-01-01
Spectra acquired by the Airborne Imaging Spectrometer (AIS) near Lafayette, IN, Ely, MN, and over the Stanford University campus, CA were analyzed for fine spectral structure using two techniques: the ratio of radiance of a ground target to the radiance of a standard and also the correlation coefficient of radiances at adjacent wavelengths. The results show ramp like features in the ratios. These features are due to the biochemical composition of the leaf and to the optical scattering properties of its cuticle. The size and shape of the ramps vary with ground cover.
Sethmann, Ingo; Wendt-Nordahl, Gunnar; Knoll, Thomas; Enzmann, Frieder; Simon, Ludwig; Kleebe, Hans-Joachim
2017-06-01
Randall's plaques (RP) are preferred sites for the formation of calcium oxalate monohydrate (COM) kidney stones. However, although processes of interstitial calcium phosphate (CaP) plaque formation are not well understood, the potential of plaque microstructures as indicators of CaP precipitation conditions received only limited attention. We investigated RP-associated COM stones for structural details of the calcified tissues and microstructural features of plaque-stone interfaces as indicators of the initial processes of stone formation. Significantly increased CaP supersaturation can be expected for interstitial fluid, if reabsorbed ions from the tubular system continuously diffuse into the collagenous connective tissue. Densely packed, fine-grained CaP particles were found in dense textures of basement membranes while larger, laminated particles were scattered in coarse-meshed interstitial tissue, which we propose to be due to differential spatial confinements and restrictions of ion diffusion. Particle morphologies suggest an initial precipitation as metastable amorphous calcium phosphate (ACP). Morphologies and arrangements of first COM crystals at the RP-stone interface ranged from stacked euhedral platelets to skeletal morphologies and even porous, dendritic structures, indicating, in this order, increasing levels of COM supersaturation. Furthermore, these first COM crystals were often coated with CaP. On this basis, we propose that ions from CaP-supersaturated interstitial fluid may diffuse through porous RP into the urine, where a resulting local increase in COM supersaturation could trigger crystal nucleation and, hence, initiate stone formation. Ion-depleted fluid in persistent pores of initial COM layers may get replenished from interstitial fluid, leading to CaP precipitation in porous COM.
Root Morphology Was Improved in a Late-Stage Vigor Super Rice Cultivar.
Huang, Min; Chen, Jiana; Cao, Fangbo; Jiang, Ligeng; Zou, Yingbin
2015-01-01
This study aimed to test the hypothesis that root morphology might be improved and consequently contributing to superior post-heading shoot growth and grain yield in late-stage vigor super rice. A pot experiment was carried out to compare yield attributes, shoot growth and physiological properties and root morphological traits between a late-stage vigor super rice cultivar (Y-liangyou 087) and an elite rice cultivar (Teyou 838). Grain yield and total shoot biomass were 7-9% higher in Y-liangyou 087 than in Teyou 838. Y-liangyou 087 had 60-64% higher post-heading shoot growth rate and biomass production than Teyou 838. Average relative chlorophyll concentration and net photosynthetic rate in flag leaves were 7-11% higher in Y-liangyou 087 than in Teyou 838 during heading to 25 days after heading. Y-liangyou 087 had 41% higher post-heading shoot N uptake but 17-25% lower root biomass and root-shoot ratio at heading and maturity than Teyou 838. Specific root length and length and surface area of fine roots were higher in Y-liangyou 087 than in Teyou 838 at heading and maturity by more than 15%. These results indicated that root-shoot relationships were well balanced during post-heading phase in the late-stage vigor super rice cultivar Y-liangyou 087 by improving root morphology including avoiding a too great root biomass and developing a large fine root system.
Tufarelli, Vincenzo; Desantis, Salvatore; Zizza, Sara; Laudadio, Vito
2010-10-01
A review of past literature revealed inconsistencies in recommended feed particle size for optimal growth and productive performance of rabbits. Changing diet formulation and subsequent processing conditions may improve pellet texture and potentially affect rabbit performance. In the current study, two isoenergetic and isonitrogenous pelleted diets were formulated, which varied in the particle size of the concentrates (2 and 8 mm, respectively). The objective was to evaluate the effect of different particle sizes of compound diets on performance, nutrient utilisation, gut morphology, and carcass characteristics of fattening Italian White breed rabbits. The finely ground diet led to a significant improvement in feed efficiency and apparent digestibility of crude protein, ether extract, crude fibre and NDF, without any negative effect on gut morphology. Furthermore, a smaller particle size of concentrates in pelleted diets improved carcass traits. Meat colour parameters showed significant differences in longissimus lumborum and biceps femoris due to dietary treatments, but in both muscles pH values 1 h and 24 h after slaughter remained unchanged. It is concluded that a finely ground pelleted diet can be used to improve growth performance of rabbits without affecting carcass parameters.
Bagge-Hansen, Michael; Wichmann, Andre; Wittstock, Arne; ...
2014-02-03
Porous titania/metal composite materials have many potential applications in the fields of green catalysis, energy harvesting, and storage in which both the overall morphology of the nanoporous host material and the crystallographic phase of the titania (TiO 2) guest determine the material’s performance. New insights into the structure–function relationships of these materials were obtained by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy that, for example, provides quantitative crystallographic phase composition from ultrathin, nanostructured titania films, including sensitivity to amorphous components. We demonstrate that crystallographic phase, morphology, and catalytic activity of TiO 2-functionalized nanoporous gold (np-Au) can be controlled by amore » simple annealing procedure (T < 1300 K). The material was prepared by atomic layer deposition of ~2 nm thick TiO 2 on millimeter-sized samples of np-Au (40–50 nm mean ligament size) and catalytically investigated with respect to aerobic CO oxidation. Moreover, the annealing-induced changes in catalytic activity are correlated with concurrent morphology and phase changes as provided by cross-sectional scanning electron microscopy, transmission electron microscopy, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy.« less
Fatigue-propagation du melange polymere polystyrene/polyethylene
NASA Astrophysics Data System (ADS)
Bureau, Martin N.
The interrelations between the morphology of PS/HDPE and PS/SEBS/HDPE immiscible polymer blends and their mechanical behavior, namely in monotonic loading and in cyclic loading, were studied. As predicted by theory, high shear rates encountered during extrusion blending led to efficient minor phase emulsification in PS/HDPE blends for which the viscosity ratio approaches unity. Consequently, the emulsifying effect of an SEBS triblock copolymer employed as a compatibilizer was found to be negligible. In subsequent molding process, disintegration, shape relaxation and coarsening of the minor phase domains were responsible for the morphological evolution of the blends. In the compression molding process, morphological observations showed that the rate of minor phase coarsening followed the predictions of the Ostwald ripening theory, in agreement with the rheological analysis. In the injection molding process, minor phase coarsening was attributed to shear coalescence. The fatigue crack propagation behavior of injection-molded specimens of pure PS as well as of 95/5, 85/15 and 70/30 PS/HDPE blends and of 95/(0.5/4.5), 85/(1.5/13.5) and 70/(3/27) PS/(SEBS/HDPE) blends was then studied. The fatigue fracture surface features of specimens of pure PS as well as of PS/HDPE and PS/SEBS/HDPE blends were analyzed in detail in order to interpret their fatigue crack propagation behavior. In pure PS specimens, discontinuous growth bands, associated with the fracture of crazes in the plastic zone, formed at low fatigue crack growth rates, large dimple-like features at intermediate fatigue crack growth rates and fatigue striations at high fatigue crack growth rates. The fracture toughness of injection-molded specimens of pure PS as well as of 95/5, 85/15 and 70/30 PS/HDPE blends and of 95/(0.5/4.5) PS/(SEBS/HDPE), 85/(1.5/13.5) and 70/(3/27) PS/(SEBS/HDPE) was finally studied. The results showed that the addition of HDPE to PS led to a reduction of the fracture toughness KQ following ASTM E-399 when compared to that of pure PS. This effect was attributed to the very fine minor phase morphology of the blends obtained after extrusion blending and injection molding. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Ivicheva, S. N.; Lysenkov, A. S.; Ovsyannikov, N. A.; Titov, D. D.; Kargin, Yu F.
2018-04-01
The phase composition and morphological features of sialons were studied under the same conditions of firing (duration, temperature) using different initial components, silicon nitride, aluminum nitride, and a mixture of silicon nitrides and aluminum with the application of nitrides of the corresponding oxide (aluminum or silicon) sol-gel method. The effect of the initial reagents composition on the phase composition of the final product and the morphological features of the sialon powders obtained in a single firing step in a nitrogen atmosphere is shown.
Feature Masking in Computer Game Promotes Visual Imagery
ERIC Educational Resources Information Center
Smith, Glenn Gordon; Morey, Jim; Tjoe, Edwin
2007-01-01
Can learning of mental imagery skills for visualizing shapes be accelerated with feature masking? Chemistry, physics fine arts, military tactics, and laparoscopic surgery often depend on mentally visualizing shapes in their absence. Does working with "spatial feature-masks" (skeletal shapes, missing key identifying portions) encourage people to…
Designing and establishing a fine hardwood timber plantation
James R. McKenna; Lenny D. Farlee
2013-01-01
Today, new tools and lessons learned from established plantations of black walnut and other fine hardwoods can provide landowners with guidelines to design and establish successful plantations to produce quality timber for the future. From earlier plantations now maturing, we can recognize design features critical during establishment. Current production practices...
Coupling fine-scale root and canopy structure using ground-based remote sensing
Brady Hardiman; Christopher Gough; John Butnor; Gil Bohrer; Matteo Detto; Peter Curtis
2017-01-01
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in...
Morphology of Some Small Mars North-Polar Volcanic Edifices from Viking Images and MOLA Topography
NASA Technical Reports Server (NTRS)
Wright, H. M.; Sakimoto, S. E. H.; Garvin, J. B.
2000-01-01
Studied features in the northern near polar regions of Mars have morphologies suggesting volcanic origin. The results of this study suggest that these features may represent martian effusive shield volcanics.
Feature and contrast enhancement of mammographic image based on multiscale analysis and morphology.
Wu, Shibin; Yu, Shaode; Yang, Yuhan; Xie, Yaoqin
2013-01-01
A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII).
Feature and Contrast Enhancement of Mammographic Image Based on Multiscale Analysis and Morphology
Wu, Shibin; Xie, Yaoqin
2013-01-01
A new algorithm for feature and contrast enhancement of mammographic images is proposed in this paper. The approach bases on multiscale transform and mathematical morphology. First of all, the Laplacian Gaussian pyramid operator is applied to transform the mammography into different scale subband images. In addition, the detail or high frequency subimages are equalized by contrast limited adaptive histogram equalization (CLAHE) and low-pass subimages are processed by mathematical morphology. Finally, the enhanced image of feature and contrast is reconstructed from the Laplacian Gaussian pyramid coefficients modified at one or more levels by contrast limited adaptive histogram equalization and mathematical morphology, respectively. The enhanced image is processed by global nonlinear operator. The experimental results show that the presented algorithm is effective for feature and contrast enhancement of mammogram. The performance evaluation of the proposed algorithm is measured by contrast evaluation criterion for image, signal-noise-ratio (SNR), and contrast improvement index (CII). PMID:24416072
Preservation of Fine-Needle Aspiration Specimens for Future Use in RNA-Based Molecular Testing
Ladd, Amy C.; O'Sullivan-Mejia, Emerald; Lea, Tasha; Perry, Jessica; Dumur, Catherine I.; Dragoescu, Ema; Garrett, Carleton T.; Powers, Celeste N.
2015-01-01
Background The application of ancillary molecular testing is becoming more important for the diagnosis and classification of disease. The use of fine-needle aspiration (FNA) biopsy as the means of sampling tumors in conjunction with molecular testing could be a powerful combination. FNA is minimally invasive, cost effective, and usually demonstrates accuracy comparable to diagnoses based on excisional biopsies. Quality control (QC) and test validation requirements for development of molecular tests impose a need for access to pre-existing clinical samples. Tissue banking of excisional biopsy specimens is frequently performed at large research institutions, but few have developed protocols for preservation of cytologic specimens. This study aimed to evaluate cryopreservation of FNA specimens as a method of maintaining cellular morphology and ribonucleic acid (RNA) integrity in banked tissues. Methods FNA specimens were obtained from fresh tumor resections, processed by using a cryopreservation protocol, and stored for up to 27 weeks. Upon retrieval, samples were made into slides for morphological evaluation, and RNA was extracted and assessed for integrity by using the Agilent Bioanalyzer (Agilent Technologies, Santa Clara, Calif). Results Cryopreserved specimens showed good cell morphology and, in many cases, yielded intact RNA. Cases showing moderate or severe RNA degradation could generally be associated with prolonged specimen handling or sampling of necrotic areas. Conclusions FNA specimens can be stored in a manner that maintains cellular morphology and RNA integrity necessary for studies of gene expression. In addition to addressing quality control (QC) and test validation needs, cytology banks will be an invaluable resource for future molecular morphologic and diagnostic research studies. PMID:21287691
Egmose, Ida; Varni, Giovanna; Cordes, Katharina; Smith-Nielsen, Johanne; Væver, Mette S.; Køppe, Simo; Cohen, David; Chetouani, Mohamed
2017-01-01
Bodily movements are an essential component of social interactions. However, the role of movement in early mother-infant interaction has received little attention in the research literature. The aim of the present study was to investigate the relationship between automatically extracted motion features and interaction quality in mother-infant interactions at 4 and 13 months. The sample consisted of 19 mother-infant dyads at 4 months and 33 mother-infant dyads at 13 months. The coding system Coding Interactive Behavior (CIB) was used for rating the quality of the interactions. Kinetic energy of upper-body, arms and head motion was calculated and used as segmentation in order to extract coarse- and fine-grained motion features. Spearman correlations were conducted between the composites derived from the CIB and the coarse- and fine-grained motion features. At both 4 and 13 months, longer durations of maternal arm motion and infant upper-body motion were associated with more aversive interactions, i.e., more parent-led interactions and more infant negativity. Further, at 4 months, the amount of motion silence was related to more adaptive interactions, i.e., more sensitive and child-led interactions. Analyses of the fine-grained motion features showed that if the mother coordinates her head movements with her infant's head movements, the interaction is rated as more adaptive in terms of less infant negativity and less dyadic negative states. We found more and stronger correlations between the motion features and the interaction qualities at 4 compared to 13 months. These results highlight that motion features are related to the quality of mother-infant interactions. Factors such as infant age and interaction set-up are likely to modify the meaning and importance of different motion features. PMID:29326626
Egmose, Ida; Varni, Giovanna; Cordes, Katharina; Smith-Nielsen, Johanne; Væver, Mette S; Køppe, Simo; Cohen, David; Chetouani, Mohamed
2017-01-01
Bodily movements are an essential component of social interactions. However, the role of movement in early mother-infant interaction has received little attention in the research literature. The aim of the present study was to investigate the relationship between automatically extracted motion features and interaction quality in mother-infant interactions at 4 and 13 months. The sample consisted of 19 mother-infant dyads at 4 months and 33 mother-infant dyads at 13 months. The coding system Coding Interactive Behavior (CIB) was used for rating the quality of the interactions. Kinetic energy of upper-body, arms and head motion was calculated and used as segmentation in order to extract coarse- and fine-grained motion features. Spearman correlations were conducted between the composites derived from the CIB and the coarse- and fine-grained motion features. At both 4 and 13 months, longer durations of maternal arm motion and infant upper-body motion were associated with more aversive interactions, i.e., more parent-led interactions and more infant negativity. Further, at 4 months, the amount of motion silence was related to more adaptive interactions, i.e., more sensitive and child-led interactions. Analyses of the fine-grained motion features showed that if the mother coordinates her head movements with her infant's head movements, the interaction is rated as more adaptive in terms of less infant negativity and less dyadic negative states. We found more and stronger correlations between the motion features and the interaction qualities at 4 compared to 13 months. These results highlight that motion features are related to the quality of mother-infant interactions. Factors such as infant age and interaction set-up are likely to modify the meaning and importance of different motion features.
Deep feature extraction and combination for synthetic aperture radar target classification
NASA Astrophysics Data System (ADS)
Amrani, Moussa; Jiang, Feng
2017-10-01
Feature extraction has always been a difficult problem in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very important to select discriminative features to train a classifier, which is a prerequisite. Inspired by the great success of convolutional neural network (CNN), we address the problem of SAR target classification by proposing a feature extraction method, which takes advantage of exploiting the extracted deep features from CNNs on SAR images to introduce more powerful discriminative features and robust representation ability for them. First, the pretrained VGG-S net is fine-tuned on moving and stationary target acquisition and recognition (MSTAR) public release database. Second, after a simple preprocessing is performed, the fine-tuned network is used as a fixed feature extractor to extract deep features from the processed SAR images. Third, the extracted deep features are fused by using a traditional concatenation and a discriminant correlation analysis algorithm. Finally, for target classification, K-nearest neighbors algorithm based on LogDet divergence-based metric learning triplet constraints is adopted as a baseline classifier. Experiments on MSTAR are conducted, and the classification accuracy results demonstrate that the proposed method outperforms the state-of-the-art methods.
Morphological Cues for Lexical Semantics
1996-06-01
decompositions) exist for some intensional verbs, they are very difficult to contrive for ones like resemble (as in the one-horned goat resembled a unicorn ...TELIC re- fine NEWDERSTEM TELICre- finance NEWDERSTEM TELICre- fold NEWDERSTEM TELICre- form INLEX TELICre- formulate NEWDERSTEM TELICre- fuel INLEX
CN Morphology Studies of Comet 103P/Hartley 2
NASA Astrophysics Data System (ADS)
Knight, Matthew M.; Schleicher, David G.
2011-06-01
We report on narrowband CN imaging of Comet 103P/Hartley 2 obtained at Lowell Observatory on 39 nights from 2010 July until 2011 January. We observed two features, one generally to the north and the other generally to the south. The CN morphology varied during the apparition: no morphology was seen in July; in August and September, the northern feature dominated and appeared as a mostly face-on spiral; in October, November, and December, the northern and southern features were roughly equal in brightness and looked like more side-on corkscrews; in January, the southern feature was dominant but the morphology was indistinct due to very low signal. The morphology changed smoothly during each night and similar morphology was seen from night to night. However, the morphology did not exactly repeat each rotation cycle, suggesting that there is a small non-principal axis rotation. Based on the repetition of the morphology, we find evidence that the fundamental rotation period was increasing: 16.7 hr from August 13 to 17, 17.2 hr from September 10 to 13, 18.2 hr from October 12 to 19, and 18.7 hr from October 31 to November 7. We conducted Monte Carlo jet modeling to constrain the pole orientation and locations of the active regions based on the observed morphology. Our preliminary, self-consistent pole solution has an obliquity of 10° relative to the comet's orbital plane (i.e., it is centered near R.A. = 257° and decl. = +67° with an uncertainty around this position of about 15°) and has two mid-latitude sources, one in each hemisphere.
Glioma grading using cell nuclei morphologic features in digital pathology images
NASA Astrophysics Data System (ADS)
Reza, Syed M. S.; Iftekharuddin, Khan M.
2016-03-01
This work proposes a computationally efficient cell nuclei morphologic feature analysis technique to characterize the brain gliomas in tissue slide images. In this work, our contributions are two-fold: 1) obtain an optimized cell nuclei segmentation method based on the pros and cons of the existing techniques in literature, 2) extract representative features by k-mean clustering of nuclei morphologic features to include area, perimeter, eccentricity, and major axis length. This clustering based representative feature extraction avoids shortcomings of extensive tile [1] [2] and nuclear score [3] based methods for brain glioma grading in pathology images. Multilayer perceptron (MLP) is used to classify extracted features into two tumor types: glioblastoma multiforme (GBM) and low grade glioma (LGG). Quantitative scores such as precision, recall, and accuracy are obtained using 66 clinical patients' images from The Cancer Genome Atlas (TCGA) [4] dataset. On an average ~94% accuracy from 10 fold crossvalidation confirms the efficacy of the proposed method.
Walisko, Robert; Krull, Rainer; Schrader, Jens; Wittmann, Christoph
2012-11-01
Filamentous microorganisms are important work horses in industrial biotechnology and supply enzymes, antibiotics, pharmaceuticals, bulk and fine chemicals. Here we highlight recent findings on the use of microparticles in the cultivation of filamentous bacteria and fungi, with the aim of enabling a more precise control of their morphology towards better production performance. First examples reveal a broad application range of microparticle based processes, since multiple filamentous organisms are controllable in their growth characteristics and respond by enhanced product formation.
NASA Astrophysics Data System (ADS)
Sauer, Daniela; Kadereit, Annette; Kühn, Peter; Herrmann, Ludger; Kösel, Michael; Miller, Christopher; Shinonaga, Taeko; Kreutzer, Sebastian; Starkovich, Britt
2015-04-01
Here we present a new loess profile, exposed in the gravel quarry Datthausen on the penultimate-glacial terrace of the upper Danube River, 40 km SW of Ulm, Germany. The loess in this region is by far not as thick and differentiated as in the Upper and Middle Rhine regions or in the Basin of Mainz; nevertheless, we found several similarities between those and the profile Datthausen. The profile is located in the East wall of the quarry, in a flat channel filled by reworked loess. It was sampled for grain size analysis, chemical standard analyses, analysis of the clay mineral assemblage (XRD of oriented clay specimen) and soil thin section analysis. Five luminescence dates provide a time frame (see Kadereit et al. in this session for further details). The profile starts above the Eemian paleosol, which is developed in penultimate-glacial gravel of the Danube River. No early Würmian soils are preserved; the basal section of the profile comprises a succession of several middle Würmian (MIS3) brown soil horizons (9BCr to 6Bg5; Table 1). Two additional brown horizons (5Bg4 and 5Bg3) follow on top. They both have a slight olive tint, and the upper one shows clear features of redox processes and reworking. A thin gravel band on top of the olive-brown soil horizons can be traced over ca. 170 m along the wall (4Bg2). Above the gravel band two brown, only slightly de-carbonated soil horizons (3Bw1 and 2Bg1) and two hydromorphic horizons (Cg2 and Cg1) follow. The top of the profile is made up of a Luvisol comprising the horizon sequence Ap-Bt-BCtg1-BCtg2. Table 1: Main soil-morphological characteristics of the loess-paleosol profile Datthausen Depth; horizon (FAO); color (dry, moist); structure; major characteristics -30 cm: Ap -70 cm: Bt; 10YR5/6, 10YR4/6; angular blocky and prismatic; earthworm feces, channels, clay coatings -100 cm: BCtg1; 10YR7/4, 10YR5/4; massive, pinholes; mottled, fine Mn nodules, clay coatings in channels -125 cm: BCtg2; 10YR6/4, 10YR4/4; massive, pinholes; mottled, fine Mn nodules, clay coatings in channels -150 cm: Cg1; 2.5Y7/4, 2.5Y5/; massive (fine sandy layers); fine rusty spots and Mn nodules -190 cm: Cg2; 2.5Y7/3, 2.5Y5/4; massive (fine sandy layers); mottled, fine rusty spots (2 mm) -220 cm: 2Bg1; 10YR6/4, 10YR4/4; massive to fine platy, pinholes; intense brown, slightly mottled -260 cm: 3Bw1; 10YR6/4, 10YR5/4; massive to fine platy, pinholes; snail shell fragments -275 cm: 4Bg2; 10YR6/4, 10YR5/4; massive to fine platy, pinholes; slightly mottled -300 cm: 5Bg3; 10YR6/4, 10YR5/4; massive to fine platy, pinholes; very fine Fe+Mn mottles, slight olive tint -312 cm: 5Bg4; 10YR6/4, 10YR4/4; massive to fine platy; slight olive tint, fine Fe mottles and Mn nodules -355 cm: 6Bg5; 10YR6/4, 10YR4/6; massive to fine platy; more reddish than 5Bg4, fine Mn nodules -400 cm: 7Bg6; 10YR6/4, 10YR4/4; weakly fine platy and sub. blocky, pinholes; Mn mottles and coatings -435 cm: 8Bw2; 10YR6/4, 10YR4/4; weakly subangular blocky, pinholes -465 cm: 9BCr; 2.5Y7/4, 2.5Y5/4; weakly subangular blocky; grayish, bleached and rusty mottles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chengzhou; Fu, Shaofang; Song, Junhua
Finely controlled synthesis of high active and robust non-precious metal catalysts with excellent electrocatalytic efficiency towards oxygen reduction reaction is extremely vital for successful implementation of fuel cells and metal batteries. Unprecedented oxygen reduction reaction electrocatalytic performances and the diversified synthetic procedure in term of favorable structure/morphology characteristics make transition metals-derived M–N–C (M=Fe, Co) structures the most promising nanocatalysts. Herein, using the nitrogen-containing small molecular and inorganic salt as precursors and ultrathin tellurium nanowires as templates, we successfully synthesized a series of well-defined M-N-doped hollow carbon nanowire aerogels through one step hydrothermal route and subsequent facile annealing treatment. Taking advantagemore » of the porous nanostructures, one-dimensional building block as well as homogeneity of active sites, the resultant Fe-N-doped carbon hollow nanowire aerogels exhibited excellent ORR electrocatalytic performance even better than commercial Pt/C in alkaline solution, holding great potential in fuel cell applications.« less
Light and electron microscope observations on Nephroselmis gaoae sp. nov. (Prasinophyceae)
NASA Astrophysics Data System (ADS)
Tseng, C. K.; Jiao-Fen, Chen; Zhe-Fu, Zhang; Hui-Qi, Zhang
1994-09-01
Nephroselmis gaoae sp. nov. is described on the basis of light and electron microscope observations of cultured material originally collected and isolated from seawater of Jiaozhou Bay, Qingdao, China. The periplasts on the cell body and flagella are covered by five types of scales, two types on the flagella and three on the body. Among these, the morphology and the number of spines of large stellate body scales differ remarkably from those of previously described species of Nephroselmis. Apart from these, the unusual fine structure of the eyespot (stigma) is very characteristic. As in the other species of Nephroselmis, the eyespot lies immediately under the two-membraned chloroplast envelope; unlike the others, however, it is not composed of a number of osmiophilic globules, but consists of about 14 curved rod-shaped osmiophilic bodies arranged loosely and randomly. This feature distinguishes the present new species not only from the other species of Nephroselmis but also from the other motile algal species, the eyespots structure of which had been previously described.
Image processing of metal surface with structured light
NASA Astrophysics Data System (ADS)
Luo, Cong; Feng, Chang; Wang, Congzheng
2014-09-01
In structured light vision measurement system, the ideal image of structured light strip, in addition to black background , contains only the gray information of the position of the stripe. However, the actual image contains image noise, complex background and so on, which does not belong to the stripe, and it will cause interference to useful information. To extract the stripe center of mental surface accurately, a new processing method was presented. Through adaptive median filtering, the noise can be preliminary removed, and the noise which introduced by CCD camera and measured environment can be further removed with difference image method. To highlight fine details and enhance the blurred regions between the stripe and noise, the sharping algorithm is used which combine the best features of Laplacian operator and Sobel operator. Morphological opening operation and closing operation are used to compensate the loss of information.Experimental results show that this method is effective in the image processing, not only to restrain the information but also heighten contrast. It is beneficial for the following processing.
Ship detection from high-resolution imagery based on land masking and cloud filtering
NASA Astrophysics Data System (ADS)
Jin, Tianming; Zhang, Junping
2015-12-01
High resolution satellite images play an important role in target detection application presently. This article focuses on the ship target detection from the high resolution panchromatic images. Taking advantage of geographic information such as the coastline vector data provided by NOAA Medium Resolution Coastline program, the land region is masked which is a main noise source in ship detection process. After that, the algorithm tries to deal with the cloud noise which appears frequently in the ocean satellite images, which is another reason for false alarm. Based on the analysis of cloud noise's feature in frequency domain, we introduce a windowed noise filter to get rid of the cloud noise. With the help of morphological processing algorithms adapted to target detection, we are able to acquire ship targets in fine shapes. In addition, we display the extracted information such as length and width of ship targets in a user-friendly way i.e. a KML file interpreted by Google Earth.
Cajaraville, M P; Pal, S G
1995-10-01
In the present work the haemocytes of mussels Mytilus galloprovincialis (Mollusca, Bivalvia) have been studied by light and electron microscopy in order to describe their main morphological features and to relate these to their roles in immune defence. The haemocytes belong to two definitive differentiated types, hyalinocytes and granulocytes. The former shows the presence of several fine pseudopodial protrusions, large nucleus with clumps of dense chromatin, scant cytoplasm, a well developed Golgi apparatus, lysosomes, several mitochondria (some with characteristic inclusions), coated pits and peripherally placed membrane-bound endocytic vesicles, considerable amounts of endoplasmic reticulum and ribosomes. The granulocytes generally possess an organelle-free ectoplasmic zone, numerous membrane-delimited dense granules of various types, coated pits and vesicles, endocytic and phagocytic vesicles, multivesicular bodies, several peroxisome-like organelles, mitochondria with inclusions, scant endoplasmic reticulum and small Golgi apparatus. These cells show the presence of few lipid droplets and variable amounts of glycogen particles. Some of the substructural features of the granules are documented here to indicate their probable biogenesis, growth and relationship with the endolysosomal compartment. In addition, in vitro phagocytosis experiments demonstrate that both hyalinocytes and granulocytes uptake latex and zymosan particles, granulocytes being much more active in phagocytosis than hyalinocytes.
NASA Astrophysics Data System (ADS)
Barca, D.; La Russa, M. F.; Crisci, G. M.
2010-09-01
Two red-figured vases, kindly provided by the Carabinieri Corps for Protection of Cultural Heritage, Cosenza Unit (Calabria, Italy), were characterised from petrographical, morphological, mineralogical, and chemical viewpoints with the aim of establishing the definite origin and source area of archaeological artefacts. It was obvious that one of the vases had undergone restoration, which is not documented. On the basis of stylistic criteria, it was not possible to assign precisely the site of production of the figured vases. Petrographic analysis, scanning electron microscopy (SEM), and X-ray diffraction (XRD) studies were carried out with the aim of identifying technological features and defining the nature of coatings. Fourier transform infrared spectroscopy (FT-IR) revealed that some protective products had been used in previous restoration processes on some portions of one of the two finds. The samples have similar features: fine texture of the ceramic body, and black gloss painted directly on it. One of the samples is characterised by the black coating typical of both Attic and Locrian pottery. A study of their composition excluded the possibility that they are of Greek production. Inductively coupled plasma mass spectrometry (ICP-MS) data revealed that they come exclusively from the Locride area in Calabria, Southern Italy.
Extraction of sandy bedforms features through geodesic morphometry
NASA Astrophysics Data System (ADS)
Debese, Nathalie; Jacq, Jean-José; Garlan, Thierry
2016-09-01
State-of-art echosounders reveal fine-scale details of mobile sandy bedforms, which are commonly found on continental shelfs. At present, their dynamics are still far from being completely understood. These bedforms are a serious threat to navigation security, anthropic structures and activities, placing emphasis on research breakthroughs. Bedform geometries and their dynamics are closely linked; therefore, one approach is to develop semi-automatic tools aiming at extracting their structural features from bathymetric datasets. Current approaches mimic manual processes or rely on morphological simplification of bedforms. The 1D and 2D approaches cannot address the wide ranges of both types and complexities of bedforms. In contrast, this work attempts to follow a 3D global semi-automatic approach based on a bathymetric TIN. The currently extracted primitives are the salient ridge and valley lines of the sand structures, i.e., waves and mega-ripples. The main difficulty is eliminating the ripples that are found to heavily overprint any observations. To this end, an anisotropic filter that is able to discard these structures while still enhancing the wave ridges is proposed. The second part of the work addresses the semi-automatic interactive extraction and 3D augmented display of the main lines structures. The proposed protocol also allows geoscientists to interactively insert topological constraints.
Shear Flow Instabilities and Droplet Size Effects on Aerosol Jet Printing Resolution
NASA Astrophysics Data System (ADS)
Chen, Guang; Gu, Yuan; Hines, Daniel; Das, Siddhartha; LaboratoryPhysical Science Collaboration; Soft Matter, Interfaces, Energy Laboratory Collaboration
2017-11-01
Aerosol Jet printing (AJP) is an additive technology utilizing aerodynamic focusing to produce fine feature down to 10 micrometers that can be used in the manufacture of wearable electronics and biosensors. The main concern of the current technology is related to unstable printing resolution, which is usually assessed by effective line width, edge smoothness, overspray and connectivity. In this work, we perform a 3D CFD model to study the aerodynamic instabilities induced by the annular shear flow (sheath gas flow or ShGF) trapped with the aerosol jet (carried gas flow or CGF) with ink droplets. Extensive experiments on line morphology have shown that by increasing ShGF, one can first obtain thinner line width, and then massive overspray is witnessed at very large ShGF/ CGF ratio. Besides the fact that shear-layer instabilities usually trigger eddy currents at comparatively low Reynolds number 600, the tolerance of deposition components assembling will also propagate large offsets of the deposited feather. We also carried out detailed analysis on droplet size and deposition range on the printing resolution. This study is intended to come up with a solution on controlling the operating parameters for finer printed features, and offer an improvement strategy on next generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pentlehner, D.; Slenczka, A., E-mail: alkwin.slenczka@chemie.uni-regensburg.de
2015-01-07
Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broadmore » (Δν > 100 cm{sup −1}) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time.« less
Hauer, G; Rogerson, A; Anderson, O R
2001-01-01
A new species of naked amoeba, Platyamoeba pseudovannellida n.sp., is described on the basis of light microscopic and fine structural features. The amoeba was isolated from the Salton Sea, California, from water at a salinity of ca. 44%. Locomotive amoebae occasionally had a spatulate outline and floating cells had radiating pseudopodia, sometimes with pointed tips. Both these features are reminiscent of the genus Vannella. However, the surface coat (glycocalyx) as revealed by TEM indicates that this is a species of Platyamoeba. Although salinity was not used as a diagnostic feature, this species was found to have remarkable tolerance to fluctuating salinity levels, even when changes were rapid. Amoebae survived over the range 0 per thousand to 150 per thousand salt and grew within the range 0 per thousand to 138 per thousand salt. The generation time of cells averaged 29 h and was not markedly affected by salt concentration. This is longer than expected for an amoeba of this size and suggests a high energetic cost of coping with salinity changes. The morphology of cells changed with increasing salinity: at 0 per thousand cells were flattened and active and at the other extreme (138 per thousand) amoebae were wrinkled and domed and cell movement was very slow. At the ultrastructural level, the cytoplasm of cells grown at high salinity (98 per thousand was considerably denser than that of cells reared at 0 per thousand.
Temporal Fine Structure and Applications to Cochlear Implants
ERIC Educational Resources Information Center
Li, Xing
2013-01-01
Complex broadband sounds are decomposed by the auditory filters into a series of relatively narrowband signals, each of which conveys information about the sound by time-varying features. The slow changes in the overall amplitude constitute envelope, while the more rapid events, such as zero crossings, constitute temporal fine structure (TFS).…
This presentation explains the importance of the fine-scale features for air toxics exposure modeling. The paper presents a new approach to combine local-scale and regional model results for the National Air Toxic Assessment. The technique has been evaluated with a chemical tra...
Ishikawa, Masahiro; Murakami, Yuri; Ahi, Sercan Taha; Yamaguchi, Masahiro; Kobayashi, Naoki; Kiyuna, Tomoharu; Yamashita, Yoshiko; Saito, Akira; Abe, Tokiya; Hashiguchi, Akinori; Sakamoto, Michiie
2016-01-01
Abstract. This paper proposes a digital image analysis method to support quantitative pathology by automatically segmenting the hepatocyte structure and quantifying its morphological features. To structurally analyze histopathological hepatic images, we isolate the trabeculae by extracting the sinusoids, fat droplets, and stromata. We then measure the morphological features of the extracted trabeculae, divide the image into cords, and calculate the feature values of the local cords. We propose a method of calculating the nuclear–cytoplasmic ratio, nuclear density, and number of layers using the local cords. Furthermore, we evaluate the effectiveness of the proposed method using surgical specimens. The proposed method was found to be an effective method for the quantification of the Edmondson grade. PMID:27335894
PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation.
Nitti, Mariapaola; Furfaro, Anna Lisa; Cevasco, Claudia; Traverso, Nicola; Marinari, Umberto Maria; Pronzato, Maria Adelaide; Domenicotti, Cinzia
2010-05-01
The role of reactive oxygen species (ROS) in the regulation of signal transduction processes has been well established in many cell types and recently the fine tuning of redox signalling in neurons received increasing attention. With regard to this, the involvement of NADPH oxidase (NOX) in neuronal pathophysiology has been proposed but deserves more investigation. In the present study, we used SH-SY5Y neuroblastoma cells to analyse the role of NADPH oxidase in retinoic acid (RA)-induced differentiation, pointing out the involvement of protein kinase C (PKC) delta in the activation of NOX. Retinoic acid induces neuronal differentiation as revealed by the increased expression of MAP2, the decreased cell doubling rate, and the gain in neuronal morphological features and these events are accompanied by the increased expression level of PKC delta and p67(phox), one of the components of NADPH oxidase. Using DPI to inhibit NOX activity we show that retinoic acid acts through this enzyme to induce morphological changes linked to the differentiation. Moreover, using rottlerin to inhibit PKC delta or transfection experiments to overexpress it, we show that retinoic acid acts through this enzyme to induce MAP2 expression and to increase p67(phox) membrane translocation leading to NADPH oxidase activation. These findings identify the activation of PKC delta and NADPH oxidase as crucial steps in RA-induced neuroblastoma cell differentiation. 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Le Deit, Laetitia; Hauber, Ernst; Fueten, Frank; Pondrelli, Monica; Rossi, Angelo Pio; Jaumann, Ralf
2013-12-01
Crater is filled by sedimentary deposits including a mound of layered deposits, Aeolis Mons. Using orbital data, we mapped the crater infillings and measured their geometry to determine their origin. The sediment of Aeolis Mons is interpreted to be primarily air fall material such as dust, volcanic ash, fine-grained impact products, and possibly snow deposited by settling from the atmosphere, as well as wind-blown sands cemented in the crater center. Unconformity surfaces between the geological units are evidence for depositional hiatuses. Crater floor material deposited around Aeolis Mons and on the crater wall is interpreted to be alluvial and colluvial deposits. Morphologic evidence suggests that a shallow lake existed after the formation of the lowermost part of Aeolis Mons (the Small yardangs unit and the mass-wasting deposits). A suite of several features including patterned ground and possible rock glaciers are suggestive of periglacial processes with a permafrost environment after the first hundreds of thousands of years following its formation, dated to ~3.61 Ga, in the Late Noachian/Early Hesperian. Episodic melting of snow in the crater could have caused the formation of sulfates and clays in Aeolis Mons, the formation of rock glaciers and the incision of deep canyons and valleys along its flanks as well as on the crater wall and rim, and the formation of a lake in the deepest portions of Gale.
Sou, Tomás; Kaminskas, Lisa M; Nguyen, Tri-Hung; Carlberg, Renée; McIntosh, Michelle P; Morton, David A V
2013-02-01
For a dry powder carrier platform to be suitable for pulmonary delivery of potent biomacromolecules, it has to be aerosolisable and capable of stabilising the biomacromolecules. In the present study, strategies aiming to produce a multi-component spray-dried powder formulation with a stable amorphous glassy matrix containing mannitol, trehalose, glycine and alanine, while using leucine as a particle formation and aerosolisation enhancing agent were investigated. The results from in vitro aerosolisation studies demonstrated high fine particle fractions (FPFs) from several formulations. Scanning electronic micrographs (SEMs) revealed distinct morphological features of these formulations in response to increasing leucine concentration: from the apparent insufficiency for discrete particle formation, to reduced particle agglomeration, to increased surface corrugation. X-ray powder diffraction (XRPD) results indicated that partially ordered leucine resulting from self-assembly on the particle surface is important for the amino acid to function effectively as an encapsulating agent. This may also play a role in inhibiting crystallisation of other components within the formulation. In conclusion, the results suggest that with suitable particle size, good dispersibility and solid-state properties, selected trehalose/leucine combinations appear to have good potential for development into a universal carrier platform for pulmonary delivery of potent biomacromolecules and the work highlights areas deserving further investigation. Copyright © 2012 Elsevier B.V. All rights reserved.
Xu, Liang; Yu, Fei-Hai; van Drunen, Elles; Schieving, Feike; Dong, Ming; Anten, Niels P R
2012-04-01
Grazing is a complex process involving the simultaneous occurrence of both trampling and defoliation. Clonal plants are a common feature of heavily grazed ecosystems where large herbivores inflict the simultaneous pressures of trampling and defoliation on the vegetation. We test the hypothesis that physiological integration (resource sharing between interconnected ramets) may help plants to deal with the interactive effects of trampling and defoliation. In a field study, small and large ramets of the root-suckering clonal tree Populus simonii were subjected to two levels of trampling and defoliation, while connected or disconnected to other ramets. Plant responses were quantified via survival, growth, morphological and stem mechanical traits. Disconnection and trampling increased mortality, especially in small ramets. Trampling increased stem length, basal diameter, fibrous root mass, stem stiffness and resistance to deflection in connected ramets, but decreased them in disconnected ones. Trampling decreased vertical height more in disconnected than in connected ramets, and reduced stem mass in disconnected ramets but not in connected ramets. Defoliation reduced basal diameter, leaf mass, stem mass and leaf area ratio, but did not interact with trampling or disconnection. Although clonal integration did not influence defoliation response, it did alleviate the effects of trampling. We suggest that by facilitating resource transport between ramets, clonal integration compensates for trampling-induced damage to fine roots.
Li, Yi-Liang
2012-12-01
Dissimilatory iron-reducing bacteria are able to enzymatically reduce ferric iron and couple to the oxidation of organic carbon. This mechanism induces the mineralization of fine magnetite crystals characterized by a wide distribution in size and irregular morphologies that are indistinguishable from authigenic magnetite. Thermoanaerobacter are thermophilic iron-reducing bacteria that predominantly inhabit terrestrial hot springs or deep crusts and have the capacity to transform amorphous ferric iron into magnetite with a size up to 120 nm. In this study, I first characterize the formation of hexagonal platelet-like magnetite of a few hundred nanometers in cultures of Thermoanaerobacter spp. strain TOR39. Biogenic magnetite with such large crystal sizes and unique morphology has never been observed in abiotic or biotic processes and thus can be considered as a potential biosignature for thermophilic iron-reducing bacteria. The unique crystallographic features and strong ferrimagnetic properties of these crystals allow easy and rapid screening for the previous presence of iron-reducing bacteria in deep terrestrial crustal samples that are unsuitable for biological detection methods and, also, the search for biogenic magnetite in banded iron formations that deposited only in the first 2 billion years of Earth with evidence of life.
Toxoplasma lymphadenitis diagnosed by fine-needle aspiration cytology: a rare finding.
Hosokawa, S; Kusama, Y; Ono, T; Mineta, H
2014-06-01
There are only very few reports of cervical toxoplasma lymphadenitis being diagnosed exclusively via fine-needle aspiration cytology (with serology). We describe a case of toxoplasma lymphadenitis that was successfully diagnosed by fine-needle aspiration cytology. The case involved a male patient who was immunocompromised as a result of recurrent acute myelogenous leukaemia with cervical lymphadenopathy. The biopsy showed typical features of a well-defined pseudocyst containing Toxoplasma gondii tachyzoites. Toxoplasma lymphadenitis is a common cause of lymph node enlargement. Fine-needle aspiration cytology is a useful method for diagnosing and differentiating toxoplasma lymphadenitis from more serious causes of lymphadenopathy, such as metastatic lymphadenopathy or lymphoma.
NASA Astrophysics Data System (ADS)
Zenobia, Samuel J.
Three devices at the University of Wisconsin-Madison Inertial Electrostatic Confinement (UW IEC) laboratory were used to implant W and W alloys with helium ions at high temperatures. These devices were HOMER, HELIOS, and the Materials Irradiation Experiment (MITE-E). The research presented in this thesis will focus on the experiments carried out utilizing the MITE-E. Early UW work in HOMER and HELIOS on silicon carbide, carbon velvet, W-coated carbon velvet, fine-grain W, nano-grain W, W needles, and single- and polycrystalline W showed that these materials were not resistant to He+ implantation above ˜800 °C. Unalloyed W developed a "coral-like" surface morphology after He+ implantation, but appeared to be the most robust material investigated. The MITE-E used an ion gun technology to implant tungsten with 30 keV He+. Tungsten specimens were implanted at 900 °C to total average fluences of 6x1016 -- 6x1018 He +/cm2. Other specimens were implanted to a total average fluence of 5x1018 He+/cm2 at temperatures between 500 and 900 °C. Micrographs of the implanted W specimens revealed the development of three distinct surface morphologies. These morphologies are classified as "blistering", "pitting", and "orientated ridges". Preferential sputtering of the W by the energetic He+ appears to be responsible for pitting and orientated ridges which developed at high fluences (1019 He+/cm2) in the MITE-E. While the orientated ridges were the dominant morphology on the W surface above 700 °C, the pitting was prevalent below 700 °C. The blister morphology was observed at all of the examined temperatures at fluences ≥5x1017 He+/cm2 but disappeared above fluences of 1019 He+/cm 2. The "coral-like" surface morphology on W inherent to He + implantation experiments in HOMER and HELIOS developed from a combination of sources: multiangular ion incidence, ion energy spread (softening), and electron field emission from nano-scale surface features induced by He + implantation. The HOMER and HELIOS devices were found to be better suited for simulation of magnetic fusion environments with off-normal particle incidences, and the MITE-E was found to be more suited for simulating the normal particle incidence of inertial fusion environments.
Studies on the functional morphology and ecology of the atyid prawns of Dominica.
Fryer, G
1977-02-25
Six species of atyid prawns, representing five genera, occur in streams on the West Indian island of Dominica (figures 1-6). The ecology and habits of each are described and the relation of features of gross morphology to ways of life noted. Xiphocaris elongata, the most primitive living atyid, is a lightly built prawn whose adult habits are related to life in quiet pools in streams. An agile species and an excellent swimmer, it picks up individual small food particles with specialized chelipeds (figures 18 and 19) that differ from those of all other atyids and manipulates them with mouthparts (figure 77) which, while highly complex, are more primitive than those described for any other member of the family. Atya innocous and A. scabra, representing perhaps the most specialized atyid genus, are very similar in gross morphology and are robustly built ambulatory species. A. innocous is common in a variety of situations: A. scabra is rare and has been found only in fast-flowing water. Both have chelipeds whose three distal segments are extremely specialized (figure 36) and whose propus and dactylus are armed with an exceedingly complex array of long, slender bristles. These can be used either as brushes for collecting finely particulate detritus (figures 58-60) or as filtering fans (figures 68 and 69) which, held passively in flowing water, extract suspended particles. The Atyidae is unique among the Malacostraca in having representatives that filter passively by means of the chelipeds. The bristles (figure 40) are extended (figure 49), not by muscles, of which there are none in the distal parts of the propus and none anywhere in the dactylus, but by hydraulic forces. The return of the bristles to rest is by means of a cuticular spring. Some of the bristles of A. innocous are armed distally with minute denticles (figures 41 and 42) that facilitate scraping and sweeping: no such are present in A. scabra. The difference is related to the relative importance of scraping in the two species: A. innocous scrapes frequently, A. scabra seldom. Finely particulate food is transferred and manipulated by the extremely complex oral machinery (figure 78). One of the most elaborate parts of this is a teaselling device in which components of the maxillae and first maxillipeds participate (figures 80 and 81). The feeding mechanism is described. Morphologically and functionally Micratya poeyi can be regarded as a miniature version of Atya. It can both sweep and filter. Potimirim glabra is rare in Dominica and its habits but little known. Morphologically it is similar to, but more primitive than, Micratya. Its cheliped bristles are clearly specialized for sweeping and show few signs of being used for passive filtration. Jonga serrei occupies a separate and well-defined niche in the quieter parts of streams. For this it shows many morphological specializations and lacks such attributes as stout claws and robust walking legs that are the hallmark of its relatives living in fast-flowing waters.
CN MORPHOLOGY STUDIES OF COMET 103P/HARTLEY 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Matthew M.; Schleicher, David G., E-mail: knight@lowell.edu
2011-06-15
We report on narrowband CN imaging of Comet 103P/Hartley 2 obtained at Lowell Observatory on 39 nights from 2010 July until 2011 January. We observed two features, one generally to the north and the other generally to the south. The CN morphology varied during the apparition: no morphology was seen in July; in August and September, the northern feature dominated and appeared as a mostly face-on spiral; in October, November, and December, the northern and southern features were roughly equal in brightness and looked like more side-on corkscrews; in January, the southern feature was dominant but the morphology was indistinctmore » due to very low signal. The morphology changed smoothly during each night and similar morphology was seen from night to night. However, the morphology did not exactly repeat each rotation cycle, suggesting that there is a small non-principal axis rotation. Based on the repetition of the morphology, we find evidence that the fundamental rotation period was increasing: 16.7 hr from August 13 to 17, 17.2 hr from September 10 to 13, 18.2 hr from October 12 to 19, and 18.7 hr from October 31 to November 7. We conducted Monte Carlo jet modeling to constrain the pole orientation and locations of the active regions based on the observed morphology. Our preliminary, self-consistent pole solution has an obliquity of 10{sup 0} relative to the comet's orbital plane (i.e., it is centered near R.A. = 257{sup 0} and decl. = +67{sup 0} with an uncertainty around this position of about 15{sup 0}) and has two mid-latitude sources, one in each hemisphere.« less
Samuel, O M; Casanova, P M; Olopade, J O
2018-03-01
To evaluate sexual-size dimorphism and attempt at categorization of inter-individual shapes of foramen magnum outlines using Fourier descriptors which allow for shape outline evaluations with a resultant specimen character definition. Individual characterization and quantification of foramen magnum shapes in direct caudal view based on elliptical Fourier technique was applied to 46 tropical raccoon skulls (26 females, 20 males). Incremental number of harmonics demonstrates morphological contributions of such descriptors with their relations to specific anatomical constructions established. The initial harmonics (1st to 3rd) described the general foramen shapes while the second (4th to 12th) demonstrated fine morphological details. Sexual-size dimorphism was observed in females (87.1%) and 91.7% in males, normalization of size produces 75% in females and 83% in males. With respect to foramen magnum dimorphism analysis, the result obtained through elliptic Fourier analysis was comparatively better in detail information of outline contours than earlier classical methods. The first four effective principal components defined 70.63% of its shape properties while the rest (22.51%) constituted fine details of morphology. Both size and shape seems important in sexual dimorphisms in this species, this investigation suggest clinical implications, taxonomic and anthropologic perspectives in foramen characterization magnum characterization and further postulates an increased possibility of volume reduction cerebellar protrusion, ontogenic magnum shape irregularities in the sample population with neurologic consequences especially among females. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Shape-engineering substrate-based plasmonic nanomaterials
NASA Astrophysics Data System (ADS)
Gilroy, Kyle D.
The advancement of next generation technologies is reliant on our ability to engineer matter at the nanoscale. Since the morphological features of nanomaterials dictate their chemical and physical properties, a significant effort has been put forth to develop syntheses aimed at fine tuning their size, shape and composition. This massive effort has resulted in a maturing colloidal chemistry containing an extensive collection of morphologies with compositions nearly spanning the entire transition of the periodic table. While colloidal nanoparticles have opened the door to promising applications in fields such as cancer theranostics, drug delivery, catalysis and sensing; the synthetic protocols for the placement of nanomaterials on surfaces, a requisite for chip-based devices, are ill-developed. This dissertation serves to address this limitation by highlighting a series of syntheses related to the design of substrate-based nanoparticles whose size, shape and composition are controllably engineered to a desired endpoint. The experimental methods are based on a template-mediated approach which sees chemical modifications made to prepositioned thermally assembled metal nanostructures which are well bonded to a sapphire substrate. The first series of investigations will highlight synthetic routes utilizing galvanic replacement reactions, where the prepositioned templates are chemically transformed into hollow nanoshells. Detailed studies are provided highlighting discoveries related to (i) hollowing, (ii) defect transfer, (iii) strain induction, (iv) interdiffusion, (v) crystal structure and (vi) the localized surface plasmon resonance (LSPR). The second series of investigations, based on heterogeneous nucleation, have Au templates serve as nucleation sites for metal atoms arriving in either the solution- or vapor phase. The solution-phase heterogeneous nucleation of Ag on Au reveals that chemical kinetics (injection rate & precursor concentration) can be used to control the nature of how Ag atoms grow on the Au template. It was discovered that (i) slow kinetics leads to an anisotropic growth mode (heterodimeric structures), (ii) fast kinetics causes a very uniform deposition (Au-Ag coreshell morphology, or Au Ag) and (iii) medium kinetics produces structures with an intermediate morphology (truncated octahedron). In the second case, where the nucleation event is carried out at high temperatures, the Ag vapor is sourced from a sublimating foil onto adjacent Au templates. This process drives the composition and morphology from a Au Wulff-shape to a homogeneous Au-Ag nanoprism. By tracking over time the (i) morphological features, (ii) LSPR and (iii) composition; insights into the fundamental atomic scale growth mechanisms are elucidated. Overall, substrate-based template-mediated syntheses have proven to be an effective route for directing growth pathways toward a desired endpoint giving rise to an impressive new group of complex substrate-based nanostructures with asymmetric, core-shell and hollowed morphologies. While this dissertation is focused heavily on the development of synthetic procedures aimed at generating substrate-based plasmonic nanomaterials, the last chapter will serve to highlight a series of on-going studies aimed at defining these nanomaterials as highly effective heterogeneous catalysts. Several examples are shown including (i) nanoparticle films synthesize via sputter deposition, (ii) mechanically induced nanotexturing of bulk copper foils, (iii) ultra-small AuPd nanoparticles synthesized via pulse laser, (iv) substrate-based AuCu nanoprisms and (v) the Wulff in a Cage Morphology.
Combined control of morphology and polymorph in spray drying of mannitol for dry powder inhalation
NASA Astrophysics Data System (ADS)
Lyu, Feng; Liu, Jing J.; Zhang, Yang; Wang, Xue Z.
2017-06-01
The morphology and polymorphism of mannitol particles were controlled during spray drying with the aim of improving the aerosolization properties of inhalable dry powders. The obtained microparticles were characterized using scanning electron microscopy, infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction and inhaler testing with a next generation impactor. Mannitol particles of varied α-mannitol content and surface roughness were prepared via spray drying by manipulating the concentration of NH4HCO3 in the feed solution. The bubbles produced by NH4HCO3 led to the formation of spheroid particles with a rough surface. Further, the fine particle fraction was increased by the rough surface of carriers and the high α-mannitol content. Inhalable dry powders with a 29.1 ± 2.4% fine particle fraction were obtained by spray-drying using 5% mannitol (w/v)/2% NH4HCO3 (w/v) as the feed solution, proving that this technique is an effective method to engineer particles for dry powder inhalation.
Hydrothermal growth of ZnO nanowire arrays: fine tuning by precursor supersaturation
Yan, Danhua; Cen, Jiajie; Zhang, Wenrui; ...
2016-12-20
In this paper, we develop a technique that fine tunes the hydrothermal growth of ZnO nanowires to address the difficulties in controlling their growth in a conventional one-pot hydrothermal method. In our technique, precursors are separately and slowly supplied with the assistance of a syringe pump, through the entire course of the growth. Compared to the one-pot method, the significantly lowered supersaturation of precursors helps eliminating competitive homogeneous nucleation and improves the reproducibility. The supersaturation degree can be readily tuned by the precursor quantity and injection rate, thus forming ZnO nanowire arrays of various geometries and packing densities in amore » highly controllable fashion. The precise control of ZnO nanowire growth enables systematic studies on the correlation between the material's properties and its morphology. Finally, in this work, ZnO nanowire arrays of various morphologies are studied as photoelectrochemical (PEC) water splitting photoanodes, in which we establish clear correlations between the water splitting performance and the nanowires' size, shape, and packing density.« less
Hecker, Elizabeth A.; Serences, John T.; Srinivasan, Ramesh
2013-01-01
Interacting with the environment requires the ability to flexibly direct attention to relevant features. We examined the degree to which individuals attend to visual features within and across Detection, Fine Discrimination, and Coarse Discrimination tasks. Electroencephalographic (EEG) responses were measured to an unattended peripheral flickering (4 or 6 Hz) grating while individuals (n = 33) attended to orientations that were offset by 0°, 10°, 20°, 30°, 40°, and 90° from the orientation of the unattended flicker. These unattended responses may be sensitive to attentional gain at the attended spatial location, since attention to features enhances early visual responses throughout the visual field. We found no significant differences in tuning curves across the three tasks in part due to individual differences in strategies. We sought to characterize individual attention strategies using hierarchical Bayesian modeling, which grouped individuals into families of curves that reflect attention to the physical target orientation (“on-channel”) or away from the target orientation (“off-channel”) or a uniform distribution of attention. The different curves were related to behavioral performance; individuals with “on-channel” curves had lower thresholds than individuals with uniform curves. Individuals with “off-channel” curves during Fine Discrimination additionally had lower thresholds than those assigned to uniform curves, highlighting the perceptual benefits of attending away from the physical target orientation during fine discriminations. Finally, we showed that a subset of individuals with optimal curves (“on-channel”) during Detection also demonstrated optimal curves (“off-channel”) during Fine Discrimination, indicating that a subset of individuals can modulate tuning optimally for detection and discrimination. PMID:23678013
[DIAGNOSTIC AND TREATMENT STRATEGY IN FOLLICULAR TUMOR OF THYROID GLAND].
Mikhaĭlova, M V; Zubarovskiĭ, I N; Osipenko, S K
2015-01-01
The article is based on the treatment results of 44 patients with follicular tunor of thyroid gland. A staged morphological assessment of thyroid nodes was performed for all patients: in case of preoperative fine-needle biopsy, urgent intraoperative study and according to results of final histological research. The urgent histological study of surgical material was conducted for 44 patients with diagnosis "follicular tumor" according to fine-needle biopsy. The data of final histological study were matched with findings of intraoperative research. A micro-follicular adenoma was detected in 22 patients (50%) and 6 (13,6%) patients had this diagnosis combined with autoimmune thyroiditis. The general part of patients didn't changed in final study, but the rate of diagnosis "micro-follicular adenoma against the background of autoimmune thyroiditis" increased. Papillary carcinoma was revealed in 5 (11,4%) patients and follicular cancer had 4 (9,1%) patients detected in intraoperative study and 3 (6,8%) more patients according to data of final research. The histopathologic feature of colloid goiter was observed in 7 (15,9%) cases and a part of such patients reduced to 6,8% during final study. One of the patients (2,3%) had final diagnosis "oncocytoma". In case of thyroid nodules detection the needle biopsy should be carried out regardless to the size of nodule. The authors recommended performing the surgery with the urgent histological study in case of undetermined histological report. The following surgical strategy was specified by the results of the urgent histological report.
Measurements of Cuspal Slope Inclination Angles in Palaeoanthropological Applications
NASA Astrophysics Data System (ADS)
Gaboutchian, A. V.; Knyaz, V. A.; Leybova, N. A.
2017-05-01
Tooth crown morphological features, studied in palaeoanthropology, provide valuable information about human evolution and development of civilization. Tooth crown morphology represents biological and historical data of high taxonomical value as it characterizes genetically conditioned tooth relief features averse to substantial changes under environmental factors during lifetime. Palaeoanthropological studies are still based mainly on descriptive techniques and manual measurements of limited number of morphological parameters. Feature evaluation and measurement result analysis are expert-based. Development of new methods and techniques in 3D imaging creates a background provides for better value of palaeoanthropological data processing, analysis and distribution. The goals of the presented research are to propose new features for automated odontometry and to explore their applicability to paleoanthropological studies. A technique for automated measuring of given morphological tooth parameters needed for anthropological study is developed. It is based on using original photogrammetric system as a teeth 3D models acquisition device and on a set of algorithms for given tooth parameters estimation.
Modelling the morphology of migrating bacterial colonies
NASA Astrophysics Data System (ADS)
Nishiyama, A.; Tokihiro, T.; Badoual, M.; Grammaticos, B.
2010-08-01
We present a model which aims at describing the morphology of colonies of Proteus mirabilis and Bacillus subtilis. Our model is based on a cellular automaton which is obtained by the adequate discretisation of a diffusion-like equation, describing the migration of the bacteria, to which we have added rules simulating the consolidation process. Our basic assumption, following the findings of the group of Chuo University, is that the migration and consolidation processes are controlled by the local density of the bacteria. We show that it is possible within our model to reproduce the morphological diagrams of both bacteria species. Moreover, we model some detailed experiments done by the Chuo University group, obtaining a fine agreement.
Rossi, L F; Luaces, J P; Aldana Marcos, H J; Cetica, P D; Perez Jimeno, G; Merani, M S
2013-08-01
The anatomy and histology of the male genital tract of the lesser anteater were studied. Fine details of spermatozoa regarding their genesis and morphology were also studied in six adult specimens. The testes lie in the pelvic cavity. The deferent duct emerges from the epididymis and opens into the ejaculatory duct, which drains into the membranous urethra. Accessory glands (prostate, seminal vesicle and bulbourethral gland) are histologically similar to those described in other mammals. The short penis presents an urethral orifice, while the corpus spongiosum becomes thinner at the end indicating the absence of a histologically defined glans. The seminiferous epithelium shows: (1) Sertoli cells with deep nuclear indentations, (2) spermatogonia with crusty-like chromatin, (3) spermatocytes at different stages of maturation and (4) three morphologically distinct stages of spermatid differentiation according to nuclear shape, acrosome development and chromatin condensation. Sperm heads appear oval. The length of the spermatozoa averages 67.33 ± 1.60 μm. Two specimens with inactive spermatogenesis were azoospermic. Their testes and epididymis presented sizes smaller than those with active spermatogenesis. These studies together with others in anteaters may contribute to successful breeding in conservation programmes. © 2012 Blackwell Verlag GmbH.
Foraging strategies in trees of different root morphology: the role of root lifespan.
Adams, Thomas S; McCormack, M Luke; Eissenstat, David M
2013-09-01
Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology.
NASA Astrophysics Data System (ADS)
Ozerin, Sergei A.; Vdovichenko, Artem Yu.; Streltsov, Dmitry R.; Davydov, Alexander B.; Orekhov, Anton S.; Vasiliev, Alexander L.; Zubavichus, Yan V.; Grigoriev, Evgenii I.; Zavyalov, Sergei A.; Oveshnikov, Leonid N.; Aronzon, Boris A.; Chvalun, Sergei N.
2017-12-01
The relationship between structure, electrical and magnetic properties of thin poly(p-xylylene) - nickel nanocomposite films with Ni concentrations from 5 to 30 vol% was studied. It was found that metal concentration strongly affects size and oxidation state of the nanoparticles and composites morphology. At nickel concentration below 5 vol% the nanoparticles are oxidized to NiO and homogeneously distributed within fine-grained polymer matrix. An increase of Ni concentration up to 10 vol% results in the development of coarse-grained morphology with preferable localization of the nanoparticles at the boundaries of polymeric grains. And finally, in the composite films with nickel concentration above 20 vol%, the fine-grained morphology is observed again, but the nanoparticles are mainly metallic. Effect of the filler content on electrical and magnetic properties of the nanocomposites was elucidated showing that they are determined by percolation phenomenon with the threshold value of about 10 vol%. The well-pronounced magnetic hysteresis as well as ferromagnetic ordering were observed at Ni content above the percolation threshold. The diagrams of magnetic properties of these composites as a function of composition and temperature were elaborated. It was demonstrated that film annealing can be used to control magnetic properties of the composites and strongly enhance magnetoresistance.
SCDC Spanish Curricula Units. Fine Arts, Unit 4, Grade 2, Supplements & Ditto Packet.
ERIC Educational Resources Information Center
Spanish Curricula Development Center, Miami Beach, FL.
The supplement and ditto packet to the unit four fine arts strand for second graders contains visual materials to aid the teacher in carrying out the instructional and assessment activities of this strand. Seatwork for individual students is featured along with materials intended for class participation activities. Illustrations, provided to help…
Zou, Yun; Zhang, Lehao; Li, Yang; ...
2017-12-06
Limitations of strength and formability are the major obstacles to the industrial application of magnesium alloys. Here, we demonstrate, by producing the duplex phases and fine intermetallic particles in composition-optimized superlight Mg-Li-Al alloys, a unique approach to simultaneously improve the comprehensive mechanical properties (a strength-ductility balance). In conclusion, the phase components and microstructures, including the size, morphology, and distribution of precipitated-intermetallic particles can be optimized by tuning the Li content, which strongly influences the work-hardening behavior and tension-compression yield asymmetry.
Role of fine needle aspiration cytology in diagnosing filarial arm cysts.
Tandon, Nishi; Bansal, Cherry; Sharma, Richa; Irfan, Sumaiya
2013-05-17
Filariasis is prevalent in tropical and subtropical areas and is endemic in regions of India. Lymphatic filariasis in India is caused mainly by two species of nematodes: Wuchereria bancrofti and Brugia malayi, which invade the human lymphatic system. We report two cases of superficial cystic lesions of the upper limb revealed on fine needle aspiration (FNA) to be clinically unsuspected filariasis. Despite similar aetiologies, both cases revealed variations in aspirate nature, smear morphology and peripheral blood findings. FNA provides definitive diagnosis and is an important tool for diagnosing soft tissue swellings owing to filariasis.
Morphological relationships in the chromospheric H-alpha fine structure
NASA Technical Reports Server (NTRS)
Foukal, P.
1971-01-01
A continuous relationship is proposed between the basic elements of the dark fine structure of the quiet and active chromosphere. A progression from chromospheric bushes to fibrils, then to chromospheric threads and active region filaments, and finally to diffuse quiescent filaments, is described. It is shown that the horizontal component of the field on opposite sides of an active region quiescent filament can be in the same direction and closely parallel to the filament axis. Consequently, it is unnecessary to postulate twisted or otherwise complex field configurations to reconcile the support mechanism of filaments with the observed motion along their axis.
Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy.
Kovacs, Gabor G; Ferrer, Isidro; Grinberg, Lea T; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J; Crary, John F; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M; Ironside, James W; Love, Seth; Mackenzie, Ian R; Munoz, David G; Murray, Melissa E; Nelson, Peter T; Takahashi, Hitoshi; Trojanowski, John Q; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G; Bieniek, Kevin F; Bigio, Eileen H; Bodi, Istvan; Dugger, Brittany N; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M; Giaccone, Giorgio; Hatanpaa, Kimmo J; Heale, Richard; Hof, Patrick R; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J; Mann, David M; Matej, Radoslav; McKee, Ann C; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J; Murayama, Shigeo; Lee, Edward B; Rahimi, Jasmin; Rodriguez, Roberta D; Rozemüller, Annemieke; Schneider, Julie A; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B; Tolnay, Markus; Troncoso, Juan C; Vinters, Harry V; Weis, Serge; Wharton, Stephen B; White, Charles L; Wisniewski, Thomas; Woulfe, John M; Yamada, Masahito; Dickson, Dennis W
2016-01-01
Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of astroglial tau pathology in the aged brain, facilitating communication among neuropathologists and researchers, and informing interpretation of clinical biomarkers and imaging studies that focus on tau-related indicators.
Longoni, Gianluca; Pena Cabrera, Rosita Lissette; Polizzi, Stefano; D'Arienzo, Massimiliano; Mari, Claudio Maria; Cui, Yi; Ruffo, Riccardo
2017-02-08
Rechargeable sodium-ion batteries are becoming a viable alternative to lithium-based technology in energy storage strategies, due to the wide abundance of sodium raw material. In the past decade, this has generated a boom of research interest in such systems. Notwithstanding the large number of research papers concerning sodium-ion battery electrodes, the development of a low-cost, well-performing anode material remains the largest obstacle to overcome. Although the well-known anatase, one of the allotropic forms of natural TiO 2 , was recently proposed for such applications, the material generally suffers from reduced cyclability and limited power, due to kinetic drawbacks and to its poor charge transport properties. A systematic approach in the morphological tuning of the anatase nanocrystals is needed, to optimize its structural features toward the electrochemical properties and to promote the material interaction with the conductive network and the electrolyte. Aiming to face with these issues, we were able to obtain a fine tuning of the nanoparticle morphology and to expose the most favorable nanocrystal facets to the electrolyte and to the conductive wrapping agent (graphene), thus overcoming the intrinsic limits of anatase transport properties. The result is a TiO 2 -based composite electrode able to deliver an outstandingly stability over cycles (150 mA h g -1 for more than 600 cycles in the 1.5-0.1 V potential range) never achieved with such a low content of carbonaceous substrate (5%). Moreover, it has been demonstrated for the first time than these outstanding performances are not simply related to the overall surface area of the different morphologies but have to be directly related to the peculiar surface characteristics of the crystals.
Hyperspectral feature mapping classification based on mathematical morphology
NASA Astrophysics Data System (ADS)
Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli
2016-03-01
This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.
Improved catalysts by low-G processing
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Picklesimer, E. A.
1977-01-01
The advantages of space for manufacturing more perfect microcrystalline morphologies and structures will be investigated. Production of smaller silver and palladium crystals with enhanced catalytic properties is discussed. The elimination of convection accompanying electrodeposition of fine metallic powders at high overvoltages in a low gravity environment is outlined.
GUIDELINES FOR THE APPLICATION OF SEM/EDX ANALYTICAL TECHNIQUES FOR FINE AND COARSE PM SAMPLES
Scanning Electron Microscopy (SEM) coupled with Energy-Dispersive X-ray analysis (EDX) is a powerful tool in the characterization and source apportionment of environmental particulate matter (PM), providing size, chemistry, and morphology of particles as small as a few tenths ...
European early modern humans and the fate of the Neandertals
Trinkaus, Erik
2007-01-01
A consideration of the morphological aspects of the earliest modern humans in Europe (more than ≈33,000 B.P.) and the subsequent Gravettian human remains indicates that they possess an anatomical pattern congruent with the autapomorphic (derived) morphology of the earliest (Middle Paleolithic) African modern humans. However, they exhibit a variable suite of features that are either distinctive Neandertal traits and/or plesiomorphic (ancestral) aspects that had been lost among the African Middle Paleolithic modern humans. These features include aspects of neurocranial shape, basicranial external morphology, mandibular ramal and symphyseal form, dental morphology and size, and anteroposterior dental proportions, as well as aspects of the clavicles, scapulae, metacarpals, and appendicular proportions. The ubiquitous and variable presence of these morphological features in the European earlier modern human samples can only be parsimoniously explained as a product of modest levels of assimilation of Neandertals into early modern human populations as the latter dispersed across Europe. This interpretation is in agreement with current analyses of recent and past human molecular data. PMID:17452632
NASA Astrophysics Data System (ADS)
Székely, B.; Karátson, D.; Koma, Zs.; Dorninger, P.; Wörner, G.; Brandmeier, M.; Nothegger, C.
2012-04-01
The Western slope of the Central Andes between 22° and 17°S is characterized by large, quasi-planar landforms with tilted ignimbrite surfaces and overlying younger sedimentary deposits (e.g. Nazca, Oxaya, Huaylillas ignimbrites). These surfaces were only modified by tectonic uplift and tilting of the Western Cordillera preserving minor now fossilized drainage systems. Several deep, canyons started to form from about 5 Ma ago. Due to tectonic oversteepening in a arid region of very low erosion rates, gravitational collapses and landslides additionally modified the Andean slope and valley flanks. Large areas of fossil surfaces, however, remain. The age of these surfaces has been dated between 11 Ma and 25 Ma at elevations of 3500 m in the Precordillera and at c. 1000 m near the coast. Due to their excellent preservation, our aim is to identify, delineate, and reconstruct these original ignimbrite and sediment surfaces via a sophisticated evaluation of SRTM DEMs. The technique we use here is a robust morphological segmentation method that is insensitive to a certain amount of outliers, even if they are spatially correlated. This paves the way to identify common local planar features and combine these into larger areas of a particular surface segment. Erosional dissection and faulting, tilting and folding define subdomains, and thus the original quasi-planar surfaces are modified. Additional processes may create younger surfaces, such as sedimentary floodplains and salt pans. The procedure is tuned to provide a distinction of these features. The technique is based on the evaluation of local normal vectors (perpendicular to the actual surface) that are obtained by determination of locally fitting planes. Then, this initial set of normal vectors are gradually classified into groups with similar properties providing candidate point clouds that are quasi co-planar. The quasi co-planar sets of points are analysed further against other criteria, such as number of minimum points, maximized standard deviation of spatial scatter, maximum point-to-plane surface, etc. SRTM DEMs of selected areas of the Western slope of the Central Andes have been processed with various parameter sets. The resulting domain structure shows strong correlation with tectonic features (e.g. faulting) and younger depositional surfaces whereas other segmentation features appear or disappear depending on parameters of the analysis. For example, a fine segmentation results - for a given study area - in ca. 2500 planar features (of course not all are geologically meaningful), whereas a more meaningful result has an order of magnitude less planes, ca. 270. The latter segmentation still covers the key areas, and the dissecting features (e.g., large incised canyons) are typically identified. For the fine segmentation version an area of 3863 km2 is covered by fitted planes for the ignimbrite surfaces, whereas for the more robust segmentation this area is 2555 km2. The same values for the sedimentary surfaces are 3162 km2 and 2080 km2, respectively. The total processed area was 14498 km2. As the previous numbers and the 18,1% and 18,6% decrease in the coverage suggest, the robust segmentation remains meaningful for large parts of the area while the number of planar features decreased by an order of magnitude. This result also emphasizes the importance of the initial parameters. To verify the results in more detail, residuals (difference between measured and modelled elevation) are also evaluated, and the results are fed back to the segmentation procedure. Steeper landscapes (young volcanic edifices) are clearly separated from higher-order (long-wavelength) structures. This method allows to quantitatively identify uniform surface segments and to relate these to geologically and morphologically meaningful parameters (type of depositional surface, rock type, surface age).
Effect of local void morphology on the reaction initiation mechanism in the case of pressed HMX
NASA Astrophysics Data System (ADS)
Roy, Sidhartha; Rai, Nirmal; Udaykumar, H. S.
2017-06-01
The microstructural characteristics of pressed HMX has a significant effect on its sensitivity under shock loading. The microstructure of pressed HMX contains voids of various orientation and aspect ratio. Subject to shock loading, these voids can collapse forming hotspots and initiate chemical reaction. This work shows how the ignition and growth of chemical reaction is dependent on the local microstructural features of the voids. Morphological quantities like size, aspect ratio and orientations are extracted from the real microstructural images of Class III and Class V pressed HMX. These morphological quantities are correlated with the ignition and growth rates of the chemical reaction. The dependency of the sensitivity of a given HMX sample on the local morphological features shows that these local features can create a mocroscale physical response.
Wang, Jun-Jian; Guo, Ying-Ying; Guo, Da-Li; Yin, Sen-Lu; Kong, De-Liang; Liu, Yang-Sheng; Zeng, Hui
2012-01-17
Fine roots are critical components for plant mercury (Hg) uptake and removal, but the patterns of Hg distribution and turnover within the heterogeneous fine root components and their potential limiting factors are poorly understood. Based on root branching structure, we studied the total Hg (THg) and its cellular partitioning in fine roots in 6 Chinese subtropical trees species and the impacts of root morphological and stoichiometric traits on Hg partitioning. The THg concentration generally decreased with increasing root order, and was higher in cortex than in stele. This concentration significantly correlated with root length, diameter, specific root length, specific root area, and nitrogen concentration, whereas its cytosolic fraction (accounting for <10% of THg) correlated with root carbon and sulfur concentrations. The estimated Hg return flux from dead fine roots outweighed that from leaf litter, and ephemeral first-order roots that constituted 7.2-22.3% of total fine root biomass may have contributed most to this flux (39-71%, depending on tree species and environmental substrate). Our results highlight the high capacity of Hg stabilization and Hg return by lower-order roots and demonstrate that turnover of lower-order roots may be an effective strategy of detoxification in perennial tree species.
NASA Astrophysics Data System (ADS)
Ocakoğlu, Neslihan; İşcan, Yeliz; Kılıç, Fatmagül; Özel, Oğuz
2018-06-01
Multi-beam bathymetric and multi-channel seismic reflection data obtained offshore Cide-Sinop have revealed important records on the latest transgression of the Black Sea for the first time. A relatively large shelf plain within the narrow southern continental shelf characterized by a flat seafloor morphology at -100 water depth followed by a steep continental slope leading to -500 m depth. This area is widely covered by submerged morphological features such as dunes, lagoons, possible aeolianites, an eroded anticline and small channels that developed by aeolian and fluvial processes. These morphological features sit upon an erosional surface that truncates the top of all seismic units and constitutes the seafloor over the whole shelf. The recent prograded delta deposits around the shelf break are also truncated by the similar erosional surface. These results indicate that offshore Cide-Sinop was once a terrestrial landscape that was then submerged. The interpreted paleoshoreline varies from -100 to -120 m. This variation can be explained by not only sea level changes but also the active faults observed on the seismic section. The effective protection of morphological features on the seafloor is the evidence of abrupt submergence rather than gradual. In addition, the absence of coastal onlaps suggests that these morphological features should have developed at low sea level before the latest sea level rise in the Black Sea.
White blood cells identification system based on convolutional deep neural learning networks.
Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A
2017-11-16
White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.
Diagenetic Crystal Growth in the Murray Formation, Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Kah, L. C.; Kronyak, R. E.; Ming, D. W.; Grotzinger, J. P.; Schieber, J.; Sumner, D. Y.; Edgett, K. S.
2015-01-01
The Pahrump region (Gale Crater, Mars) marks a critical transition between sedimentary environments dominated by alluvial-to-fluvial materials associated with the Gale crater rim, and depositional environments fundamentally linked to the crater's central mound, Mount Sharp. At Pahrump, the Murray formation consists of an approximately 14-meter thick succession dominated by massive to finely laminated mudstone with occasional interbeds of cross-bedded sandstone, and is best interpreted as a dominantly lacustrine environment containing tongues of prograding fluvial material. Murray formation mudstones contain abundant evidence for early diagenetic mineral precipitation and its subsequent removal by later diagenetic processes. Lenticular mineral growth is particularly common within lacustrine mudstone deposits at the Pahrump locality. High-resolution MAHLI images taken by the Curiosity rover permit detailed morphological and spatial analysis of these features. Millimeter-scale lenticular features occur in massive to well-laminated mudstone lithologies and are interpreted as pseudomorphs after calcium sulfate. The distribution and orientation of lenticular features suggests deposition at or near the sediment-water (or sediment-air) interface. Retention of chemical signals similar to host rock suggests that original precipitation was likely poikilotopic, incorporating substantial amounts of the primary matrix. Although poikilotopic crystal growth is common in burial environments, it also occurs during early diagenetic crystal growth within unlithified sediment where high rates of crystal growth are common. Loss of original calcium sulfate mineralogy suggests dissolution by mildly acidic, later-diagenetic fluids. As with lenticular voids observed at Meridiani by the Opportunity Rover, these features indicate that calcium sulfate deposition may have been widespread on early Mars; dissolution of depositional and early diagenetic minerals is a likely source for both calcium and sulfate ion-enrichment in burial fluids that precipitated in ubiquitous late-stage hydrofracture veins
Automated Image Registration Using Morphological Region of Interest Feature Extraction
NASA Technical Reports Server (NTRS)
Plaza, Antonio; LeMoigne, Jacqueline; Netanyahu, Nathan S.
2005-01-01
With the recent explosion in the amount of remotely sensed imagery and the corresponding interest in temporal change detection and modeling, image registration has become increasingly important as a necessary first step in the integration of multi-temporal and multi-sensor data for applications such as the analysis of seasonal and annual global climate changes, as well as land use/cover changes. The task of image registration can be divided into two major components: (1) the extraction of control points or features from images; and (2) the search among the extracted features for the matching pairs that represent the same feature in the images to be matched. Manual control feature extraction can be subjective and extremely time consuming, and often results in few usable points. Automated feature extraction is a solution to this problem, where desired target features are invariant, and represent evenly distributed landmarks such as edges, corners and line intersections. In this paper, we develop a novel automated registration approach based on the following steps. First, a mathematical morphology (MM)-based method is used to obtain a scale-orientation morphological profile at each image pixel. Next, a spectral dissimilarity metric such as the spectral information divergence is applied for automated extraction of landmark chips, followed by an initial approximate matching. This initial condition is then refined using a hierarchical robust feature matching (RFM) procedure. Experimental results reveal that the proposed registration technique offers a robust solution in the presence of seasonal changes and other interfering factors. Keywords-Automated image registration, multi-temporal imagery, mathematical morphology, robust feature matching.
Large-scale Exploration of Neuronal Morphologies Using Deep Learning and Augmented Reality.
Li, Zhongyu; Butler, Erik; Li, Kang; Lu, Aidong; Ji, Shuiwang; Zhang, Shaoting
2018-02-12
Recently released large-scale neuron morphological data has greatly facilitated the research in neuroinformatics. However, the sheer volume and complexity of these data pose significant challenges for efficient and accurate neuron exploration. In this paper, we propose an effective retrieval framework to address these problems, based on frontier techniques of deep learning and binary coding. For the first time, we develop a deep learning based feature representation method for the neuron morphological data, where the 3D neurons are first projected into binary images and then learned features using an unsupervised deep neural network, i.e., stacked convolutional autoencoders (SCAEs). The deep features are subsequently fused with the hand-crafted features for more accurate representation. Considering the exhaustive search is usually very time-consuming in large-scale databases, we employ a novel binary coding method to compress feature vectors into short binary codes. Our framework is validated on a public data set including 58,000 neurons, showing promising retrieval precision and efficiency compared with state-of-the-art methods. In addition, we develop a novel neuron visualization program based on the techniques of augmented reality (AR), which can help users take a deep exploration of neuron morphologies in an interactive and immersive manner.
The molecular basis of breast cancer pathological phenotypes.
Heng, Yujing J; Lester, Susan C; Tse, Gary Mk; Factor, Rachel E; Allison, Kimberly H; Collins, Laura C; Chen, Yunn-Yi; Jensen, Kristin C; Johnson, Nicole B; Jeong, Jong Cheol; Punjabi, Rahi; Shin, Sandra J; Singh, Kamaljeet; Krings, Gregor; Eberhard, David A; Tan, Puay Hoon; Korski, Konstanty; Waldman, Frederic M; Gutman, David A; Sanders, Melinda; Reis-Filho, Jorge S; Flanagan, Sydney R; Gendoo, Deena Ma; Chen, Gregory M; Haibe-Kains, Benjamin; Ciriello, Giovanni; Hoadley, Katherine A; Perou, Charles M; Beck, Andrew H
2017-02-01
The histopathological evaluation of morphological features in breast tumours provides prognostic information to guide therapy. Adjunct molecular analyses provide further diagnostic, prognostic and predictive information. However, there is limited knowledge of the molecular basis of morphological phenotypes in invasive breast cancer. This study integrated genomic, transcriptomic and protein data to provide a comprehensive molecular profiling of morphological features in breast cancer. Fifteen pathologists assessed 850 invasive breast cancer cases from The Cancer Genome Atlas (TCGA). Morphological features were significantly associated with genomic alteration, DNA methylation subtype, PAM50 and microRNA subtypes, proliferation scores, gene expression and/or reverse-phase protein assay subtype. Marked nuclear pleomorphism, necrosis, inflammation and a high mitotic count were associated with the basal-like subtype, and had a similar molecular basis. Omics-based signatures were constructed to predict morphological features. The association of morphology transcriptome signatures with overall survival in oestrogen receptor (ER)-positive and ER-negative breast cancer was first assessed by use of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset; signatures that remained prognostic in the METABRIC multivariate analysis were further evaluated in five additional datasets. The transcriptomic signature of poorly differentiated epithelial tubules was prognostic in ER-positive breast cancer. No signature was prognostic in ER-negative breast cancer. This study provided new insights into the molecular basis of breast cancer morphological phenotypes. The integration of morphological with molecular data has the potential to refine breast cancer classification, predict response to therapy, enhance our understanding of breast cancer biology, and improve clinical management. This work is publicly accessible at www.dx.ai/tcga_breast. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Liu, Bin; Guo, Zai Ping; Du, Guodong; Nuli, Yanna; Hassan, Mohd Faiz; Jia, Dianzeng
Ultra-fine, porous, tin oxide-carbon (SnO 2/C) nanocomposites are fabricated by a molten salt method at 300 °C, and malic acid is decomposed as the carbon source. In situ synthesis is favourable for the combination of carbon and SnO 2. The structure and morphology are confirmed by X-ray diffraction analysis, specific surface-area measurements, and transmission electron microscopy (TEM). Examination of TEM images reveals that the SnO 2 nanoparticles are embedded in the carbon matrix, with sizes between 2 and 5 nm. The electrochemical measurements show that the nanocomposite delivers a high capacity with good capacity retention as an anode material for lithium-ion batteries, due to the combination of the ultra-fine porous structure and the carbon component.
Roumet, Catherine; Birouste, Marine; Picon-Cochard, Catherine; Ghestem, Murielle; Osman, Normaniza; Vrignon-Brenas, Sylvain; Cao, Kun-Fang; Stokes, Alexia
2016-05-01
Although fine roots are important components of the global carbon cycle, there is limited understanding of root structure-function relationships among species. We determined whether root respiration rate and decomposability, two key processes driving carbon cycling but always studied separately, varied with root morphological and chemical traits, in a coordinated way that would demonstrate the existence of a root economics spectrum (RES). Twelve traits were measured on fine roots (diameter ≤ 2 mm) of 74 species (31 graminoids and 43 herbaceous and dwarf shrub eudicots) collected in three biomes. The findings of this study support the existence of a RES representing an axis of trait variation in which root respiration was positively correlated to nitrogen concentration and specific root length and negatively correlated to the root dry matter content, lignin : nitrogen ratio and the remaining mass after decomposition. This pattern of traits was highly consistent within graminoids but less consistent within eudicots, as a result of an uncoupling between decomposability and morphology, and of heterogeneity of individual roots of eudicots within the fine-root pool. The positive relationship found between root respiration and decomposability is essential for a better understanding of vegetation-soil feedbacks and for improving terrestrial biosphere models predicting the consequences of plant community changes for carbon cycling. © 2016 CNRS. New Phytologist © 2016 New Phytologist Trust.
Norouzian, M A; Valizadeh, R
2014-12-01
A slaughter experiment was conducted to determine the effects of alfalfa particle size on rumen morphology and performance of lambs. Twenty-four Balouchi lambs aged 21 days (9.1 ± 1.1 kg) were randomly fed control (diet without alfalfa hay; CON) and mixed rations containing 15% finely ground (FINE; 2 mm) and 15% coarsely chopped alfalfa hay (LONG; 3 to 4 cm). After a 63 days feeding period, nine animals (three per treatment) were slaughtered to obtain ruminal tissue samples for morphological analyses. Alfalfa particle size did not affect (p > 0.05) papillae density, height, width, epithelium depth and surface area. Coarse alfalfa decreased the stratum corneum and increased (p < 0.05) muscle depth compared with fine and control diets. Neither DNA content and nor RNA concentration of rumen tissue was affected by feeding different diets. Forage particle size did not affect the blood concentration of glucose, urea nitrogen (BUN), beta-hydroxybutyric acid (BHBA) and non-esterified fatty acids (NEFA). Dry matter intake and feed conversion ratio were higher for control diet; however, there were no significant differences between treatments for average daily gain. These data suggest that coarse alfalfa significantly reduces the stratum corneum and increases muscularity of rumen wall and tended to better feed conversion ratio. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.
Content-based cell pathology image retrieval by combining different features
NASA Astrophysics Data System (ADS)
Zhou, Guangquan; Jiang, Lu; Luo, Limin; Bao, Xudong; Shu, Huazhong
2004-04-01
Content Based Color Cell Pathology Image Retrieval is one of the newest computer image processing applications in medicine. Recently, some algorithms have been developed to achieve this goal. Because of the particularity of cell pathology images, the result of the image retrieval based on single characteristic is not satisfactory. A new method for pathology image retrieval by combining color, texture and morphologic features to search cell images is proposed. Firstly, nucleus regions of leukocytes in images are automatically segmented by K-mean clustering method. Then single leukocyte region is detected by utilizing thresholding algorithm segmentation and mathematics morphology. The features that include color, texture and morphologic features are extracted from single leukocyte to represent main attribute in the search query. The features are then normalized because the numerical value range and physical meaning of extracted features are different. Finally, the relevance feedback system is introduced. So that the system can automatically adjust the weights of different features and improve the results of retrieval system according to the feedback information. Retrieval results using the proposed method fit closely with human perception and are better than those obtained with the methods based on single feature.
ROLE OF CARBOHYDRATE SUPPLY IN WHITE AND BROWN ROOT RESPIRATION OF PONDEROSA PINE
Respiratory responses of fine ponderosa pine (Pinus ponderosa Laws) roots of differing morphology were measured to evaluate response to excision and to changes in the shoot light environment. Ponderosa pine seedlings were subject to either a 15:9 h light/dark environment over 24...
The particle size distributions, morphologies, and chemical composition distributions of 14 coal fly ash (CFA) samples produced by the combustion of four western U.S. coals (two subbituminous, one lignite, and one bituminous) and three eastern U.S. coals (all bituminous) have bee...
Motivated by growing concerns about the detrimental effects of fine particulate matter (PM2.5) on human health, the U.S. Environmental Protection Agency (EPA) recently promulgated a National Ambient Air Quality Standard (NAAQS) for PM2.5. The PM2.5 standard includes a 24-hour li...
Tice, Michael M
2009-12-01
Three morphotypes of microbial mats are preserved in rocks deposited in shallow-water facies of the 3.42 Ga Buck Reef chert (BRC). Morphotype alpha consists of fine anastomosing and bifurcating carbonaceous laminations, which loosely drape underlying detrital grains or form silica-filled lenses. Morphotype beta consists of meshes of fine carbonaceous strands intergrown with detrital grains and dark laminations, which loosely drape coarse detrital grains. Morphotype gamma consists of fine, even carbonaceous laminations that tightly drape underlying detrital grains. Preservation of nearly uncompacted mat morphologies and detrital grains deposited during mat growth within a well-characterized sedimentary unit makes quantitative correlation between morphology and paleoenvironment possible. All mats are preserved in the shallowest-water interval of those rocks deposited below normal wave base and above storm wave base. This interval is bounded below by a transgressive lag formed during regional flooding and above by a small condensed section that marks a local relative sea-level maximum. Restriction of all mat morphotypes to the shallowest interval of the storm-active layer in the BRC ocean reinforces previous interpretations that these mats were constructed primarily by photosynthetic organisms. Morphotypes alpha and beta dominate the lower half of this interval and grew during deposition of relatively coarse detrital carbonaceous grains, while morphotype gamma dominates the upper half and grew during deposition of fine detrital carbonaceous grains. The observed mat distribution suggests that either light intensity or, more likely, small variations in ambient current energy acted as a first-order control on mat morphotype distribution. These results demonstrate significant environmental control on biological morphogenetic processes independent of influences from siliciclastic sedimentation.
Morphology captures diet and locomotor types in rodents.
Verde Arregoitia, Luis D; Fisher, Diana O; Schweizer, Manuel
2017-01-01
To understand the functional meaning of morphological features, we need to relate what we know about morphology and ecology in a meaningful, quantitative framework. Closely related species usually share more phenotypic features than distant ones, but close relatives do not necessarily have the same ecologies. Rodents are the most diverse group of living mammals, with impressive ecomorphological diversification. We used museum collections and ecological literature to gather data on morphology, diet and locomotion for 208 species of rodents from different bioregions to investigate how morphological similarity and phylogenetic relatedness are associated with ecology. After considering differences in body size and shared evolutionary history, we find that unrelated species with similar ecologies can be characterized by a well-defined suite of morphological features. Our results validate the hypothesized ecological relevance of the chosen traits. These cranial, dental and external (e.g. ears) characters predicted diet and locomotion and showed consistent differences among species with different feeding and substrate use strategies. We conclude that when ecological characters do not show strong phylogenetic patterns, we cannot simply assume that close relatives are ecologically similar. Museum specimens are valuable records of species' phenotypes and with the characters proposed here, morphology can reflect functional similarity, an important component of community ecology and macroevolution.
Frankowiak, Katarzyna; Kret, Sławomir; Mazur, Maciej; Meibom, Anders; Kitahara, Marcelo V; Stolarski, Jarosław
2016-01-01
Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators-none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil coral of this age. The regularity of its growth banding strongly suggests that the coral was symbiotic with zooxanthellates.
Frankowiak, Katarzyna; Kret, Sławomir; Mazur, Maciej; Meibom, Anders; Kitahara, Marcelo V.; Stolarski, Jarosław
2016-01-01
Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators—none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil coral of this age. The regularity of its growth banding strongly suggests that the coral was symbiotic with zooxanthellates. PMID:26751803
Nano-textured high sensitivity ion sensitive field effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajmirzaheydarali, M.; Sadeghipari, M.; Akbari, M.
2016-02-07
Nano-textured gate engineered ion sensitive field effect transistors (ISFETs), suitable for high sensitivity pH sensors, have been realized. Utilizing a mask-less deep reactive ion etching results in ultra-fine poly-Si features on the gate of ISFET devices where spacing of the order of 10 nm and less is achieved. Incorporation of these nano-sized features on the gate is responsible for high sensitivities up to 400 mV/pH in contrast to conventional planar structures. The fabrication process for this transistor is inexpensive, and it is fully compatible with standard complementary metal oxide semiconductor fabrication procedure. A theoretical modeling has also been presented to predict themore » extension of the diffuse layer into the electrolyte solution for highly featured structures and to correlate this extension with the high sensitivity of the device. The observed ultra-fine features by means of scanning electron microscopy and transmission electron microscopy tools corroborate the theoretical prediction.« less
Linguistic pattern analysis of misspellings of typically developing writers in grades 1-9.
Bahr, Ruth Huntley; Sillian, Elaine R; Berninger, Virginia W; Dow, Michael
2012-12-01
A mixed-methods approach, evaluating triple word-form theory, was used to describe linguistic patterns of misspellings. Spelling errors were taken from narrative and expository writing samples provided by 888 typically developing students in Grades 1-9. Errors were coded by category (phonological, orthographic, and morphological) and specific linguistic feature affected. Grade-level effects were analyzed with trend analysis. Qualitative analyses determined frequent error types and how use of specific linguistic features varied across grades. Phonological, orthographic, and morphological errors were noted across all grades, but orthographic errors predominated. Linear trends revealed developmental shifts in error proportions for the orthographic and morphological categories between Grades 4 and 5. Similar error types were noted across age groups, but the nature of linguistic feature error changed with age. Triple word-form theory was supported. By Grade 1, orthographic errors predominated, and phonological and morphological error patterns were evident. Morphological errors increased in relative frequency in older students, probably due to a combination of word-formation issues and vocabulary growth. These patterns suggest that normal spelling development reflects nonlinear growth and that it takes a long time to develop a robust orthographic lexicon that coordinates phonology, orthography, and morphology and supports word-specific, conventional spelling.
[About the signs of malignant pheochromocytoma].
Simonenko, V B; Makanin, M A; Dulin, P A; Vasilchenko, M I; Lesovik, V S
2012-01-01
Morphological criteria for malignant pheochromocytoma remain to be developed According to the WHO recommendations, the sole absolute criteria is the presence of metastases in the organs normally containing no chromaffin tissue. Such signs as cellular and nuclear polymorphism, mytotic activity, vascular invasion, capsular ingrowth are not sufficient to describe a pheochromocytoma as malignant. It is equally dfficult to differentiate between malignant and benign tumours based on histological data since histologically mature neoplasms can produce metastases. Based on the results of original studies, the authors believe that such histological features as vascular and capsular invasion do not necessarily suggest unfavourable prognosis. Therefore, the conclusion of malignancy based on such features can not be regarded as absolute. Probably such neoplasms should be called "pheochromocytomas with morphological signs of malignant growths". They should be referred to the tumours with uncertain malignancy potential based on the known discrepancy between morphological structure and biological activity of neoplasms. Comparative studies of clinical and morphological features of pheochromocytomas showed that their histological type (alveolar; solid, dyscomplexed, trabecular) and morphological signs of malignant growth influence both the clinical picture and arterial hypertension. There are no significant relationship between the above morphological signs, timour mass and clinical manifestations of pheochromocytomas.
NASA Astrophysics Data System (ADS)
Lawi, Armin; Adhitya, Yudhi
2018-03-01
The objective of this research is to determine the quality of cocoa beans through morphology of their digital images. Samples of cocoa beans were scattered on a bright white paper under a controlled lighting condition. A compact digital camera was used to capture the images. The images were then processed to extract their morphological parameters. Classification process begins with an analysis of cocoa beans image based on morphological feature extraction. Parameters for extraction of morphological or physical feature parameters, i.e., Area, Perimeter, Major Axis Length, Minor Axis Length, Aspect Ratio, Circularity, Roundness, Ferret Diameter. The cocoa beans are classified into 4 groups, i.e.: Normal Beans, Broken Beans, Fractured Beans, and Skin Damaged Beans. The model of classification used in this paper is the Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM), a proposed improvement model of SVM using ensemble method in which the separate hyperplanes are obtained by least square approach and the multiclass procedure uses One-Against- All method. The result of our proposed model showed that the classification with morphological feature input parameters were accurately as 99.705% for the four classes, respectively.
Cytologic features of the normal pineal gland on squash preparations.
Murro, Diana; Alsadi, Alaa; Nag, Sukriti; Arvanitis, Leonidas; Gattuso, Paolo
2014-11-01
As primary pineal lesions are extremely rare, many surgical pathologists are unfamiliar with normal pineal cytologic features. We describe cytologic features of the normal pineal gland in patients of varying ages and identify common diagnostic pitfalls. We performed a retrospective review of pineal gland biopsies performed at our institution, where approximately 30,000 surgical specimens are accessioned yearly, for the last 23 years. Only two pineal gland biopsies were found. Although both cases were initially diagnosed as low-grade gliomas on frozen section, the final diagnosis was benign pineal tissue based on light microscopy and immunohistochemistry results. Additionally, we performed squash preparations of five normal pineal gland autopsy specimens with Papanicolaou and Diff-Quik® (Dade Behring, Newark, DE) stains. Infant preparations were highly cellular smears composed of numerous, uniform, single cells with indistinct cytoplasm, small round-to-oval nuclei, fine chromatin, and absent nucleoli and calcifications. The vague microfollicular pattern mimicked a pineocytoma and the fine fibrillary background mimicked a glial neoplasm. Young adult smears were similar; however, microcalcifications were present with fewer background single cells. Older patients had much less cellular smears composed of small clusters of cells with fusiform-to-spindle nuclei, a fine chromatin pattern, and indistinct cytoplasmic borders. There were fewer background single cells and more microcalcifications. The cytologic features of the native pineal gland vary with age. Normal pineal tissue can be confused with a pineocytoma or low-grade glioma. Familiarity with normal pineal gland cytological features will help to avoid a potential misdiagnosis. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fried, D; Zhang, L; Fave, X
Purpose: Determine the impact of morphologic characteristics (e.g. necrosis, vascular enhancement, and cavitation) on radiomic features from contrast enhanced CT (CE-CT) in primary lung tumors. Methods: We developed an auto-segmentation algorithm to separate lung tumors on contrast-enhanced CT into cavitation (air), necrosis, tissue, and enhancing vessels using a combination of thresholding and region-growing. An auto-segmentation algorithm was also designed to identify necrosis on FDG-PET scans. Wilcoxon rank-sum tests were used to determine if significant differences existed in radiomics features (histogram-uniformity and Laplacian-of-Gaussian average) from 249 patients, found to prognostic in previous work, based on the presence/absence of morphologic features. Featuremore » values were also compared between the original tumor contours and contours excluding a specific morphologic feature. Comparison of necrosis segmentation on CE-CT versus FDG-PET was performed in 78 patients to assess for agreement using the concordance correlation coefficient (CCC). Results: Tumors with cavitation and enhancing vasculature had lower uniformity values (p = 0.001 and p = 0.03, respectively). Tumors with enhancing vasculature and necrosis had higher Laplacian-of-Gaussian average values (measure of “edges” within the tumor) (p < 0.001). Removing these tissue types from regions-of-interest did not drastically alter either radiomic feature value (all scenarios had R{sup 2} > 0.8). This suggests there may be interactions between morphologic characteristics and the radiomic feature value of tumor tissue. Comparison of necrosis volume and percent necrosis volume of tumor were found to have CCC values of 0.85 and 0.76, respectively between CE-CT and FDG-PET segmentation methods. Conclusions: Tumors with enhancing vasculature, necrosis, and cavitation have higher radiomic feature values that are associated with poor prognosis than tumors without these features. Removing these tissue types from quantitative assessment did not drastically impact radiomic feature values. High reproducibility of CE-CT segmented necrosis compared to FDG-PET segmented necrosis provides a reasonable validation of segmentation accuracy on CE-CT.« less
Hepatocyte Paraffin 1 Antigen as a Biomarker for Early Diagnosis of Barrett Esophagus
Jeung, Jennifer A.; Coran, Justin J.; Liu, Chen; Cardona, Diana M.
2013-01-01
We evaluated hepatocyte paraffin 1 (HepPar1) antigen expression, a sensitive marker of small intestinal differentiation, in combination with morphologic features to demonstrate intestinal differentiation in cases equivocal for Barrett esophagus (BE). Clinicopathologic features and HepPar1 expression were recorded for 54 BE cases, 45 consistent with reflux esophagitis (RE) cases, and 65 “suspicious” for BE (SBE) cases. The SBE category included RE cases with 2 or more morphologic changes associated with BE or metaplastic reaction to injury (eg, multilayered epithelium, squamous islands, goblet cell mimickers, pancreatic metaplasia). HepPar1 was expressed in all 54 BE cases, 4 of 45 RE cases, and 24 of 65 SBE cases. In SBE cases, 2 or more morphologic changes were associated with HepPar1 expression in 37% of cases (24/65), 3 or more features in 59% (13/22), and 4 or more features in 100% (4/4) (P ≤ .004). The combination of certain morphologic changes and HepPar1 expression in clinically suspicious distal esophageal biopsy cases without goblet cells supports the presence of evolving intestinal metaplasia. PMID:22180484
Stefanik, Joshua J; Zumwalt, Ann C; Segal, Neil A; Lynch, John A; Powers, Christopher M
2013-08-01
Patellofemoral joint (PFJ) malalignment (lateral patella displacement and tilt) has been proposed as a cause of patellofemoral pain. Patella height and/or the morphologic features of the femoral trochlea may predispose one to patella malalignment. The purposes of our study were to assess the associations among patella height, morphologic features of the trochlea, and measures of PFJ alignment and to determine which measures of patella height and morphologic features of the trochlea were the best predictors of PFJ alignment. Measures of patella height (Insall-Salvati ratio and modified Insall-Salvati ratio), morphologic features of the trochlea (sulcus angle, trochlear angle, lateral trochlear inclination, medial trochlear inclination), and PFJ alignment (bisect offset and patella tilt angle) were assessed in 566 knees from the Multicenter Osteoarthritis Study. Bisect offset was correlated with the Insall-Salvati ratio (r = 0.25) and lateral trochlear inclination (r = -0.38). Patella tilt angle correlated with the trochlear angle (-0.27) and lateral trochlear inclination (-0.32). Linear regression models including the Insall-Salvati ratio and lateral trochlear inclination explained 20% and 11% of the variance in bisect offset and patella tilt angle, respectively. Of the variables measured in the current study, the Insall-Salvati ratio and lateral trochlear inclination were the best predictors of lateral patella displacement and lateral tilt. This knowledge will aid clinicians in the identification of anatomic risk factors for PFJ malalignment and/or PFJ dysfunction.
Palanisamy, Vinupritha; Mariamichael, Anburajan
2016-10-01
Background and Aim: Diabetes mellitus is a metabolic disorder characterized by varying hyperglycemias either due to insufficient secretion of insulin by the pancreas or improper utilization of glucose. The study was aimed to investigate the association of morphological features of erythrocytes among normal and diabetic subjects and its gender-based changes and thereby to develop a computer aided tool to diagnose diabetes using features extracted from RBC. Materials and Methods: The study involved 138 normal and 144 diabetic subjects. The blood was drawn from the subjects and the blood smear prepared was digitized using Zeiss fluorescent microscope. The digitized images were pre-processed and texture segmentation was performed to extract the various morphological features. The Pearson correlation test was performed and subsequently, classification of subjects as normal and diabetes was carried out by a neural network classifier based on the features that demonstrated significance at the level of P <0.05. Result: The proposed system demonstrated an overall accuracy, sensitivity, specificity, positive predictive value and negative predictive value of 93.3, 93.71, 92.8, 93.1 and 93.5% respectively. Conclusion: The morphological features exhibited a statistically significant difference (P<0.01) between the normal and diabetic cells, suggesting that it could be helpful in the diagnosis of Diabetes mellitus using a computer aided system. © Georg Thieme Verlag KG Stuttgart · New York.
Thermal and visible studies of Mars using the Termoskan data set
NASA Astrophysics Data System (ADS)
Betts, Bruce Harold
1994-01-01
In 1989, the Soviet Phobos '88 Termoskan instrument acquired the highest spatial resolution thermal data ever for Mars, (300 m to 3 km per pixel), and simultaneous broad band visible data. The panoramas cover a large portion of the equatorial region from 30 deg S to 6 deg N. This thesis presents new and unique analyses facilitated by Termoskan and describes the instrument, data, and validation. Ejecta blankets distinct in the thermal infrared (EDITHs), a newly recognized type of feature, show a strong dependence upon Hesperian aged terrains. I postulate that most of the observed EDITHs are due to excavation of thermally distinctive Noachian age material from beneath a relatively thin layer of younger, more consolidated Hesperian volcanic material. EDITHs are excellent targets for future landers and orbiters because of relatively dust free surface exposures of material excavated from depth. Most observed channels have higher inertias than their surroundings. Channel inertia lower bounds range from 8.4 to 12.5 (10-3 cal/sq cm s-1/2/K. Channel floor inertia enhancements are strongly associated with channels showing fretted morphologies such as wide, flat floors. Fretting may have emplaced more blocks on channel floors or caused increased bonding of fines due to increased availability of water. The coupling to morphology of EDITH and channel inertias is unlike most Martian inertia variations. Termoskan observed fine thermal structure at the limit of its spatial resolution, implying there cannot be global scale dust blanketing deeper than about one centimeter. Morning limb brightening in the thermal channel is likely due to a water ice or dust hare that is warmer than the surface at the time of the observations. In the visible channel, scattering is significant to 70 km and localized high altitude stratospheric clouds are observed. Termoskan obtained the first ever thermal images of Phobos' shadow on the surface of Mars. I used the observed cooling to calculate thermal inertias in the upper mm of the Martian surface. Most of the derived inertias on the flanks of Arsia Mons fall within the range 0.9 to 1.4, corresponding to 5 to 10 micron dust particles for a homogeneous surface.
NASA Astrophysics Data System (ADS)
Jaferzadeh, Keyvan; Moon, Inkyu
2016-12-01
The classification of erythrocytes plays an important role in the field of hematological diagnosis, specifically blood disorders. Since the biconcave shape of red blood cell (RBC) is altered during the different stages of hematological disorders, we believe that the three-dimensional (3-D) morphological features of erythrocyte provide better classification results than conventional two-dimensional (2-D) features. Therefore, we introduce a set of 3-D features related to the morphological and chemical properties of RBC profile and try to evaluate the discrimination power of these features against 2-D features with a neural network classifier. The 3-D features include erythrocyte surface area, volume, average cell thickness, sphericity index, sphericity coefficient and functionality factor, MCH and MCHSD, and two newly introduced features extracted from the ring section of RBC at the single-cell level. In contrast, the 2-D features are RBC projected surface area, perimeter, radius, elongation, and projected surface area to perimeter ratio. All features are obtained from images visualized by off-axis digital holographic microscopy with a numerical reconstruction algorithm, and four categories of biconcave (doughnut shape), flat-disc, stomatocyte, and echinospherocyte RBCs are interested. Our experimental results demonstrate that the 3-D features can be more useful in RBC classification than the 2-D features. Finally, we choose the best feature set of the 2-D and 3-D features by sequential forward feature selection technique, which yields better discrimination results. We believe that the final feature set evaluated with a neural network classification strategy can improve the RBC classification accuracy.
Automated Feature Extraction of Foredune Morphology from Terrestrial Lidar Data
NASA Astrophysics Data System (ADS)
Spore, N.; Brodie, K. L.; Swann, C.
2014-12-01
Foredune morphology is often described in storm impact prediction models using the elevation of the dune crest and dune toe and compared with maximum runup elevations to categorize the storm impact and predicted responses. However, these parameters do not account for other foredune features that may make them more or less erodible, such as alongshore variations in morphology, vegetation coverage, or compaction. The goal of this work is to identify other descriptive features that can be extracted from terrestrial lidar data that may affect the rate of dune erosion under wave attack. Daily, mobile-terrestrial lidar surveys were conducted during a 6-day nor'easter (Hs = 4 m in 6 m water depth) along 20km of coastline near Duck, North Carolina which encompassed a variety of foredune forms in close proximity to each other. This abstract will focus on the tools developed for the automated extraction of the morphological features from terrestrial lidar data, while the response of the dune will be presented by Brodie and Spore as an accompanying abstract. Raw point cloud data can be dense and is often under-utilized due to time and personnel constraints required for analysis, since many algorithms are not fully automated. In our approach, the point cloud is first projected into a local coordinate system aligned with the coastline, and then bare earth points are interpolated onto a rectilinear 0.5 m grid creating a high resolution digital elevation model. The surface is analyzed by identifying features along each cross-shore transect. Surface curvature is used to identify the position of the dune toe, and then beach and berm morphology is extracted shoreward of the dune toe, and foredune morphology is extracted landward of the dune toe. Changes in, and magnitudes of, cross-shore slope, curvature, and surface roughness are used to describe the foredune face and each cross-shore transect is then classified using its pre-storm morphology for storm-response analysis.
Wang, Gang; Wang, Yalin
2017-02-15
In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
How the environment shapes animal signals: a test of the acoustic adaptation hypothesis in frogs.
Goutte, S; Dubois, A; Howard, S D; Márquez, R; Rowley, J J L; Dehling, J M; Grandcolas, P; Xiong, R C; Legendre, F
2018-01-01
Long-distance acoustic signals are widely used in animal communication systems and, in many cases, are essential for reproduction. The acoustic adaptation hypothesis (AAH) implies that acoustic signals should be selected for further transmission and better content integrity under the acoustic constraints of the habitat in which they are produced. In this study, we test predictions derived from the AAH in frogs. Specifically, we focus on the difference between torrent frogs and frogs calling in less noisy habitats. Torrents produce sounds that can mask frog vocalizations and constitute a major acoustic constraint on call evolution. We combine data collected in the field, material from scientific collections and the literature for a total of 79 primarily Asian species, of the families Ranidae, Rhacophoridae, Dicroglossidae and Microhylidae. Using phylogenetic comparative methods and including morphological and environmental potential confounding factors, we investigate putatively adaptive call features in torrent frogs. We use broad habitat categories as well as fine-scale habitat measurements and test their correlation with six call characteristics. We find mixed support for the AAH. Spectral features of torrent frog calls are different from those of frogs calling in other habitats and are related to ambient noise levels, as predicted by the AAH. However, temporal call features do not seem to be shaped by the frogs' calling habitats. Our results underline both the complexity of call evolution and the need to consider multiple factors when investigating this issue. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Flow and fouling in membrane filters: Effects of membrane morphology
NASA Astrophysics Data System (ADS)
Sanaei, Pejman; Cummings, Linda J.
2015-11-01
Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.
2016-10-19
The distinctively fluted surface and elongated hills in this image in Medusae Fossae are caused by wind erosion of a soft fine-grained rock. Called yardangs, these features are aligned with the prevailing wind direction. This wind direction would have dominated for a very long time to carve these large-scale features into the exposed rock we see today. Yardangs not only reveal the strength and direction of historic winds, but also reveal something of the host rock itself. Close inspection by HiRISE shows an absence of boulders or rubble, especially along steep yardang cliffs and buttresses. The absence of rubble and the scale of the yardangs tells us that the host rock consists only of weakly cemented fine granules in tens of meters or more thick deposits. Such deposits could have come from extended settling of volcanic ash, atmospheric dust, or accumulations of wind deposited fine sands. After a time these deposits became cemented and cohesive, illustrated by the high standing relief and exposed cliffs. http://photojournal.jpl.nasa.gov/catalog/PIA21111
Generalizing roughness: experiments with flow-oriented roughness
NASA Astrophysics Data System (ADS)
Trevisani, Sebastiano
2015-04-01
Surface texture analysis applied to High Resolution Digital Terrain Models (HRDTMs) improves the capability to characterize fine-scale morphology and permits the derivation of useful morphometric indexes. An important indicator to be taken into account in surface texture analysis is surface roughness, which can have a discriminant role in the detection of different geomorphic processes and factors. The evaluation of surface roughness is generally performed considering it as an isotropic surface parameter (e.g., Cavalli, 2008; Grohmann, 2011). However, surface texture has often an anisotropic character, which means that surface roughness could change according to the considered direction. In some applications, for example involving surface flow processes, the anisotropy of roughness should be taken into account (e.g., Trevisani, 2012; Smith, 2014). Accordingly, we test the application of a flow-oriented directional measure of roughness, computed considering surface gravity-driven flow. For the calculation of flow-oriented roughness we use both classical variogram-based roughness (e.g., Herzfeld,1996; Atkinson, 2000) as well as an ad-hoc developed robust modification of variogram (i.e. MAD, Trevisani, 2014). The presented approach, based on a D8 algorithm, shows the potential impact of considering directionality in the calculation of roughness indexes. The use of flow-oriented roughness could improve the definition of effective proxies of impedance to flow. Preliminary results on the integration of directional roughness operators with morphometric-based models, are promising and can be extended to more complex approaches. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Cavalli, M. & Marchi, L. 2008, "Characterization of the surface morphology of an alpine alluvial fan using airborne LiDAR", Natural Hazards and Earth System Science, vol. 8, no. 2, pp. 323-333. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Smith, M.W. 2014, "Roughness in the Earth Sciences", Earth-Science Reviews, vol. 136, pp. 202-225. Trevisani, S., Cavalli, M. & Marchi, L. 2012, "Surface texture analysis of a high-resolution DTM: Interpreting an alpine basin", Geomorphology, vol. 161-162, pp. 26-39. Trevisani S., Rocca M., 2014. Geomorphometric analysis of fine-scale morphology for extensive areas: a new surface-texture operator. Geophysical Research Abstracts, Vol. 16, EGU2014-5612, 2014. EGU General Assembly 2014.
Deep learning and shapes similarity for joint segmentation and tracing single neurons in SEM images
NASA Astrophysics Data System (ADS)
Rao, Qiang; Xiao, Chi; Han, Hua; Chen, Xi; Shen, Lijun; Xie, Qiwei
2017-02-01
Extracting the structure of single neurons is critical for understanding how they function within the neural circuits. Recent developments in microscopy techniques, and the widely recognized need for openness and standardization provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. In order to look into the fine structure of neurons, we use the Automated Tape-collecting Ultra Microtome Scanning Electron Microscopy (ATUM-SEM) to get images sequence of serial sections of animal brain tissue that densely packed with neurons. Different from other neuron reconstruction method, we propose a method that enhances the SEM images by detecting the neuronal membranes with deep convolutional neural network (DCNN) and segments single neurons by active contour with group shape similarity. We joint the segmentation and tracing together and they interact with each other by alternate iteration that tracing aids the selection of candidate region patch for active contour segmentation while the segmentation provides the neuron geometrical features which improve the robustness of tracing. The tracing model mainly relies on the neuron geometrical features and is updated after neuron being segmented on the every next section. Our method enables the reconstruction of neurons of the drosophila mushroom body which is cut to serial sections and imaged under SEM. Our method provides an elementary step for the whole reconstruction of neuronal networks.
Intraocular Gnathostoma spinigerum. Clinicopathologic study of two cases with review of literature.
Biswas, J; Gopal, L; Sharma, T; Badrinath, S S
1994-01-01
Live intraocular nematode is a rare occurrence that is mostly reported in Southeast Asian countries. Common nematodes that are seen live in the eye are microfilaria, Gnathostoma, and Angiostrongylus. Approximately 12 cases of intraocular gnathostomiasis have been reported in the literature. Two cases of intraocular gnathostoma, removed by vitrectomy in the first case and by paracentesis in the second case, are reported. Morphologic study of the parasites in wet preparation was performed under dissecting microscope and fixed in Karnovosky's fixative. Light microscopic and scanning electron microscopic studies were also performed. The first patient had anterior uveitis, multiple iris holes, and dense vitreous haze with fibrous proliferation over the optic disc. On resolution of the vitreous haze, a live worm was seen in the vitreous cavity. The second patient had anterior uveitis with secondary glaucoma, multiple iris holes, mild vitritis, and focal subretinal haemorrhage with subretinal tracts. Four days later a live worm was seen in the anterior chamber and removed. Microscopic study of the parasites from both patients revealed typical head bulb with four circumferential rows of hooklets, and fine cuticular spines were seen on the surface of the body. Iris holes, uveitis, and subretinal haemorrhage with subretinal tract can be characteristic features of intraocular gnathostomiasis. Identification of this parasite can be made by typical features, which can be identified on light and scanning electron microscopic study.
Ortiz, Alejandra; Skinner, Matthew M; Bailey, Shara E; Hublin, Jean-Jacques
2012-10-01
Carabelli's trait is a morphological feature that frequently occurs on the mesiolingual aspect of Homo sapiens upper molars. Similar structures also referred to as Carabelli's trait have been reported in apes and fossil hominins. However, the morphological development and homology of these mesiolingual structures among hominoids are poorly understood. In this study, we employ micro-computed tomography to image the enamel-dentine junction (EDJ) and outer enamel surface (OES) of Pan (n = 48) and H. sapiens (n = 52) upper molars. We investigate the developmental origin of mesiolingual features in these taxa and establish the relative contribution of the EDJ and enamel cap to feature expression. Results demonstrate that mesiolingual features of H. sapiens molars develop at the EDJ and are similarly expressed at the OES. Morphological variation at both surfaces in this taxon can satisfactorily be assessed using standards for Carabelli's trait developed by the Arizona State University Dental Anthropology System (ASUDAS). Relative to H. sapiens, Pan has an even greater degree of correspondence in feature expression between the EDJ and OES. Morphological manifestations in Pan molars are not necessarily limited to the protocone and are best characterized by a lingual cingulum that cannot be captured by the ASUDAS. Cusp-like structures, similar to those seen in marked Carabelli's trait expressions in H. sapiens, were not found in Pan. This study provides a foundation for further analyses on the evolutionary history of mesiolingual dental traits within the hominoid lineage. It also highlights the wealth of morphological data that can be obtained at the EDJ for understanding tooth development and for characterizing tooth crown variation in worn fossil teeth. Copyright © 2012 Elsevier Ltd. All rights reserved.
Comparison of organs' shapes with geometric and Zernike 3D moments.
Broggio, D; Moignier, A; Ben Brahim, K; Gardumi, A; Grandgirard, N; Pierrat, N; Chea, M; Derreumaux, S; Desbrée, A; Boisserie, G; Aubert, B; Mazeron, J-J; Franck, D
2013-09-01
The morphological similarity of organs is studied with feature vectors based on geometric and Zernike 3D moments. It is particularly investigated if outliers and average models can be identified. For this purpose, the relative proximity to the mean feature vector is defined, principal coordinate and clustering analyses are also performed. To study the consistency and usefulness of this approach, 17 livers and 76 hearts voxel models from several sources are considered. In the liver case, models with similar morphological feature are identified. For the limited amount of studied cases, the liver of the ICRP male voxel model is identified as a better surrogate than the female one. For hearts, the clustering analysis shows that three heart shapes represent about 80% of the morphological variations. The relative proximity and clustering analysis rather consistently identify outliers and average models. For the two cases, identification of outliers and surrogate of average models is rather robust. However, deeper classification of morphological feature is subject to caution and can only be performed after cross analysis of at least two kinds of feature vectors. Finally, the Zernike moments contain all the information needed to re-construct the studied objects and thus appear as a promising tool to derive statistical organ shapes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.; ...
2017-01-07
Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less
NASA Astrophysics Data System (ADS)
Ibarra, Yadira; Corsetti, Frank A.
2016-04-01
The processes that govern the formation of stromatolites, structures that may represent macroscopic manifestation of microbial processes and a clear target for astrobiological investigation, occur at various scales (local versus regional), yet determining their relative importance remains a challenge, particularly for ancient deposits and/or if similar deposits are discovered elsewhere in the Solar System. We build upon the traditional multiscale level approach of investigation (micro-, meso-, macro-, mega-) by including a lateral comparative investigational component of fine- to large-scale features to determine the relative significance of local and/or nonlocal controls on stromatolite morphology, and in the process, help constrain the dominant influences on microbialite formation. In one example of lateral comparative investigation, lacustrine microbialites from the Miocene Barstow Formation (California) display two main mesofabrics: (1) micritic bands that drastically change in thickness and cannot directly be traced between adjacent decimeter-scale subunits and (2) sparry fibrous layers that are strikingly consistent across subunits, suggesting the formation of sparry fibrous layers was influenced by a process larger than the length scale between the subunits (likely lake chemistry). Microbialites from the uppermost Triassic Cotham Member, United Kingdom, occur as meter-scale mounds and contain a characteristic succession of laminated and dendrolitic mesofabrics. The same succession of laminated/dendrolitic couplets can be traced, not only from mound to mound, but over 100 km, indicating a regional-scale influence on very small structures (microns to centimeters) that would otherwise not be apparent without the lateral comparative approach, and demonstrating that the scale of the feature does not necessarily scale with the scope of the process. Thus, the combination of lateral comparative investigations and multiscale analyses can provide an effective approach for evaluating the dominant controls on stromatolite texture and morphology throughout the rock record and potentially on other planets via rover-scale analyses (e.g., Mars).
Sanit, Sangob; Sukontason, Kom; Kurahashi, Hiromu; Tomberlin, Jeffery K; Wannasan, Anchalee; Kraisittipanit, Rungroj; Sukontason, Kabkaew L
2017-12-01
Lucilia sinensis Aubertin (Diptera: Calliphoridae) is a blow fly species of potential forensic importance since adults are attracted to, and colonize, decomposing vertebrate remains. Blow fly larvae associated with human corpses can be useful evidence in forensic investigations; however, their use is dependent in most cases on proper species identification and availability of developmental data. For identification, morphological information on each life stage is traditionally used. We used scanning electron microscopy (SEM) to examine the ultrastructure of eggs, all instars, and puparia, of L. sinensis. The important characteristics used to differentiate L. sinensis from other species are provided. Distinctive features of the eggs are the slight widening median area extending almost the entire length. The last abdominal segment of the first instar bears elongated outer ventral tubercles along the rim of the last abdominal segment. These tubercles, as well as the well developed median and outer dorsal tubercles, are more prominent in the second and third instars. The surface integument of the tubercles is equipped with circular rows of microtrichia. Pairs of inner dorsal tubercle are absent. Each anterior spiracle is comprised of 9-12 papillae arrange in a single row in the second and third instars. As for the third instar, the dorsal spines between the first and second thoracic segments are delicate, narrow, small, and close together (as row or set). The peristigmatic tufts adjacent to the posterior spiracle of the third instar are moderately branches of short, fine hairs, but minute in puparia. In conclusion, the prominent outer ventral tubercle in all instars and puparia is a new diagnostic feature of L. sinensis and helpful in differentiating it from other Lucilia species that are forensically important. The description of immature L. sinensis in this study will be useful for forensic entomologists in countries where this species exists. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.
Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less
NASA Astrophysics Data System (ADS)
Murray, A. Brad; Thieler, E. Robert
2004-02-01
Recent observations of inner continental shelves in many regions show numerous collections of relatively coarse sediment, which extend kilometers in the cross-shore direction and are on the order of 100 m wide. These "rippled scour depressions" have been interpreted to indicate concentrated cross-shelf currents. However, recent observations strongly suggest that they are associated with sediment transport along-shore rather than cross-shore. A new hypothesis for the origin of these features involves the large wave-generated ripples that form in the coarse material. Wave motions interacting with these large roughness elements generate near-bed turbulence that is greatly enhanced relative to that in other areas. This enhances entrainment and inhibits settling of fine material in an area dominated by coarse sediment. The fine sediment is then carried by mean currents past the coarse accumulations, and deposited where the bed is finer. We hypothesize that these interactions constitute a feedback tending to produce accumulations of fine material separated by self-perpetuating patches of coarse sediments. As with many types of self-organized bedforms, small features would interact as they migrate, leading to a better-organized, larger-scale pattern. As an initial test of this hypothesis, we use a numerical model treating the transport of coarse and fine sediment fractions, treated as functions of the local bed composition—a proxy for the presence of large roughness elements in coarse areas. Large-scale sorted patterns exhibiting the main characteristics of the natural features result robustly in the model, indicating that this new hypothesis offers a plausible explanation for the phenomena.
Simultaneous Purification and Perforation of Low-Grade Si Sources for Lithium-Ion Battery Anode.
Jin, Yan; Zhang, Su; Zhu, Bin; Tan, Yingling; Hu, Xiaozhen; Zong, Linqi; Zhu, Jia
2015-11-11
Silicon is regarded as one of the most promising candidates for lithium-ion battery anodes because of its abundance and high theoretical capacity. Various silicon nanostructures have been heavily investigated to improve electrochemical performance by addressing issues related to structure fracture and unstable solid-electrolyte interphase (SEI). However, to further enable widespread applications, scalable and cost-effective processes need to be developed to produce these nanostructures at large quantity with finely controlled structures and morphologies. In this study, we develop a scalable and low cost process to produce porous silicon directly from low grade silicon through ball-milling and modified metal-assisted chemical etching. The morphology of porous silicon can be drastically changed from porous-network to nanowire-array by adjusting the component in reaction solutions. Meanwhile, this perforation process can also effectively remove the impurities and, therefore, increase Si purity (up to 99.4%) significantly from low-grade and low-cost ferrosilicon (purity of 83.4%) sources. The electrochemical examinations indicate that these porous silicon structures with carbon treatment can deliver a stable capacity of 1287 mAh g(-1) over 100 cycles at a current density of 2 A g(-1). This type of purified porous silicon with finely controlled morphology, produced by a scalable and cost-effective fabrication process, can also serve as promising candidates for many other energy applications, such as thermoelectrics and solar energy conversion devices.
Morphological Features in Children with Autism Spectrum Disorders: A Matched Case-Control Study
ERIC Educational Resources Information Center
Ozgen, Heval; Hellemann, Gerhard S.; Stellato, Rebecca K.; Lahuis, Bertine; van Daalen, Emma; Staal, Wouter G.; Rozendal, Marije; Hennekam, Raoul C.; Beemer, Frits A.; van Engeland, Herman
2011-01-01
This study was designed to examine morphological features in a large group of children with autism spectrum disorder versus normal controls. Amongst 421 patients and 1,007 controls, 224 matched pairs were created. Prevalence rates and odds ratios were analyzed by conditional regression analysis, McNemar test or paired t-test matched pairs.…
NASA Astrophysics Data System (ADS)
Bello Yamusa, Yamusa; Yunus, Nor Zurairahetty Mohd; Ahmad, Kamarudin; Rahman, Norhan Abd; Sa'ari, Radzuan
2018-03-01
Laterite soil was investigated to find out the effects of fines content and to identify the micro-structural and molecular characteristics to evaluate its potentiality as a compacted soil landfill liner material. Tests were carried out on natural soil and reconstituted soil by dry weight of soil samples to determine the physical and engineering properties of the soil. All tests were carried out on the samples by adopting the British Standard 1377:1990. The possible mechanisms that contributed to the clay mineralogy were analyzed using spectroscopic and microscopic techniques such as field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) and X-ray diffractometry (XRD). The laterite soil was found to contain kaolinite as the major clay minerals. A minimum of 50% fines content of laterite soil met the required result for hydraulic barriers in waste containment facilities.
Rossi, E D; Martini, M; Straccia, P; Bizzarro, T; Fadda, G; Larocca, L M
2016-02-01
Our aim was to evaluate the feasibility and diagnostic accuracy of liquid-based cytology (LBC) on lymph node fine needle aspiration (FNA). FNA may fulfil a challenging role in the evaluation of the majority of primary (benign and malignant) diagnoses as well as metastatic lymph node lesions. Although the morphological features may be quite easily recognized, cytological samples with a scant cellular component may raise some issues. We appraised 263 cytological lymph nodes from different body regions analysed between January and December 2013, including 137 male and 126 female patients, and processed with LBC. The cytological diagnoses included 160 benign and 103 malignant lesions. We reported 35 benign and 73 malignant lesions from 108 with surgical follow-up. The latter malignant series included 68 metastatic lesions, four suspicious for malignancy and one inadequate sample. The cytological diagnoses were supported by 62 conclusive immunocytochemical and 28 molecular analyses. Of the 108 cases, we documented 35 true negatives, 72 true positives, one false negative and no false positives, resulting in 98.6% sensitivity, 100% specificity, 99% diagnostic accuracy, 97.2% negative predictive value and 100% positive predictive value. FNA represents the first diagnostic tool in lymph node management and a reliable approach in order to avoid an excision biopsy. Furthermore, LBC is a feasible method for ancillary tests for which methanol-fixed samples are suitable, such as immunocytochemistry and molecular analysis. © 2014 John Wiley & Sons Ltd.
2004-06-22
Released 22 June 2004 This pair of images shows part of Arsia Mons. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -19.6, Longitude 241.9 East (118.1 West). 100 meter/pixel resolution. http://photojournal.jpl.nasa.gov/catalog/PIA06399
Crater Ejecta by Day and Night
2004-06-24
Released 24 June 2004 This pair of images shows a crater and its ejecta. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -9, Longitude 164.2 East (195.8 West). 100 meter/pixel resolution. http://photojournal.jpl.nasa.gov/catalog/PIA06445
Spectral Study of Water Tracks as an Analog for Recurring Slope Lineae
NASA Technical Reports Server (NTRS)
Ojha, L.; Wilhelm, M. B.; Wray, J. J.
2013-01-01
Liquid water is a key requirement for life on Earth, and serves as an important constraint on present day habitability on Mars. Recurring Slope Lineae (RSL) are a unique phenomenon on Mars that may be formed by brine seeps. Their morphological, seasonal and temporal characteristics support this hypothesis; however, spectral evidence has been lacking. Ojha et al., 2013 recently analyzed CRISM images from all confirmed RSL in the southern mid-latitudes and equatorial regions and found no spectro-scopic evidence for water. Instead, enhanced abun-dances or distinct grain sizes of both ferric and ferrous minerals are observed at most sites. The strength of these spectral signatures changes as a function of sea-son, possibly indicating removal of a fine-grained sur-face component during RSL flow, precipitation of fer-ric oxides, and/or wetting of the substrate. Water tracks (WT) have been suggested as a terrestrial analog for RSL by Levy et al., 2011. WT are defined as dark surface features that extend downslope in a linear or branching fashion, usually oriented along the steepest local gradient, in the Dry Valleys of Antarctica. They can be 1-3 m in width and can have lengths up to 2 km. They share many morphological and seasonal characteristics with RSL including active growth during summer seasons and fading during winter. Snowmelt, ground ice melt and deliquescence by hygroscopic salts have been suggested as possible formation mechanisms for water tracks. No spectral work to date has been reported for water tracks.
Subsurface flow in lowland river gravel bars
NASA Astrophysics Data System (ADS)
Bray, E. N.; Dunne, T.
2017-09-01
Geomorphic and hydraulic processes, which form gravel bars in large lowland rivers, have distinctive characteristics that control the magnitude and spatial patterns of infiltration and exfiltration between rivers and their immediate subsurface environments. We present a bedform-infiltration relation together with a set of field measurements along two reaches of the San Joaquin River, CA to illustrate the conditions required for infiltration and exfiltration of flow between a stream and its undulating bed, and a numerical model to investigate the factors that affect paths and residence times of flow through barforms at different discharges. It is shown that asymmetry of bar morphology is a first-order control on the extent and location of infiltration, which would otherwise produce equal areas of infiltration and exfiltration under the assumption of sinusoidal bedforms. Hydraulic conductivity varies by orders of magnitude due to fine sediment accumulation and downstream coarsening related to the process of bar evolution. This systematic variability not only controls the magnitude of infiltration, but also the residence time of flow through the bed. The lowest hydraulic conductivity along the reach occurred where the difference between the topographic gradient and the water-surface gradient is at a maximum and thus where infiltration would be greatest into a homogeneous bar, indicating the importance of managing sand supply to maintain the ventilation and flow through salmon spawning riffles. Numerical simulations corroborate our interpretation that infiltration patterns and rates are controlled by distinctive features of bar morphology.
Mariño-Enríquez, Adrián; Hornick, Jason L; Dal Cin, Paola; Cibas, Edmund S; Qian, Xiaohua
2014-02-01
Dedifferentiated liposarcoma (DDLPS) and pleomorphic liposarcoma (PLPS) are distinct high-grade liposarcomas. DDLPS is a nonlipogenic sarcoma characterized by amplification of MDM2 and CDK4. PLPS is a high-grade sarcoma containing lipoblasts, characterized by a complex karyotype and a more aggressive clinical course. Rarely, DDLPS shows lipogenic differentiation, mimicking PLPS. The cytomorphologic features of DDLPS and PLPS and the utility of ancillary studies have not been systemically analyzed. Cytologic preparations of 25 DDLPS and 13 PLPS, all histologically confirmed, were retrospectively reviewed along with clinical and cytogenetic data. Sample cellularity, vascular architecture, background material, predominant cell morphology, quality of the cytoplasm, and nuclear pleomorphism were compared for both tumor types. Immunohistochemistry for MDM2 and CDK4 was performed on cell blocks and/or core needle biopsies. Fine-needle aspirate smears from both DDLPS and PLPS were variably cellular, composed of cellular clusters and noncohesive cells. Abundant myxoid stroma was present in ∼25% of DDLPS and PLPS cases, whereas branching curvilinear vessels were more common in DDLPS than in PLPS (7 of 25 versus 2 of 13). Tumors were composed of predominantly spindled (18 of 25 DDLPS versus 3 of 13 PLPS) or epithelioid cells (7 of 25 DDLPS versus 6 of 13 PLPS). Pleomorphic cells were predominant in 3 PLPS, and were frequent in both (13 of 25 DDLPS versus 10 of 13 PLPS). The cytoplasm was mostly fibrillary and often vacuolated in both entities. Other features included necrosis, mitoses, and a prominent inflammatory infiltrate. The main cytologic differences were the presence of marked pleomorphism, abundant lipoblasts, and cells with microvacuolated cytoplasm in most PLPS. A total of 24 (96%) and 20 (80%) cases of DDLPS expressed MDM2 and CDK4, respectively, whereas none of the PLPS expressed both markers. Six DDLPS tested showed ring or giant marker chromosomes and/or MDM2 amplification by fluorescence in situ hybridization; 2 PLPS had complex karyotypes. DDLPS and PLPS exhibit variable and occasionally overlapping cytologic features. The presence of lipoblasts, cells with microvacuolated cytoplasm, and marked pleomorphism are more suggestive of PLPS, but these characteristics can be present in DDLPS. Coexpression of MDM2 and CDK4 distinguishes DDLPS from PLPS. © 2013 American Cancer Society.
Spann, Marisa N; Bansal, Ravi; Rosen, Tove S; Peterson, Bradley S
2014-09-01
Knowledge of the role of brain maturation in the development of cognitive abilities derives primarily from studies of school-age children to adults. Little is known about the morphological features of the neonatal brain that support the subsequent development of abilities in early childhood, when maturation of the brain and these abilities are the most dynamic. The goal of our study was to determine whether brain morphology during the neonatal period supports early cognitive development through 2 years of age. We correlated morphological features of the cerebral surface assessed using deformation-based measures (surface distances) of high-resolution MRI scans for 33 healthy neonates, scanned between the first to sixth week of postmenstrual life, with subsequent measures of their motor, language, and cognitive abilities at ages 6, 12, 18, and 24 months. We found that morphological features of the cerebral surface of the frontal, mesial prefrontal, temporal, and occipital regions correlated with subsequent motor scores, posterior parietal regions correlated with subsequent language scores, and temporal and occipital regions correlated with subsequent cognitive scores. Measures of the anterior and middle portions of the cingulate gyrus correlated with scores across all three domains of ability. Most of the significant findings were inverse correlations located bilaterally in the brain. The inverse correlations may suggest either that a more protracted morphological maturation or smaller local volumes of neonatal brain tissue supports better performance on measures of subsequent motor, language, and cognitive abilities throughout the first 2 years of postnatal life. The correlations of morphological measures of the cingulate with measures of performance across all domains of ability suggest that the cingulate supports a broad range of skills in infancy and early childhood, similar to its functions in older children and adults. Copyright © 2014 Wiley Periodicals, Inc.
Flexural properties untreated and treated kenaf fiber reinforced polypropylene composites
NASA Astrophysics Data System (ADS)
Husin, Muhammad Muslimin; Mustapa, Mohammad Sukri; Wahab, Md Saidin; Arifin, Ahmad Mubarak Tajul; Masirin, Mohd Idrus Mohd; Jais, Farhana Hazwanee
2017-05-01
Today natural fiber polymer composites are being extensively used as alternatives in producing furniture to fulfill society demand instead of saving cost and environmentally friendly. The objective of this search is to investigate the untreated fine and rough kenaf fiber (KF) as well as treated KF reinforced with polypropylene (PP) on the flexural strength. Flexural strengths of pure PP, 10%, and 20% of untreated fine and rough KF by weight to PP have been recorded. In addition, flexural strengths of treated KF soaked with 5% and 10% of Sodium Hydroxide (NaOH) have also been recorded. KF reinforced PP (PP/KF) untreated and treated composites were melt blended and then injection molded to observe their flexural strengths by measuring their threshold. Three point bending test was apply to determine the flexural stress of the composites. The result show treated fine KF produce better flexural performance at 20% PP/KF. Scanning Electron Microscopy (SEM) is used to observe the morphological surface PP/KF. Overall 5% NaOH with 20% PP/KF (Fine KF) show good interfacial bonding PP/KF and best result with flexural stress value 30.25MPa.
The Face that Launched a Thousand Slips
NASA Technical Reports Server (NTRS)
Moore, J. M.; Howard, A. D.; Schenk, P.; Thomas, P. C.
2013-01-01
Helene, (approximately 17.6 kilometers mean radius) is an L4 Trojan co-orbital of Saturn's moon Dione. Its hemisphere features an unusual morphology consisting of broad depressions and a generally smooth surface patterned with streaks and grooves. The streaks appear to be oriented down-gradient, as are the grooves. This pattern suggests intensive mass-wasting as a dominant process on the leading hemisphere. Kilometer-scale impact craters are very sparse on the leading hemisphere other than the degraded kilometer-scale basins defining the overall satellite shape, and many small craters have a diffuse appearance suggesting ongoing mass wasting. Thus mass wasting must dominate surface-modifying processes at present. In fact, the mass wasting appears to have been sufficient in magnitude to narrow the divides between adjacent basins to narrow septa, similar, but in lower relief, to the honeycomb pattern of Hyperion. The prominent groves occur primarily near topographic divides and appear have cut into a broad, slightly lower albedo surface largely conforming to the present topography but elevated a few meters above the smooth surfaces undergoing mass wasting flow. Low ridges and albedo markings on the surface suggest surface flow of materials traveling up to several kilometers. Diffusive mass wasting produces smooth surfaces - such a pattern characterizes most of the low-lying surfaces. The grooves, however, imply that the transport process is advective at those locations where they occur, that is, erosion tends to concentrate along linear pathways separated by divides. In fact, in many places grooves have a fairly regular spacing of 125-160 meters, defining a characteristic erosional scale. Several questions are prompted by the unusual morphology of Helene: 1) What is the nature of the surface materials? 2) Are the transport processes gradual or catastrophic motion from one or a few events? 3) What mechanisms drive mass wasting and groove development? 4) Have the formative processes been active in the recent past? 5) Finally, is the surface accreting or eroding? The smooth character of the leading edge hemisphere of Helene and the dominance of mass wasting suggest that the surface is composed of fine-grained debris, probably dominated by dust-size to small gravel particles. The Lagrangian points of saturnian satellites are locations where planetesimals might have accreted to form co-orbital satellites such as and they may capture ejecta from their master moon. Published models suggest that Helene is a site of net accretion, but we find no extant explanation for the dominance of fine grain sizes for the surface (and probable subsurface) composition of Helene and the other Lagrangian satellites. Observation of the mass wasting tracks on Helene suggests the presence of well-defined streams of debris with low bordering levees that may be depositional features or remnants of the dissected higher surface. Some flows in grazing illumination appear to have a convex cross-section. This mass-flow morphology might be consistent with the occurrence of large-scale flow events, but which might have occurred through rapid emplacement or slow glacier-like creep. On the other hand, small craters appear to have been "softened" by creep-like processes, indicating ongoing mass wasting.
Luo, Yaping; Hu, Guilan; Ma, Yanru; Guo, Ning; Li, Fang
2017-09-01
Pancreatic acinar cell carcinoma (ACC) is a rare malignant tumor of exocrine pancreas. It is typically a well-marginated large solid mass arising in a certain aspect of the pancreas. Diffuse involvement of ACC in the pancreas is very rare, and may simulate pancreatitis in radiological findings. We report 2 cases of ACC presenting as diffuse enlargement of the pancreas due to tumor involvement without formation of a distinct mass. The patients consisted of a 41-year-old man with weight loss and a 77-year-old man who was asymptomatic. Computed tomography (CT) and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT showed diffuse enlargement of the pancreas forming a sausage-like shape with homogenously increased FDG activity. Endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA) biopsy of the pancreatic lesion was performed. Histopathology results from the pancreas confirmed the diagnosis of pancreatic ACC. Because diffuse enlargement of the pancreas is a common imaging feature of pancreatitis, recognition of this rare morphologic pattern of ACC is important for radiological diagnosis of this tumor.
Cytological and ultrastructural studies on root tissues
NASA Technical Reports Server (NTRS)
Slocum, R. D.; Gaynor, J. J.; Galston, A. W.
1984-01-01
The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.
Pingitore, V; Miriello, D; Drioli, E; Gugliuzza, A
2015-06-14
This work describes some single walled carboxylic carbon nanotubes with outstanding transport properties when assembled in a 3D microarray working like a humidity membrane-sensor and an adjustable moisture regulator. Combined nano-assembly approaches are used to build up a better quality pathway through which assisted-charge and mass transport synchronically takes place. The structure-electrical response relationship is found, while controllable and tunable donor-acceptor interactions established at material interfaces are regarded as key factors for the accomplishment of charge transportation, enhanced electrical responses and adjustable moisture exchange. Raman and infrared spectroscopy provides indications about the fine structural and chemical features of the hybrid-composite membranes, resulting in perfect agreement with related morphology and electrical properties. Enhanced and modular electrical response to changes in the surrounding atmosphere is concerned with doping events, while assisted moisture regulation is discussed in relation to swelling and hopping actions. The electro-activated hybrid-composite membrane proposed in this work can be regarded as an attractive 'sense-to-act' precursor for smart long-distance monitoring systems with capability to adapt itself and provide local comfortable microenvironments.
NASA Astrophysics Data System (ADS)
Lui, E. W.; Xu, W.; Pateras, A.; Qian, M.; Brandt, M.
2017-12-01
Recent progress has shown that Ti-6Al-4V fabricated by selective laser melting (SLM) can achieve a fully lamellar α + β microstructure using 60 µm layer thickness in the as-built state via in situ martensite decomposition by manipulating the processing parameters. The potential to broaden the processing window was explored in this study by increasing the layer thickness to the less commonly used 90 µm. Fully lamellar α + β microstructures were produced in the as-built state using inter-layer times in the range of 1-12 s. Microstructural features such as the α-lath thickness and morphology were sensitive to both build height and inter-layer time. The α-laths produced using the inter-layer time of 1 s were much coarser than those produced with the inter-layer time of 12 s. The fine fully lamellar α + β structure resulted in tensile ductility of 11% and yield strength of 980 MPa. The tensile properties can be further improved by minimizing the presence of process-induced defects.
Breast myofibroblastoma in a young woman: a case report.
D'Ambrosio, Giancarlo; De Laurentis, Francesca; Scoglio, Daniele; Balla, Andrea; Quaresima, Silvia; Mattei, Fabrizio; Lezoche, Emanuele
2013-09-03
Myofibroblastoma (MFB) is an uncommon benign mesenchymal tumor that may arise in several organs and tissue. Although most of reported cases were located in the breast, it is extremely rare, representing less than 1% of breast tumor. MFB has predominantly seen in elderly men, but some cases have been described in menopausal women. This lesion is a stromal tumor which has many morphologic variants including cellular, collagenized, epithelioid, palisaded, lipomatous, hemangiopericytoma-like, and infiltrant features. Even if its incidence has recently increased due to the mammary screening, only few cases have been reported in Literature and even less in young women. Physical examination discloses a solitary, unilateral, painless, freely movable, usual firm in consistency, non-tender nodule. Imaging investigations usually are not specific to establish the right diagnosis. Furthermore, findings from Fine-Needle Aspiration (FNA) may be confusing and nonspecific, making diagnosis of MFB possible only after surgical operation. Not evidence of malignant transformation, recurrence or distant metastasis after a follow-up period of 15 years have been reported in Literature when resection margins are free. Hereby the authors describe a rare case of breast MFB in a young woman.
Multicentric epitheliotropic T-cell lymphoma in an African hedgehog (Atelerix albiventris).
Chung, Tae-Ho; Kim, Hyo-Jin; Choi, Ul-Soo
2014-12-01
A 2-year-old female African hedgehog was presented with a 5-month history of pruritus, and diffuse spine and hair loss. A dermatologic examination revealed erythema, excoriation, scales, and crusting affecting the face, flanks, forelimbs, hindlimbs, and dorsal and ventral abdomen. Fine-needle aspiration was performed and skin biopsies were taken from several lesions for cytologic and histologic evaluation. The aspirates yielded smears characterized by a monomorphic population of medium-sized to large lymphocytes with scant to moderate amounts of clear to moderately basophilic cytoplasm and distinct nucleoli along with a low number of cytoplasmic fragments. On histopathologic examination, there were dense dermal lymphoid infiltrates invading the dermis and a monomorphic population of round cells that had infiltrated the overlying epidermis. Epitheliotropic cutaneous lymphoma was diagnosed based on morphologic features. Additional immunochemical analysis using anti-CD3 and anti-CD79a antibodies revealed strong CD3 expression by the tumor cells, which confirmed epitheliotropic cutaneous T-cell lymphoma. This is the first description of a multicentric pattern of epitheliotropic cutaneous T-cell lymphoma in an African hedgehog. © 2014 American Society for Veterinary Clinical Pathology.
Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.
Zhao, Yu; Dong, Qinglin; Chen, Hanbo; Iraji, Armin; Li, Yujie; Makkie, Milad; Kou, Zhifeng; Liu, Tianming
2017-12-01
State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks' spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with fine granularities, based on fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Murray, A. B.; Thomas, C.; Hurst, M. D.; Barkwith, A.; Ashton, A. D.; Ellis, M. A.
2014-12-01
Recent numerical modelling demonstrates that when sandy coastlines are affected predominantly by waves approaching from "high" angles (> ~45° between the coastline and wave crests at the offshore limit of shore-parallel contours), large-scale (kms to 100 kms) morphodynamic instabilities and finite-amplitude interactions can lead to the emergence of striking coastline features, including sand waves, capes and spits. The type of feature that emerges depends on the wave climate, defined as the angular distribution of wave influences on alongshore sediment transport. Under a constant wave climate, coastline morphology reaches a dynamical steady state; the cross-shore/alongshore aspect ratio and the general appearance of the features remains constant. In previous modelling involving wave-climate change, as well as comparisons between observed coastline morphologies and wave climates, it has been implicitly assumed that the morphology adjusts in a quasi-equilibrium fashion, so that at any time the coastline shape reflects the current forcing. However, here we present new model results showing pronounced path dependence in coastline morphodynamics. In experiments with a period of constant wave climate followed by a period of transition to a new wave climate and then a run-on phase, the features that exist during the run-on phase can be qualitatively and quantitatively different from those that would develop initially under the final wave climate. Although the features inherited from the past wave-climate history may in some case be true alternate stable states, in other cases the inherited features gradually decay toward the morphology that would be expected given the final wave climate. A suite of such experiments allows us to characterize how the e-folding timescale of this decay depends on 1) the initial wave climate, 2) the path through wave-climate space, and 3) the rate of transition. When the initial features are flying spits with cross-shore amplitudes of 6 - 8 km, e-folding times can be on the order of millennia or longer. These results could provide a new perspective when interpreting current and past coastline features. In addition, the complex paleo-coastline structure that develops in the coastal hinterlands in these experiments could be relevant to the structures observed in some coastal environments.
How normal is the transparent cornea? Effects of aging on corneal morphology.
Hillenaar, Toine; van Cleynenbreugel, Hugo; Remeijer, Lies
2012-02-01
To ascertain the effects of aging on corneal morphology and to illustrate the morphologic diversity of the different layers in the normal cornea as seen by in vivo confocal microscopy (IVCM). Observational cross-sectional study. A total of 150 healthy subjects, evenly distributed over 5 age categories, comprising 75 men and 75 women. Both transparent corneas (n = 300) of all subjects were examined in duplicate by white light IVCM (Confoscan 4, NIDEK Technologies, Albignasego, Padova, Italy). After reviewing the IVCM examinations for morphologic variations of the corneal layers, we selected the 8 most common features to illustrate the morphologic diversity. Subsequently, all 600 IVCM examinations were assessed for the presence of these features. We used binary logistic regression analyses to assess the age-relatedness of each feature. Age distribution of bright superficial epithelial cells, dendriform cells, alterations characteristic of epithelial basement membrane dystrophy (EBMD), tortuous stromal nerves, stromal microdots in the anterior stroma, folds in the posterior stroma, opacification of Descemet's membrane, and corneal guttae. Four features were found characteristic of the aging cornea: stromal microdots in the anterior stroma (P<0.0001), folds in the posterior stroma (P<0.0001), opacification of Descemet's membrane (P<0.0001), and corneal guttae (P<0.0001). Alterations characteristic of EBMD were found in 3% of all eyes and only detected in subjects aged ≥40 years, suggesting age-relatedness (P = 0.09). Other features, such as bright superficial epithelial cells (n = 38, 13%), dendriform cells (n = 42, 14%), and tortuous stromal nerves (n = 115, 38%), were age-independent. We also found a novel phenotype of corneal endothelium in 4 normal eyes of 2 subjects, which we coined "salt and pepper endothelium." We could not establish whether this novel phenotype represented a morphologic variant of normal endothelium, an early stage of a known corneal endothelial disorder, or a completely new disease entity. Knowledge of the common morphologic variations of the corneal layers and the effects of aging on corneal morphology as seen by IVCM increases our understanding of corneal degenerative disorders and is essential to detect corneal pathology. Our finding of a novel phenotype of corneal endothelium emphasizes the morphologic diversity of this optically transparent tissue. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Ray, R; Mondal, R K; Pathak, S
2015-08-01
The goal of the World Health Organization (WHO) is to eliminate leprosy as a public health problem. This will only be possible when all patients are detected and cured using multidrug therapy, which requires accurate diagnosis prior to treatment. The objective of this study was to evaluate the possibility of the diagnosis of leprosy lesions by fine needle aspiration cytology according to a modification of the Ridley-Jopling scale, as it can be used in primary and secondary healthcare centres, especially in low-resource settings in which leprosy is prevalent. A prospective study comprising 54 cases with cardinal features of leprosy was performed. Among the 54 cases, 27 patients consented to a histopathological biopsy procedure. The slides were stained with Giemsa, modified Ziehl-Neelsen, Papanicolaou and haematoxylin and eosin methods. Among the 54 cases, 34 were reported as tuberculoid leprosy, five as mid-borderline (BB), three as borderline lepromatous (BL) and eight as lepromatous leprosy (LL); four were unsatisfactory. Histopathological study was performed in 27 cases, which showed cyto-histological correlation in 21 cases (78%). Agreement between histological and cytological diagnosis was achieved in 12 of the 15 tuberculoid cases, one of the three BB cases, one of the two BL cases and all seven LL cases. With the implementation of the WHO classification based on patch counting, there is the possibility of the over-treatment of paucibacillary cases and under-treatment of multibacillary cases. Cytology in terms of cellular type morphology and bacteriological study can complement the WHO classification. © 2014 John Wiley & Sons Ltd.
Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate
NASA Astrophysics Data System (ADS)
Salinas, A.; Zaharescu, D. G.
2015-12-01
A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops on traditionally un-arable land.
Linguistic Pattern Analysis of Misspellings of Typically Developing Writers in Grades 1 to 9
Bahr, Ruth Huntley; Silliman, Elaine R.; Berninger, Virginia W.; Dow, Michael
2012-01-01
Purpose A mixed methods approach, evaluating triple word form theory, was used to describe linguistic patterns of misspellings. Method Spelling errors were taken from narrative and expository writing samples provided by 888 typically developing students in grades 1–9. Errors were coded by category (phonological, orthographic, and morphological) and specific linguistic feature affected. Grade level effects were analyzed with trend analysis. Qualitative analyses determined frequent error types and how use of specific linguistic features varied across grades. Results Phonological, orthographic, and morphological errors were noted across all grades, but orthographic errors predominated. Linear trends revealed developmental shifts in error proportions for the orthographic and morphological categories between grades 4–5. Similar error types were noted across age groups but the nature of linguistic feature error changed with age. Conclusions Triple word-form theory was supported. By grade 1, orthographic errors predominated and phonological and morphological error patterns were evident. Morphological errors increased in relative frequency in older students, probably due to a combination of word-formation issues and vocabulary growth. These patterns suggest that normal spelling development reflects non-linear growth and that it takes a long time to develop a robust orthographic lexicon that coordinates phonology, orthography, and morphology and supports word-specific, conventional spelling. PMID:22473834
NASA Astrophysics Data System (ADS)
Chang, Kuo-Jen; Chan, Yu-Chang; Chen, Rou-Fei; Hsieh, Yu-Chung
2018-03-01
Several remote sensing techniques, namely traditional aerial photographs, an unmanned aircraft system (UAS), and airborne lidar, were used in this study to decipher the morphological features of obscure landslides in volcanic regions and how the observed features may be used for understanding landslide occurrence and potential hazard. A morphological reconstruction method was proposed to assess landslide morphology based on the dome-shaped topography of the volcanic edifice and the nature of its morphological evolution. Two large-scale landslides in the Tatun volcano group in northern Taiwan were targeted to more accurately characterize the landslide morphology through airborne lidar and UAS-derived digital terrain models and images. With the proposed reconstruction method, the depleted volume of the two landslides was estimated to be at least 820 ± 20 × 106 m3. Normal faulting in the region likely played a role in triggering the two landslides, because there are extensive geological and historical records of an active normal fault in this region. The subsequent geomorphological evolution of the two landslides is thus inferred to account for the observed morphological and tectonic features that are indicative of resulting in large and life-threatening landslides, as characterized using the recent remote sensing techniques.
Cell–material interactions on biphasic polyurethane matrix
Dicesare, Patrick; Fox, Wade M.; Hill, Michael J.; Krishnan, G. Rajesh; Yang, Shuying; Sarkar, Debanjan
2013-01-01
Cell–matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell–matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285
Computational Modeling of Morphological Effects in Bangla Visual Word Recognition.
Dasgupta, Tirthankar; Sinha, Manjira; Basu, Anupam
2015-10-01
In this paper we aim to model the organization and processing of Bangla polymorphemic words in the mental lexicon. Our objective is to determine whether the mental lexicon accesses a polymorphemic word as a whole or decomposes the word into its constituent morphemes and then recognize them accordingly. To address this issue, we adopted two different strategies. First, we conduct a masked priming experiment over native speakers. Analysis of reaction time (RT) and error rates indicates that in general, morphologically derived words are accessed via decomposition process. Next, based on the collected RT data we have developed a computational model that can explain the processing phenomena of the access and representation of Bangla derivationally suffixed words. In order to do so, we first explored the individual roles of different linguistic features of a Bangla morphologically complex word and observed that processing of Bangla morphologically complex words depends upon several factors like, the base and surface word frequency, suffix type/token ratio, suffix family size and suffix productivity. Accordingly, we have proposed different feature models. Finally, we combine these feature models together and came up with a new model that takes the advantage of the individual feature models and successfully explain the processing phenomena of most of the Bangla morphologically derived words. Our proposed model shows an accuracy of around 80% which outperforms the other related frequency models.
NASA Astrophysics Data System (ADS)
Deng, Feiyue; Yang, Shaopu; Tang, Guiji; Hao, Rujiang; Zhang, Mingliang
2017-04-01
Wheel bearings are essential mechanical components of trains, and fault detection of the wheel bearing is of great significant to avoid economic loss and casualty effectively. However, considering the operating conditions, detection and extraction of the fault features hidden in the heavy noise of the vibration signal have become a challenging task. Therefore, a novel method called adaptive multi-scale AVG-Hat morphology filter (MF) is proposed to solve it. The morphology AVG-Hat operator not only can suppress the interference of the strong background noise greatly, but also enhance the ability of extracting fault features. The improved envelope spectrum sparsity (IESS), as a new evaluation index, is proposed to select the optimal filtering signal processed by the multi-scale AVG-Hat MF. It can present a comprehensive evaluation about the intensity of fault impulse to the background noise. The weighted coefficients of the different scale structural elements (SEs) in the multi-scale MF are adaptively determined by the particle swarm optimization (PSO) algorithm. The effectiveness of the method is validated by analyzing the real wheel bearing fault vibration signal (e.g. outer race fault, inner race fault and rolling element fault). The results show that the proposed method could improve the performance in the extraction of fault features effectively compared with the multi-scale combined morphological filter (CMF) and multi-scale morphology gradient filter (MGF) methods.
Hussain, Lal; Ahmed, Adeel; Saeed, Sharjil; Rathore, Saima; Awan, Imtiaz Ahmed; Shah, Saeed Arif; Majid, Abdul; Idris, Adnan; Awan, Anees Ahmed
2018-02-06
Prostate is a second leading causes of cancer deaths among men. Early detection of cancer can effectively reduce the rate of mortality caused by Prostate cancer. Due to high and multiresolution of MRIs from prostate cancer require a proper diagnostic systems and tools. In the past researchers developed Computer aided diagnosis (CAD) systems that help the radiologist to detect the abnormalities. In this research paper, we have employed novel Machine learning techniques such as Bayesian approach, Support vector machine (SVM) kernels: polynomial, radial base function (RBF) and Gaussian and Decision Tree for detecting prostate cancer. Moreover, different features extracting strategies are proposed to improve the detection performance. The features extracting strategies are based on texture, morphological, scale invariant feature transform (SIFT), and elliptic Fourier descriptors (EFDs) features. The performance was evaluated based on single as well as combination of features using Machine Learning Classification techniques. The Cross validation (Jack-knife k-fold) was performed and performance was evaluated in term of receiver operating curve (ROC) and specificity, sensitivity, Positive predictive value (PPV), negative predictive value (NPV), false positive rate (FPR). Based on single features extracting strategies, SVM Gaussian Kernel gives the highest accuracy of 98.34% with AUC of 0.999. While, using combination of features extracting strategies, SVM Gaussian kernel with texture + morphological, and EFDs + morphological features give the highest accuracy of 99.71% and AUC of 1.00.
Tripp, Erin A; Fatimah, Siti
2012-06-01
Anatomical and morphological features of Satanocrater were studied to test hypotheses of xeric adaptations in the genus, which is endemic to arid tropical Africa. These features, together with molecular data, were used to test the phylogenetic placement of Satanocrater within the large plant family Acanthaceae. We undertook a comparative study of four species of Satanocrater. Carbon isotope ratios were generated to test a hypothesis of C(4) photosynthesis. Molecular data from chloroplast (trnG-trnS, trnG-trnR, psbA-trnH) and nuclear (Eif3E) loci were used to test the placement of Satanocrater within Acanthaceae. Anatomical features reflecting xeric adaptations of species of Satanocrater included a thick-walled epidermis, thick cuticle, abundant trichomes and glandular scales, stomata overarched by subsidiary cells, tightly packed mesophyll cells, and well-developed palisade parenchyma on both leaf surfaces. Although two species had enlarged bundle sheath cells, a feature often implicated in C(4) photosynthesis, isotope ratios indicated all species of Satanocrater use the C(3) pathway. Molecular data resolved Satanocrater within tribe Ruellieae with strong support. Within Ruellieae, our data suggest that pollen morphology of Satanocrater may represent an intermediate stage in a transition series. Anatomical and morphological features of Satanocrater reflect adaptation to xeric environments and add new information about the biology of xerophytes. Morphological and molecular data place Satanocrater in the tribe Ruellieae with confidence. This study adds to our capacity to test hypotheses of broad evolutionary and ecological interest in a diverse and important family of flowering plants.
Preparation of 5-fluorouracil nanoparticles by supercritical antisolvents for pulmonary delivery
Kalantarian, Pardis; Najafabadi, Abdolhosein Rouholamini; Haririan, Ismaeil; Vatanara, Alireza; Yamini, Yadollah; Darabi, Majid; Gilani, Kambiz
2010-01-01
This study concerns the supercritical antisolvent process which allows single-step production of 5-fluorouracil (5-FU) nanoparticles. This process enhances the physical characteristics of 5-FU in order to deliver it directly to the respiratory tract. Several mixtures of methanol with dichloromethane, acetone, or ethanol were used for particle preparation, and their effects on the physical characteristics of the final products were studied. The conditions of the experiment included pressures of 100 and 150 bar, temperature of 40°C, and a flow rate of 1 mL/min. The particles were characterized physicochemically before and after the process for their morphology and crystallinity. In spite of differences in size, the particles were not very different regarding their morphology. The resulting particles were of a regular shape, partly spherical, and appeared to have a smooth surface, whereas the mechanically milled particles showed less uniformity, had surface irregularities and a high particle size distribution, and seemed aggregated. Particles of 5-FU precipitated from methanol-dichloromethane 50:50 had a mean particle size of 248 nm. In order to evaluate the aerodynamic behavior of the nanoparticles, six 5-FU dry powder formulations containing mixtures of coarse and fine lactose of different percentages were prepared. Deposition of 5-FU was measured using a twin-stage liquid impinger and analyzed using a validated high pressure liquid chromatography method. Addition of fine lactose improved the aerodynamic performance of the drug, as determined by the fine particle fraction. PMID:21042422
Vasconcelos, Raquel O.; Fonseca, Paulo J.; Amorim, M. Clara P.; Ladich, Friedrich
2011-01-01
Many fishes rely on their auditory skills to interpret crucial information about predators and prey, and to communicate intraspecifically. Few studies, however, have examined how complex natural sounds are perceived in fishes. We investigated the representation of conspecific mating and agonistic calls in the auditory system of the Lusitanian toadfish Halobatrachus didactylus, and analysed auditory responses to heterospecific signals from ecologically relevant species: a sympatric vocal fish (meagre Argyrosomus regius) and a potential predator (dolphin Tursiops truncatus). Using auditory evoked potential (AEP) recordings, we showed that both sexes can resolve fine features of conspecific calls. The toadfish auditory system was most sensitive to frequencies well represented in the conspecific vocalizations (namely the mating boatwhistle), and revealed a fine representation of duration and pulsed structure of agonistic and mating calls. Stimuli and corresponding AEP amplitudes were highly correlated, indicating an accurate encoding of amplitude modulation. Moreover, Lusitanian toadfish were able to detect T. truncatus foraging sounds and A. regius calls, although at higher amplitudes. We provide strong evidence that the auditory system of a vocal fish, lacking accessory hearing structures, is capable of resolving fine features of complex vocalizations that are probably important for intraspecific communication and other relevant stimuli from the auditory scene. PMID:20861044
D'Amore, G; Pacciani, E; Frederic, P; Caramella Crespi, V
2007-01-01
The present study describes human skeletal remains from Riparo della Rossa, a rock shelter in the Marche region (Central Italy). The remains consist of a cranial vault and a few non-articulated postcranial bones, possibly belonging to the same adult individual. As the cranial vault showed some morphological features that are unusual for a modern human (marked prominence of the supraorbital region, very prominent nasal bones and rather high thickness of the vault), an accurate anthropological analysis and quantification of the antiquity of the bones were required. The remains were dated with two different absolute dating methods, AMS (14)C and (235)U-(231)Pa non-destructive gamma-ray spectrometry (NDGRS), which produced discordant results: the uncalibrated (14)C dating produced 5690 +/- 80 BP for the cranial vault and 6110 +/- 80 BP for the clavicle; the NDGRS dating produced 10,000 +/- 3000 BP for the cranial vault. The sex discriminant morphological characters on the skull are not unequivocal, though the masculine ones appear more evident. The aims of the present paper are: to provide a morphological and metric description of the remains; to interpret their unusual morphological features; to attempt to attribute them to male or female sex and to one of the possible prehistoric cultural groups, according to dating results (Upper Palaeolithic, Mesolithic or Neolithic). The attribution was obtained by a Bayesian procedure taking into account the reliability of the combined information of morphological/metric features and absolute dating results. The results suggest that the Riparo della Rossa remains are best attributed to a male individual of the Neolithic age.
Zoroquiain, Pablo; Mayo-Goldberg, Erin; Alghamdi, Sarah; Alhumaid, Sulaiman; Perlmann, Eduardo; Barros, Paulo; Mayo, Nancy; Burnier, Miguel N
2016-12-01
The cutoff presented in the current classification of canine melanocytic lesions by Wilcock and Pfeiffer is based on the clinical outcome rather than morphological concepts. Classification of tumors based on morphology or molecular signatures is the key to identifying new therapies or prognostic factors. Therefore, the aim of this study was to analyze morphological findings in canine melanocytic lesions based on classic malignant morphologic principles of neoplasia and to compare these features with human uveal melanoma (HUM) samples. In total, 64 canine and 111 human morphologically malignant melanocytic lesions were classified into two groups (melanocytoma-like or classic melanoma) based on the presence or absence of M cells, respectively. Histopathological characteristics were compared between the two groups using the χ-test, t-test, and multivariate discriminant analysis. Among the 64 canine tumors, 28 (43.7%) were classic and 36 (56.3%) were melanocytoma-like melanomas. Smaller tumor size, a higher degree of pigmentation, and lower mitotic activity distinguished melanocytoma-like from classic tumors with an accuracy of 100% for melanocytoma-like lesions. From the human series, only one case showed melanocytoma-like features and had a low risk for metastasis characteristics. Canine uveal melanoma showed a morphological spectrum with features similar to the HUM counterpart (classic melanoma) and overlapped features between uveal melanoma and melanocytoma (melanocytoma-like melanoma). Recognition that the subgroup of melanocytoma-like melanoma may represent the missing link between benign and malignant lesions could help explain the progression of uveal melanoma in dogs; these findings can potentially be translated to HUM.
Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph
2016-01-01
Advancing our understanding of tree fine root dynamics is of high importance for tree physiology and forest biogeochemistry. In temperate broad-leaved forests, ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) tree species often are coexisting. It is not known whether EM and AM trees differ systematically in fine root dynamics and belowground resource foraging strategies. We measured fine root productivity (FRP) and fine root turnover (and its inverse, root longevity) of three EM and three AM broad-leaved tree species in a natural cool-temperate mixed forest using ingrowth cores and combined the productivity data with data on root biomass per root orders. FRP and root turnover were related to root morphological traits and aboveground productivity. FRP differed up to twofold among the six coexisting species with larger species differences in lower horizons than in the topsoil. Root turnover varied up to fivefold among the species with lowest values in Acer pseudoplatanus and highest in its congener Acer platanoides. Variation in root turnover was larger within the two groups than between EM and AM species. We conclude that the main determinant of FRP and turnover in this mixed forest is species identity, while the influence of mycorrhiza type seems to be less important. PMID:27617016
NASA Astrophysics Data System (ADS)
Méar, Y.; Poizot, E.; Murat, A.; Lesueur, P.; Thomas, M.
2006-12-01
The eastern Bay of the Seine (English Channel) was the subject in 1991 of a sampling survey of superficial sediments. Geostatistic tools were used to examine the complexity of the spatial distribution of the fine-grained fraction (<50 μm). A central depocentre of fine sediments (i.e. content up to 50%) oriented in a NW-SE direction in a muddy coastal strip, in a very high energy hydrodynamical situation due to storm swells and its megatidal setting, is for the first time recognised and discussed. Within this sedimentary unit, the distribution of the fine fraction is very heterogeneous, with mud patches of less than 4000 m diameter; the boundary between these mud patches and their substratum is very sharp. The distribution of this fine fraction appears to be controlled by an anticyclonic eddy located off the Pays de Caux. Under the influence of this, the suspended material expelled from the Seine estuary moves along the coast and swings off Antifer harbour, towards the NW. It is trapped within this eddy because of the settling of suspended particulate matter. Both at a general scale and a local scale the morphology (whether inherited or due to modern processes) has a strong influence on the spatial distribution of the fine fraction. At the general scale, the basin-like shape of the area facilitates the silting, and the presence of the submarine dunes, called "Ridins d'Antifer", clearly determines the northern limit of the muddy zone. At a local scale, the same influence is obvious: paleovalleys trap the fine sediments, whereas isolated sand dunes and ripples limit the silting. This duality of role of the morphology is therefore one of the reasons why the muddy surface is extremely heterogeneous spatially. The presence of an important population of suspension feeding echinoderm, the brittle-star Ophiothrix fragilis Abildgaard, has led to a local increase in the silting, and to the modification of the physicochemical and sedimentological parameters. A complex relationship is shown to occur between the amount of fine fraction and the number of brittle-stars (ind. m -2). Classical statistical methods are not appropriate to study the spatial distribution of the mud fraction, because the spatial component of the percentage of the distribution is not integrated in the analysis. On the other hand, this is the main property of the geostatistic concepts. The use of geostatistic tools within a strict and clearly identified procedure enables the proposal of an accurate cartography. Further application of the proposed protocol (based on a semivariographic study and a conditional simulation interpolation) for surficial sediments mapping will help explain spatial and temporal variations of fine-grained fraction. Then assessments of sedimentation and erosion stages allow highlighting signature of environmental processes.
NASA Technical Reports Server (NTRS)
Holt, J. W.; Blankenship, D. D.; Peters, M. E.; Kempf, S. D.; Morse, D. L.; Williams, B. J.
2003-01-01
The recent identification of features on Mars exhibiting morphologies consistent with ice/rock mixtures, near-surface ice bodies and near-surface liquid water [1,2], and the importance of such features to the search for water on Mars, highlights the need for appropriate terrestrial analogs in order to prepare for upcoming radar missions targeting these and other water-related features. Climatic, hydrological, and geological conditions in the McMurdo Dry Valleys of Antarctica are analogous in many ways to those on Mars, and a number of ice-related features in the Dry Valleys may have direct morphologic and compositional counterparts on Mars.
Slate, Mandy L; Rosenstiel, Todd N; Eppley, Sarah M
2017-11-10
Dioecy and sexual dimorphism occur in many terrestrial plant species but are especially widespread among the bryophytes. Despite the prevalence of dioecy in non-vascular plants, surprisingly little is known about how fine-scale sex-specific cell and leaf morphological traits are correlated with sex-specific physiology and population sex ratios. Such data are critical to understanding the inter-relationship between sex-specific morphological and physiological characters and how their relationship influences population structure. In this study, these data types were assessed to determine how they vary across three populations within one moss species and whether fine-scale morphological traits scale up to physiological and sex ratio characteristics. Twenty cell-, leaf- and canopy-level traits and two photochemical measurements were compared between sexes and populations of the dioecious moss Ceratodon purpureus . Field population-expressed sex ratios were obtained for the same populations. Male and female plants differed in cell, leaf and photochemical measures. These sexual dimorphisms were female biased, with females having larger and thicker leaves and greater values for chlorophyll fluorescence-based, leaf photochemistry measurements than males. Female traits were also more variable than male traits. Interestingly, field population sex ratios were significantly male biased in two study populations and female biased in the third study population. The results demonstrate that the larger morphology and the greater physiological output of female C. purpureus gametophytes compared with males occurs across populations and is likely to have significant effects on resource allocation and biotic interactions. However, this high level of dimorphism does not explain population sex ratio variation in the three study populations tested. This research lays the groundwork for future studies on how differential sex-specific variation in cell and leaf traits influences bryophyte plant fitness. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Body Fineness Ratio as a Predictor of Maximum Prolonged-Swimming Speed in Coral Reef Fishes
Walker, Jeffrey A.; Alfaro, Michael E.; Noble, Mae M.; Fulton, Christopher J.
2013-01-01
The ability to sustain high swimming speeds is believed to be an important factor affecting resource acquisition in fishes. While we have gained insights into how fin morphology and motion influences swimming performance in coral reef fishes, the role of other traits, such as body shape, remains poorly understood. We explore the ability of two mechanistic models of the causal relationship between body fineness ratio and endurance swimming-performance to predict maximum prolonged-swimming speed (Umax) among 84 fish species from the Great Barrier Reef, Australia. A drag model, based on semi-empirical data on the drag of rigid, submerged bodies of revolution, was applied to species that employ pectoral-fin propulsion with a rigid body at U max. An alternative model, based on the results of computer simulations of optimal shape in self-propelled undulating bodies, was applied to the species that swim by body-caudal-fin propulsion at Umax. For pectoral-fin swimmers, Umax increased with fineness, and the rate of increase decreased with fineness, as predicted by the drag model. While the mechanistic and statistical models of the relationship between fineness and Umax were very similar, the mechanistic (and statistical) model explained only a small fraction of the variance in Umax. For body-caudal-fin swimmers, we found a non-linear relationship between fineness and Umax, which was largely negative over most of the range of fineness. This pattern fails to support either predictions from the computational models or standard functional interpretations of body shape variation in fishes. Our results suggest that the widespread hypothesis that a more optimal fineness increases endurance-swimming performance via reduced drag should be limited to fishes that swim with rigid bodies. PMID:24204575
Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality.
Omar, Chalak S; Dhenge, Ranjit M; Osborne, James D; Althaus, Tim O; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D
2015-12-30
The effect of morphology and amorphous content, of three types of lactose, on the properties of ribbon produced using roller compaction was investigated. The three types of lactose powders were; anhydrous SuperTab21AN, α-lactose monohydrate 200 M, and spray dried lactose SuperTab11SD. The morphology of the primary particles was identified using scanning electron microscopy (SEM) and the powder amorphous content was quantified using NIR technique. SEM images showed that 21AN and SD are agglomerated type of lactose whereas the 200 M is a non-agglomerated type. During ribbon production, an online thermal imaging technique was used to monitor the surface temperature of the ribbon. It was found that the morphology and the amorphous content of lactose powders have significant effects on the roller compaction behaviour and on ribbon properties. The agglomerated types of lactose produced ribbon with higher surface temperature and tensile strength, larger fragment size, lower porosity and lesser fines percentages than the non-agglomerated type of lactose. The lactose powder with the highest amorphous content showed to result in a better binding ability between the primary particles. This type of lactose produced ribbons with the highest temperature and tensile strength, and the lowest porosity and amount of fines in the product. It also produced ribbon with more smooth surfaces in comparison to the other two types of lactose. It was noticed that there is a relationship between the surface temperature of the ribbon during production and the tensile strength of the ribbon; the higher the temperature of the ribbon during production the higher the tensile strength of the ribbon. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Juez, C.; Battisacco, E.; Schleiss, A. J.; Franca, M. J.
2016-06-01
The artificial replenishment of sediment is used as a method to re-establish sediment continuity downstream of a dam. However, the impact of this technique on the hydraulics conditions, and resulting bed morphology, is yet to be understood. Several numerical tools have been developed during last years for modeling sediment transport and morphology evolution which can be used for this application. These models range from 1D to 3D approaches: the first being over simplistic for the simulation of such a complex geometry; the latter requires often a prohibitive computational effort. However, 2D models are computationally efficient and in these cases may already provide sufficiently accurate predictions of the morphology evolution caused by the sediment replenishment in a river. Here, the 2D shallow water equations in combination with the Exner equation are solved by means of a weak-coupled strategy. The classical friction approach considered for reproducing the bed channel roughness has been modified to take into account the morphological effect of replenishment which provokes a channel bed fining. Computational outcomes are compared with four sets of experimental data obtained from several replenishment configurations studied in the laboratory. The experiments differ in terms of placement volume and configuration. A set of analysis parameters is proposed for the experimental-numerical comparison, with particular attention to the spreading, covered surface and travel distance of placed replenishment grains. The numerical tool is reliable in reproducing the overall tendency shown by the experimental data. The effect of fining roughness is better reproduced with the approach herein proposed. However, it is also highlighted that the sediment clusters found in the experiment are not well numerically reproduced in the regions of the channel with a limited number of sediment grains.
Yin, Long-Lin; Song, Bin; Guan, Ying; Li, Ying-Chun; Chen, Guang-Wen; Zhao, Li-Ming; Lai, Li
2014-09-01
To investigate MRI features and associated histological and pathological changes of hilar and extrahepatic big bile duct cholangiocarcinoma with different morphological sub-types, and its value in differentiating between nodular cholangiocarcinoma (NCC) and intraductal growing cholangiocarcinoma (IDCC). Imaging data of 152 patients with pathologically confirmed hilar and extrahepatic big bile duct cholangiocarcinoma were reviewed, which included 86 periductal infiltrating cholangiocarcinoma (PDCC), 55 NCC, and 11 IDCC. Imaging features of the three morphological sub-types were compared. Each of the subtypes demonstrated its unique imaging features. Significant differences (P < 0.05) were found between NCC and IDCC in tumor shape, dynamic enhanced pattern, enhancement degree during equilibrium phase, multiplicity or singleness of tumor, changes in wall and lumen of bile duct at the tumor-bearing segment, dilatation of tumor upstream or downstream bile duct, and invasion of adjacent organs. Imaging features reveal tumor growth patterns of hilar and extrahepatic big bile duct cholangiocarcinoma. MRI united-sequences examination can accurately describe those imaging features for differentiation diagnosis.
Many Specialists for Suppressing Cortical Excitation
Burkhalter, Andreas
2008-01-01
Cortical computations are critically dependent on GABA-releasing neurons for dynamically balancing excitation with inhibition that is proportional to the overall level of activity. Although it is widely accepted that there are multiple types of interneurons, defining their identities based on qualitative descriptions of morphological, molecular and physiological features has failed to produce a universally accepted ‘parts list’, which is needed to understand the roles that interneurons play in cortical processing. A list of features has been published by the Petilla Interneurons Nomenclature Group, which represents an important step toward an unbiased classification of interneurons. To this end some essential features have recently been studied quantitatively and their association was examined using multidimensional cluster analyses. These studies revealed at least 3 distinct electrophysiological, 6 morphological and 15 molecular phenotypes. This is a conservative estimate of the number of interneuron types, which almost certainly will be revised as more quantitative studies will be performed and similarities will be defined objectively. It is clear that interneurons are organized with physiological attributes representing the most general, molecular characteristics the most detailed and morphological features occupying the middle ground. By themselves, none of these features are sufficient to define classes of interneurons. The challenge will be to determine which features belong together and how cell type-specific feature combinations are genetically specified. PMID:19225588
Significance of MPEG-7 textural features for improved mass detection in mammography.
Eltonsy, Nevine H; Tourassi, Georgia D; Fadeev, Aleksey; Elmaghraby, Adel S
2006-01-01
The purpose of the study is to investigate the significance of MPEG-7 textural features for improving the detection of masses in screening mammograms. The detection scheme was originally based on morphological directional neighborhood features extracted from mammographic regions of interest (ROIs). Receiver Operating Characteristics (ROC) was performed to evaluate the performance of each set of features independently and merged into a back-propagation artificial neural network (BPANN) using the leave-one-out sampling scheme (LOOSS). The study was based on a database of 668 mammographic ROIs (340 depicting cancer regions and 328 depicting normal parenchyma). Overall, the ROC area index of the BPANN using the directional morphological features was Az=0.85+/-0.01. The MPEG-7 edge histogram descriptor-based BPNN showed an ROC area index of Az=0.71+/-0.01 while homogeneous textural descriptors using 30 and 120 channels helped the BPNN achieve similar ROC area indexes of Az=0.882+/-0.02 and Az=0.877+/-0.01 respectively. After merging the MPEG-7 homogeneous textural features with the directional neighborhood features the performance of the BPANN increased providing an ROC area index of Az=0.91+/-0.01. MPEG-7 homogeneous textural descriptor significantly improved the morphology-based detection scheme.
Rhee, Ye-Young; Jung, Hong Kyu; Kim, Se Hoon; Kim, Soo Hee
2018-06-11
Hyalinizing trabecular tumor (HTT) is a rare thyroid tumor with low to minimal malignant potential. HTT is often misinterpreted as other thyroid tumors, including papillary thyroid carcinoma (PTC) and medullary thyroid carcinoma (MTC), on fine-needle aspiration (FNA) cytology, because of its overlapping cytologic features, such as nuclear grooves and intranulcear pseudoinclusions. Although cytopathologists cannot definitely conclude HTT by FNA cytology, suspicion of HTT is necessary to avoid misdiagnosing HTT as PTC or MTC and to avoid unnecessary aggressive treatment. Here, we report a case of HTT with novel cytologic features in CellPrep liquid based cytology that was diagnosed as suspicious for papillary carcinoma by FNA and finally diagnosed as HTT in the surgical specimen.
Patterns of differences in brain morphology in humans as compared to extant apes.
Aldridge, Kristina
2011-01-01
Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups. Copyright © 2010 Elsevier Ltd. All rights reserved.
Patterns of differences in brain morphology in humans as compared to extant apes
Aldridge, Kristina
2010-01-01
Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups. PMID:21056456
Role of multidetector computed tomography in evaluating incidentally detected breast lesions.
Moschetta, Marco; Scardapane, Arnaldo; Lorusso, Valentina; Rella, Leonarda; Telegrafo, Michele; Serio, Gabriella; Angelelli, Giuseppe; Ianora, Amato Antonio Stabile
2015-01-01
Computed tomography (CT) does not represent the primary method for the evaluation of breast lesions; however, it can detect breast abnormalities, even when performed for other reasons related to thoracic structures. The aim of this study is to evaluate the potential benefits of 320-row multidetector CT (MDCT) in evaluating and differentiating incidentally detected breast lesions by using vessel probe and 3D analysis software with net enhancement value. Sixty-two breast lesions in 46 patients who underwent 320-row chest CT examination were retrospectively evaluated. CT scans were assessed searching for the presence, location, number, morphological features, and density of breast nodules. Net enhancement was calculated by subtracting precontrast density from the density obtained by postcontrast values. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy of CT were calculated for morphological features and net enhancement. Thirty of 62 lesions were found to be malignant at histological examination and 32 were found to be benign. When morphological features were considered, the sensitivity, specificity, accuracy, PPV, and NPV of CT were 87%, 100%, 88%, 100%, and 50%, respectively. Based on net enhancement, CT reached a sensitivity, specificity, accuracy, PPV, and NPV of 100%, 94%, 97%, 94%, and 100%, respectively. MDCT allows to recognize and characterize breast lesions based on morphological features. Net enhancement can be proposed as an additional accurate feature of CT.
A fine resolution multifrequency polarimetric FM radar
NASA Technical Reports Server (NTRS)
Bredow, J.; Gogineni, S.; Leung, T.; Moore, R. K.
1988-01-01
A fine resolution polarimetric FM SAR was developed for optimization of polarimetric SARs and interpretation of SAR data via controlled experiments with surface-base sensors. The system is designed for collecting polarimetric data at 5.3 and 10 GHz over incidence angles from 0 to 60 deg. Features of the system include broad bandwidth to obtain fine range resolution, phase stabilization and linearization loop circuitry, and digital signal processing capability. The system is used in a research program to collect polarimetric backscatter data from artificial sea ice research and design trade-offs, laboratory and field evaluation, as well as results from experiments on artificial sea ice are presented.
The Acquisition of Pronouns by French Children: A Parallel Study of Production and Comprehension
ERIC Educational Resources Information Center
Zesiger, Pascal; Zesiger, Laurence Chillier; Arabatzi, Marina; Baranzini, Lara; Cronel-Ohayon, Stephany; Franck, Julie; Frauenfelder, Ulrich Hans; Hamann, Cornelia; Rizzi, Luigi
2010-01-01
This study examines syntactic and morphological aspects of the production and comprehension of pronouns by 99 typically developing French-speaking children aged 3 years, 5 months to 6 years, 5 months. A fine structural analysis of subject, object, and reflexive clitics suggests that whereas the object clitic chain crosses the subject chain, the…
C.R. Jackson; D.S. Leigh; S.L. Scarbrough; J.F. Chamblee
2014-01-01
We investigated interactions of riparian vegetative conditions upon a suite of channel morphological variables: active channel width, variability of width within a reach, large wood frequency, mesoscale habitat distributions, mesoscale habitat diversity, median particle size and per cent fines. We surveyed 49 wadeable streams, 45 with low levels of development,...
Fine particles on mars: Observations with the viking 1 lander cameras
Mutch, T.A.; Arvidson, R. E.; Binder, A.B.; Huck, F.O.; Levinthal, E.C.; Liebes, S.; Morris, E.C.; Nummedal, D.; Pollack, James B.; Sagan, C.
1976-01-01
Drifts of fine-grained sediment are present in the vicinity of the Viking 1 lander. Many drifts occur in the lees of large boulders. Morphologic analysis indicates that the last dynamic event was one of general deflation for at least some drifts. Particle cohesion implies that there is a distinct small-particle upturn in the threshold velocity-particle size curve; the apparent absence of the most easily moved particles (150 micrometers in diameter) may be due to their preferential transport to other regions or their preferential collisional destruction. A twilight rescan with lander cameras indicates a substantial amount of red dust with mean radius on the order of 1 micrometer in the atmosphere.
Fine particles on Mars: observations with the viking 1 lander cameras.
Mutch, T A; Arvidson, R E; Binder, A B; Huck, F O; Levinthal, E C; Liebes, S; Morris, E C; Nummedal, D; Pollack, J B; Sagan, C
1976-10-01
Drifts of fine-grained sediment are present in the vicinity of the Viking 1 lander. Many drifts occur in the lees of large boulders. Morphologic analysis indicates that the last dynamic event was one of general deflation for at least some drifts. Particle cohesion implies that there is a distinct small-particle upturn in the threshold velocity-particle size curve; the apparent absence of the most easily moved particles (150 micrometers in diameter) may be due to their preferential transport to other regions or their preferential collisional destruction. A twilight rescan with lander cameras indicates a substantial amount of red dust with mean radius on the order of 1 micrometer in the atmosphere.
Murray, A.B.; Thieler, E.R.
2004-01-01
Recent observations of inner continental shelves in many regions show numerous collections of relatively coarse sediment, which extend kilometers in the cross-shore direction and are on the order of 100m wide. These "rippled scour depressions" have been interpreted to indicate concentrated cross-shelf currents. However, recent observations strongly suggest that they are associated with sediment transport along-shore rather than cross-shore. A new hypothesis for the origin of these features involves the large wave-generated ripples that form in the coarse material. Wave motions interacting with these large roughness elements generate near-bed turbulence that is greatly enhanced relative to that in other areas. This enhances entrainment and inhibits settling of fine material in an area dominated by coarse sediment. The fine sediment is then carried by mean currents past the coarse accumulations, and deposited where the bed is finer. We hypothesize that these interactions constitute a feedback tending to produce accumulations of fine material separated by self-perpetuating patches of coarse sediments. As with many types of self-organized bedforms, small features would interact as they migrate, leading to a better-organized, larger-scale pattern. As an initial test of this hypothesis, we use a numerical model treating the transport of coarse and fine sediment fractions, treated as functions of the local bed composition - a proxy for the presence of large roughness elements in coarse areas. Large-scale sorted patterns exhibiting the main characteristics of the natural features result robustly in the model, indicating that this new hypothesis offers a plausible explanation for the phenomena. ?? 2003 Elsevier Ltd. All rights reserved.
Electrocardiogram ST-Segment Morphology Delineation Method Using Orthogonal Transformations
2016-01-01
Differentiation between ischaemic and non-ischaemic transient ST segment events of long term ambulatory electrocardiograms is a persisting weakness in present ischaemia detection systems. Traditional ST segment level measuring is not a sufficiently precise technique due to the single point of measurement and severe noise which is often present. We developed a robust noise resistant orthogonal-transformation based delineation method, which allows tracing the shape of transient ST segment morphology changes from the entire ST segment in terms of diagnostic and morphologic feature-vector time series, and also allows further analysis. For these purposes, we developed a new Legendre Polynomials based Transformation (LPT) of ST segment. Its basis functions have similar shapes to typical transient changes of ST segment morphology categories during myocardial ischaemia (level, slope and scooping), thus providing direct insight into the types of time domain morphology changes through the LPT feature-vector space. We also generated new Karhunen and Lo ève Transformation (KLT) ST segment basis functions using a robust covariance matrix constructed from the ST segment pattern vectors derived from the Long Term ST Database (LTST DB). As for the delineation of significant transient ischaemic and non-ischaemic ST segment episodes, we present a study on the representation of transient ST segment morphology categories, and an evaluation study on the classification power of the KLT- and LPT-based feature vectors to classify between ischaemic and non-ischaemic ST segment episodes of the LTST DB. Classification accuracy using the KLT and LPT feature vectors was 90% and 82%, respectively, when using the k-Nearest Neighbors (k = 3) classifier and 10-fold cross-validation. New sets of feature-vector time series for both transformations were derived for the records of the LTST DB which is freely available on the PhysioNet website and were contributed to the LTST DB. The KLT and LPT present new possibilities for human-expert diagnostics, and for automated ischaemia detection. PMID:26863140
Riedel thyroiditis: Fine needle aspiration findings of a rare entity.
Weidner, Anna-Sophie; Molina, David; DeSimone, Robert A; Cohen, Marc A; Giorgadze, Tamar; Scognamiglio, Theresa; Hoda, Rana S
2015-09-01
Riedel thyroiditis is a rare fibrosing disorder characterized by extension of the fibroinflammatory process beyond the thyroid capsule. Due to the nature of this lesion, fine-needle aspiration often yields scant material and may be interpreted as non-diagnostic. In this report, we describe cytologic features that allow the cytopathologist to favor a diagnosis of Riedel thyroiditis, thereby guiding appropriate further work-up and management. © 2015 Wiley Periodicals, Inc.
Rocket observations of electron-density irregularities in the equatorial ionosphere below 200 km
NASA Technical Reports Server (NTRS)
Klaus, D. E.; Smith, L. G.
1978-01-01
Nike Apache rockets carring instrumentation to measure electron density and its fine structure in the equatorial ionosphere were launched from Chilca, Peru in May and June 1975. The fine structure experiment and the data reduction system are described. Results obtained from this system are presented and compared with those obtained by VHF radar and from other rocket studies. A description of the equatorial ionosphere and its features is also presented.
Morphological learning in a novel language: A cross-language comparison.
Havas, Viktória; Waris, Otto; Vaquero, Lucía; Rodríguez-Fornells, Antoni; Laine, Matti
2015-01-01
Being able to extract and interpret the internal structure of complex word forms such as the English word dance+r+s is crucial for successful language learning. We examined whether the ability to extract morphological information during word learning is affected by the morphological features of one's native tongue. Spanish and Finnish adult participants performed a word-picture associative learning task in an artificial language where the target words included a suffix marking the gender of the corresponding animate object. The short exposure phase was followed by a word recognition task and a generalization task for the suffix. The participants' native tongues vary greatly in terms of morphological structure, leading to two opposing hypotheses. On the one hand, Spanish speakers may be more effective in identifying gender in a novel language because this feature is present in Spanish but not in Finnish. On the other hand, Finnish speakers may have an advantage as the abundance of bound morphemes in their language calls for continuous morphological decomposition. The results support the latter alternative, suggesting that lifelong experience on morphological decomposition provides an advantage in novel morphological learning.
Predicting Future Morphological Changes of Lesions from Radiotracer Uptake in 18F-FDG-PET Images
Bagci, Ulas; Yao, Jianhua; Miller-Jaster, Kirsten; Chen, Xinjian; Mollura, Daniel J.
2013-01-01
We introduce a novel computational framework to enable automated identification of texture and shape features of lesions on 18F-FDG-PET images through a graph-based image segmentation method. The proposed framework predicts future morphological changes of lesions with high accuracy. The presented methodology has several benefits over conventional qualitative and semi-quantitative methods, due to its fully quantitative nature and high accuracy in each step of (i) detection, (ii) segmentation, and (iii) feature extraction. To evaluate our proposed computational framework, thirty patients received 2 18F-FDG-PET scans (60 scans total), at two different time points. Metastatic papillary renal cell carcinoma, cerebellar hemongioblastoma, non-small cell lung cancer, neurofibroma, lymphomatoid granulomatosis, lung neoplasm, neuroendocrine tumor, soft tissue thoracic mass, nonnecrotizing granulomatous inflammation, renal cell carcinoma with papillary and cystic features, diffuse large B-cell lymphoma, metastatic alveolar soft part sarcoma, and small cell lung cancer were included in this analysis. The radiotracer accumulation in patients' scans was automatically detected and segmented by the proposed segmentation algorithm. Delineated regions were used to extract shape and textural features, with the proposed adaptive feature extraction framework, as well as standardized uptake values (SUV) of uptake regions, to conduct a broad quantitative analysis. Evaluation of segmentation results indicates that our proposed segmentation algorithm has a mean dice similarity coefficient of 85.75±1.75%. We found that 28 of 68 extracted imaging features were correlated well with SUVmax (p<0.05), and some of the textural features (such as entropy and maximum probability) were superior in predicting morphological changes of radiotracer uptake regions longitudinally, compared to single intensity feature such as SUVmax. We also found that integrating textural features with SUV measurements significantly improves the prediction accuracy of morphological changes (Spearman correlation coefficient = 0.8715, p<2e-16). PMID:23431398
Liu, Jinyun; Qu, Yingmin; Wang, Guoliang; Wang, Xinyue; Zhang, Wenxiao; Li, Jingmei; Wang, Zuobin; Li, Dayou; Jiang, Jinlan
2018-01-01
This article studies the morphological and mechanical features of multinuclear and mononuclear SW480 colon cancer cells by atomic force microscopy to understand their drug-resistance. The SW480 cells were incubated with the fullerenol concentrations of 1 mg/ml and 2 mg/ml. Morphological and mechanical features including the height, length, width, roughness, adhesion force and Young's modulus of three multinuclear cell groups and three mononuclear cell groups were imaged and analyzed. It was observed that the features of multinuclear cancer cells and mononuclear cancer cells were significantly different after the treatment with fullerenol. The experiment results indicated that the mononuclear SW480 cells were more sensitive to fullerenol than the multinuclear SW480 cells, and the multinuclear SW480 cells exhibited a stronger drug-resistance than the mononuclear SW480 cells. This work provides a guideline for the treatments of multinuclear and mononuclear cancer cells with drugs. © 2017 Wiley Periodicals, Inc.
A novel murmur-based heart sound feature extraction technique using envelope-morphological analysis
NASA Astrophysics Data System (ADS)
Yao, Hao-Dong; Ma, Jia-Li; Fu, Bin-Bin; Wang, Hai-Yang; Dong, Ming-Chui
2015-07-01
Auscultation of heart sound (HS) signals serves as an important primary approach to diagnose cardiovascular diseases (CVDs) for centuries. Confronting the intrinsic drawbacks of traditional HS auscultation, computer-aided automatic HS auscultation based on feature extraction technique has witnessed explosive development. Yet, most existing HS feature extraction methods adopt acoustic or time-frequency features which exhibit poor relationship with diagnostic information, thus restricting the performance of further interpretation and analysis. Tackling such a bottleneck problem, this paper innovatively proposes a novel murmur-based HS feature extraction method since murmurs contain massive pathological information and are regarded as the first indications of pathological occurrences of heart valves. Adapting discrete wavelet transform (DWT) and Shannon envelope, the envelope-morphological characteristics of murmurs are obtained and three features are extracted accordingly. Validated by discriminating normal HS and 5 various abnormal HS signals with extracted features, the proposed method provides an attractive candidate in automatic HS auscultation.
NASA Astrophysics Data System (ADS)
Goto, Kazuhisa; Sugawara, Daisuke; Ikema, Satoko; Miyagi, Toyohiko
2012-12-01
This paper reports on the sedimentary processes of sand and boulder deposition at Sabusawa Island, Japan as a result of the 2011 Tohoku-oki tsunami. Boulders were composed of tuffaceous rocks and sourced from an earthquake-triggered slope failure as well as concrete fragments of seawall. They were scattered over the ground surface and did not form boulder ridges, although there was some local imbrication. The boulders were deposited on top of a sand layer indicating that the latter, possibly deposited from bed load, covered the ground surface first. This sand layer probably reduced friction allowing boulders to be transported more easily than might be expected across a hard ground with a high bottom friction. Sand deposits showed landward thinning and fining features, while the boulders showed a landward coarsening (tuffaceous boulders) or a landward fining (concrete boulders), indicating that large clasts were not necessarily scattered randomly but rather might have a clast size gradient with distance inland. These features are explained by the local topographic setting that constrained the directions of incoming and returning tsunami flows. Some clasts at the inland extent of the boulder field were covered by an upward fining sand layer. This feature suggests that the boulders were deposited prior to the suspended sands, with the latter subsequently laid down before the water level dropped below the top of the boulders. Such modern investigations of the sedimentary features of various sizes of grains and clasts immediately after a tsunami provide invaluable data for the reconstruction of inundation processes.
Bagley, Joshua A.; Yan, Zhiqiang; Zhang, Wei; Wildonger, Jill
2014-01-01
A complex array of genetic factors regulates neuronal dendrite morphology. Epigenetic regulation of gene expression represents a plausible mechanism to control pathways responsible for specific dendritic arbor shapes. By studying the Drosophila dendritic arborization (da) neurons, we discovered a role of the double-bromodomain and extraterminal (BET) family proteins in regulating dendrite arbor complexity. A loss-of-function mutation in the single Drosophila BET protein encoded by female sterile 1 homeotic [fs(1)h] causes loss of fine, terminal dendritic branches. Moreover, fs(1)h is necessary for the induction of branching caused by a previously identified transcription factor, Cut (Ct), which regulates subtype-specific dendrite morphology. Finally, disrupting fs(1)h function impairs the mechanosensory response of class III da sensory neurons without compromising the expression of the ion channel NompC, which mediates the mechanosensitive response. Thus, our results identify a novel role for BET family proteins in regulating dendrite morphology and a possible separation of developmental pathways specifying neural cell morphology and ion channel expression. Since the BET proteins are known to bind acetylated histone tails, these results also suggest a role of epigenetic histone modifications and the “histone code,” in regulating dendrite morphology. PMID:25184680
Vimercati, S L; Galli, M; Stella, G; Caiazzo, G; Ancillao, A; Albertini, G
2015-03-01
Drawing tests are commonly used for the clinical evaluation of cognitive capabilities in children with learning disabilities. We analysed quantitatively the drawings of children with Down Syndrome (DS) and of healthy, mental age-matched controls to characterise the features of fine motor skills in DS during a drawing task, with particular attention to clumsiness, a well-known feature of DS gross movements. Twenty-three children with DS and 13 controls hand-copied the figures of a circle, a cross and a square on a sheet. An optoelectronic system allowed the acquisition of the three-dimensional track of the drawing. The participants' posture and upper limb movements were analysed as well. Results showed that the participants with DS tended to draw faster but with less accuracy than controls. While clumsiness in gross movements manifests mainly as slow, less efficient movements, it manifests as high velocity and inaccurate movements in fine motor tasks such as drawing. © 2014 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.
Asseln, Malte; Hänisch, Christoph; Schick, Fabian; Radermacher, Klaus
2018-05-14
Morphological differences between female and male knees have been reported in the literature, which led to the development of so-called gender-specific implants. However, detailed morphological descriptions covering the entire joint are rare and little is known regarding whether gender differences are real sexual dimorphisms or can be explained by overall differences in size. We comprehensively analysed knee morphology using 33 features of the femur and 21 features of the tibia to quantify knee shape. The landmark recognition and feature extraction based on three-dimensional surface data were fully automatically applied to 412 pathological (248 female and 164 male) knees undergoing total knee arthroplasty. Subsequently, an exploratory statistical analysis was performed and linear correlation analysis was used to investigate normalization factors and gender-specific differences. Statistically significant differences between genders were observed. These were pronounced for distance measurements and negligible for angular (relative) measurements. Female knees were significantly narrower at the same depth compared to male knees. The correlation analysis showed that linear correlations were higher for distance measurements defined in the same direction. After normalizing the distance features according to overall dimensions in the direction of their definition, gender-specific differences disappeared or were smaller than the related confidence intervals. Implants should not be linearly scaled according to one dimension. Instead, features in medial/lateral and anterior/posterior directions should be normalized separately (non-isotropic scaling). However, large inter-individual variations of the features remain after normalization, suggesting that patient-specific design solutions are required for an improved implant design, regardless of gender. Copyright © 2018 Elsevier B.V. All rights reserved.
Supersymmetry, naturalness, and signatures at the CERN LHC
NASA Astrophysics Data System (ADS)
Kitano, Ryuichiro; Nomura, Yasunori
2006-05-01
Weak scale supersymmetry is often said to be fine-tuned, especially if the matter content is minimal. This is not true if there is a large A term for the top squarks. We present a systematic study on fine-tuning in minimal supersymmetric theories and identify low-energy spectra that do not lead to severe fine-tuning. Characteristic features of these spectra are: a large A term for the top squarks, small top squark masses, moderately large tanβ, and a small μ parameter. There are classes of theories leading to these features, which are discussed. In one class, which allows a complete elimination of fine-tuning, the Higgsinos are the lightest among all the superpartners of the standard model particles, leading to three nearly degenerate neutralino/chargino states. This gives interesting signals at the LHC—the dilepton invariant mass distribution has a very small endpoint and shows a particular shape determined by the Higgsino nature of the two lightest neutralinos. We demonstrate that these signals are indeed useful in realistic analyses by performing Monte Carlo simulations, including detector simulations and background estimations. We also present a method that allows the determination of all the relevant superparticle masses without using input from particular models, despite the limited kinematical information due to short cascades. This allows us to test various possible models, which is demonstrated in the case of a model with mixed moduli-anomaly mediation. We also give a simple derivation of special renormalization group properties associated with moduli mediated supersymmetry-breaking, which are relevant in a model without fine-tuning.
Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures
Cataldo, Sebastiano; Pignataro, Bruno
2013-01-01
This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-equilibrium conditions. PMID:28809362
Relating structure with morphology: A comparative study of perfect Langmuir Blodgett multilayers
NASA Astrophysics Data System (ADS)
Mukherjee, Smita; Datta, Alokmay; Giglia, Angelo; Mahne, Nichole; Nannarone, Stefano
2008-01-01
Atomic force microscopy and X-ray reflectivity of metal-stearate (MSt) Langmuir-Blodgett films on hydrophilic Silicon (1 0 0), show dramatic reduction in 'pinhole' defects when metal M is changed from Cd to Co, along with excellent periodicity in multilayer, with hydrocarbon tails tilted 9.6° from vertical for CoSt (untilted for CdSt). Near edge X-ray absorption fine structure (NEXAFS) and Fourier transform infra-red (FTIR) spectroscopies indicate bidentate bridging metal-carboxylate coordination in CoSt (unidentate in CdSt), underscoring role of headgroup structure in determining morphology. FTIR studies also show increased packing density in CoSt, consistent with increased coverage.
NASA Astrophysics Data System (ADS)
Baar, Anne W.; de Smit, Jaco; Uijttewaal, Wim S. J.; Kleinhans, Maarten G.
2018-01-01
Large-scale morphology, in particular meander bend depth, bar dimensions, and bifurcation dynamics, are greatly affected by the deflection of sediment transport on transverse bed slopes due to gravity and by secondary flows. Overestimating the transverse bed slope effect in morphodynamic models leads to flattening of the morphology, while underestimating leads to unrealistically steep bars and banks and a higher braiding index downstream. However, existing transverse bed slope predictors are based on a small set of experiments with a minor range of flow conditions and sediment sizes, and in practice models are calibrated on measured morphology. The objective of this research is to experimentally quantify the transverse bed slope effect for a large range of near-bed flow conditions with varying secondary flow intensity, sediment sizes (0.17-4 mm), sediment transport mode, and bed state to test existing predictors. We conducted over 200 experiments in a rotating annular flume with counterrotating floor, which allows control of the secondary flow intensity separate from the streamwise flow velocity. Flow velocity vectors were determined with a calibrated analytical model accounting for rough bed conditions. We isolated separate effects of all important parameters on the transverse slope. Resulting equilibrium transverse slopes show a clear trend with varying sediment mobilities and secondary flow intensities that deviate from known predictors depending on Shields number, and strongly depend on bed state and sediment transport mode. Fitted functions are provided for application in morphodynamic modeling.
NASA Astrophysics Data System (ADS)
McBride, R.; Wood, E. T.
2017-12-01
Cedar Island, VA is a low-profile, washover-dominated barrier island that has breached at least three times in the past sixty years. Cedar Island Inlet, a former wave-dominated tidal inlet, was open for the following time periods: 1) 1956-1962, 2) 1992-1997, and 3) 1998-2007. Air photos, satellite imagery, and geomorphic features (i.e., relict flood tidal deltas, recurved-spit ridges) record the spatial and temporal extent of the three ephemeral inlets. Based on three sediment vibracores, benthic foraminiferal and sedimentologic analyses offer high resolution insights of inlet dynamics and lifecycle evolution. Four foraminiferal biofacies are completely dominated by Elphidium excavatum (54-100%) and contain unique assemblages of accessory species based on cluster analyses: tidal inlet floor (low abundance estuarine and shelf species; 23% Haynesina germanica); flood tidal delta/inlet fill (high abundance estuarine and shelf species; 2% Buccella frigida, 2% Ammonia parkinsoniana, and 2% Haynesina germanica); high-energy inlet fill (low abundance, low diversity shelf species; 9% Elphidium gunteri); and washover/beach/aeolian (low abundance, predominantly shelf species; 3% Buccella frigida and 3% Ammonia parkinsoniana). The estuarine biofacies is barren of all foraminifera. Grain size trends indicate a first order coarsening-upward succession with second order coarsening- and fining-upwards packages in inlet throat deposits, while a first order fining-upward succession is observed in flood tidal delta deposits with two second order coarsening-upward packages in the proximal flood tidal delta. Contrary to typical wave-dominated tidal inlets that open, migrate laterally in the direction of net longshore transport, and close, the 1998-2007 tidal inlet, and possibly the 1956-1962 inlet, migrated laterally and rotated, whereas the 1992-1997 inlet remained stationary and did not rotate. In the vicinity of the vibracores, preserved deposits are attributed to the 1956-1962 and 1998-2007 tidal inlets and not to the 1992-1997 inlet. Additionally, a previously undocumented older inlet deposit was discovered. Thus, each ephemeral inlet has undergone a unique lifecycle where tidal prism, accommodation space, and flood tidal delta morphology influenced the degree of migration and rotation.
Coarse-to-fine wavelet-based airport detection
NASA Astrophysics Data System (ADS)
Li, Cheng; Wang, Shuigen; Pang, Zhaofeng; Zhao, Baojun
2015-10-01
Airport detection on optical remote sensing images has attracted great interest in the applications of military optics scout and traffic control. However, most of the popular techniques for airport detection from optical remote sensing images have three weaknesses: 1) Due to the characteristics of optical images, the detection results are often affected by imaging conditions, like weather situation and imaging distortion; and 2) optical images contain comprehensive information of targets, so that it is difficult for extracting robust features (e.g., intensity and textural information) to represent airport area; 3) the high resolution results in large data volume, which makes real-time processing limited. Most of the previous works mainly focus on solving one of those problems, and thus, the previous methods cannot achieve the balance of performance and complexity. In this paper, we propose a novel coarse-to-fine airport detection framework to solve aforementioned three issues using wavelet coefficients. The framework includes two stages: 1) an efficient wavelet-based feature extraction is adopted for multi-scale textural feature representation, and support vector machine(SVM) is exploited for classifying and coarsely deciding airport candidate region; and then 2) refined line segment detection is used to obtain runway and landing field of airport. Finally, airport recognition is achieved by applying the fine runway positioning to the candidate regions. Experimental results show that the proposed approach outperforms the existing algorithms in terms of detection accuracy and processing efficiency.
Shear zones of the Verkhoyansk fold-and-thrust belt, Northeast Russia
NASA Astrophysics Data System (ADS)
Fridovsky, Valery; Polufuntikova, Lena
2017-04-01
The Verkhoyansk fold-and-thrust belt is situated on the submerged eastern margin of the North Asian craton, and is largely composed of the Ediacaran - Middle Paleozoic carbonate and the Upper Paleozoic-Mesozoic terrigenous rocks. The Upper Carboniferous - Jurassic sediments constitute the Verkhoyansk terrigenous complex containing economically viable orogenic gold deposits. The structure of the belt is mainly controlled by thrusts and associated diagonal strike slips. Linear concentric folds are common all over the area of the belt. Shear zones with associated similar folds are confined to long narrow areas. Shear zones were formed during the early stages of the Oxfordian-Kimmeridgian collisional and accretionary events prior to the emplacement of large orogenic granitoid plutons. The main ore-controlling structures are shear zones associated with slaty cleavage, shear folds, mullion- and boudinage-structures, and transposition features. The shear zones are listric-type, and represent branches of a detachment structure, which is assumed to be present at the base of the Verkhoyansk fold-and-thrust belt. A vertical zonation of shear zones is correlated with the distance to the detachment. Changes in the dip angle of the shear zones (as indicated mainly by cleavage), structural paragenesis, the degree of microdeformation of the host rocks, and the type of ore-controlling structures can be clearly observed in the direction away from the detachment. Structural zoning is evidenced, among other things, by changing morphologic types of microstructures and by strain-indicators of the degree of rock metamorphism. Four morphologic types of microstructures are identified. The first platy-shear type is characterized by aggregate cleavage and the coefficient of deformation (Cd) of single grains from 1.0 to 2.0. Irregular angular fragments of variously oriented grains can be observed in thin sections. The second shear-cataclastic morphologic type (Cd from 2.0 to 3.0) exhibits combined aggregate and intergranular cleavage. The third cataclastic-segregation morphologic type (Cd from 3.0 to 4.5) is distinguished by a wide distribution of lentelliptical grains of rock-forming minerals in a finely-crystalline matrix and by intergranular cleavage. The rocks of the fourth segregation-striate morphologic type (Cd >5.0) contain lenticular segregations of quartz and feldspar in an intensely linearized mylonite groundmass.
NASA Astrophysics Data System (ADS)
Chaytor, J. D.; Brothers, D. S.; Ten Brink, U. S.; Hoy, S. K.; Baxter, C.; Andrews, B.
2013-12-01
U.S. Geological Survey (USGS) studies of the U.S. Atlantic continental slope and rise aim to understand the: 1) the role of submarine landslides in tsunami generation, and 2) the linkages between margin morphology and sedimentary processes, particularly in and around submarine canyon systems. Data from U.S. Extended Continental Shelf (ECS) and numerous subsequent mapping surveys have facilitated the identification and characterization of submarine landslides and related features in fine detail over an unprecedented spatial extent. Ongoing analysis of USGS collected piston cores, sub-bottom and multichannel seismic (MCS) reflection profiles, and an extensive suite of legacy MCS data from two landslides, the Southern New England landslide zone and the Currituck Landslide, suggest that the most recent major landslide events are pre-Holocene, but that failures were complex and most likely multi-phase, at times resulting in extensive overlapping debris deposits. Piston core records plus visual observations of the seafloor from recent TowCam deployments and NOAA Ship Okeanos Explorer ROV dives reveal ongoing development of colluvial wedge-style debris aprons at the base of scarps within these landslides, showing that these regions continue to evolve long after the initial failure events. Multibeam bathymetry data and MCS profiles along the upper slope reveal evidence for vertical fluid migration and possible seabed gas expulsion. These observations underscore the need to reevaluate the sources of pore fluid overpressure in slope sediments and their role in landslide generation. ECS and more recent multibeam mapping have provided the opportunity to investigate the full extent of submarine canyon morphology and evolution from Cape Hatteras up to the US-Canadian EEZ, which has led to better understanding of the important role of antecedent margin physiography on their development. Six submarine canyon systems along the margin (Veatch, Hydrographer, Hudson, Wilmington-Baltimore, Norfolk-Washington, and Hatteras) are being investigated from the canyon heads down to their deep-water submarine fans in an effort to characterize their sediment transport history and constrain the influences of external processes on their morphology. Each canyon-fan system is morphologically unique and is strongly controlled by source region, antecedent margin morphology, landslide and debris flow processes, and the long-term influence of deep-water (along-slope) currents.
Ohashi, R; Matsubara, M; Watarai, Y; Yanagihara, K; Yamashita, K; Tsuchiya, S-I; Takei, H; Naito, Z
2017-04-01
Pleomorphic lobular carcinoma (PLC) is a subtype of breast cancer with unique morphological features, but it remains controversial whether PLC should be considered an independent disease entity. The aim of this study was to illustrate cytopathological characteristics of PLC in comparison with other lobular carcinoma variants. We investigated clinicopathological features of PLC (n = 11) compared with those of other variants of invasive lobular carcinoma (ILC, non-PLC) (n = 32). Histological variants of the non-PLC group consisted of classic (n = 25), solid (n = 2), alveolar (n = 1) and a tubulolobular type (n = 4). A review of cytological reports and fine needle aspiration (FNA) smear samples was performed for the PLC (n = 9) and non-PLC (n = 27) groups. Patients with PLC were older, and had a higher nuclear grade and a higher incidence of axillary lymph node metastasis and triple negative phenotype than non-PLC patients (P = 0.007, P < 0.001, P = 0.02 and P < 0.001, respectively). Cytological findings in PLC included medium- to large-sized nuclei, prominent nucleoli, a moderate-to-severe degree of pleomorphism, apocrine change and background necrosis, none of which were evident in the smears of the non-PLC group (P < 0.001, P = 0.002, P < 0.001, P < 0.001, and P = 0.03, respectively). Despite these differences, patients with PLC and non-PLC showed similar clinical outcomes in our follow-up period. Based on our results, a cytological diagnosis of PLC should be proposed if there are moderate- to large-sized nuclei, prominent nucleoli, a moderate-to severe degree of nuclear pleomorphism, apocrine change and necrosis in the background in FNA biopsy samples. © 2016 John Wiley & Sons Ltd.
Investigating Mars: Moreux Crater
2017-11-23
This image of Moreux Crater shows the eastern side of the central peak, as well as the nearby sand dunes. In this false color image sand dunes are "blue". Smaller patches of blue are located on the central peak materials and indicate where surface winds have moved fine materials on/off the peak deposits. The pitted and curvilinear morphology of the central peak deposits have been interpreted to have formed by glacial activity. Moreux Crater is located in northern Arabia Terra and has a diameter of 138 kilometers. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 12518 Latitude: 41.8223 Longitude: 44.7638 Instrument: VIS Captured: 2004-10-10 02:55 https://photojournal.jpl.nasa.gov/catalog/PIA22126
Investigating Mars: Moreux Crater
2017-11-24
This image of Moreux Crater shows the highest elevations of the central peak, as well as the nearby sand dunes. In this false color image sand dunes are "blue". Smaller patches of blue are located on the central peak materials and indicate where surface winds have moved fine materials on/off the peak deposits. The pitted and curvilinear morphology of the central peak deposits have been interpreted to have formed by glacial activity. Moreux Crater is located in northern Arabia Terra and has a diameter of 138 kilometers. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 46786 Latitude: 41.7667 Longitude: 44.3482 Instrument: VIS Captured: 2012-07-01 13:41 https://photojournal.jpl.nasa.gov/catalog/PIA22127
Barnard, P.L.; Erikson, L.H.; Kvitek, R.G.
2011-01-01
New multibeam echosounder and processing technologies yield sub-meter-scale bathymetric resolution, revealing striking details of bedform morphology that are shaped by complex boundary-layer flow dynamics at a range of spatial and temporal scales. An inertially aided post processed kinematic (IAPPK) technique generates a smoothed best estimate trajectory (SBET) solution to tie the vessel motion-related effects of each sounding directly to the ellipsoid, significantly reducing artifacts commonly found in multibeam data, increasing point density, and sharpening seafloor features. The new technique was applied to a large bedform field in 20-30 m water depths in central San Francisco Bay, California (USA), revealing bedforms that suggest boundary-layer flow deflection by the crests where 12-m-wavelength, 0.2-m-amplitude bedforms are superimposed on 60-m-wavelength, 1-m-amplitude bedforms, with crests that often were strongly oblique (approaching 90??) to the larger features on the lee side, and near-parallel on the stoss side. During one survey in April 2008, superimposed bedform crests were continuous between the crests of the larger features, indicating that flow detachment in the lee of the larger bedforms is not always a dominant process. Assessment of bedform crest peakedness, asymmetry, and small-scale bedform evolution between surveys indicates the impact of different flow regimes on the entire bedform field. This paper presents unique fine-scale imagery of compound and superimposed bedforms, which is used to (1) assess the physical forcing and evolution of a bedform field in San Francisco Bay, and (2) in conjunction with numerical modeling, gain a better fundamental understanding of boundary-layer flow dynamics that result in the observed superimposed bedform orientation. ?? 2011 Springer-Verlag (outside the USA).
Barnard, Patrick L.; Erikson, Li H.; Rubin, David M.; Kvitek, Rikk G.
2011-01-01
New multibeam echosounder and processing technologies yield sub-meter-scale bathymetric resolution, revealing striking details of bedform morphology that are shaped by complex boundary-layer flow dynamics at a range of spatial and temporal scales. An inertially aided post processed kinematic (IAPPK) technique generates a smoothed best estimate trajectory (SBET) solution to tie the vessel motion-related effects of each sounding directly to the ellipsoid, significantly reducing artifacts commonly found in multibeam data, increasing point density, and sharpening seafloor features. The new technique was applied to a large bedform field in 20–30 m water depths in central San Francisco Bay, California (USA), revealing bedforms that suggest boundary-layer flow deflection by the crests where 12-m-wavelength, 0.2-m-amplitude bedforms are superimposed on 60-m-wavelength, 1-m-amplitude bedforms, with crests that often were strongly oblique (approaching 90°) to the larger features on the lee side, and near-parallel on the stoss side. During one survey in April 2008, superimposed bedform crests were continuous between the crests of the larger features, indicating that flow detachment in the lee of the larger bedforms is not always a dominant process. Assessment of bedform crest peakedness, asymmetry, and small-scale bedform evolution between surveys indicates the impact of different flow regimes on the entire bedform field. This paper presents unique fine-scale imagery of compound and superimposed bedforms, which is used to (1) assess the physical forcing and evolution of a bedform field in San Francisco Bay, and (2) in conjunction with numerical modeling, gain a better fundamental understanding of boundary-layer flow dynamics that result in the observed superimposed bedform orientation.
Mineral Biomarkers in Martian Meteorite Allan Hills 84001?
NASA Technical Reports Server (NTRS)
Thomas-Keprta, K. L.; Bazylinski, D. A.; Wentworth, S. J.; McKay, D. S.; Golden, D. C.; Gibson, E. K., Jr.; Romanek, C. S.
1998-01-01
The occurrence of fine-grained magnetite in the Fe-rich rims surrounding carbonate globules in the martian meteorite ALH84001, originally described in , have been proposed as fossil remains of primitive martian organisms. Here we report observations on size and shape distributions of magnetites from ALH84001 and compare them to biogenic and inorganic magnetite crystals of terrestrial origin. While some magnetite morphology is not unequivocally diagnostic for its biogenicity, such as cubodial forms of magnetite, which are common in inorganically formed magnetites, other morphologies of magnetite (parallel-epiped or elongated prismatic and arrowhead forms) are more likely signatures of biogenic activity. Some ALH 84001 magnetite particles described below have unique morphology and length-to-width ratios that are indistinguishable from a variety of terrestrial biogenic magnetite and distinct from all known inorganic forms of magnetite.
NASA Astrophysics Data System (ADS)
Grabowski, Robert; Gurnell, Angela
2016-04-01
Physical habitat restoration is increasingly being used to improve the ecological status of rivers. This is particularly true for lowland streams which are perceived to lack sufficient energy to create new features or to flush out fine sediment derived from agricultural and urban sources. However, this study has found that even in low-energy, base-flow dominated chalk streams, physical habitat improvement can happen naturally without direct human intervention. Furthermore this positive change is achieved by components of the river that are often regarded as management problems: in-stream macrophytes (i.e. weed), riparian trees, woody debris, and most importantly fine sediment. This project investigated the long-term changes in channel planform for the River Frome (Dorset, UK) over the last 120 years and the role of aquatic and riparian vegetation in driving this change. Agricultural census data, historical maps, recent aerial images and field observations were analysed within a process-based, hierarchical framework for hydromorphological assessment, developed in the EU FP7 REFORM project, to investigate the source and timing of fine sediment production in the catchment, to quantify the reach-scale geomorphic response, and to identify vegetation-related bedforms that could be responsible for the adjustment. The analysis reveals that the channel has narrowed and become more sinuous in the last 50-60 years. The timing of this planform adjustment correlates with substantial changes in land use and agricultural practices (post-World War II) that are known to increase soil erosion and sediment connectivity. The field observations and recent aerial images suggest that the increased delivery of fine sediment to the channel has been translated into geomorphic adjustment and diversification though the interactions between vegetation, water flow and sediment. Emergent aquatic macrophytes are retaining fine sediment, leading to the development of submerged shelves that aggrade over time to form bars, berms and benches. This process drives the extension of the river bank into the channel, narrowing it and increasing sinuosity. In reaches with well-developed woody riparian vegetation, the geomorphic changes are more complex, with fine sediment being absorbed into a diverse mosaic of geomorphic features initiated by living trees and large wood. This study underlines the importance of vegetation for the geomorphic adjustment and diversification of lowland rivers and as a component of sustainable river management.
Model Analysis of Fine Structures of Student Models: An Example with Newton's Third Law.
ERIC Educational Resources Information Center
Bao, Lei; Hogg, Kirsten; Zollman, Dean
2002-01-01
Studies the role of context in students' uses of alternative conceptual models by using Newton's third law. Identifies four contextual features that are frequently used by students in their reasoning. Probes the effects of specific contextual features on student reasoning using a multiple-choice survey. (Contains 39 references.) (Author/YDS)
Sloppy morphological tuning in identified neurons of the crustacean stomatogastric ganglion
Otopalik, Adriane G; Goeritz, Marie L; Sutton, Alexander C; Brookings, Ted; Guerini, Cosmo; Marder, Eve
2017-01-01
Neuronal physiology depends on a neuron’s ion channel composition and unique morphology. Variable ion channel compositions can produce similar neuronal physiologies across animals. Less is known regarding the morphological precision required to produce reliable neuronal physiology. Theoretical studies suggest that moraphology is tightly tuned to minimize wiring and conduction delay of synaptic events. We utilize high-resolution confocal microscopy and custom computational tools to characterize the morphologies of four neuron types in the stomatogastric ganglion (STG) of the crab Cancer borealis. Macroscopic branching patterns and fine cable properties are variable within and across neuron types. We compare these neuronal structures to synthetic minimal spanning neurite trees constrained by a wiring cost equation and find that STG neurons do not adhere to prevailing hypotheses regarding wiring optimization principles. In this highly modulated and oscillating circuit, neuronal structures appear to be governed by a space-filling mechanism that outweighs the cost of inefficient wiring. DOI: http://dx.doi.org/10.7554/eLife.22352.001 PMID:28177286
The Nature of the Optical "Jets" in the Spiral Galaxy NGC 1097
NASA Technical Reports Server (NTRS)
Wehrle, Ann E.; Keel, William C.; Jones, Dayton L.
1997-01-01
We present new observations of the jet features in the barred spiral galaxy NGC 1097, including optical spectroscopy of the brightest jet features, two-color optical imagery, new VLA mapping at 327 MHz, and archival 1.4 GHz VLA data reprocessed for improved sensitivity. No optical emission lines appear to an equivalent width limit of 15-30 A (depending on the line wavelength). The jets are uniformly blue, with B - V = 0.45 for the two well-observed jets R1 and R2. No radio emission from the jets is detected at either frequency; the 327-MHz data set particularly stringent limits on "fossil" emission from aging synchrotron electrons. The morphology of the jets is shown to be inconsistent with any conical distribution of emission enhanced by edge-brightening; their combination of transverse profile and relative narrowness cannot be reproduced with cone models. The optical colors, lack of radio emission, and morphology of the features lead us to conclude that they are tidal manifestations, perhaps produced by multiple encounters of the small elliptical companion NGC 1097A with the disk of NGC 1097. We present photometric and morphological comparisons to the tail of NGC 465 1, which is similar in scale and morphology to the northeast "dogleg" feature R1 in NGC 1097.
Average combination difference morphological filters for fault feature extraction of bearing
NASA Astrophysics Data System (ADS)
Lv, Jingxiang; Yu, Jianbo
2018-02-01
In order to extract impulse components from vibration signals with much noise and harmonics, a new morphological filter called average combination difference morphological filter (ACDIF) is proposed in this paper. ACDIF constructs firstly several new combination difference (CDIF) operators, and then integrates the best two CDIFs as the final morphological filter. This design scheme enables ACIDF to extract positive and negative impacts existing in vibration signals to enhance accuracy of bearing fault diagnosis. The length of structure element (SE) that affects the performance of ACDIF is determined adaptively by a new indicator called Teager energy kurtosis (TEK). TEK further improves the effectiveness of ACDIF for fault feature extraction. Experimental results on the simulation and bearing vibration signals demonstrate that ACDIF can effectively suppress noise and extract periodic impulses from bearing vibration signals.
Pituitary carcinoma diagnosed on fine needle aspiration: Report of a case and review of pathogenesis
Yakoushina, Tatiana V.; Lavi, Ehud; Hoda, R. S.
2010-01-01
Pituitary carcinoma (PC) is a very rare entity (0.2% of all pituitary tumors), with only about 140 cases reported in English literature. There are no reliable histological, immunohistochemical or ultrastructural features distinguishing pituitary adenoma (PA) from PC. By definition, a diagnosis of PC is made after a patient with PA develops non-contiguous central nervous system (CNS) or systemic metastases. To date, only three cases of PC have been reportedly diagnosed on fine needle aspiration (FNA). Two of the reported cases were diagnosed on FNA of the cervical lymph nodes and one on FNA of the vertebral bone lesion. Herein, we present a case of PC, diagnosed on FNA of the liver lesion. In this case, we describe cytologic features of PC and compare them to histologic features of the tumor in the pituitary. Clinical behavior of tumor, pathogenesis of metastasis and immunochemical and prognostic markers will also be described. PMID:20806088
A Fine-Scale Functional Logic to Convergence from Retina to Thalamus.
Liang, Liang; Fratzl, Alex; Goldey, Glenn; Ramesh, Rohan N; Sugden, Arthur U; Morgan, Josh L; Chen, Chinfei; Andermann, Mark L
2018-05-31
Numerous well-defined classes of retinal ganglion cells innervate the thalamus to guide image-forming vision, yet the rules governing their convergence and divergence remain unknown. Using two-photon calcium imaging in awake mouse thalamus, we observed a functional arrangement of retinal ganglion cell axonal boutons in which coarse-scale retinotopic ordering gives way to fine-scale organization based on shared preferences for other visual features. Specifically, at the ∼6 μm scale, clusters of boutons from different axons often showed similar preferences for either one or multiple features, including axis and direction of motion, spatial frequency, and changes in luminance. Conversely, individual axons could "de-multiplex" information channels by participating in multiple, functionally distinct bouton clusters. Finally, ultrastructural analyses demonstrated that retinal axonal boutons in a local cluster often target the same dendritic domain. These data suggest that functionally specific convergence and divergence of retinal axons may impart diverse, robust, and often novel feature selectivity to visual thalamus. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Twohig, Sarah; Pattison, Ian; Sander, Graham
2017-04-01
Fine sediment poses a significant threat to UK river systems in terms of vegetation, aquatic habitats and morphology. Deposition of fine sediment onto the river bed reduces channel capacity resulting in decreased volume to contain high flow events. Once the in channel problem has been identified managers are under pressure to sustainably mitigate flood risk. With climate change and land use adaptations increasing future pressures on river catchments it is important to consider the connectivity of fine sediment throughout the river catchment and its influence on channel capacity, particularly in systems experiencing long term aggradation. Fine sediment erosion is a continuing concern in the River Eye, Leicestershire. The predominately rural catchment has a history of flooding within the town of Melton Mowbray. Fine sediment from agricultural fields has been identified as a major contributor of sediment delivery into the channel. Current mitigation measures are not sustainable or successful in preventing the continuum of sediment throughout the catchment. Identifying the potential sources and connections of fine sediment would provide insight into targeted catchment management. 'Sensitive Catchment Integrated Modelling Analysis Platforms' (SCIMAP) is a tool often used by UK catchment managers to identify potential sources and routes of sediment within a catchment. SCIMAP is a risk based model that combines hydrological (rainfall) and geomorphic controls (slope, land cover) to identify the risk of fine sediment being transported from source into the channel. A desktop version of SCIMAP was run for the River Eye at a catchment scale using 5m terrain, rainfall and land cover data. A series of SCIMAP model runs were conducted changing individual parameters to determine the sensitivity of the model. Climate Change prediction data for the catchment was used to identify potential areas of future connectivity and erosion risk for catchment managers. The results have been subjected to field validation as part of a wider research project which provides an indication of the robustness of widespread models as effective management tools.
New Evidence for Morphological Errors in Deep Dyslexia
ERIC Educational Resources Information Center
Rastle, Kathleen; Tyler, Lorraine K.; Marslen-Wilson, William
2006-01-01
Morphological errors in reading aloud (e.g., "sexist" [right arrow] "sexy") are a central feature of the symptom-complex known as deep dyslexia, and have historically been viewed as evidence that representations at some level of the reading system are morphologically structured. However, it has been proposed (Funnell, 1987) that morphological…
Do predator-prey relationships on the river bed affect fine sediment ingress?
NASA Astrophysics Data System (ADS)
Mathers, Kate; Rice, Stephen; Wood, Paul
2016-04-01
Ecosystem engineers are organisms that alter their physical environment and thereby influence the flow of resources through ecosystems. In rivers, several ecosystem engineers are also important geomorphological agents that modify fluvial sediment dynamics. By altering channel morphology and bed material characteristics, such modifications can affect the availability of habitats for other organisms, with implications for ecosystem health and wider community composition. In this way geomorphological and ecological systems are intimately interconnected. This paper focuses on one element of this intricate abiotic-biotic coupling: the interaction between fine sediment ingress into the river bed and the predator-prey relationships of aquatic organisms living on and in the river bed. Signal crayfish (Pacifastacus leniusculus) have been shown to modify fine sediment fluxes in rivers, but their effect on fine sediment ingress into riverbeds remains unclear. Many macroinvertebrate taxa have adapted avoidance strategies to avoid predation by crayfish, with one example being the freshwater shrimp (Gammarus pulex) which relies on open interstitial spaces within subsurface sediments as a refuge from crayfish predation. Fine sedimentation that fills gravelly frameworks may preclude access to those spaces, therefore leaving freshwater shrimp susceptible to predation. Ex-situ experiments were conducted which sought to examine: i) if freshwater shrimps and signal crayfish, alone and in combination, influenced fine sediment infiltration rates; and ii) whether modifications to substratum composition, specifically the introduction of fine sediment, modified predator-prey interactions. The results demonstrate that crayfish are significant geomorphic agents and that fine sediment ingress rates were significantly enhanced in their presence compared to control conditions or the presence of only freshwater shrimps. The combination of both organisms (i.e. allowing the interaction between predator and prey) resulted in intermediate fine sediment infiltration rates. The results suggest that reductions in prey availability may enhance crayfish foraging behaviour and therefore their impact on fine sediment ingress into river beds. Consequently, as invading species become more established and prey resources are depleted, the implications of invasive crayfish on fine sediment dynamics may become more prominent. These experiments demonstrate the importance of abiotic-biotic coupling in fluvial systems for both geomorphological and ecological understanding.
A two-stage method for microcalcification cluster segmentation in mammography by deformable models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arikidis, N.; Kazantzi, A.; Skiadopoulos, S.
Purpose: Segmentation of microcalcification (MC) clusters in x-ray mammography is a difficult task for radiologists. Accurate segmentation is prerequisite for quantitative image analysis of MC clusters and subsequent feature extraction and classification in computer-aided diagnosis schemes. Methods: In this study, a two-stage semiautomated segmentation method of MC clusters is investigated. The first stage is targeted to accurate and time efficient segmentation of the majority of the particles of a MC cluster, by means of a level set method. The second stage is targeted to shape refinement of selected individual MCs, by means of an active contour model. Both methods aremore » applied in the framework of a rich scale-space representation, provided by the wavelet transform at integer scales. Segmentation reliability of the proposed method in terms of inter and intraobserver agreements was evaluated in a case sample of 80 MC clusters originating from the digital database for screening mammography, corresponding to 4 morphology types (punctate: 22, fine linear branching: 16, pleomorphic: 18, and amorphous: 24) of MC clusters, assessing radiologists’ segmentations quantitatively by two distance metrics (Hausdorff distance—HDIST{sub cluster}, average of minimum distance—AMINDIST{sub cluster}) and the area overlap measure (AOM{sub cluster}). The effect of the proposed segmentation method on MC cluster characterization accuracy was evaluated in a case sample of 162 pleomorphic MC clusters (72 malignant and 90 benign). Ten MC cluster features, targeted to capture morphologic properties of individual MCs in a cluster (area, major length, perimeter, compactness, and spread), were extracted and a correlation-based feature selection method yielded a feature subset to feed in a support vector machine classifier. Classification performance of the MC cluster features was estimated by means of the area under receiver operating characteristic curve (Az ± Standard Error) utilizing tenfold cross-validation methodology. A previously developed B-spline active rays segmentation method was also considered for comparison purposes. Results: Interobserver and intraobserver segmentation agreements (median and [25%, 75%] quartile range) were substantial with respect to the distance metrics HDIST{sub cluster} (2.3 [1.8, 2.9] and 2.5 [2.1, 3.2] pixels) and AMINDIST{sub cluster} (0.8 [0.6, 1.0] and 1.0 [0.8, 1.2] pixels), while moderate with respect to AOM{sub cluster} (0.64 [0.55, 0.71] and 0.59 [0.52, 0.66]). The proposed segmentation method outperformed (0.80 ± 0.04) statistically significantly (Mann-Whitney U-test, p < 0.05) the B-spline active rays segmentation method (0.69 ± 0.04), suggesting the significance of the proposed semiautomated method. Conclusions: Results indicate a reliable semiautomated segmentation method for MC clusters offered by deformable models, which could be utilized in MC cluster quantitative image analysis.« less
Preliminary experiments on quantification of skin condition
NASA Astrophysics Data System (ADS)
Kitajima, Kenzo; Iyatomi, Hitoshi
2014-03-01
In this study, we investigated a preliminary assessment method for skin conditions such as a moisturizing property and its fineness of the skin with an image analysis only. We captured a facial images from volunteer subjects aged between 30s and 60s by Pocket Micro (R) device (Scalar Co., Japan). This device has two image capturing modes; the normal mode and the non-reflection mode with the aid of the equipped polarization filter. We captured skin images from a total of 68 spots from subjects' face using both modes (i.e. total of 136 skin images). The moisture-retaining property of the skin and subjective evaluation score of the skin fineness in 5-point scale for each case were also obtained in advance as a gold standard (their mean and SD were 35.15 +/- 3.22 (μS) and 3.45 +/- 1.17, respectively). We extracted a total of 107 image features from each image and built linear regression models for estimating abovementioned criteria with a stepwise feature selection. The developed model for estimating the skin moisture achieved the MSE of 1.92 (μS) with 6 selected parameters, while the model for skin fineness achieved that of 0.51 scales with 7 parameters under the leave-one-out cross validation. We confirmed the developed models predicted the moisture-retaining property and fineness of the skin appropriately with only captured image.
NASA Astrophysics Data System (ADS)
Li, Yifan; Liang, Xihui; Lin, Jianhui; Chen, Yuejian; Liu, Jianxin
2018-02-01
This paper presents a novel signal processing scheme, feature selection based multi-scale morphological filter (MMF), for train axle bearing fault detection. In this scheme, more than 30 feature indicators of vibration signals are calculated for axle bearings with different conditions and the features which can reflect fault characteristics more effectively and representatively are selected using the max-relevance and min-redundancy principle. Then, a filtering scale selection approach for MMF based on feature selection and grey relational analysis is proposed. The feature selection based MMF method is tested on diagnosis of artificially created damages of rolling bearings of railway trains. Experimental results show that the proposed method has a superior performance in extracting fault features of defective train axle bearings. In addition, comparisons are performed with the kurtosis criterion based MMF and the spectral kurtosis criterion based MMF. The proposed feature selection based MMF method outperforms these two methods in detection of train axle bearing faults.
NASA Technical Reports Server (NTRS)
Collins, A.; de Wet, A.; Bleacher, J.; Schierl, Z.; Schwans, B.
2012-01-01
The origin of sinuous channels on the flanks of the Tharsis volcanoes on Mars is debated among planetary scientists. Some argue a volcanic genesis [1] while others have suggested a fluvial basis [2-4]. The majority of the studies thus far have focused on channels on the rift apron of Ascraeus Mons. Here, however, we broadly examine the channels on the rift apron of Pavonis Mons and compare them with those studied channels around Ascraeus. We compare the morphologies of features from both of these volcanoes with similar features of known volcanic origin on the island of Hawai i. We show that the morphologies between these two volcanoes in the Tharsis province are very similar and were likely formed by comparable processes, as previous authors have suggested [5]. We show that, although the morphologies of many of the channels around these volcanoes show some parallels to terrestrial fluvial systems, these morphologies can also be formed by volcanic processes. The context of these features suggests that volcanic processes were the more likely cause of these channels.
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1983-01-01
The erosion characteristics of aluminum cylinders sand-blasted with both spherical and angular erodent particles were studied and compared with results from previously studied flat surfaces. The cylindrical results are discussed with respect to impact conditions. The relationship between erosion rate and pit morphology (width, depth, and width to depth ratio) is established. The aspects of (1) erosion rate versus time curves on cylindrical surfaces; (2) long-term exposures; and (3) erosion rate versus time curves with spherical and angular particles are presented. The erosion morphology and characteristics of aluminum surfaces with pre-existing circular cylindrical and conical holes of different sizes were examined using weight loss measurements, scanning electron microscopy, a profilometer, and a depth gage. The morphological features (radial and concentric rings) are discussed with reference to flat surfaces, and the erosion features with spherical microglass beads. The similarities and differences of erosion and morphological features are highlighted. The erosion versus time curves of various shapes of holes are discussed and are compared with those of a flat surface. The erosion process at slits is considered.
Optimization of calcium phosphate fine ceramic powders preparation
NASA Astrophysics Data System (ADS)
Sezanova, K.; Tepavitcharova, S.; Rabadjieva, D.; Gergulova, R.; Ilieva, R.
2013-12-01
The effect of biomimetic synthesis method, reaction medium and further precursor treatments on the chemical and phase composition, crystal size and morphology of calcium phosphates was examined. Nanosized calcium phosphate precursors were biomimetically precipitated by the method of continuous precipitation in three types of reaction media at pH 8: (i) SBF as an inorganic electrolyte system; (ii) organic (glycerine) modified SBF (volume ratio of 1:1); (iii) polymer (10 g/l xanthan gum or 10 g/l guar gum) modified SBF (volume ratio of 1:1). After maturation (24 h) the samples were lyophilized, calcinated at 300°C for 3 hours, and washed with water, followed by new gelation, lyophilization and step-wise (200, 400, 600, 800, and 1000°C, each for 3 hours) sintering. The reaction medium influenced the chemical composition and particle size but not the morphology of the calcium phosphate powders. In all studied cases bi-phase calcium phosphate fine powders with well-shaped spherical grains, consisting of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) with a Ca/P ratio of 1.3 - 1.6 were obtained. The SBF modifiers decreased the particle size of the product in the sequence guar gum ˜ xanthan gum < glycerin < SBF medium.
Silicon production in a fluidized bed reactor
NASA Technical Reports Server (NTRS)
Rohatgi, N. K.
1986-01-01
Part of the development effort of the JPL in-house technology involved in the Flat-Plate Solar Array (FSA) Project was the investigation of a low-cost process to produce semiconductor-grade silicon for terrestrial photovoltaic cell applications. The process selected was based on pyrolysis of silane in a fluidized-bed reactor (FBR). Following initial investigations involving 1- and 2-in. diameter reactors, a 6-in. diameter, engineering-scale FBR was constructed to establish reactor performance, mechanism of silicon deposition, product morphology, and product purity. The overall mass balance for all experiments indicates that more than 90% of the total silicon fed into the reactor is deposited on silicon seed particles and the remaining 10% becomes elutriated fines. Silicon production rates were demonstrated of 1.5 kg/h at 30% silane concentration and 3.5 kg/h at 80% silane concentration. The mechanism of silicon deposition is described by a six-path process: heterogeneous deposition, homogeneous decomposition, coalescence, coagulation, scavenging, and heterogeneous growth on fines. The bulk of the growth silicon layer appears to be made up of small diameter particles. This product morphology lends support to the concept of the scavenging of homogeneously nucleated silicon.
Planetary geological studies. [MARS crater morphology and ejecta deposit topography
NASA Technical Reports Server (NTRS)
Blasius, K. R.
1981-01-01
A global data base was assembled for the study of Mars crater ejecta morphology. The craters were classified as to morhology using individual photographic prints of Viking orbiter frames. Positional and scale information were derived by fitting digitized mosaic coordinates to lattitude-longitude coordinates of surface features from the Mars geodetic control net and feature coordinates from the U.S.G.S. series of 1:5,00,000 scale shaded relief maps. Crater morphology characteristics recorded are of two classes - attributes of each ejecta deposit and other crater charactersitics. Preliminary efforts to check the data base with findings of other workers are described.
Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation
NASA Astrophysics Data System (ADS)
Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel
2016-05-01
In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.
NASA Astrophysics Data System (ADS)
Kalubarme, Ramchandra S.; Kale, Bharat B.; Gosavi, Suresh W.
2017-08-01
Transition metal oxides are widely used in energy storage applications. Stannic oxide nanostructures are prepared using a controlled, NaOH assisted, simple precipitation method. The morphology of the prepared material confirms the formation of fine nanoparticles having a rutile stannic oxide (SnO2) phase, with cassiterite structure, and size distribution ~20 nm. On testing, as an anode material for a Li-ion battery, stannic oxide delivers a reversible charge capacity of 957 mAh g-1 at an applied current rate of C/10. The stannic oxide shows excellent rate performance displaying capacity of 577 mAh g-1 at 10 C and capacity of 919 mAh g-1 retained after 200 cycles at an applied current rate of C/2. The super performance of stannic oxide fine particles stem from both the effective diffusion of Li-ions to reaction sites through porous channels and weaker stress/strain during Li insertion/desertion owing to its fine size.
Seo, Mirinae; Chang, Jung Min; Kim, Won Hwa; Park, In-Ae; Lee, Su Hyun; Cho, Nariya; Moon, Woo Kyung
2013-10-01
The purpose of this study was to evaluate the underestimation rate and predictive factor of underestimation of columnar cell lesions (CCLs) without atypia diagnosed through breast core needle biopsies (CNBs). From January 2007 through December 2011, 141 CCLs without atypia, including columnar cell change and columnar cell hyperplasia, were diagnosed in 138 women by CNB. Excisional (n = 16) or imaging follow-up (n = 125) findings were available in all cases. On a per-lesion basis, the underestimation rate and predictive factor of underestimation were evaluated. Among the 16 surgically excised lesions, there were two malignancies (one ductal carcinoma in situ and one invasive ductal carcinoma) and one lobular carcinoma in situ. Overall, the pooled underestimation rate of malignancy was 1.4% (2/141). With regard to lesion variables, the mean lesion size was significantly larger in the underestimation group of CCLs (p = 0.007). Fine pleomorphic morphology of microcalcifications (p < 0.001), the distribution of the microcalcifications (p = 0.007), BI-RADS final assessment (p = 0.001), and imaging-pathologic correlation (p < 0.001) were significantly associated with underestimation. Multivariate analysis showed that fine pleomorphic morphology of microcalcifications (p < 0.0001) was an independent predictor of underestimation in 58 lesions with microcalcifications on mammography. The overall underestimation rate of malignancy was 1.4%. Imaging follow-up is reasonable for CCLs without atypia at CNB, especially in small lesions with less suspicious imaging findings. Fine pleomorphic microcalcifications and higher BI-RADS category might be helpful in the prediction of underestimation of a high-risk lesion or malignancy.
Kim, Yeun; Perinpanayagam, Hiran; Lee, Jong-Ki; Yoo, Yeon-Jee; Oh, Soram; Gu, Yu; Lee, Seung-Pyo; Chang, Seok Woo; Lee, Woocheol; Baek, Seung-Ho; Zhu, Qiang; Kum, Kee-Yeon
2015-08-01
Micro-computed tomography (MCT) with alternative image reformatting techniques shows complex and detailed root canal anatomy. This study compared two-dimensional (2D) and 3D MCT image reformatting with standard tooth clearing for studying mandibular first molar mesial root canal morphology. Extracted human mandibular first molar mesial roots (n=31) were scanned by MCT (Skyscan 1172). 2D thin-slab minimum intensity projection (TS-MinIP) and 3D volume rendered images were constructed. The same teeth were then processed by clearing and staining. For each root, images obtained from clearing, 2D, 3D and combined 2D and 3D techniques were examined independently by four endodontists and categorized according to Vertucci's classification. Fine anatomical structures such as accessory canals, intercanal communications and loops were also identified. Agreement among the four techniques for Vertucci's classification was 45.2% (14/31). The most frequent were Vertucci's type IV and then type II, although many had complex configurations that were non-classifiable. Generally, complex canal systems were more clearly visible in MCT images than with standard clearing and staining. Fine anatomical structures such as intercanal communications, accessory canals and loops were mostly detected with a combination of 2D TS-MinIP and 3D volume-rendering MCT images. Canal configurations and fine anatomic structures were more clearly observed in the combined 2D and 3D MCT images than the clearing technique. The frequency of non-classifiable configurations demonstrated the complexity of mandibular first molar mesial root canal anatomy.
Cangiotti, Angela Maria; Lorenzi, Teresa; Zingaretti, Maria Cristina; Fabri, Mara; Morroni, Manrico
2018-05-01
The morphology of the kidney macula densa (MD) has extensively been investigated in animals, whereas human studies are scanty. We studied the fine structure of human MD cells focusing on their apical and basal ends and correlating structure and function. The MD region was examined by transmission electron microscopy in six renal biopsies from patients with kidney disease. Ultrastructural analysis of MD cells was performed on serial sections. MD cells show two polarized ends. The apical portion is characterized by a single, immotile cilium associated with microvilli; apically, cells are joined by adhering junctions. In the basal portion, the cytoplasm contains small, dense granules and numerous, irregular cytoplasmic projections extending to the adjacent extraglomerular mesangium. The projections often contain small, dense granules. A reticulated basement membrane around MD cells separates them from the extraglomerular mesangium. Although the fact that tissue specimens came from patients with kidney disease mandates extreme caution, ultrastructural examination confirmed that MD cells have sensory features due to the presence of the primary cilium, that they are connected by apical adhering junctions forming a barrier that separates the tubular flow from the interstitium, and that they present numerous basal interdigitations surrounded by a reticulated basement membrane. Conceivably, the latter two features are related to the functional activity of the MD. The small, dense granules in the basal cytoplasm and in cytoplasmic projections are likely related to the paracrine function of MD cells. Anat Rec, 301:922-931, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DeepPap: Deep Convolutional Networks for Cervical Cell Classification.
Zhang, Ling; Le Lu; Nogues, Isabella; Summers, Ronald M; Liu, Shaoxiong; Yao, Jianhua
2017-11-01
Automation-assisted cervical screening via Pap smear or liquid-based cytology (LBC) is a highly effective cell imaging based cancer detection tool, where cells are partitioned into "abnormal" and "normal" categories. However, the success of most traditional classification methods relies on the presence of accurate cell segmentations. Despite sixty years of research in this field, accurate segmentation remains a challenge in the presence of cell clusters and pathologies. Moreover, previous classification methods are only built upon the extraction of hand-crafted features, such as morphology and texture. This paper addresses these limitations by proposing a method to directly classify cervical cells-without prior segmentation-based on deep features, using convolutional neural networks (ConvNets). First, the ConvNet is pretrained on a natural image dataset. It is subsequently fine-tuned on a cervical cell dataset consisting of adaptively resampled image patches coarsely centered on the nuclei. In the testing phase, aggregation is used to average the prediction scores of a similar set of image patches. The proposed method is evaluated on both Pap smear and LBC datasets. Results show that our method outperforms previous algorithms in classification accuracy (98.3%), area under the curve (0.99) values, and especially specificity (98.3%), when applied to the Herlev benchmark Pap smear dataset and evaluated using five-fold cross validation. Similar superior performances are also achieved on the HEMLBC (H&E stained manual LBC) dataset. Our method is promising for the development of automation-assisted reading systems in primary cervical screening.
A Late Pleistocene-Holocene wetland megafan in the Brazilian Amazonia
NASA Astrophysics Data System (ADS)
Rossetti, D. F.; Zani, H.; Cohen, M. C. L.; Cremon, É. H.
2012-12-01
Despite the growing interest in megafans, definitions provided for this type of environmental setting have not yet been widely agreed upon. A record of sedimentary facies distribution in both space and time including a larger number of analogs is particularly needed for improving megafan facies models. This work focuses on a large fan-like feature from an Amazonian wetland in northern Brazil. Morphological data based on remote sensing, as well as sedimentary facies and radiocarbon analyses, were integrated to propose that this feature is related to a megafan system active during the Late Pleistocene to Holocene. The megafan displays a divergent drainage network, gently-dipping slope, and concave-up and convex-up longitudinal and transverse profiles, respectively. Near surface deposits correspond to fining and coarsening upward sands related to active channels and overbank sand sheets/terminal fan lobes. Sediments are interbedded with abandoned channel/floodplain and lake/pond muds. Morphostructural analyses and drainage anomalies revealed a geological setting affected by reactivation of pre-existing faults contemporaneous with sediment accumulation. Establishment of a megafan system in this wetland most likely occurred within a slightly tectonically subsiding basin under favorable climatic conditions. During wet seasons, high water discharge would have favored sediment transport from highlands into this depositional site. High summer temperatures and drought under a monsoonal regime kept the water levels low. The described megafan could serve as an analog for contemporary tropical wetland megafans formed under a monsoonal climate regime.
Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming
2015-01-01
Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832
Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy
Ferrer, Isidro; Grinberg, Lea T.; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J.; Crary, John F.; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M.; Ironside, James W.; Love, Seth; Mackenzie, Ian R.; Munoz, David G.; Murray, Melissa E.; Nelson, Peter T.; Takahashi, Hitoshi; Trojanowski, John Q.; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G.; Bieniek, Kevin F.; Bigio, Eileen H.; Bodi, Istvan; Dugger, Brittany N.; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M.; Giaccone, Giorgio; Hatanpaa, Kimmo J.; Heale, Richard; Hof, Patrick R.; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A.; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J.; Mann, David M.; Matej, Radoslav; McKee, Ann C.; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J.; Murayama, Shigeo; Lee, Edward B.; Rahimi, Jasmin; Rodriguez, Roberta D.; Rozemüller, Annemieke; Schneider, Julie A.; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B.; Tolnay, Markus; Troncoso, Juan C.; Vinters, Harry V.; Weis, Serge; Wharton, Stephen B.; White, Charles L.; Wisniewski, Thomas; Woulfe, John M.; Yamada, Masahito
2016-01-01
Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of astroglial tau pathology in the aged brain, facilitating communication among neuropathologists and researchers, and informing interpretation of clinical biomarkers and imaging studies that focus on tau-related indicators. PMID:26659578
Utility of Modified Ultrafast Papanicolaou Stain in Cytological Diagnosis
Arakeri, Surekha Ulhas
2017-01-01
Introduction Need for minimal turnaround time for assessing Fine Needle Aspiration Cytology (FNAC) has encouraged innovations in staining techniques that require lesser staining time with unequivocal cell morphology. The standard protocol for conventional Papanicolaou (PAP) stain requires about 40 minutes. To overcome this, Ultrafast Papanicolaou (UFP) stain was introduced which reduces staining time to 90 seconds and also enhances the quality. However, reagents required for this were not easily available hence, Modified Ultrafast Papanicolaou (MUFP) stain was introduced subsequently. Aim To assess the efficacy of MUFP staining by comparing the quality of MUFP stain with conventional PAP stain. Materials and Methods FNAC procedure was performed by using 10 ml disposable syringe and 22-23 G needle. Total 131 FNAC cases were studied which were lymph node (30), thyroid (38), breast (22), skin and soft tissue (24), salivary gland (11) and visceral organs (6). Two smears were prepared and stained by MUFP and conventional PAP stain. Scores were given on four parameters: background of smears, overall staining pattern, cell morphology and nuclear staining. Quality Index (QI) was calculated from ratio of total score achieved to maximum score possible. Statistical analysis using chi square test was applied to each of the four parameters before obtaining the QI in both stains. Students t-test was applied to evaluate the efficacy of MUFP in comparison with conventional PAP stain. Results The QI of MUFP for thyroid, breast, lymph node, skin and soft tissue, salivary gland and visceral organs was 0.89, 0.85, 0.89, 0.83, 0.92, and 0.78 respectively. Compared to conventional PAP stain QI of MUFP smears was better in all except visceral organ cases and was statistically significant. MUFP showed clear red blood cell background, transparent cytoplasm and crisp nuclear features. Conclusion MUFP is fast, reliable and can be done with locally available reagents with unequivocal morphology which is the need of the hour for a cytopathology set-up. PMID:28511391
Utility of Modified Ultrafast Papanicolaou Stain in Cytological Diagnosis.
Sinkar, Prachi; Arakeri, Surekha Ulhas
2017-03-01
Need for minimal turnaround time for assessing Fine Needle Aspiration Cytology (FNAC) has encouraged innovations in staining techniques that require lesser staining time with unequivocal cell morphology. The standard protocol for conventional Papanicolaou (PAP) stain requires about 40 minutes. To overcome this, Ultrafast Papanicolaou (UFP) stain was introduced which reduces staining time to 90 seconds and also enhances the quality. However, reagents required for this were not easily available hence, Modified Ultrafast Papanicolaou (MUFP) stain was introduced subsequently. To assess the efficacy of MUFP staining by comparing the quality of MUFP stain with conventional PAP stain. FNAC procedure was performed by using 10 ml disposable syringe and 22-23 G needle. Total 131 FNAC cases were studied which were lymph node (30), thyroid (38), breast (22), skin and soft tissue (24), salivary gland (11) and visceral organs (6). Two smears were prepared and stained by MUFP and conventional PAP stain. Scores were given on four parameters: background of smears, overall staining pattern, cell morphology and nuclear staining. Quality Index (QI) was calculated from ratio of total score achieved to maximum score possible. Statistical analysis using chi square test was applied to each of the four parameters before obtaining the QI in both stains. Students t-test was applied to evaluate the efficacy of MUFP in comparison with conventional PAP stain. The QI of MUFP for thyroid, breast, lymph node, skin and soft tissue, salivary gland and visceral organs was 0.89, 0.85, 0.89, 0.83, 0.92, and 0.78 respectively. Compared to conventional PAP stain QI of MUFP smears was better in all except visceral organ cases and was statistically significant. MUFP showed clear red blood cell background, transparent cytoplasm and crisp nuclear features. MUFP is fast, reliable and can be done with locally available reagents with unequivocal morphology which is the need of the hour for a cytopathology set-up.
Hydrograph Shape Controls Channel Morphology and Organization in a Sand-Gravel Flume
NASA Astrophysics Data System (ADS)
Hempel, L. A.; Grant, G.; Hassan, M. A.; Eaton, B. C.
2016-12-01
A fundamental research question in fluvial geomorphology is to understand what flows shape river channels. Historically, the prevailing view has been that channel dimensions adjust to a so-termed "dominant discharge", which is often approximated as the bankfull flow. But using a single flow to reference the geomorphic effectiveness of an entire flow regime discounts many observations showing that different flows control different channel processes. Some flows entrain fine sediment, some entrain the full size distribution of bed sediment; some destabilize or build bars, some erode the banks, and so forth. To explore the relation between the full flow regime and channel morphology, we conducted a series of flume experiments to examine how hydrographs with different shapes, durations, and magnitudes result in different degrees of channel organization, which we define in terms of the regularity, spacing and architecture of self-formed channel features, such as bed patches, geometry and spacing of bedforms, and channel planform. Our experiments were run in a 12m long adjustable-width flume that developed a self-formed meandering, pool-riffle pattern. We found that hydrograph shape does control channel organization. In particular, channels formed by hydrographs with slower rising limbs and broader peaks were more organized than those formed by flashier hydrographs. To become organized, hydrographs needed to exceed a minimum flow threshold, defined by the intensity of sediment transport; below which the channel lacked bedforms and a regular meander pattern. Above an upper flow threshold, bars became disorganized and the channel planform transitioned towards braiding. Field studies of channels with different flow regimes but located in a similar physiographic setting support our experimental findings. Taken together, this work points to the importance of the hydrograph as a fundamental control on channel morphology, and offers the prospect of better understanding how changing hydrologic regimes, either through climate, land use, or dams, translates into geomorphic changes.
Zaer, F S; Braylan, R C; Zander, D S; Iturraspe, J A; Almasri, N M
1998-06-01
Primary mucosa associated lymphoid tissue (MALT) lymphomas are rare neoplasms that seem to have a better prognosis than nodal lymphomas. Morphologic diagnosis of these lesions may be difficult because of features that overlap with those of benign lymphoid infiltrates. In this study, we assessed the contribution of multi-parametric flow cytometry in demonstrating clonality and further characterizing pulmonary MALT lymphomas. Based on a clinical or pathologic suspicion of MALT-lymphoma, 3 transbronchial biopsies, 4 fine needle aspirates, 1 core needle biopsy, and 13 wedge excisions of lung were submitted fresh (unfixed) to our laboratory for evaluation. Among the 13 cases diagnosed as MALT lymphomas, B-cell monoclonality was established by identifying expression of a single immunoglobulin light chain on CD20 or CD19-positive cells in 12 cases. One case lacked expression of both light chains on B-cells. Of 11 lymphoma cases in which CD5 and CD10 surface antigens were assessed, no cases expressed CD10, and 1 case demonstrated weak CD5 expression. Nine of 10 cases studied were diploid and 1 case was hyperdiploid. All of the lymphomas displayed low (< or = 3%) S-phase fractions consistent with low grade processes. In 10 patients with short follow-up, none died of their disease and the majority had no evidence of lymphoma dissemination. In seven of the remaining eight cases, B-cells were polyclonal consistent with reactive processes. In one morphologically reactive case, flow cytometric analysis was unsuccessful because of poor cell viability. The pulmonary MALT lymphomas in this study represent a group of B-cell tumors with distinctive morphologic, immunophenotypic, and cell kinetic characteristics. Multi-parametric flow cytometry is useful for confirming B-cell monoclonality and illustrating an antigenic profile compatible with this diagnosis. Flow cytometry can be particularly helpful when working with small biopsies and cytologic samples with limited diagnostic material and may abrogate the need for more aggressive surgical procedures.
Optimizing morphology through blood cell image analysis.
Merino, A; Puigví, L; Boldú, L; Alférez, S; Rodellar, J
2018-05-01
Morphological review of the peripheral blood smear is still a crucial diagnostic aid as it provides relevant information related to the diagnosis and is important for selection of additional techniques. Nevertheless, the distinctive cytological characteristics of the blood cells are subjective and influenced by the reviewer's interpretation and, because of that, translating subjective morphological examination into objective parameters is a challenge. The use of digital microscopy systems has been extended in the clinical laboratories. As automatic analyzers have some limitations for abnormal or neoplastic cell detection, it is interesting to identify quantitative features through digital image analysis for morphological characteristics of different cells. Three main classes of features are used as follows: geometric, color, and texture. Geometric parameters (nucleus/cytoplasmic ratio, cellular area, nucleus perimeter, cytoplasmic profile, RBC proximity, and others) are familiar to pathologists, as they are related to the visual cell patterns. Different color spaces can be used to investigate the rich amount of information that color may offer to describe abnormal lymphoid or blast cells. Texture is related to spatial patterns of color or intensities, which can be visually detected and quantitatively represented using statistical tools. This study reviews current and new quantitative features, which can contribute to optimize morphology through blood cell digital image processing techniques. © 2018 John Wiley & Sons Ltd.
Morphological comparison of archaic Homo sapiens crania from China and Africa.
Wu, X; Bräuer, G
1993-12-01
Regional features play a great role in the analysis of the differentiations of Homo erectus and Homo sapiens. However, this poses the question how widespread and variable these features are. In order to examine this with regard to the features commonly seen in China their occurrence and variability were determined in Chinese as well as in African crania of archaic and late Pleistocene/Holocene modern Homo sapiens. Furthermore, some features known from Africa were examined with regard to their occurrence and variability in China. Although the variability might change due to new finds, the present results for some features point to larger morphological spectra in the African than in the Chinese archaic Homo sapiens. It is furthermore remarkable that the early modern Chinese in many features show deviations from the pattern of archaic Homo sapiens of this region and exhibit broader spectra similar to those seen in African archaic and early modern Homo sapiens.
Adaptive root foraging strategies along a boreal-temperate forest gradient.
Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak
2017-08-01
The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Fine structural dependence of ultraviolet reflections in the King Penguin beak horn.
Dresp, Birgitta; Langley, Keith
2006-03-01
The visual perception of many birds extends into the near-ultraviolet (UV) spectrum and ultraviolet is used by some to communicate. The beak horn of the King Penguin (Aptenodytes patagonicus) intensely reflects in the ultraviolet and this appears to be implicated in partner choice. In a preliminary study, we recently demonstrated that this ultraviolet reflectance has a structural basis, resulting from crystal-like photonic structures, capable of reflecting in the near-UV. The present study attempted to define the origin of the photonic elements that produce the UV reflectance and to better understand how the UV signal is optimized by their fine structure. Using light and electron microscopic analysis combined with new spectrophotometric data, we describe here in detail the fine structure of the entire King Penguin beak horn in addition to that of its photonic crystals. The data obtained reveal a one-dimensional structural periodicity within this tissue and demonstrate a direct relationship between its fine structure and its function. In addition, they suggest how the photonic structures are produced and how they are stabilized. The measured lattice dimensions of the photonic crystals, together with morphological data on its composition, permit predictions of the wavelength of reflected light. These correlate well with experimentally observed values. The way the UV signal is optimized by the fine structure of the beak tissue is discussed with regard to its putative biological role.
Disentangling the phylogenetic and ecological components of spider phenotypic variation.
Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo
2014-01-01
An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure.
Disentangling the Phylogenetic and Ecological Components of Spider Phenotypic Variation
Gonçalves-Souza, Thiago; Diniz-Filho, José Alexandre Felizola; Romero, Gustavo Quevedo
2014-01-01
An understanding of how the degree of phylogenetic relatedness influences the ecological similarity among species is crucial to inferring the mechanisms governing the assembly of communities. We evaluated the relative importance of spider phylogenetic relationships and ecological niche (plant morphological variables) to the variation in spider body size and shape by comparing spiders at different scales: (i) between bromeliads and dicot plants (i.e., habitat scale) and (ii) among bromeliads with distinct architectural features (i.e., microhabitat scale). We partitioned the interspecific variation in body size and shape into phylogenetic (that express trait values as expected by phylogenetic relationships among species) and ecological components (that express trait values independent of phylogenetic relationships). At the habitat scale, bromeliad spiders were larger and flatter than spiders associated with the surrounding dicots. At this scale, plant morphology sorted out close related spiders. Our results showed that spider flatness is phylogenetically clustered at the habitat scale, whereas it is phylogenetically overdispersed at the microhabitat scale, although phylogenic signal is present in both scales. Taken together, these results suggest that whereas at the habitat scale selective colonization affect spider body size and shape, at fine scales both selective colonization and adaptive evolution determine spider body shape. By partitioning the phylogenetic and ecological components of phenotypic variation, we were able to disentangle the evolutionary history of distinct spider traits and show that plant architecture plays a role in the evolution of spider body size and shape. We also discussed the relevance in considering multiple scales when studying phylogenetic community structure. PMID:24651264
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J.R.; Miller, S.M.O.; Torzynski, C.A.
Many studies have debated whether beach cusps are erosional or depositional features. The April 12-14, 1988, extratropical storm provided an opportunity to view the direct effects of one of the largest storms of the past decade upon beach sedimentology and morphology on barrier islands near Duck, North Carolina. Prior to the storm, the beach at Duck was characterized by a well-defined pattern of beach cusps with horn-to-horn spacings averaging 35 m. Storm-induced alterations were dominated by an initial period of beach erosion that remobilized the upper 30 to 50 cm of beach sediment, followed by aggradation. Net aggradation was mostmore » prominent along the middle beachface and within the pre-storm cusp bays. These morphologic adjustments resulted in the destruction of cusps, which were replaced with a post-storm planar beachface composed of horizontally bedded fine- to coarse-grained sediments. Within 24 hrs of storm subsidence, new beach cusps formed sequentially along the coast in the direction of longshore transport. Initial cusp formation resulted from beach erosion and the creation of bays in the planar storm-beach surface at positions of preferential post-storm runup. The initial cusp horns were composed of truncated horizontal beds of the planar beach accreted during the storm. After their formation, the cusps sequentially migrated downdrift. Migrating horns were composed of a coarse-grained sediment wedge that thickened toward horn crests, suggesting formation by deposition. It is concluded from these observations that beach cusps are both erosional and depositional in nature.« less
Cai, Hongmin; Peng, Yanxia; Ou, Caiwen; Chen, Minsheng; Li, Li
2014-01-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly used for breast cancer diagnosis as supplementary to conventional imaging techniques. Combining of diffusion-weighted imaging (DWI) of morphology and kinetic features from DCE-MRI to improve the discrimination power of malignant from benign breast masses is rarely reported. The study comprised of 234 female patients with 85 benign and 149 malignant lesions. Four distinct groups of features, coupling with pathological tests, were estimated to comprehensively characterize the pictorial properties of each lesion, which was obtained by a semi-automated segmentation method. Classical machine learning scheme including feature subset selection and various classification schemes were employed to build prognostic model, which served as a foundation for evaluating the combined effects of the multi-sided features for predicting of the types of lesions. Various measurements including cross validation and receiver operating characteristics were used to quantify the diagnostic performances of each feature as well as their combination. Seven features were all found to be statistically different between the malignant and the benign groups and their combination has achieved the highest classification accuracy. The seven features include one pathological variable of age, one morphological variable of slope, three texture features of entropy, inverse difference and information correlation, one kinetic feature of SER and one DWI feature of apparent diffusion coefficient (ADC). Together with the selected diagnostic features, various classical classification schemes were used to test their discrimination power through cross validation scheme. The averaged measurements of sensitivity, specificity, AUC and accuracy are 0.85, 0.89, 90.9% and 0.93, respectively. Multi-sided variables which characterize the morphological, kinetic, pathological properties and DWI measurement of ADC can dramatically improve the discriminatory power of breast lesions.
Space sequestration below ground in old-growth spruce-beech forests-signs for facilitation?
Bolte, Andreas; Kampf, Friederike; Hilbrig, Lutz
2013-01-01
Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area.
Sable, K A; Wohl, E
2006-05-01
Lithology is one of many factors influencing the amount, grain size distribution, and location of fine sediment deposition on the bed of mountain stream channels. In the Oregon Coast Range, 18 pool-riffle stream reaches with similar slope and intact riparian area and relatively unaffected by logjams were surveyed for assessment of fine sediment deposition. Half of the streams were in watersheds underlain by relatively erodible sandstone. The other half were underlain by a more resistant basalt. Channel morphology, hydraulic variables, particle size, relative pool volume of fine sediment (V*), and wood characteristics were measured in the streams. A significantly higher amount of fine sediment was deposited in the sandstone channels than in the basalt channels, as indicated by V*. Grab samples of sediment from pools also were significantly finer grained in the sandstone channels. Geographic information systems (GIS) software was used to derive several variables that might correlate with fine sediment deposition. These variables were combined with those derived from field data to create multiple linear regression models to be used for further exploration of the type and relative influence of factors affecting fine sediment deposition. Lithology appeared to be significant in some of these models, but usually was not the primary driver. The results from these models indicate that V* at the reach scale is best explained by stream power per unit area and by the volume of wood perpendicular to the flow per channel area (R(2) = 0.46). Findings show that V* is best explained using only watershed scale variables, including negative correlations with relief ratio and basin precipitation index, and positive correlations with maximum slope and circularity.
Space sequestration below ground in old-growth spruce-beech forests—signs for facilitation?
Bolte, Andreas; Kampf, Friederike; Hilbrig, Lutz
2013-01-01
Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area. PMID:24009616
Micro-topography, rock surface modelling and minerology of notches in Mount Carmel
NASA Astrophysics Data System (ADS)
Brook, Anna; Ben-Binyamin, Atzmon; Shtober-Zisu, Nurit
2016-04-01
Notches are defined as horizontal concaved indentations developed on slopes or cliffs in a basic "C" shape regardless of their location or formation process. Many studies have proclaimed that notches are associated with coastal processes where rocky shore faces are back carved, parallel to sea level by a combination of physical and biological abrasion, and by chemical and biological dissolution. The notches morphologies are various and depend on the lithology, climate, and environment history. These changes involve complex volumetric effects such as weathering and surface mineral dissolution. The main impetus for the present paper is to advance the modeling and the 3D complex pattern reconstruction of notch's cavity surface and detailed shapes and to assess the association between the morphological structures observed upon the notch parts and the fine scale mineralogical composition of the rock. The reconstruction of 3D surfaces using point clouds scanned data is a known problem in computer graphics. Several approaches are based on combinatorial structures, such as Delaunay triangulations, alpha shapes, or Voronoi diagrams. These schemes typically create a triangle mesh that interpolates all or most of the points. In the presence of noisy data, resulting surface is often jagged, and is therefore smoothed or refit to the points in subsequent processing. Fast Fourier Transform (FFT) is a common technique for solving dense, periodic Poisson systems. However, the FFT requires longer time and larger space, quickly becoming prohibitive for fine resolutions. The Poisson approach's key element is the observation that inward normal field of the boundary can be inferred as the gradient of a three dimensional solid indicator function. Thus, the generation of a watertight mesh can be obtained by: (1) transforming the oriented point samples into a continuous vector field referred to as the relationship between the gradient of the indicator function and an integral of surface normals. The computation of the indicator function is reduced to (2) finding a scalar function whose gradients best match the vector field. Point cloud input gives enough information for the approximation of the surface integral with discrete summation. A set of points used for the portioning of the whole scene into distinct patches and also for the surface integral scaled by the patch's area. (3) Extracting the appropriate iso-surface. The roughness spatial variation was calculated according to: 1) removal of the regional slope effect is a pre-step for the surface roughness indices calculation (regression surface is reduced from the original iso-surface model to produce residuals features, surface roughness, from which it possible to calculate the variogram of the residuals), 2) Semivariogram is used to determine the optimal window size for image texture analysis. Mineral composition and structure of the different patches and components define its solubility implying thus upon the micro-morphological differences. Spectral measurements taken in the field and in the lab will be constructed to spectral libraries representing the notch's visor, cavity and floor. The VIS-NIR, SWIR and MIR reflectance data measured by the different types of spectrometers will not be mixed for future evaluation of mineral identification. The constructed spectral libraries was analyzed and processed for the characterization of spectral features of samples. The spectral features were compared with various well characterized resampled mineral spectral libraries for identification of the forming minerals. The mineral composition is defined by spectroscopy and used to capture the areas corresponding to different patterns of micro roughness along the notch's surface. The suggested roughness and 3D surface reconstruction employ real data acquired by the Terrestrial Light and Range Detection (t-LiDAR) scanner. The project stresses an interdisciplinary approach to map the mineral variations along the notch's different components corresponding to the roughness surface changes.
NASA Technical Reports Server (NTRS)
Bryan, W. B.
1976-01-01
Apollo 15 photographs of the southern parts of Serenitatis and Imbrium were used for a study of the morphology and distribution of wrinkle ridges. Volcanic and structural features along the south margin of Serenitatis were also studied, including the Dawes basalt cinder cones. Volcanic and structural features in crater Aitken were investigated as well. Study of crater Goclenius showed a close relationship between morphology of the impact crater and grabens which tend to parallel directions of the lunar grid. Similar trends were observed in the walls of crater Tsiolkovsky and other linear structures. Small craters of possible volcanic origin were also studied. Possible cinder cones were found associated with the Dawes basalt and in the floor of craters Aitken and Goclenius. Small pit craters were observed in the floors of these craters. Attempts were made to obtain contour maps of specific small features and to compare Orbiter and Apollo photographs to determine short term changes associated with other processes.
NASA Astrophysics Data System (ADS)
Andronico, Daniele; Cioni, Raffaello
2002-09-01
Intense explosive activity occurred repeatedly at Vesuvius during the nearly 1,600-year period between the two Plinian eruptions of Avellino (3.5 ka) and Pompeii (79 A.D.). By correlating stratigraphic sections from more than 40 sites around the volcano, we identify the deposits of six main eruptions (AP1-AP6) and of some minor intervening events. Several deposits can be traced up to 20 km from the vent. Their stratigraphic and dispersal features suggest the prevalence of two main contrasting eruptive styles, each involving a complex relationship between magmatic and phreatomagmatic phases. The two main eruption styles are (1) sub-Plinian to phreato-Plinian events (AP1 and AP2 members), where deposits consist of pumice and scoria fall layers alternating with fine-grained, vesiculated, accretionary lapilli-bearing ashes; and (2) mixed, violent Strombolian to Vulcanian events (AP3-AP6 members), which deposited a complex sequence of fallout, massive to thinly stratified, scoria-bearing lapilli layers and fine ash beds. Morphology and density variations of the juvenile fragments confirm the important role played by magma-water interaction in the eruptive dynamics. The mean composition of the ejected material changes with time, and shows a strong correlation with vent position and eruption style. The ranges of intensity and magnitude of these events, derived by estimations of peak column height and volume of the ejecta, are significantly smaller than the values for the better known Plinian and sub-Plinian eruptions of Vesuvius, enlarging the spectrum of the possible eruptive scenarios at Vesuvius, useful in the assessment of its potential hazard.
NASA Astrophysics Data System (ADS)
Ma, C.; Tschauner, O. D.; Liu, Y.; Sinogeikin, S. V.; Zhuravlev, K. K.; Prakapenka, V.; Dera, P. K.; Taylor, L. A.
2013-12-01
The recent Martian meteorite fall, Tissint, is a fresh olivine-phyric shergottite, with strong shock features. During our nano-mineralogy investigation of the Tissint meteorite with a combined analytical scanning electron microscope and synchrotron diffraction approach, two new shock-induced minerals have been discovered; these provide new insights into understanding shock conditions and impact processes on Mars. Ahrensite (IMA 2013-028), the Fe-analogue (γ-Fe2SiO4) of ringwoodite, is a new high-pressure mineral identified in Tissint. Both ahrensite and ringwoodite occur in Tissint as fine-grained polycrystalline aggregates in the rims of olivines around some shock-melt pockets. The morphology and texture of these silicate-spinels suggest formation by a solid-state transformation from Fe-rich olivine. Associated with the ahrensite and ringwoodite, inside melt pockets, often resides a thin layer of vitrified silicate-perovskite and magnesio-wüstite or wüstite. Such transitions represent a unique pressure and temperature gradient. Tissintite (IMA 2013-027), (Ca,Na,[])AlSi2O6 with the C2/c clinopyroxene structure, is a new jadeite-like mineral in Tissint. It appears as fine-grained aggregates within plagioclase glass, inside many shock-melt pockets. Both ahrensite and tissintite are high-pressure minerals formed by shock during the impact event(s) on Mars that excavated and ejected the rock off Mars. We will discuss the path of structure analysis for both new-mineral cases. Such novel methodology be utilized for many cases of mineralogical phase identification or structure analysis; this demonstrates how nano-mineralogy can be addressed and how it may play a unique role in meteorite and Mars rock research, in general.
Cooper, J.F.
1996-11-26
Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.
Cooper, John F.
1996-01-01
Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.
Size-dependent characteristics of ultra-fine oxygen-enriched nanoparticles in austenitic steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Mo, Kun; Zhou, Zhangjian
2016-11-01
Here, a coordinated investigation of the elemental composition and morphology of ultra-fine-scale nanoparticles as a function of size within a variety of austenitic oxide dispersion-strengthened (ODS) steels is reported. Atom probe tomography was utilized to evaluate the elemental composition of these nanoparticles. Meanwhile, the crystal structures and orientation relationships were determined by high resolution transmission electron microscopy. The nanoparticles with sufficient size (>4 nm) to maintain a Y2Ti2-xO7-2x stoichiometry were found to have a pyrochlore structure, whereas smaller YxTiyOz nanoparticles lacked a well-defined structure. The size-dependent characteristics of the nanoparticles in austenitic ODS steels differ from those in ferritic/martensitic ODSmore » steels.« less
Rogalla, N.S.; Carter, J.G.; Pojeta, J.
2003-01-01
The Late Carboniferous bransoniid conocardioidean Apotocardium lanterna (Branson, 1965) had an entirely aragonitic shell with a finely prismatic outer shell layer, a predominantly crossed lamellar to complex crossed lamellar middle shell layer, and an "inner" shell layer of finely textured porcelaneous and/or matted structure. This "inner" layer is probably homologous with the inner part of the middle shell layer and the inner layer sensu stricto of bivalved molluscs. Shell morphological and microstructural convergences between conocardioids and living heart cockles suggest that at least some conocardioids may have farmed algal endosymbionts in their posterior mantle margins. This symbiosis may have helped conocardioids compete with the biomechanically more efficient bivalves during the latter part of the Paleozoic.
USDA-ARS?s Scientific Manuscript database
This paper evaluates the potential usefulness of low temperature-scanning electron microscopy (LT-SEM) to evaluate morphology and predation behavior of the six-spotted thrips (Scolothrips sexmaculatus Pergande) against the two-spotted spider mite (Tetranychus urticae (Koch)). Morphological features...
NASA Technical Reports Server (NTRS)
Holmes, H. F.; Gammage, R. B.
1975-01-01
The surface properties of lunar fines were investigated. Results indicate that, for the most part, these properties are independent of the chemical composition and location of the samples on the lunar surface. The leaching of channels and pores by adsorbed water vapor is a distinguishing feature of their surface chemistry. The elements of air, if adsorbed in conjunction with water vapor or liquid water, severely impedes the leaching process. In the absence of air, liquid water is more effective than water vapor in attacking the grains. The characteristics of Apollo 17 orange fines were evaluated and compared with those of other samples. The interconnecting channels produced by water vapor adsorption were found to be wider than usual for other types of fines. Damage tracks caused by heavy cosmic ray nuclei and an unusually high halogen content might provide for stronger etching conditions upon exposure to water vapor.
Shock fabrics in fine-grained micrometeorites
NASA Astrophysics Data System (ADS)
Suttle, M. D.; Genge, M. J.; Russell, S. S.
2017-10-01
The orientations of dehydration cracks and fracture networks in fine-grained, unmelted micrometeorites were analyzed using rose diagrams and entropy calculations. As cracks exploit pre-existing anisotropies, analysis of their orientation provides a mechanism with which to study the subtle petrofabrics preserved within fine-grained and amorphous materials. Both uniaxial and biaxial fabrics are discovered, often with a relatively wide spread in orientations (40°-60°). Brittle deformation cataclasis and rotated olivine grains are reported from a single micrometeorite. This paper provides the first evidence for impact-induced shock deformation in fine-grained micrometeorites. The presence of pervasive, low-grade shock features in CM chondrites and CM-like dust, anomalously low-density measurements for C-type asteroids, and impact experiments which suggest CM chondrites are highly prone to disruption all imply that CM parent bodies are unlikely to have remained intact and instead exist as a collection of loosely aggregated rubble-pile asteroids, composed of primitive shocked clasts.
Beyond Fine Tuning: Adding capacity to leverage few labels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodas, Nathan O.; Shaffer, Kyle J.; Yankov, Artem
2017-12-09
In this paper we present a technique to train neural network models on small amounts of data. Current methods for training neural networks on small amounts of rich data typically rely on strategies such as fine-tuning a pre-trained neural networks or the use of domain-specific hand-engineered features. Here we take the approach of treating network layers, or entire networks, as modules and combine pre-trained modules with untrained modules, to learn the shift in distributions between data sets. The central impact of using a modular approach comes from adding new representations to a network, as opposed to replacing representations via fine-tuning.more » Using this technique, we are able surpass results using standard fine-tuning transfer learning approaches, and we are also able to significantly increase performance over such approaches when using smaller amounts of data.« less
Learning Category-Specific Dictionary and Shared Dictionary for Fine-Grained Image Categorization.
Gao, Shenghua; Tsang, Ivor Wai-Hung; Ma, Yi
2014-02-01
This paper targets fine-grained image categorization by learning a category-specific dictionary for each category and a shared dictionary for all the categories. Such category-specific dictionaries encode subtle visual differences among different categories, while the shared dictionary encodes common visual patterns among all the categories. To this end, we impose incoherence constraints among the different dictionaries in the objective of feature coding. In addition, to make the learnt dictionary stable, we also impose the constraint that each dictionary should be self-incoherent. Our proposed dictionary learning formulation not only applies to fine-grained classification, but also improves conventional basic-level object categorization and other tasks such as event recognition. Experimental results on five data sets show that our method can outperform the state-of-the-art fine-grained image categorization frameworks as well as sparse coding based dictionary learning frameworks. All these results demonstrate the effectiveness of our method.
Automatic Learning of Fine Operating Rules for Online Power System Security Control.
Sun, Hongbin; Zhao, Feng; Wang, Hao; Wang, Kang; Jiang, Weiyong; Guo, Qinglai; Zhang, Boming; Wehenkel, Louis
2016-08-01
Fine operating rules for security control and an automatic system for their online discovery were developed to adapt to the development of smart grids. The automatic system uses the real-time system state to determine critical flowgates, and then a continuation power flow-based security analysis is used to compute the initial transfer capability of critical flowgates. Next, the system applies the Monte Carlo simulations to expected short-term operating condition changes, feature selection, and a linear least squares fitting of the fine operating rules. The proposed system was validated both on an academic test system and on a provincial power system in China. The results indicated that the derived rules provide accuracy and good interpretability and are suitable for real-time power system security control. The use of high-performance computing systems enables these fine operating rules to be refreshed online every 15 min.
THE "MUD VOLCANO," A STINKY THERMAL FEATURE ON THE GRAND ...
THE "MUD VOLCANO," A STINKY THERMAL FEATURE ON THE GRAND LOOP ROAD. ACIDIC HOT SPRINGS HAVE REDUCED THE UNDERLYING LAVA TO A FINE CLAY, PRODUCING AN AREA OF BOILING MUD. THE ODOR OF ROTTEN EGGS IS FROM HYDROGEN SULFIDE GAS. - Grand Loop Road, Forming circuit between Mammoth Hot Springs, Norris Junction, Madison Junction, Old Faithful, Mammoth, Park County, WY
Kobayashi, Akira; Yokogawa, Hideaki; Higashide, Tomomi; Nitta, Koji; Sugiyama, Kazuhisa
2012-03-01
To demonstrate the clinical significance of owl eye morphologic features observed by in vivo laser confocal microscopy in patients with cytomegalovirus (CMV) corneal endotheliitis. Observational case series. participants: Six eyes of 6 patients (6 men; mean age, 73.3 years) with cytomegalovirus corneal endotheliitis diagnosed by clinical manifestations together with polymerase chain reaction from aqueous humor samples. intervention: All patients were examined by slit-lamp biomicroscopy and in vivo laser confocal microscopy. main outcome measures: Clinical manifestations were summarized by reviewing medical records. Selected confocal images of corneal layers were evaluated qualitatively for shape and degree of light reflection of abnormal cells and deposits. All patients had long histories of anterior uveitis with intraocular pressure elevation, corneal edema with keratic precipitates, and decrease of endothelial cell densities. Coin-shaped lesions were observed by slit lamp only in 1 patient at the first visit and in 2 additional patients at subsequent follow-up. In all patients, confocal microscopy demonstrated reduced subepithelial nerves, subepithelial opacity, increased reflectivity of keratocytes, highly reflective dots, and needle-shaped bodies. Owl eye morphologic features were observed consistently in all patients at the initial visit, and highly reflective round bodies were detected in 5 patients; most notably, these confocal features were reversible after resolution of endotheliitis. Owl eye morphologic features and highly reflective round bodies observed by confocal microscopy may be useful as an adjunct for the noninvasive diagnosis of cytomegalovirus corneal endotheliitis. Reversibility of these features after resolution of endotheliitis may be useful for monitoring the therapeutic effects without multiple anterior chamber tap. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pietsch, T. J.; Brooks, A. P.; Spencer, J.; Olley, J. M.; Borombovits, D.
2015-06-01
We present the results of investigations into alluvial deposition in the catchment of the Normanby River, which flows into Princess Charlotte Bay (PCB) in the northern part of the Great Barrier Reef Lagoon. Our focus is on the fine fraction (< ~ 63 μm) of alluvial deposits that sit above the sand and gravel bars of the channel floor, but below the expansive flat surface generally referred to as the floodplain. Variously described as benches, bank attached bars or inset or inner floodplains, these more or less flat-lying surfaces within the macro-channel have hitherto received little attention in sediment budgeting models. We use high resolution LiDAR based mapping combined with optical dating of exposures cut into these in-channel deposits to compare their aggradation rates with those found in other depositional zones in the catchment, namely the floodplain and coastal plain. In total 59 single grain OSL dates were produced across 21 stratigraphic profiles at 14 sites distributed though the 24 226 km2 catchment. In-channel storage in these inset features is a significant component of the contemporary fine sediment budget (i.e. recent decades/last century), annually equivalent to more than 50% of the volume entering the channel network from hillslopes and subsoil sources. Therefore, at the very least, in-channel storage of fine material needs to be incorporated into sediment budgeting exercises. Furthermore, deposition within the channel has occurred in multiple locations coincident in time with accelerated sediment production following European settlement. Generally, this has occurred on a subset of the features we have examined here, namely linear bench features low in the channel. This suggests that accelerated aggradation on in-channel depositional surfaces has been in part a response to accelerated erosion within the catchment. The entire contribution of ~ 370 kilotonnes per annum of fine sediment estimated to have been produced by alluvial gully erosion over the last ~ 100 years can be accounted for by that stored as in-channel alluvium. These features therefore can play an important role in mitigating the impact on the receiving water of accelerated erosion.
Morphology of a Wetland Stream
Jurmu; Andrle
1997-11-01
/ Little attention has been paid to wetland stream morphology in the geomorphological and environmental literature, and in the recently expanding wetland reconstruction field, stream design has been based primarily on stream morphologies typical of nonwetland alluvial environments. Field investigation of a wetland reach of Roaring Brook, Stafford, Connecticut, USA, revealed several significant differences between the morphology of this stream and the typical morphology of nonwetland alluvial streams. Six morphological features of the study reach were examined: bankfull flow, meanders, pools and riffles, thalweg location, straight reaches, and cross-sectional shape. It was found that bankfull flow definitions originating from streams in nonwetland environments did not apply. Unusual features observed in the wetland reach include tight bends and a large axial wavelength to width ratio. A lengthy straight reach exists that exceeds what is typically found in nonwetland alluvial streams. The lack of convex bank point bars in the bends, a greater channel width at riffle locations, an unusual thalweg location, and small form ratios (a deep and narrow channel) were also differences identified. Further study is needed on wetland streams of various regions to determine if differences in morphology between alluvial and wetland environments can be applied in order to improve future designs of wetland channels.KEY WORDS: Stream morphology; Wetland restoration; Wetland creation; Bankfull; Pools and riffles; Meanders; Thalweg
Guisande, Cástor; Vari, Richard P; Heine, Jürgen; García-Roselló, Emilio; González-Dacosta, Jacinto; Perez-Schofield, Baltasar J García; González-Vilas, Luis; Pelayo-Villamil, Patricia
2016-09-12
We present and discuss VARSEDIG, an algorithm which identifies the morphometric features that significantly discriminate two taxa and validates the morphological distinctness between them via a Monte-Carlo test. VARSEDIG is freely available as a function of the RWizard application PlotsR (http://www.ipez.es/RWizard) and as R package on CRAN. The variables selected by VARSEDIG with the overlap method were very similar to those selected by logistic regression and discriminant analysis, but overcomes some shortcomings of these methods. VARSEDIG is, therefore, a good alternative by comparison to current classical classification methods for identifying morphometric features that significantly discriminate a taxon and for validating its morphological distinctness from other taxa. As a demonstration of the potential of VARSEDIG for this purpose, we analyze morphological discrimination among some species of the Neotropical freshwater family Characidae.
Distinct Morphology of Human T-Cell Leukemia Virus Type 1-Like Particles
Maldonado, José O.; Cao, Sheng; Zhang, Wei; Mansky, Louis M.
2016-01-01
The Gag polyprotein is the main retroviral structural protein and is essential for the assembly and release of virus particles. In this study, we have analyzed the morphology and Gag stoichiometry of human T-cell leukemia virus type 1 (HTLV-1)-like particles and authentic, mature HTLV-1 particles by using cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission electron microscopy (STEM). HTLV-1-like particles mimicked the morphology of immature authentic HTLV-1 virions. Importantly, we have observed for the first time that the morphology of these virus-like particles (VLPs) has the unique local feature of a flat Gag lattice that does not follow the curvature of the viral membrane, resulting in an enlarged distance between the Gag lattice and the viral membrane. Other morphological features that have been previously observed with other retroviruses include: (1) a Gag lattice with multiple discontinuities; (2) membrane regions associated with the Gag lattice that exhibited a string of bead-like densities at the inner leaflet; and (3) an arrangement of the Gag lattice resembling a railroad track. Measurement of the average size and mass of VLPs and authentic HTLV-1 particles suggested a consistent range of size and Gag copy numbers in these two groups of particles. The unique local flat Gag lattice morphological feature observed suggests that HTLV-1 Gag could be arranged in a lattice structure that is distinct from that of other retroviruses characterized to date. PMID:27187442
Breast tumor angiogenesis analysis using 3D power Doppler ultrasound
NASA Astrophysics Data System (ADS)
Chang, Ruey-Feng; Huang, Sheng-Fang; Lee, Yu-Hau; Chen, Dar-Ren; Moon, Woo Kyung
2006-03-01
Angiogenesis is the process that correlates to tumor growth, invasion, and metastasis. Breast cancer angiogenesis has been the most extensively studied and now serves as a paradigm for understanding the biology of angiogenesis and its effects on tumor outcome and patient prognosis. Most studies on characterization of angiogenesis focus on pixel/voxel counts more than morphological analysis. Nevertheless, in cancer, the blood flow is greatly affected by the morphological changes, such as the number of vessels, branching pattern, length, and diameter. This paper presents a computer-aided diagnostic (CAD) system that can quantify vascular morphology using 3-D power Doppler ultrasound (US) on breast tumors. We propose a scheme to extract the morphological information from angiography and to relate them to tumor diagnosis outcome. At first, a 3-D thinning algorithm helps narrow down the vessels into their skeletons. The measurements of vascular morphology significantly rely on the traversing of the vascular trees produced from skeletons. Our study of 3-D assessment of vascular morphological features regards vessel count, length, bifurcation, and diameter of vessels. Investigations into 221 solid breast tumors including 110 benign and 111 malignant cases, the p values using the Student's t-test for all features are less than 0.05 indicating that the proposed features are deemed statistically significant. Our scheme focuses on the vascular architecture without involving the technique of tumor segmentation. The results show that the proposed method is feasible, and have a good agreement with the diagnosis of the pathologists.
Reducing the spectral index in supernatural inflation
NASA Astrophysics Data System (ADS)
Lin, Chia-Min; Cheung, Kingman
2009-04-01
Supernatural inflation is an attractive model based on just a flat direction with soft supersymmetry breaking mass terms in the framework of supersymmetry. The beauty of the model is that it needs no fine-tuning. However, the prediction of the spectral index is ns≳1, in contrast to experimental data. In this paper, we discuss supernatural inflation with the spectral index reduced to ns=0.96 without any fine-tuning, considering the general feature that a flat direction is lifted by a nonrenormalizable term with an A-term.
NASA Astrophysics Data System (ADS)
Li, S.; Zhang, S.; Yang, D.
2017-09-01
Remote sensing images are particularly well suited for analysis of land cover change. In this paper, we present a new framework for detection of changing land cover using satellite imagery. Morphological features and a multi-index are used to extract typical objects from the imagery, including vegetation, water, bare land, buildings, and roads. Our method, based on connected domains, is different from traditional methods; it uses image segmentation to extract morphological features, while the enhanced vegetation index (EVI), the differential water index (NDWI) are used to extract vegetation and water, and a fragmentation index is used to the correct extraction results of water. HSV transformation and threshold segmentation extract and remove the effects of shadows on extraction results. Change detection is performed on these results. One of the advantages of the proposed framework is that semantic information is extracted automatically using low-level morphological features and indexes. Another advantage is that the proposed method detects specific types of change without any training samples. A test on ZY-3 images demonstrates that our framework has a promising capability to detect change.
Morphological control of seedlessly-synthesized gold nanorods using binary surfactants
NASA Astrophysics Data System (ADS)
Roach, Lucien; Ye, Sunjie; Moorcroft, Samuel C. T.; Critchley, Kevin; Coletta, P. Louise; Evans, Stephen D.
2018-04-01
High purity gold nanorods (AuNRs) with tunable morphology have been synthesized through a binary-surfactant seedless method, which enables the formation of monocrystalline AuNRs with diameters between 7 and 35 nm. The protocol has high shape yield and monodispersity, demonstrating good reproducibility and scalability allowing synthesis of batches 0.5 l in volume. Morphological control has been achieved through the adjustment of the molar concentrations of cetyltrimethylammonium bromide and sodium oleate in the growth solution, providing fine tuning of the optical scattering and absorbance properties of the AuNRs across the visible and NIR spectrum. Sodium oleate was found to provide greatest control over the aspect ratio (and hence optical properties) with concentration changes between 10 and 23 mM leading to variation in the aspect ratio between 2.8 and 4.8. Changes in the geometry of the end-caps were also observed as a result of manipulating the two surfactant concentrations.
Wu, Qiyuan; Yan, Binhang; Cen, Jiajie; ...
2018-02-05
Here, the size and morphology of metal nanoparticles (NPs) often play a critical role in defining the catalytic performance of supported metal nanocatalysts. However, common synthetic methods struggle to produce metal NPs of appropriate size and morphological control. Thus, facile synthetic methods that offer controlled catalytic functions are highly desired. Here we have identified a new pathway to synthesize supported Rh nanocatalysts with finely tuned spatial dimensions and controlled morphology using a doping-segregation method. We have analyzed their structure evolutions during both the segregation process and catalytic reaction using a variety of in situ spectroscopic and microscopic techniques. A correlationmore » between the catalytic functional sites and activity in CO 2 hydrogenation over supported Rh nanocatalysts is then established. This study demonstrates a facile strategy to design and synthesize nanocatalysts with desired catalytic functions.« less