Science.gov

Sample records for fine particulate emissions

  1. FINE PARTICULATE MATTER EMISSIONS FROM CANDLES

    EPA Science Inventory

    The paper gives reulst of testing five types of candles, purchased from local stores, for fine particulate matter (PM) emissions under close-to-realistic conditions in a research house. The test method allows for determination of both the emission and deposition rates. Most tes...

  2. FINE PARTICULATE MATTER EMISSIONS FROM CANDLES

    EPA Science Inventory

    The paper gives reulst of testing five types of candles, purchased from local stores, for fine particulate matter (PM) emissions under close-to-realistic conditions in a research house. The test method allows for determination of both the emission and deposition rates. Most tes...

  3. The environmental cost of reducing agricultural fine particulate matter emissions.

    PubMed

    Funk, Paul A

    2010-06-01

    The U.S. Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) in 2006, reducing acceptable fine particulate matter (PM2.5) levels; state environmental protection agencies in states with nonattainment areas are required to draft State Implementation Plans (SIPs) detailing measures to reduce regional PM2.5 levels by reducing PM2.5 and PM2.5 precursor emissions. These plans need to account for increases in emissions caused by operating control technologies. Potential PM2.5 emissions reductions realized by adding a second set of dust cyclones were estimated for the cotton ginning industry. Increases in energy consumption were calculated based on dust cyclone air pressure drop. Additional energy required was translated into increased emissions using published emission factors and state emissions inventories. Reductions in gin emissions were compared with increases in emissions at the power plant. Because of the electrical energy required, reducing one unit of agricultural PM2.5 emissions at a cotton gin results in emitting 0.11-2.67 units of direct PM2.5, 1.39-69.1 units of PM2.5 precursors, 1.70-76.8 units of criteria pollutants, and 692-15,400 units of greenhouse gases at the point where electricity is produced. If regulations designed to reduce rural PM2.5 emissions increase electrical power consumption, the unintended net effect may be more emissions, increased environmental damage, and a greater risk to public health.

  4. Mechanisms governing fine particulate emissions from coal flames

    SciTech Connect

    Newton, G.H.; Schieber, C.; Socha, R.G.; Kramlich, J.C.

    1990-04-01

    The primary objective of this program was to provide a basic understanding of the principal processes that govern the formation of particulate matter in the 0.5--10 {mu}m size range in pulverized coal flames. The mechanism that produces ash particles in this size range is not clear. Particle sizes smaller than the 0.5--10 {mu}m size range are generally accepted to result from a vaporization/condensation mechanism while particles larger than this size result from the coalescence of ash in coal particles which may breakup as they burn. This program combined experimental and theoretical studies to understand the mechanisms which control the production of ash in the 0.5--10 {mu}m size range. (VC)

  5. Tracking Petroleum Refinery Emission Events Using Lanthanum and Lanthanides as Elemental Markers for Fine Particulate Matter

    NASA Astrophysics Data System (ADS)

    Kulkarni, P.; Chellam, S.; Fraser, M. P.

    2007-12-01

    This presentation reports the development and application of an analytical method to quantify the rare earth elements (REEs) in atmospheric particulate matter and emissions of catalyst material from the petroleum refining industry. Inductively coupled plasma - mass spectrometry following high temperature/high pressure microwave digestion has been used to study the REE composition of several fresh and spent catalysts used in fluidized-bed catalytic cracking (FCC) units in petroleum refineries as well as in ambient atmospheric fine particulate matter collected in Houston, TX. The results show that the routine emissions from local FCC units in Houston contribute a constant and low amount to ambient PM2.5 of ~0.1 micrograms per cubic meter. However, a significant (33 - 106 fold) increase in the contributions of FCC emissions to PM2.5 is quantified during an upset emission event compared with background levels associated with routine operation. The impact of emissions from the local refinery that reported the emission event was tracked to a site approximately 50 km downwind from the source, illustrating the potential exposure of humans over a large geographical area through the long-range transport of atmospheric fine particles as well as the power of elemental signatures to understand the sources of fine particles.

  6. Contribution of ship emissions to the fine particulate in the community near an international port in Hong Kong

    NASA Astrophysics Data System (ADS)

    Yau, P. S.; Lee, S. C.; Cheng, Y.; Huang, Y.; Lai, S. C.; Xu, X. H.

    2013-04-01

    Fine particulates from ship exhaust are proved to be harmful to human health. To better understand the impact of ship emissions on the particulate matter (PM) level of port-side residential areas, fine particulates (PM2.5) were collected near Kwai Chung and Tsing Yi Container Terminals (KTCT) in Hong Kong during August 2009 to March 2010. The average PM2.5 concentration was 30.5 μg/m3. The contribution of ship emissions on fine particulates near the container port was demonstrated by source apportionment. By positive matrix factorization (PMF) analysis, eight potential sources, i.e., residual oil (RO) combustion, marine diesel oil (MDO) combustion, vehicle emission, coal combustion, incineration, crustal and sea-salt, secondary sulfate and secondary nitrate were identified. Among the identified sources, RO combustion and MDO combustion were regarded as ship emissions and accounted for 12% and 7% of PM2.5 respectively. An estimate of 1.8 μg/m3 (6%) of secondary sulfate corresponded to 3.6 μg/m3 of primary fine particulates from RO combustion. Together with primary PM emitted from ships, the total ambient PM2.5 mass associated with ship emissions at the sampling site was 7.6 μg/m3 (25%).

  7. Impact of Biogenic Emission Uncertainties on the Simulated Response of Ozone and Fine Particulate Matter to Anthropogenic Emission Reductions

    PubMed Central

    Hogrefe, Christian; Isukapalli, Sastry S.; Tang, Xiaogang; Georgopoulos, Panos G.; He, Shan; Zalewsky, Eric E.; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1–0.25 μg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1–2% of the value of the annual PM2.5 NAAQS of 15 μg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions. PMID:21305893

  8. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions.

    PubMed

    Hogrefe, Christian; Isukapalli, Sastry S; Tang, Xiaogang; Georgopoulos, Panos G; He, Shan; Zalewsky, Eric E; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.

  9. The environmental cost of reducing agricultural fine particulate (PM2.5) dust emissions.

    USDA-ARS?s Scientific Manuscript database

    The US Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) in 2006, reducing acceptable fine particulate (PM2.5) levels; state environmental protection agencies in states with non-attainment areas are required to draft State Implementation Plans (SIP) det...

  10. HEAVY DUTY DIESEL FINE PARTICULATE MATTER EMISSIONS: DEVELOPMENT AND APPLICATION OF ON-ROAD MEASUREMENT CAPABILITIES

    EPA Science Inventory

    The report discusses EPA's On-Road Diesel Emissions Characterization Facility, which has been collecting real-world gaseous emissions data for the past 6 years. It has recently undergone extensive modifications to enhance its particulate matter (PM) measurement capabilities, with...

  11. HEAVY DUTY DIESEL FINE PARTICULATE MATTER EMISSIONS: DEVELOPMENT AND APPLICATION OF ON-ROAD MEASUREMENT CAPABILITIES

    EPA Science Inventory

    The report discusses EPA's On-Road Diesel Emissions Characterization Facility, which has been collecting real-world gaseous emissions data for the past 6 years. It has recently undergone extensive modifications to enhance its particulate matter (PM) measurement capabilities, with...

  12. Controlling fine particulate and acid mist emissions from a residual oil fired utility boiler with an EDV{trademark} system

    SciTech Connect

    Olen, K.R.; Vincent, H.B.; Jones, G.

    1995-06-01

    Florida Power & Light Company (FPL), in cooperation with the Electric Power Research Institute (EPRI) and Belco Technologies Corporation, evaluated the performance of an EDV system to remove fine particulate and acid mist from untreated flue gas from a residual oil-fired utility boiler. The cosponsored project was carried out using a full-scale EDV module in a slip stream from one of the 400 MW wall-fired boilers at FPL`s Sanford Plant. Particulate, acid gas and chemical analytical data are presented, and used to illustrate the effects of operating variables on EDV performance. EDV system efficiencies of 90% were achieved, which resulted in controlled particulate and SO{sub 3} emissions of less than 10 mg/Nm{sup 3} (0.0065 lbs/10{sup 6}Btu) and 1 ppmv, respectively.

  13. Measurement of emissions of fine particulate organic matter from Chinese cooking

    NASA Astrophysics Data System (ADS)

    He, Ling-Yan; Hu, Min; Huang, Xiao-Feng; Yu, Ben-De; Zhang, Yuan-Hang; Liu, De-Quan

    Cooking emissions may contribute significantly to atmospheric organic particles in urban environment in China, and thus need to be examined first for its chemical compositions and characteristics. The particulate organic emissions of the two cooking styles of Chinese cuisine, that is, Hunan Cooking and Cantonese Cooking, were characterized in Shenzhen. More than half of the PM 2.5 mass is due to organic compounds, and over 90 species of organic compounds were identified and quantified, accounting for 26.1% of bulk organic particle mass and 20.7% of PM 2.5. Fatty acids, diacids and steroids were the major organic compounds emitted from both styles of cooking. Of the quantified organic mass, over 90% was fatty acids. The mass of organic species, and the molecular distribution of n-alkanes and PAHs indicated the dissimilarities between the two different cooking styles, but generally the major parts of the organic particulate emissions of the two restaurants were similar, showing less difference than between Chinese and American cooking.

  14. Emissions of organic compounds and trace metals in fine particulate matter from motor vehicles: a tunnel study in Houston, Texas.

    PubMed

    Chellam, Shankararaman; Kulkarni, Pranav; Fraser, Matthew P

    2005-01-01

    Fine particulate matter (PM) samples collected in a highway tunnel in Houston, TX, were analyzed to quantify the concentrations of 14 n-alkanes, 12 polycyclic aromatic hydrocarbons, and nine petroleum biomarkers, as well as 21 metals, with the ultimate aim of identifying appropriate tracers for diesel engines. First, an exploratory multivariate dimensionality reduction technique called principal component analysis (PCA) was employed to identify all potential candidates for tracers. Next, emission indices were calculated to interpret PCA results physically. Emission indices of n-heneicosane, n-docosane, n-tricosane, n-tetracosane, n-pentacosane, fluoranthene, and pyrene were correlated highly and increased strongly with percentage carbon present in the tunnel emanating from diesel vehicles. This suggests that these organic compounds are useful molecular markers to separate emissions from diesel and gasoline engines. Additionally, the results are the first quantification of the metal composition of PM with aerodynamic diameters smaller than 2.5 microm (PM2.5) emissions from mobile sources in Houston. PCA of trace metal concentrations followed by emission index calculations revealed that barium in fine airborne particles can be linked quantitatively to diesel engine emissions, demonstrating its role as an elemental tracer for heavy-duty trucks.

  15. Fine particulate speciation profile and emission factor of municipal solid waste incinerator established by dilution sampling method.

    PubMed

    Yang, Hsi-Hsien; Luo, Shao-Wei; Lee, Kuei-Ting; Wu, Jhin-Yan; Chang, Chun Wei; Chu, Pei Feng

    2016-08-01

    In this study, fine particulate matter (PM2.5) emitted from a municipal solid waste incinerator (MSWI) was collected using dilution sampling method. Chemical compositions of the collected PM2.5 samples, including carbon content, metal elements, and water-soluble ions, were analyzed. Traditional in-stack hot sampling was simultaneously conducted to compare the influences of dilution on PM2.5 emissions and the characteristics of the bonded chemical species. The results, established by a dilution sampling method, show that PM2.5 and total particulate matter (TPM) emission factors were 61.6 ± 4.52 and 66.1 ± 5.27 g ton-waste(-1), respectively. The average ratio of PM2.5/TPM is 0.93, indicating that more than 90% of PM emission from the MSWI was fine particulate. The major chemical species in PM2.5 included organic carbon (OC), Cl(-), NH4(+), elemental carbon (EC) and Si, which account for 69.7% of PM2.5 mass. OC was from the unburned carbon in the exhaust, which adsorbed onto the particulate during the cooling process. High Cl(-) emission is primarily attributable to wastes containing plastic bags made of polyvinyl chloride, salt in kitchen refuse and waste biomass, and so on. Minor species that account for 0.01-1% of PM2.5 mass included SO4(2-), K(+), Na, K, NO3(-), Al, Ca(2+), Zn, Ca, Cu, Fe, Pb, and Mg. The mean ratio of dilution method/in-stack hot method was 0.454. The contents of water-soluble ions (Cl(-), SO4(2-), NO3(-)) were significantly enriched in PM2.5 via gas-to-particle conversion in the dilution process. Results indicate that in-stack hot sampling would underestimate levels of these species in PM2.5. PM2.5 samples from a municipal solid waste incinerator (MSWI) were collected simultaneously by a dilution sampling technique and a traditional in-stack method. PM2.5 emission factors and chemical speciation profiles were established. Dilution sampling provides more reliable data than in-stack hot sampling. The results can be applied to estimate the PM2

  16. Fuel-based fine particulate and black carbon emission factors from a railyard area in Atlanta.

    PubMed

    Galvis, Boris; Bergin, Mike; Russell, Armistead

    2013-06-01

    Railyards have the potential to influence localfine particulate matter (aerodynamic diameter < or = 2.5 microm; PM2.5) concentrations through emissions from diesel locomotives and supporting activities. This is of concern in urban regions where railyards are in proximity to residential areas. Northwest of Atlanta, Georgia, Inman and Tilford railyards are located beside residential neighborhoods, industries, and schools. The PM2.5 concentrations near the railyards is the highest measured amongst the state-run monitoring sites (Georgia Environmental Protection Division, 2012; http://www.georgiaair.org/amp/report.php). The authors estimated fuel-based black carbon (BC) and PM2.5 emission factors for these railyards in order to help determine the impact of railyard activities on PM2.5 concentrations, and for assessing the potential benefits of replacing current locomotive engines with cleaner technologies. High-time-resolution measurements of BC, PM2.5, CO2, and wind speed and direction were made at two locations, north and south of the railyards. Emissions factors (i.e., the mass of BC or PM2.5 per gallon of fuel burned) were estimated by using the downwind/upwind difference in concentrations, wavelet analysis, and an event-based approach. By the authors' estimates, diesel-electric engines used in the railyards have average emission factors of 2.8 +/- 0.2 g of BC and 6.0 +/- 0.5 g of PM2.5 per gallon of diesel fuel burned. A broader mix of railyard supporting activities appear to lead to average emission factors of 0.7 +/- 0.03 g of BC and 1.5 +/- 0.1 g of PM2.5 per gallon of diesel fuel burned. Railyard emissions appear to lead to average enhancements of approximately 1.7 +/- 0.1 microg/m3 of PM2.5 and approximately 0.8 +/- 0.01 microg/m3 of BC in neighboring areas on an annual average basis. Uncertainty not quantified in these results could arise mainly from variability in downwind/upwind differences, differences in emissions of the diverse zones within the

  17. Advanced Fine Particulate Characterization Methods

    SciTech Connect

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  18. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect

    Glenn C. England

    2004-10-20

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered

  19. INVERTING CASCADE IMPACTOR DATA FOR SIZE-RESOLVED CHARACTERIZATION OF FINE PARTICULATE SOURCE EMISSIONS

    EPA Science Inventory

    Cascade impactors are particularly useful in determining the mass size distributions of particulate and individual chemical species. The impactor raw data must be inverted to reconstruct a continuous particle size distribution. An inversion method using a lognormal function for p...

  20. INVERTING CASCADE IMPACTOR DATA FOR SIZE-RESOLVED CHARACTERIZATION OF FINE PARTICULATE SOURCE EMISSIONS

    EPA Science Inventory

    Cascade impactors are particularly useful in determining the mass size distributions of particulate and individual chemical species. The impactor raw data must be inverted to reconstruct a continuous particle size distribution. An inversion method using a lognormal function for p...

  1. Chemical Composition and Emission Sources of the Fine Particulate Matters in a Southeast Asian Mega City (Dhaka, Bangladesh)

    NASA Astrophysics Data System (ADS)

    Salam, Abdus

    2016-04-01

    Air pollution has significant impact on human health, climate change, agriculture, visibility reduction, and also on the atmospheric chemistry. There are many studies already reported about the direct relation of the human mortality and morbidity with the increase of the atmospheric particulate matters. Especially, fine particulate matters can easily enter into the human respiratory system and causes many diseases. Particulate matters have the properties to absorb the solar radiation and impact on the climate. Dhaka, Bangladesh is a densely populated mega-city in the world. About 16 million inhabitants are living within an area of 360 square kilometers. Air quality situation has been degrading due to unplanned growth, increasing vehicles, severe traffic jams, brick kilns, industries, construction, and also transboundary air pollution. A rapidly growing number of vehicles has worsen the air quality in spite of major policy interventions, e.g., ban of two-stroke and three-wheeled vehicles, phase out of 20 years old vehicles, conversion to compressed natural gas (CNGs), etc. Introduction of CNGs to reduce air pollution was not the solution for fine particles at all, as evidence shows that CNGs and diesel engines are the major sources of fine particles. High concentration of the air pollutants in Dhaka city such as PM, carbonaceous species (black and organic carbon), CO, etc. has already been reported. PM2.5 mass, chemical composition (e.g., BC, OC, SO42-, NO3-, trace elements, etc.), aerosol Optical Depth (AOD) and emission sources of our recent measurements at the highly polluted south East Asian Mega city (Dhaka) Bangladesh will be presented in the conference. PM2.5 samples were collected on filters with Digital PM2.5 sampler (Switzerland) and Air photon, USA. BC was measured from filters (with thermal and optical method) and also real time with an Aethalometer AE42 (Magee Scitific., USA). Water soluble ions were determined from filters with ion chromatogram. AOD

  2. Regional Background Fine Particulate Matter

    EPA Science Inventory

    A modeling system composed of the global model GEOS-Chem providing hourly lateral boundary conditions to the regional model CMAQ was used to calculate the policy relevant background level of fine particulate: matter. Simulations were performed for the full year of 2004 over the d...

  3. SOUTHERN FINE PARTICULATE MONITORING PROJECT

    SciTech Connect

    Unknown

    2002-04-01

    This quarterly report presents results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the January-March, 2002 study period. The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. Some instrumental issues were noted with the upgrade of the APS model 3320 are described in the report, as well as preliminary performance indications for the upgraded instrument. During the quarter preliminary data analysis and modeling studies were conducted to test the potential of the North Birmingham site data for source attribution analyses. Our initial assessment has continued to be optimistic in this regard due to the location of the site relative to several important classes of local and midrange emission sources. We anticipate that these analyses will provide good separations of the effects of major source classes and spatial source clusters, and will provide useful information relevant to PM{sub 2.5} implementation strategies.

  4. Development of an empirical model to estimate real-world fine particulate matter emission factors: the traffic air quality model.

    PubMed

    Soliman, Ahmed S M; Jacko, Robert B; Palmer, George M

    2006-11-01

    The purpose of the study was to quantify the impact of traffic conditions, such as free flow and congestion, on local air quality. The Borman Expressway (I-80/94) in Northwest Indiana is considered a test bed for this research because of the high volume of class 9 truck traffic traveling on it, as well as the existing and continuing installation of the Intelligent Transportation System (ITS) to improve traffic management along the highway stretch. An empirical traffic air quality (TAQ) model was developed to estimate the fine particulate matter (PM2.5) emission factors (grams per kilometer) based solely on the measured traffic parameters, namely, average speed, average acceleration, and class 9 truck density. The TAQ model has shown better predictions that matched the measured emission factor values more than the U.S. Environmental Protection Agency (EPA)-PART5 model. During congestion (defined as flow-speeds < 50 km/hr [30 mi/hr]), the TAQ model, on average, overpredicted the measured values only by a factor of 1.2, in comparison to a fourfold underprediction using the EPA-PART5 model. On the other hand, during free flow (defined as flow-speeds > 80 km/hr [50 mi/hr]), the TAQ model was conservative in that it overpredicted the measured values by 1.5-fold.

  5. NONLINEARITIES IN THE SULFATE SECONDARY FINE PARTICULATE RESPONSE TO NOX EMISSIONS REDUCTIONS AS MODELED BY THE REGIONAL ACID DEPOSITION MODEL

    EPA Science Inventory

    Attention is increasingly being devoted to the health effects of fine particulates. In regions that have a large production of sulfate, sulfuric acid and nitric acid compete for the available ammonia to form aerosols. In addition, the available nitric acid is the result of ur...

  6. NONLINEARITIES IN THE SULFATE SECONDARY FINE PARTICULATE RESPONSE TO NOX EMISSIONS REDUCTIONS AS MODELED BY THE REGIONAL ACID DEPOSITION MODEL

    EPA Science Inventory

    Attention is increasingly being devoted to the health effects of fine particulates. In regions that have a large production of sulfate, sulfuric acid and nitric acid compete for the available ammonia to form aerosols. In addition, the available nitric acid is the result of ur...

  7. SOUTHERN FINE PARTICULATE MONITORING PROJECT

    SciTech Connect

    Ashley D. Williamson

    2001-07-01

    This is the third quarterly progress report of the ''Southern Fine Particulate Monitoring Project'', funded by the U.S. Department of Energy's National Energy Technology Laboratory under DOE Cooperative Agreement No. DE-FC26-00NT40770 to Southern Research Institute (SRI). In this two year project SRI will conduct detailed studies of ambient fine particulate matter in the Birmingham, AL metropolitan area. Project objectives include: Augment existing measurements of primary and secondary aerosols at an established urban southeastern monitoring site; Make a detailed database of near-continuous measurements of the time variation of fine particulate mass, composition, and key properties (including particle size distribution); Apply the measurements to source attribution, time/transport properties of fine PM, and implications for management strategies for PM{sub 2.5}; and Validate and compare key measurement methods used in this study for applicability within other PM{sub 2.5} research by DOE-FE, EPA, NARSTO, and others. During the third project quarter, the new SRI air monitoring shelter and additional instruments were installed at the site. Details include: Installation of Radiance Research M903 Nephelometer; Installation of SRI air monitoring shelter at North Birmingham Site; Relocation of instruments from SEARCH shelter to SRI shelter; Installation of Rupprecht & Patashnick 8400 Sulfate Monitor; Assembly and initial laboratory testing for particulate sulfate monitor of Harvard design; Efficiency testing of particle sizing instrument package at SRI lab; Preparation for the Eastern Supersite July measurement intensive program; and Continued monitoring with TEOM and particle sizing instruments.

  8. Network Analysis of Fine Particulate Matter (PM2.5) Emissions in China

    NASA Astrophysics Data System (ADS)

    Yan, Shaomin; Wu, Guang

    2016-09-01

    Specification of PM2.5 spatial and temporal characteristics is important for understanding PM2.5 adverse effects and policymaking. We applied network analysis to studying the dataset MIX, which contains PM2.5 emissions recorded from 2168 monitoring stations in China in 2008 and 2010. The results showed that for PM2.5 emissions from industrial sector 8 clusters were found in 2008 but they merged together into a huge cluster in 2010, suggesting that industrial sector underwent an integrating process. For PM2.5 emissions from electricity generation sector, strong locality of clusters was revealed, implying that each region had its own electricity generation system. For PM2.5 emissions from residential sector, the same pattern of 10 clusters was uncovered in both years, implicating the household energy consumption unchanged from 2008 to 2010. For PM2.5 emissions from transportation sector, the same pattern of 5 clusters with many connections in-between was unraveled, indicating the high-speed development of transportation nationalwidely. Except for the known elements, mercury (Hg) surfaced as an element for particle nucleation. To our knowledge, this is the first network study in this field.

  9. Network Analysis of Fine Particulate Matter (PM2.5) Emissions in China

    PubMed Central

    Yan, Shaomin; Wu, Guang

    2016-01-01

    Specification of PM2.5 spatial and temporal characteristics is important for understanding PM2.5 adverse effects and policymaking. We applied network analysis to studying the dataset MIX, which contains PM2.5 emissions recorded from 2168 monitoring stations in China in 2008 and 2010. The results showed that for PM2.5 emissions from industrial sector 8 clusters were found in 2008 but they merged together into a huge cluster in 2010, suggesting that industrial sector underwent an integrating process. For PM2.5 emissions from electricity generation sector, strong locality of clusters was revealed, implying that each region had its own electricity generation system. For PM2.5 emissions from residential sector, the same pattern of 10 clusters was uncovered in both years, implicating the household energy consumption unchanged from 2008 to 2010. For PM2.5 emissions from transportation sector, the same pattern of 5 clusters with many connections in-between was unraveled, indicating the high-speed development of transportation nationalwidely. Except for the known elements, mercury (Hg) surfaced as an element for particle nucleation. To our knowledge, this is the first network study in this field. PMID:27608625

  10. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS

    SciTech Connect

    Glenn England; Oliver Chang; Stephanie Wien

    2002-02-14

    This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

  11. Response of winter fine particulate matter concentrations to emission and meteorology changes in North China

    NASA Astrophysics Data System (ADS)

    Gao, Meng; Carmichael, Gregory R.; Saide, Pablo E.; Lu, Zifeng; Yu, Man; Streets, David G.; Wang, Zifa

    2016-09-01

    The winter haze is a growing problem in North China, but the causes are not well understood. The chemistry version of the Weather Research and Forecasting model (WRF-Chem) was applied in North China to examine how PM2.5 concentrations change in response to changes in emissions (sulfur dioxide (SO2), black carbon (BC), organic carbon (OC), ammonia (NH3), and nitrogen oxides (NOx)), as well as meteorology (temperature, relative humidity (RH), and wind speeds) changes in winter. From 1960 to 2010, the dramatic changes in emissions lead to +260 % increases in sulfate, +320 % increases in nitrate, +300 % increases in ammonium, +160 % increases in BC, and +50 % increases in OC. The responses of PM2.5 to individual emission species indicate that the simultaneous increases in SO2, NH3, and NOx emissions dominated the increases in PM2.5 concentrations. PM2.5 shows more notable increases in response to changes in SO2 and NH3 as compared to increases in response to changes in NOx emissions. In addition, OC also accounts for a large fraction in PM2.5 changes. These results provide some implications for haze pollution control. The responses of PM2.5 concentrations to temperature increases are dominated by changes in wind fields and mixing heights. PM2.5 shows relatively smaller changes in response to temperature increases and RH decreases compared to changes in response to changes in wind speed and aerosol feedbacks. From 1960 to 2010, aerosol feedbacks have been significantly enhanced due to higher aerosol loadings. The discussions in this study indicate that dramatic changes in emissions are the main cause of increasing haze events in North China, and long-term trends in atmospheric circulations may be another important cause since PM2.5 is shown to be substantially affected by wind speed and aerosol feedbacks. More studies are necessary to get a better understanding of the aerosol-circulation interactions.

  12. AMMONIA EMISSIONS AND THEIR IMPLICATIONS ON FINE PARTICULATE MATTER FORMATION IN NORTH CAROLINA

    EPA Science Inventory

    Ammonia (NH3) is an important atmospheric pollutant that plays a key role in several air pollution problems. The accuracy of NH3 emissions can have a large effect on air quality model (AQM) predictions of aerosol sulfate, nitrate, and ammonium concentration...

  13. DEVELOPMENT OF A NEW MOBILE LABORATORY FOR CHARACTERIZATION OF THE FINE PARTICULATE EMISSIONS FROM HEAVY-DUTY DIESEL TRUCKS.

    EPA Science Inventory

    This paper describes the development of a new mobile laboratory for the determination of the fine particle and gaseous emissions from a Class 8 diesel tractor-trailer research vehicle. The new laboratory (Diesel Emissions Aerosol Laboratory or DEAL) incorporates plume sampling ca...

  14. DEVELOPMENT OF A NEW MOBILE LABORATORY FOR CHARACTERIZATION OF THE FINE PARTICULATE EMISSIONS FROM HEAVY-DUTY DIESEL TRUCKS.

    EPA Science Inventory

    This paper describes the development of a new mobile laboratory for the determination of the fine particle and gaseous emissions from a Class 8 diesel tractor-trailer research vehicle. The new laboratory (Diesel Emissions Aerosol Laboratory or DEAL) incorporates plume sampling ca...

  15. Southern Fine Particulate Monitoring Project

    SciTech Connect

    Ashley Williamson

    2003-05-31

    This final project report presents experimental details, results and analysis of continuous onsite ambient fine particulate data at the North Birmingham sampling site during the October, 2001-September, 2002 study period.The host site for these measurement activities is the North Birmingham PM monitoring station by the Jefferson County Health Department in Birmingham, AL.The continuous data include PM{sub 2.5} mass concentrations measured by TEOM, particle sulfate using the R&P 8400S monitor, particle size distributions measured by SMPS and APS monitors, and PM{sub 2.5} light scattering extinction coefficient as measured by nephelometer. During the course of the project, measurement intercomparison data were developed for these instruments and several complementary measurements at the site. The report details the instrument set and operating procedures and describes the resulting data. Report subsections present an overview summary of the data, followed by detailed description of the systematic time behavior of PM{sub 2.5} and other specific particulate size fractions. Specific subsections are included for particle size distribution, light scattering, and particle sulfate data. The final subsection addresses application of the measurements to the practical questions of fine PM generation and transport, source attribution, and PM{sub 2.5} management strategies.

  16. Control of fine particulate emissions from coal-fired utility boilers: Spin filter collection device (rotary cyclone)

    SciTech Connect

    He, Bo X.

    1990-01-01

    A bench-scale test program has been performed to evaluate the concept of placing a porous cylindrical surface (such as a metal screen) at the core of a container and spinning the surface with an external motor for fine particulate/gas separation. The rotating surface enhances the centrifugal effects in the annular region and provides a smooth transition between the flow in the annular and core regions and acts like an enhanced cyclone. It is therefore called a rotary cyclone.'' The porous surface is self-cleaning and offers good steady-state pressure drop characteristics. Objectives of this project are: (1) to carry out theoretical and experimental investigations using the rotary cyclone concept to capture particulates in the 0.5 to 10 micron size range; and (2) to evaluate its economic feasibility based on an engineering scale-up and comparison with conventional fabric filter and electrostatic precipitator systems. It was demonstrated that the efficiency in separating fine particulates is governed by two major characteristics, i.e., the magnitude of the centrifugal force and the approach velocity or the gas-to-surface area ratio. Results from the bench-scale tests have shown a collection efficiency of well over 99% for a typical fly ash. A preliminary conceptual design for a 40 MW installation was developed based on the experimental work. 4 refs., 4 figs., 8 tabs.

  17. Infrared spectral behavior of fine particulate solids

    USGS Publications Warehouse

    Hunt, G.R.

    1976-01-01

    Transmission and emission spectra of clouds and layers of fine particulate samples of quartz, magnesium oxide, and aluminum oxide in the 6.5-35-??m wavelength range are presented. They demonstrate that the behavior of layers of particles constitutes a good analogue for a cloud of particles; that individual micrometer-sized particles emit most where they absorb most; that as the size of the particle is increased, the emission features reverse polarity and the spectrum approaches that of one obtained from a polished plate; and that as the particle layer-thickness increases, radiative interaction becomes increasingly important so that the emission maximum shifts from the strongest to weaker features, or produces a maximum at the Christiansen wavelength.

  18. Modeling of Particulate Emissions

    DTIC Science & Technology

    2011-12-01

    vaporization CxHy H H2 C2H2 Alkylated- aromatics naphthenes Gas-phase kinetics PAH C2H2 . .... CO inception Surface growth & coalescence ageing...coagulation oxidation.... carbonization 14 Modeling Particulate Emissions Soot Formation Kinetics 2 1016 1 ]HC[kdt dS = Inception: Dimerization of...pyrene (and other 202 amu species), after Appel, et al, 2000. (Full detailed kinetics required!) Surface Growth: Mass growth (via acetylene addition

  19. Weekly cycles in fine particulate nitrate

    NASA Astrophysics Data System (ADS)

    Millstein, Dev E.; Harley, Robert A.; Hering, Susanne V.

    Atmospheric responses to changes in emissions are a complex but central issue in control strategy design for pollutants such as ozone and particulate matter. Here, we investigate fine particle nitrate response to weekly cycles in emissions, which includes a large decrease in diesel NO x emissions among other changes. Nitrate concentrations were measured at 10-min time resolution for a year or longer at four US urban sites: Fresno and Claremont in California, St. Louis, and Pittsburgh. Weekly minima in nitrate concentrations were observed at Fresno, Claremont, and St. Louis, with mean reductions of 21-29% below weekly average values on Sundays or Mondays. The day of week with lowest nitrate varied with site and season. No significant day-of-week variations in nitrate were observed at Pittsburgh. Analysis of ammonium and sulfate measurements at Pittsburgh indicates that weekend sulfate reductions observed at this site during spring/summer months do not increase ammonia availability, but rather lead to more complete neutralization of S(VI). Fine particle nitrate measurements at Claremont were resolved into three size ranges (0.07-0.45, 0.45-1.0, and 1.0-2.5 μm); similar weekly reductions were seen for each size range.

  20. 77 FR 50446 - Approval and Promulgation of Implementation Plans; Tennessee; Knoxville; Fine Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the 1997 annual fine particulate matter (PM 2.5 )...

  1. 77 FR 12526 - Approval and Promulgation of Implementation Plans; Georgia; Atlanta; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year...

  2. Response of fine particulate matter to emission changes of oxides of nitrogen and anthropogenic volatile organic compounds in the eastern United States

    SciTech Connect

    Alexandra P. Tsimpidi; Vlassis A. Karydis; Spyros N. Pandis

    2008-11-15

    A three-dimensional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions) is used to investigate changes in fine particle (PM2.5) concentrations in response to 50% emissions changes of oxides of nitrogen (NOx) and anthropogenic volatile organic compounds (VOCs) during July 2001 and January 2002 in the eastern United States. The reduction of NOx emissions by 50% during the summer results in lower average oxidant levels and lowers PM2.5 (8% on average), mainly because of reductions of sulfate (9-11%), nitrate (45-58%), and ammonium (7-11%). The organic particulate matter (PM) slightly decreases in rural areas, whereas it increases in cities by a few percent when NOx is reduced. Reduction of NOx during winter causes an increase of the oxidant levels and a rather complicated response of the PM components, leading to small net changes. Sulfate increases (8-17%), nitrate decreases (18-42%), organic PM slightly increases, and ammonium either increases or decreases a little. The reduction of VOC emissions during the summer causes on average a small increase of the oxidant levels and a marginal increase in PM2.5. This small net change is due to increases in the inorganic components and decreases of the organic ones. Reduction of VOC emissions during winter results in a decrease of the oxidant levels and a 5-10% reduction of PM2.5 because of reductions in nitrate (4-19%), ammonium (4-10%), organic PM (12-14%), and small reductions in sulfate. Although sulfur dioxide (SO{sub 2}) reduction is the single most effective approach for sulfate control, the coupled decrease of SO{sub 2} and NOx emissions in both seasons is more effective in reducing total PM2.5 mass than the SO{sub 2} reduction alone. 34 refs., 7 figs., 1 tab.

  3. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    EPA Science Inventory

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  4. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    EPA Science Inventory

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  5. Particulate emission reduction using additives

    SciTech Connect

    Rising, B.

    1998-07-01

    A particulate emission reduction study using a large industrial combustion turbine was undertaken. With heavy oil, both the mass particulate rate and smoke emissions exceeded original emission projections. Extensive particulate (gravimetric) emission tests were conducted to define the problem, and to assess specific corrective actions. Physical characterization of the particulate emissions revealed that the particulates from heavy oil were much larger than those found from lighter distillates. A review of the available literature on the subject was undertaken. Methods that were found to be effective at reducing smoke emissions were selected as a starting point. From this information, various techniques, including water injection, emulsification, and additive injection were evaluated to address both the visible smoke emissions and the particulate emission. Only the use of metal based fuel additives was found to be effective in reducing both visible smoke emissions and particulates. From vendor information, different additive time was selected for evaluation. Because of the complex chemistry of the fuel and additive mixtures, the vendor was required to optimize the additive carrier. Additives reduced particulates produced from the burning of heavy oil, but were found to be relatively ineffective with lighter distillate oils. Extensive chemical and physical characterization of the particulates were undertaken. From heavy oil, the particulates were found to be physically larger, greater than 5 microns. The additive was most effective on the heavy oils, but did not appear to alter the particulate size distribution. Additives did not appear to have any impact on the conversion of fuel bond sulfur into sulfuric acid mist. Additive dosage ratios were found which reduced the total particulate emission signature to meet current environmental requirements, while also nearly eliminating the plume visibility issues.

  6. Long-Term Exposure to Traffic Emissions and Fine Particulate Matter and Lung Function Decline in the Framingham Heart Study

    PubMed Central

    Ljungman, Petter L.; Wilker, Elissa H.; Dorans, Kirsten S.; Gold, Diane R.; Schwartz, Joel; Koutrakis, Petros; Washko, George R.; O’Connor, George T.; Mittleman, Murray A.

    2015-01-01

    Rationale: Few studies have examined associations between long-term exposure to fine particulate matter (PM2.5) and lung function decline in adults. Objectives: To determine if exposure to traffic and PM2.5 is associated with longitudinal changes in lung function in a population-based cohort in the Northeastern United States, where pollution levels are relatively low. Methods: FEV1 and FVC were measured up to two times between 1995 and 2011 among 6,339 participants of the Framingham Offspring or Third Generation studies. We tested associations between residential proximity to a major roadway and PM2.5 exposure in 2001 (estimated by a land-use model using satellite measurements of aerosol optical thickness) and lung function. We examined differences in average lung function using mixed-effects models and differences in lung function decline using linear regression models. Current smokers were excluded. Models were adjusted for age, sex, height, weight, pack-years, socioeconomic status indicators, cohort, time, season, and weather. Measurements and Main Results: Living less than 100 m from a major roadway was associated with a 23.2 ml (95% confidence interval [CI], −44.4 to −1.9) lower FEV1 and a 5.0 ml/yr (95% CI, −9.0 to −0.9) faster decline in FEV1 compared with more than 400 m. Each 2 μg/m3 increase in average of PM2.5 was associated with a 13.5 ml (95% CI, −26.6 to −0.3) lower FEV1 and a 2.1 ml/yr (95% CI, −4.1 to −0.2) faster decline in FEV1. There were similar associations with FVC. Associations with FEV1/FVC ratio were weak or absent. Conclusions: Long-term exposure to traffic and PM2.5, at relatively low levels, was associated with lower FEV1 and FVC and an accelerated rate of lung function decline. PMID:25590631

  7. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    NASA Astrophysics Data System (ADS)

    Chambliss, S. E.; Silva, R.; West, J. J.; Zeinali, M.; Minjares, R.

    2014-10-01

    Exposure to ambient fine particular matter (PM2.5) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m-3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants.

  8. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine

  9. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2005-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and

  10. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2005-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine

  11. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2006-04-02

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0

  12. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2004-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc. (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal-fired power plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic

  13. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    SciTech Connect

    Kevin Crist

    2003-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and

  14. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    SciTech Connect

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  15. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-11-08

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  16. Combustor for fine particulate coal

    DOEpatents

    Carlson, L.W.

    1988-01-26

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover. 4 figs.

  17. Combustor for fine particulate coal

    DOEpatents

    Carlson, Larry W.

    1988-01-01

    A particulate coal combustor with two combustion chambers is provided. The first combustion chamber is toroidal; air and fuel are injected, mixed, circulated and partially combusted. The air to fuel ratio is controlled to avoid production of soot or nitrogen oxides. The mixture is then moved to a second combustion chamber by injection of additional air where combustion is completed and ash removed. Temperature in the second chamber is controlled by cooling and gas mixing. The clean stream of hot gas is then delivered to a prime mover.

  18. 77 FR 1894 - Approval and Promulgation of Implementation Plans; Georgia; Rome; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... Matter 2002 Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year emissions...

  19. SPATIAL PREDICTION OF FINE PARTICULATE MATTER

    EPA Science Inventory

    A new national monitoring network for the measurement of fine particular matter (PM2.5) is currently under development. A primary goal of this network is to collect monitoring data in residential communities for the evaluation of compliance with particulate air quality standards...

  20. Changes in inorganic fine particulate matter sensitivities to precursors due to large-scale US emissions reductions.

    PubMed

    Holt, Jareth; Selin, Noelle E; Solomon, Susan

    2015-04-21

    We examined the impact of large US emissions changes, similar to those estimated to have occurred between 2005 and 2012 (high and low emissions cases, respectively), on inorganic PM2.5 sensitivities to further NOx, SO2, and NH3 emissions reductions using the chemical transport model GEOS-Chem. Sensitivities to SO2 emissions are larger year-round and across the US in the low emissions case than the high emissions case due to more aqueous-phase SO2 oxidation. Sensitivities to winter NOx emissions are larger in the low emissions case, more than 2× those of the high emissions case in parts of the northern Midwest. Sensitivities to NH3 emissions are smaller (∼40%) in the low emissions case, year-round, and across the US. Differences in NOx and NH3 sensitivities indicate an altered atmospheric acidity. Larger sensitivities to SO2 and NOx in the low emissions case imply that reducing these emissions may improve air quality more now than they would have in 2005; conversely, NH3 reductions may not improve air quality as much as previously assumed.

  1. Comparing the impact of fine particulate matter emissions from industrial facilities and transport on the real age of a local community

    NASA Astrophysics Data System (ADS)

    Geelen, Loes M. J.; Huijbregts, Mark A. J.; Jans, Henk W. A.; Ragas, Ad M. J.; den Hollander, Henri A.; Aben, Jan M. M.

    2013-07-01

    For policy-making, human health risks of fine particulate m(PM2.5) are commonly assessed by comparing environmental concentrations with reference values, which does not necessarily reflect the impact on health in a population. The goal of this study was to compare health impacts in the Moerdijk area, The Netherlands resulting from local emissions of PM2.5 from industry and traffic in a case study using the risk advancement period (RAP) of mortality. The application of the RAP methodology on the local scale is a promising technique to quantify potential health impacts for communication purposes. The risk advancement period of mortality is the time period by which the mortality risk is advanced among exposed individuals conditional on survival at a baseline age. The RAP showed that road traffic was the most important local emission source that affects human health in the study area, whereas the estimated health impact from industry was a factor of 3 lower. PM2.5 due to highway-traffic was the largest contributor to the health impact of road traffic. This finding is in contrast with the risk perception in this area.

  2. Sensitivities of ozone and fine particulate matter formation to emissions under the impact of potential future climate change.

    PubMed

    Liao, Kuo-Jen; Tagaris, Efthimios; Manomaiphiboon, Kasemsan; Napelenok, Sergey L; Woo, Jung-Hun; He, Shan; Amar, Praveen; Russell, Armistead G

    2007-12-15

    Impact of climate change alone and in combination with currently planned emission control strategies are investigated to quantify effectiveness in decreasing regional ozone and PM2.5 over the continental U.S. using MM5, SMOKE, and CMAQ with DDM-3D. Sensitivities of ozone and PM2.5 formation to precursor emissions are found to change only slightly in response to climate change. In many cases, mass per ton sensitivities to NO(x) and SO2 controls are predicted to be greater in the future due to both the lower emissions as well as climate, suggesting that current control strategies based on reducing such emissions will continue to be effective in decreasing ground-level ozone and PM2.5 concentrations. SO2 emission controls are predicted to be most beneficial for decreasing summertime PM2.5 levels, whereas controls of NO(x) emissions are effective in winter. Spatial distributions of sensitivities are also found to be only slightly affected assuming no changes in land-use. Contributions of biogenic VOC emissions to PM2.5 formation are simulated to be more important in the future because of higher temperatures, higher biogenic emissions, and lower anthropogenic NO(x) and SO2 emissions.

  3. Contributions of regional air pollutant emissions to ozone and fine particulate matter-related mortalities in eastern U.S. urban areas.

    PubMed

    Hou, Xiangting; Strickland, Matthew J; Liao, Kuo-Jen

    2015-02-01

    Ground-level ozone and fine particulate matter (PM2.5) are associated with adverse human health effects such as lung structure dysfunction, inflammation and infection, asthma, and premature deaths. This study estimated contributions of emissions of anthropogenic nitrogen oxides (NOx), volatile organic compounds (VOCs) and sulfur dioxides (SO2) from four regions to summertime (i.e., June, July, and August) ozone and PM2.5-related mortalities in seven major Metropolitan Statistical Areas (MSAs with more than 4 million people) in the eastern United States (U.S.). A photochemical transport model, Community Multi-scale Air Quality (CMAQ) with sensitivity analyses, was applied to quantify the contribution of the regional anthropogenic emissions to ambient ozone and PM2.5 concentrations in the seven MSAs. The results of the sensitivity analysis, along with estimates of concentration-response from published epidemiologic studies, were used to estimate excess deaths associated with changes in ambient daily 8-h average ozone and daily PM2.5 concentrations during the summer of 2007. The results show that secondary PM2.5 (i.e., PM2.5 formed in the atmosphere) had larger effects on mortality (95% confidence interval (C.I.) ranged from 700 to 3854) than ambient ozone did (95% C.I. was 470-1353) in the seven MSAs. Emissions of anthropogenic NOx, VOCs and SO2 from the northeastern U.S. could cause up to about 2500 ozone and PM2.5-related deaths in the urban areas examined in this study. The results also show that the contributions of emissions from electrical generating units (EGUs) and anthropogenic non-EGU sources to ozone-related mortality in the MSAs were similar. However, emissions from EGUs had a more significant impact on PM2.5-related deaths than anthropogenic emissions from non-EGUs sources did. Anthropogenic NOx and VOCs emissions from the regions where the MSAs are located had the most significant contributions to ozone-related mortalities in the eastern U.S. urban

  4. Source-receptor reconciliation of fine-particulate emissions from residential wood combustion in the southeastern United States

    EPA Science Inventory

    An extensive collection of speciated PM2.5 measurements including organic tracers permitted a detailed examination of the emissions from residential wood combustion (RWC) in the southeastern United States over an entire year (2007). The Community Multiscale Air Quality model-base...

  5. Source-receptor reconciliation of fine-particulate emissions from residential wood combustion in the southeastern United States

    EPA Science Inventory

    An extensive collection of speciated PM2.5 measurements including organic tracers permitted a detailed examination of the emissions from residential wood combustion (RWC) in the southeastern United States over an entire year (2007). The Community Multiscale Air Quality model-base...

  6. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect

    Glenn C. England; Stephanie Wien; Mingchih O. Chang

    2002-08-01

    This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

  7. 77 FR 31262 - Approval and Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Particulate Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year..., a 2002 base year emissions inventory and other planning SIP revisions related to attainment of the...

  8. The contribution of motor vehicle emissions to ambient fine particulate matter public health impacts in New York City: a health burden assessment.

    PubMed

    Kheirbek, Iyad; Haney, Jay; Douglas, Sharon; Ito, Kazuhiko; Matte, Thomas

    2016-08-26

    On-road vehicles are an important source of fine particulate matter (PM2.5) in cities, but spatially varying traffic emissions and vulnerable populations make it difficult to assess impacts to inform policy and the public. We estimated PM2.5-attributable mortality and morbidity from on-road vehicle generated air pollution in the New York City (NYC) region using high-spatial-resolution emissions estimates, air quality modeling, and local health incidence data to evaluate variations in impacts by vehicle class, neighborhood, and area socioeconomic status. We developed multiple 'zero-out' emission scenarios focused on regional and local cars, trucks, and buses in the NYC region. We simulated PM2.5 concentrations using the Community Multi-scale Air Quality Model at a 1-km spatial resolution over NYC and combined modeled estimates with monitored data from 2010 to 2012. We applied health impact functions and local health data to quantify the PM2.5-attributable health burden on NYC residents within 42 city neighborhoods. We estimate that all on-road mobile sources in the NYC region contribute to 320 (95 % Confidence Interval (CI): 220-420) deaths and 870 (95 % CI: 440-1280) hospitalizations and emergency department visits annually within NYC due to PM2.5 exposures, accounting for 5850 (95 % CI: 4020-7620) years of life lost. Trucks and buses within NYC accounted for the largest share of on-road mobile-attributable ambient PM2.5, contributing up to 14.9 % of annual average levels across 1-km grid cells, and were associated with 170 (95 % CI: 110-220) PM2.5-attributable deaths each year. These contributions were not evenly distributed, with high poverty neighborhoods experiencing a larger share of the exposure and health burden than low poverty neighborhoods. Reducing motor vehicle emissions, especially from trucks and buses, could produce significant health benefits and reduce disparities in impacts. Our high-spatial-resolution modeling approach could improve

  9. 77 FR 12769 - Approval and Promulgation of Implementation Plans; Georgia; Macon; Fine Particulate Matter 2002...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Matter 2002 Base Year Emissions Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year...

  10. Emission Standards for Particulates

    ERIC Educational Resources Information Center

    Walsh, George W.

    1974-01-01

    Promulgation of standards of performance under Section 111 and national emission standards for hazardous pollutants under Section 112 of the Clean Air Act is the responsibility of the Emission Standards and Engineering Division of the Environmental Protection Agency. The problems encountered and the bases used are examined. (Author/BT)

  11. Emission Standards for Particulates

    ERIC Educational Resources Information Center

    Walsh, George W.

    1974-01-01

    Promulgation of standards of performance under Section 111 and national emission standards for hazardous pollutants under Section 112 of the Clean Air Act is the responsibility of the Emission Standards and Engineering Division of the Environmental Protection Agency. The problems encountered and the bases used are examined. (Author/BT)

  12. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter ...

    EPA Pesticide Factsheets

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10% and 30% moisture content on a wet basis) in a forced-draft fan stove, and (iv) wood in a natural-draft rocket cookstove. LPG combustion had the highest thermal efficiency (~57%) and the lowest PAH emissions per unit fuel energy, resulting in the lowest PAH emissions per useful energy delivered (MJd). The average benzo[a]pyrene (B[a]P) emission factor for LPG was 0.842 µg/MJd; the emission rate was 0.043 µg/min. The highest PAH emissions were from wood burning in the natural-draft stove (209-700 µg B[a]P/MJd). PAH emissions from kerosene were significantly lower than those from the wood burning in the natural-draft cookstove, but higher than those from LPG. It is expected that in rural regions where LPG and kerosene are unavailable or unaffordable, the forced-draft fan stove may be an alternative because its emission factor (5.17-8.07 µg B[a]P/MJd) and emission rate (0.52-0.57 µg/min) are similar to kerosene (5.36 µg B[a]P/MJd and 0.45 µg/min). Compared with wood combustion emissions, LPG stoves emit less total PAH emissions and less fractions of high molecular weight PAHs. Relatively large variations in PAH emissions from LPG call for additional future tests to identify the major

  13. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  14. PARTICULATE EMISSION MEASUREMENTS FROM CONTROLLED CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    The report summarized the results of field testing of the effectiveness of control measures for sources of fugitive particulate emissions found at construction sites. The effectiveness of watering temporary, unpaved travel surfaces on emissions of particulate matter with aerodyna...

  15. Fine particle emissions in three different combustion conditions of a wood chip-fired appliance - Particulate physico-chemical properties and induced cell death

    NASA Astrophysics Data System (ADS)

    Leskinen, J.; Tissari, J.; Uski, O.; Virén, A.; Torvela, T.; Kaivosoja, T.; Lamberg, H.; Nuutinen, I.; Kettunen, T.; Joutsensaari, J.; Jalava, P. I.; Sippula, O.; Hirvonen, M.-R.; Jokiniemi, J.

    2014-04-01

    A biomass combustion reactor with a moving grate was utilised as a model system to produce three different combustion conditions corresponding to efficient, intermediate, and smouldering combustion. The efficient conditions (based on a CO level of approximately 7 mg MJ-1) corresponded to a modern pellet boiler. The intermediate conditions (CO level of approximately 300 mg MJ-1) corresponded to non-optimal settings in a continuously fired biomass combustion appliance. The smouldering conditions (CO level of approximately 2200 mg MJ-1) approached a batch combustion situation. The gaseous and particle emissions were characterised under each condition. Moreover, the ability of fine particles to cause cell death was determined using the particle emissions samples. The physico-chemical properties of the emitted particles and their toxicity were considerably different between the studied combustion conditions. In the efficient combustion, the emitted particles were small in size and large in number. The PM1 emission was low, and it was composed of ash species. In the intermediate and smouldering combustion, the PM1 emission was higher, and the particles were larger in size and smaller in number. In both of these conditions, there were high-emission peaks that produced a significant fraction of the emissions. The PAH emissions were the lowest in the efficient combustion. The smouldering combustion conditions produced the largest PAH emissions. In efficient combustion conditions, the emitted fine particles had the highest potential to cause cell death. This finding was most likely observed because these fine particles were mainly composed of inorganic ash species, and their relative contents of Zn were high. Thus, even the PM1 from optimal biomass combustion might cause health effects, but in these conditions, the particle emissions per energy unit produced were considerably lower.

  16. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea.

    PubMed

    Kim, Byeong-Uk; Kim, Okgil; Kim, Hyun Cheol; Kim, Soontae

    2016-09-01

    The South Korean government plans to reduce region-wide annual PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) concentrations in the Seoul Capital Area (SCA) from 2010 levels of 27 µg/m(3) to 20 µg/m(3) by 2024. At the same time, it is inevitable that emissions from fossil-fuel power plants will continue to increase if electricity generation expands and the generation portfolio remains the same in the future. To estimate incremental PM2.5 contributions due to projected electricity generation growth in South Korea, we utilized an ensemble forecasting member of the Integrated Multidimensional Air Quality System for Korea based on the Community Multi-scale Air Quality model. We performed sensitivity runs with across-the-board emission reductions for all fossil-fuel power plants in South Korea to estimate the contribution of PM2.5 from domestic fossil-fuel power plants. We estimated that fossil-fuel power plants are responsible for 2.4% of the annual PM2.5 national ambient air quality standard in the SCA as of 2010. Based on the electricity generation and the annual contribution of fossil-fuel power plants in 2010, we estimated that annual PM2.5 concentrations may increase by 0.2 µg/m(3) per 100 TWhr due to additional electricity generation. With currently available information on future electricity demands, we estimated that the total future contribution of fossil-fuel power plants would be 0.87 µg/m(3), which is 12.4% of the target reduction amount of the annual PM2.5 concentration by 2024. We also approximated that the number of premature deaths caused by existing fossil-fuel power plants would be 736 in 2024. Since the proximity of power plants to the SCA and the types of fuel used significantly impact this estimation, further studies are warranted on the impact of physical parameters of plants, such as location and stack height, on PM2.5 concentrations in the SCA due to each precursor. Improving air quality by reducing fine particle

  17. Fine particulate chemical composition and light extinction at Meadview, AZ.

    PubMed

    Eatough, Delbert J; Cui, Wenxuan; Hull, Jeffery; Farber, Robert J

    2006-12-01

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr day-night samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was +/- 0.6 microg/m3 organic material, +/- 0.3 microg/m3 ammonium sulfate, and +/- 0.07 microg/m3 ammonium nitrate. Data were also available on fine particulate crustal material, fine and coarse particulate mass from the Interagency Monitoring of Protected Visual Environments sampling system, and relative humidity (RH), light absorption, particle scattering, and light extinction measurements from Project MOHAVE. An extinction budget was obtained using mass scattering coefficients estimated from particle size distribution data. Literature data were used to estimate the change in the mass scattering coefficients for the measured species as a function of RH and for the absorption of light by elemental carbon. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. During periods of highest light extinction, contributions from fine particulate organic material, sulfate, and light-absorbing carbon dominated the extinction of light by particles. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides

  18. Particulate Emissions from Gas Turbine Engines. Revision.

    DTIC Science & Technology

    1992-02-01

    with ferrocene additive) Particulate mass emissions from a J79-GE-IOB engine A-48 to A-64 Particulate mass emissions from a J52-P-6B engine A-65 to A...J79-CE-8D engine 4-9 1 with ferrocene additive (Summary of Files 34 through 45) 6 Particulate emissions from the ,J/7-G;E8f) engine 4 - 0l with... ferrocene additive (Summary of Files 46 and 47) 7 Particulate emissions from the J79-GE-8D engine 4-1i with ferrocene additive (Summary of Files 34 through

  19. Highly-resolved Modeling of Emissions and Concentrations of Carbon Monoxide, Carbon Dioxide, Nitrogen Oxides, and Fine Particulate Matter in Salt Lake City, Utah

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Ehleringer, J. R.

    2014-12-01

    Accurate, high-resolution data on air pollutant emissions and concentrations are needed to understand human exposures and for both policy and pollutant management purposes. An important step in this process is also quantification of uncertainties. We present a spatially explicit and highly resolved emissions inventory for Salt Lake County, Utah, and trace gas concentration estimates for carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and fine particles (PM2.5) within Salt Lake City. We assess the validity of this approach by comparing measured concentrations against simulated values derived from combining the emissions inventory with an atmospheric model. The emissions inventory for the criteria pollutants was constructed using the 2011 National Emissions Inventory (NEI). The spatial and temporal allocation methods from the Emission Modeling Clearinghouse data set are used to downscale the NEI data from annual to hourly scales and from county-level to 500 m x 500 m resolution. Onroad mobile source emissions were estimated by combining a bottom-up emissions calculation approach for large roadway links with a top-down spatial allocation approach for other roadways. Vehicle activity data for road links were derived from automatic traffic responder data. The emissions inventory for CO2 was obtained from the Hestia emissions data product at an hourly, building, facility, and road link resolution. The AERMOD and CALPUFF dispersion models were used to transport emissions and estimate air pollutant concentrations at an hourly temporal and 500 m x 500 m spatial resolution. Modeled results were compared against measurements from a mobile lab equipped with trace gas measurement equipment traveling on pre-determined routes in the Salt Lake City area. The comparison between both approaches to concentration estimation highlights spatial locations and hours of high variability/uncertainty. Results presented here will inform understanding of variability and

  20. Particulate emissions from construction activities.

    PubMed

    Muleski, Gregory E; Cowherd, Chatten; Kinsey, John S

    2005-06-01

    Although it has long been recognized that road and building construction activity constitutes an important source of particulate matter (PM) emissions throughout the United States, until recently only limited research has been directed to its characterization. This paper presents the results of PM10 and PM2.5 (particles < or = 10 microm and < or = 2.5 microm in aerodynamic diameter, respectively) emission factor development from the onsite testing of component operations at actual construction sites during the period 1998-2001. Much of the testing effort was directed at earthmoving operations with scrapers, because earthmoving is the most important contributor of PM emissions across the construction industry. Other sources tested were truck loading and dumping of crushed rock and mud and dirt carryout from construction site access points onto adjacent public paved roads. Also tested were the effects of watering for control of scraper travel routes and the use of paved and graveled aprons at construction site access points for reducing mud and dirt carryout. The PM10 emissions from earthmoving were found to be up to an order of magnitude greater than predicted by AP-42 emission factors drawn from other industries. As expected, the observed PM2.5:PM10 emission factor ratios reflected the relative importance of the vehicle exhaust and the resuspended dust components of each type of construction activity. An unexpected finding was that PM2.5 emissions from mud and dirt carryout were much less than anticipated. Finally, the control efficiency of watering of scraper travel routes was found to closely follow a bilinear moisture model.

  1. Fine particulate chemical composition and light extinction at Meadview, AZ

    SciTech Connect

    Delbert J. Eatough; Wenxuan Cui; Jeffery Hull; Robert J. Farber

    2006-12-15

    The concentration of fine particulate nitrate, sulfate, and carbonaceous material was measured for 12-hr daynight samples using diffusion denuder samplers during the Project Measurement of Haze and Visibility Effects (MOHAVE) July to August 1992 Summer Intensive study at Meadview, AZ, just west of Grand Canyon National Park. Organic material was measured by several techniques. Only the diffusion denuder method measured the semivolatile organic material. Fine particulate sulfate and nitrate (using denuder technology) determined by various groups agreed. Based on the various collocated measurements obtained during the Project MOHAVE study, the precision of the major fine particulate species was {+-} 0.6 {mu}g/m{sup 3} organic material, {+-} 0.3 {mu}g/m{sup 3} ammonium sulfate, and {+-} 0.07 {mu}g/m{sup 3} ammonium nitrate. Fine particulate organic material was the principal particulate contributor to light extinction during the study period, with fine particulate sulfate as the second most important contributor. Particle light extinction was dominated by sulfate and organic material during periods of lowest light extinction. Combination of the extinction data and chemical mass balance analysis of sulfur oxides sources in the region indicate that the major anthropogenic contributors to light extinction were from the Los Angeles, CA, and Las Vegas, NV, urban areas. Mohave Power Project associated secondary sulfate was a negligible contributor to light extinction. 49 refs., 12 figs., 7 tabs.

  2. 76 FR 63860 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... Interstate Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA...; (4) revise the Arkansas ozone-season new unit set-aside to account for erroneously omitted projected... projected emissions for SO 2 , ozone- season NO X , and annual NO X ; (6) revise New Jersey's ozone...

  3. Sources, trends and regional impacts of fine particulate matter in southern Mississippi valley: significance of emissions from sources in the Gulf of Mexico coast

    NASA Astrophysics Data System (ADS)

    Chalbot, M.-C.; McElroy, B.; Kavouras, I. G.

    2013-04-01

    The sources of fine particles over a 10 yr period at Little Rock, Arkansas, an urban area in the southern Mississippi Valley, were identified by positive matrix factorization. The annual trends of PM2.5 and its sources, and their associations with the pathways of air mass backward trajectories were examined. Seven sources were apportioned, namely, primary traffic particles, secondary nitrate and sulphate, biomass burning, diesel particles, aged/contaminated sea salt and mineral/road dust, accounting for more than 90% of measured PM2.5 (particles with aerodynamic diameter less than 2.5 μm) mass. The declining trend of PM2.5 mass (0.4 μg m-3 per year) was related to lower levels of SO42- (0.2 μg m-3 per year) due to SO2 reductions from point and mobile sources. The slower decline for NO3- particles (0.1 μg m-3 per year) was attributed to the increasing NH3 emissions in the Midwest. The annual variation of biomass burning particles was associated with fires in the southeast and northwest US. Of the four regions within 500 km from the receptor site, the Gulf Coast and the southeast US accounted cumulatively for more than 65% of PM2.5 mass, nitrate, sulphate and biomass burning aerosol. Overall, more than 50% of PM2.5 and its components originated from sources outside the state. Sources within the Gulf Coast and western Gulf of Mexico include 65% of the busiest ports in the US, intense marine traffic within 400 km of the coast burning rich in S diesel, and a large number of offshore oil and natural gas platforms and many refineries. This approach allowed for the quantitative assessment of the impacts of transport from regions representing diverse mixtures of sources and weather conditions for different types of particles. The findings of this effort demonstrated the influences of emission controls on SO2 and NOx on PM2.5 mass, the potential effect of events (i.e. fires) sensitive to climate change phenomena on air pollution and the potential of offshore activities

  4. Sources, trends and regional impacts of fine particulate matter in southern Mississippi Valley: significance of emissions from sources in the Gulf of Mexico coast

    NASA Astrophysics Data System (ADS)

    Chalbot, M.-C.; McElroy, B.; Kavouras, I. G.

    2013-01-01

    The sources of fine particles over a 10 yr period at Little Rock, Arkansas, an urban area in southern Mississippi Valley, were identified by positive matrix factorization. The annual trends of PM2.5 and its sources and their associations with the pathways of air mass backward trajectories were examined. Seven sources were apportioned, namely, primary traffic particles, secondary nitrate and sulphate, biomass burning, diesel particles, aged/contaminated sea salt and mineral/road dust, accounting for more than 90% of measured PM2.5 mass. The declining trend of PM2.5 mass (0.4 μg m-3 yr-1) was related to lower levels of SO42- (0.2 μg m-3 yr-1) due to SO2 reductions from point and mobile sources. The slower decline for NO3- particles (0.1 μg m-3 yr-1) was attributed to the spatial variability of NH3 in Midwest. The annual variation of biomass burning particles was associated with wildland fires in southeast and northwest US that are sensitive to climate changes. The four regions within 500 km from the receptor site, the Gulf Coast and southeast US accounted cumulatively for more than 65% of PM2.5 mass, nitrate, sulphate and biomass burning aerosol. Overall, more than 50% of PM2.5 and its sources originated from sources outside the state. Sources within the Gulf Coast and western Gulf of Mexico include 65% of the busiest ports in the US, intense marine traffic within 400 km of the coast burning rich in S diesel, and a large number of offshore oil and natural gas platforms and many refineries along the coast. This approach allowed for quantitatively assessing the impacts of transport from regions representing diverse mixtures of sources and weather conditions for different types of particles. The findings of this effort demonstrated the influences of emission controls on SO2 and NOx on PM2.5 mass, the potential effect of events (i.e. fires) sensitive to climate change phenomena on air pollution and the potential of offshore activities and shipping emissions to

  5. Measurement of vehicle particulate emissions.

    PubMed Central

    Beltzer, M

    1975-01-01

    A constant volume sampler (CVS) compatible auto exhaust particulate sampling system has been built which samples exhaust isokinetically at constant temperature. This system yields internally consistent results and is capable of frequent and convenient operation. PMID:50931

  6. PREDICTION OF FINE PARTICULATE LEVELS AT UNMONITORED LOCATIONS

    EPA Science Inventory

    In November and December of 1999, air concentrations of ultrafine, fine, and coarse particulate matter were measured at two intensive sites in El Paso, Texas. The intensive sites included collocated measurements of NO2 and volatile organic compounds (VOCs) in the air from both...

  7. PREDICTION OF FINE PARTICULATE LEVELS AT UNMONITORED LOCATIONS

    EPA Science Inventory

    In November and December of 1999, air concentrations of ultrafine, fine, and coarse particulate matter were measured at two intensive sites in El Paso, Texas. The intensive sites included collocated measurements of NO2 and volatile organic compounds (VOCs) in the air from both...

  8. SPATIO-TEMPORAL MODELING OF FINE PARTICULATE MATTER

    EPA Science Inventory

    Studies indicate that even short-term exposure to high concentrations of fine atmospheric particulate matter (PM2.5) can lead to long-term health effects. In this paper, we propose a random effects model for PM2.5 concentrations. In particular, we anticipa...

  9. Modeling particulate matter emissions during mineral loading process under weak wind simulation.

    PubMed

    Zhang, Xiaochun; Chen, Weiping; Ma, Chun; Zhan, Shuifen

    2013-04-01

    The quantification of particulate matter emissions from mineral handling is an important problem for the quantification of global emissions on industrial sites. Mineral particulate matter emissions could adversely impact environmental quality in mining regions, transport regions, and even on a global scale. Mineral loading is an important process contributing to mineral particulate matter emissions, especially under weak wind conditions. Mathematical models are effective ways to evaluate particulate matter emissions during the mineral loading process. The currently used empirical models based on the form of a power function do not predict particulate matter emissions accurately under weak wind conditions. At low particulate matter emissions, the models overestimated, and at high particulate matter emissions, the models underestimated emission factors. We conducted wind tunnel experiments to evaluate the particulate matter emission factors for the mineral loading process. A new approach based on the mathematical form of a logistical function was developed and tested. It provided a realistic depiction of the particulate matter emissions during the mineral loading process, accounting for fractions of fine mineral particles, dropping height, and wind velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Nattinger, K.; Simpson, W. R.; Huff, D.

    2015-12-01

    Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this

  11. Diesel particulate emission control without engine modifications

    SciTech Connect

    Filowitz, M.S.; Vataru, M.

    1989-01-01

    This paper describes an ashless, fuel supplement which was found to typically reduce diesel particulate emissions by over 30% while significantly improving fuel economy and power output without any modifications to existing diesel engines or fuels. The treating cost is an order of magnitude less than the estimated cost of reducing aromatic content at the refinery to achieve particulate reductions. The particulate reduction is virtually all from the carbon (soot) fraction. The reduced soot formation translates into less abrasives and less soot-loading stress on the engine oil. Diesel tests conducted are also discussed.

  12. Atmospheric Light Detection and Ranging (LiDAR) Coupled With Point Measurement Air Quality Samplers to Measure Fine Particulate Matter (PM) Emissions From Agricultural Operations: The Los Banos CA Fall 2007 Tillage Campaign.

    EPA Science Inventory

    Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...

  13. Atmospheric Light Detection and Ranging (LiDAR) Coupled With Point Measurement Air Quality Samplers to Measure Fine Particulate Matter (PM) Emissions From Agricultural Operations: The Los Banos CA Fall 2007 Tillage Campaign.

    EPA Science Inventory

    Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...

  14. ANALYSIS OF LEAD IN CANDLE PARTICULATE EMISSIONS BY XRF USING UNIQUANT 4

    EPA Science Inventory

    As part of an extensive program to study the small combustion sources of indoor fine particulate matter (PM), candles with lead-core wicks were burned in a 46-L glass flow- through chamber. The particulate emissions with aerodynamic diameters <10 micrometers (PM10) were captured ...

  15. ANALYSIS OF LEAD IN CANDLE PARTICULATE EMISSIONS BY XRF USING UNIQUANT 4

    EPA Science Inventory

    As part of an extensive program to study the small combustion sources of indoor fine particulate matter (PM), candles with lead-core wicks were burned in a 46-L glass flow- through chamber. The particulate emissions with aerodynamic diameters <10 micrometers (PM10) were captured ...

  16. Particulate Emission Abatement for Krakow Boilerhouses.

    SciTech Connect

    Hucko, R.E.

    1997-01-20

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are more than 2,000 uncontrolled boilers accounting for about half the total fuel use. The large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy. It utilizes a highly efficient collector, which functions on the principle of inertial separation. The system is able to control fine particulate matter, as in the PMIO regulations, which limit the emission of dust particles below 10 microns in diameter. Its dust removal performance has been shown to be comparable to that of a medium-efficiency electrostatic precipitator (ESP). Yet, its cost is substantially lower than that of either an ESP or fabric filter. While the Core Separator achieves high efficiency, its power consumption is just slightly higher than that of a cyclone. It functions dry and without the aid of energy-consuming enhancements. It is simple, reliable, and unlike the ESP and fabric filter, easy to maintain. This combination of features make it ideal for the small boiler market in the City of Krakow. A highly qualified team has been assembled to execute this project. LSR Technologies, Inc., a technology-based company located in Acton, Massachusetts, is the developer of the Core Separator and holder of its patent rights. LSR has sold several of these

  17. Particulate Emission Abatement for Krakow Boilerhouses.

    SciTech Connect

    Hucko, R.E.

    1997-04-30

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are more than 2,000 uncontrolled boilers accounting for about half the total fuel use. The large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy. It utilizes a highly efficient collector, which functions on the principle of inertial separation. The system is able to control fine particulate matter, as in the PMIO regulations, which limit the emission of dust particles below 10 microns in diameter. Its dust removal performance has been shown to be comparable to that of a medium-efficiency electrostatic precipitator (ESP). Yet, its cost is substantially lower than that of either an ESP or fabric filter. While the Core Separator achieves high efficiency, its power consumption is just slightly higher than that of a cyclone. It functions dry and without the aid of energy-consuming enhancements. It is simple, reliable, and unlike the ESP and fabric filter, easy to maintain. This combination of features make it ideal for the small boiler market in the City of Krakow. A highly qualified team has been assembled to execute this project. LSR Technologies, Inc., a technology-based company located in Acton, Massachusetts, is the developer of the Core Separator and holder of its patent rights. LSR has sold several of these

  18. 76 FR 63251 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA). ACTION... Transport of Fine Particulate Matter and Ozone'', which was signed on October 6, 2011 and posted on EPA's...: Interstate Transport of Fine Particulate Matter and Ozone and Correction of SIP Approvals). EPA is...

  19. Analysis of Fine Particulate Nitrate on Diurnal, Weekly and Seasonal Time Scales

    NASA Astrophysics Data System (ADS)

    Millstein, D. E.; Harley, R. A.; Hering, S. V.

    2006-12-01

    Particulate nitrate is a secondary pollutant and important contributor to PM2.5; nitrate responses to changes in precursor emissions, meteorology, and atmospheric chemistry are of interest here. Fine particulate nitrate concentrations were analyzed on diurnal, weekly, and seasonal at 4 urban sites in the United States. Clear weekly signals in ambient black carbon concentrations as a result of reduced diesel emissions on weekends have been reported previously. A similar response in particulate nitrate has been hard to discern in the previously available data, despite significant weekend reductions in NOx emissions. Past analyses have been constrained by limited data availability: routine measurement programs typically have involved sampling once every 6 days, or less frequently. Also most measurement programs report 24-h average concentrations, which prevents consideration of diurnal patterns. Here we analyze semi-continuous measurements of fine particulate nitrate at 10-min time resolution. We consider yearlong records of nitrate measured at Fresno (California), Pittsburgh (Pennsylvania) and St. Louis (Missouri). At a fourth site (Claremont, California), we analyze particulate nitrate measurements resolved into three size fractions: 0.07-0.45, 0.45-1, and 1-2.5 um. Daily average fine particulate nitrate concentrations were compared to a 7-day moving average at each site. We observed weekly cycles in nitrate at Fresno, Claremont, and St. Louis. The nitrate response was delayed in time relative to weekend decreases in NOx emissions. No weekly cycle in nitrate was observed at Pittsburgh. Analysis of related pollutants at Pittsburgh shows nitrate formation is ammonia-limited during spring, summer and fall; this limits the effect of NOx reductions on nitrate formation. Reductions in sulfate observed on weekends during spring and summer months at Pittsburgh could affect ammonia availability. However, we found in this case that decreases in sulfate led to increased

  20. Long-term source apportionment of ambient fine particulate matter (PM2.5) in the Los Angeles Basin: a focus on emissions reduction from vehicular sources.

    PubMed

    Hasheminassab, Sina; Daher, Nancy; Ostro, Bart D; Sioutas, Constantinos

    2014-10-01

    Positive Matrix Factorization (PMF) was utilized to quantify sources of ambient PM2.5 in central Los Angeles (LA) and Rubidoux, using the Speciation Trends Network data, collected between 2002 and 2013. Vehicular emissions (including gasoline and diesel vehicles) were the second major contributor to PM2.5, following secondary aerosols, with about 20% contribution to total mass in both sites. Starting in 2007, several major federal, state, and local regulations on vehicular emissions were implemented. To assess the effect of these regulations, daily-resolved vehicular source contributions from 2002 to 2006 were pooled together and compared to the combination of 2008 to 2012 datasets. Compared to the 2002-2006 dataset, the median values of vehicular emissions in 2008-2012 statistically significantly decreased by 24 and 21% in LA and Rubidoux, respectively. These reductions were noted despite an overall increase or similarity in the median values of the daily flow of vehicles after 2007, at the sites.

  1. Gaseous and particulate emissions from prescribed burning in Georgia.

    PubMed

    Lee, Sangil; Baumann, Karsten; Schauer, James J; Sheesley, Rebecca J; Naeher, Luke P; Meinardi, Simone; Blake, Donald R; Edgerton, Eric S; Russell, Armistead G; Clements, Mark

    2005-12-01

    Prescribed burning is a significant source of fine particulate matter (PM2.5) in the southeastern United States. However, limited data exist on the emission characteristics from this source. Various organic and inorganic compounds both in the gas and particle phase were measured in the emissions of prescribed burnings conducted at two pine-dominated forest areas in Georgia. The measurements of volatile organic compounds (VOCs) and PM2.5 allowed the determination of emission factors for the flaming and smoldering stages of prescribed burnings. The VOC emission factors from smoldering were distinctly higher than those from flaming except for ethene, ethyne, and organic nitrate compounds. VOC emission factors show that emissions of certain aromatic compounds and terpenes such as alpha and beta-pinenes, which are important precursors for secondary organic aerosol (SOA), are much higher from active prescribed burnings than from fireplace wood and laboratory open burning studies. Levoglucosan is the major particulate organic compound (POC) emitted for all these studies, though its emission relative to total organic carbon (mg/g OC) differs significantly. Furthermore, cholesterol, an important fingerprint for meat cooking, was observed only in our in situ study indicating a significant release from the soil and soil organisms during open burning. Source apportionment of ambient primary fine particulate OC measured at two urban receptor locations 20-25 km downwind yields 74 +/- 11% during and immediately after the burns using our new in situ profile. In comparison with the previous source profile from laboratory simulations, however, this OC contribution is on average 27 +/- 5% lower.

  2. Fine Particulate Matter Concentrations in Urban Chinese Cities, 2005-2016: A Systematic Review.

    PubMed

    He, Mike Z; Zeng, Xiange; Zhang, Kaiyue; Kinney, Patrick L

    2017-02-14

    Background: Particulate matter pollution has become a growing health concern over the past few decades globally. The problem is especially evident in China, where particulate matter levels prior to 2013 are publically unavailable. We conducted a systematic review of scientific literature that reported fine particulate matter (PM2.5) concentrations in different regions of China from 2005 to 2016. Methods: We searched for English articles in PubMed and Embase and for Chinese articles in the China National Knowledge Infrastructure (CNKI). We evaluated the studies overall and categorized the collected data into six geographical regions and three economic regions. Results: The mean (SD) PM2.5 concentration, weighted by the number of sampling days, was 60.64 (33.27) μg/m³ for all geographic regions and 71.99 (30.20) μg/m³ for all economic regions. A one-way ANOVA shows statistically significant differences in PM2.5 concentrations between the various geographic regions (F = 14.91, p < 0.0001) and the three economic regions (F = 4.55, p = 0.01). Conclusions: This review identifies quantifiable differences in fine particulate matter concentrations across regions of China. The highest levels of fine particulate matter were found in the northern and northwestern regions and especially Beijing. The high percentage of data points exceeding current federal regulation standards suggests that fine particulate matter pollution remains a huge problem for China. As pre-2013 emissions data remain largely unavailable, we hope that the data aggregated from this systematic review can be incorporated into current and future models for more accurate historical PM2.5 estimates.

  3. Fine Particulate Matter Concentrations in Urban Chinese Cities, 2005–2016: A Systematic Review

    PubMed Central

    He, Mike Z.; Zeng, Xiange; Zhang, Kaiyue; Kinney, Patrick L.

    2017-01-01

    Background: Particulate matter pollution has become a growing health concern over the past few decades globally. The problem is especially evident in China, where particulate matter levels prior to 2013 are publically unavailable. We conducted a systematic review of scientific literature that reported fine particulate matter (PM2.5) concentrations in different regions of China from 2005 to 2016. Methods: We searched for English articles in PubMed and Embase and for Chinese articles in the China National Knowledge Infrastructure (CNKI). We evaluated the studies overall and categorized the collected data into six geographical regions and three economic regions. Results: The mean (SD) PM2.5 concentration, weighted by the number of sampling days, was 60.64 (33.27) μg/m3 for all geographic regions and 71.99 (30.20) μg/m3 for all economic regions. A one-way ANOVA shows statistically significant differences in PM2.5 concentrations between the various geographic regions (F = 14.91, p < 0.0001) and the three economic regions (F = 4.55, p = 0.01). Conclusions: This review identifies quantifiable differences in fine particulate matter concentrations across regions of China. The highest levels of fine particulate matter were found in the northern and northwestern regions and especially Beijing. The high percentage of data points exceeding current federal regulation standards suggests that fine particulate matter pollution remains a huge problem for China. As pre-2013 emissions data remain largely unavailable, we hope that the data aggregated from this systematic review can be incorporated into current and future models for more accurate historical PM2.5 estimates. PMID:28216601

  4. PARTICULATE EMISSIONS FROM CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    Although it has long been recognized that road and building construction activity constitutes an important source of PM emissions throughout the United States, until recently only limited research has been directed to its characterization. This paper presents the results of PM10...

  5. PARTICULATE EMISSIONS FROM CONSTRUCTION ACTIVITIES

    EPA Science Inventory

    Although it has long been recognized that road and building construction activity constitutes an important source of PM emissions throughout the United States, until recently only limited research has been directed to its characterization. This paper presents the results of PM10...

  6. 77 FR 28785 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA). ACTION... Reduce Interstate Transport of Fine Particulate Matter and Ozone'' as a direct final rule on February 21... Particulate Matter and Ozone'' as a direct final rule on February 21, 2012. See 77 FR 10342. The direct...

  7. 77 FR 10341 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... Implementation Plans To Reduce Interstate Transport of Fine Particulate Matter and Ozone; Final Rule and Proposed... Implementation Plans To Reduce Interstate Transport of Fine Particulate Matter and Ozone AGENCY: Environmental... Particulate Matter and Ozone and Correction of SIP Approvals published August 8, 2011). In the...

  8. Hydrocycloning thickening: dewatering and densification of fine particulates

    SciTech Connect

    Lin, I.J.

    1987-01-01

    The paper reviews integrated ore-dressing machines with particular reference to hydrocyclones and describes a new concept, the cyclo-thick apparatus, which combines features of the hydrocyclone and the thickener in a single machine. Field tests conducted with the cyclo-thick demonstrated that the unit is remarkably simple and clean in design, and can effectively separate, dewater, and densify fine particulates. This unit should be considered as a viable alternative when evaluating potential solutions to a given separation, thickening, or filtration problem. Various practical applications are proposed.

  9. 76 FR 60492 - Adequacy Status of the Ohio Portion of the Huntington/Ashland Submitted Annual Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... AGENCY Adequacy Status of the Ohio Portion of the Huntington/Ashland Submitted Annual Fine Particulate... Ohio portion of the Huntington/Ashland WV-KY-OH area. Ohio submitted the insignificance findings with... portion of the Huntington/Ashland area is no longer required to perform a regional emissions analysis for...

  10. 76 FR 48207 - Federal Implementation Plans: Interstate Transport of Fine Particulate Matter and Ozone and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ...In this action, EPA is limiting the interstate transport of emissions of nitrogen oxides (NOX) and sulfur dioxide (SO2) that contribute to harmful levels of fine particle matter (PM2.5) and ozone in downwind states. EPA is identifying emissions within 27 states in the eastern United States that significantly affect the ability of downwind states to attain and maintain compliance with the 1997 and 2006 fine particulate matter national ambient air quality standards (NAAQS) and the 1997 ozone NAAQS. Also, EPA is limiting these emissions through Federal Implementation Plans (FIPs) that regulate electric generating units (EGUs) in the 27 states. This action will substantially reduce adverse air quality impacts in downwind states from emissions transported across state lines. In conjunction with other federal and state actions, it will help assure that all but a handful of areas in the eastern part of the country achieve compliance with the current ozone and PM2.5 NAAQS by the deadlines established in the Clean Air Act (CAA or Act). The FIPs may not fully eliminate the prohibited emissions from certain states with respect to the 1997 ozone NAAQS for two remaining downwind areas and EPA is committed to identifying any additional required upwind emission reductions and taking any necessary action in a future rulemaking. In this action, EPA is also modifying its prior approvals of certain State Implementation Plan (SIP) submissions to rescind any statements that the submissions in question satisfy the interstate transport requirements of the CAA or that EPA's approval of the SIPs affects our authority to issue interstate transport FIPs with respect to the 1997 fine particulate and 1997 ozone standards for 22 states. EPA is also issuing a supplemental proposal to request comment on its conclusion that six additional states significantly affect downwind states' ability to attain and maintain compliance with the 1997 ozone NAAQS.

  11. Vehicular particulate matter emissions in road tunnels in Sao Paulo, Brazil.

    PubMed

    Sánchez-Ccoyllo, Odón R; Ynoue, Rita Y; Martins, Leila D; Astolfo, Rosana; Miranda, Regina M; Freitas, Edmilson D; Borges, Alessandro S; Fornaro, Adalgiza; Freitas, Helber; Moreira, Andréa; Andrade, Maria F

    2009-02-01

    In the metropolitan area of São Paulo, Brazil, ozone and particulate matter (PM) are the air pollutants that pose the greatest threat to air quality, since the PM and the ozone precursors (nitrogen oxides and volatile organic compounds) are the main source of air pollution from vehicular emissions. Vehicular emissions can be measured inside road tunnels, and those measurements can provide information about emission factors of in-use vehicles. Emission factors are used to estimate vehicular emissions and are described as the amount of species emitted per vehicle distance driven or per volume of fuel consumed. This study presents emission factor data for fine particles, coarse particles, inhalable particulate matter and black carbon, as well as size distribution data for inhalable particulate matter, as measured in March and May of 2004, respectively, in the Jânio Quadros and Maria Maluf road tunnels, both located in São Paulo. The Jânio Quadros tunnel carries mainly light-duty vehicles, whereas the Maria Maluf tunnel carries light-duty and heavy-duty vehicles. In the Jânio Quadros tunnel, the estimated light-duty vehicle emission factors for the trace elements copper and bromine were 261 and 220 microg km(-1), respectively, and 16, 197, 127 and 92 mg km(-1), respectively, for black carbon, inhalable particulate matter, coarse particles and fine particles. The mean contribution of heavy-duty vehicles to the emissions of black carbon, inhalable particulate matter, coarse particles and fine particles was, respectively 29, 4, 6 and 6 times higher than that of light-duty vehicles. The inhalable particulate matter emission factor for heavy-duty vehicles was 1.2 times higher than that found during dynamometer testing. In general, the particle emissions in São Paulo tunnels are higher than those found in other cities of the world.

  12. Field measurement of diesel particulate matter emissions.

    PubMed

    Volkwein, Jon C; Mischler, Steven E; Davies, Brian; Ellis, Clive

    2008-03-01

    A primary means to reduce environmental levels of diesel particulate matter (DPM) exposure to miners is to reduce the amount of DPM emission from the engine. A quick and economic method to estimate engine particulate emission levels has been developed. The method relies on the measurement of pressure increase across a filter element that is briefly used to collect a DPM sample directly from the engine exhaust. The method has been refined with the inclusion of an annular aqueous denuder to the tube which permits dry filter samples to be obtained without addition of dilution air. Tailpipe filter samples may then be directly collected in hot and water-supersaturated exhaust gas flows from water bath-cooled coal mine engines without the need for dilution air. Measurement of a differential pressure (DP) increase with time has been related to the mass of elemental carbon (EC) on the filter. Results for laboratory and field measurements of the method showed agreement between DP increase and EC collected on the filter with R(2) values >0.86. The relative standard deviation from replicate samples of DP and EC was 0.16 and 0.11, respectively. The method may also have applications beyond mining, where qualitative evaluation of engine emissions is desirable to determine if engine or control technology maintenance may be required.

  13. Quantifying the sources of ozone, fine particulate matter, and regional haze in the Southeastern United States.

    PubMed

    Odman, M Talat; Hu, Yongtao; Russell, Armistead G; Hanedar, Asude; Boylan, James W; Brewer, Patricia F

    2009-07-01

    A detailed sensitivity analysis was conducted to quantify the contributions of various emission sources to ozone (O3), fine particulate matter (PM2.5), and regional haze in the Southeastern United States. O3 and particulate matter (PM) levels were estimated using the Community Multiscale Air Quality (CMAQ) modeling system and light extinction values were calculated from modeled PM concentrations. First, the base case was established using the emission projections for the year 2009. Then, in each model run, SO2, primary carbon (PC), NH3, NO(x) or VOC emissions from a particular source category in a certain geographic area were reduced by 30% and the responses were determined by calculating the difference between the results of the reduced emission case and the base case. The sensitivity of summertime O3 to VOC emissions is small in the Southeast and ground-level NO(x) controls are generally more beneficial than elevated NO(x) controls (per unit mass of emissions reduced). SO2 emission reduction is the most beneficial control strategy in reducing summertime PM2.5 levels and improving visibility in the Southeast and electric generating utilities are the single largest source of SO2. Controlling PC emissions can be very effective locally, especially in winter. Reducing NH3 emissions is an effective strategy to reduce wintertime ammonium nitrate (NO3NH4) levels and improve visibility; NO(x) emissions reductions are not as effective. The results presented here will help the development of specific emission control strategies for future attainment of the National Ambient Air Quality Standards in the region.

  14. Fine particulate matter in acute exacerbation of COPD

    PubMed Central

    Ni, Lei; Chuang, Chia-Chen; Zuo, Li

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD) can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM) in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM) in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress (OS), immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden. PMID:26557095

  15. California Wildfires of 2008: Coarse and Fine Particulate Matter Toxicity

    PubMed Central

    Wegesser, Teresa C.; Pinkerton, Kent E.; Last, Jerold A.

    2009-01-01

    Background During the last week of June 2008, central and northern California experienced thousands of forest and brush fires, giving rise to a week of severe fire-related particulate air pollution throughout the region. California experienced PM10–2.5 (particulate matter with mass median aerodynamic diameter > 2.5 μm to < 10 μm; coarse ) and PM2.5 (particulate matter with mass median aerodynamic diameter < 2.5 μm; fine) concentrations greatly in excess of the air quality standards and among the highest values reported at these stations since data have been collected. Objectives These observations prompt a number of questions about the health impact of exposure to elevated levels of PM10–2.5 and PM2.5 and about the specific toxicity of PM arising from wildfires in this region. Methods Toxicity of PM10–2.5 and PM2.5 obtained during the time of peak concentrations of smoke in the air was determined with a mouse bioassay and compared with PM samples collected under normal conditions from the region during the month of June 2007. Results Concentrations of PM were not only higher during the wildfire episodes, but the PM was much more toxic to the lung on an equal weight basis than was PM collected from normal ambient air in the region. Toxicity was manifested as increased neutrophils and protein in lung lavage and by histologic indicators of increased cell influx and edema in the lung. Conclusions We conclude that the wildfire PM contains chemical components toxic to the lung, especially to alveolar macrophages, and they are more toxic to the lung than equal doses of PM collected from ambient air from the same region during a comparable season. PMID:19590679

  16. [Fine particulate matter and nonalcoholic fatty liver disease].

    PubMed

    Li, M; Li, Y M

    2016-09-20

    Fine particulate matter is defined as the particulate matter with an aerodynamic diameter of < 2.5 μm, i.e., PM2.5. Its surface absorbs large amounts of toxic and hazardous substances, which can deposit in pulmonary alveoli through respiration and reach other organs through pulmonary ventilation. Many studies have confirmed that PM2.5 is closely associated with pulmonary and cardiovascular diseases. Nonalcoholic fatty liver disease(NAFLD)has similar risk factors as these diseases, as well as obesity, hyperlipidemia, and type 2 diabetes, and it is considered a part of metabolic syndrome. In this view, many studies focus on the possible association between PM2.5 and NAFLD in recent years, including epidemiological study and experimental study, so as to investigate possible pathogenic mechanisms. With reference to the research advances in PM2.5 and NAFLD, this article reviews the association between PM2.5 and NAFLD from the aspects of lipid deposition, oxidative stress, and insulin resistance.

  17. Effects of Crayfish on Quality of Fine Particulate Organic Matter

    NASA Astrophysics Data System (ADS)

    Montemarano, J. J.; Kershner, M. W.; Leff, L. G.

    2005-05-01

    The origin and ontogeny of detritus often determines its bioavailability. Crayfish shred and consume detrital organic matter, influencing fine particulate organic matter (FPOM) availability, composition and quality. Given consumption of FPOM by many invertebrates, crayfish can indirectly affect these organisms by altering FPOM bioavailability through organic matter fragmentation, biofilm disturbance, and defecation. These effects may or may not vary among coarse particulate organic matter (CPOM) from different leaf species. To assess crayfish effects on FPOM quality, crayfish were fed stream-conditioned maple or oak leaves in hanging 1-mm mesh-bottom baskets in aquaria. After 12 h, crayfish and remaining leaves were removed. FPOM fragments that fell through the mesh were vacuum filtered and analyzed for percent organic matter, C:N ratio, and bacterial abundance. The same analyses were conducted on crayfish feces collected using finger cots encasing crayfish abdomens. C:N ratios did not differ between feces and maple leaf CPOM, but were lower in FPOM produced through fragmentation and disturbance (P = 0.023). Overall, crayfish alter the ontogeny of detritus, which may, in turn, affect stream FPOM dynamics.

  18. 77 FR 34830 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA). ACTION: Final... Implementation Plans: Interstate Transport of Fine Particulate Matter and Ozone and Correction of SIP Approvals... 5,917 ] Table III-5--2012-2013 Ozone-Season NOX Budgets, New Unit Set-Asides 2012-2013 Indian...

  19. 77 FR 10323 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... Implementation Plans To Reduce Interstate Transport of Fine Particulate Matter and Ozone; Final Rule #0;#0... To Reduce Interstate Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection... assumptions regarding flue gas treatment in existing scrubbers at seven units; (4) revise the Arkansas...

  20. 77 FR 10350 - Revisions to Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... Implementation Plans: Interstate Transport of Fine Particulate Matter and Ozone and Correction of SIP Approvals... ozone in downwind states. After the final rule was published, it was brought to our attention that...

  1. Particulate Emission Abatement for Krakow Boilerhouses

    SciTech Connect

    1998-09-14

    Environmental cleanup and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are numerous uncontrolled boilers accounting for about half the total fuel use. The large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy.

  2. Particulate Emission Abatement for Krakow Boilerhouses

    SciTech Connect

    1998-09-14

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are numerous uncontrolled boilers accounting for about half the total fuel use. the large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy.

  3. Particulate Emission Abatement for Krakow Boiler Houses

    SciTech Connect

    1998-09-01

    Environmental clean-up and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which currently comprises over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are more than 2,000 uncontrolled boilers accounting for about half the total fuel use. The large number of low- capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in the reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy.

  4. Particulate emission abatement for Krakow boiler houses

    SciTech Connect

    Wysk, R.

    1995-12-31

    Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissions which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.

  5. 40 CFR 86.145-82 - Calculations; particulate emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equation for particulate mass emissions then reduces to: ER06OC93.075 (6) Vep = total volume of sample... final reported test results for the mass particulate (Mp) in grams/mile shall be computed as follows. Mp = 0.43(Mp1 + Mp2)/(Dct + Ds) + 0.57(Mp3 + Mp2)/(Dht = Ds) where: (1) Mp1 = Mass of particulate...

  6. 40 CFR 86.145-82 - Calculations; particulate emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... equation for particulate mass emissions then reduces to: ER06OC93.075 (6) Vep = total volume of sample... final reported test results for the mass particulate (Mp) in grams/mile shall be computed as follows. Mp = 0.43(Mp1 + Mp2)/(Dct + Ds) + 0.57(Mp3 + Mp2)/(Dht = Ds) where: (1) Mp1 = Mass of particulate...

  7. On-road particulate emission measurement

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Claudio

    Particulate matter (PM) suspended in the atmosphere has harmful health effects, contributes to visibility impairment, and affects atmospheric radiative transfer, thereby contributing to global change. Vehicles contribute substantially to the ambient PM concentration in urban areas, yet the fraction of ambient PM originating from vehicle emissions is poorly characterized because suitable measurement methods have not been available. This dissertation describes the development and the use of a new vehicle emission remote sensing system (VERSS) for the on-road measurement of PM emission factors for vehicles. The PM VERSS measures PM by ultraviolet backscattering and transmission. PM backscattering and transmission mass efficiencies have been calculated from Mie theory based on an homogeneous spherical model for gasoline particles and on a two-layers, spherical model for diesel particles. The VERSS was used in a large-scale study in Las Vegas, NV. A commercial gaseous VERSS was used for the measurement of gaseous emission factors (i.e., carbon monoxide, hydrocarbons, and nitrogen oxide). Speed and acceleration were also measured for each vehicle. A video image of each vehicle's rear license plate was acquired and license plate numbers were matched with the Clark County department of motor vehicle database to retrieve vehicle information such as model year, vehicle weight category and engine ignition type. PM VERSS has precisely estimated PM fleet average emission factors and clearly shown the dependence of PM emission factors on vehicle model year. Under mostly hot-stabilized operation, diesel vehicle PM emission factors are about 25 times higher than those of gasoline vehicles. Furthermore, the fleet frequency distributions of PM emission factors are highly skewed, meaning that most of the fleet emission factor is accounted for by a small portion of the fleet. The PM VERSS can measure PM emission factors for these high emitting vehicles on an individual basis. PM

  8. Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust

    SciTech Connect

    Durbin, T. D.; Truex, T. J.; Norbeck, J. M.

    1998-11-19

    The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

  9. The sensitivity of ozone and fine particulate matter concentrations to global change at different spatiotemporal scales

    NASA Astrophysics Data System (ADS)

    Racherla, Pavan Nandan

    Ozone (O3) and fine particulate matter (PM) are harmful to human health. Changes in climate and anthropogenic emissions due to global change will affect concentrations of O3 and fine PM. These effects are not well understood, however. We perform a suite of simulations using an integrated model of global climate, tropospheric gas-phase chemistry, and aerosols to investigate the effects of global change on O3 and fine PM at different spatiotemporal scales ranging from the global annual-average concentrations to regional (eg. United States) air pollution episodes. One major consequence of climate change is a lengthening of the O3 season over the eastern U.S. to include late spring and early fall months. Climate change is also predicted to increase the severity and frequency of O3 episodes over much of the eastern U.S. We found that U.S. O 3 and fine PM are sensitive first and foremost to U.S. anthropogenic emissions changes. However, the effect of climate change is very sensitive to the prevalent domestic anthropogenic emissions, and it increases strongly with emissions, thereby making it important to factor climate change in to air quality planning. The reductions in domestic emissions will, therefore, have the added benefit of minimized climate effects. Climate change affects fine PM sulfate and nitrate concentrations the most. Substantial increases of up to 2 mug m-3 in the July-average sulfate concentrations were predicted in many polluted regions in the eastern U.S. Higher NO x and ammonia emissions could negate the benefits of significant SO2 emissions reductions vis-a-vis the annual-average PM2.5 standard for several areas in the Northeast and Midwest U.S. Simultaneous reductions in SO2 and NOx emissions, however, will help bring most of the eastern U.S. into compliance with the current annual-average PM2.5 standard. If the U.S. O3 standard were to change from the current 80 ppbv to 55 ppbv (which is the case in many European countries), the increased O3

  10. A comparison between ceramic membrane filters and conventional fabric filters for fine particulate removal from a coal-fired industrial boiler

    SciTech Connect

    Miller, B.G.; Wincek, R.T.; Glick, D.C.; Scaroni, A.W.; Drury, K.; Makris; Stubblefield, D.J.

    1998-12-31

    Penn State is developing technologies for ultralow emissions when firing coal-based fuels, i.e., micronized coal and coal-water slurry fuel (CWSF) in industrial boilers. Emissions being addressed are SO{sub 2}, NOx, fine particulate matter (PM{sub 10} and PM{sub 2.5}), and air toxics (trace elements and volatile organic compounds). Results from trace element and polynuclear aromatic hydrocarbon emissions testing, when firing coal-based fuels, are reported elsewhere in these proceedings. This paper discusses the evaluation of ceramic membrane filters for fine particulate removal in a package boiler when firing micronized coal and CWSF.

  11. ON LINE MEASUREMENT OF PRIMARY FINE PARTICULATE MATTER

    SciTech Connect

    Dale R. Tree

    1999-09-01

    The measurement of fine particulate in pulverized coal flames has several applications of importance. These include but are not limited to: (1) The detection of fine particulate in the effluent for pollution control; (2) The detection of soot and fuel burnout in real time within a boiler; and (3) The quantification of soot within coal flame for improved understanding of pulverized coal flame heat transfer and soot modeling. A method has been investigated using two-color extinction along a line of sight within the flame which provides a continuous real-time measurement of the soot concentration. The method uses two inexpensive HeNe lasers and simple light detectors. The results of testing the method on a pilot scale 0.2 MW pulverized coal reactor demonstrate the method is working well in a qualitative sense and an error analysis performed on the uncertainty of the assumed values demonstrates the method to be accurate to within {+-} 30%. Additional experiments designed to quantify the measurement more accurately are ongoing. Measurements at the end of the reactor just prior to the exit showed soot could not be detected until the overall equivalence ratio became greater than 1.0. The detection limit for the method was estimated to be 1 x 10{sup -8} soot volume fraction. Peak soot concentration was found to approach a level of 0.88 x 10{sup -6} at the sootiest condition. The method was used to obtain an axial profile of soot concentration aligned with the down-fired pulverized coal flame for three different flame swirls of 0, 0.5 and 1.5 and an overall equivalence ratio of 1.2. The axial measurements showed the soot concentration to increase initially and level off to a constant maximum value. At 0.5 swirl the soot volume fraction increased more rapidly near the burner and both the 0.5 and 1.5 swirl cases showed that soot had reached a maximum by 0.9 m, but the 0 swirl soot concentration was still increasing. Previous measurements of species and velocity in the reactor

  12. 40 CFR 86.1778-99 - Calculations; particulate emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Calculations; particulate emissions. 86.1778-99 Section 86.1778-99 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Vehicles and Light-Duty Trucks § 86.1778-99 Calculations; particulate emissions. The provisions of §...

  13. Determination of levoglucosan in atmospheric fine particulate matter.

    PubMed

    Simpson, Christopher D; Dills, Russell L; Katz, Bethany S; Kalman, David A

    2004-06-01

    A microanalytical method suitable for the quantitative determination of the sugar anhydride levoglucosan in low-volume samples of atmospheric fine particulate matter (PM) has been developed and validated. The method incorporates two sugar anhydrides as quality control standards. The recovery standard sedoheptulosan (2,7-anhydro-beta-D-altro-heptulopyranose) in 20 microL solvent is added onto samples of the atmospheric fine PM and aged for 1 hr before ultrasonic extraction with ethylacetate/ triethylamine. The extract is reduced in volume, an internal standard is added (1,5-anhydro-D-mannitol), and a portion of the extract is derivatized with 10% by volume N-trimethylsilylimidazole. The derivatized extract is analyzed by gas chromatography/mass spectrometry (GC/MS). The recovery of levoglucosan using this procedure was 69 +/- 6% from five filters amended with 2 microg levoglucosan, and the reproducibility of the assay is 9%. The limit of detection is approximately 0.1 microg/mL, which is equivalent to approximately 3.5 ng/m3 for a 10 L/min sampler or approximately 8.7 ng/m3 for a 4 L/min personal sampler (assuming 24-hr integrated samples). We demonstrated that levoglucosan concentrations in collocated samples (expressed as ng/m3) were identical irrespective of whether samples were collected by PM with aerodynamic diameter < or = 2.5 microm or PM with aerodynamic diameter < or = 10 microm impactors. It was also demonstrated that X-ray fluorescence analysis of samples of atmospheric PM, before levoglucosan determinations, did not alter the levels of levoglucosan.

  14. Gaseous and particulate emission profiles during controlled rice straw burning

    NASA Astrophysics Data System (ADS)

    Sanchis, E.; Ferrer, M.; Calvet, S.; Coscollà, C.; Yusà, V.; Cambra-López, M.

    2014-12-01

    Burning of rice straw can emit considerable amounts of atmospheric pollutants. We evaluated the effect of rice straw moisture content (5%, 10%, and 20%) on the emission of carbon dioxide (CO2) and on the organic and inorganic constituents of released particulate matter (PM): dioxins, heavy metals, and polycyclic aromatic hydrocarbons (PAHs). Four burning tests were conducted per moisture treatment using the open chamber method. Additionally, combustion characteristics, including burning stages, durations, temperature, and relative humidity, were recorded. Burning tests showed flaming and smoldering stages were significantly longer in 20% moisture treatment (P < 0.05) compared with the rest. The amount of burned straw and ashes decreased with increasing straw moisture content (P < 0.001). Carbon dioxide was the main product obtained during combustion with emission values ranging from 692 g CO2 kg dry straw-1 (10% moisture content) to 835 g CO2 kg dry straw-1 (20% moisture content). Emission factors for PM were the highest in 20% moisture treatment (P < 0.005). Fine PM (PM2.5) accounted for more than 60% of total PM mass. Emission factors for dioxins increased with straw moisture content, being the highest in 20% moisture treatment, although showing a wide variability among burning tests (P > 0.05). Emissions factors for heavy metals were low and similar among moisture treatments (P > 0.05). Emission factors for individual PAHs were generally higher in 20% moisture treatment. Overall, emission factors of atmospheric pollutants measured in our study were higher in the 20% moisture content. This difference could be attributed to the incomplete combustion at higher levels of rice straw moisture content. According to our results, rice straw burning should be done after straw drying and under minimal moisture conditions to lower pollutant emission levels.

  15. Airborne endotoxin in fine particulate matter in Beijing

    NASA Astrophysics Data System (ADS)

    Guan, Tianjia; Yao, Maosheng; Wang, Junxia; Fang, Yanhua; Hu, Songhe; Wang, Yan; Dutta, Anindita; Yang, Junnan; Wu, Yusheng; Hu, Min; Zhu, Tong

    2014-11-01

    Endotoxin is an important biological component of particulate matter (PM) which, upon inhalation, can induce adverse health effects, and also possibly complicate the diseases in combination with other pollutants. From 1 March 2012 to 27 February 2013 we collected air samples using quartz filters daily for the quantification of airborne endotoxin and also fine PM (PM2.5) in Beijing, China. The geometric means for endotoxin concentration and the fraction of endotoxin in PM were 0.65 EU/m3 (range: 0.10-75.02) and 10.25 EU/mg PM2.5 (range: 0.38-1627.29), respectively. The endotoxin concentrations were shown to vary greatly with seasons, typically with high values in the spring and winter seasons. Temperature and relative humidity, as well as concentrations of sulfur dioxide and nitrogen oxides were found to be significantly correlated with airborne endotoxin concentrations (p < 0.05). Additionally, positive correlations were also detected between endotoxin concentrations and natural sources of Na+, K+, Mg2+, and F-, while negative correlations were observed between endotoxin concentrations and anthropogenic sources of P, Co, Zn, As, and Tl. Oxidative potential analysis revealed that endotoxin concentrations were positively correlated with reactive oxygen species (ROS), but not dithiothreitol (DTT) of PM. This study provided the first continuous time series of airborne endotoxin concentrations in Beijing, and identifies its potential associations with atmospheric factors. The information developed here can assist in the assessment of health effects of air pollution in Beijing.

  16. Fine particulate matter air pollution and atherosclerosis: Mechanistic insights.

    PubMed

    Bai, Yuntao; Sun, Qinghua

    2016-12-01

    Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous plaque in the arteries. Its etiology is very complicated and its risk factors primarily include genetic defects, smoking, hyperlipidemia, hypertension, lack of exercise, and infection. Recent studies suggest that fine particulate matter (PM2.5) air pollution may also contribute to the development of atherosclerosis. The present review integrates current experimental evidence with mechanistic pathways whereby PM2.5 exposure can promote the development of atherosclerosis. PM2.5-mediated enhancement of atherosclerosis is likely due to its pro-oxidant and pro-inflammatory effects, involving multiple organs, different cell types, and various molecular mediators. Studies about the effects of PM2.5inhalation on atherosclerosis may yield a better understanding of the link between air pollution and major cardiovascular diseases, and provide useful information for policy makers to determine acceptable levels of PM2.5 air quality. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Modeling residential fine particulate matter infiltration for exposure assessment.

    PubMed

    Hystad, Perry U; Setton, Eleanor M; Allen, Ryan W; Keller, Peter C; Brauer, Michael

    2009-09-01

    Individuals spend the majority of their time indoors; therefore, estimating infiltration of outdoor-generated fine particulate matter (PM(2.5)) can help reduce exposure misclassification in epidemiological studies. As indoor measurements in individual homes are not feasible in large epidemiological studies, we evaluated the potential of using readily available data to predict infiltration of ambient PM(2.5) into residences. Indoor and outdoor light scattering measurements were collected for 84 homes in Seattle, Washington, USA, and Victoria, British Columbia, Canada, to estimate residential infiltration efficiencies. Meteorological variables and spatial property assessment data (SPAD), containing detailed housing characteristics for individual residences, were compiled for both study areas using a geographic information system. Multiple linear regression was used to construct models of infiltration based on these data. Heating (October to February) and non-heating (March to September) season accounted for 36% of the yearly variation in detached residential infiltration. Two SPAD housing characteristic variables, low building value, and heating with forced air, predicted 37% of the variation found between detached residential infiltration during the heating season. The final model, incorporating temperature and the two SPAD housing characteristic variables, with a seasonal interaction term, explained 54% of detached residential infiltration. Residences with low building values had higher infiltration efficiencies than other residences, which could lead to greater exposure gradients between low and high socioeconomic status individuals than previously identified using only ambient PM(2.5) concentrations. This modeling approach holds promise for incorporating infiltration efficiencies into large epidemiology studies, thereby reducing exposure misclassification.

  18. Hormesis for fine particulate matter (PM 2.5).

    PubMed

    Cox, Louis Anthony Tony

    2012-01-01

    The hypothesis of hormesis - that substances that harm health at high exposures can reduce risks below background at low exposures, e.g., if they activate defenses without overwhelming them - becomes important for practical policy making if it holds for regulated substances. Recently, the U.S. EPA concluded that reductions in ambient concentrations of fine particulate matter (PM2.5) in air caused trillions of dollars worth of human health benefits for a compliance cost of only about $65 billion per year. This conclusion depends on an unverified assumption of a positive, causal, straight-line relation between PM2.5 concentrations and mortality risks. We review empirical data on PM2.5 and mortality risks (and their precursors, inflammatory responses) and conclude that the PM2.5 concentration-response relation may be J-shaped, rather than linear. This possibility implies that the 1990 Clean Air Act Amendment may well have produced no (or negative) human health benefits, rather than the trillions of dollars worth of reduced mortalities ascribed to it by EPA; and that attempts to achieve further risk-reduction benefits by further reducing PM2.5 concentrations may be counterproductive. This creates a very high value for scientific information that better reveals the true shape of the PM2.5 concentration-response function at and below current ambient levels.

  19. Hormesis for Fine Particulate Matter (PM 2.5)

    PubMed Central

    Cox, Louis Anthony (Tony)

    2012-01-01

    The hypothesis of hormesis – that substances that harm health at high exposures can reduce risks below background at low exposures, e.g., if they activate defenses without overwhelming them – becomes important for practical policy making if it holds for regulated substances. Recently, the U.S. EPA concluded that reductions in ambient concentrations of fine particulate matter (PM2.5) in air caused trillions of dollars worth of human health benefits for a compliance cost of only about $65 billion per year. This conclusion depends on an unverified assumption of a positive, causal, straight-line relation between PM2.5 concentrations and mortality risks. We review empirical data on PM2.5 and mortality risks (and their precursors, inflammatory responses) and conclude that the PM2.5 concentration-response relation may be J-shaped, rather than linear. This possibility implies that the 1990 Clean Air Act Amendment may well have produced no (or negative) human health benefits, rather than the trillions of dollars worth of reduced mortalities ascribed to it by EPA; and that attempts to achieve further risk-reduction benefits by further reducing PM2.5 concentrations may be counterproductive. This creates a very high value for scientific information that better reveals the true shape of the PM2.5 concentration-response function at and below current ambient levels. PMID:22740783

  20. Exploring variation and predictors of residential fine particulate matter infiltration.

    PubMed

    Clark, Nina A; Allen, Ryan W; Hystad, Perry; Wallace, Lance; Dell, Sharon D; Foty, Richard; Dabek-Zlotorzynska, Ewa; Evans, Greg; Wheeler, Amanda J

    2010-08-01

    Although individuals spend the majority of their time indoors, most epidemiological studies estimate personal air pollution exposures based on outdoor levels. This almost certainly results in exposure misclassification as pollutant infiltration varies between homes. However, it is often not possible to collect detailed measures of infiltration for individual homes in large-scale epidemiological studies and thus there is currently a need to develop models that can be used to predict these values. To address this need, we examined infiltration of fine particulate matter (PM(2.5)) and identified determinants of infiltration for 46 residential homes in Toronto, Canada. Infiltration was estimated using the indoor/outdoor sulphur ratio and information on hypothesized predictors of infiltration were collected using questionnaires and publicly available databases. Multiple linear regression was used to develop the models. Mean infiltration was 0.52 ± 0.21 with no significant difference across heating and non-heating seasons. Predictors of infiltration were air exchange, presence of central air conditioning, and forced air heating. These variables accounted for 38% of the variability in infiltration. Without air exchange, the model accounted for 26% of the variability. Effective modelling of infiltration in individual homes remains difficult, although key variables such as use of central air conditioning show potential as an easily attainable indicator of infiltration.

  1. A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects.

    PubMed

    Mukherjee, Arideep; Agrawal, Madhoolika

    2017-03-31

    Fine particulate matter (PM) in the ambient air is implicated in a variety of human health issues throughout the globe. Regulation of fine PM in the atmosphere requires information on the dimension of the problem with respect to variations in concentrations and sources. To understand the current status of fine particles in the atmosphere and their potential harmful health effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 2000 to evaluate the global scenario of the PM2.5 (particles <2.5 μm in aerodynamic diameter), its exceedance of national and international standards, sources, mechanism of toxicity, and harmful health effects of PM2.5 and its components. PM2.5 levels and exceedances of national and international standards were several times higher in Asian countries, while levels in Europe and USA were mostly well below the respective standards. Vehicular traffic has a significant influence on PM2.5 levels in urban areas; followed by combustion activities (biomass, industrial, and waste burning) and road dust. In urban atmosphere, fine particles are mostly associated with different health effects with old aged people, pregnant women, and more so children being the most susceptible ones. Fine PM chemical constituents severely effect health due to their carcinogenic or mutagenic nature. Most of the research indicated an exceedance of fine PM level of the standards with a diverse array of health effects based on PM2.5 chemical constituents. Emission reduction policies with epidemiological studies are needed to understand the benefits of sustainable control measures for fine PM mitigation.

  2. Urban tree effects on fine particulate matter and human health

    Treesearch

    David J. Nowak

    2014-01-01

    Overall, city trees reduce particulate matter and provide substantial health benefits; but under certain conditions, they can locally increase particulate matter concentrations. Urban foresters need to understand how trees affect particulate matter so they can select proper species and create appropriate designs to improve air quality. This article details trees'...

  3. Particulate emissions from concentrated animal feeding operations

    USDA-ARS?s Scientific Manuscript database

    Concentrated animal feeding operations (CAFOs), including open beef cattle feedlots, swine facilities, and poultry facilities, can emit large amounts of particulate matter, including TSP (total suspended particulates), PM10 (particulate matter with equivalent aerodynamic diameter of 10 mm or less) a...

  4. Particulate Emissions Hazards Associated with Fueling Heat Engines

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2010-01-01

    All hydrocarbon- (HC-) fueled heat engine exhaust (tailpipe) emissions (<10 to 140 nm) contribute as health hazards, including emissions from transportation vehicles (e.g., aircraft) and other HC-fueled power systems. CO2 emissions are tracked, and when mapped, show outlines of major transportation routes and cities. Particulate pollution affects living tissue and is found to be detrimental to cardiovascular and respiratory systems where ultrafine particulates directly translocate to promote vascular system diseases potentially detectable as organic vapors. This paper discusses aviation emissions, fueling, and certification issues, including heat engine emissions hazards, detection at low levels and tracking of emissions, and alternate energy sources for general aviation.

  5. Smog episodes, fine particulate pollution and mortality in China.

    PubMed

    Zhou, Maigeng; He, Guojun; Fan, Maoyong; Wang, Zhaoxi; Liu, Yang; Ma, Jing; Ma, Zongwei; Liu, Jiangmei; Liu, Yunning; Wang, Linhong; Liu, Yuanli

    2015-01-01

    Starting from early January 2013, northern China was hit by multiple prolonged and severe smog events which were characterized by extremely high-level concentrations of ambient fine particulate matter (PM2.5) with hourly peaks of PM2.5 over 800 µg/m(3). However, the consequences of this severe air pollution are largely unknown. This study investigates the acute effect of the smog episodes and PM2.5 on mortality for both urban and rural areas in northern China. We collected PM2.5, mortality, and meteorological data for 5 urban city districts and 2 rural counties in Beijing, Tianjin and Hebei Province of China from January 1, 2013 through December 31, 2013. We employed the generalized additive models to estimate the associations between smog episodes or PM2.5 and daily mortality for each district/county. Without any meteorological control, the smog episodes are positively and statistically significantly associated with mortality in 5 out of 7 districts/counties. However, the findings are sensitive to the meteorological factors. After controlling for temperature, humidity, dew point and wind, the statistical significance disappears in all urban districts. In contrast, the smog episodes are consistently and statistically significantly associated with higher total mortality and mortality from cardiovascular/respiratory diseases in the two rural counties. In Ji County, a smog episode is associated with 6.94% (95% Confidence Interval, -0.20 to 14.58) increase in overall mortality, and in Ci County it is associated with a 19.26% (95% CI, 6.66-33.34) increase in overall mortality. The smog episodes kill people primarily through its impact on cardiovascular and respiratory diseases. On average, a smog episode is associated with 11.66% (95% CI, 3.12-20.90) increase in cardiovascular and respiratory mortality in Ji County, and it is associated with a 22.23% (95% CI, 8.11-38.20) increase in cardiovascular and respiratory mortality in Ci County. A 10 μg/m(3) increase in PM2

  6. Ambient fine particulate matter alters cerebral hemodynamics in the elderly.

    PubMed

    Wellenius, Gregory A; Boyle, Luke D; Wilker, Elissa H; Sorond, Farzaneh A; Coull, Brent A; Koutrakis, Petros; Mittleman, Murray A; Lipsitz, Lewis A

    2013-06-01

    Short-term elevations in fine particulate matter air pollution (PM2.5) are associated with increased risk of acute cerebrovascular events. Evidence from the peripheral circulation suggests that vascular dysfunction may be a central mechanism. However, the effects of PM2.5 on cerebrovascular function and hemodynamics are unknown. We used transcranial Doppler ultrasound to measure beat-to-beat blood flow velocity in the middle cerebral artery at rest and in response to changes in end-tidal CO2 (cerebral vasoreactivity) and arterial blood pressure (cerebral autoregulation) in 482 participants from the Maintenance of Balance, Independent Living, Intellect, and Zest in the Elderly (MOBILIZE) of Boston study. We used linear mixed effects models with random subject intercepts to evaluate the association between cerebrovascular hemodynamic parameters and mean PM2.5 levels 1 to 28 days earlier adjusting for age, race, medical history, meteorologic covariates, day of week, temporal trends, and season. An interquartile range increase (3.0 µg/m(3)) in mean PM2.5 levels during the previous 28 days was associated with an 8.6% (95% confidence interval, 3.7%-13.8%; P<0.001) higher cerebral vascular resistance and a 7.5% (95% confidence interval, 4.2%-10.6%; P<0.001) lower blood flow velocity at rest. Measures of cerebral vasoreactivity and autoregulation were not associated with PM2.5 levels. In this cohort of community-dwelling seniors, exposure to PM2.5 was associated with higher resting cerebrovascular resistance and lower cerebral blood flow velocity. If replicated, these findings suggest that alterations in cerebrovascular hemodynamics may underlie the increased risk of particle-related acute cerebrovascular events.

  7. Seasonal variability of endotoxin in ambient fine particulate matter.

    PubMed

    Carty, Cara L; Gehring, Ulrike; Cyrys, Josef; Bischof, Wolfgang; Heinrich, Joachim

    2003-12-01

    Endotoxin is a toxic, pro-inflammatory compound that has been detected in indoor air and dust in homes and occupational settings, and also in outdoor air. Data on the outdoor sampling of endotoxin are limited. Currently, little is known about the seasonal variation and influence of temperature on outdoor endotoxin levels. In the present study, we report endotoxin levels in fine fraction particulate matter with a 50% aerodynamic cutoff diameter of 2.5 microm (PM2.5) and describe the seasonal variation of endotoxin in Munich, Germany. In 1999-2000, PM2.5 was collected at forty outdoor monitoring sites across Munich. Approximately four samples were collected at each site for a total of 158 samples. Endotoxin concentrations in the PM2.5 samples were determined using the kinetic chromogenic Limulus Amebocyte Lysate (LAL) assay. The geometric mean endotoxin concentration was 1.07 EU mg PM2.5(-1) (95% C.I.: 0.915-1.251) or 0.015 EU m(-3) of sampled air (95% C.I.: 0.013-0.018). Munich endotoxin levels were significantly related to ambient temperature (p < 0.0001) and percent relative humidity (p < 0.0001). Sampling periods with higher average temperatures yielded higher levels of endotoxin in PM2.5 (r = 0.641), whereas decreases in percent relative humidity were associated with increased endotoxin levels in PM2.5 (r = -0.388). Endotoxin levels were significantly higher during the warmer seasons of spring [means ratio (MR): 2.5-2.7] and summer (MR: 2.1-3.0) than during winter. Although temperature and relative humidity do not explain all of the variability in endotoxin levels, their effects were significant in our data set. Temperature effects and seasonal variation of endotoxin should be considered in future studies of outdoor endotoxin.

  8. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    SciTech Connect

    Mazurek, M.A. ); Hildemann, L.M. . Dept. of Civil Engineering); Cass, G.R.; Rogge, W.F. ); Simoneit, B.R.T. . Coll. of Oceanography)

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs.

  9. Comparison of gene expression profiles induced by coarse, fine, and ultrafile particulate matter

    EPA Science Inventory

    Coarse, fine, and ultrafine particulate matter (PM) fractions possess different physical properties and chemical compositions and may produce different adverse health effects. Studies were undertaken to determine whether or not gene expression patterns may be used to discriminate...

  10. Comparison of gene expression profiles induced by coarse, fine, and ultrafile particulate matter

    EPA Science Inventory

    Coarse, fine, and ultrafine particulate matter (PM) fractions possess different physical properties and chemical compositions and may produce different adverse health effects. Studies were undertaken to determine whether or not gene expression patterns may be used to discriminate...

  11. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    EPA Science Inventory

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  12. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    EPA Science Inventory

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  13. Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes.

    PubMed

    Wang, Yangjun; Bao, Shengwei; Wang, Shuxiao; Hu, Yongtao; Shi, Xiang; Wang, Jiandong; Zhao, Bin; Jiang, Jingkun; Zheng, Mei; Wu, Minghong; Russell, Armistead G; Wang, Yuhang; Hao, Jiming

    2017-02-15

    In order to alleviate extreme haze pollution, understanding the origin of fine particulate matter (PM2.5) is crucial. In this study, we applied Particulate Matter Source Apportionment Technology (PSAT) in CAMx (Comprehensive Air Quality Model with Extensions) to quantify the impacts of emissions from different regions on PM2.5 concentrations in Beijing for haze episodes during January 6-23, 2013. Emission inventory was developed by Tsinghua University. Evolution of local and Regional contributions during local and non-local dominated haze episodes were discussed, separately. In the meanwhile, average contribution of other every city in Jing-Jin-Ji region to PM2.5 concentrations larger than 75μgm(-3) in Beijing urban for each range of local contribution percent was analyzed. The results indicate that local emissions contributed 83.6% of PM2.5 at the urban center of Beijing, while regional transport from surrounding cities and parts of Shandong, Henan and Anhui provinces contributed 9.4%; long-range transport contributed the remaining 7.0% mainly from areas >750km away to the south of Beijing during this study period. Compared to non-local-dominated haze episodes, local-dominated heavy haze episodes in Beijing were easily resulted from unfavorable meteorological conditions with much lower PBL and wind velocity. Furthermore, local contribution is more easily to cause a sharp increase or sharp reduction of PM2.5 concentration in central Beijing, reflecting that Beijing local has much stronger potential to form extremely heavy haze episodes. The results indicated that controlling local emissions is a much more important measure to alleviate the extreme haze episodes in Beijing, like that on the night of Jan 12, 2013. Furthermore, emission control in Jing-Jin-Ji region, especially in Tangshan, Tianjin, Baoding, Langfang, Shijiazhuang and Cangzhou, as well as Henan and Shandong province, are important to reduce the PM2.5 concentrations and the occurrence of haze episodes

  14. Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: The important roles of ammonia and ozone

    NASA Astrophysics Data System (ADS)

    Wen, Liang; Chen, Jianmin; Yang, Lingxiao; Wang, Xinfeng; Xu, Caihong; Sui, Xiao; Yao, Lan; Zhu, Yanhong; Zhang, Junmei; Zhu, Tong; Wang, Wenxing

    2015-01-01

    Severe PM2.5 pollution was observed frequently on the North China Plain, and nitrate contributed a large fraction of the elevated PM2.5 concentrations. To obtain a comprehensive understanding of the formation pathways of these fine particulate nitrate and the key factors that affect these pathways, field measurements of fine particulate nitrate and related air pollutants were made at a rural site on the North China Plain in the summer of 2013. Extremely high concentrations of fine particulate nitrate were frequently observed at night and in the early morning. The maximum hourly concentration of fine particulate nitrate reached 87.2 μg m-3. This concentration accounted for 29.9% of the PM2.5. The very high NH3 concentration in the early morning significantly accelerated the formation of fine particulate nitrate, as indicated by the concurrent appearance of NH3 and NO3- concentration peaks and a rising neutralization ratio (the equivalent ratio of NH4+ to the sum of SO42- and NO3-). On a number of other episode days, strong photochemical activity during daytime led to high concentrations of O3 at night. The fast secondary formation of fine particulate nitrate was mainly attributed to the hydrolysis of N2O5, which was produced from O3 and NO2. Considering the important roles of NH3 and O3 in fine particulate nitrate formation, we suggest the control of NH3 emissions and photochemical pollution to address the high levels of fine particulate nitrate and the severe PM2.5 pollution on the North China Plain.

  15. Ultra High Efficiency ESP for Fine Particulate and Air Toxics Control

    SciTech Connect

    Srinivasachar, Srivats; Pease, Benjamin R.; Porle, Kjell; Mauritzson, Christer; Haythornthwaite, Sheila

    1997-07-01

    Nearly ninety percent of U.S. coal-fired utility boilers are equipped with electrostatic precipitators (ESP). Cost effective retrofittable ESP technologies are the only means to accomplish Department of Energy's (DOE) goal of a major reduction in fine particulate and air toxic emissions from coal-fired power plants. Particles in the size range of 0.1 to 5 {micro}m typically escape ESPs. Metals, such as arsenic, cadmium, lead, molybdenum and antimony, concentrate on these particles. This is the main driver for improved fine particulate control. Vapor phase emissions of mercury, selenium and arsenic are also of major concern. Current dry ESPs, which operate at temperatures greater than 280 F, provide little control for vapor phase toxics. The need for inherent improvement to ESPs has to be considered keeping in perspective the current trend towards the use of low sulfur coals. Switching to low sulfur coals is the dominant approach for SO{sub 2} emission reduction in the utility industry. Low sulfur coals generate high resistivity ash, which can cause an undesirable phenomenon called ''back corona.'' Higher particulate emissions occur if there is back corona in the ESP. Results of the pilot-scale testing identified the ''low temperature ESP'' concept to have the biggest impact for the two low sulfur coals investigated. Lowering the flue gas temperature to 220 F provided the maximum impact in terms of decreased emissions. Intermediate operating temperatures (reduction from 340 to 270 F) also gave significant ESP performance improvement. A significant reduction in particulate emissions was also noted when the flue gas humidity was increased (temperature held constant) from the baseline condition for these moderately high resistivity ash coals. Independent control of flue gas humidity and temperature was an important and a notable element in this project. Mercury emissions were also measured as a function of flue gas temperature. Mercury emissions decreased as the flue

  16. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    EPA Science Inventory

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  17. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    EPA Science Inventory

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  18. PARTICULATE EMISSION ABATEMENT FOR KRAKOW BOILERHOUSES

    SciTech Connect

    Bruce H. Easom; Leo A, Smolensky; S. Ronald Wysk; Jan Surowka; Miroslaw Litke; Jacek Ginter

    1998-09-30

    A U.S./Polish Bilateral Steering Committee (BSC) and the Department of Energy (DOE) selected LSR Technologies, Inc. as a contractor to participate in the Krakow Clean Fuels and Energy Efficiency Program. The objective of this program was the formation of business ventures between U.S. and Polish firms to provide equipment and services to reduce air emissions in the city of Krakow. A cooperative agreement was entered into by DOE and LSR to begin work in April 1994 involving implementation of particulate control technology called a Core Separator{trademark} for coal-fueled boilerhouses in the city. The major work tasks included: (1) conducting a market analysis, (2) completion of a formal marketing plan, (3) obtaining patent protection within Poland, (4) selecting a manufacturing partner, and (5) completing a demonstration unit and commercial installations. In addition to work performed by LSR Technologies, key contributors to this project were (1) the Polish Foundation for Energy Efficiency (FEWE), a non-profit consulting organization specializing in energy and environmental-related technologies, and (2) EcoInstal, a privately held Polish company serving the air pollution control market. As the project concluded in late 1998, five (5) Core Separator{trademark} installations had been implemented in the city of Krakow, while about 40 others were completed in other regions of Poland.

  19. Impact of fine particulate fluctuation and other variables on Beijing's air quality index.

    PubMed

    Chen, Bo; Lu, Shaowei; Li, Shaoning; Wang, Bing

    2015-04-01

    We analyzed fluctuation in Beijing's air quality over 328 days, based on air quality grades and air quality data from 35 atmospheric monitoring stations. Our results show the air over Beijing is subject to pollution 152 days of the year, or 46.34%. Among all pollutants, fine particulates, solid or liquid, 2.5 μm or less in size (PM2.5), appeared most frequently as the primary pollutant: 249 days, or 76% of the sample year (328 days). Nitrogen dioxide (NO2) and coarse particulates (PM10) cause the least pollution, appearing only 7 and 3 days, or 2 and 1% of the sample year, respectively. In Beijing, fine particulates like PM2.5 vary seasonally: 154.54 ± 18.60 in winter > 145.22 ± 18.61 in spring > 140.16 ± 20.76 in autumn > 122.37 ± 13.42 in summer. Air quality is best in August and worst in December, while various districts in Beijing experience different air quality. To be specific, from south to north and from west to east, air quality tends to improve. Meteorological elements have a constraining effect on air pollutants, which means there is a linear correlation between the air quality index and humidity, rainfall, wind speed, and temperature. Under a typical pollution scenario, the higher the air quality index (AQI) value, the lower the wind speed and the greater the relative humidity; the lower the AQI value, the higher the wind speed and lower the relative humidity. Analysis of influencing factors reveals that the air pollution is mainly particulate matter produced by burning coal, vehicle emissions, volatile oils and gas, fast development of food services, emissions from the surrounding region, and natural dust clouds formed in arid areas to the northwest. Topography affects the distribution of meteorological conditions, in turn varying air quality over the region from one location to another. Human activities also exercise impact on urban air quality with dual functions.

  20. Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation.

    PubMed

    Champion, Wyatt M; Connors, Lea; Montoya, Lupita D

    2017-09-01

    Most homes in the Navajo Nation use wood as their primary heating fuel, often in combination with locally mined coal. Previous studies observed health effects linked to this solid-fuel use in several Navajo communities. Emission factors (EFs) for common fuels used by the Navajo have not been reported using a relevant stove type. In this study, two softwoods (ponderosa pine and Utah juniper) and two high-volatile bituminous coals (Black Mesa and Fruitland) were tested with an in-use residential conventional wood stove (homestove) using a modified American Society for Testing and Materials/U.S. Environmental Protection Agency (ASTM/EPA) protocol. Filter sampling quantified PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) and organic (OC) and elemental (EC) carbon in the emissions. Real-time monitoring quantified carbon monoxide (CO), carbon dioxide (CO2), and total suspended particles (TSP). EFs for these air pollutants were developed and normalized to both fuel mass and energy consumed. In general, coal had significantly higher mass EFs than wood for all pollutants studied. In particular, coal emitted, on average, 10 times more PM2.5 than wood on a mass basis, and 2.4 times more on an energy basis. The EFs developed here were based on fuel types, stove design, and operating protocols relevant to the Navajo Nation, but they could be useful to other Native Nations with similar practices, such as the nearby Hopi Nation. Indoor wood and coal combustion is an important contributor to public health burdens in the Navajo Nation. Currently, there exist no emission factors representative of Navajo homestoves, fuels, and practices. This study developed emission factors for PM2.5, OC, EC, CO, and CO2 using a representative Navajo homestove. These emission factors may be utilized in regional-, national-, and global-scale health and environmental models. Additionally, the protocols developed and results presented here may inform on-going stove design of the

  1. Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013.

    PubMed

    Villalobos, Ana M; Barraza, Francisco; Jorquera, Héctor; Schauer, James J

    2015-04-15

    Santiago is one of the largest cities in South America and has experienced high fine particulate matter (PM2.5) concentrations in fall and winter months for decades. To better understand the sources of fall and wintertime pollution in Santiago, PM2.5 samples were collected for 24 h every weekday from March to October 2013 for chemical analysis. Samples were analyzed for mass, elemental carbon (EC), organic carbon (OC), water soluble organic carbon (WSOC), water soluble nitrogen (WSTN), secondary inorganic ions, and particle-phase organic tracers for source apportionment. Selected samples were analyzed as monthly composites for organic tracers. PM2.5 concentrations were considerably higher in the coldest months (June-July), averaging (mean ± standard deviation) 62±15 μg/m(3) in these two months. Average fine particle mass concentration during the study period was 40±20 μg/m(3). Organic matter during the peak winter months was the major component of fine particles comprising around 70% of the particle mass. Source contributions to OC were calculated using organic molecular markers and a chemical mass balance (CMB) receptor model. The four combustion sources identified were wood smoke, diesel engine emission, gasoline vehicles, and natural gas. Wood smoke was the predominant source of OC, accounting for 58±42% of OC in fall and winter. Wood smoke and nitrate were the major contributors to PM2.5. In fall and winter, wood smoke accounted for 9.8±7.1 μg/m(3) (21±15%) and nitrate accounted for 9.1±4.8 μg/m(3) (20±10%) of fine PM. The sum of secondary inorganic ions (sulfate, nitrate, and ammonium) represented about 30% of PM2.5 mass. Secondary organic aerosols contributed only in warm months, accounting for about 30% of fine PM during this time. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Sources of fine particulate species in ambient air over Lake Champlain Basin, VT

    SciTech Connect

    Ning Gao; Amy E. Gildemeister; Kira Krumhansl; Katherine Lafferty; Philip K. Hopke; Eugene Kim; Richard L. Poirot

    2006-11-15

    This study is a part of an ongoing investigation of the types and locations of emission sources that contribute fine particulate air contaminants to Underhill, VT. The air quality monitoring data used for this study are from the Interagency Monitoring of Protected Visual Environments network for the period of 2001-2003 for the Underhill site. The main source-receptor modeling techniques used are the positive matrix factorization (PMF) and potential source contribution function (PSCF). This new study is intended as a comparison to a previous study of the 1988-1995 Underhill data that successfully revealed a total of 11 types of emission sources with significant contributions to this rural site. This new study has identified a total of nine sources: nitrate-rich secondary aerosol, wood smoke, East Coast oil combustion, automobile emission, metal working, soil/dust, sulfur-rich aerosol type I, sulfur-rich aerosol type II, and sea salt/road salt. Furthermore, the mass contributions from the PMF identified sources that correspond with sampling days with either good or poor visibility were analyzed to seek possible correlations. It has been shown that sulfur-rich aerosol type I, nitrate aerosol, and automobile emission are the most important contributors to visibility degradation. Soil/dust and sea salt/road salt also have an added effect. 38 refs., 17 figs., 2 tabs.

  3. Contributions of biomass burning and other sources to fine particulate carbon at rural locations throughout the United States

    NASA Astrophysics Data System (ADS)

    Schichtel, B. A.; Rodriguez, M. A.; Barna, M. G.; Gebhart, K. A.; Pierce, T. E.; Munchak, L. A.; Collett, J. L.; Malm, W. C.

    2010-12-01

    Carbonaceous compounds are a major component of ambient fine particulate matter in rural and urban environments and can contribute to health effects, regional haze, and positive and negative forcing on the earth’s radiation balance. Understanding the sources that contribute to particulate carbon is important for the development of regulations to address these and other issues. A backward Lagrangian particle dispersion chemical transport model was develop to simulate particulate carbon concentrations and the contributions from wildfire, vegetation, mobile, area and other sources at individual receptor sites. This model was used to simulate carbon concentrations at IMPROVE monitoring sites from 2006-2008. IMPROVE monitors fine particulate matter and its composition in mostly rural locations throughout the United States. The simulations were conducted using emission from the 2002 WRAP regional haze emission inventory for all years. Wildfires vary significantly from one year to another, so the WRAP fire emissions were replaced with the NCAR biomass burning emission inventory derived from MODIS satellite data for the modeled years. The Lagrangian model used pseudo-first order rate equations where the physical and chemical rate coefficients are derived by tuning the model to fit measured 2008 particulate carbon concentrations and secondary organic carbon fractions. Contributions of biomass burning to particulate carbon during 2006 were also available from the CMAQ Eulerian chemical transport model operated by the United States EPA. In this presentation, the biomass burning contributions from the two 2006 model runs are compared and seasonal and spatial patterns of the source contributions from 2006 - 2008 simulates are presented. On average, different sources contributed to different seasons. During the summer months, the particulate carbon was predominately due to biomass burning and secondary organic carbon from vegetation. Smaller contributions from area and mobile

  4. PIXE and PESA aspects of the Guelph Visibility and Fine Particulate Monitoring Program

    NASA Astrophysics Data System (ADS)

    Nejedlý, Z.; Campbell, J. L.; Teesdale, W. J.; Gielen, C.

    1997-11-01

    This paper describes the analytical equipment, data processing, and quality assurance protocol of the Visibility and Particulate Monitoring Program run by the Guelph Scanning Proton Microprobe (GSPM) laboratory at the University of Guelph. The focus of the discussion is the ion beam analyses used in the program. A new experimental chamber for Proton-Induced X-ray Emission (PIXE) and Proton Elastic Scattering Analysis (PESA) of particulate samples is presented. The chamber provides a fast and reliable analysis of thin samples by PIXE and PESA. The PIXE spectra are collected simultaneously by two Si(Li) detectors to increase sensitivity and reliability of the measurement. Several aspects of thin target PIXE calibration are discussed. An extension to the GUPIX software package for automatic analysis of aerosol samples is presented. Three levels of quality assurance are described, including analysis of fly ash particles on artificial filter, linear regression between the two PIXE detectors, intra- and interlaboratory comparisons, and calculation of the reconstructed mass (RCMA) from composite variables and its comparison to fine mass.

  5. Major components of China's anthropogenic primary particulate emissions.

    SciTech Connect

    Zhang, Q.; Streets, D. G.; He, K.; Klimont, Z.; Decision and Information Sciences; Tsinghua Univ.; International Inst. for Applied Systems Analysis

    2007-10-01

    This paper presents the first comprehensive estimates of particulate emissions in China by size distribution and major components. Using a technology-based emission inventory approach, we are able to classify particulate emissions into three size ranges, TSP, PM{sub 10} and PM{sub 2.5}, and identify the contributions of black carbon (BC), organic carbon (OC), Ca and Mg. Total particulate emissions are estimated to be 27.4 Tg for the year 2001, of which 17.8 Tg are PM{sub 10} and 12.7 Tg are PM{sub 2.5}. Industrial processes are the major sources of particles over all three size ranges, but residential biofuel use and transportation sources become increasingly important for PM{sub 10} and PM{sub 2.5}. The industrialized coastal provinces, such as Shandong, Jiangsu and Hebei, are the major sources of particulate emissions. The industrialized and developing regions show different characteristic emission ratios of PM{sub 2.5}/TSP, (BC+OC)/PM{sub 2.5} and (Ca+Mg)/TSP. In the future, we can expect significant reductions in primary particulate emissions and major changes in the patterns of size and species.

  6. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    NASA Astrophysics Data System (ADS)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  7. Fossil and nonfossil carbon in fine particulate matter: A study of five European cities

    NASA Astrophysics Data System (ADS)

    Glasius, Marianne; La Cour, Agnete; Lohse, Christian

    2011-06-01

    Fossil carbon in particulate matter comes from anthropogenic use and combustion of fossil fuels, while nonfossil carbon may originate from both biogenic (e.g., pollen, plant debris, fungal spores, and biogenic secondary organic aerosol (SOA)) and anthropogenic sources (e.g., cooking and residential wood combustion). We investigated the relative contributions of fossil and nonfossil sources to fine carbonaceous aerosols in five European cities by radiocarbon analysis of aerosol samples collected at four types of sites in 2002-2004. The average fraction of nonfossil carbon was 43 ± 11%, with the lowest fraction, 36 ± 7%, at urban curbside sites and the highest fraction, 54 ± 11%, at rural background sites, farthest away from the impact of man-made emissions. Generally, fossil carbon concentrations at urban curbside sites are elevated in comparison to background sites, which is expected because of their proximity to vehicular emissions. Contrary to what might be expected, the concentration of nonfossil carbon is also higher at curbside than at background sites. This may be attributable to differences between site categories in levels of primary biological aerosols, brake and tire wear in resuspended road dust, biofuels, emissions from cooking and residential wood combustion, or processes such as anthropogenic enhancement of biogenic SOA and increased partitioning of semivolatile compounds into the aerosol phase at urban sites. The exact causes should be investigated by future detailed source analyses.

  8. [Characteristic of Particulate Emissions from Concrete Batching in Beijing].

    PubMed

    Xue, Yi-feng; Zhou, Zhen; Zhong, Lian-hong; Yan, Jing; Qu, Song; Huang, Yu-hu; Tian, He- zhong; Pan, Tao

    2016-01-15

    With the economic development and population growth in Beijing, there is a strong need for construction and housing, which leads to the increase of the construction areas. Meanwhile, as a local provided material, the production of concrete has been raised. In the process of concrete production by concrete batching, there are numerous particulates emitted, which have large effect on the atmospheric environment, however, systematic study about the tempo-spatial characteristics of pollutant emission from concrete batching is still rare. In this study, we estimated the emission of particulates from concrete batching from 1991 to 2012 using emission factor method, analyzed the tempo-spatial characteristics of pollutant emission, established the uncertainty range by adopting Monte-Carlo method, and predicted the future emission in 2020 based on the relative environmental and economical policies. The results showed that: (1) the emissions of particulates from concrete batching showed a trend of "first increase and then decrease", reaching the maximum in 2005, and then decreased due to stricter emission standard and enhanced environmental management. (2) according to spatial distribution, the emission of particulates from concrete batch mainly concentrated in the urban area with more human activities, and the area between the fifth ring and the sixth ring contributed the most. (3) through scenarios analysis, for further reducing the emission from concrete batching in 2020, more stricter standard for green production as well as powerful supervision is needed.

  9. Evaluation of Methods for Physical Characterization of the Fine Particle Emissions from Two Residential Wood Combustion Appliances

    EPA Science Inventory

    The fine particulate matter (PM) emissions from a U. S. certified non-catalytic wood stove and a zero clearance fireplace burning Quercus rubra L. (northern red oak) and Pseudotsuga menziesii (Douglas fir) cordwood each at two different moisture levels were determined. Emission t...

  10. Evaluation of Methods for Physical Characterization of the Fine Particle Emissions from Two Residential Wood Combustion Appliances

    EPA Science Inventory

    The fine particulate matter (PM) emissions from a U. S. certified non-catalytic wood stove and a zero clearance fireplace burning Quercus rubra L. (northern red oak) and Pseudotsuga menziesii (Douglas fir) cordwood each at two different moisture levels were determined. Emission t...

  11. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Oyama, B. S.; Andrade, M. F.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R.

    2015-12-01

    Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV) and Heavy (HDV) duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol), hydrated ethanol, and diesel (with 5 % of biodiesel). The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5) in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ) where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA) where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS), and by Thermal-Optical Transmittance (TOT). The organic aerosol (OA) desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF) organic aerosol (OA) and organic carbon (OC) were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the aerosol

  12. Sensitivity analysis and evaluation of MicroFacPM: a microscale motor vehicle emission factor model for particulate matter emissions.

    PubMed

    Singh, Rakesh B; Huber, Alan H; Braddock, James N

    2007-04-01

    A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper titled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Real-Time Motor Vehicle Emissions". The emission rates discussed are in mass per unit distance with the model providing estimates of fine particulate matter (PM2.5) and coarse particulate matter. This paper complements the companion paper by presenting a sensitivity analysis of the model to input variables and evaluation model outputs using data from limited field studies. The sensitivity analysis has shown that MicroFacPM emission estimates are very sensitive to vehicle fleet composition, speed, and the percentage of high-emitting vehicles. The vehicle fleet composition can affect fleet emission rates from 8 mg/mi to 1215 mg/mi; an increase of 5% in the smoking (high-emitting) current average U.S. light-duty vehicle fleet (compared with 0%) increased PM2.5 emission rates by -272% for 2000; and for the current U.S. fleet, PM2.5 emission rates are reduced by a factor of -0.64 for speeds >50 miles per hour (mph) relative to a speed of 10 mph. MicroFacPM can also be applied to examine the contribution of emission rates per vehicle class, model year, and sources of PM. The model evaluation is presented for the Tuscarora Mountain Tunnel, Pennsylvania Turnpike, PA, and some limited evaluations at two locations: Sepulveda Tunnel, Los Angeles, CA, and Van Nuys Tunnel, Van Nuys, CA. In general, the performance of MicroFacPM has shown very encouraging results.

  13. Understanding of the formation mechanisms of ozone and particulate matter at a fine scale over the southeastern U.S.: Process analyses and responses to future-year emissions

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Huan; Zhang, Yang

    2013-08-01

    Ozone (O3) and fine particle (PM2.5) formation over the southeastern U.S. are of a major concern due to high emissions of precursors and special weather conditions that are conducive to their formation. In this study, the Community Multiscale Air Quality (CMAQ) modeling system is applied to simulate the formation of major air pollutants over an area in the southeastern U.S. at a 4-km horizontal grid resolution for January, April, July, and October in 2002 and 2018. Model performance evaluation shows an overall satisfactory performance for O3 in all months and for PM2.5 in January and October at rural sites and in January, April, and October at urban sites. Large underpredictions in PM2.5 concentrations occur in April and July at rural sites and in July at urban sites, because of biases in meteorological predictions and underestimation of emissions of precursors. The model performance at 4-km in terms of O3, PM2.5 and PM2.5 components show some improvements but overall are not always better than that at 12-km. O3 chemistry is VOC-limited in urban areas and NOx-limited over the west of the mountain regions and the southern Georgia throughout the year, and VOC-limited over the rest of areas in January but NOx-limited in other months. Among all photochemical indicators examined, PH2O2/PHNO3 and O3/NOy are the most robust indicators. The domain is NH3-rich or neutral in all months, indicating a high potential for NH4NO3 formation and the sensitivity of PM2.5 formation to the emissions of SO2, NOx, and NH3. Surface O3 is accumulated primarily through vertical transport in urban, rural and coastal areas and both horizontal and vertical transport in mountain regions and produced via gas-phase chemistry at non-urban sites during daytime. The loss of O3 is attributed to gas-phase chemistry via NO titration in urban areas, and dry deposition and transport processes in rural and mountain areas. PM2.5 is produced by primary emissions and PM processes and lost through vertical

  14. Carcinogenicity of airborne fine particulate benzo(a)pyrene: an appraisal of the evidence and the need for control.

    PubMed Central

    Perera, F

    1981-01-01

    Benzo(a)pyrene(BaP) originating from fossil fuel and other organic combustion processes is largely adsorbed on fine particulate and hence is a widespread atmospheric pollutant. Available emissions and air quality data are based on the total weight of particulate matter without reference to size and give little information on trends and concentrations of fine particulate BaP. Greater reliance on coal, synfuels and diesel fuel for energy production and transportation will significantly increase ambient levels of BaP. Because of the particulate size, BaP is substantially deposited in the lower lung and readily eluted into surrounding tissue. After elution in the lung, BaP is metabolically activated to its electrophilic, carcinogenic from by a complex enzyme system whose activity is increased by prior exposure to air pollutants, cigarette smoke and certain drugs. The resultant diol epoxide metabolite has been shown to bind covalently with the DNA of the lung. In experimental animals, BaP is a potent initiating carcinogen whose action is enhanced by sulfur dioxide, promoting agents and carrier fine particles. The effect of small, divided doses of BaP has been shown to be greater than that of a single high dose; no threshold has been established. Epidemiological studies show that mixtures containing BaP (such as urban air, industrial emissions and cigarette smoke) are carcinogenic and may interact synergistically. Occupational studies indicate that the action of BaP-containing mixtures is enhanced in the presence of SO2. However, quantitative risk assessment for BaP is precluded by problems in extrapolating to the general population from small-scale animal studies; uncertainties in findings of epidemiology; and imprecise exposure data. Existing stationary and mobile controls preferentially remove coarse particulate matter and are inefficient collectors of the particulate BaP. In the current absence of health and environmental standards for BaP, there is little incentive

  15. Smoking increases air pollution levels in city streets: observational and fine particulate data.

    PubMed

    Patel, Vimal; Thomson, George; Wilson, Nick

    2012-09-01

    To address the paucity of research around smokefree streets, we: (i) refined existing data collection methods; (ii) expanded on the meagre previous research in this area; and (iii) compared results by differing size of urban centre. We refined established methods; a solo observer simultaneously observed smoking and measured fine particulate levels (PM(2.5)) on a route of shopping streets in central Lower Hutt City, New Zealand. Over 33.6 h of measurement, mean fine particulate levels were 1.7 times higher when smoking was observed than when it was not (7.9 vs 4.8 μg/m(3); p=0.0001). Smoking appeared to be a substantive contributor to fine particulate air pollution in city streets, when compared to levels adjacent to road traffic. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential

    NASA Astrophysics Data System (ADS)

    Ravi, Sujith; Sharratt, Brenton S.; Li, Junran; Olshevski, Stuart; Meng, Zhongju; Zhang, Jianguo

    2016-10-01

    Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms–the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs.

  17. Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential

    PubMed Central

    Ravi, Sujith; Sharratt, Brenton S.; Li, Junran; Olshevski, Stuart; Meng, Zhongju; Zhang, Jianguo

    2016-01-01

    Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms–the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs. PMID:27782159

  18. Particulate matter emissions from biochar-amended soils as a potential tradeoff to the negative emission potential.

    PubMed

    Ravi, Sujith; Sharratt, Brenton S; Li, Junran; Olshevski, Stuart; Meng, Zhongju; Zhang, Jianguo

    2016-10-26

    Novel carbon sequestration strategies such as large-scale land application of biochar may provide sustainable pathways to increase the terrestrial storage of carbon. Biochar has a long residence time in the soil and hence comprehensive studies are urgently needed to quantify the environmental impacts of large-scale biochar application. In particular, black carbon emissions from soils amended with biochar may counteract the negative emission potential due to the impacts on air quality, climate, and biogeochemical cycles. We investigated, using wind tunnel experiments, the particulate matter emission potential of a sand and two agriculturally important soils amended with different concentrations of biochar, in comparison to control soils. Our results indicate that biochar application considerably increases particulate emissions possibly by two mechanisms-the accelerated emission of fine biochar particles and the generation and emission of fine biochar particles resulting from abrasion of large biochar particles by sand grains. Our study highlights the importance of considering the background soil properties (e.g., texture) and geomorphological processes (e.g., aeolian transport) for biochar-based carbon sequestration programs.

  19. [Effects of airborne fine particulate matter on human respiratory symptoms and pulmonary function].

    PubMed

    Gao, Zhi-Yi; Li, Peng-Kun; Zhao, Jin-Zhuo; Jiang, Rong-Fang; Yang, Bin-Jie; Zhang, Min-Hua; Song, Wei-Min

    2010-10-01

    to explore effects of airborne fine particulate matter exposure on human respiratory symptoms and pulmonary function. one hundred and seven field traffic policemen were recruited as airborne fine particulate matter high-exposure group and one hundred and one male residents as common exposure group. The individual sampler was used to measure fine particulate matter exposure levels of the two groups. To obtain personal information, especially respiratory symptoms such as cough, sputum, etc. a questionnaire survey was used. The pulmonary ventilation function was detected: forced expiratory vital capacity (FVC), the first 1 second forced expiratory volume (FEV1.0), FVC/FEV1.0% and peak flow values (PEF), and the difference of fine particulate matter exposure level and respiratory function of the two groups was compared. 24 h individual average fine particulate matter exposure concentration of traffic police and residents were respectively (115.4 ± 46.17) microg/m(3) and (74.94 ± 40.09) microg/m(3), the traffic police PM2.5 exposure levels were significantly higher than the residents. In the incidence of respiratory symptoms, compared with high-exposure group and common exposure group, coughing, expectoration, throat unwell, asthma, short of breath and nose discomfort, traffic police group was higher than residents group (P < 0.05). The abnormal rate of lung ventilation function indexes, such as FVC and FEV1.0 was 25.23% and 12.15% respectively in high-exposure group, 11.88% and 2.97% in common exposure group, there was no statistical difference between two groups. Besides, the abnormal rate of FVC and FEV1.0, showed rising trend in high-exposure group with seniority. long-term higher levels of airborne fine particulate matter exposure, may impact respiratory health and impair pulmonary function.

  20. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    PubMed Central

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-01-01

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM1 (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles. PMID:26402691

  1. Diagnostic air quality model evaluation of source-specific primary and secondary fine particulate carbon.

    PubMed

    Napelenok, Sergey L; Simon, Heather; Bhave, Prakash V; Pye, Havala O T; Pouliot, George A; Sheesley, Rebecca J; Schauer, James J

    2014-01-01

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 μgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 μgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others.

  2. Impacts of fine particulate matter on premature mortality under future climate change

    NASA Astrophysics Data System (ADS)

    Park, S.; Allen, R.; Lim, C. H.

    2016-12-01

    Climate change modulates concentration of fine particulate matter (PM2.5) via modifying atmospheric circulation and the hydrological cycle. Furthermore, surface PM2.5 is significantly associated with respiratory diseases and premature mortality. In this study, we assess the response of PM2.5 concentration to climate change in the future (end of 21st century) and its effects on year of life lost (YLL) and premature mortality. We use outputs from five models participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) to evaluate climate change effects on PM2.5: for present climate with current aerosol emissions and greenhouse gas concentrations, and for future climate, also with present-day aerosol emissions, but with end-of-the century greenhouse gas concentrations, sea surface temperatures and sea-ice. The results show that climate change is associated with an increase in PM2.5 concentration. Combined with global future population data from the United Nation (UN), we also find an increase in premature mortality and YLL.

  3. Gas chromatographic analysis of organic marker compounds in fine particulate matter using solid-phase microextraction.

    PubMed

    Lin, Lin; Lee, Milton L; Eatough, Delbert J

    2007-01-01

    A gas chromatographic method that uses solid-phase microextraction for analysis of organic marker compounds in fine particulate matter (PM2.5) is reported. The target marker compounds were selected for specificity toward emission from wood smoke, diesel or gasoline combustion, or meat cooking. Temperature-programmed volatilization analysis was used to characterize the thermal stabilities and volatile properties of the compounds of interest. The compounds were thermally evaporated from a quartz filter, sorbed to a solid phase microextraction (SPME) fiber, and thermally desorbed at 280 degrees C in a gas chromatograph injection port connected via a DB 1701 capillary separating column. Various experimental parameters (fiber type, time, and temperature of sorption) were optimized. It was found that high extraction yield could be achieved using a polyacrylate fiber for polar substances, such as levoglucosan, and a 7-microm polydimethylsiloxane (PDMS)-coated fiber for nonpolar compounds, such as hopanes and polyaromatic hydrocarbon. A compromise was made by selecting a carboxen/PDMS fiber, which can simultaneously extract all of the analytes of interest with moderate-to-high efficiency at 180 degrees C within a 30-min accumulation period. The optimized method was applied to the determination of levoglucosan in pine wood combustion emissions. The simplicity, rapidity, and selectivity of sample collection with a polymer-coated SPME coupled to capillary gas chromatography (GC) made this method potentially useful for atmospheric chemistry studies.

  4. Analysis of Fine Particulate Matter During the 2006 MIRAGE (MILAGRO) Field Campaign. Part I. Data Validation

    NASA Astrophysics Data System (ADS)

    Moya, M.; Matias, E.; Nenes, A.; Ponce de Leon, C.

    2006-12-01

    As part of the MIRAGE (MILAGRO, http://mirage-mex.acd.ucar.edu) field campaign, particulate matter in size ranges of 1, 2.5 μm was collected at the T1 site (located ~ 35 km NE downwind Mexico city) from March 5th-31st, 2006. Scientific objectives related to this database are focused on application of different aerosol modeling tools (Part II of this work). In this part a discussion of data validation and findings related is presented. Overall, highest concentrations of fine PM are present during the morning sampling periods (PM1, ~90% and PM2.5, ~70% of the time) suggesting a combination of transport of emissions from the Valley of Mexico and combustion processes nearby T1 are occurring. Although electroneutrality balances are achieved for both PM size ranges on the different sampling periods, it is noted that levels of concentration (neq/m3) found at the MIRAGE site (100-500 neq/m3) are significantly lower than those observed in Mexico City, reported previously around 200-1000 neq/m3. A considerable amount of crustal species is observed in the 2.5-1 μm size range. Additional analysis of K/Na ratio supports this finding and also suggests the dominating emissions in PM1 are of anthropogenic origin while in the PM2.5-1 size range are of crustal origin.

  5. Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model.

    PubMed

    Singh, Nandita; Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, Tirthankar

    2017-04-01

    Fine particulates (PM2.5) constitute dominant proportion of airborne particulates and have been often associated with human health disorders, changes in regional climate, hydrological cycle and more recently to food security. Intrinsic properties of particulates are direct function of sources. This initiates the necessity of conducting a comprehensive review on PM2.5 sources over South Asia which in turn may be valuable to develop strategies for emission control. Particulate source apportionment (SA) through receptor models is one of the existing tool to quantify contribution of particulate sources. Review of 51 SA studies were performed of which 48 (94%) were appeared within a span of 2007-2016. Almost half of SA studies (55%) were found concentrated over few typical urban stations (Delhi, Dhaka, Mumbai, Agra and Lahore). Due to lack of local particulate source profile and emission inventory, positive matrix factorization and principal component analysis (62% of studies) were the primary choices, followed by chemical mass balance (CMB, 18%). Metallic species were most regularly used as source tracers while use of organic molecular markers and gas-to-particle conversion were minimum. Among all the SA sites, vehicular emissions (mean ± sd: 37 ± 20%) emerged as most dominating PM2.5 source followed by industrial emissions (23 ± 16%), secondary aerosols (22 ± 12%) and natural sources (20 ± 15%). Vehicular emissions (39 ± 24%) also identified as dominating source for highly polluted sites (PM2.5>100 μgm(-3), n = 15) while site specific influence of either or in combination of industrial, secondary aerosols and natural sources were recognized. Source specific trends were considerably varied in terms of region and seasonality. Both natural and industrial sources were most influential over Pakistan and Afghanistan while over Indo-Gangetic plain, vehicular, natural and industrial emissions appeared dominant. Influence of vehicular emission was found

  6. Impacts of Intercontinental Transport of Anthropogenic Fine Particulate Matter on Human Mortality

    NASA Technical Reports Server (NTRS)

    Anenberg, Susan C.; West, J. Jason; Hongbin, Yu; Chin, Mian; Schulz, Michael; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Fiore, Arlene; Hess, Peter; Marmer, Elina; Montanaro, Veronica; Park, Rokjin; Shindell, Drew; Takemura, Toshihiko; Dentener, Frank

    2014-01-01

    Fine particulate matter with diameter of 2.5 microns or less (PM2.5) is associated with premature mortality and can travel long distances, impacting air quality and health on intercontinental scales. We estimate the mortality impacts of 20 % anthropogenic primary PM2.5 and PM2.5 precursor emission reductions in each of four major industrial regions (North America, Europe, East Asia, and South Asia) using an ensemble of global chemical transport model simulations coordinated by the Task Force on Hemispheric Transport of Air Pollution and epidemiologically-derived concentration-response functions. We estimate that while 93-97 % of avoided deaths from reducing emissions in all four regions occur within the source region, 3-7 % (11,500; 95 % confidence interval, 8,800-14,200) occur outside the source region from concentrations transported between continents. Approximately 17 and 13 % of global deaths avoided by reducing North America and Europe emissions occur extraregionally, owing to large downwind populations, compared with 4 and 2 % for South and East Asia. The coarse resolution global models used here may underestimate intraregional health benefits occurring on local scales, affecting these relative contributions of extraregional versus intraregional health benefits. Compared with a previous study of 20 % ozone precursor emission reductions, we find that despite greater transport efficiency for ozone, absolute mortality impacts of intercontinental PM2.5 transport are comparable or greater for neighboring source-receptor pairs, due to the stronger effect of PM2.5 on mortality. However, uncertainties in modeling and concentration-response relationships are large for both estimates.

  7. Source apportionment of airborne fine particulate matter in an underground mine.

    PubMed

    McDonald, Jacob D; Zielinska, Barbara; Sagebiel, John C; McDaniel, Mark R; Mousset-Jones, Pierre

    2003-04-01

    The chemical mass balance source apportionment technique was applied to an underground gold mine to assess the contribution of diesel exhaust, rock dust, oil mists, and cigarette smoke to airborne fine (<2.5 microm) particulate matter (PM). Apportionments were conducted in two locations in the mine, one near the mining operations and one near the exit of the mine where the ventilated mine air was exhausted. Results showed that diesel exhaust contributed 78-98% of the fine particulate mass and greater than 90% of the fine particle carbon, with rock dust making up the remainder. Oil mists and cigarette smoke contributions were below detection limits for this study. The diesel exhaust fraction of the total fine PM was higher than the recently implemented mine air quality standards based on total carbon at both sample locations in the mine.

  8. Waste Coal Fines Reburn for NOx and Mercury Emission Reduction

    SciTech Connect

    Stephen Johnson; Chetan Chothani; Bernard Breen

    2008-04-30

    Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury

  9. Ambient Fine Particulate (PM2.5) Air Pollution Attributable to Household Cooking Fuel in Asia

    NASA Astrophysics Data System (ADS)

    Chafe, Z.; Mehta, S.; Smith, K. R.

    2011-12-01

    Using the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model, hosted by the International Institute for Applied Systems Analysis (IIASA), we estimate the proportion of fine particulate ambient air pollution (PM2.5) attributable to household fuel use for cooking in Asia. This analysis considers primary anthropogenic PM2.5 emissions in two years: 1990 and 2005. Only emissions from household cooking fuels-not heating or lighting-are considered. Due to data availability, this analysis focuses solely on Asian countries, notably India and China which are home to about half of the households using solid fuel use worldwide. Forest and grassland fires, dust, and other "natural" particle sources were omitted from this analysis. The impact of emission sources on secondary particles from aerosol precursors was not determined. In China, the proportion of total primary anthropogenic PM2.5 attributable to household cooking decreased from 44% to 31% between 1990 and 2005. In India, the percent of primary anthropogenic PM2.5 emissions attributable to household cooking decreased from 55% to 49% between 1990 and 2005. Total mass change in primary anthropogenic PM2.5 emissions was much more variable by state in India, between 1990 and 2005, than by province in China (where there was a general downward trend in the total mass emitted). Similarly, growth in industrial emissions was much more variable at the sub-national level, between 1990 and 2005, in India than in China. Energy production played a more prominent role in the growth of primary anthropogenic PM2.5 emissions in India than it did in China. Forward-looking GAINS scenarios show that the contribution of household cooking to total primary anthropogenic PM2.5 emissions is much greater than that from on-road transport in India and China between 1990 and 2030. On-road cars, trucks, and other transport vehicles are, however, the cause of important pollutants other than PM2.5 (as are as cooking stoves that do

  10. Impact of natural gas development in the Marcellus and Utica shales on regional ozone and fine particulate matter levels

    NASA Astrophysics Data System (ADS)

    Roohani, Yusuf H.; Roy, Anirban A.; Heo, Jinhyok; Robinson, Allen L.; Adams, Peter J.

    2017-04-01

    The Marcellus and Utica shale formations have recently been the focus of intense natural gas development and production, increasing regional air pollutant emissions. Here we examine the effects of these emissions on regional ozone and fine particulate matter (PM2.5) levels using the chemical transport model, CAMx, and estimate the public health costs with BenMAP. Simulations were performed for three emissions scenarios for the year 2020 that span a range potential development storylines. In areas with the most gas development, the 'Medium Emissions' scenario, which corresponds to an intermediate level of development and widespread adoption of new equipment with lower emissions, is predicted to increase 8-hourly ozone design values by up to 2.5 ppbv and average annual PM2.5 concentrations by as much as 0.27 μg/m3. These impacts could range from as much as a factor of two higher to a factor of three lower depending on the level of development and the adoption of emission controls. Smaller impacts (e.g. 0.1-0.5 ppbv of ozone, depending on the emissions scenario) are predicted for non-attainment areas located downwind of the Marcellus region such as New York City, Philadelphia and Washington, DC. Premature deaths for the 'Medium Emissions' scenario are predicted to increase by 200-460 annually. The health impacts as well as the changes in ozone and PM2.5 were all driven primarily by NOx emissions.

  11. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    PubMed

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  12. Particulate emissions from diesel engines: correlation between engine technology and emissions

    PubMed Central

    2014-01-01

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted. Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions. Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  13. Fine particulate concentrations on sidewalks in five Southern California cities

    NASA Astrophysics Data System (ADS)

    Boarnet, Marlon G.; Houston, Douglas; Edwards, Rufus; Princevac, Marko; Ferguson, Gavin; Pan, Hansheng; Bartolome, Christian

    2011-08-01

    This research provides an exploratory examination of the factors associated with fine particle concentrations in intersection and sidewalk microenvironments in five study areas in the Los Angeles region. The study areas range from low-density, auto-oriented development patterns to dense urban areas with mid- and high-rise buildings. Average concentrations of FP DT (fine particle concentrations measured with DustTrak Aerosol Monitors) ranged from about 20 to 70 μg m -3 across study areas during stationary and mobile (walking) monitoring in morning, midday, and evening periods. Results suggest that fine particle concentrations are highly variable on urban sidewalks. A regression analysis shows that concentrations are associated with traffic and the proximate built environment characteristics after accounting for meteorological factors, time of day, and location in the region. Regressions show higher concentrations were associated with lower wind speeds and higher temperatures, higher adjacent passenger vehicle traffic, higher ambient concentrations, and street canyons with buildings of over five stories. Locations in street canyons with 2-5 story buildings and with more paving and open space had lower concentrations after accounting for other factors. The associations with traffic and built environment variables explained a small amount of the variation in FP DT concentrations, suggesting that future research should examine the relative role of localized traffic and built environment characteristics compared to regional ambient concentrations and meteorology.

  14. FINE PARTICULATE MATTER SOURCE ATTRIBUTION FOR SOUTHEAST TEXAS USING 14C/13C RATIOS

    EPA Science Inventory

    Radiocarbon analyses of fine particulate matter samples collected during the summer of 2000 in southeast Texas indicate that a substantial fraction of the aerosol carbon at an urban/suburban site (27% to 73%) and at a rural, forested site (44% to 77%) was modern carbon. Data fr...

  15. 75 FR 45075 - Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate Matter and Ozone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Interstate Transport of Fine Particulate Matter and Ozone AGENCY: Environmental Protection Agency (EPA... Matter and Ozone'' (Transport Rule) which is published elsewhere in today's issue of the Federal Register... ozone NAAQS. Public hearing: The proposal for which EPA is holding the public hearings is...

  16. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    PubMed Central

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  17. DAILY SIMULATION OF OZONE AND FINE PARTICULATES OVER NEW YORK STATE: FINDINGS AND CHALLENGES

    EPA Science Inventory

    This study investigates the potential utility of the application of a photochemical modeling system in providing simultaneous forecasts of ozone (O3) and fine particulate matter (PM2.5) over New York State. To this end, daily simulations from the Community M...

  18. DAILY SIMULATION OF OZONE AND FINE PARTICULATES OVER NEW YORK STATE: FINDINGS AND CHALLENGES

    EPA Science Inventory

    This study investigates the potential utility of the application of a photochemical modeling system in providing simultaneous forecasts of ozone (O3) and fine particulate matter (PM2.5) over New York State. To this end, daily simulations from the Community M...

  19. RESPIRATORY TOXICOLOGCAL EFFECTS OF WORLD TRADE CENTER FINE PARTICULATE MATTER IN MICE

    EPA Science Inventory


    ABSTRACT BODY:
    The destruction of the World Trade Center (WTC) caused the release of high levels of airborne pollutants which were reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate mat...

  20. Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile.

    PubMed

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G E; Leiva Guzmán, Manuel A

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002-2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m(3)) and the United States Environmental Protection Agency standard (15 µg/m(3)) for fine particulate matter.

  1. WORLD TRADE CENTER FINE PARTICULATE MATTER CAUSES RESPIRATORY TRACT HYPERRESPONSIVENESS IN MICE

    EPA Science Inventory

    World Trade Center Fine Particulate Matter Causes Respiratory Tract Hyperresponsiveness in Mice

    Stephen H. Gavett1, Najwa Haykal-Coates1, Jerry W. Highfill1, Allen D. Ledbetter1, Lung Chi Chen2, Mitchell D. Cohen2, Jack R. Harkema3, James G. Wagner3, and Daniel L. Costa1.<...

  2. CHEMICAL ANALYSIS OF WORLD TRADE CENTER FINE PARTICULATE MATTER FOR USE IN TOXICOLOGICAL ASSESSMENT

    EPA Science Inventory

    Chemical Analysis of World Trade Center Fine Particulate Matter for Use in Toxicological Assessment
    John K. McGee1, Lung Chi Chen2, Mitchell D. Cohen2, Glen R. Chee2, Colette M. Prophete2, Najwa Haykal-Coates1, Shirley J. Wasson3, Teri L. Conner4, Daniel L. Costa1, and Steph...

  3. RESPIRATORY TOXICOLOGCAL EFFECTS OF WORLD TRADE CENTER FINE PARTICULATE MATTER IN MICE

    EPA Science Inventory


    ABSTRACT BODY:
    The destruction of the World Trade Center (WTC) caused the release of high levels of airborne pollutants which were reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate mat...

  4. WORLD TRADE CENTER FINE PARTICULATE MATTER CAUSES RESPIRATORY TRACT HYPERRESPONSIVENESS IN MICE

    EPA Science Inventory

    World Trade Center Fine Particulate Matter Causes Respiratory Tract Hyperresponsiveness in Mice

    Stephen H. Gavett1, Najwa Haykal-Coates1, Jerry W. Highfill1, Allen D. Ledbetter1, Lung Chi Chen2, Mitchell D. Cohen2, Jack R. Harkema3, James G. Wagner3, and Daniel L. Costa1.<...

  5. SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...

  6. CHEMICAL ANALYSIS OF WORLD TRADE CENTER FINE PARTICULATE MATTER FOR USE IN TOXICOLOGICAL ASSESSMENT

    EPA Science Inventory

    Chemical Analysis of World Trade Center Fine Particulate Matter for Use in Toxicological Assessment
    John K. McGee1, Lung Chi Chen2, Mitchell D. Cohen2, Glen R. Chee2, Colette M. Prophete2, Najwa Haykal-Coates1, Shirley J. Wasson3, Teri L. Conner4, Daniel L. Costa1, and Steph...

  7. The methodologies and instruments of vehicle particulate emission measurement for current and future legislative regulations

    NASA Astrophysics Data System (ADS)

    Otsuki, Yoshinori; Nakamura, Hiroshi; Arai, Masataka; Xu, Min

    2015-09-01

    Since the health risks associated with fine particles whose aerodynamic diameters are smaller than 2.5 μm was first proven, regulations restricting particulate matter (PM) mass emissions from internal combustion engines have become increasingly severe. Accordingly, the gravimetric method of PM mass measurement is facing its lower limit of detection as the emissions from vehicles are further reduced. For example, the variation in the adsorption of gaseous components such as hydrocarbons from unburned fuel and lubricant oil and the presence of agglomerated particles, which are not directly generated in engine combustion but re-entrainment particulates from walls of sampling pipes, can cause uncertainty in measurement. The PM mass measurement systems and methodologies have been continuously refined in order to improve measurement accuracy. As an alternative metric, the particle measurement programme (PMP) within the United Nations Economic Commission for Europe (UNECE) developed a solid particle number measurement method in order to improve the sensitivity of particulate emission measurement from vehicles. Consequently, particle number (PN) limits were implemented into the regulations in Europe from 2011. Recently, portable emission measurement systems (PEMS) for in-use vehicle emission measurements are also attracting attention, currently in North America and Europe, and real-time PM mass and PN instruments are under evaluation.

  8. Emission abatement system utilizing particulate traps

    DOEpatents

    Bromberg, Leslie; Cohn, Daniel R.; Rabinovich, Alexander

    2004-04-13

    Emission abatement system. The system includes a source of emissions and a catalyst for receiving the emissions. Suitable catalysts are absorber catalysts and selective catalytic reduction catalysts. A plasma fuel converter generates a reducing gas from a fuel source and is connected to deliver the reducing gas into contact with the absorber catalyst for regenerating the catalyst. A preferred reducing gas is a hydrogen rich gas and a preferred plasma fuel converter is a plasmatron. It is also preferred that the absorber catalyst be adapted for absorbing NO.sub.x.

  9. Characterization of chemical and particulate emissions from aircraft engines

    NASA Astrophysics Data System (ADS)

    Agrawal, Harshit; Sawant, Aniket A.; Jansen, Karel; Wayne Miller, J.; Cocker, David R.

    2008-06-01

    This paper presents a series of measurements from four on-wing, commercial aircraft engines, including two newer CFM56-7 engines and two earlier CFM56-3 engines. Samples were collected from each engine using a probe positioned behind the exhaust nozzle of the aircraft, chocked on a concrete testing pad. The emission factors for particulate matter mass, elemental and organic carbon, carbonyls, polycyclic aromatic hydrocarbons, n-alkanes, dioxins, metals and ions are reported for four different engine power setting modes. The emissions indices of particulate matter, elemental and organic carbon are highly power dependent for these engines. Particulate matter emission indices (g kg-1 fuel) are found to increase from 1.1E-02 to 2.05E-01 with increase in power from idle to 85%. The elemental carbon to organic carbon varies from 0.5 to 3.8 with change in power from idle to 85%. The carbonyl emissions are dominated by formaldehyde. The emission index of formaldehyde ranges from 2.3E-01 to 4.8E-01 g kg-1 fuel. The distribution of metals depends on the difference in the various engines. The dioxin emissions from the aircraft engines are observed to be below detection limit.

  10. Real-world particulate matter and gaseous emissions from motor vehicles in a highway tunnel.

    PubMed

    Gertler, Alan W; Gillies, John A; Pierson, William R; Rogers, C Fred; Sagebiel, John C; Abu-Allaban, Mahmoud; Coulombe, William; Tarnay, Leland; Cahill, Thomas A

    2002-01-01

    Recent studies have linked atmospheric particulate matter with human health problems. In many urban areas, mobile sources are a major source of particulate matter (PM) and the dominant source of fine particles or PM2.5 (PM smaller than 2.5 pm in aerodynamic diameter). Dynamometer studies have implicated diesel engines as being a significant source of ultrafine particles (< 0.1 microm), which may also exhibit deleterious health impacts. In addition to direct tailpipe emissions, mobile sources contribute to ambient particulate levels by brake and tire wear and by resuspension of particles from pavement. Information about particle emission rates, size distributions, and chemical composition from in-use light-duty (LD) and heavy-duty (HD) vehicles is scarce, especially under real-world operating conditions. To characterize particulate emissions from a limited set of in-use vehicles, we studied on-road emissions from vehicles operating under hot-stabilized conditions, at relatively constant speed, in the Tuscarora Mountain Tunnel along the Pennsylvania Turnpike from May 18 through 23, 1999. There were five specific aims of the study. (1) obtain chemically speciated diesel profiles for the source apportionment of diesel versus other ambient constituents in the air and to determine the chemical species present in real-world diesel emissions; (2) measure particle number and size distribution of chemically speciated particles in the atmosphere; (3) identify, by reference to data in years past, how much change has occurred in diesel exhaust particulate mass; (4) measure particulate emissions from LD gasoline vehicles to determine their contribution to the observed particle levels compared to diesels; and (5) determine changes over time in gas phase emissions by comparing our results with those of previous studies. Comparing the results of this study with our 1992 results, we found that emissions of C8 to C20 hydrocarbons, carbon monoxide (CO), and carbon dioxide (CO2) from

  11. Sources of fine urban particulate matter in Detroit, MI.

    PubMed

    Gildemeister, Amy E; Hopke, Philip K; Kim, Eugene

    2007-10-01

    Data from the speciation trends network (STN) was used to evaluate the amount and temporal patterns of particulate matter originating from local industrial sources and long-range transport at two sites in Detroit, MI: Allen Park, MI, southwest of both Detroit and the areas of heavy industrial activity; Dearborn, MI, located on the south side of Detroit near the most heavily industrialized region. Using positive matrix factorization (PMF) and comparing source contributions at Allen Park to those in Dearborn, contributions made by local industrial sources (power plants, coke refineries, iron smelting, waste incineration), local area sources (automobile and diesel truck) and long range sources of PM(2.5) can be distinguished in greater Detroit. Overall, the mean mass concentration measured at Dearborn was 19% higher than that measured at Allen Park. The mass at Allen Park was apportioned as: secondary sulfate 31%, secondary nitrate 28%, soil 8%, mixed aged sea and road salts 4%, gasoline 15%, diesel 4%, and biomass burning 3%. At Dearborn the mass was apportioned as: secondary sulfate 25%, secondary nitrate 20%, soil 12%, mixed aged sea and road salts 4%, gasoline 20%, diesel 8%, iron and steel, 5%, and mixed industrial 7%. The impact of the iron and steel, soil, and mixed aged sea and road salt was much higher at the Dearborn site than at the Allen Park site, suggesting that close proximity to a local industrial complex has a direct negative impact on local air quality.

  12. Clustering Dynamics of Ultra-fine Particulate Systems

    NASA Astrophysics Data System (ADS)

    Dutt, Meenakshi; Elliott, James

    2008-03-01

    Length scales of particles and their surrounding medium strongly determines the nature of their interactions with one another and their responses to external fields. We are interested in systems of ultrafine particles (0.1 - 1.0 micron) such as volcanic ash, solid aerosols, or fine powders for pharmaceutical ihalation applications. We develop a numerical model for these systems using the Derjaguin-Muller-Toporov (DMT) adhesion theory along with the van der Waals attraction between the particles and their contact mechanical interactions. We study the dynamics of these systems in the absence and presence of gravity by controlling the particle size, and thereby, the surface properties of the particles. The high surface energies of these particles causes them to agglomerate as they gravitationally settle. We explore their internal structure as a function of their particle size.

  13. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    SciTech Connect

    Mazurek, M.A. ); Hildemann, L.M. . Dept. of Civil Engineering); Cass, G.R.; Rogge, W.F. . Dept. of Environmental Engineering Science); Simoneit, B.R.T. . Coll. of Oceanography)

    1990-04-01

    Extractable organic compounds having between 6 to 40 carbon atoms comprise an important mass fraction of the fine particulate matter samples from major urban emission sources. Depending on the emission source type, this solvent-soluble fraction accounts for <20% to 100% of the total organic aerosol mass, as measured by quantitative high-resolution has chromatography (HRGC) with flame ionization detection. In addition to total extract quantitation, HRGC can be applied to further analyses of the mass distributions of elutable organics present in the complex aerosol extract mixtures, thus generating profiles that serve as fingerprints'' for the sources of interest. This HRGC analytical method is applied to emission source samples that contain between 7 to 12,000 {mu}g/filter organic carbon. It is shown to be a sensitive technique for analysis of carbonaceous aerosol extract mixtures having diverse mass loadings and species distributions. This study describes the analytical chemical methods that have been applied to: the construction of chemical mass balances based on the mass of fine organic aerosol emitted for major urban sources of particulate carbon; and the generation of discrete emission source chemical profiles derived from chromatographic characteristics of the organic aerosol components. 21 refs., 1 fig., 2 tabs.

  14. Chemical tracers of particulate emissions from commercial shipping.

    PubMed

    Viana, Mar; Amato, Fulvio; Alastuey, Andrés; Querol, Xavier; Moreno, Teresa; Dos Santos, Saúl García; Herce, María Dolores; Fernández-Patier, Rosalía

    2009-10-01

    Despite the increase of commercial shipping around the world, data are yet relatively scarce on the contribution of these emissions to ambient air particulates. One of the reasons is the complexity in the detection and estimation of shipping contributions to ambient particulates in harbor and urban environments, given the similarity with tracers of other combustion sources. This study aimed to identify specific tracers of shipping emissions in a Mediterranean city with an important harbor (Melilla, Spain). Results showed that for 24 h PM10 and PM2.5 samples, valid tracers of commercial shipping emissions were ratios of V/Ni = 4-5 and V/EC < 2, whereas V/EC > 8 excluded the influence of shipping emissions. Other ratios (V/ S, La/Ce, Zn/Ni, Pb/Zn, OC/EC) and tracers (Pb, Zn) were also tested but did not correlate with this source. Due to the changing composition of diesel fuels, tracers in the Mediterranean Sea may not be representative in other regions of the world and vice versa. The contribution of shipping emissions to ambient particulate matter (PM) urban background levels was quantified by positive matrix factorization (PMF), resulting in 2% and 4% of mean annual PM10 levels (0.8 microg/m3 primary particles and 1.7 microg/m3 secondary particles, with 20% uncertainty) and 14% of mean annual PM2.5 levels (2.6 microg/m3).

  15. [Elemental size distribution of airborne fine and ultrafine particulate matters in the suburb of Shanghai, China].

    PubMed

    Lin, Jun; Liu, Wei; Li, Yan; Bao, Liang-Man; Li, Yu-Lan; Xu, Zhong-Yang; Wu, Wei-Wei; Chen, Dong-Liang; He, Wei

    2009-04-15

    The elemental size distributions of airborne fine/ultrafine particulate matters in the suburb of Shanghai were studied using synchrotron X-ray fluorescence. Median mass aerodynamic diameter (MMAD), elemental correlation coefficient as well as enrichment factor (EF) of each size fraction were calculated to characterize the sources of elements in fine/ultrafine particulate matters. Ca and Ti distributed mainly in coarse particles (> 2 microm) with size independent enrichment factors between 0.1 and 3.2, and the correlation coefficient between Ca and Ti was as high as 0.933, which implied strong contribution from nature sources, such as soil dusts and resuspended dusts. However, V, Cr, Mn, Ni, Zn, Cu, Pb, Cl, S mainly distributed in 0.1-1.0 microm particulate matters with MMAD between 0.56-0.94 microm. The EF of V, Cr, Ni, Cu, Zn, Pb increased with decreasing particle size. The highest EF were found for Pb in ultrafine particulate matters (< 0.1 microm) with EF of 2,023.7-2,244.2. The evidences suggested that these elements were significantly influenced by anthropogenic sources and enriched in fine/ultrafine particles smaller than 1 microm. Fe distributed uniformly in the particles larger than 0.2 microm with MMAD of 1.3 microm. The results indicated non-negligible influences of remote transmission of anthropogenic pollutions.

  16. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  17. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  18. Effects of Independence Day fireworks on atmospheric concentrations of fine particulate matter in the United States

    NASA Astrophysics Data System (ADS)

    Seidel, Dian J.; Birnbaum, Abigail N.

    2015-08-01

    Previous case studies have documented increases in air pollutants, including particulate matter (PM), during and following fireworks displays associated with various holidays and celebrations around the world. But no study to date has explored fireworks effects on air quality over large regions using systematic observations over multiple years to estimate typical regional PM increases. This study uses observations of fine PM (with particle diameters < 2.5 μm, PM2.5) from 315 air quality monitoring sites across the United States to estimate the effects of Independence Day fireworks on hourly and 24-hr average concentrations. Hourly PM2.5 concentrations during the evening of July 4 and morning of July 5 are higher than on the two preceding and following days in July, considered as control days. On national average, the increases are largest (21 μg/m3) at 9-10 pm on July 4 and drop to zero by noon on July 5. Average concentrations for the 24-hr period beginning 8 pm on July 4 are 5 μg/m3 (42%) greater than on control days, on national average. The magnitude and timing of the Independence Day increases vary from site to site and from year to year, as would be expected given variations in factors such as PM2.5 emissions from fireworks, local meteorological conditions, and distances between fireworks displays and monitoring sites. At one site adjacent to fireworks, hourly PM2.5 levels climb to ∼500 μg/m3, and 24-hr average concentrations increase by 48 μg/m3 (370%). These results have implications for potential improvements in air quality models and their predictions, which currently do not account for this emissions source.

  19. Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Balachandran, S.; Pachon, J. E.; Baek, J.; Ivey, C.; Holmes, H.; Odman, M. T.; Mulholland, J. A.; Russell, A. G.

    2013-10-01

    A hybrid fine particulate matter (PM2.5) source apportionment approach based on a receptor-model (RM) species balance and species specific source impacts from a chemical transport model (CTM) equipped with a sensitivity analysis tool is developed to provide physically- and chemically-consistent relationships between source emissions and receptor impacts. This hybrid approach enhances RM results by providing initial estimates of source impacts from a much larger number of sources than are typically used in RMs, and provides source-receptor relationships for secondary species. Further, the method addresses issues of source collinearities, and accounts for emissions uncertainties. Hybrid method results also provide information on the resulting source impact uncertainties. We apply this hybrid approach to conduct PM2.5 source apportionment at Chemical Speciation Network (CSN) sites across the US. Ambient PM2.5 concentrations at these receptor sites were apportioned to 33 separate sources. Hybrid method results led to large changes of impacts from CTM estimates for sources such as dust, woodstove, and other biomass burning sources, but limited changes to others. The refinements reduced the differences between CTM-simulated and observed concentrations of individual PM2.5 species by over 98% when using a weighted least squared error minimization. The rankings of source impacts changed from the initial estimates, revealing that CTM-only results should be evaluated with observations. Assessment with RM results at six US locations showed that the hybrid results differ somewhat from commonly resolved sources. The hybrid method also resolved sources that typical RM methods do not capture without extra measurement information on unique tracers. The method can be readily applied to large domains and long (such as multi-annual) time periods to provide source impact estimates for management- and health-related studies.

  20. Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Balachandran, S.; Pachon, J. E.; Baek, J.; Ivey, C.; Holmes, H.; Odman, M. T.; Mulholland, J. A.; Russell, A. G.

    2014-06-01

    A hybrid fine particulate matter (PM2.5) source apportionment approach based on a receptor model (RM) species balance and species specific source impacts from a chemical transport model (CTM) equipped with a sensitivity analysis tool is developed to provide physically and chemically consistent relationships between source emissions and receptor impacts. This hybrid approach enhances RM results by providing initial estimates of source impacts from a much larger number of sources than are typically used in RMs, and provides source-receptor relationships for secondary species. Further, the method addresses issues of source collinearities and accounts for emissions uncertainties. We apply this hybrid approach to conduct PM2.5 source apportionment at Chemical Speciation Network (CSN) sites across the US. Ambient PM2.5 concentrations at these receptor sites were apportioned to 33 separate sources. Hybrid method results led to large changes of impacts from CTM estimates for sources such as dust, woodstoves, and other biomass-burning sources, but limited changes to others. The refinements reduced the differences between CTM-simulated and observed concentrations of individual PM2.5 species by over 98% when using a weighted least-squares error minimization. The rankings of source impacts changed from the initial estimates, further demonstrating that CTM-only results should be evaluated with observations. Assessment with RM results at six US locations showed that the hybrid results differ somewhat from commonly resolved sources. The hybrid method also resolved sources that typical RM methods do not capture without extra measurement information for unique tracers. The method can be readily applied to large domains and long (such as multi-annual) time periods to provide source impact estimates for management- and health-related studies.

  1. Vascular function and short-term exposure to fine particulate air pollution.

    PubMed

    Pope, C Arden; Hansen, Jaron C; Kuprov, Roman; Sanders, Matthew D; Anderson, Michael N; Eatough, Delbert J

    2011-08-01

    Exposure to fine particulate air pollution has been implicated as a risk factor for cardiopulmonary disease and mortality. Proposed biological pathways imply that particle-induced pulmonary and systemic inflammation play a role in activating the vascular endothelium and altering vascular function. Potential effects of fine particulate pollution on vascular function are explored using controlled chamber exposure and uncontrolled ambient exposure. Research subjects included four panels with a total of 26 healthy nonsmoking young adults. On two study visits, at least 7 days apart, subjects spent 3 hr in a controlled-exposure chamber exposed to 150-200 microg/m3 of fine particles generated from coal or wood combustion and 3 hr in a clean room, with exposure and nonexposure periods alternated between visits. Baseline, postexposure, and post-clean room reactive hyperemia-peripheral arterial tonometry (RH-PAT) was conducted. A microvascular responsiveness index, defined as the log of the RH-PAT ratio, was calculated. There was no contemporaneous vascular response to the few hours of controlled exposure. Declines in vascular response were associated with elevated ambient exposures for the previous 2 days, especially for female subjects. Cumulative exposure to real-life fine particulate pollution may affect vascular function. More research is needed to determine the roles of age and gender, the effect of pollution sources, the importance of cumulative exposure over a few days versus a few hours, and the lag time between exposure and response.

  2. Power plant emissions: particulate matter-related health damages and the benefits of alternative emission reduction scenarios

    SciTech Connect

    Schneider, C.

    2004-06-15

    This report estimates the avoidable health effects of each of a series of alternative regulatory scenarios for power plants, focusing on the adverse human health effects due to exposure to fine particulate matter (PM2.5) This report uses the same analytical methods that the U.S. Environmental Protection Agency used in 2003 to prepare an analysis of the potential health effects of the proposed Clear Skies Act (EPA 2003). This report conducts an analysis of the impacts in 2010 and 2020 of three policy alternatives to the proposed Clear Skies Act, The Jeffords/Lieberman/Collins 'The Clean Power Act', S. 366, and the EPA August 2001 Straw Proposal (one of several alternatives EPA analyzed prior to the announcement of the Clear Skies Initiative in 2002). The report also examines the health impacts associated with the total emissions from coal fired electricity generating units in 2010. Chapter 2 describes the emissions inventory estimates, and the changes in the emissions associated with each scenario analyzed. Chapter 3 describes the methods used to estimate changes in particulate matter concentrations. Chapter 4 describes general issues arising in estimating and valuing changes in adverse health effects associated with changes in particulate matter. Chapter 5 describes in some detail the methods used for estimating and valuing adverse health effects, and Chapter 6 presents the results of these analyses. Chapter 7 presents estimates of the impact of these alternative policy options on the PM non-attainment status. 117 refs., 21 figs., 32 tabs., 3 apps.

  3. Uncertainty in health risks due to anthropogenic primary fine particulate matter from different source types in Finland

    NASA Astrophysics Data System (ADS)

    Tainio, M.; Tuomisto, J. T.; Pekkanen, J.; Karvosenoja, N.; Kupiainen, K.; Porvari, P.; Sofiev, M.; Karppinen, A.; Kangas, L.; Kukkonen, J.

    2010-06-01

    The emission-exposure and exposure-response (toxicity) relationships are different for different emission source categories of anthropogenic primary fine particulate matter (PM 2.5). These variations have a potentially crucial importance in the integrated assessment, when determining cost-effective abatement strategies. We studied the importance of these variations by conducting a sensitivity analysis for an integrated assessment model. The model was developed to estimate the adverse health effects to the Finnish population attributable to primary PM 2.5 emissions from the whole of Europe. The primary PM 2.5 emissions in the whole of Europe and in more detail in Finland were evaluated using the inventory of the European Monitoring and Evaluation Programme (EMEP) and the Finnish Regional Emission Scenario model (FRES), respectively. The emission-exposure relationships for different primary PM 2.5 emission source categories in Finland have been previously evaluated and these values incorporated as intake fractions into the integrated assessment model. The primary PM 2.5 exposure-response functions and toxicity differences for the pollution originating from different source categories were estimated in an expert elicitation study performed by six European experts on air pollution health effects. The primary PM 2.5 emissions from Finnish and other European sources were estimated for the population of Finland in 2000 to be responsible for 209 (mean, 95% confidence interval 6-739) and 357 (mean, 95% CI 8-1482) premature deaths, respectively. The inclusion of emission-exposure and toxicity variation into the model increased the predicted relative importance of traffic related primary PM 2.5 emissions and correspondingly, decreased the predicted relative importance of other emission source categories. We conclude that the variations of emission-exposure relationship and toxicity between various source categories had significant impacts for the assessment on premature

  4. Trends in Motor Vehicle Emissions in Relation to Ambient Concentrations of Particulate Black and Organic Carbon

    NASA Astrophysics Data System (ADS)

    Mcdonald, B. C.; Kirchstetter, T.; Goldstein, A. H.; Harley, R. A.

    2013-12-01

    The objectives of this study is to relate long-term trends of particulate black and organic carbon (BC and OC) and volatile organic compounds (VOCs) emitted by motor vehicles to fine particulate matter concentrations in ambient air. The analysis focuses on the Los Angeles and San Francisco areas in California, for the period between 1990 and 2010. A fuel-based approach is used to estimate vehicular emissions of BC and OC using emission factors measured on-road in highway tunnels, and fuel sales reported at the state level, which are then allocated to each region. Emission results for BC are also compared with coefficient of haze data. A meta-analysis of past field studies is performed to derive trends in ambient OC and BC concentrations over the last 25 years. We try to account for differences in sampling and filter analysis protocols across studies, including the use of backup filters and thermal-optical procedures used to distinguish between BC and OC. Between 1990 and 2010, vehicular emissions of BC and primary OC fell by ~50% and ~60%, respectively. Over the same time period, VOC emissions from gasoline vehicles decreased by a factor of ~7. In contrast, ambient OC concentrations as measured in previous field studies have remained approximately constant. Since a majority of organic aerosol is thought to be secondary organic aerosol (SOA), this suggests that VOC emissions from gasoline engines did not figure prominently as a precursor to SOA formation.

  5. Local and regional sources of fine and coarse particulate matter based on traffic and background monitoring

    NASA Astrophysics Data System (ADS)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-05-01

    The aim of this study was to identify local and exogenous sources affecting particulate matter (PM) levels in five major cities of Northern Europe namely: London, Paris, Hamburg, Copenhagen and Stockholm. Besides local emissions, PM profile at urban and suburban areas of the European Union (EU) is also influenced by regional PM sources due to atmospheric transport, thus geographical city distribution is of a great importance. At each city, PM10, PM2.5, NO2, SO2, CO and O3 air pollution data from two air pollution monitoring stations of the EU network were used. Different background characteristics of the selected two sampling sites at each city facilitated comparisons, providing a more exact analysis of PM sources. Four source apportionment methods: Pearson correlations among the levels of particulates and gaseous pollutants, characterisation of primal component analysis components, long-range transport analysis and extrapolation of PM size distribution ratios were applied. In general, fine (PM2.5) and coarse (PM10) particles were highly correlated, thus common sources are suggested. Combustion-originated gaseous pollutants (CO, NO2, SO2) were strongly associated to PM10 and PM2.5, primarily at areas severely affected by traffic. On the contrary, at background stations neighbouring important natural sources of particles or situated in suburban areas with rural background, natural emissions of aerosols were indicated. Series of daily PM2.5/PM10 ratios showed that minimum fraction values were detected during warm periods, due to higher volumes of airborne biogenic PM coarse, mainly at stations with important natural sources of particles in their vicinity. Hybrid single-particle Lagrangian integrated trajectory model was used, in order to extract 4-day backward air mass trajectories that arrived in the five cities which are under study during days with recorded PM10 exceedances. At all five cities, a significantly large fraction of those trajectories were classified

  6. Optical properties of particulate emissions from on-road vehicles

    NASA Astrophysics Data System (ADS)

    Japar, Steven M.; Szkarlat, Ann Cuneo; Gorse, Robert A.

    The light absorbing and light scattering properties of on-road vehicle exhaust particulate were determined as a function of traffic composition at the Allegheny Tunnel on the Pennsylvania Turnpike during August-September 1979. This study was one part of a comprehensive experiment aimed at the chemical and physical characterization of vehicle exhaust particulate. Paniculate light absorption was determined by the integrating plate method, while light scattering was measured with an integrating nephelometer. Mass-specific optical coefficients (at 500.0 nm) have been derived from regressions of the optical and mass emissions data against traffic composition. For diesel vehicles (predominantly heavy-duty, but also including diesel passenger vehicles) the absorption coefficient, b' abs/ M', was found to be 5.13 ± 0.28 m2g-1, while the light scattering coefficient, b' scat/ M', was 1.99 ± 0.07 m2g-1. Diesel vehicle emissions were responsible for greater than 90% of the light extinction in the tunnel, although diesels accounted for only 23% of the vehicle miles travelled. Estimates for b' abs/ M' and b' scat/ M' for particulate from gasoline-powered vehicles were 8 ± 16 m2g-1and 6 ± 10 m2g-1, respectively, while the analogous values for ambient particulate were babs/ M< 1 m2g-1andbscat/ M = 5.0 ± 1.0 m2g-1.

  7. Exposure of highway maintenance workers to fine particulate matter and noise.

    PubMed

    Meier, Reto; Cascio, Wayne E; Danuser, Brigitta; Riediker, Michael

    2013-10-01

    In this study, we assessed the mixed exposure of highway maintenance workers to airborne particles, noise, and gaseous co-pollutants. The aim was to provide a better understanding of the workers' exposure to facilitate the evaluation of short-term effects on cardiovascular health endpoints. To quantify the workers' exposure, we monitored 18 subjects during 50 non-consecutive work shifts. Exposure assessment was based on personal and work site measurements and included fine particulate matter (PM2.5), particle number concentration (PNC), noise (Leq), and the gaseous co-pollutants: carbon monoxide, nitrogen dioxide, and ozone. Mean work shift PM2.5 concentrations (gravimetric measurements) ranged from 20.3 to 321 μg m(-3) (mean 62 μg m(-3)) and PNC were between 1.6×10(4) and 4.1×10(5) particles cm(-3) (8.9×10(4) particles cm(-3)). Noise levels were generally high with Leq over work shifts from 73.3 to 96.0 dB(A); the averaged Leq over all work shifts was 87.2 dB(A). The highest exposure to fine and ultrafine particles was measured during grass mowing and lumbering when motorized brush cutters and chain saws were used. Highest noise levels, caused by pneumatic hammers, were measured during paving and guardrail repair. We found moderate Spearman correlations between PNC and PM2.5 (r = 0.56); PNC, PM2.5, and CO (r = 0.60 and r = 0.50) as well as PNC and noise (r = 0.50). Variability and correlation of parameters were influenced by work activities that included equipment causing combined air pollutant and noise emissions (e.g. brush cutters and chain saws). We conclude that highway maintenance workers are frequently exposed to elevated airborne particle and noise levels compared with the average population. This elevated exposure is a consequence of the permanent proximity to highway traffic with additional peak exposures caused by emissions of the work-related equipment.

  8. Atmospheric particulate emissions from dry abrasive blasting using coal slag

    SciTech Connect

    Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana

    2006-08-15

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

  9. Atmospheric particulate emissions from dry abrasive blasting using coal slag.

    PubMed

    Kura, Bhaskar; Kambham, Kalpalatha; Sangameswaran, Sivaramakrishnan; Potana, Sandhya

    2006-08-01

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions.

  10. Dispersion and Deposition of Fine Particulates, Heavy Metals and Nitrogen in Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Whitlow, T. H.; Tong, Z.

    2015-12-01

    Cities are characterized by networks of heavily trafficked roads, abrupt environmental gradients and local sources of airborne pollutants. Because urban dwellers are inevitably in close proximity to near ground pollution, there has been recent interest in using trees and green roofs to reduce human exposure yet there have been few empirical studies documenting the effect of vegetation and spatial heterogeneity on pollution concentration, human exposure and food safety. In this paper we describe the results of 2 studies in the New York metropolitan area. The first describes the effect of roadside trees on the concentration of fine particulates downwind of a major highway. The second examines vertical attenuation of fine particulates between street level and a rooftop vegetable farm and the deposition of nitrogen and heavy metals to vegetables and soil on the roof.

  11. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    DOE R&D Accomplishments Database

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  12. Particulate Matter Emissions Factors for Dust from Unique Military Activities

    DTIC Science & Technology

    2010-06-01

    Plane-Integrated PM10 Mass Concentration PI-SWERL Portable In-Situ Wind ERosion Laboratory PM Particulate Matter PNNL Pacific Northwest National...surface material (with respect to the sum of sand , clay, and silt) and M is the vehicle mass in metric tons (Mg). A second emission factor equation for...increased, the particle size of entrained dust converged, but the sand -sized particles entrained by the rotor-wash increased indicating that the

  13. Comparing exposure metrics for the effects of fine particulate matter on emergency hospital admissions.

    PubMed

    Mannshardt, Elizabeth; Sucic, Katarina; Jiao, Wan; Dominici, Francesca; Frey, H Christopher; Reich, Brian; Fuentes, Montserrat

    2013-01-01

    A crucial step in an epidemiological study of the effects of air pollution is to accurately quantify exposure of the population. In this paper, we investigate the sensitivity of the health effects estimates associated with short-term exposure to fine particulate matter with respect to three potential metrics for daily exposure: ambient monitor data, estimated values from a deterministic atmospheric chemistry model, and stochastic daily average human exposure simulation output. Each of these metrics has strengths and weaknesses when estimating the association between daily changes in ambient exposure to fine particulate matter and daily emergency hospital admissions. Monitor data is readily available, but is incomplete over space and time. The atmospheric chemistry model output is spatially and temporally complete but may be less accurate than monitor data. The stochastic human exposure estimates account for human activity patterns and variability in pollutant concentration across microenvironments, but requires extensive input information and computation time. To compare these metrics, we consider a case study of the association between fine particulate matter and emergency hospital admissions for respiratory cases for the Medicare population across three counties in New York. Of particular interest is to quantify the impact and/or benefit to using the stochastic human exposure output to measure ambient exposure to fine particulate matter. Results indicate that the stochastic human exposure simulation output indicates approximately the same increase in the relative risk associated with emergency admissions as using a chemistry model or monitoring data as exposure metrics. However, the stochastic human exposure simulation output and the atmospheric chemistry model both bring additional information, which helps to reduce the uncertainly in our estimated risk.

  14. Determination of lead in fine particulates by slurry sampling electrothermal atomic absorption spectrometry.

    PubMed

    Yu, J C; Ho, K F; Lee, S C

    2001-01-02

    A simple method for determining lead in fine particulates (PM2.5) by using electrothermal atomic absorption spectrometry (ETAAS) has been developed. Particulates collected on Nuclepore filter by using a dichotomous sampler were suspended in diluted nitric acid after ultrasonic agitation. The dislodging efficiency is nearly 100% after agitation for 5 min. In order to study the suspension behavior of PM2.5 in solvents, a Brookhaven ZetaPlus Particle Size Analyzer was used to determine the particle size distribution and suspension behavior of air particulates in the solvent. The pre-digestion and modification effect of nitric acid would be discussed. Palladium was added as a chemical modifier and the temperature program of ETAAS was changed in order to improve the recovery. The slurry was introduced directly into a graphite tube for atomization. The metal content in the sample was determined by the standard addition method. In addition, a conventional acid digestion procedure was applied to verify the efficiency of the slurry sampling method. It offers a quick and efficient alternative method for heavy metal characterization in fine particulates.

  15. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  16. Cancer risk from polycyclic aromatic compounds in fine particulate matter generated from household coal combustion in Xuanwei, China.

    PubMed

    Lui, K H; Bandowe, Benjamin A Musa; Tian, Linwei; Chan, Chi-Sing; Cao, Jun-Ji; Ning, Zhi; Lee, S C; Ho, K F

    2017-02-01

    Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM2.5) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. A sample from the community with the highest mortality contained the highest total concentration of PAHs, OPAHs and AZAs and posed the highest excess cancer risk from a lifetime of inhaling fine particulates. Positive correlations between total carbonyl-OPAHs, total AZAs and total PAHs implied that the emissions were dependent on similar factors, regardless of sample location and type. The calculated cancer risk ranged from 5.23-10.7 × 10(-3), which is higher than the national average. The risk in each sample was ∼1-2 orders of magnitude higher than that deemed high risk, suggesting that the safety of these households is in jeopardy. The lack of potency equivalency factors for the PAH derivatives could possibly have underestimated the overall cancer risk.

  17. Modelisation des emissions de particules microniques et nanometriques en usinage

    NASA Astrophysics Data System (ADS)

    Khettabi, Riad

    La mise en forme des pieces par usinage emet des particules, de tailles microscopiques et nanometriques, qui peuvent etre dangereuses pour la sante. Le but de ce travail est d'etudier les emissions de ces particules pour fins de prevention et reduction a la source. L'approche retenue est experimentale et theorique, aux deux echelles microscopique et macroscopique. Le travail commence par des essais permettant de determiner les influences du materiau, de l'outil et des parametres d'usinage sur les emissions de particules. E nsuite un nouveau parametre caracterisant les emissions, nomme Dust unit , est developpe et un modele predictif est propose. Ce modele est base sur une nouvelle theorie hybride qui integre les approches energetiques, tribologiques et deformation plastique, et inclut la geometrie de l'outil, les proprietes du materiau, les conditions de coupe et la segmentation des copeaux. Il ete valide au tournage sur quatre materiaux: A16061-T6, AISI1018, AISI4140 et fonte grise.

  18. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk?

    PubMed Central

    Pope, C A

    2000-01-01

    This article briefly summarizes the epidemiology of the health effects of fine particulate air pollution, provides an early, somewhat speculative, discussion of the contribution of epidemiology to evaluating biologic mechanisms, and evaluates who's at risk or is susceptible to adverse health effects. Based on preliminary epidemiologic evidence, it is speculated that a systemic response to fine particle-induced pulmonary inflammation, including cytokine release and altered cardiac autonomic function, may be part of the pathophysiologic mechanisms or pathways linking particulate pollution with cardiopulmonary disease. The elderly, infants, and persons with chronic cardiopulmonary disease, influenza, or asthma are most susceptible to mortality and serious morbidity effects from short-term acutely elevated exposures. Others are susceptible to less serious health effects such as transient increases in respiratory symptoms, decreased lung function, or other physiologic changes. Chronic exposure studies suggest relatively broad susceptibility to cumulative effects of long-term repeated exposure to fine particulate pollution, resulting in substantive estimates of population average loss of life expectancy in highly polluted environments. Additional knowledge is needed about the specific pollutants or mix of pollutants responsible for the adverse health effects and the biologic mechanisms involved. PMID:10931790

  19. Trends in primary particulate matter emissions from Canadian agriculture.

    PubMed

    Pattey, Elizabeth; Qiu, Guowang

    2012-07-01

    Particulate matter (PM) has long been recognized as an air pollutant due to its adverse health and environmental impacts. As emission of PM from agricultural operations is an emerging air quality issue, the Agricultural Particulate Matter Emissions Indicator (APMEI) has been developed to estimate the primary PM contribution to the atmosphere from agricultural operations on Census years and to assess the impact of practices adopted to mitigate these emissions at the soil landscape polygon scale as part of the agri-environmental indicator report series produced by Agriculture and Agri-Food Canada. In the APMEI, PM emissions from animal feeding operations, wind erosion, land preparation, crop harvest, fertilizer and chemical application, grain handling, and pollen were calculated and compared for the Census years of 1981-2006. In this study, we present the results for PM10 and PM2.5, which exclude chemical application and pollen sources as they only contribute to total suspended particles. In 2006, PM emissions from agricultural operations were estimated to be 652.6 kt for PM10 and 158.1 kt for PM2.5. PM emissions from wind erosion and land preparation account for most of PM emissions from agricultural operations in Canada, contributing 82% of PM10 and 76% of PM2.5 in 2006. Results from the APMEI show a strong reduction in PM emissions from agricultural operations between 1981 and 2006, with a decrease of 40% (442.8 kt) for PM10 and 47% (137.7 kt) for PM2.5. This emission reduction is mainly attributed to the adoption of conservation tillage and no-till practices and the reduction in the area of summer fallow land.

  20. Characterisation of particulate matter emissions from the Zimbabwe Mining and Smelting Company (ZIMASCO) Kwekwe Division (Zimbabwe): a ferrochrome smelter.

    PubMed

    Pumure, I; Sithole, S D; Kahwai, S G T

    2003-09-01

    Particulate matter emissions from stack number 2 of a major ferrochrome smelter, Zimbabwe Mining and Smelting Company (ZIMASCO) were characterized and the rates at which the elements Cr, Fe, Cu and Zn and total ferrochrome dust are emitted into the atmosphere were determined. The extent of soil contamination by the dust deposited around the smelter in the generally prevailing southeasterly wind direction around the smelter was carried out. The highest concentrations of Cr and Fe occurred in the fine particulates of sizes less than 59 microm whilst that of Cu and Zn occurred in the coarse particulates of size range 70-100 microm. The emission rates from stack 2 were; total ferrochrome particulates 62.17 kg h(-1), Cr 6.217 kg h(-1), Fe 2.423 kg h(-1), Zn 42 mg h(-1) and 6 mg h(-1) for Cu. Particulate matter was emitted at a rate of 289 mg m(-3) from stack number 2. This value exceeds the legal limit of 200 mg m(-3). Chromium and iron are the metals in the largest amounts. The particles that constitute the largest proportion of the dust were in the range of 58-107.5 microm. This is a characteristic feature of the particulate matter emissions from ZIMASCO. Soils in the downwind direction from the smelter were polluted with Cr up to a distance of about 700 m outward from the perimeter of the boundary of the smelter.

  1. High levels of airborne ultrafine and fine particulate matter in indoor ice arenas.

    PubMed

    Rundell, Kenneth W

    2003-03-01

    The high prevalence of airway dysfunction among ice arena athletes may be related to rink air exposure; in particular, high concentrations of ultrafine and fine particulate matter (0.02-1.0 micro m diameter, PM(1)) from ice resurfacing machines may enhance airway inflammation and hyperreactivity. The purpose of this study was to identify levels of PM(1) emitted from ice resurfacing machines used in indoor ice arenas, and to compare [PM(1)] pre- and post-resurfacing to each other and to outdoor [PM(1)]. Multiple one Hz measurements were recorded on 28 different days as 15-s mean of PM(1).cm(-3) for 2 min at 1-1.5 m "above ice" in 10 rinks pre- and post-resurfacing, with measured airborne PM(1) outside each rink to be used individual rink references. Rink PM(1).cm(-3) was approximately 30 times greater than PM(1).cm(-3) outside the respective rinks (p <.05). Rink values were 104.2 +/- 59.3 x 10(3) PM(1).cm(-3) during prime usage, compared to outdoor values of 3.8 +/- 2.5 x 10(3) PM(1).cm(-3). Ice resurfacing increased PM(1).cm(-3) 4-fold (p <.05). No difference in PM(1) emissions between gasoline and propane powered resurfacing machines was identified. The rate of PM(1) dissipation after resurfacing was highly variable between rinks and probably dependent upon rink ventilation and resurfacing machine engine efficiency. Gas-powered edging increased PM(1).cm(-3) 18-fold and 158-fold versus pre-edging rink and outdoor values, respectively. We conclude that the primary source of airborne indoor rink PM(1) is internal combustion ice-resurfacing machines and that this poor air quality may be causal to the unique and high prevalence of airway dysfunction in ice arena athletes.

  2. Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter

    NASA Astrophysics Data System (ADS)

    Gao, Jing-Feng; Fan, Xiao-Yan; Pan, Kai-Ling; Li, Hong-Yu; Sun, Li-Xin

    2016-12-01

    Increasing ammonia emissions could exacerbate air pollution caused by fine particulate matter (PM2.5). Therefore, it is of great importance to investigate ammonia oxidation in PM2.5. This study investigated the diversity, abundance and activity of ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB) and complete ammonia oxidizers (Comammox) in PM2.5 collected in Beijing-Tianjin-Hebei megalopolis, China. Nitrosopumilus subcluster 5.2 was the most dominant AOA. Nitrosospira multiformis and Nitrosomonas aestuarii were the most dominant AOB. Comammox were present in the atmosphere, as revealed by the occurrence of Candidatus Nitrospira inopinata in PM2.5. The average cell numbers of AOA, AOB and Ca. N. inopinata were 2.82 × 104, 4.65 × 103 and 1.15 × 103 cell m‑3 air, respectively. The average maximum nitrification rate of PM2.5 was 0.14 μg (NH4+-N) [m3 air·h]‑1. AOA might account for most of the ammonia oxidation, followed by Comammox, while AOB were responsible for a small part of ammonia oxidation. Statistical analyses showed that Nitrososphaera subcluster 4.1 was positively correlated with organic carbon concentration, and Nitrosomonas eutropha showed positive correlation with ammonia concentration. Overall, this study expanded our knowledge concerning AOA, AOB and Comammox in PM2.5 and pointed towards an important role of AOA and Comammox in ammonia oxidation in PM2.5.

  3. Source apportionments of ambient fine particulate matter in Israeli, Jordanian, and Palestinian cities.

    PubMed

    Heo, Jongbae; Wu, Bo; Abdeen, Ziad; Qasrawi, Radwan; Sarnat, Jeremy A; Sharf, Geula; Shpund, Kobby; Schauer, James J

    2017-06-01

    This manuscript evaluates spatial and temporal variations of source contributions to ambient fine particulate matter (PM2.5) in Israeli, Jordanian, and Palestinian cities. Twenty-four hour integrated PM2.5 samples were collected every six days over a 1-year period (January to December 2007) in four cities in Israel (West Jerusalem, Eilat, Tel Aviv, and Haifa), four cities in Jordan (Amman, Aqaba, Rahma, and Zarka), and three cities in Palestine (Nablus, East Jerusalem, and Hebron). The PM2.5 samples were analyzed for major chemical components, including organic carbon and elemental carbon, ions, and metals, and the results were used in a positive matrix factorization (PMF) model to estimate source contributions to PM2.5 mass. Nine sources, including secondary sulfate, secondary nitrate, mobile, industrial lead sources, dust, construction dust, biomass burning, fuel oil combustion and sea salt, were identified across the sampling sites. Secondary sulfate was the dominant source, contributing 35% of the total PM2.5 mass, and it showed relatively homogeneous temporal trends of daily source contribution in the study area. Mobile sources were found to be the second greatest contributor to PM2.5 mass in the large metropolitan cities, such as Tel Aviv, Hebron, and West and East Jerusalem. Other sources (i.e. industrial lead sources, construction dust, and fuel oil combustion) were closely related to local emissions within individual cities. This study demonstrates how international cooperation can facilitate air pollution studies that address regional air pollution issues and the incremental differences across cities in a common airshed. It also provides a model to study air pollution in regions with limited air quality monitoring capacity that have persistent and emerging air quality problems, such as Africa, South Asia and Central America. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions

    PubMed Central

    Rogula-Kozłowska, Wioletta; Majewski, Grzegorz; Błaszczak, Barbara; Klejnowski, Krzysztof; Rogula-Kopiec, Patrycja

    2016-01-01

    Twenty-four-hour samples of fine ambient particulate matter (PM2.5; particles with aerodynamic diameters ≤2.5 µm) were collected in a suburban (quasi-rural) area in Racibórz (Poland) between 1 January 2011 and 26 December 2012. The samples were analyzed for the contents of 28 elements. Sources of PM2.5 were identified and the contribution of each source to the PM2.5 concentration was assessed using an enrichment factor (EF) analysis, a principal component analysis (PCA), and multi-linear regression analysis (MLRA). In the cold season (January–March and October–December 2011–2012), the mean ambient concentration of PM2.5 in Racibórz was 48.7 ± 39.4 µg·m−3, which was much higher than at other suburban or rural sites in Europe. Additionally the ambient concentrations of some toxic PM2.5-bound elements were also high, i.e., the mean ambient concentrations of PM2.5-bound As, Cd, and Pb were 11.3 ± 11.5, 5.2 ± 2.5, and 34.0 ± 34.2 ng·m−3, respectively. In the warm season (April–September 2011–2012), the PM2.5 and PM2.5-bound element concentrations in Racibórz were comparable to the concentrations noted at other suburban (or rural) sites in Europe. Our findings suggest that elemental composition and concentrations of PM2.5 in Racibórz are mainly influenced by anthropogenic emissions, i.e., the energy production based on coal and biomass combustion, traffic, and industry. PMID:27428988

  5. Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth; Schauer, James; Quraishi, Tauseef A.; Mahmood, Abid

    2010-03-01

    Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM 2.5 and PM 10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM 2.5 was 194 ± 94 μg m -3 and PM 10 was 336 ± 135 μg m -3. Coarse aerosol (PM 10-2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM 2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.

  6. Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter

    PubMed Central

    Gao, Jing-Feng; Fan, Xiao-Yan; Pan, Kai-Ling; Li, Hong-Yu; Sun, Li-Xin

    2016-01-01

    Increasing ammonia emissions could exacerbate air pollution caused by fine particulate matter (PM2.5). Therefore, it is of great importance to investigate ammonia oxidation in PM2.5. This study investigated the diversity, abundance and activity of ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB) and complete ammonia oxidizers (Comammox) in PM2.5 collected in Beijing-Tianjin-Hebei megalopolis, China. Nitrosopumilus subcluster 5.2 was the most dominant AOA. Nitrosospira multiformis and Nitrosomonas aestuarii were the most dominant AOB. Comammox were present in the atmosphere, as revealed by the occurrence of Candidatus Nitrospira inopinata in PM2.5. The average cell numbers of AOA, AOB and Ca. N. inopinata were 2.82 × 104, 4.65 × 103 and 1.15 × 103 cell m−3 air, respectively. The average maximum nitrification rate of PM2.5 was 0.14 μg (NH4+-N) [m3 air·h]−1. AOA might account for most of the ammonia oxidation, followed by Comammox, while AOB were responsible for a small part of ammonia oxidation. Statistical analyses showed that Nitrososphaera subcluster 4.1 was positively correlated with organic carbon concentration, and Nitrosomonas eutropha showed positive correlation with ammonia concentration. Overall, this study expanded our knowledge concerning AOA, AOB and Comammox in PM2.5 and pointed towards an important role of AOA and Comammox in ammonia oxidation in PM2.5. PMID:27941955

  7. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure.

    PubMed

    Burnett, Richard T; Pope, C Arden; Ezzati, Majid; Olives, Casey; Lim, Stephen S; Mehta, Sumi; Shin, Hwashin H; Singh, Gitanjali; Hubbell, Bryan; Brauer, Michael; Anderson, H Ross; Smith, Kirk R; Balmes, John R; Bruce, Nigel G; Kan, Haidong; Laden, Francine; Prüss-Ustün, Annette; Turner, Michelle C; Gapstur, Susan M; Diver, W Ryan; Cohen, Aaron

    2014-04-01

    Estimating the burden of disease attributable to long-term exposure to fine particulate matter (PM2.5) in ambient air requires knowledge of both the shape and magnitude of the relative risk (RR) function. However, adequate direct evidence to identify the shape of the mortality RR functions at the high ambient concentrations observed in many places in the world is lacking. We developed RR functions over the entire global exposure range for causes of mortality in adults: ischemic heart disease (IHD), cerebrovascular disease (stroke), chronic obstructive pulmonary disease (COPD), and lung cancer (LC). We also developed RR functions for the incidence of acute lower respiratory infection (ALRI) that can be used to estimate mortality and lost-years of healthy life in children < 5 years of age. We fit an integrated exposure-response (IER) model by integrating available RR information from studies of ambient air pollution (AAP), second hand tobacco smoke, household solid cooking fuel, and active smoking (AS). AS exposures were converted to estimated annual PM2.5 exposure equivalents using inhaled doses of particle mass. We derived population attributable fractions (PAFs) for every country based on estimated worldwide ambient PM2.5 concentrations. The IER model was a superior predictor of RR compared with seven other forms previously used in burden assessments. The percent PAF attributable to AAP exposure varied among countries from 2 to 41 for IHD, 1 to 43 for stroke, < 1 to 21 for COPD, < 1 to 25 for LC, and < 1 to 38 for ALRI. We developed a fine particulate mass-based RR model that covered the global range of exposure by integrating RR information from different combustion types that generate emissions of particulate matter. The model can be updated as new RR information becomes available.

  8. Ambient air concentrations exceeded health-based standards for fine particulate matter and benzene during the Deepwater Horizon oil spill.

    PubMed

    Nance, Earthea; King, Denae; Wright, Beverly; Bullard, Robert D

    2016-02-01

    The Deepwater Horizon oil spill is considered one of the largest marine oil spills in the history of the United States. Air emissions associated with the oil spill caused concern among residents of Southeast Louisiana. The purpose of this study was to assess ambient concentrations of benzene (n=3,887) and fine particulate matter (n=102,682) during the oil spill and to evaluate potential exposure disparities in the region. Benzene and fine particulate matter (PM2.5) concentrations in the targeted parishes were generally higher following the oil spill, as expected. Benzene concentrations reached 2 to 19 times higher than background, and daily exceedances of PM2.5 were 10 to 45 times higher than background. Both benzene and PM2.5 concentrations were considered high enough to exceed public health criteria, with measurable exposure disparities in the coastal areas closer to the spill and clean-up activities. These findings raise questions about public disclosure of environmental health risks associated with the oil spill. The findings also provide a science-based rationale for establishing health-based action levels in future disasters. Benzene and particulate matter monitoring during the Deepwater Horizon oil spill revealed that ambient air quality was a likely threat to public health and that residents in coastal Louisiana experienced significantly greater exposures than urban residents. Threshold air pollution levels established for the oil spill apparently were not used as a basis for informing the public about these potential health impacts. Also, despite carrying out the most comprehensive air monitoring ever conducted in the region, none of the agencies involved provided integrated analysis of the data or conclusive statements about public health risk. Better information about real-time risk is needed in future environmental disasters.

  9. Assessment of Population and Microenvironmental Exposure to Fine Particulate Matter (PM2.5)

    NASA Astrophysics Data System (ADS)

    Jiao, Wan

    A positive relationship exists between fine particulate matter (PM 2.5) exposure and adverse health effects. PM2.5 concentration-response functions used in the quantitative risk assessment were based on findings from human epidemiological studies that relied on areawide ambient concentrations as surrogate for actual ambient exposure, which cannot capture the spatial and temporal variability in human exposures. The goal of the study is to assess inter-individual, geographic and seasonal variability in population exposures to inform the interpretation of available epidemiological studies, and to improve the understanding of how exposure-related factors in important exposure microenvironments contribute to the variability in individual PM2.5 exposure. Typically, the largest percentage of time in which an individual is exposed to PM2.5 of ambient origin occurs in indoor residence, and the highest ambient PM2.5 concentrations occur in transportation microenvironments because of the proximity to on-road traffic emissions. Therefore, indoor residence and traffic-related transportation microenvironments were selected for further assessment in the study. Population distributions of individual daily PM2.5 exposures were estimated for the selected regions and seasons using the Stochastic Human Exposure and Dose Simulation Model for Particulate Matter (SHEDS-PM). For the indoor residence, the current practice by assuming the entire residence to be one large single zone for calculating the indoor residential PM 2.5 concentration was evaluated by applying an indoor air quality model, RISK, to compare indoor PM2.5 concentrations between single-zone and multi-zone scenarios. For the transportation microenvironments, one field data collection focused on in-vehicle microenvironment and was conducted to quantify the variability in the in-vehicle PM2.5 concentration with respect to the outside vehicle concentration for a wide range of conditions that affect intra-vehicle variability

  10. An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure

    PubMed Central

    Pope, C. Arden; Ezzati, Majid; Olives, Casey; Lim, Stephen S.; Mehta, Sumi; Shin, Hwashin H.; Singh, Gitanjali; Hubbell, Bryan; Brauer, Michael; Anderson, H. Ross; Smith, Kirk R.; Balmes, John R.; Bruce, Nigel G.; Kan, Haidong; Laden, Francine; Prüss-Ustün, Annette; Turner, Michelle C.; Gapstur, Susan M.; Diver, W. Ryan; Cohen, Aaron

    2014-01-01

    Background: Estimating the burden of disease attributable to long-term exposure to fine particulate matter (PM2.5) in ambient air requires knowledge of both the shape and magnitude of the relative risk (RR) function. However, adequate direct evidence to identify the shape of the mortality RR functions at the high ambient concentrations observed in many places in the world is lacking. Objective: We developed RR functions over the entire global exposure range for causes of mortality in adults: ischemic heart disease (IHD), cerebrovascular disease (stroke), chronic obstructive pulmonary disease (COPD), and lung cancer (LC). We also developed RR functions for the incidence of acute lower respiratory infection (ALRI) that can be used to estimate mortality and lost-years of healthy life in children < 5 years of age. Methods: We fit an integrated exposure–response (IER) model by integrating available RR information from studies of ambient air pollution (AAP), second hand tobacco smoke, household solid cooking fuel, and active smoking (AS). AS exposures were converted to estimated annual PM2.5 exposure equivalents using inhaled doses of particle mass. We derived population attributable fractions (PAFs) for every country based on estimated worldwide ambient PM2.5 concentrations. Results: The IER model was a superior predictor of RR compared with seven other forms previously used in burden assessments. The percent PAF attributable to AAP exposure varied among countries from 2 to 41 for IHD, 1 to 43 for stroke, < 1 to 21 for COPD, < 1 to 25 for LC, and < 1 to 38 for ALRI. Conclusions: We developed a fine particulate mass–based RR model that covered the global range of exposure by integrating RR information from different combustion types that generate emissions of particulate matter. The model can be updated as new RR information becomes available. Citation: Burnett RT, Pope CA III, Ezzati M, Olives C, Lim SS, Mehta S, Shin HH, Singh G, Hubbell B, Brauer M, Anderson HR

  11. Temporalization of peak electric generation particulate matter emissions during high energy demand days.

    PubMed

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Baker, Kirk R; Rodgers, Mark; Carlton, Annmarie G

    2015-04-07

    Underprediction of peak ambient pollution by air quality models hinders development of effective strategies to protect health and welfare. The U.S. Environmental Protection Agency's community multiscale air quality (CMAQ) model routinely underpredicts peak ozone and fine particulate matter (PM2.5) concentrations. Temporal misallocation of electricity sector emissions contributes to this modeling deficiency. Hourly emissions are created for CMAQ by use of temporal profiles applied to annual emission totals unless a source is matched to a continuous emissions monitor (CEM) in the National Emissions Inventory (NEI). More than 53% of CEMs in the Pennsylvania-New Jersey-Maryland (PJM) electricity market and 45% nationally are unmatched in the 2008 NEI. For July 2006, a United States heat wave with high electricity demand, peak electric sector emissions, and elevated ambient PM2.5 mass, we match hourly emissions for 267 CEM/NEI pairs in PJM (approximately 49% and 12% of unmatched CEMs in PJM and nationwide) using state permits, electricity dispatch modeling and CEMs. Hourly emissions for individual facilities can differ up to 154% during the simulation when measurement data is used rather than default temporalization values. Maximum CMAQ PM2.5 mass, sulfate, and elemental carbon predictions increase up to 83%, 103%, and 310%, at the surface and 51%, 75%, and 38% aloft (800 mb), respectively.

  12. Characterization of Fine Particulate Matter and Associations between Particulate Chemical Constituents and Mortality in Seoul, Korea

    PubMed Central

    Son, Ji-Young; Lee, Jong-Tae; Kim, Ki-Hyun; Jung, Kweon

    2012-01-01

    Background: Numerous studies have linked fine particles [≤ 2.5 µm in aerodynamic diameter (PM2.5)] and health. Most studies focused on the total mass of the particles, although the chemical composition of the particles varies substantially. Which chemical components of fine particles that are the most harmful is not well understood, and research on the chemical composition of PM2.5 and the components that are the most harmful is particularly limited in Asia. Objectives: We characterized PM2.5 chemical composition and estimated the effects of cause-specific mortality of PM2.5 mass and constituents in Seoul, Korea. We compared the chemical composition of particles to those of the eastern and western United States. Methods: We examined temporal variability of PM2.5 mass and its composition using hourly data. We applied an overdispersed Poisson generalized linear model, adjusting for time, day of week, temperature, and relative humidity to investigate the association between risk of mortality and PM2.5 mass and its constituents in Seoul, Korea, for August 2008 through October 2009. Results: PM2.5 and chemical components exhibited temporal patterns by time of day and season. The chemical characteristics of Seoul’s PM2.5 were more similar to PM2.5 found in the western United States than in the eastern United States. Seoul’s PM2.5 had lower sulfate (SO4) contributions and higher nitrate (NO3) contributions than that of the eastern United States, although overall PM2.5 levels in Seoul were higher than in the United States. An interquartile range (IQR) increase in magnesium (Mg) (0.05 μg/m3) was associated with a 1.4% increase (95% confidence interval: 0.2%, 2.6%) in total mortality on the following day. Several components that were among the largest contributors to PM2.5 total mass—NO3, SO4, and ammonium (NH4)—were moderately associated with same-day cardiovascular mortality at the p < 0.10 level. Other components with smaller mass contributions [Mg and

  13. Chemical characteristics and source apportionment of fine particulate organic carbon in Hong Kong during high particulate matter episodes in winter 2003

    NASA Astrophysics Data System (ADS)

    Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Schauer, James J.; Yuan, Zibing; Lau, Alexis K. H.; Louie, Peter K. K.

    2013-02-01

    PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October-4 November and 30 November-13 December). The highest PM2.5 reached 216 μg m- 3 during the first high PM period and 113 μg m- 3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long-range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water-soluble organic carbon and sulfate, consistent with its secondary nature.

  14. Gaseous and particulate emissions from a DC arc melter.

    PubMed

    Overcamp, Thomas J; Speer, Matthew P; Griner, Stewart J; Cash, Douglas M

    2003-01-01

    Tests treating soils contaminated with metal compounds and radionuclide surrogates were conducted in a DC arc melter. The soil melted, and glassy or ceramic waste forms with a separate metal phase were produced. Tests were run in the melter plenum with either air or N2 purge gases. In addition to nitrogen, the primary emissions of gases were CO2, CO, oxygen, methane, and oxides of nitrogen (NO(x)). Although the gas flow through the melter was low, the particulate concentrations ranged from 32 to 145 g/m3. Cerium, a nonradioactive surrogate for plutonium and uranium, was not enriched in the particulate matter (PM). The PM was enriched in cesium and highly enriched in lead.

  15. Development and Application of Novel Sampling Methodologies for Study of Volatile Particulate Matter in Military Aircraft Emissions

    DTIC Science & Technology

    2012-09-01

    Research Laboratory LIST OF KEYWORDS Aircraft Diesel Dilution Emission Fischer-Tropsch FTIR JP-8 Mobility Particles...specifically designed to protect human health and environmental well being against excessive levels of ozone , sulfur and nitrogen oxide, lead, and particulate...known to cause ozone formation through photochemical reactions and production of fine particles like smog, which was discovered in the 1970s. Smog is

  16. A Source Apportionment of U.S. Fine Particulate Matter Air Pollution

    PubMed Central

    Thurston, George D.; Ito, Kazuhiko; Lall, Ramona

    2011-01-01

    Using daily fine particulate matter (PM2.5) composition data from the 2000–2005 U.S. EPA Chemical Speciation Network (CSN) for over 200 sites, we applied multivariate methods to identify and quantify the major fine particulate matter (PM2.5) source components in the U.S. Novel aspects of this work were: (1) the application of factor analysis (FA) to multi-city daily data, drawing upon both spatial and temporal variations of chemical species; and, (2) the exclusion of secondary components (sulfates, nitrates and organic carbon) from the source identification FA to more clearly discern and apportion the PM2.5 mass to primary emission source categories. For the quantification of source-related mass, we considered two approaches based upon the FA results: 1) using single key tracers for sources identified by FA in a mass regression; and, 2) applying Absolute Principal Component Analysis (APCA). In each case, we followed a two-stage mass regression approach, in which secondary components were first apportioned among the identified sources, and then mass was apportioned to the sources and to other secondary mass not explained by the individual sources. The major U.S. PM2.5 source categories identified via FA (and their key elements) were: Metals Industry (Pb, Zn); Crustal/Soil Particles (Ca, Si); Motor Vehicle Traffic (EC, NO2); Steel Industry (Fe, Mn); Coal Combustion (As, Se); Oil Combustion (V, Ni); Salt Particles (Na, Cl) and Biomass Burning (K). Nationwide spatial plots of the source-related PM2.5 impacts were confirmatory of the factor interpretations: ubiquitous sources, such as Traffic and Soil, were found to be spread across the nation, more unique sources (such as Steel and Metals Processing) being highest in select industrialized cities, Biomass Burning was highest in the U.S. Northwest, while Residual Oil combustion was highest in cities in the Northeastern U.S. and in cities with major seaports. The sum of these source contributions and the secondary PM2

  17. A source apportionment of U.S. fine particulate matter air pollution

    NASA Astrophysics Data System (ADS)

    Thurston, George D.; Ito, Kazuhiko; Lall, Ramona

    2011-08-01

    Using daily fine particulate matter (PM 2.5) composition data from the 2000-2005 U.S. EPA Chemical Speciation Network (CSN) for over 200 sites, we applied multivariate methods to identify and quantify the major fine particulate matter (PM 2.5) source components in the U.S. Novel aspects of this work were: (1) the application of factor analysis (FA) to multi-city daily data, drawing upon both spatial and temporal variations of chemical species; and, (2) the exclusion of secondary components (sulfates, nitrates and organic carbon) from the source identification FA to more clearly discern and apportion the PM 2.5 mass to primary emission source categories. For the quantification of source-related mass, we considered two approaches based upon the FA results: 1) using single key tracers for sources identified by FA in a mass regression; and, 2) applying Absolute Principal Component Analysis (APCA). In each case, we followed a two-stage mass regression approach, in which secondary components were first apportioned among the identified sources, and then mass was apportioned to the sources and to other secondary mass not explained by the individual sources. The major U.S. PM 2.5 source categories identified via FA (and their key tracers) were: Metals Industry (Pb, Zn); Crustal/Soil Particles (Ca, Si); Motor Vehicle Traffic (EC, NO 2); Steel Industry (Fe, Mn); Coal Combustion (As, Se); Oil Combustion (V, Ni); Salt Particles (Na, Cl) and Biomass Burning (K). Nationwide spatial plots of the source-related PM 2.5 impacts were confirmatory of the factor interpretations: ubiquitous sources, such as Traffic and Soil, were found to be spread across the nation, more unique sources (such as Steel and Metals Processing) being highest in select industrialized cities, Biomass Burning was highest in the U.S. Northwest, while Residual Oil combustion was highest in cities in the Northeastern U.S. and in cities with major seaports. The sum of these source contributions and the secondary PM

  18. SENSITIVITY ANALYSIS AND EVALUATION OF MICROFACPM: A MICROSCALE MOTOR VEHICLE EMISSION FACTOR MODEL FOR PARTICULATE MATTER EMISSIONS

    EPA Science Inventory

    A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper entitled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Re...

  19. SENSITIVITY ANALYSIS AND EVALUATION OF MICROFACPM: A MICROSCALE MOTOR VEHICLE EMISSION FACTOR MODEL FOR PARTICULATE MATTER EMISSIONS

    EPA Science Inventory

    A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper entitled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Re...

  20. Spatial and temporal variability of sources of ambient fine particulate matter (PM2.5) in California

    NASA Astrophysics Data System (ADS)

    Hasheminassab, S.; Daher, N.; Saffari, A.; Wang, D.; Ostro, B. D.; Sioutas, C.

    2014-11-01

    To identify major sources of ambient fine particulate matter (PM2.5, dp < 2.5 μm) and quantify their contributions in the state of California, a positive matrix factorization (PMF) receptor model was applied on Speciation Trends Network (STN) data, collected between 2002 and 2007 at eight distinct sampling locations, including El Cajon, Rubidoux, Los Angeles, Simi Valley, Bakersfield, Fresno, San Jose, and Sacramento. Between five to nine sources of fine PM were identified at each sampling site, several of which were common among multiple locations. Secondary aerosols, including secondary ammonium nitrate and ammonium sulfate, were the most abundant contributor to ambient PM2.5 mass at all sampling sites, except for San Jose, with an annual average cumulative contribution of 26 to 63%, across the state. On an annual average basis, vehicular emissions (including both diesel and gasoline vehicles) were the largest primary source of fine PM at all sampling sites in southern California (17-18% of total mass), whereas in Fresno and San Jose, biomass burning was the most dominant primary contributor to ambient PM2.5 (27 and 35% of total mass, respectively), in general agreement with the results of previous source apportionment studies in California. In Bakersfield and Sacramento, vehicular emissions and biomass burning displayed relatively equal annual contributions to ambient PM2.5 mass (12 and 25%, respectively). Other commonly identified sources at all sites included aged and fresh sea salt and soil, which contributed to 0.5-13%, 2-27%, and 1-19% of the total mass, respectively, across all sites and seasons. In addition, a few minor sources were identified exclusively at some of the sites (e.g., chlorine sources, sulfate-bearing road dust, and different types of industrial emissions). These sources overall accounted for a small fraction of the total PM mass across the sampling locations (1 to 15%, on an annual average basis).

  1. Characteristics and health implications of fine and coarse particulates at roadside, urban background and rural sites in UK.

    PubMed

    Namdeo, A; Bell, M C

    2005-05-01

    Recent studies have pointed to evidence that fine particles in the air could be significant contributors to respiratory and cardiovascular diseases and mortality. Epidemiologists looking at the health effects of particulate pollution need more information from various receptor locations to improve the understanding of this problem. Detailed information on temporal, spatial and size distributions of particulate pollution in urban areas is also important for air quality modellers as well as being an aid to decision and policy makers of local authorities. This paper presents a detailed analysis of temporal and seasonal variation of PM(10) and PM(2.5) levels at one urban roadside, one urban background and one rural monitoring location. Levels of PM(10), PM(2.5) and coarse fraction of particulates are compared. In addition, particulate levels are compared with NO(2) and CO concentrations. The study concludes that PM(10) and PM(2.5) are closely related at urban locations. Diurnal variation in PM(2.5)/PM(10) ratio shows the influence of vehicular emission and movement on size distribution. This ratio is higher in winter than in summer, indicating a build-up or longer residence time of finer particulates or washout due to wet weather in winter. In the second part of this study, a disease burden analysis is carried out based on the dose-response relationships recommended by the UK Committee on the Medical Effects of Air Pollution. The disease burden analysis indicates that if Marylebone Road (MR) levels of PM(10) were prevalent all over London, it will result in around 2.5% increase in death rates due to all causes. Whereas, if Bloomsbury (BB) levels were prevalent in London, which is more likely to occur as this is more representative of the urban background environment to which people in London are likely to be exposed, the corresponding increase would be around 1.7%. Considering this, in London, at Bloomsbury levels, 973 deaths and 1515 respiratory hospital admissions

  2. Fire environment effects on particulate matter emission factors in southeastern U.S. pine-grasslands

    NASA Astrophysics Data System (ADS)

    Robertson, Kevin M.; Hsieh, Yuch P.; Bugna, Glynnis C.

    2014-12-01

    Particulate matter (PM) emission factors (EFPM), which predict particulate emissions per biomass consumed, have a strong influence on event-based and regional PM emission estimates and inventories. PM < 2.5 μm aerodynamic diameter (PM2.5), regulated for its impacts to human health and visibility, is of special concern. Although wildland fires vary widely in their fuel conditions, meteorology, and fire behavior which might influence combustion reactions, the EFPM2.5 component of emission estimates is typically a constant for the region or general fuel type being assessed. The goal of this study was to use structural equation modeling (SEM) to identify and measure effects of fire environment variables on EFPM2.5 in U.S. pine-grasslands, which contribute disproportionately to total U.S. PM2.5 emissions. A hypothetical model was developed from past literature and tested using 41 prescribed burns in northern Florida and southern Georgia, USA with varying years since previous fire, season of burn, and fire direction of spread. Measurements focused on EFPM2.5 from flaming combustion, although a subset of data considered MCE and smoldering combustion. The final SEM after adjustment showed EFPM2.5 to be higher in burns conducted at higher ambient temperatures, corresponding to later dates during the period from winter to summer and increases in live herbaceous vegetation and ambient humidity, but not total fine fuel moisture content. Percentage of fine fuel composed of pine needles had the strongest positive effect on EFPM2.5, suggesting that pine timber stand volume may significantly influence PM2.5 emissions. Also, percentage of fine fuel composed of grass showed a negative effect on EFPM2.5, consistent with past studies. Results of the study suggest that timber thinning and frequent prescribed fire minimize EFPM2.5 and total PM2.5 emissions on a per burn basis, and that further development of PM emission models should consider adjusting EFPM2.5 as a function of common

  3. Global anthropogenic emissions of particulate matter including black carbon

    NASA Astrophysics Data System (ADS)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion

  4. Particulate exhaust emissions from an experimental combustor. [gas turbine engine

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1975-01-01

    The concentration of dry particulates (carbon) in the exhaust of an experimental gas turbine combustor was measured at simulated takeoff operating conditions and correlated with the standard smoke-number measurement. Carbon was determined quantitatively from a sample collected on a fiberglass filter by converting the carbon in the smoke sample to carbon dioxide and then measuring the volume of carbon dioxide formed by gas chromatography. At a smoke of 25 (threshold of visibility of the smoke plume for large turbojets) the carbon concentration was 2.8 mg carbon/cu m exhaust gas, which is equivalent to an emission index of 0.17 g carbon/kg fuel.

  5. Particulate Emissions from a Pre-Emissions Control Era Spark-Ignition Vehicle: A Historical Benchmark

    SciTech Connect

    John M.E. Storey; C. Scott Sluder; Douglas A. Blom; Erin Higinbotham

    2000-06-19

    This study examined the particulate emissions from a pre-emissions control era vehicle operated on both leaded and unleaded fuels for the purpose of establishing a historical benchmark. A pre-control vehicle was located that had been rebuilt with factory original parts to approximate an as-new vehicle prior to 1968. The vehicle had less than 20,000 miles on the rebuilt engine and exhaust. The vehicle underwent repeated FTP-75 tests to determine its regulated emissions, including particulate mass. Additionally, measurements of the particulate size distribution were made, as well as particulate lead concentration. These tests were conducted first with UTG96 certification fuel, followed by UTG96 doped with tetraethyl lead to approximate 1968 levels. Results of these tests, including transmission electron micrographs of individual particles from both the leaded and unleaded case are presented. The FTP composite PM emissions from this vehicle averaged 40.5 mg/mile using unleaded fuel. The results from the leaded fuel tests showed that the FTP composite PM emissions increased to an average of 139.5 mg/mile. Analysis of the particulate size distribution for both cases demonstrated that the mass-based size distribution of particles for this vehicle is heavily skewed towards the nano-particle range. The leaded-fuel tests showed a significant increase in mass concentration at the <0.1 micron size compared with the unleaded-fuel test case. The leaded-fuel tests produced lead emissions of nearly 0.04 g/mi, more than a 4-order-of-magnitude difference compared with unleaded-fuel results. Analysis of the size-fractionated PM samples showed that the lead PM emissions tended to be distributed in the 0.25 micron and smaller size range.

  6. Filtration of Carbon Particulate Emissions from a Plasma Pyrolysis Assembly

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Green, Robert; Vijayakumar, R.; Berger, Gordon; Greenwood, Zach; Abney, Morgan; Peterson, Elspeth

    2016-01-01

    NASA is investigating plasma pyrolysis as a candidate technology that will enable the recovery of hydrogen from the methane produced by the ISS Sabatier Reactor. The Plasma Pyrolysis Assembly (PPA) is the current prototype of this technology which converts the methane product from the Carbon Dioxide Reduction Assembly (CRA) to acetylene and hydrogen with 90% or greater conversion efficiency. A small amount of solid carbon particulates are generated as a side product and must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on several options for filtering out the carbon particulate emissions from the PPA exit gas stream. The filtration technologies and concepts investigated range from fibrous media to monolithic ceramic and sintered metal media. This paper describes the different developed filter prototypes and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC. In addition, characterization data on the generated carbon particulates, that help to define filter requirements, are also presented.

  7. Emissions of particulate matter from animal houses in the Netherlands

    NASA Astrophysics Data System (ADS)

    Winkel, Albert; Mosquera, Julio; Groot Koerkamp, Peter W. G.; Ogink, Nico W. M.; Aarnink, André J. A.

    2015-06-01

    In the Netherlands, emissions from animal houses represent a major source of ambient particulate matter (PM). The objective of the present paper was to provide accurate and up to date concentrations and emission rates of PM10 and PM2.5 for commonly used animal housing systems, under representative inside and outside climate conditions and ventilation rates. We set up a national survey which covered 13 housing systems for poultry, pigs, and dairy cattle, and included 36 farms. In total, 202 24-h measurements were carried out, which included concentrations of inhalable PM, PM10, PM2.5, and CO2, ventilation rate, temperature, and relative humidity. On an animal basis, geometric mean emission rates of PM10 ranged from 2.2 to 12.0 mg h-1 in poultry and from 7.3 to 22.5 mg h-1 in pigs. The mean PM10 emission rate in dairy cattle was 8.5 mg h-1. Geometric mean emission rates of PM2.5 ranged from 0.11 to 2.41 mg h-1 in poultry and from 0.21 to 1.56 mg h-1 in pigs. The mean PM2.5 emission rate in dairy cattle was 1.65 mg h-1. Emissions are also reported per Livestock Unit and Heat Production Unit. PM emission rates increased exponentially with increasing age in broilers and turkeys and increased linearly with increasing age in weaners and fatteners. In laying hens, broiler breeders, sows, and dairy cattle, emission levels were variable throughout the year.

  8. Integrating nephelometer measurements for the airborne fine particulate matter (PM 2.5) mass concentrations

    NASA Astrophysics Data System (ADS)

    Shendrikar, Arun D.; Steinmetz, William K.

    This work describes the application of integrating nephelometer measurements for the determination of airborne fine particulate matter (PM 2.5) mass concentrations. In response to over 150 complaints (spanning a period of 20 years) from local citizens of irritant fogs and pungent odors, the North Carolina Division of Air Quality conducted a monitoring program, in collaboration with the Washington Regional Air Quality Office and PCS Phosphate, Inc., to characterize air quality in the Pamlico River airshed of eastern North Carolina. The continuous monitoring from 1 May through 31 October 2000 at four sites, involved collection of air samples and subsequent quantification for reactive acidic and basic gases, aerosols and fine particulate matter (PM 2.5) using a 7-day Annular Denuder System (ADS). Additionally, the airborne concentration of the fine particulate matter (PM 2.5) was concurrently (to the ADS) monitored using a tapered element oscillating micro-balance (TEOM). Relevant meteorological data were obtained from conventional sensors installed at each sampling site. An integrating nephelometer was used for the regional visibility measurements. An integrating nephelometer was used to measure light scattering (a surrogate for visibility) continuously for 24-h per day over a 6-month period at the four sites. A linear relationship has been found for the nephelometer (Beta scat) measurements and mass data (PM 2.5) obtained both from the TEOM and ADS. The calculated correlation coefficient results between nephelometer and ADS and nephelometer and TEOM are satisfactory and close to one. This indicates that in this region, the nephelometer measurements have the potential to be a surrogate for the determination of regional airborne fine particle (PM 2.5) mass concentrations. The ratios for each of the four sampling sites using 24-h averages of nephelometer data and PM 2.5 concentrations from the ADS units and the TEOM gave an average ratio of 0.32±0.02. This value

  9. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hui; Khlystov, Andrey; Norford, Leslie K.; Tan, Zhen-Kang; Balasubramanian, Rajasekhar

    2017-07-01

    Vehicular traffic emission is an important source of particulate pollution in most urban areas. The detailed chemical speciation of traffic-related PM2.5 (fine particles) is relatively sparse in the literature, especially in Asian cities. To fill this knowledge gap, we carried out an intensive field study in Singapore from November 2015 to February 2016. PM2.5 samples were collected concurrently at a typical roadside microenvironment and at an urban background site. A detailed chemical speciation of PM2.5 samples was conducted to gain insights into the emission characteristics of traffic-related fine aerosols. Analyses of diagnostic ratios and molecular markers of selected chemical species were explored for source attribution of different classes of chemical constituents in traffic-related PM2.5. The human health risk due to inhalation of the particulate-bound PAHs (polycyclic aromatic hydrocarbons) and toxic trace elements was estimated for both adults and children. The overall results of the study indicate that gasoline-powered vehicles make a higher contribution to traffic-related fine aerosol components such as organic carbon (OC), particle-bound PAHs and particulate ammonium than that of diesel-powered vehicles. However, both types of vehicles contribute to traffic-related EC emissions significantly. The combustion of petroleum fuels and lubricating oil make significant contributions to the emission of n-alkanes and hopanes into the urban atmosphere, respectively. The study further reveals that some toxic trace elements are emitted from non-exhaust sources and that aromatic acids represent an important component of secondary organic aerosols. The emission of toxic trace elements from non-exhaust sources is of particular concern as they could pose a higher carcinogenic risk to both adults and children than other chemical species.

  10. FINE PARTICULATE MATTER (PM) AND ORGANIC SPECIATION OF FIREPLACE EMISSIONS

    EPA Science Inventory

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an on-going project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10?m (PM10) con...

  11. FINE PARTICULATE MATTER (PM) AND ORGANIC SPECIATION OF FIREPLACE EMISSIONS

    EPA Science Inventory

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an on-going project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10?m (PM10) con...

  12. Comparison of gene expression profiles induced by coarse, fine, and ultrafine particulate matter.

    PubMed

    Huang, Yuh-Chin T; Karoly, Edward D; Dailey, Lisa A; Schmitt, Michael T; Silbajoris, Robert; Graff, Donald W; Devlin, Robert B

    2011-01-01

    Coarse, fine, and ultrafine particulate matter (PM) fractions possess different physical properties and chemical compositions and may produce different adverse health effects. Studies were undertaken to determine whether or not gene expression patterns may be used to discriminate among the three size fractions. Airway epithelial cells obtained from 6 normal individuals were exposed to Chapel Hill coarse, fine or ultrafine PM (250 μg/ml) for 6 and 24 h (n=3 different individuals each). RNA was isolated and hybridized to Affymetrix cDNA microarrays. Significant genes were identified and mapped to canonical pathways. Expression of selected genes was confirmed by reverse-transcription polymerase chain reaction (RT-PCR). The numbers of genes altered by coarse, fine, and ultrafine PM increased from 0, 6, and 17 at 6 h to 1281, 302, and 455 at 24 h, respectively. The NRF2-mediated oxidative stress response, cell cycle:G2/M DNA damage checkpoint regulation, and mitotic roles of polo-like kinase were the top three pathways altered by all three fractions. Fine and ultrafine PM displayed more similar gene expression patterns. One example was the increased expression of metallothionein isoforms, reflecting the higher zinc content associated with fine and ultrafine fractions. A set of 10 genes was identified that could discriminate fine and ultrafine PM from coarse PM. These results indicate that common properties shared by the three size fractions as well as size-specific factors, e.g., compositions, may determine the effects on gene expression. Genomic markers may be used to discriminate coarse from fine and ultrafine PM.

  13. Characterization of chemical components and bioreactivity of fine particulate matter (PM2.5) during incense burning.

    PubMed

    Lui, K H; Bandowe, Benjamin A Musa; Ho, Steven Sai Hang; Chuang, Hsiao-Chi; Cao, Jun-Ji; Chuang, Kai-Jen; Lee, S C; Hu, Di; Ho, K F

    2016-06-01

    The chemical and bioreactivity properties of fine particulate matter (PM2.5) emitted during controlled burning of different brands of incense were characterized. Incenses marketed as being environmentally friendly emitted lower mass of PM2.5 particulates than did traditional incenses. However, the environmentally friendly incenses produced higher total concentrations of non-volatile polycyclic aromatic hydrocarbons (PAHs) and some oxygenated polycyclic aromatic hydrocarbons (OPAHs). Human alveolar epithelial A549 cells were exposed to the collected PM2.5, followed by determining oxidative stress and inflammation. There was moderate to strong positive correlation (R > 0.60, p < 0.05) between selected PAHs and OPAHs against oxidative-inflammatory responses. Strong positive correlation was observed between interleukin 6 (IL-6) and summation of total Group B2 PAHs/OPAHs (∑7PAHs/ΣOPAHs). The experimental data indicate that emissions from the environmentally friendly incenses contained higher concentrations of several PAH and OPAH compounds than did traditional incense. Moreover, these PAHs and OPAHs were strongly correlated with inflammatory responses. The findings suggest a need to revise existing regulation of such products.

  14. Development of emission factors for particulate matter in a school

    SciTech Connect

    Scheff, P.A.; Paulius, V.; Conroy, L.M.

    1999-07-01

    Schools have complex indoor environments which are influenced by many factors such as number of occupants, building design, office equipment, cleaning agents, and school activities. Like large office buildings, school environments may be adversely influenced by deficiencies in ventilation which may be due to improper operation of HVAC systems, attempts at energy efficiency that limit the supply of outdoor air, or remodeling of building components. Most importantly, children spend up to a third of their time in these structures, and thus it is desirable to better understand the environmental quality in these buildings. A middle school (grades 6 to 8) in a residential section of Springfield, IL was selected for this baseline indoor air quality survey. The school was characterized as having no health complaints, good maintenance schedules, and did not contain carpeting within the classrooms or hallways. The focus of this paper is on the measurements of air quality in the school. The development of emission factors for particulate matter is also discussed. Four indoor locations including the Cafeteria, a Science Classroom, an Art Classroom, and the Lobby outside of the main office, and one outdoor location were sampled for various environmental comfort and pollutant parameters for one week in February of 1997. Integrated samples (8 hour sampling time) for respirable and total particulate matter, and short-term measurements of bioaerosols (two minute samples, three times per day) on three consecutive days were collected at each of the indoor and outdoor sites. Continuous measurements of carbon dioxide, carbon monoxide, temperature and humidity were logged at all locations for five days. Continuous measurements of respirable particulate matter were also collected in the Lobby area. Detailed logs of occupant activity were also collected at each indoor monitoring location throughout the study. Total particle concentrations ranged from 29 to 177 {micro}g/m{sup 3} in the art

  15. Particulate-phase mercury emissions from biomass burning ...

    EPA Pesticide Factsheets

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, little is known about the fraction of Hg bound to particulate matter (HgP) released from BB, and the factors controlling this fraction are also uncertain. In light of the aims of the Minamata Convention to reduce intentional Hg use and emissions from anthropogenic activities, the relative importance of Hg emissions from BB will have an increasing impact on Hg deposition fluxes. Hg speciation is one of the most important factors determining the redistribution of Hg in the atmosphere and the geographical distribution of Hg deposition. Using the latest version of the Global Fire Emissions Database (GFEDv4.1s) and the global Hg chemistry transport model, ECHMERIT, the impact of Hg speciation in BB emissions, and the factors which influence speciation, on Hg deposition have been investigated for the year 2013. The role of other uncertainties related to physical and chemical atmospheric processes involving Hg and the influence of model parametrisations were also investigated, since their interactions with Hg speciation are complex. The comparison with atmospheric HgP concentrations observed at two remote sites, Amsterdam Island (AMD) and Manaus (MAN), in the Amazon showed a significant improve

  16. Particulate-phase mercury emissions from biomass burning ...

    EPA Pesticide Factsheets

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, little is known about the fraction of Hg bound to particulate matter (HgP) released from BB, and the factors controlling this fraction are also uncertain. In light of the aims of the Minamata Convention to reduce intentional Hg use and emissions from anthropogenic activities, the relative importance of Hg emissions from BB will have an increasing impact on Hg deposition fluxes. Hg speciation is one of the most important factors determining the redistribution of Hg in the atmosphere and the geographical distribution of Hg deposition. Using the latest version of the Global Fire Emissions Database (GFEDv4.1s) and the global Hg chemistry transport model, ECHMERIT, the impact of Hg speciation in BB emissions, and the factors which influence speciation, on Hg deposition have been investigated for the year 2013. The role of other uncertainties related to physical and chemical atmospheric processes involving Hg and the influence of model parametrisations were also investigated, since their interactions with Hg speciation are complex. The comparison with atmospheric HgP concentrations observed at two remote sites, Amsterdam Island (AMD) and Manaus (MAN), in the Amazon showed a significant improve

  17. Implications of ammonia emissions from post-combustion carbon capture for airborne particulate matter.

    PubMed

    Heo, Jinhyok; McCoy, Sean T; Adams, Peter J

    2015-04-21

    Amine scrubbing, a mature post-combustion carbon capture and storage (CCS) technology, could increase ambient concentrations of fine particulate matter (PM2.5) due to its ammonia emissions. To capture 2.0 Gt CO2/year, for example, it could emit 32 Gg NH3/year in the United States given current design targets or 15 times higher (480 Gg NH3/year) at rates typical of current pilot plants. Employing a chemical transport model, we found that the latter emission rate would cause an increase of 2.0 μg PM2.5/m(3) in nonattainment areas during wintertime, which would be troublesome for PM2.5-burdened areas, and much lower increases during other seasons. Wintertime PM2.5 increases in nonattainment areas were fairly linear at a rate of 3.4 μg PM2.5/m(3) per 1 Tg NH3, allowing these results to be applied to other CCS emissions scenarios. The PM2.5 impacts are modestly uncertain (±20%) depending on future emissions of SO2, NOx, and NH3. The public health costs of CCS NH3 emissions were valued at $31-68 per tonne CO2 captured, comparable to the social cost of carbon itself. Because the costs of solvent loss to CCS operators are lower than the social costs of CCS ammonia, there is a regulatory interest to limit ammonia emissions from CCS.

  18. Fine particulate air pollution and total mortality among elderly Californians, 1973-2002.

    PubMed

    Enstrom, James E

    2005-12-15

    Fine particulate air pollution has been associated with increases in long-term mortality in selected cohort studies, and this association has been influential in the establishment of air quality regulations for fine particles (PM(2.5)). However, this epidemiologic evidence has been questioned because of methodological issues, conflicting findings, and lack of an accepted causal mechanism. To further evaluate this association, the long-term relation between fine particulate air pollution and total mortality was examined in a cohort of 49, 975 elderly Californians, with a mean age of 65 yr as of 1973. These subjects, who resided in 25 California counties, were enrolled in 1959, recontacted in 1972, and followed from 1973 through 2002; 39, 846 deaths were identified. Proportional hazards regression models were used to determine their relative risk of death (RR) and 95% confidence interval (CI) during 1973-2002 by county of residence. The models adjusted for age, sex, cigarette smoking, race, education, marital status, body mass index, occupational exposure, exercise, and a dietary factor. For the 35, 789 subjects residing in 11 of these counties, county-wide exposure to fine particles was estimated from outdoor ambient concentrations measured during 1979-1983 and RRs were calculated as a function of these PM(2.5) levels (mean of 23.4 microg/m(3)). For the initial period, 1973-1982, a small positive risk was found: RR was 1.04 (1.01-1.07) for a 10-microg/m(3) increase in PM(2.5). For the subsequent period, 1983-2002, this risk was no longer present: RR was 1.00 (0.98-1.02). For the entire follow-up period, RR was 1.01 (0.99-1.03). The RRs varied somewhat among major subgroups defined by sex, age, education level, smoking status, and health status. None of the subgroups that had significantly elevated RRs during 1973-1982 had significantly elevated RRs during 1983-2002. The RRs showed no substantial variation by county of residence during any of the three follow

  19. Particulate emissions from commercial shipping: Chemical, physical, and optical properties

    NASA Astrophysics Data System (ADS)

    Lack, Daniel A.; Corbett, James J.; Onasch, Timothy; Lerner, Brian; Massoli, Paola; Quinn, Patricia K.; Bates, Timothy S.; Covert, David S.; Coffman, Derek; Sierau, Berko; Herndon, Scott; Allan, James; Baynard, Tahllee; Lovejoy, Edward; Ravishankara, A. R.; Williams, Eric

    2009-04-01

    We characterize particulate emissions on the basis of chemical, physical, and optical properties from commercial vessels. Observations during the Texas Air Quality Study/Gulf of Mexico Atmospheric Composition and Climate Study 2006 field campaign provide chemical and physical characteristics including sulfate (SO42-) mass, organic matter (OM) mass, black carbon (BC) mass, particulate matter (PM) mass, number concentrations (condensation nuclei (CN) > 5 nm), and cloud condensation nuclei (CCN). Optical characterization included multiple wavelength visible light absorption and extinction, extinction relative humidity dependence, and single scatter albedo (SSA). The global contribution of shipping PM was calculated to be 0.90 Tg a-1, in good agreement with previous inventories (0.91 and 1.13 Tg a-1 from Eyring et al. (2005a) and Wang et al. [2008]). Observed PM composition was 46% SO42-, 39% OM, and 15% BC and differs from inventories that used 81%, 14%, and 5% and 31%, 63%, and 6% SO42-, OM, and BC, respectively. SO42- and OM mass were found to be dependent on fuel sulfur content as were SSA, hygroscopicity, and CCN concentrations. BC mass was dependent on engine type and combustion efficiency. A plume evolution study conducted on one vessel showed conservation of particle light absorption, decrease in CN > 5 nm, increase in particle hygroscopicity, and an increase in average particle size with distance from emission. These results suggest emission of small nucleation mode particles that subsequently coagulate/condense onto larger BC and OM. This work contributes to an improved understanding of the impacts of ship emissions on climate and air quality and will also assist in determining potential effects of altering fuel standards.

  20. Impact of Fine Particulate Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes

    PubMed Central

    Haikerwal, Anjali; Akram, Muhammad; Del Monaco, Anthony; Smith, Karen; Sim, Malcolm R; Meyer, Mick; Tonkin, Andrew M; Abramson, Michael J; Dennekamp, Martine

    2015-01-01

    Background Epidemiological studies investigating the role of fine particulate matter (PM2.5; aerodynamic diameter <2.5 μm) in triggering acute coronary events, including out-of-hospital cardiac arrests and ischemic heart disease (IHD), during wildfires have been inconclusive. Methods and Results We examined the associations of out-of-hospital cardiac arrests, IHD, acute myocardial infarction, and angina (hospital admissions and emergency department attendance) with PM2.5 concentrations during the 2006–2007 wildfires in Victoria, Australia, using a time-stratified case-crossover study design. Health data were obtained from comprehensive health-based administrative registries for the study period (December 2006 to January 2007). Modeled and validated air exposure data from wildfire smoke emissions (daily average PM2.5, temperature, relative humidity) were also estimated for this period. There were 457 out-of-hospital cardiac arrests, 2106 emergency department visits, and 3274 hospital admissions for IHD. After adjusting for temperature and relative humidity, an increase in interquartile range of 9.04 μg/m3 in PM2.5 over 2 days moving average (lag 0-1) was associated with a 6.98% (95% CI 1.03% to 13.29%) increase in risk of out-of-hospital cardiac arrests, with strong association shown by men (9.05%,95%CI 1.63% to 17.02%) and by older adults (aged ≥65 years) (7.25%, 95% CI 0.24% to 14.75%). Increase in risk was (2.07%, 95% CI 0.09% to 4.09%) for IHD-related emergency department attendance and (1.86%, 95% CI: 0.35% to 3.4%) for IHD-related hospital admissions at lag 2 days, with strong associations shown by women (3.21%, 95% CI 0.81% to 5.67%) and by older adults (2.41%, 95% CI 0.82% to 5.67%). Conclusion PM2.5 exposure was associated with increased risk of out-of-hospital cardiac arrests and IHD during the 2006–2007 wildfires in Victoria. This evidence indicates that PM2.5 may act as a triggering factor for acute coronary events during wildfire episodes

  1. Impact of Fine Particulate Matter (PM2.5) Exposure During Wildfires on Cardiovascular Health Outcomes.

    PubMed

    Haikerwal, Anjali; Akram, Muhammad; Del Monaco, Anthony; Smith, Karen; Sim, Malcolm R; Meyer, Mick; Tonkin, Andrew M; Abramson, Michael J; Dennekamp, Martine

    2015-07-15

    Epidemiological studies investigating the role of fine particulate matter (PM2.5; aerodynamic diameter <2.5 μm) in triggering acute coronary events, including out-of-hospital cardiac arrests and ischemic heart disease (IHD), during wildfires have been inconclusive. We examined the associations of out-of-hospital cardiac arrests, IHD, acute myocardial infarction, and angina (hospital admissions and emergency department attendance) with PM2.5 concentrations during the 2006-2007 wildfires in Victoria, Australia, using a time-stratified case-crossover study design. Health data were obtained from comprehensive health-based administrative registries for the study period (December 2006 to January 2007). Modeled and validated air exposure data from wildfire smoke emissions (daily average PM2.5, temperature, relative humidity) were also estimated for this period. There were 457 out-of-hospital cardiac arrests, 2106 emergency department visits, and 3274 hospital admissions for IHD. After adjusting for temperature and relative humidity, an increase in interquartile range of 9.04 μg/m(3) in PM2.5 over 2 days moving average (lag 0-1) was associated with a 6.98% (95% CI 1.03% to 13.29%) increase in risk of out-of-hospital cardiac arrests, with strong association shown by men (9.05%,95%CI 1.63% to 17.02%) and by older adults (aged ≥65 years) (7.25%, 95% CI 0.24% to 14.75%). Increase in risk was (2.07%, 95% CI 0.09% to 4.09%) for IHD-related emergency department attendance and (1.86%, 95% CI: 0.35% to 3.4%) for IHD-related hospital admissions at lag 2 days, with strong associations shown by women (3.21%, 95% CI 0.81% to 5.67%) and by older adults (2.41%, 95% CI 0.82% to 5.67%). PM2.5 exposure was associated with increased risk of out-of-hospital cardiac arrests and IHD during the 2006-2007 wildfires in Victoria. This evidence indicates that PM2.5 may act as a triggering factor for acute coronary events during wildfire episodes. © 2015 The Authors. Published on behalf of the

  2. Indoor air sampling for fine particulate matter and black carbon in industrial communities in Pittsburgh.

    PubMed

    Tunno, Brett J; Naumoff Shields, Kyra; Cambal, Leah; Tripathy, Sheila; Holguin, Fernando; Lioy, Paul; Clougherty, Jane E

    2015-12-01

    Impacts of industrial emissions on outdoor air pollution in nearby communities are well-documented. Fewer studies, however, have explored impacts on indoor air quality in these communities. Because persons in northern climates spend a majority of their time indoors, understanding indoor exposures, and the role of outdoor air pollution in shaping such exposures, is a priority issue. Braddock and Clairton, Pennsylvania, industrial communities near Pittsburgh, are home to an active steel mill and coke works, respectively, and the population experiences elevated rates of childhood asthma. Twenty-one homes were selected for 1-week indoor sampling for fine particulate matter (PM2.5) and black carbon (BC) during summer 2011 and winter 2012. Multivariate linear regression models were used to examine contributions from both outdoor concentrations and indoor sources. In the models, an outdoor infiltration component explained 10 to 39% of variability in indoor air pollution for PM2.5, and 33 to 42% for BC. For both PM2.5 models and the summer BC model, smoking was a stronger predictor than outdoor pollution, as greater pollutant concentration increases were identified. For winter BC, the model was explained by outdoor pollution and an open windows modifier. In both seasons, indoor concentrations for both PM2.5 and BC were consistently higher than residence-specific outdoor concentration estimates. Mean indoor PM2.5 was higher, on average, during summer (25.8±22.7 μg/m3) than winter (18.9±13.2 μg/m3). Contrary to the study's hypothesis, outdoor concentrations accounted for only little to moderate variability (10 to 42%) in indoor concentrations; a much greater proportion of PM2.5 was explained by cigarette smoking. Outdoor infiltration was a stronger predictor for BC compared to PM2.5, especially in winter. Our results suggest that, even in industrial communities of high outdoor pollution concentrations, indoor activities--particularly cigarette smoking--may play a larger

  3. Source Signatures of Fine Particulate Matter from Petroleum Refining and Fuel Use

    SciTech Connect

    Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Robert Huggins

    1999-12-31

    Combustion experiments were carried out on four different residual fuel oils in a 732 kW boiler. Particulate matter (PM) emission samples were separated aerodynamically by a cyclone into fractions that were nominally less than and greater than 2.5 microns in diameter. However, examination of several of the samples by computer-controlled scanning electron microscopy (CCSEM) revealed that part of the <2.5 micron fraction (PM{sub 2.5}) in fact consists of carbonaceous cenospheres and vesicular particles that range up to 10 microns in diameter. X-ray absorption fine structure (XAFS) spectroscopy data were obtained at the S, V, Ni, Fe, Cu, Zn, and As Kedges, and at the Pb L-edge. Deconvolution of the x-ray absorption near edge structure (XANES) region of the S spectra established that the dominant molecular forms of S present were sulfate (26-84% of total S) and thiophene (13-39% of total S). Sulfate was greater in the PM{sub 2.5} samples than in the >2.5 micron samples (PM{sub 2.5+}). Inorganic sulfides and elemental sulfur were present in lower percentages. The Ni XANES spectra from all of the samples agree fairly well with that of NiSO4, while most of the V spectra closely resemble that of vanadyl sulfate (VO{center_dot}SO{sub 4}{center_dot}xH{sub 2}O). The other metals investigated (Fe, Cu, Zn, and Pb) were also present predominantly as sulfates. Arsenic is present as an arsenate (As{sup +5}). X-ray diffraction patterns of the PM{sub 2.5} fraction exhibit sharp lines due to sulfate compounds (Zn, V, Ni, Ca, etc.) superimposed on broad peaks due to amorphous carbons. All of the samples contain a significant organic component, with the LOI ranging from 64 to 87 % for the PM{sub 2.5} fraction and from 88 to 97% for the PM{sub 2.5+} fraction. {sup 13}C nuclear magnetic resonance (NMR) analysis indicates that the carbon is predominantly condensed in graphitic structures. Aliphatic structure was detected in only one of seven samples examined.

  4. The public health benefits of reducing fine particulate matter through conversion to cleaner heating fuels in New York City.

    PubMed

    Kheirbek, Iyad; Haney, Jay; Douglas, Sharon; Ito, Kazuhiko; Caputo, Steven; Matte, Thomas

    2014-12-02

    In recent years, both New York State and City issued regulations to reduce emissions from burning heating oil. To assess the benefits of these programs in New York City, where the density of emissions and vulnerable populations vary greatly, we simulated the air quality benefits of scenarios reflecting no action, partial, and complete phase-out of high-sulfur heating fuels using the Community MultiScale Air Quality (CMAQ) model conducted at a high spatial resolution (1 km). We evaluated the premature mortality and morbidity benefits of the scenarios within 42 city neighborhoods and computed benefits by neighborhood poverty status. The complete phase-out scenario reduces annual average fine particulate matter (PM2.5) by an estimated 0.71 μg/m(3) city-wide (average of 1 km estimates, 10-90th percentile: 0.1-1.6 μg/m(3)), avoiding an estimated 290 premature deaths, 180 hospital admissions for respiratory and cardiovascular disease, and 550 emergency department visits for asthma each year. The largest improvements were seen in areas of highest building and population density and the majority of benefits have occurred through the partial phase out of high-sulfur heating fuel already achieved. While emissions reductions were greatest in low-poverty neighborhoods, health benefits are estimated to be greatest in high-poverty neighborhoods due to higher baseline morbidity and mortality rates.

  5. Size distribution of acidic sulfate ions in fine ambient particulate matter and assessment of source region effect

    NASA Astrophysics Data System (ADS)

    Hazi, Y.; Heikkinen, M. S. A.; Cohen, B. S.

    Human exposure studies strongly suggested that the fine fraction of ambient particulate matter (PM) and its associated acidic sulfates are closely correlated with observed adverse health effects. Acidic sulfates are the products of atmospheric sulfur dioxide oxidation and neutralization processes. Few data are available on the amount and size distribution of acidic sulfates within the fine fraction of ambient PM. Knowledge of this distribution will help to understand their toxic mechanisms in the human respiratory tract. The goals of this research were: (1) to measure the size distribution of hydrogen ion, sulfate, and ammonium within the fine fraction of the ambient aerosol in air masses originating from different source regions; and (2) to examine the effect of the source region and the seasons on the sampled PM composition. Six size fractions within the fine ambient PM were collected using a micro-orifice impactor. Results from 30 sampling sessions demonstrated that higher total concentrations of these three ions were observed during the warm months than during the cold months of the year. Size distribution results show that the midpoint diameter of the fraction of particles with the largest fraction of hydrogen, sulfate and ammonium ions was 0.38 μm. Although most of the mass containing hydrogen and sulfate ions was measured in the fraction of particles with 0.38 μm midpoint diameter, the ultrafine fraction (<0.1 μm) was found to be more acidic. Ambient ion concentrations varied between sampling sessions and seasons, but the overall size distribution profiles are similar. Air mass back trajectories were used to identify the source region of the sampled aerosols. No apparent source region effect was observed in terms of the distribution profile of the ions. However, samples collected from air masses that originated from, or passed over, high sulfur dioxide emission areas demonstrated higher concentrations of the different ions.

  6. SOURCE SAMPLING FINE PARTICULATE MATTER--INSTITUTIONAL OIL-FIRED BOILER

    EPA Science Inventory

    EPA seeks to understand the correlation between ambient fine PM and adverse human health effects, and there are no reliable emission factors to use for estimating PM2.5 or NH3. The most common source of directly emitted PM2.5 is incomplete combustion of fossil or biomass fuels. M...

  7. SOURCE SAMPLING FINE PARTICULATE MATTER--INSTITUTIONAL OIL-FIRED BOILER

    EPA Science Inventory

    EPA seeks to understand the correlation between ambient fine PM and adverse human health effects, and there are no reliable emission factors to use for estimating PM2.5 or NH3. The most common source of directly emitted PM2.5 is incomplete combustion of fossil or biomass fuels. M...

  8. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    DOE PAGES

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; ...

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrationsmore » were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.« less

  9. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    PubMed Central

    2015-01-01

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). These estimates offer information about global population exposure to the chemical components and sources of PM2.5. PMID:25343705

  10. Uncontrolled combustion of shredded tires in a landfill - Part 1: Characterization of gaseous and particulate emissions.

    PubMed

    Downard, Jared; Singh, Ashish; Bullard, Robert; Jayarathne, Thilina; Rathnayake, Chathurika; Simmons, Donald L; Wels, Brian R; Spak, Scott N; Peters, Thomas; Beardsley, Douglas; Stanier, Charles; Stone, Elizabeth A

    2015-03-01

    In summer 2012, a landfill liner comprising an estimated 1.3 million shredded tires burned in Iowa City, Iowa. During the fire, continuous monitoring and laboratory measurements were used to characterize the gaseous and particulate emissions and to provide new insights into the qualitative nature of the smoke and the quantity of pollutants emitted. Significant enrichments in ambient concentrations of CO, CO2, SO2, particle number (PN), fine particulate (PM2.5) mass, elemental carbon (EC), and polycyclic aromatic hydrocarbons (PAH) were observed. For the first time, PM2.5 from tire combustion was shown to contain PAH with nitrogen heteroatoms (a.k.a. azaarenes) and picene, a compound previously suggested to be unique to coal-burning. Despite prior laboratory studies' findings, metals used in manufacturing tires (i.e. Zn, Pb, Fe) were not detected in coarse particulate matter (PM10) at a distance of 4.2 km downwind. Ambient measurements were used to derive the first in situ fuel-based emission factors (EF) for the uncontrolled open burning of tires, revealing substantial emissions of SO2 (7.1 g kg(-1)), particle number (3.5×10(16) kg(-1)), PM2.5 (5.3 g kg(-1)), EC (2.37 g kg(-1)), and 19 individual PAH (totaling 56 mg kg(-1)). A large degree of variability was observed in day-to-day EF, reflecting a range of flaming and smoldering conditions of the large-scale fire, for which the modified combustion efficiency ranged from 0.85-0.98. Recommendations for future research on this under-characterized source are also provided.

  11. Uncontrolled combustion of shredded tires in a landfill - Part 1: Characterization of gaseous and particulate emissions

    NASA Astrophysics Data System (ADS)

    Downard, Jared; Singh, Ashish; Bullard, Robert; Jayarathne, Thilina; Rathnayake, Chathurika M.; Simmons, Donald L.; Wels, Brian R.; Spak, Scott N.; Peters, Thomas; Beardsley, Douglas; Stanier, Charles O.; Stone, Elizabeth A.

    2015-03-01

    In summer 2012, a landfill liner comprising an estimated 1.3 million shredded tires burned in Iowa City, Iowa. During the fire, continuous monitoring and laboratory measurements were used to characterize the gaseous and particulate emissions and to provide new insights into the qualitative nature of the smoke and the quantity of pollutants emitted. Significant enrichments in ambient concentrations of CO, CO2, SO2, particle number (PN), fine particulate (PM2.5) mass, elemental carbon (EC), and polycyclic aromatic hydrocarbons (PAH) were observed. For the first time, PM2.5 from tire combustion was shown to contain PAH with nitrogen heteroatoms (a.k.a. azaarenes) and picene, a compound previously suggested to be unique to coal-burning. Despite prior laboratory studies' findings, metals used in manufacturing tires (i.e. Zn, Pb, Fe) were not detected in coarse particulate matter (PM10) at a distance of 4.2 km downwind. Ambient measurements were used to derive the first in situ fuel-based emission factors (EF) for the uncontrolled open burning of tires, revealing substantial emissions of SO2 (7.1 g kg-1), particle number (3.5 × 1016 kg-1), PM2.5 (5.3 g kg-1), EC (2.37 g kg-1), and 19 individual PAH (totaling 56 mg kg-1). A large degree of variability was observed in day-to-day EF, reflecting a range of flaming and smoldering conditions of the large-scale fire, for which the modified combustion efficiency ranged from 0.85 to 0.98. Recommendations for future research on this under-characterized source are also provided.

  12. Analysis of semi-volatile materials (SVM) in fine particulate matter

    NASA Astrophysics Data System (ADS)

    Salvador, Christian Mark; Chou, Charles C.-K.

    2014-10-01

    The mass fraction of semi-volatile materials (SVM) in fine particulate matter (PM2.5) was investigated at a subtropical urban aerosol observatory (TARO, 25.0 °N, 121.5 °E) in Taipei, Taiwan during August 2013. In particular, an integrated Denuder-FDMS-TEOM system was employed to study the effectiveness of the coupling of FDMS and TEOM instruments. The charcoal and MgO denuders used in this study performed a removal efficiency of 89 and 95% for positive interferences in OC and nitrate measurements, respectively, and did not induce a significant particle loss during the field campaign, suggesting that denuders should be considered as a standard device in PM2.5 instrumentation. Analysis on the mass concentration and speciation data found that, as a result of SVM loss, FRM-based measurement underestimated PM2.5 by 21% in our case. Coupling FDMS to TEOM significantly improved the bias in PM2.5 mass concentration from -25% to -14%. The negative bias in FDMS-TEOM was attributed to the failure of FDMS in recovering the mass of lost SVOMs in PM2.5. The results of this study highlight the significance of SVM in a subtropical urban environment, give a warning of underestimated health risk relevant to PM2.5 exposure, and necessitate further development of instrument and/or technique to provide accurate ambient levels of fine particulate matters.

  13. DIFFERENTIAL CARDIAC ARRHYTHMIA PROFILES IN HYPERTENSIVE AND NORMAL RATS AFTER EMISSION SOURCE PARTICULATE EXPOSURE

    EPA Science Inventory

    Exposure to combustion-derived fine particulate air pollution is associated with increased cardiovascular morbidity and mortality. These effects are especially conspicuous in individuals with pre-existing cardiovascular diseases including hypertension and coronary heart disease...

  14. DIFFERENTIAL CARDIAC ARRHYTHMIA PROFILES IN HYPERTENSIVE AND NORMAL RATS AFTER EMISSION SOURCE PARTICULATE EXPOSURE

    EPA Science Inventory

    Exposure to combustion-derived fine particulate air pollution is associated with increased cardiovascular morbidity and mortality. These effects are especially conspicuous in individuals with pre-existing cardiovascular diseases including hypertension and coronary heart disease...

  15. Discrimination of particulate matter emission sources using stochastic methods

    NASA Astrophysics Data System (ADS)

    Szczurek, Andrzej; Maciejewska, Monika; Wyłomańska, Agnieszka; Sikora, Grzegorz; Balcerek, Michał; Teuerle, Marek

    2016-12-01

    Particulate matter (PM) is one of the criteria pollutants which has been determined as harmful to public health and the environment. For this reason the ability to recognize its emission sources is very important. There are a number of measurement methods which allow to characterize PM in terms of concentration, particles size distribution, and chemical composition. All these information are useful to establish a link between the dust found in the air, its emission sources and influence on human as well as the environment. However, the methods are typically quite sophisticated and not applicable outside laboratories. In this work, we considered PM emission source discrimination method which is based on continuous measurements of PM concentration with a relatively cheap instrument and stochastic analysis of the obtained data. The stochastic analysis is focused on the temporal variation of PM concentration and it involves two steps: (1) recognition of the category of distribution for the data i.e. stable or the domain of attraction of stable distribution and (2) finding best matching distribution out of Gaussian, stable and normal-inverse Gaussian (NIG). We examined six PM emission sources. They were associated with material processing in industrial environment, namely machining and welding aluminum, forged carbon steel and plastic with various tools. As shown by the obtained results, PM emission sources may be distinguished based on statistical distribution of PM concentration variations. Major factor responsible for the differences detectable with our method was the type of material processing and the tool applied. In case different materials were processed by the same tool the distinction of emission sources was difficult. For successful discrimination it was crucial to consider size-segregated mass fraction concentrations. In our opinion the presented approach is very promising. It deserves further study and development.

  16. Assessment of Inter-Individual and Geographic Variability in Human Exposure to Fine Particulate Matter in Environmental Tobacco Smoke

    PubMed Central

    Cao, Y; Frey, HC

    2010-01-01

    Environmental tobacco smoke (ETS) is a major contributor to indoor human exposures to fine particulate matter of 2.5 microns or smaller (PM2.5). The Stochastic Human Exposure and Dose Simulation for Particulate Matter (SHEDS-PM) model developed by the US Environmental Protection Agency estimates distributions of outdoor and indoor PM2.5 exposure for a specified population based on ambient concentrations and indoor emissions sources. A critical assessment was conducted of the methodology and data used in SHEDS-PM for estimation of indoor exposure to ETS. For the residential microenvironment, SHEDS uses a mass-balance approach which is comparable to best practices. The default inputs in SHEDS-PM were reviewed and more recent and extensive data sources were identified. Sensitivity analysis was used to determine which inputs should be prioritized for updating. Data regarding the proportion of smokers and “other smokers,” and cigarette emission rate were found to be important. SHEDS-PM does not currently account for in-vehicle ETS exposure; however, in-vehicle ETS-related PM2.5 levels can exceed those in residential microenvironments by a factor of 10 or more. Therefore, a mass-balance based methodology for estimating in-vehicle ETS PM2.5 concentration is evaluated. Recommendations are made regarding updating of input data and algorithms related to ETS exposure in the SHEDS-PM model. Inter-individual variability for ETS exposure was quantified. Geographic variability in ETS exposure was quantified based on the varying prevalence of smokers in five selected locations in the U.S. PMID:21039708

  17. Assessment of interindividual and geographic variability in human exposure to fine particulate matter in environmental tobacco smoke.

    PubMed

    Cao, Ye; Frey, H Christopher

    2011-04-01

    Environmental tobacco smoke (ETS) is a major contributor to indoor human exposures to fine particulate matter of 2.5 μm or smaller (PM(2.5) ). The Stochastic Human Exposure and Dose Simulation for Particulate Matter (SHEDS-PM) Model developed by the U.S. Environmental Protection Agency estimates distributions of outdoor and indoor PM(2.5) exposure for a specified population based on ambient concentrations and indoor emissions sources. A critical assessment was conducted of the methodology and data used in SHEDS-PM for estimation of indoor exposure to ETS. For the residential microenvironment, SHEDS uses a mass-balance approach, which is comparable to best practices. The default inputs in SHEDS-PM were reviewed and more recent and extensive data sources were identified. Sensitivity analysis was used to determine which inputs should be prioritized for updating. Data regarding the proportion of smokers and "other smokers" and cigarette emission rate were found to be important. SHEDS-PM does not currently account for in-vehicle ETS exposure; however, in-vehicle ETS-related PM(2.5) levels can exceed those in residential microenvironments by a factor of 10 or more. Therefore, a mass-balance-based methodology for estimating in-vehicle ETS PM(2.5) concentration is evaluated. Recommendations are made regarding updating of input data and algorithms related to ETS exposure in the SHEDS-PM model. Interindividual variability for ETS exposure was quantified. Geographic variability in ETS exposure was quantified based on the varying prevalence of smokers in five selected locations in the United States. © 2010 Society for Risk Analysis.

  18. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter Emitted from Burning Kerosene, Liquid Petroleum Gas, and Wood Fuels in Household Cookstoves

    EPA Science Inventory

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10%...

  19. Predictors of indoor fine particulate matter in infants' bedrooms in Denmark.

    PubMed

    Raaschou-Nielsen, Ole; Sørensen, Mette; Hertel, Ole; Chawes, Bo L K; Vissing, Nadja; Bønnelykke, Klaus; Bisgaard, Hans

    2011-01-01

    Particulate matter (PM) in ambient air is responsible for adverse health effects in adults and children. Relatively little is known about the concentrations, sources and health effects of PM in indoor air. To identify sources of fine PM in infants' bedrooms. We conducted 1122 measurements of fine PM (PM(2.5) and black smoke) in the bedrooms of 389 infants and registered indoor activities and characteristics of the house. We used mixed models to identify and quantify associations between predictors and concentrations. The concentration of PM(2.5) was 2.8 times (95% confidence interval [CI], 1.4-5.5 times) higher in houses where people smoked; the concentration increased by 19% (95% CI, 15-23%) per doubling of the amount of tobacco smoked and decreased by 16% (95% CI, 9-27%) per 5-m increase in the distance between the smoking area and the infant's bedroom. Frying without a range hood was associated with a 32% (95% CI, 12-54%) higher PM(2.5) concentration per time per day, whereas frying with use of a range hood did not increase the concentration in the infant's bedroom. Use of a fireplace, stove, candles or vacuum-cleaner, interior rebuilding or renovation, local traffic, inner city residence and cold season increased the fine PM concentration. Open windows decreased the PM(2.5) concentration in homes with smokers but increased the concentration in non-smoking homes. We identified several sources of fine PM in infants' bedrooms. The concentrations can be reduced by use of a range hood for frying, by not using candles, a fireplace or a stove, by increasing the distance between the bedroom and the smoking area and by opening windows in houses of smokers. Smoking is a strong predictor of fine PM in infants' bedrooms and should be avoided. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Evaluating the effectiveness of vegetative environmental buffers in mitigating particulate matter emissions from poultry houses

    USDA-ARS?s Scientific Manuscript database

    Particulate Matter (PM) emissions from animal operations have been identified as a major air pollutant source with health and environmental impacts. Nearly 600 million broilers are produced annually on the Delmarva Peninsula, making it a hot spot for particulate matter emissions from poultry houses....

  1. Particulate emissions from a mid-latitude prescribed chaparral fire

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggin, Philip J.; Brass, James A.; Ambrosia, Vincent G.

    1988-01-01

    Particulate emission from a 400-acre prescribed chaparral fire in the San Dimas Experimental Forest was investigated by collecting smoke aerosol on Teflon and glass-fiber filters from a helicopter, and using SEM and EDAX to study the features of the particles. Aerosol particles ranged in size from about 0.1 to 100 microns, with carbon, oxygen, magnesium, aluminum, silicon, calcium, and iron as the primary elements. The results of ion chromatographic analysis of aerosol-particle extracts (in water-methanol) revealed the presence of significant levels of NO2(-), NO3(-), SO4(2-), Cl(-), PO4(3-), C2O4(2-), Na(+), NH4(+), and K(+). The soluble ionic portion of the aerosol was estimated to be about 2 percent by weight.

  2. Chemical compositions of fine particulate organic matter emitted from Chinese cooking.

    PubMed

    Zhao, Yunliang; Hu, Min; Slanina, Sjaak; Zhang, Yuanhang

    2007-01-01

    Food cooking can be a significant source of atmospheric particulate organic matter. In this study, the chemical composition of particulate organic matter (POM) in PM2.5 emitted from four different Chinese cooking styles were examined by gas chromotography-mass spectrometry (GC-MS). The identified species are consistent in the emissions from different Chinese cooking styles and the quantified compounds account for 5-10% of total POM in PM2.5. The dominant homologue is fatty acids, constituting 73-85% of the quantified compounds. The pattern of n-alkanes and the presence of beta-sitosterol and levoglucosan indicate that vegetables are consumed during Chinese cooking operations. Furthermore, the emissions of different compounds are impacted significantly by the cooking ingredients. The candidates of organic tracers used to describe and distinguish emissions from Chinese cooking in Guangzhou are tetradecanoic acid, hexadecanoic acid, octadecanoic acid, oleic acid, levoglucosan, mannosan, galactosan, nonanal, and lactones. During the sampling period, the relative contribution of Chinese cooking to the mass concentration of atmospheric hexadecanoic acid should be less than 1.3% in Guangzhou.

  3. Total suspended particulate matter emissions at high friction velocities from desert landforms

    NASA Astrophysics Data System (ADS)

    Bacon, Steven N.; McDonald, Eric V.; Amit, Rivka; Enzel, Yehouda; Crouvi, Onn

    2011-09-01

    Most wind erosion studies that characterize dust emission potential measure particulate matter smaller than 10 μm (PM10) for air quality purposes or atmospheric modeling. Because the PM10 size fraction is only a portion of the total range of fine-grained particles potentially emitted from desert landforms, we modified the miniature Portable In Situ Wind Erosion Lab (PI-SWERL) by adding a new instrument to measure total suspended particulate matter (TSP). The modified PI-SWERL is capable of measuring TSP with diameters <500 μm emitted from highly erodible surfaces at friction velocities up to 1.28 m s-1. Undisturbed and artificially disturbed surfaces of six common landforms in the Negev Desert of Israel were studied to evaluate the utility of TSP measurements. These landforms include alluvial fans and plains armored by desert pavements, loessial soils with silt-rich surficial crusts, fluvial loess with biological crusts, and active sand dunes. The landforms differ in character and surface age, thereby exhibiting a wide range of surface covers, soil properties, and soil strengths. Our results indicate that the magnitude of TSP emission is primarily controlled by geomorphic setting and surface characteristics. TSP and PM10 concentrations measured from dust-rich loessial soils were significantly correlated, and TSP emission was best predicted at all sites using PM10 content and bearing capacity. Our results demonstrate that further research is needed to determine correction factors for friction velocities related to erodible, anisotropic surface roughness elements and that the modified PI-SWERL is a promising tool to quantify total potential emission flux from desert landforms.

  4. The relation between past exposure to fine particulate air pollution and prevalent anxiety: observational cohort study.

    PubMed

    Power, Melinda C; Kioumourtzoglou, Marianthi-Anna; Hart, Jaime E; Okereke, Olivia I; Laden, Francine; Weisskopf, Marc G

    2015-03-24

    To determine whether higher past exposure to particulate air pollution is associated with prevalent high symptoms of anxiety. Observational cohort study. Nurses' Health Study. 71,271 women enrolled in the Nurses' Health Study residing throughout the contiguous United States who had valid estimates on exposure to particulate matter for at least one exposure period of interest and data on anxiety symptoms. Meaningfully high symptoms of anxiety, defined as a score of 6 points or greater on the phobic anxiety subscale of the Crown-Crisp index, administered in 2004. The 71,271 eligible women were aged between 57 and 85 years (mean 70 years) at the time of assessment of anxiety symptoms, with a prevalence of high anxiety symptoms of 15%. Exposure to particulate matter was characterized using estimated average exposure to particulate matter <2.5 μm in diameter (PM2.5) and 2.5 to 10 μm in diameter (PM2.5-10) in the one month, three months, six months, one year, and 15 years prior to assessment of anxiety symptoms, and residential distance to the nearest major road two years prior to assessment. Significantly increased odds of high anxiety symptoms were observed with higher exposure to PM2.5 for multiple averaging periods (for example, odds ratio per 10 µg/m(3) increase in prior one month average PM2.5: 1.12, 95% confidence interval 1.06 to 1.19; in prior 12 month average PM2.5: 1.15, 1.06 to 1.26). Models including multiple exposure windows suggested short term averaging periods were more relevant than long term averaging periods. There was no association between anxiety and exposure to PM2.5-10. Residential proximity to major roads was not related to anxiety symptoms in a dose dependent manner. Exposure to fine particulate matter (PM2.5) was associated with high symptoms of anxiety, with more recent exposures potentially more relevant than more distant exposures. Research evaluating whether reductions in exposure to ambient PM2.5 would reduce the population level

  5. Removal of Sulfur from Natural Gas to Reduce Particulate Matter Emission from a Turbine Engine

    NASA Astrophysics Data System (ADS)

    Spang, Brent Loren

    The present work investigates the effect of natural gas fuel sulfur on particulate emissions from stationary gas turbine engines used for electricity generation. Fuel sulfur from standard line gas was scrubbed using a system of fluidized reactor beds containing a specially designed activated carbon purpose built for sulfur absorption. A sulfur injection system using sonic orifices was designed and constructed to inject methyl mercaptan into the scrubbed gas stream at varying concentrations. Using these systems, particulate emissions created by various fuel sulfur levels between 0 and 8.3 ppmv were investigated. Particulate samples were collected from a Capstone C65 microturbine generator system using a Horiba MDLT-1302TA micro dilution tunnel and analyzed using a Horiba MEXA-1370PM particulate analyzer. In addition, ambient air samples were collected to determine incoming particulate levels in the combustion air. The Capstone C65 engine air filter was also tested for particulate removal efficiency by sampling downstream of the filter. To further differentiate the particulate entering the engine in the combustion air from particulate being emitted from the exhaust stack, two high efficiency HEPA filters were installed to eliminate a large portion of incoming particulate. Variable fuel sulfur testing showed that there was a strong correlation between total particulate emission factor and fuel sulfur concentration. Using eleven variable sulfur tests, it was determined that an increase of 1 ppmv fuel sulfur will produce an increase of approximately 3.2 microg/m3 total particulate. Also, the correlation also predicted that, for this particular engine, the total particulate emission factor for zero fuel sulfur was approximately 19.1 microg/m3. With the EC and OC data removed, the correlation became 3.1 microg/m3 of sulfur particulate produced for each ppmv of fuel sulfur. The correlation also predicted that with no fuel sulfur present, 6.6 microg/m3 of particulate will

  6. Characterizing particulate polycyclic aromatic hydrocarbon emissions from diesel vehicles using a portable emissions measurement system.

    PubMed

    Zheng, Xuan; Wu, Ye; Zhang, Shaojun; Hu, Jingnan; Zhang, K Max; Li, Zhenhua; He, Liqiang; Hao, Jiming

    2017-08-30

    Particulate polycyclic aromatic hydrocarbons (p-PAHs) emitted from diesel vehicles are of concern because of their significant health impacts. Laboratory tests, road tunnel and roadside experiments have been conducted to measure p-PAH emissions. While providing valuable information, these methods have limited capabilities of characterizing p-PAH emissions either from individual vehicles or under real-world conditions. We employed a portable emissions measurement (PEMS) to measure real-world emission factors of priority p-PAHs for diesel vehicles representative of an array of emission control technologies. The results indicated over 80% reduction in p-PAH emission factors comparing the China V and China II emission standard groups (113 μg kg(-1) vs. 733 μg kg(-1)). The toxicity abatement in terms of Benzo[a]pyrene equivalent emissions was substantial because of the large reductions in highly toxic components. By assessing real traffic conditions, the p-PAH emission factors on freeways were lower than on local roads by 52% ± 24%. A significant correlation (R(2)~0.85) between the p-PAH and black carbon emissions was identified with a mass ratio of approximately 1/2000. A literature review indicated that diesel p-PAH emission factors varied widely by engine technology, measurement methods and conditions, and the molecular diagnostic ratio method for source apportionment should be used with great caution.

  7. Effects of a changing climate on summertime fine particulate matter levels in the eastern U.S.

    NASA Astrophysics Data System (ADS)

    Day, Melissa C.; Pandis, Spyros N.

    2015-06-01

    The chemical transport model PMCAMx is used to examine the effect of climate change on fine (under 2.5 µms) particulate matter (PM2.5) during the summer in the eastern United States. Meteorology from 10 years in the 1990s (present) and 10 years in the 2050s (future) based on the Intergovernmental Panel on Climate Change A2 scenario is used. Anthropogenic pollutant emissions are assumed to remain constant, while biogenic emissions are climate sensitive and, depending on species, increase between 15 and 27% on average. The predicted changes of PM2.5 are modest (increases of less than 10% on average across the domain) and quite variable in space, ranging from +13% in the Plains to -7% in the Northeast. Variability is driven concurrently by changes in temperature, wind speed, rainfall, and relative humidity, with no single dominant meteorological factor. Sulfate and organic aerosol are responsible for most of the PM2.5 change. The improved treatment of organic aerosol using the volatility basis set does not increase significantly its sensitivity to climate change compared to traditional treatments that neglect the volatility of primary particles and do not simulate the chemical aging processes. Future organic aerosol is predicted to be more oxidized due to increases of its secondary biogenic and anthropogenic components. These results suggest that the effects of planned and expected emission anthropogenic emission controls will be more important than those of climate change for PM2.5 concentrations in 2050. Maximum daily 8 h average ozone increases by 5% on average are predicted, with a marked increase in the Northeast, Southeast, and Midwest.

  8. [Concentrations of fine particulate matters and ultrafine particles and influenced factors during winter in an area of Beijing].

    PubMed

    Ni, Yang; Tu, Xing-ying; Zhu, Yi-dan; Guo, Xin-biao; Deng, Fu-rong

    2014-06-18

    To study the concentrations of fine particulate matters and ultrafine particles and influenced factors during winter in an area of Beijing. Real-time monitoring of particles' mass and number concentrations were conducted in an area of Beijing from February 7(th) to 27(th), 2013. At the same time, the meteorological data were also collected from the Beijing meteorological website. Differences of the particles' mass and number concentrations during different periods were analyzed using Mann-Whitney U test. Meanwhile, the influenced factors were also analyzed. The mean concentrations of fine particulate matters and ultrafine particles were (157.2 ± 142.8) μg/m³ and (25 018 ± 9 309) particles/cm³, respectively. The particles' number and mass concentrations in haze days were 1.27 times and 2.91 times higher than those in non-haze days, respectively. The mass concentrations of fine particulate matters in the self-monitoring site were higher than those in the nearest central monitoring sites, and the hourly-average concentrations of particles were significantly consistent with those at the commuter times. Meanwhile, the setting off of fireworks/firecrackers during the Spring Festival could lead to short-term increases of the particles' number and mass concentrations. When the wind speed was low and the related humidity was high, the concentrations of particulate matters were relatively high, and the mass concentrations of fine particulate matters were lagged about 1-2 d. The level of the particulate matters in this area was high. Heavy traffic, setting off of fireworks/firecrackers and meteorological factors may be some of the main factors affecting the concentrations of the particulate matters in this area. Among those factors, the effect of setting off of fireworks/firecrackers didn't last long and the effect of the meteorological factors had a hysteresis effect.

  9. Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment

    SciTech Connect

    Philip, Sajeev; Martin, Randall V.; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S.; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G.; Bittman, Shabtai; Macdonald, Douglas J.

    2014-10-24

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004–2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m3), secondary inorganic aerosol (11.1 ± 5.0 μg/m3), and mineral dust (11.1 ± 7.9 μg/m3). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m3 over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m3) could be almost as large as from fossil fuel combustion sources (17 μg/m3). In conclusion, these estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  10. Effects of wind direction on coarse and fine particulate matter concentrations in southeast Kansas.

    PubMed

    Guerra, Sergio A; Lane, Dennis D; Marotz, Glen A; Carter, Ray E; Hohl, Carrie M; Baldauf, Richard W

    2006-11-01

    Field data for coarse particulate matter ([PM] PM10) and fine particulate matter (PM2.5) were collected at selected sites in Southeast Kansas from March 1999 to October 2000, using portable MiniVol particulate samplers. The purpose was to assess the influence on air quality of four industrial facilities that burn hazardous waste in the area located in the communities of Chanute, Independence, Fredonia, and Coffeyville. Both spatial and temporal variation were observed in the data. Variation because of sampling site was found to be statistically significant for PM10 but not for PM2.5. PM10 concentrations were typically slightly higher at sites located within the four study communities than at background sites. Sampling sites were located north and south of the four targeted sources to provide upwind and downwind monitoring pairs. No statistically significant differences were found between upwind and downwind samples for either PM10 or PM2.5, indicating that the targeted sources did not contribute significantly to PM concentrations. Wind direction can frequently contribute to temporal variation in air pollutant concentrations and was investigated in this study. Sampling days were divided into four classifications: predominantly south winds, predominantly north winds, calm/variable winds, and winds from other directions. The effect of wind direction was found to be statistically significant for both PM10 and PM2.5. For both size ranges, PM concentrations were typically highest on days with predominantly south winds; days with calm/variable winds generally produced higher concentrations than did those with predominantly north winds or those with winds from "other" directions. The significant effect of wind direction suggests that regional sources may exert a large influence on PM concentrations in the area.

  11. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    PubMed

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  12. Residential Proximity to Major Roadways, Fine Particulate Matter, and Hepatic Steatosis: The Framingham Heart Study.

    PubMed

    Li, Wenyuan; Dorans, Kirsten S; Wilker, Elissa H; Rice, Mary B; Long, Michelle T; Schwartz, Joel; Coull, Brent A; Koutrakis, Petros; Gold, Diane R; Fox, Caroline S; Mittleman, Murray A

    2017-10-01

    We examined associations between ambient air pollution and hepatic steatosis among 2,513 participants from the Framingham (Massachusetts) Offspring Study and Third Generation Cohort who underwent a computed tomography scan (2002-2005), after excluding men who reported >21 drinks/week and women who reported >14 drinks/week. We calculated each participant's residential-based distance to a major roadway and used a spatiotemporal model to estimate the annual mean concentrations of fine particulate matter. Liver attenuation was measured by computed tomography, and liver-to-phantom ratio (LPR) was calculated. Lower values of LPR represent more liver fat. We estimated differences in continuous LPR using linear regression models and prevalence ratios for presence of hepatic steatosis (LPR ≤ 0.33) using generalized linear models, adjusting for demographics, individual and area-level measures of socioeconomic position, and clinical and lifestyle factors. Participants who lived 58 m (25th percentile) from major roadways had lower LPR (β = -0.003, 95% confidence interval: -0.006, -0.001) and higher prevalence of hepatic steatosis (prevalence ratio = 1.16, 95% confidence interval: 1.05, 1.28) than those who lived 416 m (75th percentile) away. The 2003 annual average fine particulate matter concentration was not associated with liver-fat measurements. Our findings suggest that living closer to major roadways was associated with more liver fat. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings

    PubMed Central

    Miller, Shelly L.; Facciola, Nick A.; Toohey, Darin; Zhai, John

    2017-01-01

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055–0.1 μm) and fine (0.1–0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design. PMID:28134841

  14. Fine particulate matter and carbon monoxide exposure concentrations in urban street transport microenvironments

    NASA Astrophysics Data System (ADS)

    Kaur, S.; Nieuwenhuijsen, M. J.; Colvile, R. N.

    Personal exposure studies are crucial alongside microenvironment and ambient studies in order to get a better understanding of the health risks posed by fine particulate matter and carbon monoxide in the urban transport microenvironment and for making informed decisions to manage and reduce the health risks. Studies specifically assessing the PM 2.5, ultrafine particle count and carbon monoxide personal exposure concentrations of adults in an urban transport microenvironment have steadily increased in number over the last decade. However, no recent collective summary is available, particularly one which also considers ultrafine particles; therefore, we present a review of the personal exposure concentration studies for the above named pollutants on different modes of surface transportation (walking, cycling, bus, car and taxi) in the urban transport microenvironment. Comparisons between personal exposure measurements and concentrations recorded at fixed monitoring sites are considered in addition to the factors influencing personal exposure in the transport microenvironment. In general, the exposure studies examined revealed pedestrians and cyclists to experience lower fine particulate matter and CO exposure concentrations in comparison to those inside vehicles—the vehicle shell provided no protection to the passengers. Proximity to the pollutant sources had a significant impact on exposure concentration levels experienced, consequently individuals should be encouraged to use back street routes. Fixed monitoring stations were found to be relatively poor predictors of CO and PM 2.5 exposure concentration levels experienced by individuals in the urban transport microenvironment. Although the mode of transport, traffic and meteorology parameters were commonly identified as significant factors influencing exposure concentrations to the different pollutants under examination, a large amount of the exposure concentration variation in the exposure studies remained

  15. Fine particulate matter estimated by mathematical model and hospitalizations for pneumonia and asthma in children

    PubMed Central

    César, Ana Cristina Gobbo; Nascimento, Luiz Fernando Costa; Mantovani, Katia Cristina Cota; Vieira, Luciana Cristina Pompeo

    2016-01-01

    Abstract Objective: To estimate the association between exposure to fine particulate matter with an aerodynamic diameter <2.5 microns (PM2.5) and hospitalizations for pneumonia and asthma in children. Methods: An ecological study of time series was performed, with daily indicators of hospitalization for pneumonia and asthma in children up to 10 years of age, living in Taubaté (SP) and estimated concentrations of PM2.5, between August 2011 and July 2012. A generalized additive model of Poisson regression was used to estimate the relative risk, with lag zero up to five days after exposure; the single pollutant model was adjusted by the apparent temperature, as defined from the temperature and relative air humidity, seasonality and weekday. Results: The values of the relative risks for hospitalization for pneumonia and asthma were significant for lag 0 (RR=1.051, 95%CI; 1.016 to 1.088); lag 2 (RR=1.066, 95%CI: 1.023 to 1.113); lag 3 (RR=1.053, 95%CI: 1.015 to 1.092); lag 4 (RR=1.043, 95%CI: 1.004 to 1.088) and lag 5 (RR=1.061, 95%CI: 1.018 to 1.106). The increase of 5mcg/m3 in PM2.5 contributes to increase the relative risk for hospitalization from 20.3 to 38.4 percentage points; however, the reduction of 5µg/m3 in PM2.5 concentration results in 38 fewer hospital admissions. Conclusions: Exposure to PM2.5 was associated with hospitalizations for pneumonia and asthma in children younger than 10 years of age, showing the role of fine particulate matter in child health and providing subsidies for the implementation of preventive measures to decrease these outcomes. PMID:26522821

  16. Assessing the impact of fine particulate matter (PM2.5) on ...

    EPA Pesticide Factsheets

    An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate concentrations. The general approach for research designed to analyze health impacts of exposure to PM2.5 is to use concentration data from the nearest ground-based air quality monitor(s), which typically have missing data on the temporal and spatial scales due to filter sampling schedules and monitor placement, respectively. To circumvent these data gaps, this research project uses a Hierarchical Bayesian Model (HBM) to generate estimates of PM2.5 in areas with and without air quality monitors by combining PM2.5 concentrations measured by monitors, PM2.5 concentration estimates derived from satellite aerosol optical depth (AOD) data, and Community-Multiscale Air Quality (CMAQ) model predictions of PM2.5 concentrations. This methodology represents a substantial step forward in the approach for developing representative PM2.5 concentration datasets to correlate with inpatient hospitalizations and emergency room visits data for asthma and inpatient hospitalizations for myocardial infarction (MI) and heart failure (HF) using case-crossover analysis. There were two key objective of this current study. First was to show that the inputs to the HBM could be expanded to include AOD data in addition t

  17. Characterization of visibility impacts related to fine particulate matter in Canada.

    PubMed

    McDonald, Karen; Shepherd, Marjorie

    2004-09-01

    Canada has recently established standards for the management of particulate matter (PM) air quality. National networks currently measure PM mass concentrations and chemical speciation. Methods used in the U.S. IMPROVE network are applied to the 1994--2000 Canadian fine PM data to obtain a regional reconstruction of the visibility based on particle composition. Nationally, the greatest light extinction occurs in the Windsor-Quebec City corridor. Variations in the dominant chemical species responsible for the reduction in visibility are presented for regions across the country. In most regions, sulfate and nitrate contribute most greatly to reduced visibility. The visibility implications of achieving the Canada-Wide Standard (CWS) across the country are evaluated, with the greatest improvement in visibility associated with achieving the CWS in southern Ontario. Elsewhere in the country, achieving the CWS will actually result in deteriorating air quality. Improving current estimates of visibility requires higher spatially and temporally resolved measurements of organic and elemental carbon fractions and particulate nitrate.

  18. 2006 critical review - health effects of fine particulate air pollution: lines that connect

    SciTech Connect

    C. Arden Pope III; Douglas W. Dockery

    2006-06-15

    Efforts to understand and mitigate the health effects of particulate matter (PM) air pollution have a rich and interesting history. This review focuses on six substantial lines of research that have been pursued since 1997 that have helped elucidate our understanding about the effects of PM on human health. There has been substantial progress in the evaluation of PM health effects at different time-scales of exposure and in the exploration of the shape of the concentration-response function. There has also been emerging evidence of PM-related cardiovascular health effects and growing knowledge regarding interconnected general pathophysiological pathways that link PM exposure with cardiopulmonary morbidity and mortality. Despite important gaps in scientific knowledge and continued reasons for some skepticism, a comprehensive evaluation of the research findings provides persuasive evidence that exposure to fine particulate air pollution has adverse effects on cardiopulmonary health. Although much of this research has been motivated by environmental public health policy, these results have important scientific, medical, and public health implications that are broader than debates over legally mandated air quality standards. 502 refs., 4 figs., 7 tabs.

  19. Application of satellite remote-sensing data for source analysis of fine particulate matter transport events.

    PubMed

    Engel-Cox, Jill A; Young, Gregory S; Hoff, Raymond M

    2005-09-01

    Satellite sensors have provided new datasets for monitoring regional and urban air quality. Satellite sensors provide comprehensive geospatial information on air quality with both qualitative imagery and quantitative data, such as aerosol optical depth. Yet there has been limited application of these new datasets in the study of air pollutant sources relevant to public policy. One promising approach to more directly link satellite sensor data to air quality policy is to integrate satellite sensor data with air quality parameters and models. This paper presents a visualization technique to integrate satellite sensor data, ground-based data, and back trajectory analysis relevant to a new rule concerning the transport of particulate matter across state boundaries. Overlaying satellite aerosol optical depth data and back trajectories in the days leading up to a known fine particulate matter with an aerodynamic diameter of <2.5 microm (PM2.5) event may indicate whether transport or local sources appear to be most responsible for high PM2.5 levels in a certain location at a certain time. Events in five cities in the United States are presented as case studies. This type of analysis can be used to help understand the source locations of pollutants during specific events and to support regulatory compliance decisions in cases of long distance transport.

  20. Geographic differences in inter-individual variability of human exposure to fine particulate matter.

    PubMed

    Cao, Ye; Frey, H Christopher

    2011-10-01

    Human exposure to fine particulate matter (PM(2.5)) is associated with short and long term adverse health effects. The amount of ambient PM(2.5) that infiltrates indoor locations such as residences depends on air exchange rate (ACH), penetration factor, and deposition rate. ACH varies by climate zone and thus by geographic location. Geographic variability in the ratio of exposure to ambient concentration is estimated based on comparison of three modeling domains in different climate zones: (1) New York City; (2) Harris County in Texas, and (3) a six-county domain along the I-40 corridor in North Carolina. Inter-individual variability in exposure to PM(2.5) was estimated using the Stochastic Human Exposure and Dose Simulation for Particulate Matter (SHEDS-PM) model. ACH is distinguishably the most sensitive input for both ambient and nonambient exposure to PM(2.5). High ACH leads to high ambient exposure indoors but lower non-ambient exposure, and vice versa. For summer, the average ratio of exposure to ambient concentration varies by 13 percent among the selected domains, mainly because of differences in housing stock, climate zone, and seasonal ACH. High daily average exposures for some individuals are mainly caused by non-ambient exposure to smoking or cooking. The implications of these results for interpretation of epidemiological studies are discussed.

  1. 40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... = Weighted mass particulate, grams per brake horsepower-hour. (2) PC = Mass particulate measured during the cold-start test, grams. (3) PH = Mass particulate measured during the hot-start test, grams. (4) BHP-hr..., grams per test phase. (PH = Pmass for the hot-start test and PC = Pmass for the cold-start test....

  2. 40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... = Weighted mass particulate, grams per brake horsepower-hour. (2) PC = Mass particulate measured during the cold-start test, grams. (3) PH = Mass particulate measured during the hot-start test, grams. (4) BHP-hr..., grams per test phase. (PH = Pmass for the hot-start test and PC = Pmass for the cold-start test....

  3. 40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... = Weighted mass particulate, grams per brake horsepower-hour. (2) PC = Mass particulate measured during the cold-start test, grams. (3) PH = Mass particulate measured during the hot-start test, grams. (4) BHP-hr..., grams per test phase. (PH = Pmass for the hot-start test and PC = Pmass for the cold-start test....

  4. 40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... = Weighted mass particulate, grams per brake horsepower-hour. (2) PC = Mass particulate measured during the cold-start test, grams. (3) PH = Mass particulate measured during the hot-start test, grams. (4) BHP-hr..., grams per test phase. (PH = Pmass for the hot-start test and PC = Pmass for the cold-start test....

  5. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    SciTech Connect

    Dr. Charles E. Kolb Dr. Douglas R. Worsnop Dr. Manjula R. Canagaratna Dr. Scott C. Herndon Dr. John T. Jayne Dr. W. Berk Knighton Dr. Timothy B. Onasch Dr. Ezra C. Wood Dr. Miguel Zavala

    2008-03-31

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen

  6. Particulate emissions from U.S. Department of Defense artillery backblast testing.

    PubMed

    Gillies, John A; Kuhns, Hampden; Engelbrecht, Johann P; Uppapalli, Sebastian; Etyemezian, Vicken; Nikolich, George

    2007-05-01

    There is a dearth of information on dust emissions from sources that are unique to the U.S. Department of Defense testing and training activities. However, accurate emissions factors are needed for these sources so that military installations can prepare accurate particulate matter (PM) emission inventories. One such source, coarse and fine PM (PM10 and PM2.5) emissions from artillery backblast testing on improved gun positions, was characterized at the Yuma Proving Ground near Yuma, AZ, in October 2005. Fugitive emissions are created by the shockwave from artillery pieces, which ejects dust from the surface on which the artillery is resting. Other contributions of PM can be attributed to the combustion of the propellants. For a 155-mm howitzer firing a range of propellant charges or zones, amounts of emitted PM10 ranged from -19 g of PM10 per firing event for a zone 1 charge to 92 g of PM10 per firing event for a zone 5. The corresponding rates for PM2.5 were approximately 9 g of PM2.5 and 49 g of PM2.5 per firing. The average measured emission rates for PM1o and PM2.5 appear to scale with the zone charge value. The measurements show that the estimated annual contributions of PM10 (52.2 t) and PM2.5 (28.5 t) from artillery backblast are insignificant in the context of the 2002 U.S. Environment Protection Agency (EPA) PM emission inventory. Using national-level activity data for artillery fire, the most conservative estimate is that backblast would contribute the equivalent of 5 x 10(-4) % and 1.6 x 10(-3)% of the annual total PM10 and PM2.5 fugitive dust contributions, respectively, based on 2002 EPA inventory data.

  7. Final report for measurement of primary particulate matter emissions from light-duty motor vehicles

    SciTech Connect

    Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

    1998-12-31

    This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

  8. Preterm birth associated with maternal fine particulate matter exposure: A global, regional and national assessment.

    PubMed

    Malley, Christopher S; Kuylenstierna, Johan C I; Vallack, Harry W; Henze, Daven K; Blencowe, Hannah; Ashmore, Mike R

    2017-04-01

    Reduction of preterm births (<37 completed weeks of gestation) would substantially reduce neonatal and infant mortality, and deleterious health effects in survivors. Maternal fine particulate matter (PM2.5) exposure has been identified as a possible risk factor contributing to preterm birth. The aim of this study was to produce the first estimates of ambient PM2.5-associated preterm births for 183 individual countries and globally. To do this, national, population-weighted, annual average ambient PM2.5 concentration, preterm birth rate and number of livebirths were combined to calculate the number of PM2.5-associated preterm births in 2010 for 183 countries. Uncertainty was quantified using Monte-Carlo simulations, and analyses were undertaken to investigate the sensitivity of PM2.5-associated preterm birth estimates to assumptions about the shape of the concentration-response function at low and high PM2.5 exposures, inclusion of provider-initiated preterm births, and exposure to indoor air pollution. Globally, in 2010, the number of PM2.5-associated preterm births was estimated as 2.7 million (1.8-3.5 million, 18% (12-24%) of total preterm births globally) with a low concentration cut-off (LCC) set at 10μgm(-3), and 3.4 million (2.4-4.2 million, 23% (16-28%)) with a LCC of 4.3μgm(-3). South and East Asia, North Africa/Middle East and West sub-Saharan Africa had the largest contribution to the global total, and the largest percentage of preterm births associated with PM2.5. Sensitivity analyses showed that PM2.5-associated preterm birth estimates were 24% lower when provider-initiated preterm births were excluded, 38-51% lower when risk was confined to the PM2.5 exposure range in the studies used to derive the effect estimate, and 56% lower when mothers who live in households that cook with solid fuels (and whose personal PM2.5 exposure is likely dominated by indoor air pollution) were excluded. The concentration-response function applied here derives from a

  9. Air quality modelling : effects of emission reductions on concentrations of particulate matter

    NASA Astrophysics Data System (ADS)

    Girault, L.; Roustan, Y.; Seigneur, C.

    2012-04-01

    Atmospheric particulate matter (PM) has adverse effects on human health. PM acts primarily on respiratory and cardiovascular (due to their small size they can penetrate deep into the lungs), but they are also known effects on the skin. In France, the "Particulate Plan" - developed as part of the second National Environmental Health Plan - aims to reduce by 30% fine PM (noted PM2.5because these particles have an aerodynamic diameter of 2.5 micrometers or less) by 2015. A recent study by Airparif (the organization in charge of monitoring air quality in the Paris region, the Île-de-France) and LSCE (Laboratory of climate and the environmental science, France) has allowed, through a large measurement campaign conducted between 2009 and 2011, to quantify the proportion of PM produced in Île-de-France and those transported from the surrounding areas. The study by numerical modelling of air pollution presented here complements these results by investigating future emission scenarios. The CEREA develops and uses an air quality model which simulates the concentrations of pollutants from an emission inventory, meteorological data and boundary conditions of the area studied. After an evaluation of simulation results for the year 2005, the model is used to assess the effects of various scenarios of reductions in NOx and NH3 emissions on the concentrations of PM2.5in Île-de-France. The effects of the controls on the local pollution and the long-range pollution are considered separately. For each emitted species, three scenarios of emission reductions are identified: an emission reduction at the local level (Île-de-France), a reduction at the regional scale (France) and a reduction at the continental scale (across Europe). In each case, a 15% reduction is applied. The comparison of the results allows us to assess the respective contributions of local emissions and long-range transport to PM2.5 concentrations. For instance, the reduction of NOx emissions in Europe leads to a

  10. Far infrared emission and portable testing device of fine powders.

    PubMed

    Liang, Jinsheng; Meng, Junping; Ding, Yan; Wang, Peipeng; Gan, Kun

    2011-11-01

    In order for industrial and mining enterprises to fast detect the quality of fine mineral powders with far infrared emission, a simple testing model was set up according to the relationship between the emission intensity of powders and their surface temperature. The corresponding testing device was designed and assembled into three parts containing Constant Temperature Heating Part, Temperature Measuring Part and Sample Loading Part. By using the tourmaline mineral powders with far infrared emission as the research object and combining Fourier transform infrared spectroscopy, the calibration for the testing device was carried out. The results showed that the far infrared emission intensity of the tourmaline powders with different mining area and particle size could be judged. The testing results exhibited correct values when compared with those from FTIR measurements.

  11. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India

    PubMed Central

    Prasannavenkatesh, Ramachandran; Andimuthu, Ramachandran; Kandasamy, Palanivelu; Rajadurai, Geetha; Subash Kumar, Divya; Radhapriya, Parthasarathy; Ponnusamy, Malini

    2015-01-01

    Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution. PMID:26258167

  12. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India.

    PubMed

    Prasannavenkatesh, Ramachandran; Andimuthu, Ramachandran; Kandasamy, Palanivelu; Rajadurai, Geetha; Kumar, Divya Subash; Radhapriya, Parthasarathy; Ponnusamy, Malini

    2015-01-01

    Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013-January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  13. Characterization of the Particulate Emissions from the BP ...

    EPA Pesticide Factsheets

    Opportunistic particle samples were gathered from the sail of a tethered aerostat during at-sea plume sampling of the purposely-burned surface oil during the BP Deepwater Horizon disaster in the Gulf of Mexico. Particles were analyzed for polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), elemental carbon (EC), metals, and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs). Emission factors were calculated using previous sampling values of background-adjusted CO2 and particulate matter (PM)-bound C. The mean of five thermal-optical analyses indicated that the burned crude oil particulate matter was 93% carbon (w/w) with the predominance being refractory elemental carbon (82% w/w) on average. PAHs accounted for roughly 60 ug/g of the PM mass or 4.5 mg/kg oil burned, at least an order of magnitude less than earlier laboratory based studies. Microscopy indicates that the soot from the in situ oil burns is distinct from more common soot by its aggregate size, primary particle size, and nanostructure within the primary particles. The PCDD/PCDF concentration of the PM was 1.5 to 3.3 ng toxic equivalency (TEQ)/kg PM sampled, about 10-fold lower than from a previous dedicated gas/solid sample, indicating loss of small particle-bound and more volatile PCDD/PCDF congeners through the aerostat sail. This work presents an analysis of smoke particles opportunistically caught during the in situ surface oil burns during the 2010 BP Deepwater Horizon di

  14. Characterization of the Particulate Emissions from the BP ...

    EPA Pesticide Factsheets

    Opportunistic particle samples were gathered from the sail of a tethered aerostat during at-sea plume sampling of the purposely-burned surface oil during the BP Deepwater Horizon disaster in the Gulf of Mexico. Particles were analyzed for polycyclic aromatic hydrocarbons (PAHs), organic carbon (OC), elemental carbon (EC), metals, and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs). Emission factors were calculated using previous sampling values of background-adjusted CO2 and particulate matter (PM)-bound C. The mean of five thermal-optical analyses indicated that the burned crude oil particulate matter was 93% carbon (w/w) with the predominance being refractory elemental carbon (82% w/w) on average. PAHs accounted for roughly 60 ug/g of the PM mass or 4.5 mg/kg oil burned, at least an order of magnitude less than earlier laboratory based studies. Microscopy indicates that the soot from the in situ oil burns is distinct from more common soot by its aggregate size, primary particle size, and nanostructure within the primary particles. The PCDD/PCDF concentration of the PM was 1.5 to 3.3 ng toxic equivalency (TEQ)/kg PM sampled, about 10-fold lower than from a previous dedicated gas/solid sample, indicating loss of small particle-bound and more volatile PCDD/PCDF congeners through the aerostat sail. This work presents an analysis of smoke particles opportunistically caught during the in situ surface oil burns during the 2010 BP Deepwater Horizon di

  15. Fine particulate matter source apportionment for the Chemical speciation Trends Network site at Birmingham, Alabama, using Positive Matrix Factorization.

    PubMed

    Baumann, Karsten; Jayanty, R K M; Flanagan, James B

    2008-01-01

    The Positive Matrix Factorization (PMF) receptor model version 1.1 was used with data from the fine particulate matter (PM2.5) Chemical Speciation Trends Network (STN) to estimate source contributions to ambient PM2.5 in a highly industrialized urban setting in the southeastern United States. Model results consistently resolved 10 factors that are interpreted as two secondary, five industrial, one motor vehicle, one road dust, and one biomass burning sources. The STN dataset is generally not corrected for field blank levels, which are significant in the case of organic carbon (OC). Estimation of primary OC using the elemental carbon (EC) tracer method applied on a seasonal basis significantly improved the model's performance. Uniform increase of input data uncertainty and exclusion of a few outlier samples (associated with high potassium) further improved the model results. However, it was found that most PMF factors did not cleanly represent single source types and instead are "contaminated" by other sources, a situation that might be improved by controlling rotational ambiguity within the model. Secondary particulate matter formed by atmospheric processes, such as sulfate and secondary OC, contribute the majority of ambient PM2.5 and exhibit strong seasonality (37 +/- 10% winter vs. 55 +/- 16% summer average). Motor vehicle emissions constitute the biggest primary PM2.5 mass contribution with almost 25 +/- 2% long-term average and winter maximum of 29 +/- 11%. PM2.5 contributions from the five identified industrial sources vary little with season and average 14 +/- 1.3%. In summary, this study demonstrates the utility of the EC tracer method to effectively blank-correct the OC concentrations in the STN dataset. In addition, examination of the effect of input uncertainty estimates on model results indicates that the estimated uncertainties currently being provided with the STN data may be somewhat lower than the levels needed for optimum modeling results.

  16. Analysis of trace elements and ions in ambient fine particulate matter at three elementary schools in Ohio.

    PubMed

    John, Kuruvilla; Karnae, Saritha; Crist, Kevin; Kim, Myoungwoo; Kulkarni, Amol

    2007-04-01

    The results from a chemical characterization study of fine particulate matter (PM2.5) measured at three elementary schools in Central and Southeast Ohio is presented here. PM2.5 aerosol samples were collected from outdoor monitors and indoor samplers at each monitoring location during the period of February 1, 1999, through August 31, 2000. The locations included a rural elementary school in Athens, OH, and two urban schools within Columbus, OH. The trace metal and ionic concentrations in the collected samples were analyzed using an X-ray fluorescence spectrophotometer and ion chromatography unit, respectively. Sulfate ion was found to be the largest component present in the samples at all three of the sites. Other abundant components included nitrate, chloride, ammonium, and sodium ions, as well as calcium, silicon, and iron. The average PM2.5 concentrations showed similar temporal variations among the three sites within the study region. PM2.5 and its major component, sulfate ion, showed strong seasonal variations with maximum concentrations observed during the summer at all three of the sites. The indoor environment was found to be more contaminated during the spring months (March through May) at New Albany (a suburb of Columbus, OH) and East Athens (rural Ohio area). Potential source contribution function analysis showed that particulate matter levels at the monitoring sites were affected by transport from adjoining urban areas and industrial complexes located along the Ohio River Valley. A preliminary outdoor source apportionment using the principal component analysis (PCA) technique was performed. The results from the PCA suggest that the study region was primarily impacted by industrial, fossil fuel combustion, and geological sources. The 2002 emissions inventory data for PM2.5 compiled by Ohio Environmental Protection Agency also showed impacts of similar source types, and this was used to validate the PCA analysis.

  17. The Southeastern Aerosol Research and Characterization Study, Part 3: Continuous measurements of fine particulate matter mass and composition

    SciTech Connect

    Edgerton, E.S.; Hartsell, B.E.; Saylor, R.D.; Jansen, J.J.; Hansen, D.A.; Hidy, G.M.

    2006-09-15

    Deployment of continuous analyzers in the Southeastern Aerosol Research and Characterization Study (SEARCH) network began in 1998 and continues today as new technologies are developed. Measurement of fine particulate matter (PM2.5) mass is performed using a dried, 30 {sup o}C tapered element oscillating microbalance (TEOM). TEOM measurements are complemented by observations of light scattering by nephelometry. Measurements of major constituents include: (1) SO{sub 4}{sup 2-} via reduction to SO{sub 2}; (2) NH{sub 4}{sup +} and NO{sub 3}{sup -} via respective catalytic oxidation and reduction to NO, (3) black carbon (BC) by optical absorption,(4) total carbon by combustion to CO{sup 2}, and (5) organic carbon by difference between the latter two measurements. Several illustrative examples of continuous data from the SEARCH network are presented. A distinctive composite annual average diurnal pattern is observed for PM2.5 mass, nitrate, and BC, likely indicating the influence of traffic-related emissions, growth, and break up of the boundary layer and formation of ammonium nitrate. Examination of PM2.5 components indicates the need to better understand the continuous composition of the unmeasured 'other' category, because it contributes a significant fraction to total mass during periods of high PM2.5 loading. Selected episodes are presented to illustrate applications of SEARCH data. An SO{sub 2} conversion rate of 0.2%/hr is derived from an observation of a plume from a coal-fired power plant during early spring, and the importance of local, rural sources of NH{sub 3} to the formation of ammonium nitrate in particulate matter (PM) is demonstrated. 41 refs., 15 figs., 3 tabs.

  18. SOURCE SAMPLING FINE PARTICULATE MATTER: A KRAFT PROCESS RECOVERY BOILER AT A PULP AND PAPER FACILITY, VOLUMES 1 AND 2

    EPA Science Inventory

    Fine particulate matter of aerodynamic diameter 2.5 m or less (PM-2.5) has been found harmful to human health, and a National Ambient Air Quality Standard for PM-2.5 was promulgated by the U.S. Environmental Protection Agency in July 1997. A national network of ambient monitorin...

  19. EPA Approves Redesignation of Atlanta Area to Attainment for the 1997 Annual Fine Particulate Matter (PM2.5) Standard

    EPA Pesticide Factsheets

    ATLANTA - Today, the U.S. Environmental Protection Agency announced that it is taking final action to approve the state of Georgia's request to redesignate the Atlanta Area to attainment for the 1997 Fine Particulate Matter (PM2.5) standard. This fi

  20. DAILY VARIATION IN ORGANIC COMPOSITION OF FINE PARTICULATE MATTER IN THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY

    EPA Science Inventory

    Organic composition of fine particulate matter (PM2.5) was investigated as a part of the Detroit Exposure and Aerosol Research Study (DEARS). A high volume (113 liters/minute) sampler was used at the Allen Park community air monitoring station to collect PM2.5 for analysis by ga...

  1. Zebrafish Locomotor Responses Demonstrate Irritant Effects of Fine Particulate Matter Sources and a Role for TRPA1

    EPA Science Inventory

    Fine particulate matter (PM) air pollution is a complex mixture of chemicals, the composition of which is determined by contributing sources, and has been linked to cardiopulmonary dysfunction. These effects stem in part from the irritating properties of PM constituents, which ...

  2. DAILY VARIATION IN ORGANIC COMPOSITION OF FINE PARTICULATE MATTER IN THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY

    EPA Science Inventory

    Organic composition of fine particulate matter (PM2.5) was investigated as a part of the Detroit Exposure and Aerosol Research Study (DEARS). A high volume (113 liters/minute) sampler was used at the Allen Park community air monitoring station to collect PM2.5 for analysis by ga...

  3. Exploration of the Rapid Effects of Personal Fine Particulate Matter Exposure on Hemodynamics and Vascular Function during the Same Day

    EPA Science Inventory

    Background: Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure–response relationships remain unclear. Object...

  4. Source apportionment with uncertainty estimates of fine particulate matter in Ostrava, Czech Republic using Positive Matrix Factorization

    EPA Science Inventory

    A 14-week investigation during a warm and cold seasons was conducted to improve understanding of air pollution sources that might be impacting air quality in Ostrava, the Czech Republic. Fine particulate matter (PM2.5) samples were collected in consecutive 12-h day and night incr...

  5. Source apportionment with uncertainty estimates of fine particulate matter in Ostrava, Czech Republic using Positive Matrix Factorization

    EPA Science Inventory

    A 14-week investigation during a warm and cold seasons was conducted to improve understanding of air pollution sources that might be impacting air quality in Ostrava, the Czech Republic. Fine particulate matter (PM2.5) samples were collected in consecutive 12-h day and night incr...

  6. Exploration of the Rapid Effects of Personal Fine Particulate Matter Exposure on Hemodynamics and Vascular Function during the Same Day

    EPA Science Inventory

    Background: Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure–response relationships remain unclear. Object...

  7. Zebrafish Locomotor Responses Demonstrate Irritant Effects of Fine Particulate Matter Sources and a Role for TRPA1

    EPA Science Inventory

    Fine particulate matter (PM) air pollution is a complex mixture of chemicals, the composition of which is determined by contributing sources, and has been linked to cardiopulmonary dysfunction. These effects stem in part from the irritating properties of PM constituents, which ...

  8. The fate of donor osteocytes in fine particulate bone powders during repair of bone defects in experimental rats.

    PubMed

    Wang, Xin-Tao; Zhou, Chang-Long; Yan, Jing-Long; Yan, Xi; Xie, Huan-Xin; Sun, Cheng-Li

    2012-05-01

    The aim of the study was to investigate the fate of donor osteocytes in fine particulate bone powders during repair of bone defects in experimental rats. The iliac bone of male inbred DA rats was harvested and used as the larger bone grafts and also prepared as fine particulate (granulated) bone powders (300-500μm size particles) for transplantation into radial defects in female rats. The presence and relative amounts of genes specific to the sex-determining region of the Y-chromosome (Sry) originating from the bone grafts were evaluated by polymerase chain reaction and by in situ hybridization, respectively. Additional samples were evaluated histologically. In the larger bone grafts, the expression of Sry decreased relatively early, disappeared by 1 week, reappeared at 4 weeks and continued to increase with time. In the fine particulate bone powders, Sry was detected all the time and its expression was statistically greater than in the larger bone grafts at each time point. Both bone grafts provided donor cells to repair the defects. The donor cells seemed to function differently between the two groups. The fine particulate bone powders contained more living osteocytes in comparison with the larger bone grafts and may accelerate the healing of bone defects compared with conventional autografts. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Emission characterization of particulate matter in the ironmaking process.

    PubMed

    Li, Xiaoling; Sun, Wenqiang; Zhao, Liang; Cai, Jiuju

    2017-10-03

    The aim of this study is to provide a detailed physical and chemical characterization of particles collected in the ironmaking process from an integrated iron and steel factory. The samples collected from three measuring points includes a bunker system, a cast house and a pulverized coal feeding system. Using gravimetric, scanning electron microscope coupled with energy dispersive X-ray spectrometry (SEM-EDS), X ray fluorescence spectrometry (XRF), inductively coupled plasma optical emission spectrometry (ICP-OES) analyses, the size distribution, morphology, elemental composition and emission factor of particles were investigated. The contribution rates of cast house for emission factors of TSP, PM10 and PM2.5 are the largest, 57.0%, 75.5% and 83.3%, respectively. SEM-EDS analysis indicated that cast house particle shapes are mainly formed by polymerization from spherical particles and ultrafine particles, whose main component is Fe. But the particles of the bunker system or the pulverized coal feeding system are mainly the large ones of irregular block or powder particles and the main component is carbon. The highest content of the element in particles of the bunker system and cast house is Fe, followed by C, Si, Ca, Al. The main elements of particles in the pulverized coal feeding system are C, Si, Al and Ca, and their contents are 63.6%, 7.83%, 3.07% and 1.47%, respectively. These 'fingerprints' information of the particles can provide details for source apportionment studies at receptor sites and will be useful for the treatment of particulate matter in the steel industry.

  10. Primary and secondary particulate matter intake fraction from different height emission sources

    NASA Astrophysics Data System (ADS)

    Parvez, Fatema; Lamancusa, Carmen; Wagstrom, Kristina

    2017-09-01

    This study uses intake fraction, the fraction of emissions that are inhaled, to compare potential particulate matter exposure among different height emission sources. We use the Particulate Matter Source Apportionment Technology (PSAT) in the Comprehensive Air Quality Model with Extensions (CAMx) to estimate intake fraction for primary and secondary particulate matter species from different height emission sources. We develop an approach to quantify intake fraction for both primary and secondary particulate matter species emitted from all types of emission sources in the contiguous United States. To compute intake fraction for secondary particulate matter species, we consider the inhalation of the precursor gas and condensed species based on the common atomic unit between the emitted gas and particulate matter product. Our calculated intake fraction varies from 1.0 to 4.9 per million for primary particulate matter, 0.4 to almost 6.0 per million for secondary species, including inhalation of both particulate matter and the relevant precursor species. Intake fraction is consistently higher in the winter than the summer for all species from all emission heights. The shortest height sources, which include area sources, display intake fractions over an order of magnitude greater than more elevated sources.

  11. Residential Proximity to Major Roads, Exposure to Fine Particulate Matter, and Coronary Artery Calcium: The Framingham Heart Study.

    PubMed

    Dorans, Kirsten S; Wilker, Elissa H; Li, Wenyuan; Rice, Mary B; Ljungman, Petter L; Schwartz, Joel; Coull, Brent A; Kloog, Itai; Koutrakis, Petros; D'Agostino, Ralph B; Massaro, Joseph M; Hoffmann, Udo; O'Donnell, Christopher J; Mittleman, Murray A

    2016-08-01

    Long-term exposure to traffic and particulate matter air pollution is associated with a higher risk of cardiovascular disease, potentially via atherosclerosis promotion. Prior research on associations of traffic and particulate matter with coronary artery calcium Agatston score (CAC), an atherosclerosis correlate, has yielded inconsistent findings. Given this background, we assessed whether residential proximity to major roadway or fine particulate matter were associated with CAC in a Northeastern US study. We measured CAC ≤2 times from 2002 to 2005 and 2008 to 2011 among Framingham Offspring or Third-Generation Cohort participants. We assessed associations of residential distance to major roadway and residential fine particulate matter (2003 average; spatiotemporal model) with detectable CAC, using generalized estimating equation regression. We used linear mixed effects models to assess associations with loge(CAC). We also assessed associations with CAC progression. Models were adjusted for demographic variables, socioeconomic position markers, and time. Among 3399 participants, 51% had CAC measured twice. CAC was detectable in 47% of observations. At first scan, mean age was 52.2 years (standard deviation 11.7); 51% male. There were no consistent associations with detectable CAC, continuous CAC, or CAC progression. We observed heterogeneous associations of distance to major roadway with odds of detectable CAC by hypertensive status; interpretation of these findings is questionable. Our findings add to prior work and support evidence against strong associations of traffic or fine particulate matter with the presence, extent, or progression of CAC in a region with relatively low levels of and little variation in fine particulate matter. © 2016 American Heart Association, Inc.

  12. Size and composition distributions of particulate matter emissions: part 1--light-duty gasoline vehicles.

    PubMed

    Robert, Michael A; VanBergen, Saskia; Kleeman, Michael J; Jakober, Christopher A

    2007-12-01

    Size-resolved particulate matter (PM) emitted from light-duty gasoline vehicles (LDGVs) was characterized using filter-based samplers, cascade impactors, and scanning mobility particle size measurements in the summer 2002. Thirty LDGVs, with different engine and emissions control technologies (model years 1965-2003; odometer readings 1264-207,104 mi), were tested on a chassis dynamometer using the federal test procedure (FTP), the unified cycle (UC), and the correction cycle (CC). LDGV PM emissions were strongly correlated with vehicle age and emissions control technology. The oldest models had average ultrafine PM0.1 (0.056- to 0.1-microm aerodynamic diameter) and fine PM1.8 (< or =1.8-microm aerodynamic diameter) emission rates of 9.6 mg/km and 213 mg/km, respectively. The newest vehicles had PM0.1 and PM1.8 emissions of 51 microg/km and 371 microg/km, respectively. Light duty trucks and sport utility vehicles had PM0.1 and PM1.8 emissions nearly double the corresponding emission rates from passenger cars. Higher PM emissions were associated with cold starts and hard accelerations. The FTP driving cycle produced the lowest emissions, followed by the UC and the CC. PM mass distributions peaked between 0.1- and 0.18-microm particle diameter for all vehicles except those emitting visible smoke, which peaked between 0.18 and 0.32 microm. The majority of the PM was composed of carbonaceous material, with only trace amounts of water-soluble ions. Elemental carbon (EC) and organic matter (OM) had similar size distributions, but the EC/OM ratio in LDGV exhaust particles was a strong function of the adopted emissions control technology and of vehicle maintenance. Exhaust from LDGV classes with lower PM emissions generally had higher EC/OM ratios. LDGVs adopting newer technologies were characterized by the highest EC/OM ratios, whereas OM dominated PM emissions from older vehicles. Driving cycles with cold starts and hard accelerations produced higher EC/OM ratios in

  13. Particulate emissions from different types of biomass burning

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Obrist, Daniel; Zielinska, Barbara; Gertler, Alan

    2013-06-01

    Biomass burning is a significant emission source of PM2.5(i.e., particulate matter with an aerodynamic diameter less than 2.5 μm), but few studies addressed the chemical composition of PM2.5 emissions from various types of fires. Here, we present results from a sampling campaign to quantify PM2.5 emissions from various types of prescribed burning activities using analysis of carbon (elemental carbon: EC; organic carbon: OC; and total carbon: TC); polar organic compounds (12 different compounds and four functional classes); water-soluble potassium (K+); and particle-bound mercury (PHg). Emissions were characterized for a series of prescribed burns in the Lake Tahoe basin in the western United States, along with controlled biomass combustion in a wood stove. In the field, emissions were collected from: (i) landscape underburns, consisting of wooden tissues, foliage, branches, and surface duff; (ii) pile burns, consisting mainly of wooden tissues stacked up to piles; (iii) mixed underburn/pile burns which consisted of a mix of the above; in a wood stove, burns included different fuel types collected from the Lake Tahoe basin, specifically (iv) wooden logs mainly of pine; (v) green foliage and branches from two dominant shrubs (manzanita and bitterbrush); and (vi) surface duff, mostly consisting of pine needle litter.Our data showed higher ratios of organic to elemental carbon in green fuels (19.2 ± 4.2) compared to dry, wooden logs (7.3 ± 1.9) both in prescribed burns in the field and in controlled stove combustion, indicating that more moisture in green biomass resulted in more smoldering-phase combustion. Further, OC/EC ratios were lower in wood stove burns compared to prescribed burns in the field, which we attribute to higher combustion temperatures in wood stove burns. The suite of 12 select polar organic compounds showed that the most prevalent compounds emitted across all burns were levoglucosan, mannosan, and resin acids (dehydroabietic, pimaric, and

  14. Emissions of fine particle fluoride from biomass burning.

    PubMed

    Jayarathne, Thilina; Stockwell, Chelsea E; Yokelson, Robert J; Nakao, Shunsuke; Stone, Elizabeth A

    2014-11-04

    The burning of biomasses releases fluorine to the atmosphere, representing a major and previously uncharacterized flux of this atmospheric pollutant. Emissions of fine particle (PM2.5) water-soluble fluoride (F-) from biomass burning were evaluated during the fourth Fire Laboratory at Missoula Experiment (FLAME-IV) using scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDX) and ion chromatography with conductivity detection. F- was detected in 100% of the PM2.5 emissions from conifers (n=11), 94% of emissions from agricultural residues (n=16), and 36% of the grasses and other perennial plants (n=14). When F- was quantified, it accounted for an average (±standard error) of 0.13±0.02% of PM2.5. F- was not detected in remaining samples (n=15) collected from peat burning, shredded tire combustion, and cook-stove emissions. Emission factors (EF) of F- emitted per kilogram of biomass burned correlated with emissions of PM2.5 and combustion efficiency, and also varied with the type of biomass burned and the geographic location where it was harvested. Based on recent evaluations of global biomass burning, we estimate that biomass burning releases 76 Gg F- yr(-1) to the atmosphere, with upper and lower bounds of 40-150 Gg F- yr(-1). The estimated F- flux from biomass burning is comparable to total fluorine emissions from coal combustion plus other anthropogenic sources. These data demonstrate that biomass burning represents a major source of fluorine to the atmosphere in the form of fine particles, which have potential to undergo long-range transport.

  15. Size and composition distributions of particulate matter emissions: part 2--heavy-duty diesel vehicles.

    PubMed

    Robert, Michael A; Kleeman, Michael J; Jakober, Christopher A

    2007-12-01

    Particulate matter (PM) emissions from heavy-duty diesel vehicles (HDDVs) were collected using a chassis dynamometer/dilution sampling system that employed filter-based samplers, cascade impactors, and scanning mobility particle size (SMPS) measurements. Four diesel vehicles with different engine and emission control technologies were tested using the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) 5 mode driving cycle. Vehicles were tested using a simulated inertial weight of either 56,000 or 66,000 lb. Exhaust particles were then analyzed for total carbon, elemental carbon (EC), organic matter (OM), and water-soluble ions. HDDV fine (< or =1.8 microm aerodynamic diameter; PM1.8) and ultrafine (0.056-0.1 microm aerodynamic diameter; PM0.1) PM emission rates ranged from 181-581 mg/km and 25-72 mg/km, respectively, with the highest emission rates in both size fractions associated with the oldest vehicle tested. Older diesel vehicles produced fine and ultrafine exhaust particles with higher EC/OM ratios than newer vehicles. Transient modes produced very high EC/OM ratios whereas idle and creep modes produced very low EC/OM ratios. Calcium was the most abundant water-soluble ion with smaller amounts of magnesium, sodium, ammonium ion, and sulfate also detected. Particle mass distributions emitted during the full 5-mode HDDV tests peaked between 100-180 nm and their shapes were not a function of vehicle age. In contrast, particle mass distributions emitted during the idle and creep driving modes from the newest diesel vehicle had a peak diameter of approximately 70 nm, whereas mass distributions emitted from older vehicles had a peak diameter larger than 100 nm for both the idle and creep modes. Increasing inertial loads reduced the OM emissions, causing the residual EC emissions to shift to smaller sizes. The same HDDV tested at 56,000 and 66,000 lb had higher PM0.1 EC emissions (+22%) and lower PM0.1 OM emissions (-38%) at the higher load

  16. Trace gases and particulate matter emissions from wildfires and agricultural burning in Northeastern Mexico during the 2000 fire season.

    PubMed

    Mendoza, Alberto; Garcia, Marisa R; Vela, Patricia; Lozano, D Fabian; Allen, David

    2005-12-01

    An inventory of air pollutants emitted from forest and agricultural fires in Northeastern Mexico for the period of January to August of 2000 is presented. The emissions estimates were calculated using an emissions factor methodology. The inventory accounts for the emission of carbon monoxide (CO), methane, nonmethane hydrocarbons, ammonia, nitrogen oxides, and particulate matter (PM). Particulate matter emissions include estimates for fine PM and coarse PM. A total of 2479 wildfires were identified in the domain for the period of interest, which represented approximately 810,000 acres burned and 621,130 short tons emitted (81% being CO). The main source of information used to locate and estimate the extent of the fires came from satellite imagery. A geographic information system was used to determine the type of vegetation burned by each fire. More than 54% of the total area burned during the period of study was land on the State of Tamaulipas. However, >58% of the estimated emissions came from the State of Coahuila. This was because of the mix of vegetation types burned in each state. With respect to the temporal distribution, 76.9% of the fires occurred during the months of April and May consuming almost 78% of the total area burned during the period of study. Analysis of wind forward trajectories of air masses passing through the burned areas and 850-mb wind reanalyses indicate possible transboundary transport of the emissions from Mexico to the United States during the occurrence of the major wildfires identified.

  17. The origin of the distortion product otoacoustic emission fine structure

    NASA Astrophysics Data System (ADS)

    Piskorski, Pawel

    Distortion-product otoacoustic emissions (DPOAEs) are sounds detected in the ear canal which are generated by the nonlinear processes in the inner ear (cochlea) in response to the external stimulation of two or more tones (primaries). Their generation region in the cochlea can be systematically changed by varying the primary frequencies, and they are currently being evaluated for possible clinical use in screening for hearing defects. The phase and amplitude of various orders of DPOAEs of frequencies, f/sb [dp]=f1-n(f2-f1),/ (n=1,2,/...), were measured in human subjects for two- tone stimuli of frequencies f1 and f2 (>f1). A number of experimental paradigms (fixed primary ratio f2/f1, fixed f1, fixed f2, and fixed f/sb [dp]) were used to investigate the nature of peaks and valleys (fine structure) of DPOAEs in their phase and amplitude dependence on the primary frequencies. This fine structure must be taken into account in any potential clinical applications of DPOAEs. The experimental results largely support a model in which the fine structure stems from interference at the base of the cochlea between distortion product (DP) components coming from the primary DPOAE source region (around the f2 tonotopic place) and components coming from the DP tonotopic place (via reflection of an apically moving DP wave). The spectral periodicity of the fine structures for several orders of apical DPOAEs corresponds to a tonotopic displacement of about 0.4 mm along the basilar membrane (BM) (0.4 bark). In agreement with the reaction model, this spectral spacing is also characteristic of synchronous evoked and spontaneous otoacoustic emission spectra as well as the microstructure of the hearing threshold. Approximate analytic expressions for the mechanisms which are responsible for the fine structure are used to interpret the data.

  18. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-05-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2=0.79, n=52, Ea=126±10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2=0.60, n=56, Ea=84±9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  19. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-08-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated aerosol samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2 = 0.79, n = 52, Ea = 126 ± 10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2 = 0.60, n = 56, Ea = 84 ± 9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  20. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    Health risk evaluation needs precise measurement and modeling of human exposures in microenvironments to support review of current air quality standards. The particulate matter emissions from motor vehicles are a major component of human exposures in urban microenvironments. Cu...

  1. DEVELOPMENT OF A MICROSCALE EMISSION FACTOR MODEL FOR PARTICULATE MATTER (MICROFACPM) FOR PREDICTING REAL TIME MOTOR VEHICLE EMISSIONS

    EPA Science Inventory

    Health risk evaluation needs precise measurement and modeling of human exposures in microenvironments to support review of current air quality standards. The particulate matter emissions from motor vehicles are a major component of human exposures in urban microenvironments. Cu...

  2. Particulate emissions from residential wood combustion in Europe - revised estimates and an evaluation

    NASA Astrophysics Data System (ADS)

    Denier van der Gon, H. A. C.; Bergström, R.; Fountoukis, C.; Johansson, C.; Pandis, S. N.; Simpson, D.; Visschedijk, A.

    2014-12-01

    Currently residential wood combustion (RWC) is increasing in Europe because of rising fossil fuel prices but also due to climate change mitigation policies. However, especially in small-scale applications, RWC may cause high emissions of particulate matter (PM). Recently we have developed a new high-resolution (7 km × 7 km) anthropogenic carbonaceous aerosol emission inventory for Europe. The inventory indicated that about half of the total PM2.5 emission in Europe is carbonaceous aerosol and identified RWC as the largest organic aerosol (OA) source in Europe. The inventory was partly based on national reported PM emissions. Use of this OA inventory as input for two Chemical Transport Models (CTMs), PMCAMx and EMEP MSC-W, revealed major underestimations of OA in winter time, especially for regions dominated by RWC. Interestingly, this was not universal but appeared to differ by country. In the present study we constructed a new bottom-up emission inventory for RWC accounting for the semi-volatile components of the emissions. The new RWC emissions are higher than those in the previous inventory by a factor of 2-3 but with substantial inter-country variation. The new emission inventory served as input for the CTMs and a substantially improved agreement between measured and predicted organic aerosol was found. The new RWC inventory improves the model calculated OA significantly. Comparisons to Scandinavian source apportionment studies also indicate substantial improvements in the modeled wood-burning component of OA. This suggests that primary organic aerosol emission inventories need to be revised to include the semi-volatile OA that is formed almost instantaneously due to cooling of the flue gas or exhaust. Since RWC is a key source of fine PM in Europe, a major revision of the emission estimates as proposed here is likely to influence source-receptor matrices and modelled source apportionment. Since usage of biofuels, such as wood, in small combustion units is a

  3. Polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters in Nanjing, China: Distributions, sources and meteorological influences

    NASA Astrophysics Data System (ADS)

    He, Jiabao; Fan, Shuxian; Meng, Qingzi; Sun, Yu; Zhang, Jian; Zu, Fan

    2014-06-01

    A study of 16 polycyclic aromatic hydrocarbons (PAHs) associated with fine particulate matters at suburban and urban sites in Nanjing was carried out each season from November 2009 to July 2010. At the suburban and urban sites, the concentrations of total PAHs (T-PAHs) were in the ranges of 30.76-102.26 ng/m3 and 25.92-90.80 ng/m3, respectively. This paper elucidates the distributions, sources of PAHs and meteorological influences: 1) PAHs concentrations at the two sites were close to each other and similarity between PAHs profiles of the two sites indicated they had common sources, which were attributed to the combined effect of regional transport and local emission. 2) At both sites, the profiles displayed obvious seasonal variations, as a result of the seasonality of sources and meteorological influences. The T-PAHs concentrations were in the order of winter > spring > autumn > summer. 3) Source apportionment showed vehicle exhaust (72.93-87.24%) was the greatest contributor in all seasons. The coal combustion and coke production (coal/coke) (10.02-18.63%) were identified in all but summer seasons, because of the low collection efficiency of PAHs markers of coal/coke under high temperature. For autumn, biomass burning (10.58%) was an extra contributor. 4) Regarding meteorological parameters, a negative effect of temperature over PAHs was confirmed, with a correlation coefficient of -0.51 (p < 0.05). Precipitation could remove PAHs to some extent. Both positive and negative correlations between PAHs concentration and wind speed in each season were analyzed in combination with air mass back-trajectories so as to evaluate the effects of regional air transport. The results showed that polluted air from ENE-S and NNW-NE brought in outside sources to the study area and played a major role in the accumulation of fine-particulate PAHs in spring and winter respectively, while clean air from southwest contributed to the dilution in summer.

  4. Chemical characterization and sources of personal exposure to fine particulate matter in the general population of Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Cui; Jahn, Heiko J.; Engling, Guenter; Ward, Tony J.; Kraemer, Alexander; Ho, Kin-Fai; Hung-Lam Yim, Steve; Chan, Chuen-Yu

    2017-04-01

    Fine particulate matter pollution severely deteriorates the environmental conditions and negatively impacts human health in the Chinese megacity Guangzhou. Concurrent ambient and personal measurements of fine particulate matter (PM2.5) were conducted in Guangzhou, China. Personal-to-ambient (P-C) relationships of PM2.5 chemical components were determined and sources of personal PM2.5 exposure were evaluated using principal component analysis along with a mixed-effects model. Water-soluble inorganic ions (mainly secondary inorganic ions) and anhydrosugars exhibited median personal-to-ambient (P/C) ratios < 1 accompanied by strong P-C correlations, indicating that these constituents in personal PM2.5 were significantly affected by ambient sources. Conversely, elemental carbon (EC) and calcium (Ca2+) showed median P/C ratios greater than unity, which indicated that among subjects who spent a great amount of time indoors, aside from particles of ambient origin, individual's total exposure to PM2.5 includes contributions of non-ambient exposure while indoors and outdoors (e.g., local traffic, indoor sources, personal activities). SO42- displayed very low coefficient of divergence (COD) values coupled with strong P-C correlations, implying a uniform distribution of SO42- in the urban area of Guangzhou. EC, Ca2+, and levoglucosan were otherwise heterogeneously distributed across individuals in different districts. Regional air pollution (50.4 ± 0.9%), traffic-related particles (8.6 ± 0.7%), dust-related particles (5.8 ± 0.7%), and biomass burning emissions (2.0 ± 0.2%) were moderate to high positive sources of personal PM2.5 exposure in Guangzhou. The observed positive and significant contribution of Ca2+ to personal PM2.5 exposure, highlighting indoor sources and/or personal activities, were driving factors determining personal exposure to dust-related particles. Considerable discrepancies (COD values ranging from 0.42 to 0.50) were shown between ambient

  5. Sources of Fine Particulate Matter and Risk of Preterm Birth in Connecticut, 2000–2006: A Longitudinal Study

    PubMed Central

    Bell, Michelle L.; Lee, Hyung Joo; Koutrakis, Petros; Belanger, Kathleen

    2014-01-01

    Background: Previous studies have examined fine particulate matter (≤ 2.5 μm; PM2.5) and preterm birth, but there is a dearth of longitudinal studies on this topic and a paucity of studies that have investigated specific sources of this exposure. Objectives: Our aim was to assess whether anthropogenic sources are associated with risk of preterm birth, comparing successive pregnancies to the same woman. Methods: Birth certificates were used to select women who had vaginal singleton live births at least twice in Connecticut during 2000–2006 (n = 23,123 women, n = 48,208 births). We procured 4,085 daily samples of PM2.5 on Teflon filters from the Connecticut Department of Environmental Protection for six cities in Connecticut. Filters were analyzed for chemical composition, and Positive Matrix Factorization was used to determine contributions of PM2.5 sources. Risk estimates were calculated with conditional logistic regression, matching pregnancies to the same women. Results: Odds ratios of preterm birth per interquartile range increase in whole pregnancy exposure to dust, motor vehicle emissions, oil combustion, and regional sulfur PM2.5 sources were 1.01 (95% CI: 0.93, 1.09), 1.01 (95% CI: 0.92, 1.10), 1.00 (95% CI: 0.89, 1.12), and 1.09 (95% CI: 0.97, 1.22), respectively. Conclusion: This was the first study of PM2.5 sources and preterm birth, and the first matched analysis, that better addresses individual-level confounding potentially inherent in all past studies. There was insufficient evidence to suggest that sources were statistically significantly associated with preterm birth. However, elevated central estimates and previously observed associations with mass concentration motivate the need for further research. Future studies would benefit from high source exposure settings and longitudinal study designs, such as that adopted in this study. Citation: Pereira G, Bell ML, Lee HJ, Koutrakis P, Belanger K. 2014. Sources of fine particulate matter and risk

  6. Particle size distribution characteristics of cotton gin second stage lint cleaning system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  7. Particle size distribution characteristics of cotton gin combined lint cleaning system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  8. Second stage mote system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or equal...

  9. Overflow system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the U.S. Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than...

  10. Particle size distribution characteristics of cotton gin second stage mote system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  11. Combined mote system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  12. Particle size distribution characteristics of cotton gin overflow system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  13. Mote trash system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the U.S. Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than...

  14. First stage mote system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  15. Mote cyclone robber system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the U.S. Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than...

  16. Master trash system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, U.S. Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or ...

  17. Second stage lint cleaning system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or equal...

  18. Particle size distribution characteristics of cotton gin first stage mote system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  19. Particle size distribution characteristics of cotton gin combined mote system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  20. Particle size distribution characteristics of cotton gin unloading system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  1. Particle size distribution characteristics of cotton gin mote cleaner system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  2. Particle size distribution characteristics of cotton gin master trash system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  3. Mote cleaner system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, U.S. Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or ...

  4. Particle size distribution characteristics of cotton gin mote cyclone robber system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  5. First stage lint cleaning system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2006, Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or equal...

  6. Unloading system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the U.S. Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than...

  7. Particle size distribution characteristics of cotton gin cyclone robber system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  8. Cyclone robber system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, U.S. Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or ...

  9. Particle size distribution characteristics of cotton gin first stage lint cleaning system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2006, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  10. Battery condenser system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  11. Particle size distribution characteristics of cotton gin battery condenser system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  12. Combined lint cleaning system particulate emission factors for cotton gins: Particle size distribution characteristics

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, the Environmental Protection Agency (EPA) published a more stringent standard for particulate matter with nominal diameter less than or e...

  13. Particle size distribution characteristics of cotton gin mote trash system total particulate emissions

    USDA-ARS?s Scientific Manuscript database

    This report is part of a project to characterize cotton gin emissions from the standpoint of total particulate stack sampling and particle size analyses. In 2013, EPA published a more stringent standard for particulate matter with nominal diameter less than or equal to 2.5 µm (PM2.5). This created a...

  14. TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE

    EPA Science Inventory

    The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...

  15. TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE

    EPA Science Inventory

    The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...

  16. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    NASA Astrophysics Data System (ADS)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  17. Bioethanol-gasoline fuel blends: exhaust emissions and morphological characterization of particulate from a moped engine.

    PubMed

    Seggiani, Maurizia; Prati, M Vittoria; Costagliola, M Antonietta; Puccini, Monica; Vitolo, Sandra

    2012-08-01

    This study was aimed at evaluating the effects of gasoline-ethanol blends on the exhaust emissions in a catalyst-equipped four-stroke moped engine. The ethanol was blended with unleaded gasoline in at percentages (10, 15, and 20% v/v). The regulated pollutants and the particulate matter emissions were evaluated over the European ECE R47 driving cycle on the chassis dynamometer bench. Particulate matter was characterized in terms of total mass collected on filters and total number ofparticles in the range 7 nm-10 microm measured by electrical low-pressure impactor (ELPI). In addition, particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions were evaluated to assess the health impact of the emitted particulate. Finally, an accurate morphological analysis was performed on the particulate by high-resolution transmission electron microscope (TEM) equipped with a digital image-processing/data-acquisition system. In general, CO emission reductions of 60-70% were obtained with 15 and 20% v/v ethanol blends, while the ethanol use did not reduce hydrocarbon (HC) and NOx emissions. No evident effect of ethanol on the particulate mass emissions and associated PAHs emissions was observed. Twenty-one PAHs were quantified in the particulate phase with emissions ranging from 26 to 35 microg/km and benzo[a]pyrene equivalent (BaPeq) emission factors from 2.2 to 4.1 microg/km. Both particulate matter and associated PAHs with higher carcinogenic risk were mainly emitted in the submicrometer size range (<0.1 microm). On the basis of the TEM observations, no relevant effect of the ethanol use on the particulate morphology was evidenced, showing aggregates composed ofprimary particles with mean diameters in the range 17.5-32.5 nm.

  18. Contribution of long range transport to local fine particulate matter concerns

    NASA Astrophysics Data System (ADS)

    Wagstrom, K. M.; Pandis, S. N.

    2011-05-01

    We have utilized the Particulate Matter Source Apportionment Technology (PSAT) in PMCAMx (a regional chemical transport model) to quantify the contributions from local emissions and short range (under 100 km), mid range (100-550 km) and long range (over 550 km) pollutant transport to both primary and secondary particulate matter concentrations using the Eastern United States as a test case. We have studied these contributions for two urban (Pittsburgh, Pennsylvania and Atlanta, Georgia) and one rural area (Great Smoky Mountains National Park) during all seasons. The local emissions impacts to elemental carbon (EC) in major urban areas were found to be substantial with approximately 50% of the EC coming from local sources and 80% emitted within 200 km of the receptor. The local sources are even more important during the night contributing around 60% of the EC and then dropping to around 40% during the early afternoon. The EC in the rural Great Smoky Mountains was mainly the result of sources 100-550 km away. The seasonal variation of the EC source area contributions is small. There was also little difference between high and low EC concentration days. The contributions to secondary aerosol species were found to be more regional with more than 50% of the sulfate and secondary organic aerosol (SOA) originating from SO 2 and VOC sources that were more than 200 km away from the receptor. The importance of sources further away increased during the winter because of the lower photochemical activity. While mid range transport dominated in the summer the sulfate and SOA levels in all areas, long range transport became the most important sulfate and SOA source during the winter in the colder Northeastern US and of sulfate in the warmer South.

  19. The CCRUSH study: Characterization of coarse and fine particulate matter in northeastern Colorado

    NASA Astrophysics Data System (ADS)

    Clements, Nicholas Steven

    Particulate matter in the troposphere adversely impacts human health when inhaled and alters climate through cloud formation processes and by absorbing/scattering light. Particles smaller than 2.5 mum in diameter (fine particulate matter; PM2.5), are typically emitted from combustion-related sources and can form and grow through secondary processing in the atmosphere. Coarse particles (PM10-2.5), ranging 2.5 to 10 mum, are typically generated through abrasive processes, such as erosion of road surfaces, entrained via resuspension, and settle quickly out of the atmosphere due to their large size. After deciding against regulating PM10-2.5 in 2006 citing, among other reasons, mixed results from epidemiological studies of the pollutant and lack of knowledge on health impacts in rural areas, the United States Environmental Protection Agency (US EPA) funded a series of studies that investigated the ambient composition, toxicology, and epidemiology of PM10-2.5. One such study, The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study, aimed to characterize the composition, sources, and health effects of PM10-2.5 in semi-arid northeastern Colorado and consisted of two field campaigns and an epidemiological study. Summarized here are the results from the two field campaigns, the first of which included over three years of continuous PM10-2.5 and PM2.5 mass concentration monitoring at multiple sites in urban-Denver and rural-Greeley, Colorado. This data set was used to characterize the spatiotemporal variability of PM10-2.5 and PM2.5. During the second year of continuous monitoring, PM 10-2.5 and PM2.5 filter samples were collected for compositional analyses that included: elemental composition, bulk elemental and organic carbon concentrations, water-soluble organic carbon concentrations, UV-vis absorbance, fluorescence spectroscopy, and endotoxin content. Elemental composition was used to understand enrichment of trace elements in atmospheric particles and to

  20. Fine organic particulate matter dominates indoor-generated PM2.5 in RIOPA homes.

    PubMed

    Polidori, Andrea; Turpin, Barbara; Meng, Qing Yu; Lee, Jong Hoon; Weisel, Clifford; Morandi, Maria; Colome, Steven; Stock, Thomas; Winer, Arthur; Zhang, Jim; Kwon, Jaymin; Alimokhtari, Shahnaz; Shendell, Derek; Jones, Jennifer; Farrar, Corice; Maberti, Silvia

    2006-07-01

    Residential indoor and outdoor fine particle (PM(2.5)) organic (OC) and elemental carbon (EC) concentrations (48 h) were measured at 173 homes in Houston, TX, Los Angeles County, CA, and Elizabeth, NJ as part of the Relationship of Indoor, Outdoor and Personal Air (RIOPA) study. The adsorption of organic vapors on the quartz fiber sampling filter (a positive artifact) was substantial indoors and out, accounting for 36% and 37% of measured OC at the median indoor (8.2 microg C/m(3)) and outdoor (5.0 microg C/m(3)) OC concentrations, respectively. Uncorrected, adsorption artifacts would lead to substantial overestimation of particulate OC both indoors and outdoors. After artifact correction, the mean particulate organic matter (OM=1.4 OC) concentration indoors (9.8 microg/m(3)) was twice the mean outdoor concentration (4.9 microg/m(3)). The mean EC concentration was 1.1 microg/m(3) both indoors and outdoors. OM accounted for 29%, 30% and 29% of PM(2.5) mass outdoors and 48%, 55% and 61% of indoor PM(2.5) mass in Los Angeles Co., Elizabeth and Houston study homes, respectively. Indirect evidence provided by species mass balance results suggests that PM(2.5) nitrate (not measured) was largely lost during outdoor-to-indoor transport, as reported by Lunden et al. This results in dramatic changes with outdoor-to-indoor transport in the mass and composition of ambient-generated PM(2.5) at California homes. On average, 71% to 76% of indoor OM was emitted or formed indoors, calculated by (1) Random Component Superposition (RCS) model and (2) non-linear fit of OC and air exchange rate data to the mass balance model. Assuming that all particles penetrate indoors (P=1) and there is no particle loss indoors (k=0), a lower bound estimate of 41% of indoor OM was indoor-generated (mean). OM appears to be the predominant species in indoor-generated PM(2.5), based on species mass balance results. Particulate OM emitted or formed indoors is substantial enough to alter the

  1. Chemical characterization and toxicity of particulate matter emissions from roadside trash combustion in urban India

    NASA Astrophysics Data System (ADS)

    Vreeland, Heidi; Schauer, James J.; Russell, Armistead G.; Marshall, Julian D.; Fushimi, Akihiro; Jain, Grishma; Sethuraman, Karthik; Verma, Vishal; Tripathi, Sachi N.; Bergin, Michael H.

    2016-12-01

    Roadside trash burning is largely unexamined as a factor that influences air quality, radiative forcing, and human health even though it is ubiquitously practiced across many global regions, including throughout India. The objective of this research is to examine characteristics and redox activity of fine particulate matter (PM2.5) associated with roadside trash burning in Bangalore, India. Emissions from smoldering and flaming roadside trash piles (n = 24) were analyzed for organic and elemental carbon (OC/EC), brown carbon (BrC), and toxicity (i.e. redox activity, measured via the dithiothreitol "DTT" assay). A subset of samples (n = 8) were further assessed for toxicity by a cellular assay (macrophage assay) and also analyzed for trace organic compounds. Results show high variability of chemical composition and toxicity between trash-burning emissions, and characteristic differences from ambient samples. OC/EC ratios for trash-burning emissions range from 0.8 to 1500, while ambient OC/EC ratios were observed at 5.4 ± 1.8. Trace organic compound analyses indicate that emissions from trash-burning piles were frequently composed of aromatic di-acids (likely from burning plastics) and levoglucosan (an indicator of biomass burning), while the ambient sample showed high response from alkanes indicating notable representation from vehicular exhaust. Volume-normalized DTT results (i.e., redox activity normalized by the volume of air pulled through the filter during sampling) were, unsurprisingly, extremely elevated in all trash-burning samples. Interestingly, DTT results suggest that on a per-mass basis, fresh trash-burning emissions are an order of magnitude less redox-active than ambient air (13.4 ± 14.8 pmol/min/μgOC for trash burning; 107 ± 25 pmol/min/μgOC for ambient). However, overall results indicate that near trash-burning sources, exposure to redox-active PM can be extremely high.

  2. Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress

    PubMed Central

    Haberzettl, Petra; O’Toole, Timothy E.; Bhatnagar, Aruni; Conklin, Daniel J.

    2016-01-01

    Background: Epidemiological evidence suggests that exposure to ambient air fine particulate matter (PM2.5) increases the risk of developing type 2 diabetes and cardiovascular disease. However, the mechanisms underlying these effects of PM2.5 remain unclear. Objectives: We tested the hypothesis that PM2.5 exposure decreases vascular insulin sensitivity by inducing pulmonary oxidative stress. Methods: Mice fed control (10–13% kcal fat) and high-fat (60% kcal fat, HFD) diets, treated with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) or mice overexpressing lung-specific extracellular superoxide dismutase (ecSOD) were exposed to HEPA-filtered air or to concentrated PM2.5 (CAP) for 9 or 30 days, and changes in systemic and organ-specific insulin sensitivity and inflammation were measured. Results: In control diet–fed mice, exposure to CAP for 30 days decreased insulin-stimulated Akt phosphorylation in lung, heart, and aorta but not in skeletal muscle, adipose tissue, and liver and did not affect adiposity or systemic glucose tolerance. In HFD-fed mice, 30-day CAP exposure suppressed insulin-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation in skeletal muscle and increased adipose tissue inflammation and systemic glucose intolerance. In control diet–fed mice, a 9-day CAP exposure was sufficient to suppress insulin-stimulated Akt and eNOS phosphorylation and to decrease IκBα (inhibitor of the transcription factor NF-κB levels in the aorta. Treatment with the antioxidant TEMPOL or lung-specific overexpression of ecSOD prevented CAP-induced vascular insulin resistance and inflammation. Conclusions: Short-term exposure to PM2.5 induces vascular insulin resistance and inflammation triggered by a mechanism involving pulmonary oxidative stress. Suppression of vascular insulin signaling by PM2.5 may accelerate the progression to systemic insulin resistance, particularly in the context of diet-induced obesity. Citation: Haberzettl P, O

  3. Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress.

    PubMed

    Haberzettl, Petra; O'Toole, Timothy E; Bhatnagar, Aruni; Conklin, Daniel J

    2016-12-01

    Epidemiological evidence suggests that exposure to ambient air fine particulate matter (PM2.5) increases the risk of developing type 2 diabetes and cardiovascular disease. However, the mechanisms underlying these effects of PM2.5 remain unclear. We tested the hypothesis that PM2.5 exposure decreases vascular insulin sensitivity by inducing pulmonary oxidative stress. Mice fed control (10-13% kcal fat) and high-fat (60% kcal fat, HFD) diets, treated with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) or mice overexpressing lung-specific extracellular superoxide dismutase (ecSOD) were exposed to HEPA-filtered air or to concentrated PM2.5 (CAP) for 9 or 30 days, and changes in systemic and organ-specific insulin sensitivity and inflammation were measured. In control diet-fed mice, exposure to CAP for 30 days decreased insulin-stimulated Akt phosphorylation in lung, heart, and aorta but not in skeletal muscle, adipose tissue, and liver and did not affect adiposity or systemic glucose tolerance. In HFD-fed mice, 30-day CAP exposure suppressed insulin-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation in skeletal muscle and increased adipose tissue inflammation and systemic glucose intolerance. In control diet-fed mice, a 9-day CAP exposure was sufficient to suppress insulin-stimulated Akt and eNOS phosphorylation and to decrease IκBα (inhibitor of the transcription factor NF-κB levels in the aorta. Treatment with the antioxidant TEMPOL or lung-specific overexpression of ecSOD prevented CAP-induced vascular insulin resistance and inflammation. Short-term exposure to PM2.5 induces vascular insulin resistance and inflammation triggered by a mechanism involving pulmonary oxidative stress. Suppression of vascular insulin signaling by PM2.5 may accelerate the progression to systemic insulin resistance, particularly in the context of diet-induced obesity. Citation: Haberzettl P, O'Toole TE, Bhatnagar A, Conklin DJ. 2016. Exposure to fine

  4. Trends in the elemental composition of fine particulate matter in Santiago, Chile, from 1998 to 2003.

    PubMed

    Sax, Sonja N; Koutrakis, Petros; Rudolph, Pablo A Ruiz; Cereceda-Balic, Francisco; Gramsch, Ernesto; Oyola, Pedro

    2007-07-01

    Santiago, Chile, is one of the most polluted cities in South America. As a response, over the past 15 yr, numerous pollution reduction programs have been implemented by the environmental authority, Comisión Nacional del Medio Ambiente. This paper assesses the effectiveness of these interventions by examining the trends of fine particulate matter (PM(2.5)) and its associated elements. Daily fine particle filter samples were collected in Santiago at a downtown location from April 1998 through March 2003. Additionally, meteorological variables were measured continuously. Annual average concentrations of PM(2.5) decreased only marginally, from 41.8 microg/m3 for the 1998-1999 period to 35.4 microg/m3 for the 2002-2003 period. PM(2.5) concentrations exceeded the annual U.S. Environmental Protection Agency standard of 15 microg/m3. Also, approximately 20% of the daily samples exceeded the old standard of 65 microg/m3, whereas approximately half of the samples exceeded the new standard of 35 microg/m3 (effective in 2006). Mean PM(2.5) levels measured during the cold season (April through September) were three times higher than those measured in the warm season (October through March). Particulate mass and elemental concentration trends were investigated using regression models, controlling for year, month, weekday, wind speed, temperature, and relative humidity. The results showed significant decreases for Pb, Br, and S concentrations and minor but still significant decreases for Ni, Al, Si, Ca, and Fe. The larger decreases were associated with specific remediation policies implemented, including the removal of lead from gasoline, the reduction of sulfur levels in diesel fuel, and the introduction of natural gas. These results suggest that the pollution reduction programs, especially the ones related to transport, have been effective in reducing various important components of PM(2.5). However, particle mass and other associated element levels remain high, and it is thus

  5. Contribution of fine particulate matter sources to indoor exposure in bars, restaurants, and cafes.

    PubMed

    Daly, B-J; Schmid, K; Riediker, M

    2010-06-01

    This study investigated the contribution of sources and establishment characteristics, on the exposure to fine particulate matter (PM(2.5)) in the non-smoking sections of bars, cafes, and restaurants in central Zurich. PM(2.5)-exposure was determined with a nephelometer. A random sample of hospitality establishments was investigated on all weekdays, from morning until midnight. Each visit lasted 30 min. Numbers of smokers and other sources, such as candles and cooking processes, were recorded, as were seats, open windows, and open doors. Ambient air pollution data were obtained from public authorities. Data were analysed using robust MM regression. Over 14 warm, sunny days, 102 establishments were measured. Average establishment PM(2.5) concentrations were 64.7 microg/m(3) (s.d. = 73.2 microg/m(3), 30-min maximum 452.2 microg/m(3)). PM(2.5) was significantly associated with the number of smokers, percentage of seats occupied by smokers, and outdoor PM. Each smoker increased PM(2.5) on average by 15 microg/m(3). No associations were found with other sources, open doors or open windows. Bars had more smoking guests and showed significantly higher concentrations than restaurants and cafes. Smokers were the most important PM(2.5)-source in hospitality establishments, while outdoor PM defined the baseline. Concentrations are expected to be even higher during colder, unpleasant times of the year. Smokers and ambient air pollution are the most important sources of fine airborne particulate matter (PM(2.5)) in the non-smoking sections of bars, restaurants, and cafes. Other sources do not significantly contribute to PM(2.5)-levels, while opening doors and windows is not an efficient means of removing pollutants. First, this demonstrates the impact that even a few smokers can have in affecting particle levels. Second, it implies that creating non-smoking sections, and using natural ventilation, is not sufficient to bring PM(2.5) to levels that imply no harm for employees and

  6. Ambient Fine Particulate Matter and Mortality among Survivors of Myocardial Infarction: Population-Based Cohort Study

    PubMed Central

    Chen, Hong; Burnett, Richard T.; Copes, Ray; Kwong, Jeffrey C.; Villeneuve, Paul J.; Goldberg, Mark S.; Brook, Robert D.; van Donkelaar, Aaron; Jerrett, Michael; Martin, Randall V.; Brook, Jeffrey R.; Kopp, Alexander; Tu, Jack V.

    2016-01-01

    Background: Survivors of acute myocardial infarction (AMI) are at increased risk of dying within several hours to days following exposure to elevated levels of ambient air pollution. Little is known, however, about the influence of long-term (months to years) air pollution exposure on survival after AMI. Objective: We conducted a population-based cohort study to determine the impact of long-term exposure to fine particulate matter ≤ 2.5 μm in diameter (PM2.5) on post-AMI survival. Methods: We assembled a cohort of 8,873 AMI patients who were admitted to 1 of 86 hospital corporations across Ontario, Canada in 1999–2001. Mortality follow-up for this cohort extended through 2011. Cumulative time-weighted exposures to PM2.5 were derived from satellite observations based on participants’ annual residences during follow-up. We used standard and multilevel spatial random-effects Cox proportional hazards models and adjusted for potential confounders. Results: Between 1999 and 2011, we identified 4,016 nonaccidental deaths, of which 2,147 were from any cardiovascular disease, 1,650 from ischemic heart disease, and 675 from AMI. For each 10-μg/m3 increase in PM2.5, the adjusted hazard ratio (HR10) of nonaccidental mortality was 1.22 [95% confidence interval (CI): 1.03, 1.45]. The association with PM2.5 was robust to sensitivity analyses and appeared stronger for cardiovascular-related mortality: ischemic heart (HR10 = 1.43; 95% CI: 1.12, 1.83) and AMI (HR10 = 1.64; 95% CI: 1.13, 2.40). We estimated that 12.4% of nonaccidental deaths (or 497 deaths) could have been averted if the lowest measured concentration in an urban area (4 μg/m3) had been achieved at all locations over the course of the study. Conclusions: Long-term air pollution exposure adversely affects the survival of AMI patients. Citation: Chen H, Burnett RT, Copes R, Kwong JC, Villeneuve PJ, Goldberg MS, Brook RD, van Donkelaar A, Jerrett M, Martin RV, Brook JR, Kopp A, Tu JV. 2016. Ambient fine

  7. Effects of urban fine particulate matter and ozone on HDL functionality.

    PubMed

    Ramanathan, Gajalakshmi; Yin, Fen; Speck, Mary; Tseng, Chi-Hong; Brook, Jeffrey R; Silverman, Frances; Urch, Bruce; Brook, Robert D; Araujo, Jesus A

    2016-05-24

    Exposures to ambient particulate matter (PM) are associated with increased morbidity and mortality. PM2.5 (<2.5 μm) and ozone exposures have been shown to associate with carotid intima media thickness in humans. Animal studies support a causal relationship between air pollution and atherosclerosis and identified adverse PM effects on HDL functionality. We aimed to determine whether brief exposures to PM2.5 and/or ozone could induce effects on HDL anti-oxidant and anti-inflammatory capacity in humans. Subjects were exposed to fine concentrated ambient fine particles (CAP) with PM2.5 targeted at 150 μg/m(3), ozone targeted at 240 μg/m(3) (120 ppb), PM2.5 plus ozone targeted at similar concentrations, and filtered air (FA) for 2 h, on 4 different occasions, at least two weeks apart, in a randomized, crossover study. Blood was obtained before exposures (baseline), 1 h after and 20 h after exposures. Plasma HDL anti-oxidant/anti-inflammatory capacity and paraoxonase activity were determined. HDL anti-oxidant/anti-inflammatory capacity was assessed by a cell-free fluorescent assay and expressed in units of a HDL oxidant index (HOI). Changes in HOI (ΔHOI) were calculated as the difference in HOI from baseline to 1 h after or 20 h after exposures. There was a trend towards bigger ΔHOI between PM2.5 and FA 1 h after exposures (p = 0.18) but not 20 h after. This trend became significant (p <0.05) when baseline HOI was lower (<1.5 or <2.0), indicating decreased HDL anti-oxidant/anti-inflammatory capacity shortly after the exposures. There were no significant effects of ozone alone or in combination with PM2.5 on the change in HOI at both time points. The change in HOI due to PM2.5 showed a positive trend with particle mass concentration (p = 0.078) and significantly associated with the slope of systolic blood pressure during exposures (p = 0.005). Brief exposures to concentrated PM2.5 elicited swift effects on HDL anti

  8. Particulate emissions from residential wood combustion in Europe - revised estimates and an evaluation

    NASA Astrophysics Data System (ADS)

    Denier van der Gon, H. A. C.; Bergström, R.; Fountoukis, C.; Johansson, C.; Pandis, S. N.; Simpson, D.; Visschedijk, A. J. H.

    2015-06-01

    Currently residential wood combustion (RWC) is increasing in Europe because of rising fossil fuel prices but also due to climate change mitigation policies. However, especially in small-scale applications, RWC may cause high emissions of particulate matter (PM). Recently we have developed a new high-resolution (7 × 7 km) anthropogenic carbonaceous aerosol emission inventory for Europe. The inventory indicated that about half of the total PM2.5 emission in Europe is carbonaceous aerosol and identified RWC as the largest organic aerosol source in Europe. The inventory was partly based on national reported PM emissions. Use of this organic aerosol inventory as input for two chemical transport models (CTMs), PMCAMx and EMEP MSC-W, revealed major underestimations of organic aerosol in winter time, especially for regions dominated by RWC. Interestingly, this was not universal but appeared to differ by country. In the present study we constructed a revised bottom-up emission inventory for RWC accounting for the semivolatile components of the emissions. The revised RWC emissions are higher than those in the previous inventory by a factor of 2-3 but with substantial inter-country variation. The new emission inventory served as input for the CTMs and a substantially improved agreement between measured and predicted organic aerosol was found. The revised RWC inventory improves the model-calculated organic aerosol significantly. Comparisons to Scandinavian source apportionment studies also indicate substantial improvements in the modelled wood-burning component of organic aerosol. This suggests that primary organic aerosol emission inventories need to be revised to include the semivolatile organic aerosol that is formed almost instantaneously due to dilution and cooling of the flue gas or exhaust. Since RWC is a key source of fine PM in Europe, a major revision of the emission estimates as proposed here is likely to influence source-receptor matrices and modelled source

  9. Impact of vehicular traffic emissions on particulate-bound PAHs: Levels and associated health risks

    NASA Astrophysics Data System (ADS)

    Slezakova, Klara; Castro, Dionísia; Delerue–Matos, Cristina; Alvim–Ferraz, Maria da Conceição; Morais, Simone; Pereira, Maria do Carmo

    2013-06-01

    Considering vehicular transport as one of the most health-relevant emission sources of urban air, and with aim to further understand its negative impact on human health, the objective of this work was to study its influence on levels of particulate-bound PAHs and to evaluate associated health risks. The 16 PAHs considered by USEPA as priority pollutants, and dibenzo[a,l]pyrene associated with fine (PM2.5) and coarse (PM2.5-10) particles were determined. The samples were collected at one urban site, as well as at a reference place for comparison. The results showed that the air of the urban site was more seriously polluted than at the reference one, with total concentrations of 17 PAHs being 2240% and 640% higher for PM2.5 and PM2.5-10, respectively; vehicular traffic was the major emission source at the urban site. PAHs were predominantly associated with PM2.5 (83% to 94% of ΣPAHs at urban and reference site, respectively) with 5 rings PAHs being the most abundant groups of compounds at both sites. The risks associated with exposure to particulate PAHs were evaluated using the TEF approach. The estimated value of lifetime lung cancer risks exceeded the health-based guideline levels, thus demonstrating that exposure to PM2.5-bound PAHs at levels found at urban site might cause potential health risks. Furthermore, the results showed that evaluation of benzo[a]pyrene (regarded as a marker of the genotoxic and carcinogenic PAHs) alone would probably underestimate the carcinogenic potential of the studied PAH mixtures.

  10. Effects of a catalytic volatile particle remover (VPR) on the particulate matter emissions from a direct injection spark ignition engine.

    PubMed

    Xu, Fan; Chen, Longfei; Stone, Richard

    2011-10-15

    Emissions of fine particles have been shown to have a large impact on the atmospheric environment and human health. Researchers have shown that gasoline engines, especially direct injection spark ignition (DISI) engines, tend to emit large amounts of small size particles compared to diesel engines fitted with diesel particulate filters (DPFs). As a result, the particle number emissions of DISI engines will be restricted by the forthcoming EU6 legislation. The particulate emission level of DISI engines means that they could face some challenges in meeting the EU6 requirement. This paper is an experimental study on the size-resolved particle number emissions from a spray guided DISI engine and the performance of a catalytic volatile particle remover (VPR), as the EU legislation seeks to exclude volatile particles. The performance of the catalytic VPR was evaluated by varying its temperature and the exhaust residence time. The effect of the catalytic VPR acting as an oxidation catalyst on particle emissions was also tested. The results show that the catalytic VPR led to a marked reduction in the number of particles, especially the smaller size (nucleation mode) particles. The catalytic VPR is essentially an oxidation catalyst, and when post three-way catalyst (TWC) exhaust was introduced to the catalytic VPR, the performance of the catalytic VPR was not affected much by the use of additional air, i.e., no significant oxidation of the PM was observed.

  11. 40 CFR 49.126 - Rule for limiting fugitive particulate matter emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... materials likely to become airborne. (viii) The prompt removal from paved streets of earth or other material... fugitive particulate matter emissions. For new sources or new operations, a survey must be conducted within...

  12. Air Emissions Inventory Guidance for Implementation of Ozone and Particulate Matter NAAQS and Regional Haze Regulations

    EPA Pesticide Factsheets

    Guidance document on how to develop emission inventories to meet State Implementation Plan requirements for complying with the 8-hour ozone national ambient air quality standards (NAAQS), the revised particulate matter (PM) NAAQS, and the regional haze reg

  13. Fine-scale estimation of carbon monoxide and fine particulate matter concentrations in proximity to a road intersection by using wavelet neural network with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Zhanyong; Lu, Feng; He, Hong-di; Lu, Qing-Chang; Wang, Dongsheng; Peng, Zhong-Ren

    2015-03-01

    At road intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly in the green-light period, which generates higher velocity fluctuation and thus higher emission rates. Additionally, the frequent changes of wind direction further add the highly variable dispersion of pollutants at the street scale. It is, therefore, very difficult to estimate the distribution of pollutant concentrations using conventional deterministic causal models. For this reason, a hybrid model combining wavelet neural network and genetic algorithm (GA-WNN) is proposed for predicting 5-min series of carbon monoxide (CO) and fine particulate matter (PM2.5) concentrations in proximity to an intersection. The proposed model is examined based on the measured data under two situations. As the measured pollutant concentrations are found to be dependent on the distance to the intersection, the model is evaluated in three locations respectively, i.e. 110 m, 330 m and 500 m. Due to the different variation of pollutant concentrations on varied time, the model is also evaluated in peak and off-peak traffic time periods separately. Additionally, the proposed model, together with the back-propagation neural network (BPNN), is examined with the measured data in these situations. The proposed model is found to perform better in predictability and precision for both CO and PM2.5 than BPNN does, implying that the hybrid model can be an effective tool to improve the accuracy of estimating pollutants' distribution pattern at intersections. The outputs of these findings demonstrate the potential of the proposed model to be applicable to forecast the distribution pattern of air pollution in real-time in proximity to road intersection.

  14. HERSCHEL GALACTIC PLANE SURVEY OF [N ii] FINE STRUCTURE EMISSION

    SciTech Connect

    Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.; Pineda, Jorge L.

    2015-12-01

    We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10{sup −8}–10{sup −7} Wm{sup −2} sr{sup −1} level over the range –60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointing is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10–50 cm{sup −3} with an average value of 29 cm{sup −3} and N{sup +} column densities 10{sup 16}–10{sup 17} cm{sup −2}. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.

  15. Herschel Galactic Plane Survey of [NII] Fine Structure Emission

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.; Yıldız, Umut A.; Langer, William D.; Pineda, Jorge L.

    2015-12-01

    We present the first large-scale high angular resolution survey of ionized nitrogen in the Galactic Plane through emission of its two fine structure transitions ([N ii]) at 122 and 205 μm. The observations were largely obtained with the PACS instrument onboard the Herschel Space Observatory. The lines of sight were in the Galactic plane, following those of the Herschel OTKP project GOT C+. Both lines are reliably detected at the 10-8-10-7 Wm-2 sr-1 level over the range -60° ≤ l ≤ 60°. The rms of the intensity among the 25 PACS spaxels of a given pointing is typically less than one third of the mean intensity, showing that the emission is extended. [N ii] is produced in gas in which hydrogen is ionized, and collisional excitation is by electrons. The ratio of the two fine structure transitions provides a direct measurement of the electron density, yielding n(e) largely in the range 10-50 cm-3 with an average value of 29 cm-3 and N+ column densities 1016-1017 cm-2. [N ii] emission is highly correlated with that of [C ii], and we calculate that between 1/3 and 1/2 of the [C ii] emission is associated with the ionized gas. The relatively high electron densities indicate that the source of the [N ii] emission is not the warm ionized medium (WIM), which has electron densities more than 100 times smaller. Possible origins of the observed [N ii] include the ionized surfaces of dense atomic and molecular clouds, the extended low-density envelopes of H ii regions, and low-filling factor high-density fluctuations of the WIM.

  16. Trace gas and particulate emissions from biomass burning in temperate ecosystems

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.

    1991-01-01

    Emissions measured from fires in graminoid wetlands, Mediterranean chaparrals, and boreal forests, suggest that such ecosystemic parameters as fuel size influence combustion emissions in ways that are broadly predictable. The degree of predictability is most noticeable when wetland fire-related results are compared with boreal forest emissions; the inorganic fraction of the particulate emissions is close in composition irrespective of the ecosystem. It is found that both aerosol and trace gas emissions are influenced by the phase of combustion.

  17. Fine Particulate Pollution and Source Apportionment in the Urban Centers for Africa, Asia and Latin America

    NASA Astrophysics Data System (ADS)

    Guttikunda, S. K.; Johnson, T. M.; Procee, P.

    2004-12-01

    Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.

  18. Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes

    SciTech Connect

    Kleeman, M.J.; Schauer, J.J.; Cass, G.R.

    1999-10-15

    A dilution source sampling system is augmented to measure the size-distributed chemical composition of fine particle emissions from air pollution sources. Measurements are made using a laser optical particle counter (OPC), a differential mobility analyzer/condensation nucleus counter (DMA/CNC) combination, and a pair of microorifice uniform deposit impactors (MOUDIs). The sources tested with this system include wood smoke (pine, oak, eucalyptus), meat charbroiling, and cigarettes. The particle mass distributions from all wood smoke sources have a single mode that peaks at approximately 0.1--0.2 {micro}m particle diameter. The smoke from meat charbroiling shows a major peak in the particle mass distribution at 0.1--0.2 {micro}m particle diameter, with some material present at larger particle sizes. Particle mass distributions from cigarettes peak between 0.3 and 0.4 {micro}m particle diameter. Chemical composition analysis reveals that particles emitted from the sources tested here are largely composed of organic compounds. Noticeable concentrations of elemental carbon are found in the particles emitted from wood burning. The size distributions of the trace species emissions from these sources also are presented, including data for Na, K, Ti, Fe, Br, Ru, Cl, Al, Zn, Ba, Sr, V, Mn, Sb, La, Ce, as well as sulfate, nitrate, and ammonium ion when present in statistically significant amounts. These data are intended for use with air quality models that seek to predict the size distribution of the chemical composition of atmospheric fine particles.

  19. Extended x-ray absorption fine structure in photoelectron emission

    SciTech Connect

    Rothberg, G.M.; Choudhary, K.M.; denBoer, M.L.; Williams, G.P.; Hecht, M.H.; Lindau, I.

    1984-09-17

    We report the first definitive measurements of extended x-ray absorption fine structure (EXAFS) made by monitoring the direct photoelectron emission as a function of photon energy. We have measured EXAFS associated with the Mn 3p and F 2s core levels in evaporated films of MnF/sub 2/ and found good agreement with bulk transmission EXAFS associated with the Mn 1s level. Photoelectron EXAFS makes possible surface-sensitive structural determinations using vacuum uv radiation on a virtually unlimited range of systems.

  20. Source apportionment of fine particulate matter in Phoenix, AZ, using positive matrix factorization

    SciTech Connect

    Steven G. Brown; Anna Frankel; Sean M. Raffuse; Paul T. Roberts; Hilary R. Hafner; Darcy J. Anderson

    2007-06-15

    Speciated particulate matter PM2.5 data collected as Part. of the Interagency Monitoring of Protected Visual Environments (IMPROVE) program in Phoenix, AZ, from April 2001 through October 2003 were analyzed using the multivariate receptor model, positive matrix factorization (PMF). Over 250 samples and 24 species were used, including the organic carbon and elemental carbon analytical temperature fractions from the thermal optical reflectance method. A two-step approach was used. First, the species excluding the carbon fractions were used, and initially eight factors were identified; non-soil potassium was calculated and included to better refine the burning factor. Next, the mass associated with the burning factor was removed, and the data set rerun with the carbon fractions. Results were very similar (i.e., within a few percent), but this step enabled a separation of the mobile factor into gasoline and diesel vehicle emissions. The identified factors were burning (on average 2% of the mass), secondary transport (7%), regional power generation (13%), dust (25%), nitrate (9%), industrial As/Pb/Se (2%), Cu/Ni/V (7%), diesel (9%), and general mobile (26%). Most of the long-range transport of emissions emanates from south of Phoenix in Southeastern Arizona, West Texas, and Mexico, which are significant source regions of SO{sub 2} emissions from coal- and oil-fired power plants. The overall contribution from mobile sources also increased, as some mass (OC and nitrate) from the nitrate and regional power generation factors were apportioned with the mobile factors. This approach allowed better apportionment of carbon as well as total mass. Additionally, the use of multiple supporting analyses, including air mass trajectories, activity trends, and emission inventory information, helped increase confidence in factor identification. 86 refs., 10 figs., 2 tabs.

  1. Estimation of fine particulate matter in Taipei using landuse regression and bayesian maximum entropy methods.

    PubMed

    Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming

    2011-06-01

    Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005-2007.

  2. Fifteen-Year Global Time Series of Satellite-Derived Fine Particulate Matter

    SciTech Connect

    Boys, B. L.; Martin, R. V.; van Donkelaar, A.; MacDonell, R. J.; Hsu, N. C.; Cooper, M. J.; Yantosca, R. M.; Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S. W.

    2014-10-07

    Ambient fine particulate matter (PM2.5) is a leading environmental risk factor for premature mortality. We use aerosol optical depth (AOD) retrieved from two satellite instruments, MISR and SeaWiFS, to produce a unified 15-year global time series (1998-2012) of ground-level PM2.5 concentration at a resolution of 1 degrees x 1 degrees. The GEOS-Chem chemical transport model (CTM) is used to relate each individual AOD retrieval to ground-level PM2.5. Four broad areas showing significant, spatially coherent, annual trends are examined in detail: the Eastern U.S. (-0.39 +/- 0.10 mu g m(-3) yr(-1)), the Arabian Peninsula (0.81 +/- 0.21 mu g m(-3) yr(-1)), South Asia (0.93 +/- 0.22 mu g m(-3) yr(-1)) and East Asia (0.79 +/- 0.27 mu g m(-3) yr(-1)). Over the period of dense in situ observation (1999-2012), the linear tendency for the Eastern U.S. (-0.37 +/- 0.13 mu g m(-3) yr(-1)) agrees well with that from in situ measurements (-0.38 +/- 0.06 mu g m(-3) yr(-1)). A GEOS-Chem simulation reveals that secondary inorganic aerosols largely explain the observed PM2.5 trend over the Eastern U.S., South Asia, and East Asia, while mineral dust largely explains the observed trend over the Arabian Peninsula.

  3. Exposure to Fine Airborne Particulate Matters Induces Hepatic Fibrosis in Murine Models

    PubMed Central

    Zheng, Ze; Zhang, Xuebao; Wang, Jiemei; Dandeka, Aditya; Kim, Hyunbae; Qiu, Yining; Xu, Xiaohua; Cui, Yuqi; Wang, Aixia; Chen, Lung Chi; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2016-01-01

    Background Hepatic fibrosis, featured by accumulation of excessive extracellular matrix in liver tissues, is associated with metabolic disease and cancer. Inhalation exposure to airborne particulate matter in fine ranges (PM2.5) correlates with pulmonary dysfunction, cardiovascular disease, and metabolic syndrome. In this study, we investigated the effect and mechanism of PM2.5 exposure on hepatic fibrogenesis. Methods Both inhalation exposure of mice and in vitro exposure of specialized cells to PM2.5 were performed to elucidate the effect of PM2.5 exposure on hepatic fibrosis. Histological examinations, gene expression analyses, and genetic animal models were utilized to determine the effect and mechanism by which PM2.5 exposure promotes hepatic fibrosis. Results Inhalation exposure to concentrated ambient PM2.5 induces hepatic fibrosis in mice under the normal chow or high-fat diet. Mice after PM2.5 exposure displayed increased expression of collagens in liver tissues. Exposure to PM2.5 led to activation of the transforming growth factor β (TGFβ)-SMAD3 signaling, suppression of peroxisome proliferator-activated receptor γ (PPARγ), and expression of collagens in hepatic stellate cells. NADPH oxidase plays a critical role in PM2.5-induced liver fibrogenesis. Conclusions Exposure to PM2.5 exerts discernible effects on promoting hepatic fibrogenesis. NADPH oxidase mediates the effects of PM2.5 exposure on promoting hepatic fibrosis. PMID:26220751

  4. Ambient Fine Particulate Matter Exposure and Risk of Cardiovascular Mortality: Adjustment of the Meteorological Factors

    PubMed Central

    Luo, Kai; Li, Wenjing; Zhang, Ruiming; Li, Runkui; Xu, Qun; Cao, Yang

    2016-01-01

    Few studies have explicitly explored the impacts of the extensive adjustment (with a lag period of more than one week) of temperature and humidity on the association between ambient fine particulate matter (PM2.5) and cardiovascular mortality. In a time stratified case-crossover study, we used a distributed lag nonlinear model to assess the impacts of extensive adjustments of temperature and humidity for longer lag periods (for 7, 14, 21, 28 and 40 days) on effects of PM2.5 on total cardiovascular mortality and mortality of cerebrovascular and ischemic heart disease and corresponding exposure-response relationships in Beijing, China, between 2008 and 2011. Compared with results only controlled for temperature and humidity for 2 days, the estimated effects of PM2.5 were smaller and magnitudes of exposure-response curves were decreased when longer lag periods of temperature and relative humidity were included for adjustments, but these changes varied across subpopulation, with marked decreases occurring in males and the elderly who are more susceptible to PM2.5-related mortalities. Our findings suggest that the adjustment of meteorological factors using lag periods shorter than one week may lead to overestimated effects of PM2.5. The associations of PM2.5 with cardiovascular mortality in susceptible populations were more sensitive to further adjustments for temperature and relative humidity. PMID:27827945

  5. Exposure to fine airborne particulate matters induces hepatic fibrosis in murine models.

    PubMed

    Zheng, Ze; Zhang, Xuebao; Wang, Jiemei; Dandekar, Aditya; Kim, Hyunbae; Qiu, Yining; Xu, Xiaohua; Cui, Yuqi; Wang, Aixia; Chen, Lung Chi; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2015-12-01

    Hepatic fibrosis, featured by the accumulation of excessive extracellular matrix in liver tissue, is associated with metabolic disease and cancer. Inhalation exposure to airborne particulate matter in fine ranges (PM2.5) correlates with pulmonary dysfunction, cardiovascular disease, and metabolic syndrome. In this study, we investigated the effect and mechanism of PM2.5 exposure on hepatic fibrogenesis. Both inhalation exposure of mice and in vitro exposure of specialized cells to PM2.5 were performed to elucidate the effect of PM2.5 exposure on hepatic fibrosis. Histological examinations, gene expression analyses, and genetic animal models were utilized to determine the effect and mechanism by which PM2.5 exposure promotes hepatic fibrosis. Inhalation exposure to concentrated ambient PM2.5 induces hepatic fibrosis in mice under the normal chow or high-fat diet. Mice after PM2.5 exposure displayed increased expression of collagens in liver tissues. Exposure to PM2.5 led to activation of the transforming growth factor β-SMAD3 signaling, suppression of peroxisome proliferator-activated receptor γ, and expression of collagens in hepatic stellate cells. NADPH oxidase plays a critical role in PM2.5-induced liver fibrogenesis. Exposure to PM2.5 exerts discernible effects on promoting hepatic fibrogenesis. NADPH oxidase mediates the effects of PM2.5 exposure on promoting hepatic fibrosis. Copyright © 2015. Published by Elsevier B.V.

  6. Spatial Variable Selection Methods for Investigating Acute Health Effects of Fine Particulate Matter Components

    PubMed Central

    Vock, Laura F. Boehm; Reich, Brian J.; Fuentes, Montserrat; Dominici, Francesca

    2014-01-01

    Summary Multi-site time series studies have reported evidence of an association between short term exposure to particulate matter (PM) and adverse health effects, but the effect size varies across the United States. Variability in the effect may partially be due to differing community level exposure and health characteristics, but also due to the chemical composition of PM which is known to vary greatly by location and time. The objective of this article is to identify particularly harmful components of this chemical mixture. Because of the large number of highly-correlated components, we must incorporate some regularization into a statistical model. We assume that, at each spatial location, the regression coefficients come from a mixture model with the flavor of stochastic search variable selection, but utilize a copula to share information about variable inclusion and effect magnitude across locations. The model differs from current spatial variable selection techniques by accommodating both local and global variable selection. The model is used to study the association between fine PM (PM <2.5 μm) components, measured at 115 counties nationally over the period 2000–2008, and cardiovascular emergency room admissions among Medicare patients. PMID:25303336

  7. Blueberry Anthocyanin-Enriched Extracts Attenuate Fine Particulate Matter (PM2.5)-Induced Cardiovascular Dysfunction.

    PubMed

    Wang, Ziyu; Pang, Wei; He, Congcong; Li, Yibo; Jiang, Yugang; Guo, Changjiang

    2017-01-11

    Blueberry anthocyanin-enriched extracts (BAE) at three doses (0.5, 1.0, and 2.0 g/kg) were administered by oral gavage to rats exposed to 10 mg/kg fine particulate matter (PM2.5) three times a week. A positive control group was exposed to PM2.5 without BAE treatment. We analyzed heart rate (HR), electrocardiogram (ECG), and histopathology, and biomarkers of cardiovascular system injuries, systemic inflammation, oxidative stress, endothelial function, and apoptosis. Results indicated that BAE, particularly at 1.0 g/kg, improved ECG and decreased cytokine levels in PM2.5-exposed rats. These changes were accompanied by an increase in interleukin 10 levels and superoxide dismutase activity in heart tissue and Bcl-2 protein expression, as well as a decrease in interleukin 6, malondialdehyde, endothelin 1, and angiotensin II levels and a reduction in Bax protein expression. This study demonstrates that BAE at certain doses can protect the cardiovascular system from PM2.5-induced damage.

  8. Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008

    NASA Astrophysics Data System (ADS)

    Cohen, David D.; Crawford, Jagoda; Stelcer, Eduard; Bac, Vuong Thu

    2010-01-01

    PM 2.5 particulate matter has been collected on Teflon filters every Sunday and Wednesday at Hanoi, Vietnam for nearly eight years from April 2001 to December 2008. These filters have been analysed for over 21 different chemical species from hydrogen to lead by ion beam analysis techniques. This is the first long term PM 2.5 dataset for this region. The average PM 2.5 mass for the study period was (54 ± 33) μg m -3, well above the current US EPA health goal of 15 μg m -3. The average PM 2.5 composition was found to be (29 ± 8)% ammonium sulfate, (8.9 ± 3.3)% soil, (28 ± 11)% organic matter, (0.6 ± 1.4)% salt and (9.2 ± 2.8)% black carbon. The remaining missing mass (25%) was mainly nitrates and absorbed water. Positive matrix factorisation techniques identified the major source contributions to the fine mass as automobiles and transport (40 ± 10)%, windblown soil (3.4 ± 2)%, secondary sulfates (7.8 ± 10)%, smoke from biomass burning (13 ± 6)%, ferrous and cement industries (19 ± 8)%, and coal combustion (17 ± 7)% during the 8 year study period.

  9. Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology.

    PubMed

    Cakmak, Sabit; Dales, Robert; Kauri, Lisa Marie; Mahmud, Mamun; Van Ryswyk, Keith; Vanos, Jennifer; Liu, Ling; Kumarathasan, Premkumari; Thomson, Errol; Vincent, Renaud; Weichenthal, Scott

    2014-06-01

    Studying the physiologic effects of components of fine particulate mass (PM2.5) could contribute to a better understanding of the nature of toxicity of air pollution. We examined the relation between acute changes in cardiovascular and respiratory function, and PM2.5-associated-metals. Using generalized linear mixed models, daily changes in ambient PM2.5-associated metals were compared to daily changes in physiologic measures in 59 healthy subjects who spent 5-days near a steel plant and 5-days on a college campus. Interquartile increases in calcium, cadmium, lead, strontium, tin, vanadium and zinc were associated with statistically significant increases in heart rate of 1-3 beats per minute, increases of 1-3 mmHg in blood pressure and/or lung function decreases of up to 4% for total lung capacity. Metals contained in PM2.5 were found to be associated with acute changes in cardiovascular and respiratory physiology. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  10. Associations Between Fine Particulate Matter Components and Daily Mortality in Nagoya, Japan

    PubMed Central

    Ueda, Kayo; Yamagami, Makiko; Ikemori, Fumikazu; Hisatsune, Kunihiro; Nitta, Hiroshi

    2016-01-01

    Background Seasonal variation and regional heterogeneity have been observed in the estimated effect of fine particulate matter (PM2.5) mass on mortality. Differences in the chemical compositions of PM2.5 may cause this variation. We investigated the association of the daily concentration of PM2.5 components with mortality in Nagoya, Japan. Methods We combined daily mortality counts for all residents aged 65 years and older with concentration data for PM2.5 mass and components in Nagoya from April 2003 to December 2007. A time-stratified case-crossover design was used to examine the association of daily mortality with PM2.5 mass and each component (chloride, nitrate, sulfate, sodium, potassium, calcium, magnesium, ammonium, elemental carbon [EC], and organic carbon [OC]). Results We found a stronger association between mortality and PM2.5 mass in transitional seasons. In analysis for each PM2.5 component, sulfate, nitrate, chloride, ammonium, potassium, EC, and OC were significantly associated with mortality in a single-pollutant model. In a multi-pollutant model, an interquartile range increase in the concentration of sulfate was marginally associated with an increase in all-cause mortality of 2.1% (95% confidence interval, −0.1 to 4.4). Conclusions These findings suggest that some specific PM components have a more hazardous effect than others and contribute to seasonal variation in the health effects of PM2.5. PMID:26686882

  11. World Trade Center fine particulate matter--chemistry and toxic respiratory effects: an overview.

    PubMed Central

    Gavett, Stephen H

    2003-01-01

    The 11 September 2001 terrorist attack on New York City's World Trade Center (WTC) caused an unprecedented environmental emergency. The collapse of the towers sent a tremendous cloud of crushed building materials and other pollutants into the air of lower Manhattan. In response to the calamity, federal, state, and city environmental authorities and research institutes devoted enormous resources to evaluate the impact of WTC-derived air pollution on public health. Unfortunately, on the day of the disaster, no air-sampling monitors were operating close to the WTC site to characterize and quantify pollutants in the dust cloud. However, analysis of fallen dust samples collected 5 and 6 days after the attack showed that 1-4% by weight consisted of particles small enough to be respirable (Lioy et al. 2002). These particles included fine particulate matter, or PM(subscript)2.5(/subscript) [PM < 2.5 micro m mass median aerodynamic diameter (MMAD)], which can be inhaled deep into the lung and is associated with cardiovascular and respiratory health effects. Because of the extremely high concentrations of dust immediately after the collapse of the towers, even a relatively small proportion of PM(subscript)2.5(/subscript) in the dust clouds could have contributed to breathing problems in rescue workers and others who were not wearing protective masks. PMID:12782500

  12. Obesity and the cardiovascular health effects of fine particulate air pollution

    PubMed Central

    Weichenthal, Scott; Hoppin, Jane A; Reeves, Francois

    2014-01-01

    Objective This review examines evidence related to the potential impact of obesity on the cardiovascular health effects of fine particulate air pollution (PM2.5). Methods A PubMed search was conducted in December, 2013 and studies were included if they examined the relationship between PM2.5 and cardiovascular health as well as effect modification by obesity. Results One hundred twenty-one citations were reviewed; three large prospective cohort studies and 14 panel studies with short-term follow-up met the above criteria. All three cohort studies reported stronger associations between PM2.5 and cardiovascular mortality among obese subjects and one reported a significant trend of increased risk with increased body mass index. Similarly, 11 of 14 panel studies reported stronger associations between PM2.5 and acute changes in physiological measures of cardiovascular health among obese subjects including outcomes such as blood pressure and arrhythmia. Although interactions were not always statistically significant, the consistent pattern of stronger associations among obese subjects suggests that obesity may modify the impact of PM2.5 on cardiovascular health. Conclusions Epidemiological evidence suggests that obesity may increase susceptibility to the cardiovascular health effects of PM2.5. This an important area of research as the public health impacts of air pollution could increase with increasing prevalence of obesity. PMID:24639433

  13. Temporal Patterns in Fine Particulate Matter Time Series in Beijing: A Calendar View.

    PubMed

    Liu, Jianzheng; Li, Jie; Li, Weifeng

    2016-08-26

    Extremely high fine particulate matter (PM2.5) concentration has become synonymous to Beijing, the capital of China, posing critical challenges to its sustainable development and leading to major public health concerns. In order to formulate mitigation measures and policies, knowledge on PM2.5 variation patterns should be obtained. While previous studies are limited either because of availability of data, or because of problematic a priori assumptions that PM2.5 concentration follows subjective seasonal, monthly, or weekly patterns, our study aims to reveal the data on a daily basis through visualization rather than imposing subjective periodic patterns upon the data. To achieve this, we conduct two time-series cluster analyses on full-year PM2.5 data in Beijing in 2014, and provide an innovative calendar visualization of PM2.5 measurements throughout the year. Insights from the analysis on temporal variation of PM2.5 concentration show that there are three diurnal patterns and no weekly patterns; seasonal patterns exist but they do not follow a strict temporal division. These findings advance current understanding on temporal patterns in PM2.5 data and offer a different perspective which can help with policy formulation on PM2.5 mitigation.

  14. World Trade Center fine particulate matter--chemistry and toxic respiratory effects: an overview.

    PubMed

    Gavett, Stephen H

    2003-06-01

    The 11 September 2001 terrorist attack on New York City's World Trade Center (WTC) caused an unprecedented environmental emergency. The collapse of the towers sent a tremendous cloud of crushed building materials and other pollutants into the air of lower Manhattan. In response to the calamity, federal, state, and city environmental authorities and research institutes devoted enormous resources to evaluate the impact of WTC-derived air pollution on public health. Unfortunately, on the day of the disaster, no air-sampling monitors were operating close to the WTC site to characterize and quantify pollutants in the dust cloud. However, analysis of fallen dust samples collected 5 and 6 days after the attack showed that 1-4% by weight consisted of particles small enough to be respirable (Lioy et al. 2002). These particles included fine particulate matter, or PM(subscript)2.5(/subscript) [PM < 2.5 micro m mass median aerodynamic diameter (MMAD)], which can be inhaled deep into the lung and is associated with cardiovascular and respiratory health effects. Because of the extremely high concentrations of dust immediately after the collapse of the towers, even a relatively small proportion of PM(subscript)2.5(/subscript) in the dust clouds could have contributed to breathing problems in rescue workers and others who were not wearing protective masks.

  15. Temporal Patterns in Fine Particulate Matter Time Series in Beijing: A Calendar View

    PubMed Central

    Liu, Jianzheng; Li, Jie; Li, Weifeng

    2016-01-01

    Extremely high fine particulate matter (PM2.5) concentration has become synonymous to Beijing, the capital of China, posing critical challenges to its sustainable development and leading to major public health concerns. In order to formulate mitigation measures and policies, knowledge on PM2.5 variation patterns should be obtained. While previous studies are limited either because of availability of data, or because of problematic a priori assumptions that PM2.5 concentration follows subjective seasonal, monthly, or weekly patterns, our study aims to reveal the data on a daily basis through visualization rather than imposing subjective periodic patterns upon the data. To achieve this, we conduct two time-series cluster analyses on full-year PM2.5 data in Beijing in 2014, and provide an innovative calendar visualization of PM2.5 measurements throughout the year. Insights from the analysis on temporal variation of PM2.5 concentration show that there are three diurnal patterns and no weekly patterns; seasonal patterns exist but they do not follow a strict temporal division. These findings advance current understanding on temporal patterns in PM2.5 data and offer a different perspective which can help with policy formulation on PM2.5 mitigation. PMID:27561629

  16. Role of microRNA-4516 involved autophagy associated with exposure to fine particulate matter

    PubMed Central

    Li, Xiaobo; Lv, Yang; Hao, Jihong; Sun, Hao; Gao, Na; Zhang, Chengcheng; Lu, Runze; Wang, Shizhi; Yin, Lihong; Pu, Yuepu; Chen, Rui

    2016-01-01

    Metals are vital toxic components of fine particulate matter (PM2.5). Cellular responses to exposure to PM2.5 or PM metal components remain unknown. Post-transcriptional profiling and subsequent cell- and individual-based assays implied that the metal ion-binding miR-4516/RPL37/autophagy pathway could play a critical role in cellular responses to PM2.5 and PM metal stresses. miR-4516 was up-regulated in A549 cells exposed to PM2.5 and in the serum of individuals living in a city with moderate air pollution. The expression levels of the miR-4516 target genes, namely, RPL37 and UBA52, were involved in ribosome function and inhibited by exposure to PM2.5 and PM metal components. Autophagy in A549 cells was induced by PM2.5 exposure as a response to decreased RPL37 expression. Moreover, enhanced miR-4516 expression was positively correlated with the augmentation of the internal burden of aluminum and lead in individuals living in a city with moderate air pollution. Hereby, the miR-4516/RPL37/autophagy pathway may represent a novel mechanism that mediates responses to PM metal components. PMID:27329587

  17. Temporal Patterns in Fine Particulate Matter Time Series in Beijing: A Calendar View

    NASA Astrophysics Data System (ADS)

    Liu, Jianzheng; Li, Jie; Li, Weifeng

    2016-08-01

    Extremely high fine particulate matter (PM2.5) concentration has become synonymous to Beijing, the capital of China, posing critical challenges to its sustainable development and leading to major public health concerns. In order to formulate mitigation measures and policies, knowledge on PM2.5 variation patterns should be obtained. While previous studies are limited either because of availability of data, or because of problematic a priori assumptions that PM2.5 concentration follows subjective seasonal, monthly, or weekly patterns, our study aims to reveal the data on a daily basis through visualization rather than imposing subjective periodic patterns upon the data. To achieve this, we conduct two time-series cluster analyses on full-year PM2.5 data in Beijing in 2014, and provide an innovative calendar visualization of PM2.5 measurements throughout the year. Insights from the analysis on temporal variation of PM2.5 concentration show that there are three diurnal patterns and no weekly patterns; seasonal patterns exist but they do not follow a strict temporal division. These findings advance current understanding on temporal patterns in PM2.5 data and offer a different perspective which can help with policy formulation on PM2.5 mitigation.

  18. Ambient Fine Particulate Matter Induces Apoptosis of Endothelial Progenitor Cells Through Reactive Oxygen Species Formation

    PubMed Central

    Cui, Yuqi; Xie, Xiaoyun; Jia, Fengpeng; He, Jianfeng; Li, Zhihong; Fu, Minghuan; Hao, Hong; Liu, Ying; Liu, Jason Z.; Cowan, Peter J.; Zhu, Hua; Sun, Qinghua; Liu, Zhenguo

    2015-01-01

    Background/Aims Bone marrow (BM)-derived endothelial progenitor cells (EPCs) play a critical role in angiogenesis and vascular repair. Some environmental insults, like fine particulate matter (PM) exposure, significantly impair cardiovascular functions. However, the mechanisms for PM-induced adverse effects on cardiovascular system remain largely unknown. The present research was to study the detrimental effects of PM on EPCs and explore the potential mechanisms. Methods PM was intranasal-distilled into male C57BL/6 mice for one month. Flow cytometry was used to measure the number of EPCs, apoptosis level of circulating EPCs and intracellular reactive oxygen species (ROS) formation. Serum TNF-α and IL-1β were measured using ELISA. To determine the role of PM-induced ROS in EPC apoptosis, PM was co-administrated with the antioxidant N-acetylcysteine (NAC) in wild type mice or used in a triple transgenic mouse line (TG) with overexpression of antioxidant enzyme network (AON) composed of superoxide dismutase (SOD)1, SOD3, and glutathione peroxidase (Gpx-1) with decreased in vivo ROS production. Results PM treatment significantly decreased circulating EPC population, promoted apoptosis of EPCs in association with increased ROS production and serum TNF-α and IL-1β levels, which could be effectively reversed by either NAC treatment or overexpression of AON. Conclusion PM exposure significantly decreased circulating EPCs population due to increased apoptosis via ROS formation in mice. PMID:25591776

  19. Fugitive dust emission source profiles and assessment of selected control strategies for particulate matter at gravel processing sites in Taiwan.

    PubMed

    Chang, Chang-Tang; Chang, Yu-Min; Lin, Wen-Yinn; Wu, Ming-Ching

    2010-10-01

    Particles emitted from gravel processing sites are one contributor to worsening air quality in Taiwan. Major pollution sources at gravel processing sites include gravel and sand piles, unpaved roads, material crushers, and bare ground. This study analyzed fugitive dust emission characteristics at each pollution source using several types of particle samplers, including total suspended particulates (TSP), suspended particulate (PM10), fine suspended particulate (PM2.5), particulate sizer, and dust-fall collectors. Furthermore, silt content and moisture in the gravel were measured to develop particulate emission factors. The results showed that TSP (< 100 microm) concentrations at the boundary of gravel sites ranged from 280 to 1290 microg/m3, which clearly exceeds the Taiwan hourly air quality standard of 500 microg/m3. Moreover, PM10 concentrations, ranging from 135 to 550 microg/m3, were also above the daily air quality standard of 125 microg/m3 and approximately 1.2 and 1.5 times the PM2.5 concentrations, ranging from 105 to 470 microg/m3. The size distribution analysis reveals that mass mean diameter and geometric standard deviation ranged from 3.2 to 5.7 microm and from 2.82 to 5.51, respectively. In this study, spraying surfactant was the most effective control strategy to abate windblown dust from unpaved roads, having a control efficiency of approximately 93%, which is significantly higher than using paved road strategies with a control efficiency of approximately 45%. For paved roads, wet suppression provided the best dust control efficiencies ranging from 50 to 83%. Re-vegetation of disturbed ground had dust control efficiencies ranging from 48 to 64%.

  20. Federal Implementation Plans: Interstate Transport of Fine Particulate Matter and Ozone and Correction of SIP Approvals (76 FR 48208)

    EPA Pesticide Factsheets

    In this action, EPA limits the interstate transport of emissions of nitrogen oxides (NOX) and sulfur dioxide (SO2) that contribute to harmful levels of fine particle matter (PM2.5) and ozone in downwind states.

  1. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    SciTech Connect

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  2. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China

    NASA Astrophysics Data System (ADS)

    Hagler, G. S. W.; Bergin, M. H.; Salmon, L. G.; Yu, J. Z.; Wan, E. C. H.; Zheng, M.; Zeng, L. M.; Kiang, C. S.; Zhang, Y. H.; Lau, A. K. H.; Schauer, J. J.

    Fine particulate matter (PM 2.5) was measured for 4 months during 2002-2003 at seven sites located in the rapidly developing Pearl River Delta region of China, an area encompassing the major cities of Hong Kong, Shenzhen and Guangzhou. The 4-month average fine particulate matter concentration ranged from 37 to 71 μg m -3 in Guangdong province and from 29 to 34 μg m -3 in Hong Kong. Main constituents of fine particulate mass were organic compounds (24-35% by mass) and sulfate (21-32%). With sampling sites strategically located to monitor the regional air shed patterns and urban areas, specific source-related fine particulate species (sulfate, organic mass, elemental carbon, potassium and lead) and daily surface winds were analyzed to estimate influential source locations. The impact of transport was investigated by categorizing 13 (of 20 total) sampling days by prevailing wind direction (southerly, northerly or low wind-speed mixed flow). The vicinity of Guangzhou is determined to be a major source area influencing regional concentrations of PM 2.5, with levels observed to increase by 18-34 μg m -3 (accounting for 46-56% of resulting particulate levels) at sites immediately downwind of Guangzhou. The area near Guangzhou is also observed to heavily impact downwind concentrations of lead. Potassium levels, related to biomass burning, appear to be controlled by sources in the northern part of the Pearl River Delta, near rural Conghua and urban Guangzhou. Guangzhou appears to contribute 5-6 μg m -3 of sulfate to downwind locations. Guangzhou also stands out as a significant regional source of organic mass (OM), adding 8.5-14.5 μg m -3 to downwind concentrations. Elemental carbon is observed to be strongly influenced by local sources, with highest levels found in urban regions. In addition, it appears that sources outside of the Pearl River Delta contribute a significant fraction of overall fine particulate matter in Hong Kong and Guangdong province. This is evident

  3. Global Fine Particulate Matter Concentrations and Trends Inferred from Satellite Observations, Modeling, and Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Martin, Randall; van Donkelaar, Aaron; Boys, Brian; Philip, Sajeev; Lee, Colin; Snider, Graydon; Weagle, Crystal

    2014-05-01

    Outdoor fine particulate matter (PM2.5) is a leading environmentally-related cause of premature mortality worldwide. However, ground-level PM2.5 monitors remain sparse in many regions of the world. Satellite remote sensing from MODIS, MISR, and SeaWiFS yields a powerful global data source to address this issue. Global modeling (GEOS-Chem) plays a critical role in relating these observations to ground-level concentrations. The resultant satellite-based estimates of PM2.5 indicate dramatic variation around the world, with implications for global public health. A new ground-based aerosol network (SPARTAN) offers valuable measurements to understand the relationship between satellite observations of aerosol optical depth and ground-level PM2.5 concentrations. This talk will highlight recent advances in combining satellite remote sensing, global modeling, and ground-based measurements to improve understanding of global population exposure to outdoor fine particulate matter.

  4. The molecular distribution of fine particulate organic matter emitted from Western-style fast food cooking

    NASA Astrophysics Data System (ADS)

    Zhao, Yunliang; Hu, Min; Slanina, Sjaak; Zhang, Yuanhang

    The emissions from food cooking could be a significant contributor to atmospheric particulate organic matter (POM) and its chemical composition would vary with different cooking styles. In this study, the chemical composition of POM emitted from Western-style fast food cooking was investigated. A total of six PM 2.5 samples was collected from a commercial restaurant and determined by gas chromatography-mass spectrometry (GC-MS). It is found that the total amount of quantified compounds of per mg POM in Western-style fast food cooking is much higher than that in Chinese cooking. The predominant homologue is fatty acids, accounting for 78% of total quantified POM, with the predominant one being palmitic acid. Dicarboxylic acids display the second highest concentration in the quantified homologues with hexanedioic acid being predominant, followed by nonanedioic acid. Cmax of n-alkanes occurs at C25, but they still appear relative higher concentrations at C29 and C31. In addition, both levoglucosan and cholesterol are quantified. The relationship of concentrations of unsaturated fatty acids (C16 and C18) with a double bond at C9 position and C9 acids indicates the reduction of the unsaturated fatty acids in the emissions could form the C9 acids. Moreover, the nonlinear fit indicates that other C9 species or other compounds are also produced, except for the C9 acids. The potential candidates of tracers for the emissions from Western-fast food cooking could be: tetradecanoic acid, hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, nonanal, lactones, levoglucosan, hexanedioic acid and nonanedioic acid.

  5. Interactions between cigarette smoking and fine particulate matter in the Risk of Lung Cancer Mortality in Cancer Prevention Study II.

    PubMed

    Turner, Michelle C; Cohen, Aaron; Jerrett, Michael; Gapstur, Susan M; Diver, W Ryan; Pope, C Arden; Krewski, Daniel; Beckerman, Bernardo S; Samet, Jonathan M

    2014-12-15

    The International Agency for Research on Cancer recently classified outdoor air pollution and airborne particulate matter as carcinogenic to humans. However, there are gaps in the epidemiologic literature, including assessment of possible joint effects of cigarette smoking and fine particulate matter (particulate matter less than or equal to 2.5 µm in diameter) on lung cancer risk. We present estimates of interaction on the additive scale between these risk factors from Cancer Prevention Study II, a large prospective US cohort study of nearly 1.2 million participants recruited in 1982. Estimates of the relative excess risk of lung cancer mortality due to interaction, the attributable proportion due to interaction, and the synergy index were 2.19 (95% confidence interval (CI): -0.10, 4.83), 0.14 (95% CI: 0.00, 0.25), and 1.17 (95% CI: 1.00, 1.37), respectively, using the 25th and 75th percentiles as cutpoints for fine particulate matter. This suggests small increases in lung cancer risk among persons with both exposures beyond what would be expected from the sum of the effects of the individual exposures alone. Although reductions in cigarette smoking will achieve the greatest impact on lung cancer rates, these results suggest that attempted reductions in lung cancer risk through both tobacco control and air quality management may exceed expectations based on reducing exposure to either risk factor alone.

  6. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  7. Characteristics of particulate carbon emissions from real-world Chinese coal combustion

    SciTech Connect

    Yuanxun Zhang; James Jay Schauer; Yuanhang Zhang; Limin Zeng; Yongjie Wei; Yuan Liu; Min Shao

    2008-07-15

    Particulate matter emissions from a series of different Chinese coal combustion systems were collected and analyzed for elemental and organic carbon (EC, OC), and molecular markers. Emissions from both industrial boilers and residential stoves were investigated. The coal used in this study included anthracite, bituminite, and brown coal, as well as commonly used coal briquettes produced in China for residential coal combustion. Results show significant differences in the contribution of carbonaceous species to particulate mass emissions. Industrial boilers had much higher burn out of carbon yielding particulate matter emissions with much lower levels of OC, EC, and speciated organic compounds, while residential stoves had significantly higher emissions of carbonaceous particulate matter with emission rates of approximately 100 times higher than that of industrial boilers. Quantified organic compounds emitted from industrial boilers were dominated by oxygenated compounds, of which 46-68% were organic acids, whereas the dominate species quantified in the emissions from residential stoves were PAHs (38%) and n-alkanes (20%). An important observation was the fact that emission factors of PAHs and the distribution of hopanoids were different among the emissions from industrial and residential coal combustion even using the same coal for combustion. Although particulate matter emissions from industrial and residential combustion were different in many regards, picene was detected in all samples with detectable OC mass concentrations, which supports the use of this organic tracer for OC from all types of coal combustion. 17{alpha}(H),21{beta}(H)-29-norhopane was the predominant hopanoid in coal combustion emissions, which is different from mobile source emissions and may be used to distinguish emissions from these different fossil fuel sources. 32 refs., 4 figs., 1 tab.

  8. Characteristics of particulate carbon emissions from real-world Chinese coal combustion.

    PubMed

    Zhang, Yuanxun; Schauer, James Jay; Zhang, Yuanhang; Zeng, Limin; Wei, Yongjie; Liu, Yuan; Shao, Min

    2008-07-15

    Particulate matter emissions from a series of different Chinese coal combustion systems were collected and analyzed for elemental and organic carbon (EC, OC), and molecular markers. Emissions from both industrial boilers and residential stoves were investigated. The coal used in this study included anthracite, bituminite, and brown coal, as well as commonly used coal briquettes produced in China for residential coal combustion. Results show significant differences in the contribution of carbonaceous species to particulate mass emissions. Industrial boilers had much higher burn out of carbon yielding particulate matter emissions with much lower levels of OC, EC, and speciated organic compounds, while residential stoves had significantly higher emissions of carbonaceous particulate matter with emission rates of approximately 100 times higher than that of industrial boilers. Quantified organic compounds emitted from industrial boilers were dominated by oxygenated compounds, of which 46-68% were organic acids, whereas the dominate species quantified in the emissions from residential stoves were PAHs (38%) and n-alkanes (20%). An important observation was the fact that emission factors of PAHs and the distribution of hopanoids were different among the emissions from industrial and residential coal combustion even using the same coal for combustion. Although particulate matter emissions from industrial and residential combustion were different in many regards, picene was detected in all samples with detectable OC mass concentrations, which supports the use of this organic tracer for OC from all types of coal combustion. 17alpha(H),21beta(H)-29-norhopane was the predominant hopanoid in coal combustion emissions, which is different from mobile source emissions and may be used to distinguish emissions from these different fossil fuel sources.

  9. SOURCE SIGNATURES OF FINE PARTICULATE MATTER FROM PETROLEUM REFINING AND FUEL USE

    SciTech Connect

    Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Artur Braun; Yuanzhi Chen; J. David Robertson; Joseph Kyger; Adel F. Sarofim; Ronald J. Pugmire; Henk L.C. Meuzelaar; JoAnn Lighty

    2003-07-31

    The molecular structure and microstructure of a suite of fine particulate matter (PM) samples produced by the combustion of residual fuel oil and diesel fuel were investigated by an array of analytical techniques. Some of the more important results are summarized below. Diesel PM (DPM): A small diesel engine test facility was used to generate a suite of diesel PM samples from different fuels under engine load and idle conditions. C XANES, {sup 13}C NMR, XRD, and TGA were in accord that the samples produced under engine load conditions contained more graphitic material than those produced under idle conditions, which contained a larger amount of unburned diesel fuel and lubricating oil. The difference was enhanced by the addition of 5% of oxygenated compounds to the reference fuel. Scanning transmission x-ray micro-spectroscopy (STXM) was able to distinguish particulate regions rich in C=C bonds from regions rich in C-H bonds with a resolution of {approx}50 nm. The former are representative of more graphitic regions and the latter of regions rich in unburned fuel and oil. The dominant microstructure observed by SEM and TEM consisted of complex chain-like structures of PM globules {approx}20-100 nm in mean diameter, with a high fractal dimension. High resolution TEM revealed that the graphitic part of the diesel soot consisted of onion-like structures made up of graphene layers. Typically 3-10 graphene layers make up the ''onion rings'', with the layer spacing decreasing as the number of layers increases. ROFA PM: Residual oil fly ash (ROFA) PM has been analyzed by a new approach that combines XAFS spectroscopy with selective leaching procedures. ROFA PM{sub 2.5} and PM{sub 2.5+} produced in combustion facilities at the U.S. EPA National Risk Management Research Laboratory (NRML) were analyzed by XAFS before and after leaching with water, acid (1N HCl), and pentane. Both water and acid leaching removed most of the metal sulfates, which were the dominant phase present

  10. World Trade Center fine particulate matter causes respiratory tract hyperresponsiveness in mice.

    PubMed Central

    Gavett, Stephen H; Haykal-Coates, Najwa; Highfill, Jerry W; Ledbetter, Allen D; Chen, Lung Chi; Cohen, Mitchell D; Harkema, Jack R; Wagner, James G; Costa, Daniel L

    2003-01-01

    Pollutants originating from the destruction of the World Trade Center (WTC) in New York City on 11 September 2001 have been reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)] has detrimental respiratory effects in mice to contribute to the risk assessment of WTC-derived pollutants. Samples of WTC PM2.5 were derived from settled dust collected at several locations around Ground Zero on 12 and 13 September 2001. Aspirated samples of WTC PM2.5 induced mild to moderate degrees of pulmonary inflammation 1 day after exposure but only at a relatively high dose (100 microg). This response was not as great as that caused by 100 microg PM2.5 derived from residual oil fly ash (ROFA) or Washington, DC, ambient air PM [National Institute of Standards and Technology, Standard Reference Material (SRM) 1649a]. However, this same dose of WTC PM2.5 caused airway hyperresponsiveness to methacholine aerosol comparable to that from SRM 1649a and to a greater degree than that from ROFA. Mice exposed to lower doses by aspiration or inhalation exposure did not develop significant inflammation or hyperresponsiveness. These results show that exposure to high levels of WTC PM2.5 can promote mechanisms of airflow obstruction in mice. Airborne concentrations of WTC PM2.5 that would cause comparable doses in people are high (approximately 425 microg/m3 for 8 hr) but conceivable in the aftermath of the collapse of the towers when rescue and salvage efforts were in effect. We conclude that a high-level exposure to WTC PM2.5 could cause pulmonary inflammation and airway hyperresponsiveness in people. The effects of chronic exposures to lower levels of WTC PM2.5, the persistence of any respiratory effects, and the effects of coarser WTC PM are unknown and were not examined in these studies. Degree of exposure and respiratory

  11. World Trade Center fine particulate matter causes respiratory tract hyperresponsiveness in mice.

    PubMed

    Gavett, Stephen H; Haykal-Coates, Najwa; Highfill, Jerry W; Ledbetter, Allen D; Chen, Lung Chi; Cohen, Mitchell D; Harkema, Jack R; Wagner, James G; Costa, Daniel L

    2003-06-01

    Pollutants originating from the destruction of the World Trade Center (WTC) in New York City on 11 September 2001 have been reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)] has detrimental respiratory effects in mice to contribute to the risk assessment of WTC-derived pollutants. Samples of WTC PM2.5 were derived from settled dust collected at several locations around Ground Zero on 12 and 13 September 2001. Aspirated samples of WTC PM2.5 induced mild to moderate degrees of pulmonary inflammation 1 day after exposure but only at a relatively high dose (100 microg). This response was not as great as that caused by 100 microg PM2.5 derived from residual oil fly ash (ROFA) or Washington, DC, ambient air PM [National Institute of Standards and Technology, Standard Reference Material (SRM) 1649a]. However, this same dose of WTC PM2.5 caused airway hyperresponsiveness to methacholine aerosol comparable to that from SRM 1649a and to a greater degree than that from ROFA. Mice exposed to lower doses by aspiration or inhalation exposure did not develop significant inflammation or hyperresponsiveness. These results show that exposure to high levels of WTC PM2.5 can promote mechanisms of airflow obstruction in mice. Airborne concentrations of WTC PM2.5 that would cause comparable doses in people are high (approximately 425 microg/m3 for 8 hr) but conceivable in the aftermath of the collapse of the towers when rescue and salvage efforts were in effect. We conclude that a high-level exposure to WTC PM2.5 could cause pulmonary inflammation and airway hyperresponsiveness in people. The effects of chronic exposures to lower levels of WTC PM2.5, the persistence of any respiratory effects, and the effects of coarser WTC PM are unknown and were not examined in these studies. Degree of exposure and respiratory

  12. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment.

    PubMed

    McGee, John K; Chen, Lung Chi; Cohen, Mitchell D; Chee, Glen R; Prophete, Colette M; Haykal-Coates, Najwa; Wasson, Shirley J; Conner, Teri L; Costa, Daniel L; Gavett, Stephen H

    2003-06-01

    The catastrophic destruction of the World Trade Center (WTC) on 11 September 2001 caused the release of high levels of airborne pollutants into the local environment. To assess the toxicity of fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)], which may adversely affect the health of workers and residents in the area, we collected fallen dust samples on 12 and 13 September 2001 from sites within a half-mile of Ground Zero. Samples of WTC dust were sieved, aerosolized, and size-separated, and the PM2.5 fraction was isolated on filters. Here we report the chemical and physical properties of PM2.5 derived from these samples and compare them with PM2.5 fractions of three reference materials that range in toxicity from relatively inert to acutely toxic (Mt. St. Helens PM; Washington, DC, ambient air PM; and residual oil fly ash). X-ray diffraction of very coarse sieved WTC PM (< 53 microm) identified calcium sulfate (gypsum) and calcium carbonate (calcite) as major components. Scanning electron microscopy confirmed that calcium-sulfur and calcium-carbon particles were also present in the WTC PM2.5 fraction. Analysis of WTC PM2.5 using X-ray fluorescence, neutron activation analysis, and inductively coupled plasma spectrometry showed high levels of calcium (range, 22-33%) and sulfur (37-43% as sulfate) and much lower levels of transition metals and other elements. Aqueous extracts of WTC PM2.5 were basic (pH range, 8.9-10.0) and had no evidence of significant bacterial contamination. Levels of carbon were relatively low, suggesting that combustion-derived particles did not form a significant fraction of these samples recovered in the immediate aftermath of the destruction of the towers. Because gypsum and calcite are known to cause irritation of the mucus membranes of the eyes and respiratory tract, inhalation of high doses of WTC PM2.5 could potentially cause toxic respiratory effects.

  13. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment.

    PubMed Central

    McGee, John K; Chen, Lung Chi; Cohen, Mitchell D; Chee, Glen R; Prophete, Colette M; Haykal-Coates, Najwa; Wasson, Shirley J; Conner, Teri L; Costa, Daniel L; Gavett, Stephen H

    2003-01-01

    The catastrophic destruction of the World Trade Center (WTC) on 11 September 2001 caused the release of high levels of airborne pollutants into the local environment. To assess the toxicity of fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)], which may adversely affect the health of workers and residents in the area, we collected fallen dust samples on 12 and 13 September 2001 from sites within a half-mile of Ground Zero. Samples of WTC dust were sieved, aerosolized, and size-separated, and the PM2.5 fraction was isolated on filters. Here we report the chemical and physical properties of PM2.5 derived from these samples and compare them with PM2.5 fractions of three reference materials that range in toxicity from relatively inert to acutely toxic (Mt. St. Helens PM; Washington, DC, ambient air PM; and residual oil fly ash). X-ray diffraction of very coarse sieved WTC PM (< 53 microm) identified calcium sulfate (gypsum) and calcium carbonate (calcite) as major components. Scanning electron microscopy confirmed that calcium-sulfur and calcium-carbon particles were also present in the WTC PM2.5 fraction. Analysis of WTC PM2.5 using X-ray fluorescence, neutron activation analysis, and inductively coupled plasma spectrometry showed high levels of calcium (range, 22-33%) and sulfur (37-43% as sulfate) and much lower levels of transition metals and other elements. Aqueous extracts of WTC PM2.5 were basic (pH range, 8.9-10.0) and had no evidence of significant bacterial contamination. Levels of carbon were relatively low, suggesting that combustion-derived particles did not form a significant fraction of these samples recovered in the immediate aftermath of the destruction of the towers. Because gypsum and calcite are known to cause irritation of the mucus membranes of the eyes and respiratory tract, inhalation of high doses of WTC PM2.5 could potentially cause toxic respiratory effects. PMID:12782501

  14. Reactive oxidative species formation and unregulated particulate emissions from blended diesel and biodiesel light-duty engine emissions

    USDA-ARS?s Scientific Manuscript database

    It is well established that particulate matter (PM) continues to be a major air pollutant challenge for human health globally and vehicle exhaust PM emissions have been linked to many adverse health effects. However, the relative toxicity of biodiesel emissions compared to petroleum diesel remains u...

  15. Using National Ambient Air Quality Standards for fine particulate matter to assess regional wildland fire smoke and air quality management.

    PubMed

    Schweizer, Don; Cisneros, Ricardo; Traina, Samuel; Ghezzehei, Teamrat A; Shaw, Glenn

    2017-10-01

    Wildland fire is an important ecological process in the California Sierra Nevada. Personal accounts from pre-20th century describe a much smokier environment than present day. The policy of suppression beginning in the early 20th century and climate change are contributing to increased megafires. We use a single particulate monitoring site at the wildland urban interface to explore impacts from prescribed, managed, and full suppression wildland fires from 2006 to 2015 producing a contextual assessment of smoke impacts over time at the landscape level. Prescribed fire had little effect on local fine particulate matter (PM2.5) air quality with readings typical of similar non-fire times; hourly and daily good to moderate Air Quality Index (AQI) for PM2.5, maximum hourly concentrations 21-103 μg m(-3), and mean concentrations between 7.7 and 13.2 μg m(-3). Hourly and daily AQI was typically good or moderate during managed fires with 3 h and one day reaching unhealthy while the site remained below National Ambient Air Quality Standards (NAAQS), with maximum hourly concentrations 27-244 μg m(-3), and mean concentrations 6.7-11.7 μg m(-3). The large high intensity fire in this area created the highest short term impacts (AQI unhealthy for 4 h and very unhealthy for 1 h), 11 unhealthy for sensitive days, and produced the only annual value (43.9 μg m(-3)) over the NAAQS 98th percentile for PM2.5 (35 μg m(-3)). Pinehurst remained below the federal standards for PM2.5 when wildland fire in the local area was managed to 7800 ha (8-22% of the historic burn area). Considering air quality impacts from smoke using the NAAQS at a landscape level over time can give land and air managers a metric for broader evaluation of smoke impacts particularly when assessing ecologically beneficial fire. Allowing managers to control the amount and timing of individual wildland fire emissions can help lessen large smoke impacts to public health from a megafire. Published by

  16. Simulating the fine and coarse inorganic particulate matter concentrations in a polluted megacity

    NASA Astrophysics Data System (ADS)

    Karydis, Vlassis A.; Tsimpidi, Alexandra P.; Fountoukis, Christos; Nenes, Athanasios; Zavala, Miguel; Lei, Wenfang; Molina, Luisa T.; Pandis, Spyros N.

    2010-02-01

    A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM 1 (fine) and PM 1-10 (coarse) inorganic components and determine the effect of mineral dust on their formation. The aerosol thermodynamic model ISORROPIA-II is used to explicitly simulate the effect of Ca, Mg, and K from dust on semi-volatile partitioning and water uptake. The hybrid approach is applied to simulate the inorganic components, assuming that the smallest particles are in thermodynamic equilibrium, while describing the mass transfer to and from the larger ones. The official MCMA 2004 emissions inventory with improved dust and NaCl emissions is used. The comparison between the model predictions and measurements during a week of April of 2003 at Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA) "Supersite" shows that the model reproduces reasonably well the fine mode composition and its diurnal variation. Sulfate predicted levels are relatively uniform in the area (approximately 3 μg m -3), while ammonium nitrate peaks in Mexico City (approximately 7 μg m -3) and its concentration rapidly decreases due to dilution and evaporation away from the urban area. In areas of high dust concentrations, the associated alkalinity is predicted to increase the concentration of nitrate, chloride and ammonium in the coarse mode by up to 2 μg m -3 (a factor of 10), 0.4 μg m -3, and 0.6 μg m -3 (75%), respectively. The predicted ammonium nitrate levels inside Mexico City for this period are sensitive to the physical state (solid versus liquid) of the particles during periods with RH less than 50%.

  17. ENDOCRINE DISRUPTING CHEMICAL EMISSIONS FROM COMBUSTION SOURCES: DIESEL PARTICULATE EMISSIONS AND DOMESTIC WASTE OPEN BURN EMISSIONS

    EPA Science Inventory

    Emissions of endocrine disrupting chemicals (EDCs) from combustion sources are poorly characterized due to the large number of compounds present in the emissions, the complexity of the analytical separations required, and the uncertainty regarding identification of chemicals with...

  18. Ambient Fine Particulate Matter, Nitrogen Dioxide, and Preterm Birth in New York City

    PubMed Central

    Johnson, Sarah; Bobb, Jennifer F.; Ito, Kazuhiko; Savitz, David A.; Elston, Beth; Shmool, Jessie L.C.; Dominici, Francesca; Ross, Zev; Clougherty, Jane E.; Matte, Thomas

    2016-01-01

    Background: Recent studies have suggested associations between air pollution and various birth outcomes, but the evidence for preterm birth is mixed. Objective: We aimed to assess the relationship between air pollution and preterm birth using 2008–2010 New York City (NYC) birth certificates linked to hospital records. Methods: We analyzed 258,294 singleton births with 22–42 completed weeks gestation to nonsmoking mothers. Exposures to ambient fine particles (PM2.5) and nitrogen dioxide (NO2) during the first, second, and cumulative third trimesters within 300 m of maternal address were estimated using data from the NYC Community Air Survey and regulatory monitors. We estimated the odds ratio (OR) of spontaneous preterm (gestation < 37 weeks) births for the first- and second-trimester exposures in a logistic mixed model, and the third-trimester cumulative exposures in a discrete time survival model, adjusting for maternal characteristics and delivery hospital. Spatial and temporal components of estimated exposures were also separately analyzed. Results: PM2.5 was not significantly associated with spontaneous preterm birth. NO2 in the second trimester was negatively associated with spontaneous preterm birth in the adjusted model (OR = 0.90; 95% CI: 0.83, 0.97 per 20 ppb). Neither pollutant was significantly associated with spontaneous preterm birth based on adjusted models of temporal exposures, whereas the spatial exposures showed significantly reduced odds ratios (OR = 0.80; 95% CI: 0.67, 0.96 per 10 μg/m3 PM2.5 and 0.88; 95% CI: 0.79, 0.98 per 20 ppb NO2). Without adjustment for hospital, these negative associations were stronger. Conclusion: Neither PM2.5 nor NO2 was positively associated with spontaneous preterm delivery in NYC. Delivery hospital was an important spatial confounder. Citation: Johnson S, Bobb JF, Ito K, Savitz DA, Elston B, Shmool JL, Dominici F, Ross Z, Clougherty JE, Matte T. 2016. Ambient fine particulate matter, nitrogen dioxide, and

  19. Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.; Johnson, Scott M.

    2010-01-01

    . Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.

  20. Characterizing and predicting coarse and fine particulates in classrooms located close to an urban roadway.

    PubMed

    Chithra, V S; Nagendra, S M Shiva

    2014-08-01

    The PM10, PM2.5, and PM1 (particulate matter with aerodynamic diameters < 10, < 2.5, and < 1 microm, respectively) concentrations were monitored over a 90-day period in a naturally ventilated school building located at roadside in Chennai City. The 24-hr average PM10, PM2.5, and PM1 concentrations at indoor and outdoor environments were found to be 136 +/- 60, 36 +/- 15, and 20 +/- 12 and 76 +/- 42, 33 +/- 16, and 23 +/- 14 microg/m3, respectively. The size distribution of PM in the classroom indicated that coarse mode was dominant during working hours (08:00 a.m. to 04:00 p.m.), whereas fine mode was dominant during nonworking hours (04:00 p.m. to 08:00 a.m.). The increase in coarser particles coincided with occupant activities in the classrooms and finer particles were correlated with outdoor traffic. Analysis of indoor PM10, PM2.5, and PM1 concentrations monitored at another school, which is located at urban reserved forest area (background site) indicated 3-4 times lower PM10 concentration than the school located at roadside. Also, the indoor PM1 and PM2.5 concentrations were 1.3-1.5 times lower at background site. Further, a mass balance indoor air quality (IAQ) model was modified to predict the indoor PM concentration in the classroom. Results indicated good agreement between the predicted and measured indoor PM2.5 (R2 = 0.72-0.81) and PM1 (R2 = 0.81-0.87) concentrations. But, the measured and predicted PM10 concentrations showed poor correlation (R2 = 0.17-0.23), which may be because the IAQ model could not take into account the sudden increase in PM10 concentration (resuspension of large size particles) due to human activities. Implications: The present study discusses characteristics of the indoor coarse and fine PM concentrations of a naturally ventilated school building located close to an urban roadway and at a background site in Chennai City, India. The study results will be useful to engineers and policymakers to prepare strategies for improving the

  1. Concentration dynamics of coarse and fine particulate matter at and around signalised traffic intersections.

    PubMed

    Kumar, Prashant; Goel, Anju

    2016-09-14

    The understanding of rapidly evolving concentrations of particulate matter (PMC) at signalised traffic intersections (TIs) is limited, but it is important for accurate exposure assessment. We performed "mobile" and "fixed-site" monitoring of size-resolved PMCs in the 0.25-34 μm range at TIs. On-road mobile measurements were made inside a car under five different ventilation settings on a 6 km long round route, passing through 10 different TIs. Fixed-site measurements were conducted at two types (3- and 4-way) of TIs. The aims were to assess the effects of different ventilation settings on in-vehicle PMCs and their comparison during delay conditions at the TIs with those experienced by pedestrians while crossing these TIs. We also estimated the zone of influence (ZoI) for PM10, PM2.5 and PM1 under different driving conditions and fitted the probability distribution functions to fixed-site data to understand the concentration and exposure dynamics of coarse and fine particles around the studied (3- and 4-way) TIs. The fine particles (PM2.5) showed a strong positive exponential correlation with the air exchange rates under different ventilation settings compared with coarse particles (PM2.5-10) showing an opposite trend. This suggested that the ventilation system of the car was relatively more efficient in removing coarse particles from the incoming outside air. On-road median PM10, PM2.5 and PM1 during delays at the TIs were ∼40%, 16% and 17% higher, respectively, compared with free-flow conditions on the rest of the route. About 7% of the average commuting time spent during delay conditions over all the runs at the TIs corresponded to 10, 7 and 8% of the total respiratory deposition dose (RDD) for PM10, PM2.5 and PM1, respectively. The maximum length of the ZoI for PM2.5 and PM1 was highest at the 4-way TI and the maximum length of the ZoI for PM10 was highest at the 3-way TI. The on-road average RDD rate of PM10 inside the cabin when windows were fully open was

  2. Ambient Fine Particulate Matter, Nitrogen Dioxide, and Preterm Birth in New York City.

    PubMed

    Johnson, Sarah; Bobb, Jennifer F; Ito, Kazuhiko; Savitz, David A; Elston, Beth; Shmool, Jessie L C; Dominici, Francesca; Ross, Zev; Clougherty, Jane E; Matte, Thomas

    2016-08-01

    Recent studies have suggested associations between air pollution and various birth outcomes, but the evidence for preterm birth is mixed. We aimed to assess the relationship between air pollution and preterm birth using 2008-2010 New York City (NYC) birth certificates linked to hospital records. We analyzed 258,294 singleton births with 22-42 completed weeks gestation to nonsmoking mothers. Exposures to ambient fine particles (PM2.5) and nitrogen dioxide (NO2) during the first, second, and cumulative third trimesters within 300 m of maternal address were estimated using data from the NYC Community Air Survey and regulatory monitors. We estimated the odds ratio (OR) of spontaneous preterm (gestation < 37 weeks) births for the first- and second-trimester exposures in a logistic mixed model, and the third-trimester cumulative exposures in a discrete time survival model, adjusting for maternal characteristics and delivery hospital. Spatial and temporal components of estimated exposures were also separately analyzed. PM2.5 was not significantly associated with spontaneous preterm birth. NO2 in the second trimester was negatively associated with spontaneous preterm birth in the adjusted model (OR = 0.90; 95% CI: 0.83, 0.97 per 20 ppb). Neither pollutant was significantly associated with spontaneous preterm birth based on adjusted models of temporal exposures, whereas the spatial exposures showed significantly reduced odds ratios (OR = 0.80; 95% CI: 0.67, 0.96 per 10 μg/m3 PM2.5 and 0.88; 95% CI: 0.79, 0.98 per 20 ppb NO2). Without adjustment for hospital, these negative associations were stronger. Neither PM2.5 nor NO2 was positively associated with spontaneous preterm delivery in NYC. Delivery hospital was an important spatial confounder. Johnson S, Bobb JF, Ito K, Savitz DA, Elston B, Shmool JL, Dominici F, Ross Z, Clougherty JE, Matte T. 2016. Ambient fine particulate matter, nitrogen dioxide, and preterm birth in New York City. Environ Health Perspect 124

  3. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China.

    PubMed

    Li, Guangdong; Fang, Chuanglin; Wang, Shaojian; Sun, Siao

    2016-11-01

    Rapid economic growth, industrialization, and urbanization in China have led to extremely severe air pollution that causes increasing negative effects on human health, visibility, and climate change. However, the influence mechanisms of these anthropogenic factors on fine particulate matter (PM2.5) concentrations are poorly understood. In this study, we combined panel data and econometric methods to investigate the main anthropogenic factors that contribute to increasing PM2.5 concentrations in China at the prefecture level from 1999 to 2011. The results showed that PM2.5 concentrations and three anthropogenic factors were cointegrated. The panel Fully Modified Least Squares and panel Granger causality test results indicated that economic growth, industrialization, and urbanization increased PM2.5 concentrations in the