Science.gov

Sample records for fine root growth

  1. Chapter 16. Fine-root Growth Response

    SciTech Connect

    J. Devereux Joslin; Mark H. Wolfe

    2002-07-31

    As part of a multiyear study to evaluate the affects of altered water inputs to an upland forest many aspects of tree growth physiology were studied. Chapter 16 of this book deals with fine root growth as studied over a 7 year period using a variety of methods. This chapter summarizes the results and conclusions from those efforts.

  2. Fine Root Growth Phenology, Production, and Turnover in a Northern Hardwood Forest Ecosystem

    Treesearch

    Marianne K. Burke; Dudley J. Raynal

    1994-01-01

    A large part of the nutrient flux in deciduous forests is through fine root turnover, yet this process is seldom measured. As part of a nutrient cycling study, fine root dynamics were studied for two years at Huntington Forest in the Adirondack Mountain region of New York, USA. Root growth phenology was characterized using field rhizotrons, three methods were used to...

  3. Root growth

    Treesearch

    Terrell T. Baker; William H. Conner; B. Graeme Lockaby; Marianne K. Burke; John A. Stanturf

    2000-01-01

    While vegetation dynamics of forested floodplains have received considerable attention (Megonigal and others 1997, Mitch and Gosselink 1993), the highly dynamic fine root component of these ecosystems has been primarily ignored. Characterizing fine root growth is a challenging endeavor in any system, but the difficulties are particularly evident in forested floodplains...

  4. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat

    Treesearch

    Colleen M. Iversen; Joanne Childs; Richard J. Norby; Todd A. Ontl; Randall K. Kolka; Deanne J. Brice; Karis J. McFarlane; Paul J. Hanson

    2017-01-01

    Background and aims. Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. We aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat...

  5. Long-Term Effects of Season of Prescribed Burn on the Fine-Root Growth, Root Carbohydrates, and Foliar Dynamics of Mature Longleaf Pine

    Treesearch

    Eric A. Kuehler; Mary Anne Sword Sayer; James D. Haywood; C. Dan Andries

    2004-01-01

    Depending on the season and intensity of fire, as well as the phenology of foliage and new root growth, fire may damage foliage, and subsequently decrease whole-crown carbon fixation and allocation to the root system. In central Louisiana the authors investigated how season of prescribed burning affects fine-root dynamics, root carbohydrate relations, and leaf area...

  6. Fine-root growth in a forested bog is seasonally dynamic, but shallowly distributed in nutrient-poor peat

    DOE PAGES

    Iversen, Colleen M.; Childs, Joanne; Norby, Richard J.; ...

    2017-03-30

    Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. Here, we aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat microtopography, and changes in environmental conditions across the growing season and throughout the peat profile. We quantified fine-root peak standing crop and growth using non-destructive minirhizotron technology over a two-year period, focusing on the dominant woody species in the bog: Picea mariana, Larix laricina, Rhododendron groenlandicum, and Chamaedaphne calyculata. The fine roots ofmore » trees and shrubs were concentrated in raised hummock microtopography, with more tree roots associated with greater tree densities and a unimodal peak in shrub roots at intermediate tree densities. Fine-root growth tended to be seasonally dynamic, but shallowly distributed, in a thin layer of nutrient-poor, aerobic peat above the growing season water table level. Finally, the dynamics and distribution of fine roots in this forested ombrotrophic bog varied across space and time in response to biological, edaphic, and climatic conditions, and we expect these relationships to be sensitive to projected environmental changes in northern peatlands.« less

  7. A GTPase-Dependent Fine ER Is Required for Localized Secretion in Polarized Growth of Root Hairs1

    PubMed Central

    Qi, Xingyun; Sun, Jiaqi; Zheng, Huanquan

    2016-01-01

    The endoplasmic reticulum (ER) is a cellular network comprising membrane tubules and sheets stretching throughout the cytoplasm. Atlastin GTPases, including Atlastin-1 in mammals and RHD3 in plants, play a role in the generation of the interconnected tubular ER network by promoting the fusion of ER tubules. Root hairs in rhd3 are short and wavy, a defect reminiscent of axon growth in cells with depleted Atlastin-1. However, how a loss in the ER complexity could lead to a defective polarized cell growth of root hairs or neurons remains elusive. Using live-cell imaging techniques, we reveal that, a fine ER distribution, which is found in the subapical zone of growing root hairs of wild-type plants, is altered to thick bundles in rhd3. The localized secretion to the apical dome as well as the apical localization of root hair growth regulator ROP2 is oscillated in rhd3. Interestingly, the shift of ROP2 precedes the shift of localized secretion as well as the fine ER distribution in rhd3. Our live imaging and pharmacologic modification of root hair growth defects in rhd3 suggest that there is interplay between the ER and microtubules in the polarized cell growth of root hairs. We hypothesize that, under the guidance of ROP2, RHD3, together with the action of microtubules, is required for the formation of a fine ER structure in the subapical zone of growing root hairs. This fine ER structure is essential for the localized secretion to the apical dome in polarized cell growth. PMID:27231102

  8. EFFECTS OF ELEVATED CO-2 AND N FERTILIZATION ON FINE ROOT DYNAMICS AND FUNGAL GROWTH IN SEEDLING PINUS PONDEROSA

    EPA Science Inventory

    The effects of elevated CO-2 and N fertilization on fine root growth of Pinus ponderosa Dougl. ex P. Laws. C. Laws., grown in native soil in open-top field-exposure chambers at Placerville, CA, were monitored for a 2-year period using minirhizotrons. The experimental design was a...

  9. EFFECTS OF ELEVATED CO-2 AND N FERTILIZATION ON FINE ROOT DYNAMICS AND FUNGAL GROWTH IN SEEDLING PINUS PONDEROSA

    EPA Science Inventory

    The effects of elevated CO-2 and N fertilization on fine root growth of Pinus ponderosa Dougl. ex P. Laws. C. Laws., grown in native soil in open-top field-exposure chambers at Placerville, CA, were monitored for a 2-year period using minirhizotrons. The experimental design was a...

  10. Consequences of insect herbivory on grape fine root systems with different growth rates.

    PubMed

    Bauerle, T L; Eissenstat, D M; Granett, J; Gardner, D M; Smart, D R

    2007-07-01

    Herbivory tolerance has been linked to plant growth rate where plants with fast growth rates are hypothesized to be more tolerant of herbivory than slower-growing plants. Evidence supporting this theory has been taken primarily from observations of aboveground organs but rarely from roots. Grapevines differing in overall rates of new root production, were studied in Napa Valley, California over two growing seasons in an established vineyard infested with the sucking insect, grape phylloxera (Daktulosphaira vitifoliae Fitch). The experimental vineyard allowed for the comparison of two root systems that differed in rates of new root tip production (a 'fast grower', Vitis berlandieri x Vitis rupestris cv. 1103P, and a slower-growing stock, Vitis riparia x Vitis rupestris cv. 101-14 Mgt). Each root system was grafted with a genetically identical shoot system (Vitis vinifera cv. Merlot). Using minirhizotrons, we did not observe any evidence of spatial or temporal avoidance of insect populations by root growth. Insect infestations were abundant throughout the soil profile, and seasonal peaks in phylloxera populations generally closely followed peaks in new root production. Our data supported the hypothesis that insect infestation was proportional to the number of growing tips, as indicated by similar per cent infestation in spite of a threefold difference in root tip production. In addition, infested roots of the fast-growing rootstock exhibited somewhat shorter median lifespans (60 d) than the slower-growing rootstock (85 d). Lifespans of uninfested roots were similar for the two rootstocks (200 d). As a consequence of greater root mortality of younger roots, infested root populations in the fast-growing rootstock had an older age structure. While there does not seem to be a trade-off between potential growth rate and relative rate of root infestation in these cultivars, our study indicates that a fast-growing root system may more readily shed infested roots that are

  11. Seasonal Fine-Root Carbohydrate and Growth Relations of Plantation Loblolly Pine After Thinning and Fertilization

    Treesearch

    Eric A. Kuehler; Mary Anne Sword; C. Dan Andries

    1999-01-01

    In 1989, two levels each of stand density and fertilization were established in an 8-year-old loblolly pine (Pinus taeda L.) plantation. In March 1995, treatments were reapplied, and root elongation and carbohydrate concentrations were monitored for 2 years. Our objective was to evaluate relationships between seasonal root growth and carbohydrate...

  12. Direct and legacy effects of long-term elevated CO₂ on fine root growth and plant-insect interactions.

    PubMed

    Stiling, Peter; Moon, Daniel; Rossi, Anthony; Forkner, Rebecca; Hungate, Bruce A; Day, Frank P; Schroeder, Rachel E; Drake, Bert

    2013-11-01

    Increasing atmospheric CO₂ concentrations alter leaf physiology, with effects that cascade to communities and ecosystems. Yet, responses over cycles of disturbance and recovery are not well known, because most experiments span limited ecological time. We examined the effects of CO₂ on root growth, herbivory and arthropod biodiversity in a woodland from 1996 to 2006, and the legacy of CO₂ enrichment on these processes during the year after the CO₂ treatment ceased. We used minirhizotrons to study root growth, leaf censuses to study herbivory and pitfall traps to determine the effects of elevated CO₂ on arthropod biodiversity. Elevated CO₂ increased fine root biomass, but decreased foliar nitrogen and herbivory on all plant species. Insect biodiversity was unchanged in elevated CO₂. Legacy effects of elevated CO₂ disappeared quickly as fine root growth, foliar nitrogen and herbivory levels recovered in the next growing season following the cessation of elevated CO₂. Although the effects of elevated CO₂ cascade through plants to herbivores, they do not reach other trophic levels, and biodiversity remains unchanged. The legacy of 10 yr of elevated CO₂ on plant-herbivore interactions in this system appear to be minimal, indicating that the effects of elevated CO₂ may not accumulate over cycles of disturbance and recovery.

  13. Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litter fall and fine root growth under simulated drought.

    PubMed

    Moser, Gerald; Schuldt, Bernhard; Hertel, Dietrich; Horna, Viviana; Coners, Heinz; Barus, Henry; Leuschner, Christoph

    2014-05-01

    Climate change scenarios predict increases in the frequency and duration of ENSO-related droughts for parts of South-East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan-tropical review of recorded drought-related tree mortalities in more than 100 monitoring plots before, during and after drought events suggested a higher drought-vulnerability of trees in South-East Asian than in Amazonian forests. Here, we present the results of a replicated (n = 3 plots) throughfall exclusion experiment in a perhumid tropical rainforest in Sulawesi, Indonesia. In this first large-scale roof experiment outside semihumid eastern Amazonia, 60% of the throughfall was displaced during the first 8 months and 80% during the subsequent 17 months, exposing the forest to severe soil desiccation for about 17 months. In the experiment's second year, wood production decreased on average by 40% with largely different responses of the tree families (ranging from -100 to +100% change). Most sensitive were trees with high radial growth rates under moist conditions. In contrast, tree height was only a secondary factor and wood specific gravity had no influence on growth sensitivity. Fine root biomass was reduced by 35% after 25 months of soil desiccation while fine root necromass increased by 250% indicating elevated fine root mortality. Cumulative aboveground litter production was not significantly reduced in this period. The trees from this Indonesian perhumid rainforest revealed similar responses of wood and litter production and root dynamics as those in two semihumid Amazonian forests subjected to experimental drought. We conclude that trees from paleo- or neotropical forests growing in semihumid or perhumid climates may not differ systematically in their growth sensitivity and vitality under sublethal drought stress. Drought vulnerability may depend more on stem cambial activity in moist periods than on tree height or wood

  14. Response of leaf and fine roots proteomes of Salix viminalis L. to growth on Cr-rich tannery waste.

    PubMed

    Zemleduch-Barylska, Agata; Lorenc-Plucińska, Gabriela

    2016-09-01

    The tannery industry is a major source of anthropogenic chromium (Cr) contamination due to the large amounts of solid waste produced and its problematic management. The unique composition of tannery waste, usually high concentrations of Cr and other metals as well as organic matter and nutrients, makes it a great risk for soil and water environment but also a possible effective fertilizer for non-food plants that can tolerate metals. The goal of this study was to understand the adaptation mechanism of Salix viminalis to growth on Cr-rich tannery waste from an active landfill. We used a proteomic approach to identify leaf and fine roots proteins altered by tannery waste as compared to control soil conditions. We found no obvious symptoms of oxidative stress in leaves or fine roots. Proteomic results indicated some changes in metabolism, with increases in energy production processes and their greater efficiency for leaves rather than root development. Comparison between S. viminalis and P. × canescens response to tannery waste suggested that S. viminalis is not suitable for remediation of Cr-contaminated areas of a tannery waste landfill site.

  15. Fine and coarse root parameters from mature black spruce displaying genetic x soil moisture interaction in growth

    Treesearch

    John E. Major; Kurt H. Johnsen; Debby C. Barsi; Moira Campbell

    2012-01-01

    Fine and coarse root biomass, C, and N mass parameters were assessed by root size and soil depths from soil cores in plots of 32-year-old black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.) from four full-sib families studied previously for drought tolerance and differential productivity on a dry and wet...

  16. Seasonal branch and fine root growth of juvenile loblolly pine five growing seasons after fertilization

    Treesearch

    M.A. Sword; D.A. Gravatt; P.L. Faulkner; J.L. Chambers

    1996-01-01

    In 1989, we established two replications of two fertilization treatments in a 10-year-old loblolly pine (Pinus taeda L.) plantation. Between March and September 1993, branch internode and needle fascicle expansion in the upper and lower third of crowns were measured weekly on three south-facing branches of each of four trees, and new root...

  17. Stored carbon partly fuels fine-root respiration but is not used for production of new fine roots

    SciTech Connect

    Lynch, Douglas J; Matamala-Paradeda, Roser; Iversen, Colleen M; Norby, Richard J; Gonzalez-Meler, Miguel A

    2013-01-01

    The relative use of new photosynthate compared to stored C for the production and maintenance of fine roots, and the rate of C turnover in heterogeneous fine-root populations, are poorly understood. We followed the relaxation of a 13C tracer in fine roots in a Liquidambar styraciflua plantation at the conclusion of a free-air CO2 enrichment experiment. Goals included quantifying the relative fractions of new photosynthate versus stored C used in root growth and root respiration, as well as the turnover rate of fine-root C fixed during [CO2] fumigation. New fine-root growth was largely from recent photosynthate, while nearly one-quarter of respired C was from a storage pool. Changes in the isotopic composition of the fine-root population over two full growing seasons indicated heterogeneous C pools; less than 10% of root C had a residence time < 3 months, while a majority of root C had a residence time > 2 years. Compared to a 1-pool model, a 2-pool model for C turnover in fine roots (with 5 and 0.37 yr-1 turnover times) doubles the fine-root contribution to forest NPP (9-13%) and supports the 50% root-to-soil transfer rate often used in models.

  18. Stored carbon partly fuels fine-root respiration but is not used for production of new fine roots.

    PubMed

    Lynch, Douglas J; Matamala, Roser; Iversen, Colleen M; Norby, Richard J; Gonzalez-Meler, Miquel A

    2013-07-01

    The relative use of new photosynthate compared to stored carbon (C) for the production and maintenance of fine roots, and the rate of C turnover in heterogeneous fine-root populations, are poorly understood. We followed the relaxation of a (13)C tracer in fine roots in a Liquidambar styraciflua plantation at the conclusion of a free-air CO(2) enrichment experiment. Goals included quantifying the relative fractions of new photosynthate vs stored C used in root growth and root respiration, as well as the turnover rate of fine-root C fixed during [CO(2)] fumigation. New fine-root growth was largely from recent photosynthate, while nearly one-quarter of respired C was from a storage pool. Changes in the isotopic composition of the fine-root population over two full growing seasons indicated heterogeneous C pools; < 10% of root C had a residence time < 3 months, while a majority of root C had a residence time > 2 yr. Compared to a one-pool model, a two-pool model for C turnover in fine roots (with 5 and 0.37 yr(-1) turnover times) doubles the fine-root contribution to forest NPP (9-13%) and supports the 50% root-to-soil transfer rate often used in models. No claim to original US government works. New Phytologist © 2013 New Phytologist Trust.

  19. ADVANCING FINE ROOT RESEARCH WITH MINIRHIZOTRONS

    EPA Science Inventory

    Minirhizotrons provide a nondestructive, in situ method for directly viewing and studying fine roots. Although many insights into fine roots have been gained using minirhizotrons, it is clear from the literature that there is still wide variation in how minirhizotrons and minirhi...

  20. ADVANCING FINE ROOT RESEARCH WITH MINIRHIZOTRONS

    EPA Science Inventory

    Minirhizotrons provide a nondestructive, in situ method for directly viewing and studying fine roots. Although many insights into fine roots have been gained using minirhizotrons, it is clear from the literature that there is still wide variation in how minirhizotrons and minirhi...

  1. Unresolving the "real age" of fine roots in forest ecosystems

    NASA Astrophysics Data System (ADS)

    Solly, Emily; Brunner, Ivano; Herzog, Claude; Schöning, Ingo; Schrumpf, Marion; Schweigruber, Fritz; Trumbore, Susan; Hagedorn, Frank

    2016-04-01

    Estimating the turnover time of tree fine roots is crucial for modelling soil organic matter dynamics, but it is one of the biggest challenges in soil ecology and one of the least understood aspects of the belowground carbon cycle. The methods used - ranging from radiocarbon to ingrowth cores and root cameras (minirhizotrons) - yield very diverse pictures of fine root dynamics in forest ecosystems with turnover rates reaching from less than one year to decades. These have huge implications on estimates of carbon allocation to root growth and maintenance and on the persistence of root carbon in soils before it is decomposed or leached. We will present a new approach, involving techniques to study plant anatomy, which unravels the "real age" of fine roots. For a range of forests with diverse water and nutrient limitations located at different latitudes, we investigated the annual growth rings in the secondary xylem of thin transversal sections of fine roots belonging to tree species which form distinct growth rings. In temperate forests we find mean root "ring ages" of 1-2 years while in sub-arctic forests living fine roots can also persist for several years. The robustness of these results were tested by counting the maximum yearly growth rings in tree seedlings of known age and by counting the maximum number of growth rings of fine roots grown in ingrowth cores which were kept in temperate forest soils for one and two years. Radiocarbon estimates of mean "carbon ages", which define the time elapsed since structural carbon was fixed from the atmosphere, instead average around a decade in root systems of temperate forests (mixture of newly produced and older living roots). This dramatic difference may not be related to methodological bias, but to a time lag between C assimilation and production of a portion of fine root tissues due to the storage of older carbon components. The time lag depends very likely on tree species and environmental conditions. We further

  2. Fine Root Longevity Still Under Debate

    NASA Astrophysics Data System (ADS)

    Keel, S. G.; Blackburn, M.; Campbell, C.; Högberg, M. N.; Richter, A.; Wild, B.; Högberg, P.

    2008-12-01

    Assuming that fine roots (< 2 mm in diameter) turn over once per year, they represent a third of the global annual net primary productivity. These turnover estimates are based on rhizotron studies, where root longevity is determined by monitoring the appearance/disappearance of roots on a screen, which is inserted into the soil. Much slower fine root turnover rates were found using carbon (C) isotope methods (either 14C dating or continuous 13C-labelling), resulting in root longevities of several years. Stable C isotope tracer experiments, are argued to overestimate fine root longevities, mainly because the smallest roots with the highest turn over, are easily missed during sampling. The goal of the present study was therefore to carry out a C-labelling experiment, and specifically focus on the finest roots, namely root tips. In addition we sampled whole fine roots (<1 mm and 1-3 mm in diameter), as in other studies. We pulse labelled 14-year-old Pinus sylvestris (Pine) trees in the field for only three hours with highly 13C-enriched CO2 (24 atom percent). The mean residence time (MRT) of recently assimilated C in root tips was determined, as a measure for root longevity. Already two days after labelling, recent C had been translocated from the crowns to fine roots indicating rapid belowground C allocation. 13C signals in root tips were stronger than in whole roots, which shows that they are the most active part of the root system. MRT of C calculated using first order exponential decay functions of C in bulk roots were around 20 days in both <1mm and 1-3mm roots and 29 days in root tips. A rapid decline in 13C signals was observed which could be explained by a rapid decrease in the signal of the sucrose pool, which had a MRT of 5 days. However, part of the labelled C had been allocated to a pool with a slower turnover rate (most likely structural compounds such as cellulose) as indicated by persisting 13C signals measured 120 days after labelling. MRT of C in

  3. Fine-root system development and susceptibility to pathogen colonization.

    PubMed

    Emmett, Bryan; Nelson, Eric B; Kessler, Andre; Bauerle, Taryn L

    2014-02-01

    Root development may exert control on plant-pathogen interactions with soil-borne pathogens by shaping the spatial and temporal availability of susceptible tissues and in turn the impact of pathogen colonization on root function. To evaluate the relationship between root development and resistance to apple replant disease (ARD) pathogens, pathogen abundance was compared across root branching orders in a bioassay with two rootstock genotypes, M.26 (highly susceptible) and CG.210 (less susceptible). Root growth, anatomical development and secondary metabolite production were evaluated as tissue resistance mechanisms. ARD pathogens primarily colonized first and second order roots, which corresponded with cortical tissue senescence and loss in second and third order roots. Defense compounds were differentially allocated across root branching orders, while defense induction or stress response was only detected in first order and pioneer roots. Our results suggest disease development is based largely on fine-root tip attrition. In accordance, the less susceptible rootstock supported lower ARD pathogen abundance and altered defense compound production in first order and pioneer roots and maintained higher rates of root growth in both the ARD soil and pasteurized control compared to the more susceptible. Thus, this rootstock's ability to maintain shoot growth in replant soil may be attributable to relative replant pathogen resistance in distal root branches as well as tolerance of infection based on rates of root growth.

  4. Impacts of environmental factors on fine root lifespan

    PubMed Central

    McCormack, M. Luke; Guo, Dali

    2014-01-01

    The lifespan of fast-cycling roots is a critical parameter determining a large flux of plant carbon into soil through root turnover and is a biological feature regulating the capacity of a plant to capture soil water and nutrients via root-age-related physiological processes. While the importance of root lifespan to whole-plant and ecosystem processes is increasingly recognized, robust descriptions of this dynamic process and its response to changes in climatic and edaphic factors are lacking. Here we synthesize available information and propose testable hypotheses using conceptual models to describe how changes in temperature, water, nitrogen (N), and phosphorus (P) availability impact fine root lifespan within a species. Each model is based on intrinsic responses including root physiological activity and alteration of carbohydrate allocation at the whole-plant level as well as extrinsic factors including mycorrhizal fungi and pressure from pathogens, herbivores, and other microbes. Simplifying interactions among these factors, we propose three general principles describing fine root responses to complex environmental gradients. First, increases in a factor that strongly constrains plant growth (temperature, water, N, or P) should result in increased fine root lifespan. Second, increases in a factor that exceeds plant demand or tolerance should result in decreased lifespan. Third, as multiple factors interact fine root responses should be determined by the most dominant factor controlling plant growth. Moving forward, field experiments should determine which types of species (e.g., coarse vs. fine rooted, obligate vs. facultative mycotrophs) will express greater plasticity in response to environmental gradients while ecosystem models may begin to incorporate more detailed descriptions of root lifespan and turnover. Together these efforts will improve quantitative understanding of root dynamics and help to identify areas where future research should be focused

  5. Fine root decay rates vary widely among lowland tropical tree species.

    PubMed

    Raich, James W; Russell, Ann E; Valverde-Barrantes, Oscar

    2009-08-01

    Prolific fine root growth coupled with small accumulations of dead fine roots indicate rapid rates of fine root production, mortality and decay in young tree plantations in lowland Costa Rica. However, published studies indicate that fine roots decay relatively slowly in tropical forests. To resolve this discrepancy, we used the intact-core technique to quantify first-year decay rates of fine roots in four single-species plantations of native tree species. We tested three hypotheses: first, that fine roots from different tree species would decay at different rates; second, that species having rapid fine root growth rates would also have rapid rates of fine root decay; and third, that differences in fine root decay among species could be explained by fine root chemistry variables previously identified as influencing decay rates. Fine roots in Virola koschnyi plantations decayed very slowly (k = 0.29 +/- 0.15 year(-1)); those of Vochysia guatemalensis decayed seven times faster (k = 2.00 +/- 0.13 year(-1)). Decay rates of the remaining two species, Hieronyma alchorneoides and Pentaclethra macroloba, were 1.36 and 1.28 year(-1), respectively. We found a positive, marginally significant correlation between fine root decay rates and the relative growth rates of live fine roots (R = 0.93, n = 4, P = 0.072). There was a highly significant negative correlation between fine root decay and fine root lignin:N (R = 0.99, P = 0.01), which supports the use of lignin:N as a decay-controlling factor within terrestrial ecosystem models. The decay rates that we observed in this single study location encompassed the entire range of fine root decay rates previously observed in moist tropical forests, and thus suggest great potential for individual tree species to alter belowground organic matter and nutrient dynamics within a biotically rich rainforest environment.

  6. Fine root dynamics across a chronosequence of upland temperate deciduous forests

    Treesearch

    Travis W. Idol; Phillip E. Pope; Felix Jr. Ponder

    2000-01-01

    Following a major disturbance event in forests that removes most of the standing vegetation, patterns of fine root growth, mortality, and decomposition may be altered from the pre-disturbance conditions. The objective of this study was to describe the changes in the seasonal and spatial dynamics of fine root growth, mortality, and decomposition that occur following...

  7. The effect of limited availability of N or water on C allocation to fine roots and annual fine root turnover in Alnus incana and Salix viminalis.

    PubMed

    Rytter, Rose-Marie

    2013-09-01

    The effect of limited nitrogen (N) or water availability on fine root growth and turnover was examined in two deciduous species, Alnus incana L. and Salix viminalis L., grown under three different regimes: (i) supply of N and water in amounts which would not hamper growth, (ii) limited N supply and (iii) limited water supply. Plants were grown outdoors during three seasons in covered and buried lysimeters placed in a stand structure and filled with quartz sand. Computer-controlled irrigation and fertilization were supplied through drip tubes. Production and turnover of fine roots were estimated by combining minirhizotron observations and core sampling, or by sequential core sampling. Annual turnover rates of fine roots <1 mm (5-6 year(-1)) and 1-2 mm (0.9-2.8 year(-1)) were not affected by changes in N or water availability. Fine root production (<1 mm) differed between Alnus and Salix, and between treatments in Salix; i.e., absolute length and biomass production increased in the order: water limited < unlimited < N limited. Few treatment effects were detected for fine roots 1-2 mm. Proportionally more C was allocated to fine roots (≤2 mm) in N or water-limited Salix; 2.7 and 2.3 times the allocation to fine roots in the unlimited regime, respectively. Estimated input to soil organic carbon increased by ca. 20% at N limitation in Salix. However, future studies on fine root decomposition under various environmental conditions are required. Fine root growth responses to N or water limitation were less pronounced in Alnus, thus indicating species differences caused by N-fixing capacity and slower initial growth in Alnus, or higher fine root plasticity in Salix. A similar seasonal growth pattern across species and treatments suggested the influence of outer stimuli, such as temperature and light.

  8. Applicability of optical scanner method for fine root dynamics

    NASA Astrophysics Data System (ADS)

    Kume, Tomonori; Ohashi, Mizue; Makita, Naoki; Khoon Kho, Lip; Katayama, Ayumi; Matsumoto, Kazuho; Ikeno, Hidetoshi

    2016-04-01

    Fine root dynamics is one of the important components in forest carbon cycling, as ~60 % of tree photosynthetic production can be allocated to root growth and metabolic activities. Various techniques have been developed for monitoring fine root biomass, production, mortality in order to understand carbon pools and fluxes resulting from fine roots dynamics. The minirhizotron method is now a widely used technique, in which a transparent tube is inserted into the soil and researchers count an increase and decrease of roots along the tube using images taken by a minirhizotron camera or minirhizotron video camera inside the tube. This method allows us to observe root behavior directly without destruction, but has several weaknesses; e.g., the difficulty of scaling up the results to stand level because of the small observation windows. Also, most of the image analysis are performed manually, which may yield insufficient quantitative and objective data. Recently, scanner method has been proposed, which can produce much bigger-size images (A4-size) with lower cost than those of the minirhizotron methods. However, laborious and time-consuming image analysis still limits the applicability of this method. In this study, therefore, we aimed to develop a new protocol for scanner image analysis to extract root behavior in soil. We evaluated applicability of this method in two ways; 1) the impact of different observers including root-study professionals, semi- and non-professionals on the detected results of root dynamics such as abundance, growth, and decomposition, and 2) the impact of window size on the results using a random sampling basis exercise. We applied our new protocol to analyze temporal changes of root behavior from sequential scanner images derived from a Bornean tropical forests. The results detected by the six observers showed considerable concordance in temporal changes in the abundance and the growth of fine roots but less in the decomposition. We also examined

  9. PATTERNS IN SOIL FERTILITY AND ROOT HERBIVORY INTERACT TO INFLUENCE FINE-ROOT DYNAMICS.

    SciTech Connect

    Stevens, Glen, N.; Jones, Robert, H.

    2006-03-01

    Fine-scale soil nutrient enrichment typically stimulates root growth, but it may also increase root herbivory, resulting in trade-offs for plant species and potentially influencing carbon cycling patterns. We used root ingrowth cores to investigate the effects of microsite fertility and root herbivory on root biomass in an aggrading upland forest in the coastal plain of South Carolina, USA. Treatments were randomly assigned to cores from a factorial combination of fertilizer and insecticide. Soil, soil fauna, and roots were removed from the cores at the end of the experiment (8–9 mo), and roots were separated at harvest into three diameter classes. Each diameter class responded differently to fertilizer and insecticide treatments. The finest roots (,1.0 mm diameter), which comprised well over half of all root biomass, were the only ones to respond significantly to both treatments, increasing when fertilizer and when insecticide were added (each P , 0.0001), with maximum biomass found where the treatments were combined (interaction term significant, P , 0.001). These results suggest that root-feeding insects have a strong influence on root standing crop with stronger herbivore impacts on finer roots and within more fertile microsites. Thus, increased vulnerability to root herbivory is a potentially significant cost of root foraging in nutrient-rich patches.

  10. Fine-root mortality rates in a temperate forest: Estimates using radiocarbon data and numerical modeling

    SciTech Connect

    Riley, W.J.; Gaudinski, J.B.; Torn, M.S.; Joslin, J.D.; Hanson, P.J.

    2009-09-01

    We used an inadvertent whole-ecosystem {sup 14}C label at a temperate forest in Oak Ridge, Tennessee, USA to develop a model (Radix1.0) of fine-root dynamics. Radix simulates two live-root pools, two dead-root pools, non-normally distributed root mortality turnover times, a stored carbon (C) pool, and seasonal growth and respiration patterns. We applied Radix to analyze measurements from two root size classes (< 0.5 and 0.5-2.0 mm diameter) and three soil-depth increments (O horizon, 0-15 cm and 30-60 cm). Predicted live-root turnover times were < 1 yr and 10 yr for short- and long-lived pools, respectively. Dead-root pools had decomposition turnover times of 2 yr and 10 yr. Realistic characterization of C flows through fine roots requires a model with two live fine-root populations, two dead fine-root pools, and root respiration. These are the first fine-root turnover time estimates that take into account respiration, storage, seasonal growth patterns, and non-normal turnover time distributions. The presence of a root population with decadal turnover times implies a lower amount of belowground net primary production used to grow fine-root tissue than is currently predicted by models with a single annual turnover pool.

  11. Fine root architecture of nine North American trees

    Treesearch

    Kurt S. Pregitzer; Jared L. DeForest; Andrew J. Burton; Michael F. Allen; Roger W. Ruess; Ronald L. Hendrick

    2002-01-01

    The fine roots of trees are concentrated on lateral branches that arise from perennial roots. They are important in the acquisition of water and essential nutrients, and at the ecosystem level, they make a significant contribution to biogeochemical cycling. Fine roots have often been studied according to arbitrary size classes, e.g., all roots less than 1 or 2 mm in...

  12. Soil incorporation of logging residue affects fine-root and mycorrhizal root-tip dynamics of young loblolly pine clones.

    PubMed

    Pritchard, Seth G; Maier, Chris A; Johnsen, Kurt H; Grabman, Andrea J; Chalmers, Anne P; Burke, Marianne K

    2010-10-01

    Loblolly pine (Pinus taeda L.) plantations cover a large geographic area of the southeastern USA and supply a large proportion of the nation's wood products. Research on management strategies designed to maximize wood production while also optimizing nutrient use efficiency and soil C sequestration is needed. We used minirhizotrons to quantify the effects of incorporating logging residues into soil on fine-root standing crop, production and mortality, and mycorrhizal root tips in young loblolly pine clones of contrasting ideotypes. Clone 93 is known to allocate more C to stem growth, while clone 32 allocates less C to stems and more to leaves. The relative allocation by these clones to support fine-root turnover is unknown. Clone 32 exhibited 37% more fine-root mortality than clone 93, which was mainly the result of a greater standing crop of fine roots. Fine-root standing crop in plots amended with logging residue was initially higher than control plots, but 2.5 years after planting, standing crop in control plots had exceeded that in mulched plots. Production of mycorrhizal root tips, on the other hand, was initially higher in control than mulched plots, but during the last 9 months of the study, mycorrhizal tip production was greater in mulched than control plots, especially for clone 93. As expected, turnover rate of fine roots was greater in surface soil (0-25 cm) compared with deeper (25-50 cm) soil and for small roots (< 0.4 mm diameter) compared with larger fine roots (0.4-2.0 mm diameter). Rates of fine-root turnover were similar in both clones. Organic matter additions reduced survivorship of individual roots and increased turnover rates of fine-root populations. Results indicate that management decisions should be tailored to fit the growth and allocation patterns of available clones.

  13. Predicting fine root lifespan from plant functional traits in temperate trees.

    PubMed

    Luke McCormack, M; Adams, Thomas S; Smithwick, Erica A H; Eissenstat, David M

    2012-09-01

    Although linkages of leaf and whole-plant traits to leaf lifespan have been rigorously investigated, there is a limited understanding of similar linkages of whole-plant and fine root traits to root lifespan. In comparisons across species, do suites of traits found in leaves also exist for roots, and can these traits be used to predict root lifespan? We observed the fine root lifespan of 12 temperate tree species using minirhizotrons in a common garden and compared their median lifespans with fine-root and whole-plant traits. We then determined which set of combined traits would be most useful in predicting patterns of root lifespan. Median root lifespan ranged widely among species (95-336 d). Root diameter, calcium content, and tree wood density were positively related to root lifespan, whereas specific root length, nitrogen (N) : carbon (C) ratio, and plant growth rate were negatively related to root lifespan. Root diameter and plant growth rate, together (R² = 0.62) or in combination with root N : C ratio (R² = 0.76), were useful predictors of root lifespan across the 12 species. Our results highlight linkages between fine root lifespan in temperate trees and plant functional traits that may reduce uncertainty in predictions of root lifespan or turnover across species at broader spatial scales. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  14. Changes in fine root dynamics and distribution along a chronosequence of upland oak-hickory forests

    Treesearch

    Travis W. Idol; Phillip E. Pope; Felix, Jr. Ponder

    1997-01-01

    Central Hardwood forests regenerate rapidly following a major disturbance like a clear-cut. The subsequent aboveground growth and development of the resulting stands have been well-documented for these forests. However, the belowground components, specifically the dynamics of fine roots, are not well understood. Fine roots are the main vectors through which plants...

  15. Root hair sweet growth

    PubMed Central

    Velasquez, Silvia M; Iusem, Norberto D

    2011-01-01

    Root hairs are single cells specialized in the absorption of water and nutrients from the soil. Growing root hairs require intensive cell-wall changes to accommodate cell expansion at the apical end by a process known as tip or polarized growth. We have recently shown that cell wall glycoproteins such as extensins (EXTs) are essential components of the cell wall during polarized growth. Proline hydroxylation, an early posttranslational modification of cell wall EXTs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs. Biochemical inhibition or genetic disruption of specific P4Hs resulted in the blockage of polarized growth in root hairs. Our results demonstrate that correct hydroxylation and also further O-glycosylation on EXTs are essential for cell-wall self-assembly and, hence, root hair elongation. The changes that O-glycosylated cell-wall proteins like EXTs undergo during cell growth represent a starting point to unravel the entire biochemical pathway involved in plant development. PMID:21918376

  16. Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress.

    PubMed

    Gaudin, Amelie C M; McClymont, Sarah A; Holmes, Bridget M; Lyons, Eric; Raizada, Manish N

    2011-12-01

    There is interest in discovering root traits associated with acclimation to nutrient stress. Large root systems, such as in adult maize, have proven difficult to be phenotyped comprehensively and over time, causing target traits to be missed. These challenges were overcome here using aeroponics, a system where roots grow in the air misted with a nutrient solution. Applying an agriculturally relevant degree of low nitrogen (LN) stress, 30-day-old plants responded by increasing lengths of individual crown roots (CRs) by 63%, compensated by a 40% decline in CR number. LN increased the CR elongation rate rather than lengthening the duration of CR growth. Only younger CR were significantly responsive to LN stress, a novel finding. LN shifted the root system architectural balance, increasing the lateral root (LR)-to-CR ratio, adding ∼70 m to LR length. LN caused a dramatic increase in second-order LR density, not previously reported in adult maize. Despite the near-uniform aeroponics environment, LN induced increased variation in the relative lengths of opposing LR pairs. Large-scale analysis of root hairs (RHs) showed that LN decreased RH length and density. Time-course experiments suggested the RH responses may be indirect consequences of decreased biomass/demand under LN. These results identify novel root traits for genetic dissection.

  17. Estimate of fine root production including the impact of decomposed roots in a Bornean tropical rainforest

    NASA Astrophysics Data System (ADS)

    Katayama, Ayumi; Khoon Koh, Lip; Kume, Tomonori; Makita, Naoki; Matsumoto, Kazuho; Ohashi, Mizue

    2016-04-01

    Considerable carbon is allocated belowground and used for respiration and production of roots. It is reported that approximately 40 % of GPP is allocated belowground in a Bornean tropical rainforest, which is much higher than those in Neotropical rainforests. This may be caused by high root production in this forest. Ingrowth core is a popular method for estimating fine root production, but recent study by Osawa et al. (2012) showed potential underestimates of this method because of the lack of consideration of the impact of decomposed roots. It is important to estimate fine root production with consideration for the decomposed roots, especially in tropics where decomposition rate is higher than other regions. Therefore, objective of this study is to estimate fine root production with consideration of decomposed roots using ingrowth cores and root litter-bag in the tropical rainforest. The study was conducted in Lambir Hills National Park in Borneo. Ingrowth cores and litter bags for fine roots were buried in March 2013. Eighteen ingrowth cores and 27 litter bags were collected in May, September 2013, March 2014 and March 2015, respectively. Fine root production was comparable to aboveground biomass increment and litterfall amount, and accounted only 10% of GPP in this study site, suggesting most of the carbon allocated to belowground might be used for other purposes. Fine root production was comparable to those in Neotropics. Decomposed roots accounted for 18% of fine root production. This result suggests that no consideration of decomposed fine roots may cause underestimate of fine root production.

  18. Moving forward with fine-root definitions and research

    DOE PAGES

    McCormack, M. Luke; Iversen, Colleen M.; Eissenstat, David M.

    2016-08-30

    Here, in the letter published in this issue of New Phytologist (pp. 310-312), 'Fine roots - functional definition expanded to crop species?' Dr. Zobel emphasizes the importance of heterogeneity within crop-root systems.

  19. Moving forward with fine-root definitions and research

    SciTech Connect

    McCormack, M. Luke; Iversen, Colleen M.; Eissenstat, David M.

    2016-08-30

    Here, in the letter published in this issue of New Phytologist (pp. 310-312), 'Fine roots - functional definition expanded to crop species?' Dr. Zobel emphasizes the importance of heterogeneity within crop-root systems.

  20. Moving forward with fine-root definitions and research

    SciTech Connect

    McCormack, M. Luke; Iversen, Colleen M.; Eissenstat, David M.

    2016-08-30

    Here, in the letter published in this issue of New Phytologist (pp. 310-312), 'Fine roots - functional definition expanded to crop species?' Dr. Zobel emphasizes the importance of heterogeneity within crop-root systems.

  1. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest.

    PubMed

    Wurzburger, Nina; Wright, S Joseph

    2015-08-01

    Questions remain as to which soil nutrients limit primary production in tropical forests. Phosphorus (P) has long been considered the primary limiting element in lowland forests, but recent evidence demonstrates substantial heterogeneity in response to nutrient addition, highlighting a need to understand and diagnose nutrient limitation across diverse forests. Fine-root characteristics including their abundance, functional traits, and mycorrhizal symbionts can be highly responsive to changes in soil nutrients and may help to diagnose nutrient limitation. Here, we document the response of fine roots to long-term nitrogen (N), P, and potassium (K) fertilization in a lowland forest in Panama. Because this experiment has demonstrated that N and K together limit tree growth and P limits fine litter production, we hypothesized that fine roots would also respond to nutrient addition. Specifically we hypothesized that N, P, and K addition would reduce the biomass, diameter, tissue density, and mycorrhizal colonization of fine roots, and increase nutrient concentration in root tissue. Most morphological root traits responded to the single addition of K and the paired addition of N and P, with the greatest response to all three nutrients combined. The addition of N, P, and K together reduced fine-root biomass, length, and tissue density, and increased specific root length, whereas root diameter remained unchanged. Nitrogen addition did not alter root N concentration, but P and K addition increased root P and K concentration, respectively. Mycorrhizal colonization of fine roots declined with N, increased with P, and was unresponsive to K addition. Although plant species composition remains unchanged after 14 years of fertilization, fine-root characteristics responded to N, P, and K addition, providing some of the strongest stand-level responses in this experiment. Multiple soil nutrients regulate fine-root abundance, morphological and chemical traits, and their association

  2. Fine Root Mortality Rates in a Temperate Forest: Estimates using Radiocarbon Data and Numerical Modeling

    SciTech Connect

    Riley, William J.; Gaudinski, Julia B.; Torn, Margaret S.; JoslinJr., John D.; Hanson, Paul J

    2009-01-01

    Carbon (C) fluxes through roots are the most uncertain of all C exchanges between the atmosphere, plants, and soil. Yet the three dominant methods to characterize root C fluxes (minirhizotron, sequential coring, and isotopes) yield significantly different estimates of temperate forest root mortality turnover times. We contend that these discrepancies result from limitations in interpreting these very distinct types of observations. In this study we used a whole-ecosystem 14C label to develop, parameterize, and test a model (Radix1.0) of fine-root mortality and decomposition. Radix simulates two live roots pools (one with structural and non-structural C components), two dead root pools, non-normally distributed root mortality turnover times, a stored C pool, seasonal growth and respiration patterns, a best-fit to measurements approach to estimate model parameters, and Monte Carlo uncertainty analysis. We applied Radix at a temperate forest in Oak Ridge Tennessee using 14C measurements from two root size classes (<0.5 mm and 0.5−2.0 mm) and three soil depth increments (O horizon, 0−15, and 30−60 cm). Predicted root lifetimes were 0.1-0.9 y and 11-14 y for fast and slow live root pools respectively, and 0.1-4 y and 11-14 y for fast and slow dead root pool decomposition turnover times, respectively. We estimated that C fluxes through fine roots <2 mm diameter are ~40, 220, and 90 g C m-2 y 1 in the O horizon, 0−15 cm, and 30−60 cm depth intervals, respectively. We conclude that accurate characterization of C flows through fine roots required a model with two live fine-root pools, two dead fine-root pools, and root respiration. Further, root turnover times on the order of a decade imply different response times in biomass and growth than are currently predicted by models with a single annual turnover pool.

  3. Climate, soil and plant functional types as drivers of global fine-root trait variation

    DOE PAGES

    Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.; ...

    2017-03-08

    Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two

  4. Fine root morphological traits determine variation in root respiration of Quercus serrata.

    PubMed

    Makita, Naoki; Hirano, Yasuhiro; Dannoura, Masako; Kominami, Yuji; Mizoguchi, Takeo; Ishii, Hiroaki; Kanazawa, Yoichi

    2009-04-01

    Fine root respiration is a significant component of carbon cycling in forest ecosystems. Although fine roots differ functionally from coarse roots, these root types have been distinguished based on arbitrary diameter cut-offs (e.g., 2 or 5 mm). Fine root morphology is directly related to physiological function, but few attempts have been made to understand the relationships between morphology and respiration of fine roots. To examine relationships between respiration rates and morphological traits of fine roots (0.15-1.4 mm in diameter) of mature Quercus serrata Murr., we measured respiration of small fine root segments in the field with a portable closed static chamber system. We found a significant power relationship between mean root diameter and respiration rate. Respiration rates of roots<0.4 mm in mean diameter were high and variable, ranging from 3.8 to 11.3 nmol CO2 g(-1) s(-1), compared with those of larger diameter roots (0.4-1.4 mm), which ranged from 1.8 to 3.0 nmol CO2 g(-1) s(-1). Fine root respiration rate was positively correlated with specific root length (SRL) as well as with root nitrogen (N) concentration. For roots<0.4 mm in diameter, SRL had a wider range (11.3-80.4 m g(-1)) and was more strongly correlated with respiration rate than diameter. Our results indicate that a more detailed classification of fine roots<2.0 mm is needed to represent the heterogeneity of root respiration and to evaluate root biomass and root morphological traits.

  5. Indirect quantification of fine root production in a near tropical wet mountainous region

    NASA Astrophysics Data System (ADS)

    Lu, X.; Zhang, J.; Huang, C.

    2016-12-01

    The main functions of fine root (defined as diameter <= 2 mm) are water and nutrient transports. Besides being a carbon (C) storage pool, it also provides a C flux pathway through soil and plant. Fine root takes up a small portion, normally 5%, of biomass in forest ecosystems, but 30% to 70% of total net primary production. Therefore, quantifying fine root productivity is important to study the forest C budget. Presumably, belowground growth can be indirectly estimated by the more accessible aboveground vegetation structure dynamics. To verify the relationship with fine root productivity, we take internal (floristic) and external (environmental) factors into account, including litter production, canopy density (leaf area index), leaf nutrients (N, K, Ca, Mg, P), weather and/or soil physical conditions (air temperature, humidity, precipitation, solar radiation and soil moisture). The study was conducted in near tropical broadleaf (700 m asl) and conifer (1700 m asl) forests in northeastern Taiwan, generally receiving more than 4000 mm of precipitation per year. For each site, 16 50-cm long minirhizotron tubes were installed. Fine root images were acquired every three weeks. Growth and decline, newly presence and absence of fine roots were delineated by image processing algorithms to derive fine-root productivity through time. Aforementioned internal and external attributes were simultaneously collected as well. Some of these variables were highly correlated and were detrended using principal component analysis. We found that these transformed variables (mainly associated with litter production, precipitation and solar radiation) can delineate the spatiotemporal dynamics of root production well (r2 = 0.87, p = 0.443). In conclusion, this study demonstrated the feasibility of utilized aboveground variables to indirectly assess fine root growth, which could be further developed for the regional scale mapping with aid of remote sensing.

  6. Strigolactones Effects on Root Growth

    NASA Astrophysics Data System (ADS)

    Koltai, Hinanit

    2012-07-01

    Strigolactones (SLs) were defined as a new group of plant hormones that suppress lateral shoot branching. Our previous studies suggested SLs to be regulators of root development. SLs were shown to alter root architecture by regulating lateral root formation and to affect root hair elongation in Arabidopsis. Another important effect of SLs on root growth was shown to be associated with root directional growth. Supplementation of SLs to roots led to alterations in root directional growth, whereas associated mutants showed asymmetrical root growth, which was influenced by environmental factors. The regulation by SLs of root development was shown to be conducted via a cross talk of SLs with other plant hormones, including auxin. SLs were shown to regulate auxin transport, and to interfere with the activity of auxin-efflux carriers. Therefore, it might be that SLs are regulators of root directional growth as a result of their ability to regulated auxin transport. However, other evidences suggest a localized effect of SLs on cell division, which may not necessarily be associated with auxin efflux. These and other, recent hypothesis as to the SLs mode of action and the associated root perception and response to environmental factors will be discussed.

  7. Strigolactones fine-tune the root system.

    PubMed

    Rasmussen, Amanda; Depuydt, Stephen; Goormachtig, Sofie; Geelen, Danny

    2013-10-01

    Strigolactones were originally discovered to be involved in parasitic weed germination, in mycorrhizal association and in the control of shoot architecture. Despite their clear role in rhizosphere signaling, comparatively less attention has been given to the belowground function of strigolactones on plant development. However, research has revealed that strigolactones play a key role in the regulation of the root system including adventitious roots, primary root length, lateral roots, root hairs and nodulation. Here, we review the recent progress regarding strigolactone regulation of the root system and the antagonism and interplay with other hormones.

  8. [Effects of fertilization on nutrient concentrations of different root orders' fine roots in Larix kaempferi plantation].

    PubMed

    Yu, Li-Zhong; Ding, Guo-Quan; Zhu, Jiao-Jun; Zhang, Na; Zhang, Xiao-Peng; Ying, Hui

    2009-04-01

    With the 16 years old Larix kaempferi plantation in eastern mountain area of Liaoning Province, China as test object, this paper studied the effects of fertilization on the nutrient concentrations of five root orders' fine roots. Under fertilization, less difference was observed in the total C concentration of the fine roots. Among the five orders' fine roots, the first order's had the lowest concentration of non-structural carbohydrate (TNC) and the highest ones of N and P, while the fifth order's was in adverse. The TNC concentration increased with increasing root order, while the N and P concentrations decreased correspondingly. Fertilization only had significant effects on the N and P concentrations of the first order's fine roots. The C/N/P ratio in different orders' fine roots had significant differences, being 423 : 16 : 1 and 726 : 16 : 1 in the first and the fifth order's fine roots, respectively. With the increase of root order, the proportion of C increased significantly, while that of N varied little. N fertilization didn't change the proportion of C, while P or P + N fertilization decreased the proportions of C and N in the first three orders' fine roots at 0-10 cm soil depth or in the first two orders' fine roots at 10-20 cm soil depth.

  9. Tree species richness affecting fine root biomass in European forests

    NASA Astrophysics Data System (ADS)

    Finér, Leena; Domisch, Timo; Vesterdal, Lars; Dawud, Seid M.; Raulund-Rasmussen, Karsten

    2016-04-01

    Fine roots are an important factor in the forest carbon cycle, contributing significantly to below-ground biomass and soil carbon storage. Therefore it is essential to understand the role of the forest structure, indicated by tree species diversity in controlling below-ground biomass and managing the carbon pools of forest soils. We studied how tree species richness would affect fine root biomass and its distribution in the soil profile and biomass above- and below-ground allocation patterns of different tree species. Our main hypothesis was that increasing tree species richness would lead to below-ground niche differentiation and more efficient soil exploitation by the roots, resulting in a higher fine root biomass in the soil. We sampled fine roots of trees and understorey vegetation in six European forest types in Finland, Poland, Germany, Romania, Italy and Spain, representing boreal, temperate and Mediterranean forests, established within the FunDivEUROPE project for studying the effects of tree species diversity on forest functioning. After determining fine root biomasses, we identified the percentages of different tree species in the fine root samples using the near infrared reflectance spectroscopy (NIRS) method. Opposite to our hypothesis we did not find any general positive relationship between tree species richness and fine root biomass. A weak positive response found in Italy and Spain seemed to be related to dry environmental conditions during Mediterranean summers. At the Polish site where we could sample deeper soil layers (down to 40 cm), we found more tree fine roots in the deeper layers under species-rich forests, as compared to the monocultures, indicating the ability of trees to explore more resources and to increase soil carbon stocks. Tree species richness did not affect biomass allocation patterns between above- and below-ground parts of the trees.

  10. The age of fine-root carbon in three forests of the eastern United States measured by radiocarbon.

    PubMed

    Gaudinski, J; Trumbore, S; Davidson, E; Cook, A; Markewitz, D; Richter, D

    2001-11-01

    Using a new approach involving one-time measurements of radiocarbon ((14)C) in fine (<2 mm diameter) root tissues we have directly measured the mean age of fine-root carbon. We find that the carbon making up the standing stock of fine roots in deciduous and coniferous forests of the eastern United States has a mean age of 3-18 years for live fine roots, 10-18 years for dead fine roots, and 3-18 years for mixed live+dead fine roots. These (14)C-derived mean ages represent the time C was stored in the plant before being allocated for root growth, plus the average lifespan (for live roots), plus the average time for the root to decompose (for dead roots and mixtures). Comparison of the (14)C content of roots known to have grown within 1 year with the (14)C of atmospheric CO2 for the same period shows that root tissues are derived from recently fixed carbon, and the storage time prior to allocation is <2 years and likely <1 year. Fine-root mean ages tend to increase with depth in the soil. Live roots in the organic horizons are made of C fixed 3-8 years ago compared with 11-18 years in the mineral B horizons. The mean age of C in roots increases with root diameter and also is related to branching order. Our results differ dramatically from previous estimates of fine-root mean ages made using mass balance approaches and root-viewing cameras, which generally report life spans (mean ages for live roots) of a few months to 1-2 years. Each method for estimating fine-root dynamics, including this new radiocarbon method, has biases. Root-viewing approaches tend to emphasize more rapidly cycling roots, while radiocarbon ages tend to reflect those components that persist longest in the soil. Our (14)C-derived estimates of long mean ages can be reconciled with faster estimates only if fine-root populations have varying rates of root mortality and decomposition. Our results indicate that a standard definition of fine roots, as those with diameters of <2 mm, is

  11. Effects of warming treatment and precipitation manipulation on fine root length of Pinus densiflora seedlings.

    NASA Astrophysics Data System (ADS)

    Han, S. H.; Yoon, S. J.; Lee, J.; Kim, S.; Li, G.; Park, M.; An, J.; Son, Y.

    2015-12-01

    Fine roots are important for water and nutrient uptake and storage of carbon and nutrients in terrestrial ecosystems. In order to examine effects of climate change on fine root of Pinus densiflora seedlings, an open-field experiment with the warming treatment and precipitation manipulation had been conducted at a nursery in Seoul, South Korea. Two-year-old P. seedlings were planted in April, 2013. The air temperature of the warmed plots (W) was set to increase by 3°C compared to the temperature control plots (C) using infrared lamps. The precipitation manipulation consisted of the precipitation decreased using transparent panel (-30%; P-), the precipitation increased using pump and drip-irrigation (+30%; P+), and the precipitation control (0%; P0). The fine root length of the seedlings near the soil surface (0-15 cm depth) was estimated from January, 2014 to January, 2015 trimonthly using minirhizotrons. The mean fine root length (mm mm-2) were 115.0 (WP0), 163.7 (WP-), 90.5 (WP+), 114.4 (CP0), 130.2 (CP-), and 100.6 (CP+) during the study period, respectively. The mean fine root length was significantly affected by the precipitation manipulation (P<0.0001); however, it was not influenced by the warming treatment (P>0.1). There was no interaction between warming and precipitation effects in fine root length. The fine root length in P- plot was higher than those in P0 plot and P+ plot, regardless of the warming treatment, which indicated that water stress caused by P- might stimulate the fine root growth. Meanwhile, the no consistent patterns of fine root length by warming treatment was found under P+ plot and P0 plot, but a positive effect of warming on fine root length was observed under P+ plot only. Estimations of fine root production and mortality are required to determine the interaction between warming and precipitation effects on fine root dynamics more exactly. This study was supported by Korea Ministry of Environment (2014001310008).

  12. Fine Roots – functional definition expanded to crop species

    USDA-ARS?s Scientific Manuscript database

    A recent review (McCormack et al., 2015) proposes to split fine roots (roots less than 2 mm diameter) into two different functional groups: Absorptive and Transport. This is a significant step forward to account for some of the previous comments by Pregitzer (2002) and Zobel (2003) on the situatio...

  13. Dynamics of fine roots in five Chinese temperate forests

    SciTech Connect

    Quan, Xiankuai; Wang, Chuankuan; Zhang, Q.; Wang, X.; Luo, Y.; Bond-Lamberty, Benjamin

    2010-07-01

    Quantifying fine root production and mortality is crucially needed for modeling forest ecosystem carbon cycling, but the fine root dynamics are poorly understood in Chinese temperate forests. We used a minirhizotron method to investigate spatial and temporal dynamics of fine roots (diameter ≤ 2 mm) in five representative temperate forests in northeastern China. Our specific objectives were to: (1) compare standing crop, production and mortality of fine roots among the five stands; (2) examine fine root phenology for the stands; and (3) examine vertical distribution patterns of fine roots for the stands. Fine root dynamics were significantly affected by forest type, soil layer, sampling time and their interactions. The mean values of fine root standing crop varied from 8.0 to 12.8 mm cm-2; those of production varied from 0.027 to 0.046 mm cm-2 d-1; and those of mortality varied from 0.013 to 0.024 mm cm-2 d-1. All stands had a similar seasonal “sinusoidal” pattern of fine root standing crop, and a “unimodal” pattern of production. However, the seasonal dynamics of the mortality was unsynchronized with that of the production. The minimum values of standing crop, production and mortality occurred in March for all stands, while the maximum values and occurring time differed among forest types. The occurrence of the maximum standing crop varied from DOY (day of year) 222 for the oak stand to DOY 271 for the aspen-birch stand; that of the maximum production varied from DOY 188 for the pine and hardwood stands to DOY 239 for the larch stand; and that of the maximum mortality varied from DOY 222 for the oak and aspen-birch stands to DOY 287 for the larch stand. The standing crop, production and mortality of fine roots tended to decrease with soil depths, of which the relative contribution at 0 -10 cm depth averaged 38%, 46%, and 58% of total, respectively. The fact that the production was approximate twice as great as the mortality suggested a net carbon input to

  14. Acclimation of fine root respiration to soil warming involves starch deposition in very fine and fine roots: a case study in Fagus sylvatica saplings.

    PubMed

    Di Iorio, Antonino; Giacomuzzi, Valentino; Chiatante, Donato

    2016-03-01

    Root activities in terms of respiration and non-structural carbohydrates (NSC) storage and mobilization have been suggested as major physiological roles in fine root lifespan. As more frequent heat waves and drought periods within the next decades are expected, to what extent does thermal acclimation in fine roots represent a mechanism to cope with such upcoming climatic conditions? In this study, the possible changes in very fine (diameter < 0.5 mm) and fine (0.5-1 mm) root morphology and physiology in terms of respiration rate and NSC [soluble sugars (SS) and starch] concentrations, were investigated on 2-year-old Fagus sylvatica saplings subjected to a simulated long-lasting heat wave event and to co-occurring soil drying. For both very fine and fine roots, soil temperature (ST) resulted inversely correlated with specific root length, respiration rates and SSs concentration, but directly correlated with root mass, root tissue density and starch concentration. In particular, starch concentration increased under 28 °C for successively decreasing under 21 °C ST. These findings showed that thermal acclimation in very fine and fine roots due to 24 days exposure to high ST (∼ 28 °C), induced starch accumulation. Such 'carbon-savings strategy' should bear the maintenance costs associated to the recovery process in case of restored favorable environmental conditions, such as those occurring at the end of a heat wave event. Drought condition seems to affect the fine root vitality much more under moderate than high temperature condition, making the temporary exposure to high ST less threatening to root vitality than expected. © 2015 Scandinavian Plant Physiology Society.

  15. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex

    PubMed Central

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5–7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex. PMID:26925066

  16. MES Buffer Affects Arabidopsis Root Apex Zonation and Root Growth by Suppressing Superoxide Generation in Root Apex.

    PubMed

    Kagenishi, Tomoko; Yokawa, Ken; Baluška, František

    2016-01-01

    In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species (ROS). MES, 2-(N-morpholino)ethanesulfonic acid as one of the Good's buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v) because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8). However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone, and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone). Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the ROS homeostasis in root apex.

  17. Fine root dynamics in moso bamboo and Japanese cedar forest by scanner method in central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Wei; Lin, Po-Hsuan; Kume, Tomonori

    2017-04-01

    Phyllostachys pubescens is one of the most important economic plant in the world. Phyllostachys pubescens originates from China and it had been introduced to neighbor countries about three hundred ago due to its economic value. But substantial bamboo forests were abandoned due to declines in demand. These unmanaged bamboo forests have been expanding to adjacent original forests in northern Taiwan. This vegetation alternation may not only decrease the local biodiversity but also affect the carbon cycle. Fine roots are responsible for water and nutrients acquisition and forming the most active part of the whole root system. The characteristics of fine roots are non-woody, small diameter and short lifespan. When roots keep producing new roots and replacing old roots, carbon and nutrients was transported into soil. Consequently, fine root production is one of the important component to understand the below-ground carbon cycle. However, there is few studies about fine root production in moso bamboo forests. We still lack effective method to obtain quantitative and objective data in Taiwan. It severely limits us to understand the below-ground carbon dynamics there. Minirhizotrons method has been used to investigate fine root dynamics by inserting transparent tubes into soil and by comparing changes in root length in images taken by micro-camera. But this method has some shortcomings; i.e. Most of image analysis are conducted manually and time-consuming. And it is difficult to estimate the stand level fine root production from small observation view. A new method "scanner method", which collect A4-size image (bigger than minirhizotrons) can overcome some parts of the shortcoming of minirhizotrons. The transparent acrylic box with A4-box view is inserted into soil and the interface between soil and box is scanned by commercial scanner. We can monitor the total projected root area, growth and decomposition separately by series of images. The primary objective of this study

  18. Fine Root Productivity and Dynamics on a Forested Floodplain in South Carolina

    Treesearch

    Terrell T. Baker; William Conner; H. B. Graeme Lockaby; John A. Stanturf; Marianne K. Burke

    2001-01-01

    The highly dynamic, fine root component of forested wetland ecosystems fine root dynamics is a challenging endeavor in any system, but the difficulties are particularly evident in forested floodplains where frequent hydrologic fluctuations directly influence fine root dynamics. Fine root (53 mm) biomass, production, and turnover were estimated for three soils...

  19. [Seasonal dynamics of carbon and nitrogen in fine roots and their differences between successive rotation poplar plantations].

    PubMed

    Wang, Yan-ping; Xu, Tan; Zhu, Wan-rui; Wang, Hua-tian; Zhang, Guang-can; Li, Chuan-rong; Jiang, Yue-zhong

    2015-11-01

    In this study, poplar fine roots in two successive rotation plantations were sampled over seasons. Root samples were grouped from first to five orders to examine the seasonal dynamics of carbon and nitrogen contents of poplar fine roots with orders, and compared their differences between two successive rotation plantations, and finally to find the relationships between the fine root growth and the productivity decline of successive rotation poplar plantations. The results showed that non-structure carbohydrates (NSC) content increased significantly with root orders, while nitrogen content decreased. The contents of total carbon and NSC were significantly related to total nitrogen content. Root orders explained 98.2% variance of carbon and nitrogen contents of poplar fine roots, and the difference between rotations only explained 1.7% of variance. Poplar fine roots consisted of more carbon and less nitrogen with root orders, and the seasonal changes in contents of total carbon, total nitrogen and NSC showed significant difference between rotations, while.that of the C:N ratio didn' t show significant difference. Root order and season showed interaction effect on carbon and nitrogen dynamic. The C:N ratio was about 20:1 in lower order roots, and more than 30:1 in higher order roots. The C:N ratio in summer and autumn was significantly less than those in other seasons, while NSC content was the highest in November. This study indicated that the allocation of carbon and nitrogen in fine roots was closely correlated with fine root orders. Both NSC content and C:N ratio were of greatly important ecological significance in fine root turnover and growth regulation.

  20. Interactions Between Pinus taeda (loblolly) Fine Roots and Soil Fungi: Impacts of Elevated CO2, N Availability, and Spatial Distribution of Fungi on Fine Root Persistence and Turnover

    NASA Astrophysics Data System (ADS)

    Strand, A.; Beidler, K.; McGlinn, D.; Pritchard, S. G.

    2016-12-01

    Fine root turnover represents the most significant mode of flux from plants into soil C pools. Unfortunately fine root senescence and decomposition, processes critical in turnover, are particularly understudied. For example, little is known about either the factors that influence fine-root decomposition or the fate of compounds they contain during root death. Better understanding fine root senescence and decomposition should reduce uncertainty associated with global climate models; including re-uptake of materials in dying leaves into these models has already been shown to increase their accuracy. Over 4400 individual fine-roots and 4734 rhizomorphs were tracked from initiation until disintegration over 12 years using minirhizotrons at the Duke FACE site. Image-based approaches such as minirhizotrons cannot directly assess fine-root physiological status. To assess fine-root function directly, we are now conducting manipulative experiments in P. taeda in which fine-root senescence is induced through two treatments, steam- and direct hand-girdling. Physiological status is then assessed by examining gene-expression, root anatomy and chemical composition of manipulated roots. Changing [CO2] did not change persistence times for roots, but did impact rhizomorph persistence. Both roots and rhizomorphs showed interactions between effects of N and CO2 on persistence. Most interesting is the interaction between fine-roots and rhizomorphs: fine root persistence times are reduced in the presence of rhizomorphs, but this effect depends on the amount of N available. Finally, we found experimentally inducing senescence via steam girdling to be very effective relative to hand-girdling. These results provide evidence of the importance of priming on function of soil fungi and the role of N availability on fine-root turnover. The ability to stimulate fine-root senescence provides a powerful experimental tool to examine the fates of resources contained in fine-root pools as these

  1. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees.

    PubMed

    Artacho, Pamela; Bonomelli, Claudia

    2016-05-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha(-1)), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110-180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70-80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source-sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Fine Root Abundance and Dynamics of Stone Pine (Pinus cembra) at the Alpine Treeline Is Not Impaired by Self-shading.

    PubMed

    Kubisch, Petra; Leuschner, Christoph; Coners, Heinz; Gruber, Andreas; Hertel, Dietrich

    2017-01-01

    Low temperatures are crucial for the formation of the alpine treeline worldwide. Since soil temperature in the shade of tree canopies is lower than in open sites, it was assumed that self-shading may impair the trees' root growth performance. While experiments with tree saplings demonstrate root growth impairment at soil temperatures below 5-7°C, field studies exploring the soil temperature - root growth relationship at the treeline are missing. We recorded soil temperature and fine root abundance and dynamics in shaded and sun-exposed areas under canopies of isolated Pinus cembra trees at the alpine treeline. In contrast to the mentioned assumption, we found more fine root biomass and higher fine root growth in colder than in warmer soil areas. Moreover, colder areas showed higher fine root turnover and thus lower root lifespan than warmer places. We conclude that P. cembra balances enhanced fine root mortality in cold soils with higher fine root activity and by maintaining higher fine root biomass, most likely as a response to shortage in soil resource supply. The results from our study highlight the importance of in situ measurements on mature trees to understand the fine root response and carbon allocation pattern to the thermal growth conditions at the alpine treeline.

  3. Fine Root Abundance and Dynamics of Stone Pine (Pinus cembra) at the Alpine Treeline Is Not Impaired by Self-shading

    PubMed Central

    Kubisch, Petra; Leuschner, Christoph; Coners, Heinz; Gruber, Andreas; Hertel, Dietrich

    2017-01-01

    Low temperatures are crucial for the formation of the alpine treeline worldwide. Since soil temperature in the shade of tree canopies is lower than in open sites, it was assumed that self-shading may impair the trees’ root growth performance. While experiments with tree saplings demonstrate root growth impairment at soil temperatures below 5–7°C, field studies exploring the soil temperature – root growth relationship at the treeline are missing. We recorded soil temperature and fine root abundance and dynamics in shaded and sun-exposed areas under canopies of isolated Pinus cembra trees at the alpine treeline. In contrast to the mentioned assumption, we found more fine root biomass and higher fine root growth in colder than in warmer soil areas. Moreover, colder areas showed higher fine root turnover and thus lower root lifespan than warmer places. We conclude that P. cembra balances enhanced fine root mortality in cold soils with higher fine root activity and by maintaining higher fine root biomass, most likely as a response to shortage in soil resource supply. The results from our study highlight the importance of in situ measurements on mature trees to understand the fine root response and carbon allocation pattern to the thermal growth conditions at the alpine treeline. PMID:28469633

  4. Fine root dynamics in a developing Populus deltoides plantation

    Treesearch

    Christel C. Kern; Alexander L. Friend; Jane M.-F. Johnson; Mark D. Coleman

    2004-01-01

    A closely spaced (1 x 1 m) cottonwood (Populus deltoides Bartr.) plantation was established to evaluate the effects of nutrient availability on fine root dynamics. Slow-release fertilizer (17:6:12 N,P,K plus micronutrients) was applied to 225-m2 plots at 0,50,10O and 200 kg N ha-1, and plots were...

  5. Fine root dynamics in a developing Populus deltoides plantation

    Treesearch

    Christel C. Kern; Alexander L. Friend; Jane M. Johnson; Mark D. Coleman

    2004-01-01

    A closely spaced (1 x 1 m) cottonwood (Populus deltoides Bartr.) platation was established to evaluate the effects of nutrient availability on fine root dynamics. Slow-release fertilizer (17:6:12 N,P,K plus micronutrients) was applied to 225-m2 plots at 0, 50, 100, 200 kg N ha-1, and plots were monitored...

  6. Fine root dynamics and trace gas fluxes in two lowland tropical forest soils.

    Treesearch

    WHENDEE L. SILVER; ANDREW W. THOMPSON; MEGAN E . MCGRODDY; RUTH K. VARNER; JADSON D. DIAS; HUDSON SILVA; CRILL PATRICK M.; MICHAEL KELLER

    2005-01-01

    Fine root dynamics have the potential to contribute significantly to ecosystem-scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root...

  7. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    PubMed Central

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal differences between EM and AM trees. We further assessed the evidence of convergence or divergence in root traits among the six co-occurring species. Eight fine root morphological and chemical traits were investigated in root segments of the first to fourth root order in three different soil depths and the relative importance of the factors root order, tree species and soil depth for root morphology was determined. Root order was more influential than tree species while soil depth had only a small effect on root morphology All six species showed similar decreases in specific root length and specific root area from the 1st to the 4th root order, while the species patterns differed considerably in root tissue density, root N concentration, and particularly with respect to root tip abundance. Most root morphological traits were not significantly different between EM and AM species (except for specific root area that was larger in AM species), indicating that mycorrhiza type is not a key factor influencing fine root morphology in these species. The order-based root analysis detected species differences more clearly than the simple analysis of bulked fine root mass. Despite convergence in important root traits among AM and EM species, even congeneric species may differ in certain fine root morphological traits. This suggests that, in general, species identity has a larger influence on fine root morphology than mycorrhiza type. PMID:25717334

  8. Estimation of fine-root production using rates of diameter-dependent root mortality, decomposition and thickening in forests.

    PubMed

    Van Do, Tran; Osawa, Akira; Sato, Tamotsu

    2016-04-01

    Current studies indicate that fine roots of different diameter classes show different rates of decomposition. This study developed a new method to estimate fine-root production by considering the difference in the production of fine roots of two size classes, fine roots thinner than 1 mm and those between 1 and 2 mm, and their corresponding rates of decomposition. A litter bag experiment was used to estimate the decomposition rates, while the sequential soil core technique was used to identify mass values of live roots and dead roots at a given period of observation. The continuous inflow method was applied to estimate the amount of root decomposition, mortality and production with a framework of two diameter classes of fine roots and for quantification of the amount of mass transfer from the thicker fine-root class to the coarser root category (>2 mm). The results indicated that the estimate of fine-root production was greater when two size classes of fine roots were distinguished. Using a framework of two size classes developed in this study resulted in 21.3% higher fine-root production than a method that did not recognize fine-root size classes or mass transfer to the category of coarse roots. In addition, using shorter collection intervals led to higher production estimates than longer intervals. The production estimate with a 1-month interval was 21.4% higher than that with a 6-month interval. We consider that the use of the sequential soil core technique with continuous inflow estimate method by differentiating size classes of fine roots is likely to minimize the underestimation of the parameters of fine-root dynamics by accounting for decomposition and mortality of fine roots more appropriately.

  9. Fine root dynamics for forests on contrasting soils in the Colombian Amazon

    NASA Astrophysics Data System (ADS)

    Jiménez, E. M.; Moreno, F. H.; Peñuela, M. C.; Patiño, S.; Lloyd, J.

    2009-12-01

    It has been hypothesized that as soil fertility increases, the amount of carbon allocated to below-ground production (fine roots) should decrease. To evaluate this hypothesis, we measured the standing crop fine root mass and the production of fine roots (<2 mm) by two methods: (1) ingrowth cores and, (2) sequential soil coring, during 2.2 years in two lowland forests growing on different soils types in the Colombian Amazon. Differences of soil resources were defined by the type and physical and chemical properties of soil: a forest on clay loam soil (Endostagnic Plinthosol) at the Amacayacu National Natural Park and, the other on white sand (Ortseinc Podzol) at the Zafire Biological Station, located in the Forest Reservation of the Calderón River. We found that the standing crop fine root mass and the production was significantly different between soil depths (0-10 and 10-20 cm) and also between forests. The loamy sand forest allocated more carbon to fine roots than the clay loam forest with the production in loamy sand forest twice (mean±standard error=2.98±0.36 and 3.33±0.69 Mg C ha-1 yr-1, method 1 and 2, respectively) as much as for the more fertile loamy soil forest (1.51±0.14, method 1, and from 1.03±0.31 to 1.36±0.23 Mg C ha-1 yr-1, method 2). Similarly, the average of standing crop fine root mass was higher in the white-sands forest (10.94±0.33 Mg C ha-1) as compared to the forest on the more fertile soil (from 3.04±0.15 to 3.64±0.18 Mg C ha-1). The standing crop fine root mass also showed a temporal pattern related to rainfall, with the production of fine roots decreasing substantially in the dry period of the year 2005. These results suggest that soil resources may play an important role in patterns of carbon allocation to the production of fine roots in these forests as the proportion of carbon allocated to above- and below-ground organs is different between forest types. Thus, a trade-off between above- and below-ground growth seems to exist

  10. [Distribution of fine root biomass of main planting tree species in Loess Plateau, China].

    PubMed

    Jian, Sheng-Qi; Zhao, Chuan-Yan; Fang, Shu-Min; Yu, Kai

    2014-07-01

    The distribution of fine roots of Pinus tabuliformis, Populus tomentosa, Prunus armeniaca, Robinia pseudoacacia, Hippophae rhamnoides, and Caragana korshinskii was investigated by using soil core method and the fine root was defined as root with diameter less than 2 mm. The soil moisture and soil properties were measured. The results showed that in the horizontal direction, the distribution of fine root biomass of P. tabuliformis presented a conic curve, and the fine root biomass of the other species expressed logarithm correlation. Radial roots developed, the fine root biomass were concentrated within the scope of the 2-3 times crown, indicating that trees extended their roots laterally to seek water farther from the tree. In the vertical direction, the fine root biomass decreased with the increasing soil depth. Fine root biomass had significant negative correlation with soil water content and bulk density, while significant positive correlation with organic matter and total N contents.

  11. [Fine root nitrogen contents and morphological adaptations of alpine plants].

    PubMed

    Salpagarova, F S; van Logtestijn, R S P; Onipchenko, V G; Akhmetzhanova, A A; Agafonov, V A

    2013-01-01

    Nitrogen and carbon contents of fine roots were studied for 92 alpine plant species in the Northwest Caucasus. Nitrogen content ranged from 0.43% (Bromus variegatus) to 3.75% (Corydalis conorhiza) with mean value 1.3%. Carbon content ranged from 40.3% (Corydalis conorhiza) to 51.7% (Empetrum nigrum) with mean value 43.4%. C:N ratio was found to be 34:1 which is higher than the worldwide mean. Eudicot's roots had higher N concentration (1.37 +/- 0.07) than monocot's ones (0.95 +/- 0.09). Among the life forms, carbon content increased in the following order: geophytes < hemicriptophytes < chamaephytes. Specific root length positively correlated with nitrogen root content and negatively--with carbon root content. Species with larger leaves and higher specific root area had more nitrogen and less carbon in roots in comparison with species with small leaves. There were positive correlations between leaf and root nitrogen, as well as carbon, contents. Regrowth rate; seed size, aboveground biomass, and vegetation mobility were not related with root nitrogen content. Our results corroborate the poor and rich soil adaptation syndromes. Species of competitive and ruderal (sensu Grime) strategies are more typical for alpine meadows and snow bed communities. They had higher nitrogen contents in leaves and roots, larger leaves with higher water content and higher rate of seed production. On the other hand, stress-tolerant plants had higher carbon and less nitrogen concentrations in their roots and leaves, smaller leaves and specific leaf area.

  12. OPTIMIZING MINIRHIZOTRON SAMPLE FREQUENCY FOR ESTIMATING FINE ROOT PRODUCTION AND TURNOVER

    EPA Science Inventory

    The most frequent reason for using minirhizotrons in natural ecosystems is the determination of fine root production and turnover. Our objective is to determine the optimum sampling frequency for estimating fine root production and turnover using data from evergreen (Pseudotsuga ...

  13. OPTIMIZING MINIRHIZOTRON SAMPLE FREQUENCY FOR ESTIMATING FINE ROOT PRODUCTION AND TURNOVER

    EPA Science Inventory

    The most frequent reason for using minirhizotrons in natural ecosystems is the determination of fine root production and turnover. Our objective is to determine the optimum sampling frequency for estimating fine root production and turnover using data from evergreen (Pseudotsuga ...

  14. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes.

    PubMed

    McCormack, M Luke; Dickie, Ian A; Eissenstat, David M; Fahey, Timothy J; Fernandez, Christopher W; Guo, Dali; Helmisaari, Heljä-Sisko; Hobbie, Erik A; Iversen, Colleen M; Jackson, Robert B; Leppälammi-Kujansuu, Jaana; Norby, Richard J; Phillips, Richard P; Pregitzer, Kurt S; Pritchard, Seth G; Rewald, Boris; Zadworny, Marcin

    2015-08-01

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain because of the challenges of consistently measuring and interpreting fine-root systems. Traditionally, fine roots have been defined as all roots ≤ 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. Here, we demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are either separated into individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine-root pool. Using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally - a c. 30% reduction from previous estimates assuming a single fine-root pool. Future work developing tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi into fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand below-ground processes in the terrestrial biosphere.

  15. Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes

    SciTech Connect

    McCormack, M. Luke; Dickie, Ian A.; Eissenstat, David M.; Fahey, Timothy J.; Fernandez, Christopher W.; Guo, Dali; Helmisaari, Helja -Sisko; Hobbie, Erik A.; Iversen, Colleen M.; Jackson, Robert B.; Leppälammi-Kujansuu, Jaana; Norby, Richard J.; Phillips, Richard P.; Pregitzer, Kurt S.; Pritchard, Seth G.; Rewald, Boris; Zadworny, Marcin

    2015-03-10

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain due to challenges in consistent measurement and interpretation of fine-root systems. We define fine roots as all roots less than or equal to 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. We demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are separated into either individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine root pool. Furthermore, using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally a ca. 30% reduction from previous estimates assuming a single fine-root pool. In the future we hope to develop tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi in fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand belowground processes in the terrestrial biosphere.

  16. Water Uptake along the Length of Grapevine Fine Roots: Developmental anatomy, tissue specific aquaporin expression, and pathways of water transport

    USDA-ARS?s Scientific Manuscript database

    To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine fine roots- from the tip to secondary growth zones. Our characterization included localization of suberized structures an...

  17. ASSESSING THE EFFECTS OF GLOBAL CLIMATE CHANGE ON THE PRODUCTION AND MORTALITY OF DOUGLAS FIR FINE ROOTS USING MINIRHIZOTRONS

    EPA Science Inventory

    Fine roots (roots 2 mm in diameter) are one of the principal absorptive surfaces for water and nutrients in terrestrial plants. As such they are vital for plant growth and survival, while their turnover serves as a primary mechanism for carbon addition to soil. Little is known...

  18. ASSESSING THE EFFECTS OF GLOBAL CLIMATE CHANGE ON THE PRODUCTION AND MORTALITY OF DOUGLAS FIR FINE ROOTS USING MINIRHIZOTRONS

    EPA Science Inventory

    Fine roots (roots 2 mm in diameter) are one of the principal absorptive surfaces for water and nutrients in terrestrial plants. As such they are vital for plant growth and survival, while their turnover serves as a primary mechanism for carbon addition to soil. Little is known...

  19. Fine root dynamics in lodgepole pine and white spruce stands along productivity gradients in reclaimed oil sands sites.

    PubMed

    Jamro, Ghulam Murtaza; Chang, Scott X; Naeth, M Anne; Duan, Min; House, Jason

    2015-10-01

    Open-pit mining activities in the oil sands region of Alberta, Canada, create disturbed lands that, by law, must be reclaimed to a land capability equivalent to that existed before the disturbance. Re-establishment of forest cover will be affected by the production and turnover rate of fine roots. However, the relationship between fine root dynamics and tree growth has not been studied in reclaimed oil sands sites. Fine root properties (root length density, mean surface area, total root biomass, and rates of root production, turnover, and decomposition) were assessed from May to October 2011 and 2012 using sequential coring and ingrowth core methods in lodgepole pine (Pinus contorta Dougl.) and white spruce (Picea glauca (Moench.) Voss) stands. The pine and spruce stands were planted on peat mineral soil mix placed over tailings sand and overburden substrates, respectively, in reclaimed oil sands sites in Alberta. We selected stands that form a productivity gradient (low, medium, and high productivities) of each tree species based on differences in tree height and diameter at breast height (DBH) increments. In lodgepole pine stands, fine root length density and fine root production, and turnover rates were in the order of high > medium > low productivity sites and were positively correlated with tree height and DBH and negatively correlated with soil salinity (P < 0.05). In white spruce stands, fine root surface area was the only parameter that increased along the productivity gradient and was negatively correlated with soil compaction. In conclusion, fine root dynamics along the stand productivity gradients were closely linked to stand productivity and were affected by limiting soil properties related to the specific substrate used for reconstructing the reclaimed soil. Understanding the impact of soil properties on fine root dynamics and overall stand productivity will help improve land reclamation outcomes.

  20. Redefining fine roots improves understanding of belowground contributions to terrestrial biosphere processes

    DOE PAGES

    McCormack, M. Luke; Dickie, Ian A.; Eissenstat, David M.; ...

    2015-03-10

    Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain due to challenges in consistent measurement and interpretation of fine-root systems. We define fine roots as all roots less than or equal to 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. We demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, finemore » roots are separated into either individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine root pool. Furthermore, using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally a ca. 30% reduction from previous estimates assuming a single fine-root pool. In the future we hope to develop tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi in fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand belowground processes in the terrestrial biosphere.« less

  1. Underground tuning: quantitative regulation of root growth.

    PubMed

    Satbhai, Santosh B; Ristova, Daniela; Busch, Wolfgang

    2015-02-01

    Plants display a high degree of phenotypic plasticity that allows them to tune their form and function to changing environments. The plant root system has evolved mechanisms to anchor the plant and to efficiently explore soils to forage for soil resources. Key to this is an enormous capacity for plasticity of multiple traits that shape the distribution of roots in the soil. Such root system architecture-related traits are determined by root growth rates, root growth direction, and root branching. In this review, we describe how the root system is constituted, and which mechanisms, pathways, and genes mainly regulate plasticity of the root system in response to environmental variation.

  2. Refinement of Isotopically Derived Fine Root Lifespans Using A Locally Released Radiocarbon Label in Oak Ridge, TN.

    NASA Astrophysics Data System (ADS)

    Gaudinski, J. B.; Riley, W. J.; Torn, M. S.; Joslin, J. D.

    2003-12-01

    Isotopic techniques (13C and 14C) are relative newcomers among the approaches used to quantify fine root (< 2 mm diameter) dynamics in a field setting. Direct measurements of the isotopic content of root tissues, used as a proxy for root age, have shown that at least some portion of the fine root system lives for 5-10 years or more. In this work we take advantage of a local radiocarbon (14C) release in Oak Ridge, TN in summer 1999, to examine (1) the influence of stored C in new root growth and (2) the lifespan of fine roots from a mature, temperate deciduous forest. This release provides a local 14C pulse of similar magnitude to the peak of the 14C bomb spike. However, since we have been able to make ecosystem wide measurements within one year of the local 14C release we have much greater time resolution than we do with the standard bomb-14C technique applied today (which is 1-2 years). We have constructed a new multi-compartment model of root growth and decay, whose structure was developed using data from field sampling at Oak Ridge, TN. Model results, constrained with a 14C time series of new root growth, show that fine roots are grown with 10% of their carbon coming from stored C sources. Additionally, a three-year time series of root cores shows that at least two pools are required to account for 14C changes in live and dead fine roots. Testing this 14C data set with our model shows that the shorter-lived root pool has a turnover time (mean lifetime) of a few months and the longer-lived pool has a turnover time of ~5 years.

  3. Fine root branch orders contribute differentially to uptake, allocation, and return of potentially toxic metals.

    PubMed

    Guo, Ying-Ying; Wang, Jun-Jian; Kong, De-Liang; Wang, Wei; Guo, Da-Li; Wang, Yan-Bing; Xie, Qing-Long; Liu, Yang-Sheng; Zeng, Hui

    2013-10-15

    Growing evidence has revealed high heterogeneity of fine root networks in both structure and function, with different root orders corporately maintaining trees' physiological activities. However, little information is available on how fine root heterogeneity of trees responds to environmental stresses. We examined concentrations of seven potentially toxic metals (Cr, Ni, Cu, Zn, As, Cd, and Pb) within fine root networks and their correlations with root morphological and macro-elemental traits in six Chinese subtropical trees. The contributions of different orders of roots to fine-root metal storage and return were also estimated. Results showed no consistent pattern for the correlation among different metal concentration against root traits. Unlike root metal concentration that generally decreased with root order, root metal storage was commonly lowest in middle root orders. Root senescence was at least comparable to leaf senescence contributing to metal removal. Although the first-order roots constituted 7.2-22.3% of total fine root biomass, they disproportionately contributed to most of metal return fluxes via root senescence. The two distinct root functional modules contributed differentially to metal uptake, allocation, and return, with defensive (lower-order) roots effectively stabilizing and removing toxic metals and bulk buffering (higher-order) roots possessing a persistent but diluted metal pool. Our results suggest a strong association of physiological functions of metal detoxification and metal homeostasis with the structural heterogeneity in fine root architecture.

  4. [Effects of thinning on fine-root morphology, biomass and N concentration of different branch orders of Chinese fir].

    PubMed

    Wang, Zu-Hua; Li, Rui-Xia; Guan, Qing-Wei

    2013-06-01

    Taking a 25-year old Chinese fir (Cunninghamia lanceolata) plantation as the object, this paper studied the effects of thinning on the biomass, morphological traits, and nitrogen concentration of the first five orders roots. With the increase of root order (from the first to the fifth order), there was a significant increase in the fine-root biomass, diameter, and tissue density, and a significantly decrease in the specific root length (SRL), root length density (RLD), and root number (RN). Thinning increased the biomass, RLD, and RN of the first and second orders roots as well as the tissue density of the first, third, fourth, and fifth orders roots significantly, but had no effects on the SRL and nitrogen concentration of each order root. In contrast, thinning decreased the diameter of the first, third, and fourth orders roots significantly. The diameter of the second order roots was obviously smaller in surface (0-10 cm) soil than in subsurface (10-20 cm) soil, while the RLD of the first three orders roots and the RN and nitrogen concentration of the first two orders roots were larger in surface soil than in subsurface soil. The interaction of thinning and soil layer only decreased the diameter of the first two orders roots. It was suggested that the fine-root biomass and morphological traits of Chinese fir were closely related to the vegetation growth and regeneration after thinning.

  5. The decomposition of fine and coarse roots: their global patterns and controlling factors

    PubMed Central

    Zhang, Xinyue; Wang, Wei

    2015-01-01

    Fine root decomposition represents a large carbon (C) cost to plants, and serves as a potential soil C source, as well as a substantial proportion of net primary productivity. Coarse roots differ markedly from fine roots in morphology, nutrient concentrations, functions, and decomposition mechanisms. Still poorly understood is whether a consistent global pattern exists between the decomposition of fine (<2 mm root diameter) and coarse (≥2 mm) roots. A comprehensive terrestrial root decomposition dataset, including 530 observations from 71 sampling sites, was thus used to compare global patterns of decomposition of fine and coarse roots. Fine roots decomposed significantly faster than coarse roots in middle latitude areas, but their decomposition in low latitude regions was not significantly different from that of coarse roots. Coarse root decomposition showed more dependence on climate, especially mean annual temperature (MAT), than did fine roots. Initial litter lignin content was the most important predictor of fine root decomposition, while lignin to nitrogen ratios, MAT, and mean annual precipitation were the most important predictors of coarse root decomposition. Our study emphasizes the necessity of separating fine roots and coarse roots when predicting the response of belowground C release to future climate changes. PMID:25942391

  6. The decomposition of fine and coarse roots: their global patterns and controlling factors.

    PubMed

    Zhang, Xinyue; Wang, Wei

    2015-05-05

    Fine root decomposition represents a large carbon (C) cost to plants, and serves as a potential soil C source, as well as a substantial proportion of net primary productivity. Coarse roots differ markedly from fine roots in morphology, nutrient concentrations, functions, and decomposition mechanisms. Still poorly understood is whether a consistent global pattern exists between the decomposition of fine (<2 mm root diameter) and coarse (≥2 mm) roots. A comprehensive terrestrial root decomposition dataset, including 530 observations from 71 sampling sites, was thus used to compare global patterns of decomposition of fine and coarse roots. Fine roots decomposed significantly faster than coarse roots in middle latitude areas, but their decomposition in low latitude regions was not significantly different from that of coarse roots. Coarse root decomposition showed more dependence on climate, especially mean annual temperature (MAT), than did fine roots. Initial litter lignin content was the most important predictor of fine root decomposition, while lignin to nitrogen ratios, MAT, and mean annual precipitation were the most important predictors of coarse root decomposition. Our study emphasizes the necessity of separating fine roots and coarse roots when predicting the response of belowground C release to future climate changes.

  7. Fine root mercury heterogeneity: metabolism of lower-order roots as an effective route for mercury removal.

    PubMed

    Wang, Jun-Jian; Guo, Ying-Ying; Guo, Da-Li; Yin, Sen-Lu; Kong, De-Liang; Liu, Yang-Sheng; Zeng, Hui

    2012-01-17

    Fine roots are critical components for plant mercury (Hg) uptake and removal, but the patterns of Hg distribution and turnover within the heterogeneous fine root components and their potential limiting factors are poorly understood. Based on root branching structure, we studied the total Hg (THg) and its cellular partitioning in fine roots in 6 Chinese subtropical trees species and the impacts of root morphological and stoichiometric traits on Hg partitioning. The THg concentration generally decreased with increasing root order, and was higher in cortex than in stele. This concentration significantly correlated with root length, diameter, specific root length, specific root area, and nitrogen concentration, whereas its cytosolic fraction (accounting for <10% of THg) correlated with root carbon and sulfur concentrations. The estimated Hg return flux from dead fine roots outweighed that from leaf litter, and ephemeral first-order roots that constituted 7.2-22.3% of total fine root biomass may have contributed most to this flux (39-71%, depending on tree species and environmental substrate). Our results highlight the high capacity of Hg stabilization and Hg return by lower-order roots and demonstrate that turnover of lower-order roots may be an effective strategy of detoxification in perennial tree species.

  8. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology.

    PubMed

    Iversen, Colleen M; McCormack, M Luke; Powell, A Shafer; Blackwood, Christopher B; Freschet, Grégoire T; Kattge, Jens; Roumet, Catherine; Stover, Daniel B; Soudzilovskaia, Nadejda A; Valverde-Barrantes, Oscar J; van Bodegom, Peter M; Violle, Cyrille

    2017-02-28

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.

  9. Fine-tuning by strigolactones of root response to low phosphate.

    PubMed

    Kapulnik, Yoram; Koltai, Hinanit

    2016-03-01

    Strigolactones are plant hormones that regulate the development of different plant parts. In the shoot, they regulate axillary bud outgrowth and in the root, root architecture and root-hair length and density. Strigolactones are also involved with communication in the rhizosphere, including enhancement of hyphal branching of arbuscular mycorrhizal fungi. Here we present the role and activity of strigolactones under conditions of phosphate deprivation. Under these conditions, their levels of biosynthesis and exudation increase, leading to changes in shoot and root development. At least for the latter, these changes are likely to be associated with alterations in auxin transport and sensitivity. On the other hand, strigolactones may positively affect plant-mycorrhiza interactions and thereby promote phosphate acquisition by the plant. Strigolactones may be a way for plants to fine-tune their growth pattern under phosphate deprivation.

  10. Root growth dynamics linked to above-ground growth in walnut (Juglans regia)

    PubMed Central

    Contador, Maria Loreto; Comas, Louise H.; Metcalf, Samuel G.; Stewart, William L.; Porris Gomez, Ignacio; Negron, Claudia; Lampinen, Bruce D.

    2015-01-01

    Background and Aims Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. Methods Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia ‘Chandler’) using minirhizotron techniques. Key Results Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. Conclusions The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs

  11. Root growth dynamics linked to above-ground growth in walnut (Juglans regia).

    PubMed

    Contador, Maria Loreto; Comas, Louise H; Metcalf, Samuel G; Stewart, William L; Porris Gomez, Ignacio; Negron, Claudia; Lampinen, Bruce D

    2015-07-01

    Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia 'Chandler') using minirhizotron techniques. Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs. © The Author 2015. Published by Oxford University Press

  12. Interspecific coordination and intraspecific plasticity of fine root traits in North American temperate tree species

    PubMed Central

    Tobner, Cornelia M.; Paquette, Alain; Messier, Christian

    2013-01-01

    Fine roots play an important role in nutrient and water absorption and hence overall tree performance. However, current understanding of the ecological role of belowground traits lags considerably behind those of aboveground traits. In this study, we used data on specific root length (SRL), fine root diameter (D) and branching intensity (BI) of two datasets to examine interspecific trait coordination as well as intraspecific trait variation across ontogenetic stage and soil conditions (i.e., plasticity). The first dataset included saplings of 12 North American temperate tree species grown in monocultures in a common garden experiment to examine interspecific trait coordination. The second dataset included adult and juvenile individuals of four species (present in both datasets) co-occurring in natural forests on contrasting soils (i.e., humid organic, mesic, and xeric podzolic).The three fine root traits investigated were strongly coordinated, with high SRL being related to low D and high BI. Fine root traits and aboveground life-strategies (i.e., relative growth rate) were weakly coordinated and never significant. Intraspecific responses to changes in ontogenetic stage or soil conditions were trait dependent. SRL was significantly higher in juveniles compared to adults for Abies balsamea and Acer rubrum, but did not vary with soil condition. BI did not vary significantly with either ontogeny or soil conditions, while D was generally significantly lower in juveniles and higher in humid organic soils. D also had the least total variability most of which was due to changes in the environment (plasticity). This study brings support for the emerging evidence for interspecific root trait coordination in trees. It also indicates that intraspecific responses to both ontogeny and soil conditions are trait dependent and less concerted. D appears to be a better indicator of environmental change than SRL and BI. PMID:23874347

  13. New theories of root growth modelling

    NASA Astrophysics Data System (ADS)

    Landl, Magdalena; Schnepf, Andrea; Vanderborght, Jan; Huber, Katrin; Javaux, Mathieu; Bengough, A. Glyn; Vereecken, Harry

    2016-04-01

    In dynamic root architecture models, root growth is represented by moving root tips whose line trajectory results in the creation of new root segments. Typically, the direction of root growth is calculated as the vector sum of various direction-affecting components. However, in our simulations this did not reproduce experimental observations of root growth in structured soil. We therefore developed a new approach to predict the root growth direction. In this approach we distinguish between, firstly, driving forces for root growth, i.e. the force exerted by the root which points in the direction of the previous root segment and gravitropism, and, secondly, the soil mechanical resistance to root growth or penetration resistance. The latter can be anisotropic, i.e. depending on the direction of growth, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Anisotropy of penetration resistance can be caused either by microscale differences in soil structure or by macroscale features, including macropores. Anisotropy at the microscale is neglected in our model. To allow for this, we include a normally distributed random deflection angle α to the force which points in the direction of the previous root segment with zero mean and a standard deviation σ. The standard deviation σ is scaled, so that the deflection from the original root tip location does not depend on the spatial resolution of the root system model. Similarly to the water flow equation, the direction of the root tip movement corresponds to the water flux vector while the driving forces are related to the water potential gradient. The analogue of the hydraulic conductivity tensor is the root penetrability tensor. It is determined by the inverse of soil penetration resistance and describes the ease with which a root can penetrate the soil. By adapting the three dimensional soil and root water uptake model R-SWMS (Javaux et al., 2008) in this way

  14. Litterfall production and fine root dynamics in cool-temperate forests

    PubMed Central

    Chun, Jung Hwa; Osawa, Akira

    2017-01-01

    Current understanding of litterfall and fine root dynamics in temperate forests is limited, even though these are the major contributors to carbon and nutrient cycling in the ecosystems. In this study, we investigated litterfall and fine root biomass and production in five deciduous and four coniferous forests at the Gwangneung Experimental Forest in Korea. We used ingrowth cores to measure fine root production and root turnover rate. The litterfall was separated into leaves, twigs, and others, and then leaves were further separated according to species. Annual litterfall mass was not significantly different between the years, 360 to 651 g m-2 in 2011 and 300 to 656 g m-2 in 2012. Annual fine root (<5 mm) production was significantly higher in 2012 (421 to 1342 g m-2) than in 2011 (99 to 872 g m-2). Annual litterfall mass was significantly different among the stands, while fine root production did not statistically differ among the stands. The average fine root turnover rate, calculated by dividing the annual fine root production by the maximum standing fine root biomass, was 1.65 for deciduous forests and 1.97 for coniferous forests. Fine root production constituted 18–44% of NPP, where NPP was the sum of woody biomass production, litterfall production, and fine root production. Belowground production was a greater fraction of NPP in more productive forests suggesting their greater carbon allocation belowground. PMID:28662215

  15. Litterfall production and fine root dynamics in cool-temperate forests.

    PubMed

    An, Ji Young; Park, Byung Bae; Chun, Jung Hwa; Osawa, Akira

    2017-01-01

    Current understanding of litterfall and fine root dynamics in temperate forests is limited, even though these are the major contributors to carbon and nutrient cycling in the ecosystems. In this study, we investigated litterfall and fine root biomass and production in five deciduous and four coniferous forests at the Gwangneung Experimental Forest in Korea. We used ingrowth cores to measure fine root production and root turnover rate. The litterfall was separated into leaves, twigs, and others, and then leaves were further separated according to species. Annual litterfall mass was not significantly different between the years, 360 to 651 g m-2 in 2011 and 300 to 656 g m-2 in 2012. Annual fine root (<5 mm) production was significantly higher in 2012 (421 to 1342 g m-2) than in 2011 (99 to 872 g m-2). Annual litterfall mass was significantly different among the stands, while fine root production did not statistically differ among the stands. The average fine root turnover rate, calculated by dividing the annual fine root production by the maximum standing fine root biomass, was 1.65 for deciduous forests and 1.97 for coniferous forests. Fine root production constituted 18-44% of NPP, where NPP was the sum of woody biomass production, litterfall production, and fine root production. Belowground production was a greater fraction of NPP in more productive forests suggesting their greater carbon allocation belowground.

  16. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology

    DOE PAGES

    Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer; ...

    2017-02-28

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less

  17. Elevated CO2 and O3 effects on fine-root survivorship in ponderosa pine mesocosms.

    PubMed

    Phillips, Donald L; Johnson, Mark G; Tingey, David T; Storm, Marjorie J

    2009-07-01

    Atmospheric carbon dioxide (CO(2)) and ozone (O(3)) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO(2) and O(3) effects on roots, particularly fine-root life span, a critical demographic parameter and determinant of soil C and N pools and cycling rates. We conducted a study in which ponderosa pine (Pinus ponderosa) seedlings were exposed to two levels of CO(2) and O(3) in sun-lit controlled-environment mesocosms for 3 years. Minirhizotrons were used to monitor individual fine roots in three soil horizons every 28 days. Proportional hazards regression was used to analyze effects of CO(2), O(3), diameter, depth, and season of root initiation on fine-root survivorship. More fine roots were produced in the elevated CO(2) treatment than in ambient CO(2). Elevated CO(2), increasing root diameter, and increasing root depth all significantly increased fine-root survivorship and median life span. Life span was slightly, but not significantly, lower in elevated O(3), and increased O(3) did not reduce the effect of elevated CO(2). Median life spans varied from 140 to 448 days depending on the season of root initiation. These results indicate the potential for elevated CO(2) to increase the number of fine roots and their residence time in the soil, which is also affected by root diameter, root depth, and phenology.

  18. Species-specific fine root biomass distribution alters competition in mixed forests under climate change

    NASA Astrophysics Data System (ADS)

    Reyer, Christopher; Gutsch, Martin; Lasch, Petra; Suckow, Felicitas; Sterck, Frank; Mohren, Frits

    2010-05-01

    The importance of mixed forests in European silviculture has increased due to forest conversion policies and multifunctional forest management. Concurrently, evidences for substantial impacts of climate change on forest ecosystems accumulate. Projected drier and warmer conditions alter the water relations of tree species, their growth and ultimately their inter-specific competition in mixed stands. Process-based models are scientific tools to study the impact of climate change on and to deepen the understanding of the functioning of these systems based on ecological mechanisms. They allow for long-term, stand-level studies of forest dynamics which could only be addressed with great difficulty in an experimental or empirical setup. We used the process-based forest model 4C to simulate inter-specific competition in mixed stands of Douglas-fir (Pseudotsuga menziesii) and Common beech (Fagus sylvatica) as well as Scots pine (Pinus sylvestris) and Sessile / Pedunculate oak (Quercus petraea and Quercus robur) under a) historical climate for model verification and b) under climate change scenario realizations of the climate model STAR 2.0 in Brandenburg, Germany. Some of the climate change scenario realizations feature a substantially drier and warmer summer climate which decreases the climatic water balance during the growing season. We assumed species-specific fine root biomass distributions which feature broadleaved fine roots in deeper soil layers and coniferous fine roots in upper soil layers according to several root excavation studies from mixed stands. The stands themselves were constructed from yield tables of the contributing species. The model verification provided good results for the basal area predictions under the historical climate. Under climate change, the number of days when the tree water demand exceeded the soil water supply was higher for the coniferous species than for broadleaved species. Furthermore, after 45 simulation years the basal area

  19. Calculation procedures to estimate fine root production rates in forests using two-dimensional fine root data obtained by the net sheet method.

    PubMed

    Noguchi, Kyotaro; Tanikawa, Toko; Inagaki, Yoshiyuki; Ishizuka, Shigehiro

    2017-06-01

    Several recent studies have used the net sheet method to estimate fine root production rates in forest ecosystems, wherein net sheets are inserted into the soil and fine roots growing through them are observed. Although this method has advantages in terms of its easy handling and low cost, there are uncertainties in the estimates per unit soil volume or unit stand area, because the net sheet is a two-dimensional material. Therefore, this study aimed to establish calculation procedures for estimating fine root production rates from two-dimensional fine root data on net sheets. This study was conducted in a hinoki cypress (Chamaecyparis obtusa (Sieb. & Zucc.) Endl.) stand in western Japan. We estimated fine root production rates in length and volume from the number (RN) and cross-sectional area (RCSA) densities, respectively, for fine roots crossing the net sheets, which were then converted to dry mass values. For these calculations, we used empirical regression equations or theoretical equations between the RN or RCSA densities on the vertical walls of soil pits and fine root densities in length or volume, respectively, in the soil, wherein the theoretical equations assumed random orientation of the growing fine roots. The estimates of mean fine root (diameter <1 mm) production rates were ∼80-100 g m-2 year-1 using the empirically obtained regression equations, whereas those from the theoretical equations were ∼40-50 g m-2 year-1. The difference in the estimates was attributed to larger slope values of the empirical regression equations than those of the theoretical equations, suggesting that fine root orientation was not random in our study site. In light of these results, we concluded that fine root production rates were successfully estimated from two-dimensional fine root data on the net sheets using these calculation procedures, with the empirical regression equations reflecting fine root orientation in the study site. © The Author 2017. Published by

  20. Elevated CO2 or O3 effects on fine-root survivorship in ponderosa pine

    EPA Science Inventory

    Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograp...

  1. ELEVATED CO2 AND O3 EFFECTS ON FINE-ROOT SURVIVORSHIP IN PONDEROSA PINE MESOCOSMS

    EPA Science Inventory

    Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograph...

  2. Elevated CO2 or O3 effects on fine-root survivorship in ponderosa pine

    EPA Science Inventory

    Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograp...

  3. ELEVATED CO2 AND O3 EFFECTS ON FINE-ROOT SURVIVORSHIP IN PONDEROSA PINE MESOCOSMS

    EPA Science Inventory

    Atmospheric carbon dioxide (CO2) and ozone (O3) concentrations are rising, which may have opposing effects on tree C balance and allocation to fine roots. More information is needed on interactive CO2 and O3 effects on roots, particularly fine-root life span, a critical demograph...

  4. Aluminum and calcium in fine root tips of red spruce collected from the forest floor

    Treesearch

    K.T. Smith; W.C. Shortle; W.D. Ostrofsky

    1995-01-01

    Root chemistry is being increasingly used as a marker of biologically relevant soil chemistry. To evaluate this marker, we determined the precision of measurement, the effect of organic soil horizon, and the effect of stand elevation on the chemistry of fine root tips of red spruce (Picea rubens Sarg.) Fine root tips were collected from the F and H...

  5. Early Events in the Life of Apple Roots: Variation in Root Growth Rate is Linked to Mycorrhizal and Nonmycorrhizal Fungal Colonization

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to characterize early events of mycorrhizal and nonmycorrhizal fungal colonization in newly-emerging roots of mature apple (Malus domestica) trees and to determine the relationship to fine root growth rate and development. New roots were traced on root windows to measure growt...

  6. Influence of biochar and nitrogen on fine root morphology, physiology, and chemistry of Acer mono.

    PubMed

    Razaq, Muhammad; Salahuddin; Shen, Hai-Long; Sher, Hassan; Zhang, Peng

    2017-07-14

    Fine roots play an important role in the overall functions of individual plants. Previous studies showed that fertilization and available soil resources have a notably profound effect on fine root, but there is lack of study centered on how fine root morphology, physiology, and chemistry respond to biochar with N additions. Different levels of biochar (0, 10, 15, and 20 g) and N (0, 2, 4 and 6 g) were applied to Acer mono seedling plants in a field nursery. The root system morphology and root chemistry and physiology were evaluated in line with root length, root diameter, SRL, N and N: C and root respiration. Biochar and N significantly affected root morphology, chemistry and root respiration. Morphological, chemical and physiological parameters were found to be at their maximum with 20 g biochar and 6 g N; however, no significant effect was noted on fourth- and fifth-order roots. Furthermore, a significant increase in root respiration was recognized with the increase in root tissue N concentration and the negative relationship of root respiration with higher branch order. Thus, overall, study parameters indicate that biochar and nitrogen positively influence the Acer mono fine root, and therefore should be used to improve fine root health.

  7. An Invariant Allometric Scaling of Nitrogen and Phosphorus in Leaves, Stems and Fine roots Along an Altitudinal Gradient

    NASA Astrophysics Data System (ADS)

    Zhao, Ning; He, Nianpeng; Wang, Qiufeng; Wang, Ruili; Xu, Zhiwei; YU, Guirui

    2014-05-01

    Plant nutrient allocation explicitly links the plant resource capture strategy to the material and energy cycles of ecosystems. The nitrogen (N) to phosphorus (P) relationship in plant organs is of particular interest, as N and P are the major limiting elements for plant growth. Here we analyze the relations of N and P in leaves, stems and fine roots of 269 species along an altitudinal transect on the northern slope of Changbai Mountain, China, to explore the partitioning of nutrients in major plant organs and its response to environmental gradient. We find that N, P contents as well as N: P ratio are significantly higher in leaves than in stems and fine roots. Nutrient contents of major plant organs show consistent response to the altitudinal gradient. N and P contents of leaves, stems and fine roots increased while N:P ratios decreased with elevation. Moreover, general allometric scaling relations of N and P is found in leaves, stems and fine roots with slopes of 0.78, 0.72 and 0.87, respectively, and differences exist among different plant growth forms. In general, the exponent values of the allometric scaling of N and P in leaves, stems and fine roots keep as an invariant constant along the altitudinal gradient, which implies the existence of conserved nutrient allocation strategies in plant.

  8. Impact of Heterobasidion root-rot on fine root morphology and associated fungi in Picea abies stands on peat soils.

    PubMed

    Gaitnieks, Talis; Klavina, Darta; Muiznieks, Indrikis; Pennanen, Taina; Velmala, Sannakajsa; Vasaitis, Rimvydas; Menkis, Audrius

    2016-07-01

    We examined differences in fine root morphology, mycorrhizal colonisation and root-inhabiting fungal communities between Picea abies individuals infected by Heterobasidion root-rot compared with healthy individuals in four stands on peat soils in Latvia. We hypothesised that decreased tree vitality and alteration in supply of photosynthates belowground due to root-rot infection might lead to changes in fungal communities of tree roots. Plots were established in places where trees were infected and in places where they were healthy. Within each stand, five replicate soil cores with roots were taken to 20 cm depth in each root-rot infected and uninfected plot. Root morphological parameters, mycorrhizal colonisation and associated fungal communities, and soil chemical properties were analysed. In three stands root morphological parameters and in all stands root mycorrhizal colonisation were similar between root-rot infected and uninfected plots. In one stand, there were significant differences in root morphological parameters between root-rot infected versus uninfected plots, but these were likely due to significant differences in soil chemical properties between the plots. Sequencing of the internal transcribed spacer of fungal nuclear rDNA from ectomycorrhizal (ECM) root morphotypes of P. abies revealed the presence of 42 fungal species, among which ECM basidiomycetes Tylospora asterophora (24.6 % of fine roots examined), Amphinema byssoides (14.5 %) and Russula sapinea (9.7 %) were most common. Within each stand, the richness of fungal species and the composition of fungal communities in root-rot infected versus uninfected plots were similar. In conclusion, Heterobasidion root-rot had little or no effect on fine root morphology, mycorrhizal colonisation and composition of fungal communities in fine roots of P. abies growing on peat soils.

  9. Temporal dynamics of fine roots under long-term exposure to elevated CO2 in the Mojave Desert.

    PubMed

    Sonderegger, Derek L; Ogle, Kiona; Evans, R Dave; Ferguson, Scot; Nowak, Robert S

    2013-04-01

    Deserts are considered 'below-ground dominated', yet little is known about the impact of rising CO(2) in combination with natural weather cycles on long-term dynamics of root biomass. This study quantifies the temporal dynamics of fine-root production, loss and standing crop in an intact desert ecosystem exposed to 10 yr of elevated CO(2). We used monthly minirhizotron observations from 4 yr (2003-2007) for two dominant shrub species and along community transects at the Nevada Desert free-air CO(2) enrichment Facility. Data were synthesized within a Bayesian framework that included effects of CO(2) concentration, cover type, phenological period, antecedent soil water and biological inertia (i.e. the influence of prior root production and loss). Elevated CO(2) treatment interacted with antecedent soil moisture and had significantly greater effects on fine-root dynamics during certain phenological periods. With respect to biological inertia, plants under elevated CO(2) tended to initiate fine-root growth sooner and sustain growth longer, with the net effect of increasing the magnitude of production and mortality cycles. Elevated CO(2) interacts with past environmental (e.g. antecedent soil water) and biological (e.g. biological inertia) factors to affect fine-root dynamics, and such interactions are expected to be important for predicting future soil carbon pools. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Brassinosteroids Regulate Root Growth, Development, and Symbiosis.

    PubMed

    Wei, Zhuoyun; Li, Jia

    2016-01-04

    Brassinosteroids (BRs) are natural plant hormones critical for growth and development. BR deficient or signaling mutants show significantly shortened root phenotypes. However, for a long time, it was thought that these phenotypes were solely caused by reduced cell elongation in the mutant roots. Functions of BRs in regulating root development have been largely neglected. Nonetheless, recent detailed analyses, revealed that BRs are not only involved in root cell elongation but are also involved in many aspects of root development, such as maintenance of meristem size, root hair formation, lateral root initiation, gravitropic response, mycorrhiza formation, and nodulation in legume species. In this review, current findings on the functions of BRs in mediating root growth, development, and symbiosis are discussed.

  11. A global analysis of fine root production as affected by soil nitrogen and phosphorus

    PubMed Central

    Yuan, Z. Y.; Chen, Han Y. H.

    2012-01-01

    Fine root production is the largest component of belowground production and plays substantial roles in the biogeochemical cycles of terrestrial ecosystems. The increasing availability of nitrogen (N) and phosphorus (P) due to human activities is expected to increase aboveground net primary production (ANNP), but the response of fine root production to N and P remains unclear. If roots respond to nutrients as ANNP, fine root production is anticipated to increase with increasing soil N and P. Here, by synthesizing data along the nutrient gradient from 410 natural habitats and from 469 N and/or P addition experiments, we showed that fine root production increased in terrestrial ecosystems with an average increase along the natural N gradient of up to 0.5 per cent with increasing soil N. Fine root production also increased with soil P in natural conditions, particularly at P < 300 mg kg−1. With N, P and combined N + P addition, fine root production increased by a global average of 27, 21 and 40 per cent, respectively. However, its responses differed among ecosystems and soil types. The global average increases in fine root production are lower than those of ANNP, indicating that above- and belowground counterparts are coupled, but production allocation shifts more to aboveground with higher soil nutrients. Our results suggest that the increasing fertilizer use and combined N deposition at present and in the future will stimulate fine root production, together with ANPP, probably providing a significant influence on atmospheric CO2 emissions. PMID:22764168

  12. A global analysis of fine root production as affected by soil nitrogen and phosphorus.

    PubMed

    Yuan, Z Y; Chen, Han Y H

    2012-09-22

    Fine root production is the largest component of belowground production and plays substantial roles in the biogeochemical cycles of terrestrial ecosystems. The increasing availability of nitrogen (N) and phosphorus (P) due to human activities is expected to increase aboveground net primary production (ANNP), but the response of fine root production to N and P remains unclear. If roots respond to nutrients as ANNP, fine root production is anticipated to increase with increasing soil N and P. Here, by synthesizing data along the nutrient gradient from 410 natural habitats and from 469 N and/or P addition experiments, we showed that fine root production increased in terrestrial ecosystems with an average increase along the natural N gradient of up to 0.5 per cent with increasing soil N. Fine root production also increased with soil P in natural conditions, particularly at P < 300 mg kg(-1). With N, P and combined N + P addition, fine root production increased by a global average of 27, 21 and 40 per cent, respectively. However, its responses differed among ecosystems and soil types. The global average increases in fine root production are lower than those of ANNP, indicating that above- and belowground counterparts are coupled, but production allocation shifts more to aboveground with higher soil nutrients. Our results suggest that the increasing fertilizer use and combined N deposition at present and in the future will stimulate fine root production, together with ANPP, probably providing a significant influence on atmospheric CO(2) emissions.

  13. Global-scale latitudinal patterns of plant fine-root nitrogen and phosphorus.

    PubMed

    Yuan, Z Y; Chen, Han Y H; Reich, Peter B

    2011-06-14

    Most water and essential soil nutrient uptake is carried out by fine roots in plants. It is therefore important to understand the global geographic patterns of fine-root nitrogen and phosphorus cycling. Here, by compiling plant root data from 211 studies in 51 countries, we show that live fine roots have low nitrogen (N) and phosphorus (P), but similar N:P ratios when compared with green leaves. The fine-root N:P ratio differs between biomes and declines exponentially with latitude in roots of all diameter classes. This is in contrast to previous reports of a linear latitudinal decline in green leaf N:P, but consistent with nonlinear declines in leaf litter N:P. Whereas the latitudinal N:P decline in both roots and leaves reflects collective influences of climate, soil age and weathering, differences in the shape of the response function may be a result of their different N and P use strategies.

  14. RELATING FINE ROOT BIOMASS TO SOIL AND CLIMATE CONDITIONS IN THE PACIFIC NORTHWEST

    EPA Science Inventory

    The additive contribution of fine root biomass for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) to the stand average fine root biomass were estimated for eight conifer stands in the Pacific Northwest. Base...

  15. A global exploration of fine-root trait variation: opening the black box

    USDA-ARS?s Scientific Manuscript database

    A major part of ecosystem functioning relies on processes below ground, which are governed by fine root traits. This study synthesizes published and unpublished fine-root trait data available worldwide (>9000 observations from >1100 species on 14 traits) and examines their ecological value and globa...

  16. EFFECTS OF CO2 AND TEMPERATURE ON FINE ROOT PRODUCTION AND MORTALITY IN DOUGLAS FIR

    EPA Science Inventory

    Little is known about the effects of global climate change on the production and mortality of fine roots. We conducted a 4-year study to determine the effects of elevated CO2 and temperature on Douglas fir fine ( 2 mm in diameter) roots. The study was conducted in sun-lit cont...

  17. A SPATIAL ANALYSIS OF FINE-ROOT BIOMASS FROM STAND DATA IN OREGON AND WASHINGTON

    EPA Science Inventory

    Because of the high spatial variability of fine roots in natural forest stands, accurate estimates of stand-level fine root biomass are difficult and expensive to obtain by standard coring methods. This study compares two different approaches that employ aboveground tree metrics...

  18. A SPATIAL ANALYSIS OF THE FINE ROOT BIOMASS FROM STAND DATA IN THE PACIFIC NORTHWEST

    EPA Science Inventory

    High spatial variability of fine roots in natural forest stands makes accurate estimates of stand-level fine root biomass difficult and expensive to obtain by standard coring methods. This study uses aboveground tree metrics and spatial relationships to improve core-based estima...

  19. [Fine root biomass of four main vegetation types in Daluo Mountain of Ningxia, Northwest China].

    PubMed

    Su, Ji-Shuai; Cheng, Ji-Min; Gao, Yang; Qiu, Zhi-Hu; Cao, Huai-qing

    2013-03-01

    By the method of soil core sampling, this paper studied the fine root biomass, soil water content, and soil bulk density in 0-40 cm soil layer of four main vegetation types (Picea crassifolia forest, Pinus tabulaeformis forest, deciduous shrubs, and desert grassland) in Daluo Mountain of Ningxia, and the fine root biomass in the 0-40 cm soil layer of P. crassifolia forests with the ages of 50-, 70-, and 100 a. The fine root biomass of the four vegetation types was mainly distributed in 0-20 cm soil layer, with the rank of P. tabulaeformis forest > P. crassifolia forest > deciduous shrubs > desert grassland, and the fine root biomass of P. tabulaeformis forest was significantly higher than that of the other three vegetation types. The fine root biomass of the P. crassifolia forests with different ages was 70 a > 100 a > 50 a, and there were no significant differences in the live fine root biomass ratio and dead fine root biomass ratio among the three P. crassifolia forests. The soil water content in the 0-40 cm soil layer of the four vegetation types was P. crassifolia forest > P. tabulaeformis forest > deciduous shrubs > desert grassland, while the soil bulk density followed an opposite pattern, and was significantly negatively correlated with the fine root biomass.

  20. Distribution of fine roots of ponderosa pine and Douglas-fir in a central Idaho forest

    Treesearch

    Gabriel Dumm; Lauren Fins; Russell T. Graham; Theresa B. Jain

    2008-01-01

    This study describes soil horizon depth and fine root distribution in cores collected at two distances from the boles of Douglas-fir and ponderosa pine trees at a study site in a central Idaho forest. Concentration and content of fine roots extracted from soil cores were compared among species, soil horizons, tree size, and distance from bole. Approximately 80% of...

  1. A SPATIAL ANALYSIS OF FINE-ROOT BIOMASS FROM STAND DATA IN OREGON AND WASHINGTON

    EPA Science Inventory

    Because of the high spatial variability of fine roots in natural forest stands, accurate estimates of stand-level fine root biomass are difficult and expensive to obtain by standard coring methods. This study compares two different approaches that employ aboveground tree metrics...

  2. RELATING FINE ROOT BIOMASS TO SOIL AND CLIMATE CONDITIONS IN THE PACIFIC NORTHWEST

    EPA Science Inventory

    The additive contribution of fine root biomass for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) to the stand average fine root biomass were estimated for eight conifer stands in the Pacific Northwest. Base...

  3. A SPATIAL ANALYSIS OF THE FINE ROOT BIOMASS FROM STAND DATA IN THE PACIFIC NORTHWEST

    EPA Science Inventory

    High spatial variability of fine roots in natural forest stands makes accurate estimates of stand-level fine root biomass difficult and expensive to obtain by standard coring methods. This study uses aboveground tree metrics and spatial relationships to improve core-based estima...

  4. Regional scale patterns of fine root lifespan and turnover under current and future climate.

    PubMed

    McCormack, Luke M; Eissenstat, David M; Prasad, Anantha M; Smithwick, Erica A H

    2013-06-01

    Fine root dynamics control a dominant flux of carbon from plants and into soils and mediate potential uptake and cycling of nutrients and water in terrestrial ecosystems. Understanding of these patterns is needed to accurately describe critical processes like productivity and carbon storage from ecosystem to global scales. However, limited observations of root dynamics make it difficult to define and predict patterns of root dynamics across broad spatial scales. Here, we combine species-specific estimates of fine root dynamics with a model that predicts current distribution and future suitable habitat of temperate tree species across the eastern United States (US). Estimates of fine root lifespan and turnover are based on empirical observations and relationships with fine root and whole-plant traits and apply explicitly to the fine root pool that is relatively short-lived and most active in nutrient and water uptake. Results from the combined model identified patterns of faster root turnover rates in the North Central US and slower turnover rates in the Southeastern US. Portions of Minnesota, Ohio, and Pennsylvania were also predicted to experience >10% increases in root turnover rates given potential shifts in tree species composition under future climate scenarios while root turnover rates in other portions of the eastern US were predicted to decrease. Despite potential regional changes, the average estimates of root lifespan and turnover for the entire study area remained relatively stable between the current and future climate scenarios. Our combined model provides the first empirically based, spatially explicit, and spatially extensive estimates of fine root lifespan and turnover and is a potentially powerful tool allowing researchers to identify reasonable approximations of forest fine root turnover in areas where no direct observations are available. Future efforts should focus on reducing uncertainty in estimates of root dynamics by better understanding how

  5. Mechanical Failure of Fine Root Cortical Cells Initiates Plant Hydraulic Decline during Drought.

    PubMed

    Cuneo, Italo F; Knipfer, Thorsten; Brodersen, Craig R; McElrone, Andrew J

    2016-11-01

    Root systems perform the crucial task of absorbing water from the soil to meet the demands of a transpiring canopy. Roots are thought to operate like electrical fuses, which break when carrying an excessive load under conditions of drought stress. Yet the exact site and sequence of this dysfunction in roots remain elusive. Using in vivo x-ray computed microtomography, we found that drought-induced mechanical failure (i.e. lacunae formation) in fine root cortical cells is the initial and primary driver of reduced fine root hydraulic conductivity (Lpr) under mild to moderate drought stress. Cortical lacunae started forming under mild drought stress (-0.6 MPa Ψstem), coincided with a dramatic reduction in Lpr, and preceded root shrinkage or significant xylem embolism. Only under increased drought stress was embolism formation observed in the root xylem, and it appeared first in the fine roots (50% loss of hydraulic conductivity [P50] reached at -1.8 MPa) and then in older, coarse roots (P50 = -3.5 MPa). These results suggest that cortical cells in fine roots function like hydraulic fuses that decouple plants from drying soil, thus preserving the hydraulic integrity of the plant's vascular system under early stages of drought stress. Cortical lacunae formation led to permanent structural damage of the root cortex and nonrecoverable Lpr, pointing to a role in fine root mortality and turnover under drought stress.

  6. Mechanical Failure of Fine Root Cortical Cells Initiates Plant Hydraulic Decline during Drought1[OPEN

    PubMed Central

    McElrone, Andrew J.

    2016-01-01

    Root systems perform the crucial task of absorbing water from the soil to meet the demands of a transpiring canopy. Roots are thought to operate like electrical fuses, which break when carrying an excessive load under conditions of drought stress. Yet the exact site and sequence of this dysfunction in roots remain elusive. Using in vivo x-ray computed microtomography, we found that drought-induced mechanical failure (i.e. lacunae formation) in fine root cortical cells is the initial and primary driver of reduced fine root hydraulic conductivity (Lpr) under mild to moderate drought stress. Cortical lacunae started forming under mild drought stress (−0.6 MPa Ψstem), coincided with a dramatic reduction in Lpr, and preceded root shrinkage or significant xylem embolism. Only under increased drought stress was embolism formation observed in the root xylem, and it appeared first in the fine roots (50% loss of hydraulic conductivity [P50] reached at −1.8 MPa) and then in older, coarse roots (P50 = −3.5 MPa). These results suggest that cortical cells in fine roots function like hydraulic fuses that decouple plants from drying soil, thus preserving the hydraulic integrity of the plant’s vascular system under early stages of drought stress. Cortical lacunae formation led to permanent structural damage of the root cortex and nonrecoverable Lpr, pointing to a role in fine root mortality and turnover under drought stress. PMID:27621427

  7. [Fine root production and turnover in Pinus massoniana plantation in Three Gorges Reservoir area of China].

    PubMed

    Wang, Rui-Li; Cheng, Rui-Mei; Xiao, Wen-Fa; Feng, Xiao-Hui; Liu, Ze-Bin; Ge, Xiao-Gai; Wang, Xiao-Rong; Zhang, Wei-Yin

    2012-09-01

    By the methods of sequential soil cores and buried bags, an investigation was conducted to study the seasonal dynamics of fine roots in a 20-year-old Pinus massoniana plantation in Three Gorges Reservoir Area from March to December 2011, with the annual production and turnover rate of the fine roots calculated. In the plantation, the annual mean biomass of <2 mm fine roots was 146.98 g x m(-2) x a(-1), in which, the living root biomass (102.92 g x m(-2) x a(-1)) was far greater than that of the dead root biomass (44.06 g x m(-2) x a(-1)). Among the fine roots with different sizes, <1 mm fine roots had an obvious seasonal dynamics in their biomass, showing a unimodal curve in the sampling period. The annual production and turnover rate of <2 mm fine roots were 104. 12 g x m(-2) x 1(-1) and 1.05 a(-1), respectively, in which, the annual production of <1 mm and 1-2 mm fine roots was 58.35 and 45.77 g x m(-2) x a(-1), and the turnover rate was 1.41 and 0.69 a(-1), respectively.

  8. Carbon cycling in fine roots of several mature forests: results using either locally-derived or bomb-derived radiocarbon enrichment

    NASA Astrophysics Data System (ADS)

    Gaudinski, J. B.; Riley, W. J.; Torn, M. S.; Dawson, T. E.; Trumbore, S. E.; Joslin, J. D.; Majdi, H.; Hanson, P. J.; Swanston, C.

    2008-12-01

    This work seeks to improve our ability to quantify C cycling rates in fine roots of trees in mature deciduous and coniferous forests. We use two different types of atmospheric 14CO2 enrichment to trace the time elapsed since C in plant tissues was fixed from the atmosphere by photosynthesis. The first uses a local enrichment of 14CO2 which occurred in early summer 1999, at the Oak Ridge Reservation, Tennessee. The second, employed at three different sites, uses the global enrichment in background atmospheric 14CO2 caused by thermonuclear weapons testing (bomb-14C). In both cases we employ a new model (Radix1.0) to track C and 14C fluxes through fine root populations. Radix simulates two live-root populations (the longer-lived one having structural and non-structural C components), two dead-root pools, non-normally distributed root mortality turnover times, a stored C pool, seasonal growth and respiration patterns, a best-fit to measurements approach to estimate model parameters, and Monte Carlo uncertainty analysis. Our results show that: (1) New fine-root growth contains a lot of stored C (~55%) but it is young in age (0.7 y). (2) The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models should take stored reserves into account, particularly for pulse labeling studies and fast-cycling roots (< 1 y). (3) Radiocarbon values show a stronger correlation with position on the root branch system than they do with diameter or depth in the soil profile. (4) Live fine root dynamics are well described by a short-lived and a long-lived population, with mean turnover times <1 y and ~12 y, respectively. (5) Dead root decomposition is best modeled with (at least) two pools, with moderate (~2 y) and slow (~10 y) decomposition turnover times. (6) Root respiration has a large effect on fine root biomass and isotopic composition, and should be included in ecosystem C and isotope models. (7) It is

  9. Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods

    Treesearch

    Dali Guo; Harbin Li; Robert J. Mitchell; Han Wenxuan; Joseph J. Hendricks; Timothy J. Fahey; Ronald L. Hendrick

    2008-01-01

    Fine roots constitute a large and dynamic component of the carbon cycles of terrestrial ecosystems. The reported fivefold discrepancy in turnover estimates between median longevity (ML) from minirhizotrons and mean residence time (MRT) using carbon isotopes may have global consequences.

  10. Mass, nutrient pool, and mineralization of litter and fine roots in a tropical mountain cloud forest.

    PubMed

    Campos C, Adolfo; Cruz H, Lourdes; Rocha O, Sandra

    2017-01-01

    We used fine root and litter mass from a tropical mountain cloud forest to assess their relative contribution to nutrient content and to examine mineralization processes during a laboratory incubation experiment. Our results showed that average fine root mass density ranged from 2.86kgm(-3) to 11.59kgm(-3), while litter mass density ranged from 72.5kgm(-3) to 177.3kgm(-3). On average, fine root mass density represented 4.7% of the mass density of the O horizon. Fine root mass density followed an exponentially declining trend with soil depth. On average, 83% of fine root mass density within the soil profile was concentrated in the O horizon. Mean element pools in litter decreased from 44.08mgcm(-3) to 0.49μgcm(-3) in the following sequence: C>N>Fe>S>Ca>P>K>Mg>Na>Mn>Zn>Cu. For fine roots, a different mean element pool sequence (C>N>Ca>K>Fe>S>Mg>Na>P>Mn>Zn>Cu) in decreasing abundance (from 2.88mgcm(-3) to 0.13μgcm(-3)) was observed with respect to litter. Regarding C, litter mineralized faster than fine roots, with a mean k value of 0.25d(-1) for litter and 0.13d(-1) for fine roots. Principal component analysis (PCA) combined with stepwise regression analysis revealed that the main mass density predictors were N, S, Zn, and Mn for litter (p<0.0001, R(2)=0.92), and S and C/N ratio for fine roots (p<0.0001, R(2)=0.82). These results demonstrate the potential of chemical composition to influence the mineralization of fine root and litter mass and therefore the nutrient availability and C sequestration.

  11. The effect of tree species diversity on fine-root production in a young temperate forest.

    PubMed

    Lei, Pifeng; Scherer-Lorenzen, Michael; Bauhus, Jürgen

    2012-08-01

    The phenomenon of overyielding in species-diverse plant communities is mainly attributed to complementary resource use. Vertical niche differentiation belowground might be one potential mechanism for such complementarity. However, most studies that have analysed the diversity/productivity relationship and belowground niche differentiation have done so for fully occupied sites, not very young tree communities that are in the process of occupying belowground space. Here we used a 5–6 year old forest diversity experiment to analyse how fine-root (<2 mm) production in ingrowth cores (0–30 cm) was influenced by tree species identity, as well as the species diversity and richness of tree neighbourhoods. Fine-root production during the first growing season after the installation of ingrowth cores increased slightly with tree species diversity, and four-species combinations produced on average 94.8% more fine-root biomass than monocultures. During the second growing season, fine-root mortality increased with tree species diversity, indicating an increased fine-root turnover in species-rich communities. The initial overyielding was attributable to the response to mixing by the dominant species, Pseudotsuga menziesii and Picea abies, which produced more fine roots in mixtures than could be expected from monocultures. In species-rich neighbourhoods, P. abies allocated more fine roots to the upper soil layer (0–15 cm), whereas P. menziesii produced more fine roots in the deeper layer (15–30 cm) than in species-poor neighbourhoods. Our results indicate that, although there may be no lasting overyielding in the fine-root production of species-diverse tree communities, increasing species diversity can lead to substantial changes in the production, vertical distribution, and turnover of fine roots of individual species.

  12. Senescence-related changes in nitrogen in fine roots: mass loss affects estimation.

    PubMed

    Kunkle, Justin M; Walters, Michael B; Kobe, Richard K

    2009-05-01

    The fate of nitrogen (N) in senescing fine roots has broad implications for whole-plant N economies and ecosystem N cycling. Studies to date have generally shown negligible changes in fine root N per unit root mass during senescence. However, unmeasured loss of mobile non-N constituents during senescence could lead to underestimates of fine root N loss. For N fertilized and unfertilized potted seedlings of Populus tremuloides Michx., Acer rubrum L., Acer saccharum Marsh. and Betula alleghaniensis Britton, we predicted that the fine roots would lose mass and N during senescence. We estimated mass loss as the product of changes in root mass per length and root length between live and recently dead fine roots. Changes in root N were compared among treatments on uncorrected mass, length (which is independent of changes in mass per length), calcium (Ca) and corrected mass bases and by evaluating the relationships of dead root N as a function of live root N, species and fertilization treatments. Across species, from live to dead roots, mass decreased 28-40%, N uncorrected for mass loss increased 10-35%, N per length decreased 5-16%, N per Ca declined 14-48% and N corrected for mass declined 12-28%. Given the magnitude of senescence-related root mass loss and uncertainties about Ca dynamics in senescing roots, N loss corrected for mass loss is likely the most reliable estimate of N loss. We re-evaluated the published estimates of N changes during root senescence based on our values of mass loss and found an average of 28% lower N in dead roots than in fine roots. Despite uncertainty about the contributions of resorption, leaching and microbial immobilization to the net loss of N during root senescence, live root N was a strong and proportional predictor of dead root N across species and fertilization treatments, suggesting that live root N alone could be used to predict the contributions of senescing fine roots to whole-plant N economies and N cycling.

  13. Contrasting fine-root production, survival and soil CO2 efflux in pine and poplar plantation

    Treesearch

    M. D. Coleman; Richard E. Dickson; J. G. Isebrands

    2000-01-01

    Tree root activity, including fine-root production, turnover and metabolic activity are significant components of forest productivity and nutrient cycling. Differences in root activity among forest types are not well known. A 3-year study was undertaken in red pine (Pinus resinosa Ait.) and hybrid poplar (Populus tristis X P.

  14. Contrasting fine-root production, survival and soil CO2 efflux in pine and poplar plantations

    Treesearch

    M.D. Coleman; R.E. Dickson; J.G. Isebrands

    2000-01-01

    Tree root activity, including fine-root production, turnover and metabolic activity are significant components of forest productivity and nutrient cycling. Differences in root activity among forest types are not well known. A 3-year study was undertaken in red pine (Pinus resinosa Ait.) and hybrid poplar (Populus tristis X P.

  15. [Seasonal dynamics of quantitative and morphological traits of poplar fine roots and their differences between successive rotation plantations].

    PubMed

    Wang, Yan-ping; Xu, Tan; Zhu, Wan-rui; Wang, Qi-tong; Liu, Meng-ling; Wang, Hua-tian; Li, Chuan-rong; Dong, Yu-feng

    2016-02-01

    Based on the fine root samples of the first and second generations of poplar (Populus x euramericana ' Neva'), this study examined the response of quantitative and morphological traits of fine roots of different orders and the difference between generations. The results showed that, the quantitative traits of fine roots, such as root length, root surface area and root biomass, presented obvious seasonal variation, and the fine root traits had obvious difference among root orders. The quantitative traits of lower-order fine roots showed significant seasonal difference, and the fine root biomass increased in the growing season and then decreased significantly. The specific root length (SRL) of higher-order roots also showed significant change with season, while the root length density (RLD) and root tissue density (RTD) changed a little. The successive rotation resulted in the significant increase of root length, root biomass, SRL and RLD of 1-2 orders in the growing season. The quantitative traits of first order root significantly positively correlated with soil temperature and moisture, and significantly negatively correlated with the soil organic matter and soil available nitrogen content. However, the quantitative traits of second order root only showed significant correlation with soil nutrient content. The seasonal dynamics of poplar fine roots and the difference between successive rotation plantations implied carbon investment change of poplar to roots. Soil nutrient deficiency induced more carbon investment into roots, and this carbon allocation pattern might affect the aboveground productivity of poplar plantation.

  16. Fine root tradeoffs between nitrogen concentration and xylem vessel traits preclude unified whole-plant resource strategies in Helianthus.

    PubMed

    Bowsher, Alan W; Mason, Chase M; Goolsby, Eric W; Donovan, Lisa A

    2016-02-01

    Recent work suggests variation in plant growth strategies is governed by a tradeoff in resource acquisition and use, ranging from a rapid resource acquisition strategy to a resource-conservative strategy. While evidence for this tradeoff has been found in leaves, knowledge of root trait strategies, and whether they reflect adaptive differentiation across environments, is limited. In the greenhouse, we investigated variation in fine root morphology (specific root length and tissue density), chemistry (nitrogen concentration and carbon:nitrogen), and anatomy (root cross-sectional traits) in populations of 26 Helianthus species and sister Phoebanthus tenuifolius. We also compared root trait variation in this study with leaf trait variation previously reported in a parallel study of these populations. Root traits varied widely and exhibited little phylogenetic signal, suggesting high evolutionary lability. Specific root length and root tissue density were weakly negatively correlated, but neither was associated with root nitrogen, providing little support for a single axis of root trait covariation. Correlations between traits measured in the greenhouse and native site characteristics were generally weak, suggesting a variety of equally viable root trait combinations exist within and across environments. However, high root nitrogen was associated with lower xylem vessel number and cross-sectional area, suggesting a tradeoff between nutrient investment and water transport capacity. This led to correlations between root and leaf traits that were not always consistent with an acquisition-conservation tradeoff at the whole-plant level. Given that roots must balance acquisition of water and nutrients with functions like anchorage, exudation, and microbial symbioses, the varied evidence for root trait covariation likely reflects the complexity of interacting selection pressures belowground. Similarly, the lack of evidence for a single acquisition-conservation tradeoff at the

  17. Viewing forests from below: fine root mass declines relative to leaf area in aging lodgepole pine stands.

    PubMed

    Schoonmaker, A S; Lieffers, V J; Landhäusser, S M

    2016-07-01

    In the continued quest to explain the decline in productivity and vigor with aging forest stands, the most poorly studied area relates to root system change in time. This paper measures the wood production, root and leaf area (and mass) in a chronosequence of fire-origin lodgepole pine (Pinus contorta Loudon) stands consisting of four age classes (12, 21, 53, and ≥100 years), each replicated ~ five times. Wood productivity was greatest in the 53-year-old stands and then declined in the ≥100-year-old stands. Growth efficiency, the quantity of wood produced per unit leaf mass, steadily declined with age. Leaf mass and fine root mass plateaued between the 53- and ≥100-year-old stands, but leaf area index actually increased in the older stands. An increase in the leaf area index:fine root area ratio supports the idea that older stand are potentially limited by soil resources. Other factors contributing to slower growth in older stands might be lower soil temperatures and increased self-shading due to the clumped nature of crowns. Collectively, the proportionally greater reduction in fine roots in older stands might be the variable that predisposes these forests to be at a potentially greater risk of stress-induced mortality.

  18. Dynamics of phreatophyte root growth relative to a seasonally fluctuating water table in a Mediterranean-type environment.

    PubMed

    Canham, Caroline A; Froend, Raymond H; Stock, William D; Davies, Muriel

    2012-12-01

    While seasonal redistribution of fine root biomass in response to fluctuations in groundwater level is often inferred in phreatophytic plants, few studies have observed the in situ growth dynamics of deep roots relative to those near the surface. We investigated the root growth dynamics of two Banksia species accessing a seasonally dynamic water table and hypothesized that root growth phenology varied with depth, i.e. root growth closest to the water table would be influenced by water table dynamics rather than surface micro-climate. Root in-growth bags were used to observe the dynamics of root growth at different soil depths and above-ground growth was also assessed to identify whole-plant growth phenology. Root growth at shallow depths was found to be in synchrony with above-ground growth phenophases, following increases in ambient temperature and soil water content. In contrast, root growth at depth was either constant or suppressed by saturation. Root growth above the water table and within the capillary fringe occurred in all seasons, corresponding with consistent water availability and aerobic conditions. However, at the water table, a seasonal cycle of root elongation with drawdown in summer followed by trimming in response to water table rise and saturation in winter, was observed. The ability to grow roots year-round at the capillary fringe and redistribute fine root biomass in response to groundwater drawdown is considered critical in allowing phreatophytes, in seasonally water-limited environments, to maintain access to groundwater throughout the year.

  19. [Fine root biomass and production of four vegetation types in Loess Plateau, China].

    PubMed

    Deng, Qiang; Li, Ting; Yuan, Zhi-You; Jiao, Feng

    2014-11-01

    Fine roots (≤ 2 mm) play a major role in biogeochemical cycling in ecosystems. By the methods of soil cores and ingrowth soil cores, we studied the biomass and annual production of fine roots in 0-40 cm soil layers of four main vegetation types, i. e. , Robinia pseudoacacia plantation, deciduous shrubs, abandoned grassland, and Artemisia desertorum community in Loess Plateau, China. The spatial patterns of fine root biomass and production were negatively associated with latitudes. The fine root biomass in the 0-40 cm soil layer was in the order of deciduous shrubs (220 g · m(-2)), R. pseudoacacia plantation (163 g · m(-2)), abandoned grassland (162 g · m(-2)) and A. desertorum community (79 g · m(-2)). The proportion of ≤ 1 mm fine root biomass (74.1%) in the 0-40 cm soil layer of abandoned grassland was significantly higher than those in the other three vegetation types. The fine root biomass of the four vegetation types was mainly distributed in the 0-10 cm soil layer and decreased with soil depth. The proportion of fine root biomass (44.1%) in the 0-10 cm soil layer of abandoned grassland was significantly higher than those in other three vegetation types. The fine root productions of four vegetation types were in the order of abandoned grassland (315 g · m(-2) · a(-1)) > deciduous shrubs (249 g · m(-2) a(-1)) > R. pseudoacacia plantation (219 g · m(-2) · a(-1)) > A. desertorum community (115 g · m(-2) · a(-1)), and mainly concentrated in the 0-10 cm top soil layer and decreased with the soil depth. The proportion of the annual production (40.4%) in the 0-10 cm soil layer was the highest in abandoned grassland. Fine roots of abandoned grassland turned over faster than those from the other three vegetation types.

  20. Effects of warming treatment and precipitation manipulation on fine root length and total root biomass of Pinus densiflora seedlings

    NASA Astrophysics Data System (ADS)

    Han, S. H.; Park, M.; Kim, S.; Lee, J.; Chang, H.; Son, Y.

    2016-12-01

    The effects of climate change on fine root (<2mm in diameter) length (FRL) and total root biomass (RB) were examined by an open-field warming treatment and precipitation manipulation system. An experimental nursery was established with 18 plots (2 temperature levels x 3 precipitation levels x 3 replicates) and seedlings of 2-year-old Pinus densiflora were planted in April, 2013. The air temperature of the warmed plots (W) was set to increase by 3°C compared to the temperature of control plots (C) using infrared lamps. The precipitation was manipulated to be 30% lower (P-) or higher (P+) than the precipitation control plots (P0) using transparent panels and drip irrigation. The FRL of the seedlings at 0-15 soil depth was estimated in January, April, July, October, and December, 2015 using minirhizotrons. The total RB was measured in March, 2016. The mean FRL during the study period and total RB were significantly affected by the precipitation manipulation (P<0.05); however, they were not influenced by the warming treatment. The interactive effect of warming and precipitation was significant only for total RB (P<0.05). The mean FRL and total RB in the P- plot were higher than those in the P+ and P0 plots. Water stress due to the decreased water availability might stimulate the root growth in the study. The mean FRL (mm mm-2) and total RB (g) in W*P- plot (232.4 and 105.0) were highest compared to those in other plots (WP+: 103.8 and 60.8; WP0: 106.5 and 47.8; CP-: 167.9 and 62.1; CP+: 135.4 and 61.2; CP0: 164.8 and 50.9). These results suggest that the combination of warming treatment and decreased precipitation might result in decreased soil moisture condition and increased fine root length and total root biomass in a seedling stage. This study was supported by Korea Ministry of Environment (2014001310008).

  1. Biochemical Composition Suggests Different Roles of Leaf Litter and Fine Roots in Soil Carbon Formation

    NASA Astrophysics Data System (ADS)

    Xia, M.; Pregitzer, K. S.; Talhelm, A. F.

    2012-12-01

    Plant litter is a major source of soil organic carbon (C). This litter is not homogenous, but instead primarily composed of fine root and leaf litter that adapted to different physiological functions. These unique functions suggest that root and leaf litter likely have different biochemical traits, and thus different decomposition patterns. However, few studies have compared their substrate quality and contributions to soil C. Also, much less attention has been given to fine roots although they can represent a substantial litter production. Here we hypothesize that 1) leaf litter and fine roots have different substrate quality as they are highly different in biochemical composition; 2) the biochemical composition of leaf litter and fine roots responds differently to the simulated nitrogen (N) deposition. To test these hypotheses, we collected leaf litter and fine roots of Acer saccharum (the dominant species in the northern temperate ecosystems we studied) in both ambient and N addition treatment plots at four sites of Michigan N deposition gradient study. We quantified ten biochemical components thought to be important on decomposition. Strikingly, we found a consistently three-fold higher lignin concentration in fine roots than that in leaf litter (P< 0.01). On average, lignin concentration of fine roots was 45.4±0.3% while that of leaf litter was 13.5±0.2%. Lignin has been considered highly recalcitrant and hypothesized as the major precursor of humus substance. Condensed tannin (CT) concentration in fine roots (13.13±0.51%) was also substantially higher than that in leaf litter (P< 0.01, 4.63±0.42 %). Tissue CT can inhibit litter decay by both precipitating proteins and by having antimicrobial properties. In contrast, fine roots exhibited lower concentrations of non-structural carbohydrates (NSC), soluble phenolics, and holocellulose (hemicelluloses & cellulose) than leaf litter (P< 0.01). These components are considered more easily accessible, and may

  2. EFFECTS OF ELEVATED CO2 ON ROOT GROWTH AND PHYSIOLOGY FOR DESERT PLANTS

    EPA Science Inventory

    The effects of elevated atmospheric CO2 on the growth and physiology of roots have been measured in situ at the Nevada Desert FACE Facility. Minirhizotron measurements of fine root length production, mortality, and standing crop were not increased by elevated CO2. However, spec...

  3. Relations of fine-root morphology on (137)Cs uptake by fourteen Brassica species.

    PubMed

    Aung, Han Phyo; Aye, Yi Swe; Mensah, Akwasi Dwira; Omari, Richard Ansong; Djedidi, Salem; Oikawa, Yosei; Ohkama-Ohtsu, Naoko; Yokoyama, Tadashi; Bellingrath-Kimura, Sonoko Dorothea

    2015-12-01

    Fourteen Brassica species consisting of seven leafy vegetables and seven root vegetables were examined for (137)Cs uptake differences in relation to their fine-root morphological characters. A pot experiment was conducted from November 2014 to February 2015 in a Phytroton using a contaminated soil of Fukushima prefecture. Leafy vegetables showed bigger root diameters, larger root surface area and larger root volume. Consequently, leafy vegetables had higher (137)Cs uptake compared to root vegetables. Among the three fine-root parameters, only root surface area was observed as a significant contributing factor to higher (137)Cs uptake in terms of transfer factor (TF, dry weight basis). Kakina exhibited higher (137)Cs TF value (0.20) followed by Chinese cabbage (0.18) and mizuna (0.17). Lower TF values were observed in turnip (0.059), rutabaga (Kitanoshou) (0.062) and radish (Ha daikon) (0.064). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Stochastic roots of growth phenomena

    NASA Astrophysics Data System (ADS)

    De Lauro, E.; De Martino, S.; De Siena, S.; Giorno, V.

    2014-05-01

    We show that the Gompertz equation describes the evolution in time of the median of a geometric stochastic process. Therefore, we induce that the process itself generates the growth. This result allows us further to exploit a stochastic variational principle to take account of self-regulation of growth through feedback of relative density variations. The conceptually well defined framework so introduced shows its usefulness by suggesting a form of control of growth by exploiting external actions.

  5. Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions.

    PubMed

    Zhu, Feifei; Yoh, Muneoki; Gilliam, Frank S; Lu, Xiankai; Mo, Jiangming

    2013-01-01

    Elevated nitrogen (N) deposition to tropical forests may accelerate ecosystem phosphorus (P) limitation. This study examined responses of fine root biomass, nutrient concentrations, and acid phosphatase activity (APA) of bulk soil to five years of N and P additions in one old-growth and two younger lowland tropical forests in southern China. The old-growth forest had higher N capital than the two younger forests from long-term N accumulation. From February 2007 to July 2012, four experimental treatments were established at the following levels: Control, N-addition (150 kg N ha(-1) yr(-1)), P-addition (150 kg P ha(-1) yr(-1)) and N+P-addition (150 kg N ha(-1) yr(-1) plus 150 kg P ha(-1) yr(-1)). We hypothesized that fine root growth in the N-rich old-growth forest would be limited by P availability, and in the two younger forests would primarily respond to N additions due to large plant N demand. Results showed that five years of N addition significantly decreased live fine root biomass only in the old-growth forest (by 31%), but significantly elevated dead fine root biomass in all the three forests (by 64% to 101%), causing decreased live fine root proportion in the old-growth and the pine forests. P addition significantly increased live fine root biomass in all three forests (by 20% to 76%). The combined N and P treatment significantly increased live fine root biomass in the two younger forests but not in the old-growth forest. These results suggest that fine root growth in all three study forests appeared to be P-limited. This was further confirmed by current status of fine root N:P ratios, APA in bulk soil, and their responses to N and P treatments. Moreover, N addition significantly increased APA only in the old-growth forest, consistent with the conclusion that the old-growth forest was more P-limited than the younger forests.

  6. Nutrient Limitation in Three Lowland Tropical Forests in Southern China Receiving High Nitrogen Deposition: Insights from Fine Root Responses to Nutrient Additions

    PubMed Central

    Zhu, Feifei; Yoh, Muneoki; Gilliam, Frank S.; Lu, Xiankai; Mo, Jiangming

    2013-01-01

    Elevated nitrogen (N) deposition to tropical forests may accelerate ecosystem phosphorus (P) limitation. This study examined responses of fine root biomass, nutrient concentrations, and acid phosphatase activity (APA) of bulk soil to five years of N and P additions in one old-growth and two younger lowland tropical forests in southern China. The old-growth forest had higher N capital than the two younger forests from long-term N accumulation. From February 2007 to July 2012, four experimental treatments were established at the following levels: Control, N-addition (150 kg N ha–1 yr–1), P-addition (150 kg P ha–1 yr–1) and N+P-addition (150 kg N ha–1 yr–1 plus 150 kg P ha–1 yr–1). We hypothesized that fine root growth in the N-rich old-growth forest would be limited by P availability, and in the two younger forests would primarily respond to N additions due to large plant N demand. Results showed that five years of N addition significantly decreased live fine root biomass only in the old-growth forest (by 31%), but significantly elevated dead fine root biomass in all the three forests (by 64% to 101%), causing decreased live fine root proportion in the old-growth and the pine forests. P addition significantly increased live fine root biomass in all three forests (by 20% to 76%). The combined N and P treatment significantly increased live fine root biomass in the two younger forests but not in the old-growth forest. These results suggest that fine root growth in all three study forests appeared to be P-limited. This was further confirmed by current status of fine root N:P ratios, APA in bulk soil, and their responses to N and P treatments. Moreover, N addition significantly increased APA only in the old-growth forest, consistent with the conclusion that the old-growth forest was more P-limited than the younger forests. PMID:24376562

  7. Adaptive fine root foraging patterns in climate experiments and natural gradients

    NASA Astrophysics Data System (ADS)

    Ostonen, Ivika; Truu, Marika; Parts, Kaarin; Truu, Jaak

    2017-04-01

    Site based manipulative experiments and studies along climatic gradients have long been keystones of ecological research. We aimed to compare the response of ectomycorrhizal (EcM) and fine roots in manipulative studies and along climate gradient to describe the universal trends in root traits and to raise hypotheses about general mechanisms in fine root system adaptation of forest trees in global change. The root traits from two climate manipulation experiments - Bangor FACE and FAHM in Estonia, manipulated by CO2 concentration and relative air humidity in silver birch forest ecosystems, respectively and the data for three most ubiquitous tree species - Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and silver birch (Betula pendula) stands along natural gradient encompassing different climate and forest zones in Northern Europe were analysed. There are two main strategies in response of fine root system of trees: A) an extensive increase in absorptive root biomass, surface area and length, or B) a greater reliance on root-associated EcM fungi and bacterial communities with a smaller investment to absorptive root biomass. Trees in all studies tended to increase the EcM root biomass and the proportion of EcM root biomass of total fine root biomass towards harsh (northern boreal forests) or changed conditions (stress created by the increase in CO2 concentration or relative air humidity). We envisage a role of trilateral relation between the morphological traits of absorptive fine roots, exploration types of colonising EcM fungi and rhizosphere and bulk soil bacterial community structure. A significant change in EcM absorptive fine root biomass in all experiments and for all studied tree species coincided with changes in absorptive root morphology, being longer and thinner root tips with higher root tissue density in poor/treated sites. These changes were associated with significant shifts in community structure of dominating EcM fungi as well as soil and

  8. DNA analysis of soil extracts can be used to investigate fine root depth distribution of trees

    PubMed Central

    Bithell, Sean L.; Tran-Nguyen, Lucy T. T.; Hearnden, Mark N.; Hartley, Diana M.

    2015-01-01

    Understanding the root distribution of trees by soil coring is time-consuming as it requires the separation of roots from soil and classification of roots into particular size classes. This labour-intensive process can limit sample throughput and therefore sampling intensity. We investigated the use of quantitative polymerase chain reaction (qPCR) on soil DNA extractions to determine live fine root DNA density (RDD, mg DNA m−2) for mango (Mangifera indica) trees. The specificity of the qPCR was tested against DNA extracted from 10 mango cultivars and 14 weed species. All mango cultivars and no weeds were detected. Mango DNA was successfully quantified from control soil spiked with mango roots and weed species. The DNA yield of mango root sections stored in moist soil at 23–28 °C declined after 15 days to low concentrations as roots decayed, indicating that dead root materials in moist soil would not cause false-positive results. To separate large roots from samples, a root separation method for field samples was used to target the root fragments remaining in sieved (minimum 2 mm aperture) soil for RDD comparisons. Using this method we compared the seasonal RDD values of fine roots for five mango rootstock cultivars in a field trial. The mean cultivar DNA yields by depth from root fragments in the sieved soil samples had the strongest relationship (adjusted multiple R2 = 0.9307, P < 0.001) with the dry matter (g m−2) of fine (diameter <0.64 mm) roots removed from the soil by sieving. This method provides a species-specific and rapid means of comparing the distribution and concentration of live fine roots of trees in orchards using soil samples up to 500 g. PMID:25552675

  9. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on decomposition of fine roots.

    PubMed

    Chapman, Jack A; King, John S; Pregitzer, Kurt S; Zak, Donald R

    2005-12-01

    Rising atmospheric carbon dioxide (CO2) concentration ([CO2]) could alter terrestrial carbon (C) cycling by affecting plant growth, litter chemistry and decomposition. How the concurrent increase in tropospheric ozone (O3) concentration ([O3]) will interact with rising atmospheric [CO2] to affect C cycling is unknown. A major component of carbon cycling in forests is fine root production, mortality and decomposition. To better understand the effects of elevated [CO2] and [O3] on the dynamics of fine root C, we conducted a combined field and laboratory incubation experiment to monitor decomposition dynamics and changes in fine root litter chemistry. Free-air CO2 enrichment (FACE) technology at the FACTS-II Aspen FACE project in Rhinelander, Wisconsin, elevated [CO2] (535 microl 1-1) and [O3] (53 nl 1-1) in intact stands of pure trembling aspen (Populus tremuloides Michx.) and in mixed stands of trembling aspen plus paper birch (Betula papyrifera Marsh.) and trembling aspen plus sugar maple (Acer saccharum Marsh.). We hypothesized that the trees would react to increased C availability (elevated [CO2]) by increasing allocation to C-based secondary compounds (CBSCs), thereby decreasing rates of decomposition. Because of its lower growth potential, we reasoned this effect would be greatest in the aspen-maple community relative to the aspen and aspen-birch communities. As a result of decreased C availability, we expected elevated [O3] to counteract shifts in C allocation induced by elevated [CO2]. Concentrations of CBSCs were rarely significantly affected by the CO2 and O3 treatments in decomposing fine roots. Rates of microbial respiration and mass loss from fine roots were unaffected by the treatments, although the production of dissolved organic C differed among communities. We conclude that elevated [CO2] and [O3] induce only small changes in fine root chemistry that are insufficient to significantly influence fine root decomposition. If changes in soil C cycling

  10. Invariant allometric scaling of nitrogen and phosphorus in leaves, stems, and fine roots of woody plants along an altitudinal gradient.

    PubMed

    Zhao, Ning; Yu, Guirui; He, Nianpeng; Xia, Fucai; Wang, Qiufeng; Wang, Ruili; Xu, Zhiwei; Jia, Yanlong

    2016-07-01

    Nitrogen (N) to phosphorus (P) allocation in plant organs is of particular interest, as both elements are important to regulate plant growth. We analyzed the scaling relationship of N and P in leaves, stems and fine roots of 224 plant species along an altitudinal transect (500-2,300 m) on the northern slope of Changbai Mountain, China. We tested whether the scaling relationships of N and P were conserved in response to environmental variations. We found that the N and P concentrations of the leaves, stems and fine roots decreased, whereas the N:P ratios increased with increasing altitude. Allometric scaling relationships of N and P were found in the leaves, stems and fine roots, with allometric exponents of 0.78, 0.71 and 0.87, respectively. An invariant allometric scaling of N and P in the leaves, stems and fine roots was detected for woody plants along the altitudinal gradient. These results may advance our understanding of plant responses to climate change, and provide a basis for practical implication of various ecological models.

  11. Efficiency of nutrient acquisition by fine roots and mycorrhizae

    SciTech Connect

    Yanai, R.D.; Fahey, T.J.; Miller, S.L.

    1995-07-01

    It is difficult to assess claims about the adaptive advantages of root foraging strategies without a conceptual model specific enough to allow quantitative prediction and testing. Application of a solute uptake model in combination with a calculation of carbon costs provides a means of assessing the efficiency of carbon expenditures in procuring nutrients from soil. We analyzed the optimal values of root properties, such as longevity, diameter, and mycorrhizal association, that maximized the efficiency of carbon exchange for nutrient uptake in different environments. Optimal longevity was found to decrease with increased soil fertility if the kinetics of nutrient uptake were assumed to decline with increased root longevity. Optimal diameter was found to be smaller than observed in roots, suggesting that other constraints on root structure or function limit their minimum diameter. Mycorrhizal hyphae were found to be more efficient than roots regardless of soil fertility. The steady-state approach to calculating carbon costs and nutrient gain enabled combinations of root and soil properties to be very simply evaluated. However, this approach ignored spatial heterogeneity and temporal variation in root and soil properties, such as aging of roots and patchiness of soil fertility. Furthermore, finding the values of root parameters that maximize root E may not predict the optimal root deployment for the plant, which depends on the relative value of carbon and nutrients in the whole plant. Estimation of the rate of exchange of carbon and nutrients in roots is a necessary step toward an economic analysis of allocation strategies; it also reveals areas of ignorance and helps to identify future research needs.

  12. Effect of lead on root growth.

    PubMed

    Fahr, Mouna; Laplaze, Laurent; Bendaou, Najib; Hocher, Valerie; Mzibri, Mohamed El; Bogusz, Didier; Smouni, Abdelaziz

    2013-01-01

    Lead (Pb) is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms. Pb has no biological function but can cause morphological, physiological, and biochemical dysfunctions in plants. Plants have developed a wide range of tolerance mechanisms that are activated in response to Pb exposure. Pb affects plants primarily through their root systems. Plant roots rapidly respond either (i) by the synthesis and deposition of callose, creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb and its sequestration in the vacuole accompanied by changes in root growth and branching pattern or (iii) by its translocation to the aboveground parts of plant in the case of hyperaccumulators plants. Here we review the interactions of roots with the presence of Pb in the rhizosphere and the effect of Pb on the physiological and biochemical mechanisms of root development.

  13. Effect of lead on root growth

    PubMed Central

    Fahr, Mouna; Laplaze, Laurent; Bendaou, Najib; Hocher, Valerie; Mzibri, Mohamed El; Bogusz, Didier; Smouni, Abdelaziz

    2013-01-01

    Lead (Pb) is one of the most widespread heavy metal contaminant in soils. It is highly toxic to living organisms. Pb has no biological function but can cause morphological, physiological, and biochemical dysfunctions in plants. Plants have developed a wide range of tolerance mechanisms that are activated in response to Pb exposure. Pb affects plants primarily through their root systems. Plant roots rapidly respond either (i) by the synthesis and deposition of callose, creating a barrier that stops Pb entering (ii) through the uptake of large amounts of Pb and its sequestration in the vacuole accompanied by changes in root growth and branching pattern or (iii) by its translocation to the aboveground parts of plant in the case of hyperaccumulators plants. Here we review the interactions of roots with the presence of Pb in the rhizosphere and the effect of Pb on the physiological and biochemical mechanisms of root development. PMID:23750165

  14. Long-term control of root growth

    SciTech Connect

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.

    1992-05-26

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl-2,6-dinitro-aniline, commonly known as trifluralin. 7 figs.

  15. Long-term control of root growth

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1992-05-26

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl-2,6-dinitro-aniline, commonly known as trifluralin.

  16. [Soil moisture content and fine root biomass of rubber tree (Hevea brasiliensis) plantations at different ages].

    PubMed

    Lin, Xi-Hao; Chen, Qiu-Bo; Hua, Yuan-Gang; Yang, Li-Fu; Wang, Zhen-Hui

    2011-02-01

    By using soil core sampling method, this paper studied the soil moisture regime of rubber plantations and the fine root biomass of Hevea brasiliensis in immature period (5 a), early yielding period (9 a), and peak yielding period (16 a). With the increasing age of rubber trees, the soil moisture content of rubber plantations increased but the fine root biomass decreased. The soil moisture content at the depth of 0-60 cm in test rubber plantations increased with soil depth, and presented a double-peak pattern over the period of one year. The fine root biomass of rubber trees at different ages had the maximum value in the top 10 cm soil layers and decreased with soil depth, its seasonal variation also showed a double-peak pattern, but the peak values appeared at different time. Soil moisture content and soil depth were the main factors affecting the fine root biomass of H. brasiliensis.

  17. Evidence of old carbon used to grow new fine roots in a tropical forest.

    PubMed

    Vargas, Rodrigo; Trumbore, Susan E; Allen, Michael F

    2009-01-01

    In this study, we explore how a hurricane disturbance influenced carbon allocation for the production of new fine roots. Before and after a hurricane, we measured the age of carbon (time since fixation from the atmosphere) in fine root structural tissues using natural abundance radiocarbon (14C) measured by accelerator mass spectrometry. Roots were sampled from five seasonally dry tropical forests ranging in age from 6 yr to a mature forest. Structural carbon in combined live + dead roots picked from soil cores sampled 1 month before the hurricane had mean ages ranging from 4 to 11 yr, whereas live roots alone had ages of 1-2 yr. Structural carbon in new live fine roots produced over a period lasting from 3 wk before the hurricane to 2 months after the event had mean ages of between 2 and 10 yr. Contrary to expectations, our results showed that plants allocate long-lived storage carbon pools to the production of new fine roots after canopy defoliation and root mortality. The age of the carbon allocated for new roots increased with forest age and forest above-ground biomass, suggesting an adaptation of plants to survive and recover from severe disturbances.

  18. Root-growth-inhibiting sheet

    DOEpatents

    Burton, F.G.; Cataldo, D.A.; Cline, J.F.; Skiens, W.E.; Van Voris, P.

    1993-01-26

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a geotextile'' and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  19. Root-growth-inhibiting sheet

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene; Van Voris, Peter

    1993-01-01

    In accordance with this invention, a porous sheet material is provided at intervals with bodies of a polymer which contain a 2,6-dinitroaniline. The sheet material is made porous to permit free passage of water. It may be either a perforated sheet or a woven or non-woven textile material. A particularly desirable embodiment is a non-woven fabric of non-biodegradable material. This type of material is known as a "geotextile" and is used for weed control, prevention of erosion on slopes, and other landscaping purposes. In order to obtain a root repelling property, a dinitroaniline is blended with a polymer which is attached to the geotextile or other porous material.

  20. Nitrogen turnover in the leaf litter and fine roots of sugar maple.

    PubMed

    Pregitzer, Kurt S; Zak, Donald R; Talhelm, Alan F; Burton, Andrew J; Eikenberry, Jennifer R

    2010-12-01

    In order to better understand the nitrogen (N) cycle, a pulse of 15NO3- was applied in 1998 to a sugar maple (Acer saccharum) dominated northern hardwood forest receiving long-term (1994-2008) simulated atmospheric N deposition. Sugar maple leaf litter and live fine-root 15N were quantified for four years prior to labeling and for 11 subsequent years. Continuous sampling of 15N following addition of the tracer enabled calculation of leaf litter and fine-root N pool turnover utilizing an exponential decay function. Fine-root 15N recovery peaked at 3.7% +/- 1.7% the year the tracer was applied, while leaf litter 15N recovery peaked in the two years following tracer application at approximately 8%. These results suggest shoots are primarily constructed from N taken up in previous years, while fine roots are constructed from new N. The residence time of N was 6.5 years in leaf litter and 3.1 years in fine roots. The longer residence time and higher recovery rate are evidence that leaves were a stronger sink for labeled N than fine roots, but the relatively short residence time of tracer N in both pools suggests that there is not tight intra-ecosystem cycling of N in this mature forest.

  1. Effects of Crown Scorch on Longleaf Pine Fine Roots

    Treesearch

    Mary Anne Sword; James D. Haywood

    1999-01-01

    Photosynthate production is reduced by foliage loss. Thus, scorch-induced decreases in the leaf area of longleaf pine (Pinus palustris Mill.) may reduce photosynthate allocation to roots. In this investigation the root carbohydrate concentrations and dynamics of longleaf pine after two intensities of prescribed burning were monitored. In...

  2. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests

    Treesearch

    A. J. Burton; K. S. Pregitzer; R. L. Hendrick

    2000-01-01

    Minirhizotrons were used to observe fine root (≤1 mm) production, mortality, and longevity over 2 years in four sugar-maple-dominated northern hardwood forests located along a latitudinal temperature gradient. The sites also differed in N availability, allowing us to assess the relative influences of soil temperature and N availability in controlling fine...

  3. SEASONAL PATTERNS OF FINE ROOT PRODUCTION AND TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES

    EPA Science Inventory

    Root minirhizotron tubes were installed in two ponderosa pine (Pinus ponderosa Laws.) stands around three different tree age classes (16, 45, and > 250 yr old) to examine root spatial distribution in relation to canopy size and tree distribution, and to determine if rates of fine...

  4. Regional scale patterns of fine root lifespan and turnover under current and future climate

    Treesearch

    M. Luke McCormack; David M. Eissenstat; Anantha M. Prasad; Erica A. Smithwick

    2013-01-01

    Fine root dynamics control a dominant flux of carbon from plants and into soils and mediate potential uptake and cycling of nutrients and water in terrestrial ecosystems. Understanding of these patterns is needed to accurately describe critical processes like productivity and carbon storage from ecosystem to global scales. However, limited observations of root dynamics...

  5. The Continuous Incorporation of Carbon into Existing Sassafras albidum Fine Roots and Its Implications for Estimating Root Turnover

    PubMed Central

    Adams, Thomas S.; Eissenstat, David M.

    2014-01-01

    Although understanding the timing of the deposition of recent photosynthate into fine roots is critical for determining root lifespan and turnover using isotopic techniques, few studies have directly examined the deposition and subsequent age of root carbon. To gain a better understanding of the timing of the deposition of root carbon, we labeled four individual Sassafras albidum trees with 99% 13C CO2. We then tracked whether the label appeared in roots that were at least two weeks old and no longer elongating, at the time of labeling. We found that not only were the non-structural carbon pools (soluble sugars and starch) of existing first-order tree roots incorporating carbon from current photosynthate, but so were the structural components of the roots, even in roots that were more than one year old at the time of labeling.Our findings imply that carbon used in root structural and nonstructural pools is not derived solely from photosynthate at root initiation and have implications regarding the determination of root age and turnover using isotopic techniques. PMID:24788762

  6. The continuous incorporation of carbon into existing Sassafras albidum fine roots and its implications for estimating root turnover.

    PubMed

    Adams, Thomas S; Eissenstat, David M

    2014-01-01

    Although understanding the timing of the deposition of recent photosynthate into fine roots is critical for determining root lifespan and turnover using isotopic techniques, few studies have directly examined the deposition and subsequent age of root carbon. To gain a better understanding of the timing of the deposition of root carbon, we labeled four individual Sassafras albidum trees with 99% 13C CO2. We then tracked whether the label appeared in roots that were at least two weeks old and no longer elongating, at the time of labeling. We found that not only were the non-structural carbon pools (soluble sugars and starch) of existing first-order tree roots incorporating carbon from current photosynthate, but so were the structural components of the roots, even in roots that were more than one year old at the time of labeling.Our findings imply that carbon used in root structural and nonstructural pools is not derived solely from photosynthate at root initiation and have implications regarding the determination of root age and turnover using isotopic techniques.

  7. Root-zone temperature and water availability affect early root growth of planted longleaf pine

    Treesearch

    M.A. Sword

    1995-01-01

    Longleaf pine seedlings from three seed sources were exposed to three root-zone temperatures and three levels of water availability for 28 days. Root growth declined as temperature and water availability decreased. Root growth differed by seed source. Results suggest that subtle changes in the regeneration environment may influence early root growth of longleaf pine...

  8. Quest for Continual Growth Takes Root

    ERIC Educational Resources Information Center

    Surdey, Mary M.; Hashey, Jane M.

    2006-01-01

    In this article, the authors describe how the quest for continual growth has taken its root at Vestal Central School district. Located at the heart of upstate New York, educators at Vestal Central School district have created a spirit of "kaizen," a Japanese word meaning the relentless quest for continual improvement and higher-quality…

  9. Quest for Continual Growth Takes Root

    ERIC Educational Resources Information Center

    Surdey, Mary M.; Hashey, Jane M.

    2006-01-01

    In this article, the authors describe how the quest for continual growth has taken its root at Vestal Central School district. Located at the heart of upstate New York, educators at Vestal Central School district have created a spirit of "kaizen," a Japanese word meaning the relentless quest for continual improvement and higher-quality…

  10. Organic matter and nutrients associated with fine root turnover in a white oak stand. [Quercus albus

    SciTech Connect

    Joslin, J.D.; Henderson, G.S.

    1987-06-01

    Organic matter and nutrients cycled by fine root turnover were quantified in a mature white oak (Quercus alba L.) stand and compared to contributions from litterfall. The budget method, a revised version of the traditional repeated sampling method, was used to measure root turnover. The magnitude of the live and dead pools of three size classes of fine (<5 mm diameter) roots were monitored bimonthly for 14 months. Decomposition rates over these intervals were also measured, while production and mortality were calculated. Litterfall was collected simultaneously, and the nutrient concentrations of the various detritus components determined. Root pools fluctuated less, and total root turnover biomass (220 g m/sup -2/ yr/sup -1/) was also less than previously noted in most other stands studied. Fine root turnover accounted for 30% of the total detritus production and 20-40% of the turnover of the five macronutrients (N, P, K, Ca, Mg) studied. Differences with previous studies suggest that there may be rather large species and/or site-related differences in the amount of energy various stands allocate for fine root maintenance. For. Sci. 33(2):330-346.

  11. Do increased summer precipitation and N deposition alter fine root dynamics in a Mojave Desert ecosystem?

    PubMed

    Verburg, Paul S J; Young, Andrew C; Stevenson, Bryan A; Glanzmann, Isabelle; Arnone, John A; Marion, Giles M; Holmes, Christopher; Nowak, Robert S

    2013-03-01

    Climate change is expected to impact the amount and distribution of precipitation in the arid southwestern United States. In addition, nitrogen (N) deposition is increasing in these regions due to increased urbanization. Responses of belowground plant activity to increases in soil water content and N have shown inconsistent patterns between biomes. In arid lands, plant productivity is limited by water and N availability so it is expected that changes in these factors will affect fine root dynamics. The objectives of this study were to quantify the effects of increased summer precipitation and N deposition on fine root dynamics in a Mojave Desert ecosystem during a 2-year field experiment using minirhizotron measurements. Root length density, production, and mortality were measured in field plots in the Mojave Desert receiving three 25 mm summer rain events and/or 40 kg N ha(-1)  yr(-1) . Increased summer precipitation and N additions did not have an overall significant effect on any of the measured root parameters. However, differences in winter precipitation resulting from interannual variability in rainfall appeared to affect root parameters with root production and turnover increasing following a wet winter most likely due to stimulation of annual grasses. In addition, roots were distributed more deeply in the soil following the wet winter. Root length density was initially higher under canopies compared to canopy interspaces, but converged toward the end of the study. In addition, roots tended to be distributed more deeply into the soil in canopy interspace areas. Results from this study indicated that increased summer precipitation and N deposition in response to climate change and urbanization are not likely to affect fine root dynamics in these Mojave Desert ecosystems, despite studies showing aboveground plant physiological responses to these environmental perturbations. However, changes in the amount and possibly distribution of winter precipitation

  12. Shoot-derived abscisic acid promotes root growth.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J; Ross, John J

    2016-03-01

    The phytohormone abscisic acid (ABA) plays a major role in regulating root growth. Most work to date has investigated the influence of root-sourced ABA on root growth during water stress. Here, we tested whether foliage-derived ABA could be transported to the roots, and whether this foliage-derived ABA had an influence on root growth under well-watered conditions. Using both application studies of deuterium-labelled ABA and reciprocal grafting between wild-type and ABA-biosynthetic mutant plants, we show that both ABA levels in the roots and root growth in representative angiosperms are controlled by ABA synthesized in the leaves rather than sourced from the roots. Foliage-derived ABA was found to promote root growth relative to shoot growth but to inhibit the development of lateral roots. Increased root auxin (IAA) levels in plants with ABA-deficient scions suggest that foliage-derived ABA inhibits root growth through the root growth-inhibitor IAA. These results highlight the physiological and morphological importance, beyond the control of stomata, of foliage-derived ABA. The use of foliar ABA as a signal for root growth has important implications for regulating root to shoot growth under normal conditions and suggests that leaf rather than root hydration is the main signal for regulating plant responses to moisture.

  13. Growth patterns of red pine on fine-textured soils.

    Treesearch

    David H. Alban; Donald H. Prettyman; Gary J. Brand

    1987-01-01

    Compares growth of 28- to 49-year-old red pine plantations on sandy and fine-textured soils. Red pine growing on these two contrasting soils did not differ in bole form, live crown ratio, or mortality, and tree growth predicted by models (STEMS and REDPINE) developed from trees growing on sandy soils worked equally well for trees growing on fine-textured soils.

  14. Morphological and physiological responses of Scots pine fine roots to water supply in a dry climatic region in Switzerland.

    PubMed

    Brunner, Ivano; Pannatier, Elisabeth Graf; Frey, Beat; Rigling, Andreas; Landolt, Werner; Zimmermann, Stephan; Dobbertin, Matthias

    2009-04-01

    In recent decades, Scots pine (Pinus sylvestris L.) forests in inner-Alpine dry valleys of Switzerland have suffered from drought and elevated temperatures, resulting in a higher mortality rate of trees than the mean mortality rate in Switzerland. We investigated the responses of fine roots (standing crop, morphological and physiological features) to water supply in a Scots pine forest in the Rhone valley. Before irrigation started in 2003, low- and high-productivity Scots pine trees were selected based on their crown transparency. The fine root standing crop measured in spring from 2003 to 2005 was unaffected by the irrigation treatment. However, irrigation significantly enhanced the fine root standing crop during the vegetation period when values from spring were compared with values from fall in 2005. Irrigation slightly increased specific root length but decreased root tissue density. Fine root O2-consumption capacity decreased slightly in response to the irrigation treatment. Using ingrowth cores to observe the responses of newly produced fine roots, irrigation had a significantly positive effect on the length of fine roots, but there were no differences between the low- and high-productivity trees. In contrast to the weak response of fine roots to irrigation, the aboveground parts responded positively to irrigation with more dense crowns. The lack of a marked response of the fine root biomass to irrigation in the low- and high-productivity trees suggests that fine roots have a high priority for within-tree carbon allocation.

  15. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand.

    PubMed

    Bakker, M R; Jolicoeur, E; Trichet, P; Augusto, L; Plassard, C; Guinberteau, J; Loustau, D

    2009-02-01

    Effects of fertilization and irrigation on fine roots and fungal hyphae were studied in 13-year-old maritime pine (Pinus pinaster Aït. in Soland), 7 years after the initiation of the treatments. The fertilization trials consisted of a phosphorus treatment, a complete fertilizer treatment (N, P, K, Ca and Mg), and an unfertilized treatment (control). Fertilizers were applied annually and were adjusted according to foliar target values. Two irrigation regimes (no irrigation and irrigation of a set amount each day) were applied from May to October. Root samples to depths of 120 cm were collected in summer of 2005, and the biomass of small roots (diameter 2-20 mm) and fine roots (diameter fine root morphology were assessed. Biomass and length of hyphae were studied by a mesh ingrowth bag technique. Total fine root biomass in the litter and in the 0-120 cm soil profile ranged between 111 and 296 g m(-2). Results derived from the measurements of biomass and root length, or root area, showed that both fertilizer treatments reduced the size of the fine root system, especially in the top soil layers, but did not affect small roots. Compared with control treatments, fine root morphology was affected by both fertilizer treatments with the fine roots having increased specific root length/area, and irrigation tended to reinforce this finer morphology. The amount of hyphae in the mesh ingrowth bags was higher in the fertilization and irrigation treatments than in the controls, suggesting further extension of the root system (ectomycorrhizal infection) and thus of the uptake system. Irrigation had no significant effect on the size of the fine root system, but resulted in a shallower rooting system. Total root to shoot ratios were unaffected by the treatments, but fine root mass:needle mass and fine root area index:leaf area index ratios decreased with increasing nutrient supply. Overall, compared with the control fine roots, increased nutrient supply resulted in a

  16. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway.

    PubMed

    Børja, Isabella; De Wit, Heleen A; Steffenrem, Arne; Majdi, Hooshang

    2008-05-01

    We assessed the influence of stand age on fine root biomass and morphology of trees and understory vegetation in 10-, 30-, 60- and 120-year-old Norway spruce stands growing in sandy soil in southeast Norway. Fine root (< 1, 1-2 and 2-5 mm in diameter) biomass of trees and understory vegetation (< 2 mm in diameter) was sampled by soil coring to a depth of 60 cm. Fine root morphological characteristics, such as specific root length (SRL), root length density (RLD), root surface area (RSA), root tip number and branching frequency (per unit root length or mass), were determined based on digitized root data. Fine root biomass and morphological characteristics related to biomass (RLD and RSA) followed the same tendency with chronosequence and were significantly higher in the 30-year-old stand and lower in the 10-year-old stand than in the other stands. Among stands, mean fine root (< 2 mm) biomass ranged from 49 to 398 g m(-2), SLR from 13.4 to 19.8 m g(-1), RLD from 980 to 11,650 m m(-3) and RSA from 2.4 to 35.4 m(2) m(-3). Most fine root biomass of trees was concentrated in the upper 20 cm of the mineral soil and in the humus layer (0-5 cm) in all stands. Understory fine roots accounted for 67 and 25% of total fine root biomass in the 10- and 120-year-old stands, respectively. Stand age had no affect on root tip number or branching frequency, but both parameters changed with soil depth, with increasing number of root tips and decreasing branching frequency with increasing soil depth for root fractions < 2 mm in diameter. Specific (mass based) root tip number and branching density were highest for the finest roots (< 1 mm) in the humus layer. Season (spring or fall) had no effect on tree fine root biomass, but there was a small and significant increase in understory fine root biomass in fall relative to spring. All morphological characteristics showed strong seasonal variation, especially the finest root fraction, with consistently and significantly higher values in

  17. Massive turnover rates of fine root detrital carbon in tropical Australian mangroves.

    PubMed

    Robertson, Alistar I; Alongi, Daniel M

    2016-03-01

    Dead fine roots are the major component of organic carbon (C) stored in mangrove forests. We measured the mass and decomposition of fine root detritus in three mangrove forests along an intertidal gradient in tropical Australia to provide the first integrated estimates of the rate of turnover of fine root detritus. The grand mean dry masses of dead fine roots in the forests decreased in the order mid-intertidal Rhizophora (mean 28.4 kg m(-2)), low-intertidal Rhizophora (16.3 kg m(-2)) and high-intertidal Ceriops (mean 8.9 kg m(-2)), and were some of the highest on record. The first-order decay coefficients (day(-1)) for dead fine roots in the low Rhizophora, mid Rhizophora and high Ceriops forest sites were 0.0014, 0.0017 and 0.0007, respectively, and were the lowest on record. The estimated mean fluxes of C via decomposition of dead fine roots were very high in all forests, decreasing in the order mid Rhizophora (18.8 g C m(-2) day(-1)), low Rhizophora (8.4 g C m(-2) day(-1)) and high Ceriops (2.5 g C m(-2) day(-1)). There were relatively low levels of uncertainty in these estimates when all sources of error were considered. The fluxes of C for the two Rhizophora sites integrate all losses from saprophytic decay and leaching of dissolved C and were 50-200 % higher than the estimated total annual loss of C derived by summing rates of bacterial metabolism and export via groundwater and surface waters in these forests. The significant difference reflects both the very high dead root masses and the incorporation of the impact of fungi in our estimates.

  18. [Fine root biomass and carbon storage in surface soil of Cinnamomum camphora plantation in rainy area of West China].

    PubMed

    Wei, Peng; Li, Xian-Wei; Fan, Chuan; Zhang, Teng-Fei; Liu, Yun-Ke; Su, Yu; Yang, Zheng-Ju

    2013-10-01

    Fine root in forest ecosystems plays an important role in global C cycle. In this study, a measurement was made on the fine root biomass and carbon storage in the surface soil (0-30 cm) of a 31 year-old Cinnamomum camphora plantation in the Rainy Area of West China in November, 2010-December, 2011. The total biomass and carbon storage of the fine roots (living and dead) in the surface soil were 1592.29 kg x hm(-2) and 660.68 kg C x hm(-2), in which, living fine roots accounted for 91.1% and 91.8% respectively. The total biomass and carbon storage of the first five order living roots and dead roots decreased significantly with increasing soil depth, and the living root biomass and carbon storage increased significantly with root order. The sum of the biomass and carbon storage of living and dead fine roots was the largest in autumn and the smallest in winter, but the biomass and carbon storage of the dead fine roots were the largest in winter and the smallest in summer. The biomass and carbon storage of the first two order roots were the largest in summer and the smallest in winter, while those of the last three order roots were the largest in autumn and the smallest in winter. The spatial heterogeneity of soil moisture and nutrients was the main factor affecting the fine root biomass and carbon storage.

  19. Does species richness affect fine root biomass and production in young forest plantations?

    PubMed

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-02-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.

  20. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest.

    PubMed

    Guo, Dali L; Mitchell, Robert J; Hendricks, Joseph J

    2004-08-01

    Fine roots are a key component of carbon (C) flow and nitrogen (N) cycling in forest ecosystems. However, the complexity and heterogeneity of the fine root branching system have hampered the assessment and prediction of C and N dynamics at ecosystem scales. We examined how root morphology, biomass, and chemistry differed with root branch orders (1-5 with root tips classified as first order roots) and how different root orders responded to increased C sink strength (via N fertilization) and reduced carbon source strength (via canopy scorching) in a longleaf pine (Pinus palustris L.) ecosystem. With increasing root order, the diameter and length of individual roots increased, whereas the specific root length decreased. Total root biomass on an areal basis was similar among the first four orders but increased for the fifth order roots. Consequently, total root length and total root surface area decreased systematically with increasing root order. Fine root N and lignin concentrations decreased, while total non-structural carbohydrate (TNC) and cellulose concentrations increased with increasing root order. N addition and canopy disturbance did not alter root morphology, but they did influence root chemistry. N fertilization increased fine root N concentration and content per unit area in all five orders, while canopy scorching decreased root N concentration. Moreover, TNC concentration and content in fifth order roots were also reduced by canopy scorching. Our results indicate that the small, fragile, and more easily overlooked first and second order roots may be disproportionately important in ecosystem scale C and N fluxes due to their large proportions of fine root biomass, high N concentrations, relatively short lifespans, and potentially high decomposition rates.

  1. Endosomal Interactions during Root Hair Growth

    PubMed Central

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2016-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  2. Controls of fine root dynamics across a gradient of gap sizes in a pine woodland.

    PubMed

    Jones, Robert H; Mitchell, Robert J; Stevens, Glen N; Pecot, Stephen D

    2003-01-01

    Controls of fine dynamics were investigated in a Pinus palustris Mill. (longleaf pine) woodland subjected to two understory vegetation treatments (control versus removed) and four overstory treatments (no gap control, and canopy gaps of three sizes with constant total gap area per stand). Fine root (<2 mm diameter) dynamics were measured over 11 months using ingrowth cores (all treatments) and minirhizotrons (understory removed in no gap control and large gap treatments only). At the fine (microsite) spatial scale, pine and non-pine root mass production responded negatively to each other (P=0.033). Each life form was significantly (P< or =0.028) related to nearby overstory density, and pine root production compensated for reductions in non-pine roots if understory vegetation was removed. Soil moisture and NO(3) mineralization rate were negatively related to pine root mass production (ingrowth cores; P<0.001 and P=0.052) and positively related to pine root length production, mortality and turnover (minirhizotrons; P from <0.001 to 0.078). Temperature variance was negatively related to pine root lifespan P<0.001) and positively related to pine root turnover (P=0.003). At the ecosystem scale, pattern of overstory disturbance (gap size and number) had no significant effect on non-pine, pine, or total root production. However, the presence of gaps (versus the no-gap control) increased non-pine root mass production (ANOVA, P=0.055) in natural understory conditions, and reduced pine root mass production (P=0.035) where the understory was removed. Ecosystem-wide pine root length production, mortality and turnover were positively related to weekly soil temperature (P< or =0.02). In natural systems, fine root dynamics are highly variable and strongly affected by biotic factors. Roots quickly close belowground gaps because one life form (pine or non-pine) compensates for the absence of the other. When understory vegetation is removed, however, pine roots respond to the local

  3. Reconcilable differences: a joint calibration of fine-root turnover times with radiocarbon and minirhizotrons.

    PubMed

    Ahrens, Bernhard; Hansson, Karna; Solly, Emily F; Schrumpf, Marion

    2014-12-01

    We used bomb-radiocarbon and raw minirhizotron lifetimes of fine roots (< 0.5 mm in diameter) in the organic layer of Norway spruce (Picea abies) forests in southern Sweden to test if different models are able to reconcile the apparently contradicting turnover time estimates from both techniques. We present a framework based on survival functions that is able to jointly model bomb-radiocarbon and minirhizotron data. At the same time we integrate prior knowledge about biases of both techniques--the classification of dead roots in minirhizotrons and the use of carbon reserves to grow new roots. Two-pool models, either in parallel or in serial setting, were able to reconcile the bomb-radiocarbon and minirhizotron data. These models yielded a mean residence time of 3.80 ± 0.16 yr (mean ± SD). On average 60 ± 2% of fine roots turned over within 0.75 ± 0.10 yr, while the rest was turning over within 8.4 ± 0.2 yr. Bomb-radiocarbon and minirhizotron data alone give a biased estimate of fine-root turnover. The two-pool models allow a mechanistic interpretation for the coexistence of fast- and slow-cycling roots--suberization and branching for the serial-two-pool model and branching due to ectomycorrhizal fungi-root interactions for the parallel-two-pool model. © 2014 Max Planck Institute for Biogeochemistry. New Phytologist © 2014 New Phytologist Trust.

  4. Hydraulic properties and fine root mass of Larix sibirica along forest edge-interior gradients

    NASA Astrophysics Data System (ADS)

    Chenlemuge, Tselmeg; Dulamsuren, Choimaa; Hertel, Dietrich; Schuldt, Bernhard; Leuschner, Christoph; Hauck, Markus

    2015-02-01

    At its southernmost distribution limit in Inner Asia, the boreal forest disintegrates into forest fragments on moist sites (e.g. north-facing slopes), which are embedded in grasslands. This landscape mosaic is characterized by a much higher forest edge-to-interior ratio than in closed boreal forests. Earlier work in the forest-steppe ecotone of Mongolia has shown that Larix sibirica trees at forest edges grow faster than in the forest interior, as the more xeric environment at the edge promotes self-thinning and edges are preferentially targeted by selective logging and livestock grazing. Lowered stand density reduces competition for water in these semi-arid forests, where productivity is usually limited by summer drought. We studied how branch and coarse root hydraulic architecture and xylem conductivity, fine root biomass and necromass, and fine root morphology of L. sibirica respond to sites differing in water availability. Studying forest edge-interior gradients in two regions of western Mongolia, we found a significant reduction of branch theoretical (Kp) and empirical conductivity (Ks) in the putatively more drought-affected forest interior in the Mongolian Altai (mean precipitation: 120 mm yr-1), while no branch xylem modification occurred in the moister Khangai Mountains (215 mm yr-1). Kp and Ks were several times larger in roots than in branches, but root hydraulics were not influenced by stand density or mean annual precipitation. Very low fine root biomass: necromass ratios at all sites, and in the forest interior in particular, suggest that L. sibirica seeks to maintain a relatively high root conductivity by producing large conduits, which results in high root mortality due to embolism during drought. Our results suggest that L. sibirica is adapted to the semi-arid climate at its southernmost distribution limit by considerable plasticity of the branch hydraulic system and a small but apparently dynamic fine root system.

  5. On the longevity of desert plants and the production of new fine roots

    NASA Astrophysics Data System (ADS)

    Vargas, R.; Czimczik, C. I.; Bullock, S.; Xu, X.; Djuricin, S.

    2012-12-01

    There is evidence that some plants in arid regions can live for several hundreds of years suggesting a strong resilience to climate variability including drought events. Therefore, an important question is: Which are the physiological mechanisms of survival that are present in long-lived plants? Recent studies have shown that plants are able to store nonstructural carbon (NSC) for several years and then allocate them for production of new structures such as fine roots. We established an experiment to measure the radiocarbon age of new fine roots of desert plants between 150 and 400 years old. The study site was located at the Central Desert of Baja California, Mexico and included individuals of Brahea armata, Washingtonia robusta, and Pachycereus pringlei. Our results showed that on average all the plant species were able to use stored old carbon for production of new fine roots. These results suggest that NSC pools are important in determining belowground responses of long-lived desert plants.

  6. Roots Revealed - Neutron imaging insight of spatial distribution, morphology, growth and function

    NASA Astrophysics Data System (ADS)

    Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.

    2013-05-01

    Root production, distribution and turnover are not easily measured, yet their dynamics are an essential part of understanding and modeling ecosystem response to changing environmental conditions. Root age, order, morphology and mycorrhizal associations all regulate root uptake of water and nutrients, which along with along with root distribution determines plant response to, and impact on its local environment. Our objectives were to demonstrate the ability to non-invasively monitor fine root distribution, root growth and root functionality in Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings using neutron imaging. Plants were propagated in aluminum chambers containing sand then placed into a high flux cold neutron beam line. Dynamics of root distribution and growth were assessed by collecting consecutive CCD radiographs through time. Root functionality was assessed by tracking individual root uptake of water (H2O) or deuterium oxide (D2O) through time. Since neutrons strongly scatter H atoms, but not D atoms, biological materials such as plants are prime candidates for neutron imaging. 2D and 3D neutron radiography readily illuminated root structure, root growth, and relative plant and soil water content. Fungal hyphae associated with the roots were also visible and appeared as dark masses since their diameter was likely several orders of magnitude less than ~100 μm resolution of the detector. The 2D pulse-chase irrigation experiments with H2O and D2O successfully allowed observation of uptake and mass flow of water within the root system. Water flux within individual roots responded differentially to foliar illumination based on internal water potential gradients, illustrating the ability to track root functionality based on root size, order and distribution within the soil. (L) neutron image of switchgrass growing in sandy soil with 100 μm diameter roots (R) 3D reconstruction of maize seedling following neutron tomography

  7. Fine root dynamics and forest production across a calcium gradient in northern hardwood and conifer ecosystems

    USGS Publications Warehouse

    Park, B.B.; Yanai, R.D.; Fahey, T.J.; Bailey, S.W.; Siccama, T.G.; Shanley, J.B.; Cleavitt, N.L.

    2008-01-01

    Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha-1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y-1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha-1 y-1 for hardwood stands and from 0.9 to 2.3 Mg ha-1 y -1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems. ?? 2008 Springer Science+Business Media, LLC.

  8. Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica.

    PubMed

    Jia, Shuxia; Wang, Zhengquan; Li, Xingpeng; Zhang, Xiaoping; McLaughlin, Neil B

    2011-07-01

    Root respiration is closely related to root morphology, yet it is unclear precisely how to distinguish respiration-related root physiological functions within the branching fine root system. Root respiration and tissue N concentration were examined for different N fertilization treatments, sampling dates, branch orders and temperatures of larch (Larix gmelinii L.) and ash (Fraxinus mandshurica L.) using the excised roots method. The results showed that N fertilization enhanced both root respiration and tissue N concentration for all five branch orders. The greatest increases in average root respiration for N fertilization treatment were 13.30% in larch and 18.25% in ash at 6°C. However, N fertilization did not change the seasonal dynamics of root respiration. Both root respiration and root tissue N concentration decreased with increase in root branch order. First-order (finest) roots exhibited the highest respiration rates and tissue N concentrations out of the five root branch orders examined. There was a highly significant linear relationship between fine root N concentration and root respiration rate. Root N concentration explained >60% of the variation in respiration rate at any given combination of root order and temperature. Root respiration showed a classical exponential relationship with temperature, with the Q(10) for root respiration in roots of different branching orders ranging from 1.62 to 2.20. The variation in root respiration by order illustrates that first-order roots are more metabolically active, suggesting that roots at different branch order positions have different physiological functions. The highly significant relationship between root respiration at different branch orders and root tissue N concentration suggests that root tissue N concentration may be used as a surrogate for root respiration, simplifying future research into the C dynamics of rooting systems.

  9. Height growth of red pine on fine-textured soils.

    Treesearch

    David H. Alban; Donald H. Prettyman

    1984-01-01

    Height growth was determined by stem analysis for red pine in 12 natural and 10 planted stands on well-drained, fine textured soils. Growth closely followed the Gervorkiantz site index curves. When calculating site index, an age adjustment is desirable if the trees take longer than 8 years to attain breast height.

  10. Plant hormone cross-talk: the pivot of root growth.

    PubMed

    Pacifici, Elena; Polverari, Laura; Sabatini, Sabrina

    2015-02-01

    Root indeterminate growth and its outstanding ability to produce new tissues continuously make this organ a highly dynamic structure able to respond promptly to external environmental stimuli. Developmental processes therefore need to be finely tuned, and hormonal cross-talk plays a pivotal role in the regulation of root growth. In contrast to what happens in animals, plant development is a post-embryonic process. A pool of stem cells, placed in a niche at the apex of the meristem, is a source of self-renewing cells that provides cells for tissue formation. During the first days post-germination, the meristem reaches its final size as a result of a balance between cell division and cell differentiation. A complex network of interactions between hormonal pathways co-ordinates such developmental inputs. In recent years, by means of molecular and computational approaches, many efforts have been made aiming to define the molecular components of these networks. In this review, we focus our attention on the molecular mechanisms at the basis of hormone cross-talk during root meristem size determination.

  11. [Effects of tree species diversity on fine-root biomass and morphological characteristics in subtropical Castanopsis carlesii forests].

    PubMed

    Wang, Wei-Wei; Huang, Jin-Xue; Chen, Feng; Xiong, De-Cheng; Lu, Zheng-Li; Huang, Chao-Chao; Yang, Zhi-Jie; Chen, Guang-Shui

    2014-02-01

    Fine roots in the Castanopsis carlesii plantation forest (MZ), the secondary forest of C. carlesii through natural regeneration with anthropogenic promotion (AR), and the secondary forest of C. carlesii through natural regeneration (NR) in Sanming City, Fujian Province, were estimated by soil core method to determine the influence of tree species diversity on biomass, vertical distribution and morphological characteristics of fine roots. The results showed that fine root biomass for the 0-80 cm soil layer in the MZ, AR and NR were (182.46 +/- 10.81), (242.73 +/- 17.85) and (353.11 +/- 16.46) g x m(-2), respectively, showing an increased tendency with increasing tree species diversity. In the three forests, fine root biomass was significantly influenced by soil depth, and fine roots at the 0-10 cm soil layer accounted for more than 35% of the total fine root biomass. However, the interaction of stand type and soil depth on fine-root distribution was not significant, indicating no influence of tree species diversity on spatial niche segregation in fine roots. Root surface area density and root length density were the highest in NR and lowest in the MZ. Specific root length was in the order of AR > MZ > NR, while specific root surface area was in the order of NR > MZ > AR. There was no significant interaction of stand type and soil depth on specific root length and specific root surface area. Fine root morphological plasticity at the stand level had no significant response to tree species diversity.

  12. FINE ROOT TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES: FIRST-YEAR RESULTS

    EPA Science Inventory

    Root minirhizotron tubs were installed in two ponderosa pine (Pinus ponderosa Laws.) Stands of different ages to examine patterns of root growth and death. The old-growth site (OS) consists of a mixture of old (>250 years) and young trees (ca.45 yrs)< and is located near clamp S...

  13. FINE ROOT TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES: FIRST-YEAR RESULTS

    EPA Science Inventory

    Root minirhizotron tubs were installed in two ponderosa pine (Pinus ponderosa Laws.) Stands of different ages to examine patterns of root growth and death. The old-growth site (OS) consists of a mixture of old (>250 years) and young trees (ca.45 yrs)< and is located near clamp S...

  14. Digging deeper: Fine root responses to rising atmospheric [CO2] in forested ecosystems

    SciTech Connect

    Iversen, Colleen M

    2010-01-01

    Experimental evidence from a diverse set of forested ecosystems indicates that CO2 enrichment may lead to deeper rooting distributions. While the causes of greater root production at deeper soil depths under elevated CO2 concentration ([CO2]) require further investigation, altered rooting distributions are expected to affect important ecosystem processes. The depth at which fine roots are produced may influence root chemistry, physiological function, and mycorrhizal infection, leading to altered nitrogen (N) uptake rates and slower turnover. Also, soil processes such as microbial decomposition are slowed at depth in the soil, potentially affecting the rate at which root detritus becomes incorporated into soil organic matter. Deeper rooting distributions under elevated [CO2] provide exciting opportunities to use novel sensors and chemical analyses throughout the soil profile to track the effects of root proliferation on carbon (C) and N cycling. Models do not currently incorporate information on root turnover and C and N cycling at depth in the soil, and modification is necessary to accurately represent processes associated with altered rooting depth distributions. Progress in understanding and modeling the interface between deeper rooting distributions under elevated [CO2] and soil C and N cycling will be critical in projecting the sustainability of forest responses to rising atmospheric [CO2].

  15. Fine root decomposition rates do not mirror those of leaf litter among temperate tree species.

    PubMed

    Hobbie, Sarah E; Oleksyn, Jacek; Eissenstat, David M; Reich, Peter B

    2010-02-01

    Elucidating the function of and patterns among plant traits above ground has been a major research focus, while the patterns and functioning of belowground traits remain less well understood. Even less well known is whether species differences in leaf traits and their associated biogeochemical effects are mirrored by differences in root traits and their effects. We studied fine root decomposition and N dynamics in a common garden study of 11 temperate European and North American tree species (Abies alba, Acer platanoides, Acer pseudoplatanus, Carpinus betulus, Fagus sylvatica, Larix decidua, Picea abies, Pseudotsuga menziesii, Quercus robur, Quercus rubra and Tilia cordata) to determine whether leaf litter and fine root decomposition rates are correlated across species as well as which species traits influence microbial decomposition above versus below ground. Decomposition and N immobilization rates of fine roots were unrelated to those of leaf litter across species. The lack of correspondence of above- and belowground processes arose partly because the tissue traits that influenced decomposition and detritus N dynamics different for roots versus leaves, and partly because influential traits were unrelated between roots and leaves across species. For example, while high hemicellulose concentrations and thinner roots were associated with more rapid decomposition below ground, low lignin and high Ca concentrations were associated with rapid aboveground leaf decomposition. Our study suggests that among these temperate trees, species effects on C and N dynamics in decomposing fine roots and leaf litter may not reinforce each other. Thus, species differences in rates of microbially mediated decomposition may not be as large as they would be if above- and belowground processes were working in similar directions (i.e., if faster decomposition above ground corresponded to faster decomposition below ground). Our results imply that studies that focus solely on aboveground

  16. Hormone symphony during root growth and development.

    PubMed

    Garay-Arroyo, Adriana; De La Paz Sánchez, María; García-Ponce, Berenice; Azpeitia, Eugenio; Alvarez-Buylla, Elena R

    2012-12-01

    Hormones regulate plant growth and development in response to external environmental stimuli via complex signal transduction pathways, which in turn form complex networks of interaction. Several classes of hormones have been reported, and their activity depends on their biosynthesis, transport, conjugation, accumulation in the vacuole, and degradation. However, the activity of a given hormone is also dependent on its interaction with other hormones. Indeed, there is a complex crosstalk between hormones that regulates their biosynthesis, transport, and/or signaling functionality, although some hormones have overlapping or opposite functions. The plant root is a particularly useful system in which to study the complex role of plant hormones in the plastic control of plant development. Physiological, cellular, and molecular genetic approaches have been used to study the role of plant hormones in root meristem homeostasis. In this review, we discuss recent findings on the synthesis, signaling, transport of hormones and role during root development and examine the role of hormone crosstalk in maintaining homeostasis in the apical root meristem. Copyright © 2012 Wiley Periodicals, Inc.

  17. A New Model for Root Growth in Soil with Macropores

    NASA Astrophysics Data System (ADS)

    Landl, M.; Huber, K.; Schnepf, A.; Vanderborght, J.; Javaux, M.; Bengough, G.; Vereecken, H.

    2016-12-01

    In order to study soil-root interaction processes, dynamic root architecture models which are linked to models that simulate water flow and nutrient transport in the soil-root system are needed. Such models can be used to predict the impact of soil structural features, e.g. the presence of macropores in dense subsoil, on water and nutrient uptake by plants. In dynamic root architecture models, root growth is represented by moving root tips whose growth trajectory results in the creation of linear root segments. Typically, the direction of each new root segment is calculated as the vector sum of various direction-affecting components. The use of these established methods to simulate root growth in soil containing macropores, however, failed to reproduce experimentally observed root growth patterns. We therefore developed an alternative modelling approach where we distinguish between, firstly, the driving force for root growth which is determined by the orientation of the previous root segment as well as the influence of gravitropism and, secondly, soil mechanical resistance to root growth. The latter is expressed by root conductance which represents the inverse of soil penetration resistance and is treated similarly to hydraulic conductivity in Darcy's law. At the presence of macropores, root conductance is anisotropic which leads to a difference between the direction of the driving force and the direction of the root tip movement. The model was tested using data from the literature, at pot scale, at macropore scale, and in a series of simulations where sensitivity to gravity and macropore orientation was evaluated. The model simulated root growth trajectories in structured soil at both single root and whole root-system scales, generating root systems that were similar to images from experiments. Its implementation in the three dimensional soil and root water uptake model R-SWMS enables the use of the model in the future to evaluate the effect of macropores on crop

  18. Accumulation of trace metals in grey mangrove Avicennia marina fine nutritive roots: the role of rhizosphere processes.

    PubMed

    Chaudhuri, Punarbasu; Nath, Bibhash; Birch, Gavin

    2014-02-15

    Mangrove sediment has long been recognized as being important in restricting the mobility of contaminants in estuarine environments. To investigate the role of rhizosphere processes in the accumulation of trace metals in mangrove fine nutritive roots, the mangrove sediments and associated fine nutritive roots are collected from five major embayments of Sydney estuary (Australia) for geochemical studies. In this estuary Avicennia marina sediments are accumulating large quantities of trace metals due to presence of abundant fine sediment (<62.5 μm) and organic matter as well as anthropogenic input. Accumulation of trace metals in fine nutritive roots responds to total sediment chemistry mainly due to rhizosphere sediment geochemical processes resulting in a strong linear correlation between metal concentrations in fine nutritive roots vs. total and bio-available contents in sediments. Accumulation of trace metals in fine nutritive roots is almost always exceeds rhizosphere total sediment metal concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Allocation of carbon to fine root compounds and their residence times in a boreal forest depend on root size class and season.

    PubMed

    Keel, Sonja G; Campbell, Catherine D; Högberg, Mona N; Richter, Andreas; Wild, Birgit; Zhou, Xuhui; Hurry, Vaughan; Linder, Sune; Näsholm, Torgny; Högberg, Peter

    2012-06-01

    Fine roots play a key role in the forest carbon balance, but their carbon dynamics remain largely unknown. We pulse labelled 50 m(2) patches of young boreal forest by exposure to (13)CO(2) in early and late summer. Labelled photosynthates were traced into carbon compounds of < 1 and 1-3 mm diameter roots (fine roots), and into bulk tissue of these and first-order roots (root tips). Root tips were the most strongly labelled size class. Carbon allocation to all size classes was higher in late than in early summer; mean residence times (MRTs) in starch increased from 4 to 11 months. In structural compounds, MRTs were 0.8 yr in tips and 1.8 yr in fine roots. The MRT of carbon in sugars was in the range of days. Functional differences within the fine root population were indicated by carbon allocation patterns and residence times. Pronounced allocation of recent carbon and higher turnover rates in tips are associated with their role in nutrient and water acquisition. In fine roots, longer MRTs but high allocation to sugars and starch reflect their role in structural support and storage. Accounting for heterogeneity in carbon residence times will improve and most probably reduce the estimates of fine root production.

  20. Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests.

    PubMed

    Fu, Xiaoli; Wang, Jianlei; Di, Yuebao; Wang, Huimin

    2015-01-01

    Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer.

  1. Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests

    PubMed Central

    Fu, Xiaoli; Wang, Jianlei; Di, Yuebao; Wang, Huimin

    2015-01-01

    Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer. PMID:26047358

  2. Leaf and fine root carbon stocks and turnover are coupled across Arctic ecosystems.

    PubMed

    Sloan, Victoria L; Fletcher, Benjamin J; Press, Malcolm C; Williams, Mathew; Phoenix, Gareth K

    2013-12-01

    Estimates of vegetation carbon pools and their turnover rates are central to understanding and modelling ecosystem responses to climate change and their feedbacks to climate. In the Arctic, a region containing globally important stores of soil carbon, and where the most rapid climate change is expected over the coming century, plant communities have on average sixfold more biomass below ground than above ground, but knowledge of the root carbon pool sizes and turnover rates is limited. Here, we show that across eight plant communities, there is a significant positive relationship between leaf and fine root turnover rates (r(2) = 0.68, P < 0.05), and that the turnover rates of both leaf (r(2) = 0.63, P < 0.05) and fine root (r(2) = 0.55, P < 0.05) pools are strongly correlated with leaf area index (LAI, leaf area per unit ground area). This coupling of root and leaf dynamics supports the theory of a whole-plant economics spectrum. We also show that the size of the fine root carbon pool initially increases linearly with increasing LAI, and then levels off at LAI = 1 m(2) m(-2), suggesting a functional balance between investment in leaves and fine roots at the whole community scale. These ecological relationships not only demonstrate close links between above and below-ground plant carbon dynamics but also allow plant carbon pool sizes and their turnover rates to be predicted from the single readily quantifiable (and remotely sensed) parameter of LAI, including the possibility of estimating root data from satellites.

  3. How does fire affect longleaf pine roots carbohydrates, foliar nutrients, and sapling growth?

    Treesearch

    Eric A. Kuehler; Marry Anne Sword Sayer; C. Dan Andries

    2006-01-01

    In central Louisiana, we conducted a prescribed-fire study in a 5-year-old longleaf pine (Pinus palustris P. Mill.) stand to evaluate the effects of fire on fine-root (2- to 5-mm diameter) carbohydrates, dormant season foliar nutrients, and sapling growth. Control, burn, and nonburned vegetation control treatments were studied using a randomized...

  4. Identification of coniferous fine roots to species using ribosomal PCR products of pooled root samples

    EPA Science Inventory

    Background/Question/Methods To inform an individual-based forest stand model emphasizing belowground competition, we explored the potential of using the relative abundances of ribosomal PCR products from pooled and milled roots, to allocate total root biomass to each of the thre...

  5. Identification of coniferous fine roots to species using ribosomal PCR products of pooled root samples

    EPA Science Inventory

    Background/Question/Methods To inform an individual-based forest stand model emphasizing belowground competition, we explored the potential of using the relative abundances of ribosomal PCR products from pooled and milled roots, to allocate total root biomass to each of the thre...

  6. Fine Root Dynamics and Forest Production Across a Calcium Gradient in Northern Hardwood and Conifer Ecosystems

    Treesearch

    Byung Bae Park; Ruth D. Yanai; Timothy J. Fahey; Scott W. Bailey; Thomas G. Siccama; James B. Shanley; Natalie L. Cleavitt

    2008-01-01

    Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and...

  7. ESTIMATES OF DOUGLAS-FIR FINE ROOT PRODUCTION AND MORTALITY FROM MINIRHIZOTRONS

    EPA Science Inventory

    Minirhizotrons were used to assess the influence of soil resources on fine root (diameter < 2 mm) production, mortality, and standing crop over a two-year period. Two study sites were located, along an elevational transect, in the Oregon Cascade Mountains in mature (> 100 years o...

  8. EFFECT OF SOIL N ON FINE ROOT PRODUCTION AND MORTALITY IN PSEUDOTSUGA MENZIESII

    EPA Science Inventory

    The influence of soil N level on fine (diameter < 2 mm) root standing crop, production and mortality was assessed over a three-year period using minirhizotron tubes. Study sites were located in the central Oregon Cascade mountains in mature stands (> 100 years old) of Pseudotsuga...

  9. EFFECTS OF ELEVATED CO2 AND N-FERTILIZATION ON SURVIVAL OF PONDEROSA PINE FINE ROOTS

    EPA Science Inventory

    We used minihizaotrons to assess the effects of elevated CO2N and season on the life-span of ponderosa pine (Pinus ponderosa Dougl. Ex Laws.) fine roots. CO2 levels were ambient air (A), ambient air + 175 ?mol mol-1 (A+175) and ambient air + 350 ?mol mol-1 (A+350). N treatments ...

  10. Coupling fine-scale root and canopy structure using ground-based remote sensing

    Treesearch

    Brady Hardiman; Christopher Gough; John Butnor; Gil Bohrer; Matteo Detto; Peter Curtis

    2017-01-01

    Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in...

  11. ESTIMATES OF DOUGLAS-FIR FINE ROOT PRODUCTION AND MORTALITY FROM MINIRHIZOTRONS

    EPA Science Inventory

    Minirhizotrons were used to assess the influence of soil resources on fine root (diameter < 2 mm) production, mortality, and standing crop over a two-year period. Two study sites were located, along an elevational transect, in the Oregon Cascade Mountains in mature (> 100 years o...

  12. EFFECTS OF ELEVATED CO2 AND N-FERTILIZATION ON SURVIVAL OF PONDEROSA PINE FINE ROOTS

    EPA Science Inventory

    We used minihizaotrons to assess the effects of elevated CO2N and season on the life-span of ponderosa pine (Pinus ponderosa Dougl. Ex Laws.) fine roots. CO2 levels were ambient air (A), ambient air + 175 ?mol mol-1 (A+175) and ambient air + 350 ?mol mol-1 (A+350). N treatments ...

  13. EFFECT OF SOIL N ON FINE ROOT PRODUCTION AND MORTALITY IN PSEUDOTSUGA MENZIESII

    EPA Science Inventory

    The influence of soil N level on fine (diameter < 2 mm) root standing crop, production and mortality was assessed over a three-year period using minirhizotron tubes. Study sites were located in the central Oregon Cascade mountains in mature stands (> 100 years old) of Pseudotsuga...

  14. Functional genomics of root growth and development in Arabidopsis.

    PubMed

    Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N

    2009-04-01

    Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics, and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal.

  15. Fine root dynamics for forests on contrasting soils in the colombian Amazon

    NASA Astrophysics Data System (ADS)

    Jiménez, E. M.; Moreno, F. H.; Lloyd, J.; Peñuela, M. C.; Patiño, S.

    2009-03-01

    It has been hypothesized that in a gradient of increase of soil resources carbon allocated to belowground production (fine roots) decreases. To evaluate this hypothesis, we measured the mass and production of fine roots (<2 mm) by two methods: 1) ingrowth cores and, 2) sequential soil coring, during 2.2 years in two lowland forests with different soils in the colombian Amazon. Differences of soil resources were determined by the type and physical and chemical properties of soil: a forest on loamy soil (Ultisol) at the Amacayacu National Natural Park and, the other on white sands (Spodosol) at the Zafire Biological Station, located in the Forest Reservation of the Calderón River. We found that mass and production of fine roots was significantly different between soil depths (0-10 and 10-20 cm) and also between forests. White-sand forest allocated more carbon to fine roots than the clayey forest; the production in white-sand forest was twice (2.98 and 3.33 Mg C ha-1 year-1, method 1 and 2, respectively) as much as in clayey forest (1.51 and 1.36-1.03 Mg C ha-1 year-1, method 1 and 2, respectively); similarly, the average of fine root mass was higher in the white-sand forest (10.94 Mg C ha-1) than in the forest on clay soils (3.04-3.64 Mg C ha-1). The mass of fine roots also showed a temporal variation related to rainfall, such that production of fine roots decreased substantially in the dry period of the year 2005. Our results suggest that soil resources play an important role in patterns of carbon allocation in these forests; carbon allocated to above-and belowground organs is different between forest types, in such a way that a trade-off above/belowground seems to exist; as a result, it is probable that there are not differences in total net primary productivity between these two forests: does belowground offset lower aboveground production in poorer soils?

  16. Water Uptake along the Length of Grapevine Fine Roots: Developmental Anatomy, Tissue-Specific Aquaporin Expression, and Pathways of Water Transport1[W][OPEN

    PubMed Central

    Gambetta, Gregory A.; Fei, Jiong; Rost, Thomas L.; Knipfer, Thorsten; Matthews, Mark A.; Shackel, Ken A.; Walker, M. Andrew; McElrone, Andrew J.

    2013-01-01

    To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine (Vitis berlandieri × Vitis rupestris) fine roots from the tip to secondary growth zones. Our characterization included the localization of suberized structures and aquaporin gene expression and the determination of hydraulic conductivity (Lpr) and aquaporin protein activity (via chemical inhibition) in different root zones under both osmotic and hydrostatic pressure gradients. Tissue-specific messenger RNA levels of the plasma membrane aquaporin isogenes (VvPIPs) were quantified using laser-capture microdissection and quantitative polymerase chain reaction. Our results highlight dramatic changes in structure and function along the length of grapevine fine roots. Although the root tip lacked suberization altogether, a suberized exodermis and endodermis developed in the maturation zone, which gave way to the secondary growth zone containing a multilayer suberized periderm. Longitudinally, VvPIP isogenes exhibited strong peaks of expression in the root tip that decreased precipitously along the root length in a pattern similar to Arabidopsis (Arabidopsis thaliana) roots. In the radial orientation, expression was always greatest in interior tissues (i.e. stele, endodermis, and/or vascular tissues) for all root zones. High Lpr and aquaporin protein activity were associated with peak VvPIP expression levels in the root tip. This suggests that aquaporins play a limited role in controlling water uptake in secondary growth zones, which contradicts existing theoretical predictions. Despite having significantly lower Lpr, woody roots can constitute the vast majority of the root system surface area in mature vines and thus provide for significant water uptake potential. PMID:24047863

  17. Water uptake along the length of grapevine fine roots: developmental anatomy, tissue-specific aquaporin expression, and pathways of water transport.

    PubMed

    Gambetta, Gregory A; Fei, Jiong; Rost, Thomas L; Knipfer, Thorsten; Matthews, Mark A; Shackel, Ken A; Walker, M Andrew; McElrone, Andrew J

    2013-11-01

    To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine (Vitis berlandieri × Vitis rupestris) fine roots from the tip to secondary growth zones. Our characterization included the localization of suberized structures and aquaporin gene expression and the determination of hydraulic conductivity (Lpr) and aquaporin protein activity (via chemical inhibition) in different root zones under both osmotic and hydrostatic pressure gradients. Tissue-specific messenger RNA levels of the plasma membrane aquaporin isogenes (VvPIPs) were quantified using laser-capture microdissection and quantitative polymerase chain reaction. Our results highlight dramatic changes in structure and function along the length of grapevine fine roots. Although the root tip lacked suberization altogether, a suberized exodermis and endodermis developed in the maturation zone, which gave way to the secondary growth zone containing a multilayer suberized periderm. Longitudinally, VvPIP isogenes exhibited strong peaks of expression in the root tip that decreased precipitously along the root length in a pattern similar to Arabidopsis (Arabidopsis thaliana) roots. In the radial orientation, expression was always greatest in interior tissues (i.e. stele, endodermis, and/or vascular tissues) for all root zones. High Lpr and aquaporin protein activity were associated with peak VvPIP expression levels in the root tip. This suggests that aquaporins play a limited role in controlling water uptake in secondary growth zones, which contradicts existing theoretical predictions. Despite having significantly lower Lpr, woody roots can constitute the vast majority of the root system surface area in mature vines and thus provide for significant water uptake potential.

  18. Temperature sensitivity of microbial respiration of fine root litter in a temperate broad-leaved forest.

    PubMed

    Makita, Naoki; Kawamura, Ayumi

    2015-01-01

    The microbial decomposition respiration of plant litter generates a major CO2 efflux from terrestrial ecosystems that plays a critical role in the regulation of carbon cycling on regional and global scales. However, the respiration from root litter decomposition and its sensitivity to temperature changes are unclear in current models of carbon turnover in forest soils. Thus, we examined seasonal changes in the temperature sensitivity and decomposition rates of fine root litter of two diameter classes (0-0.5 and 0.5-2.0 mm) of Quercus serrata and Ilex pedunculosa in a deciduous broad-leaved forest. During the study period, fine root litter of both diameter classes and species decreased approximately exponentially over time. The Q10 values of microbial respiration rates of root litter for the two classes were 1.59-3.31 and 1.28-6.27 for Q. serrata and 1.36-6.31 and 1.65-5.86 for I. pedunculosa. A significant difference in Q10 was observed between the diameter classes, indicating that root diameter represents the initial substrate quality, which may determine the magnitude of Q10 value of microbial respiration. Changes in these Q10 values were related to seasonal soil temperature patterns; the values were higher in winter than in summer. Moreover, seasonal variations in Q10 were larger during the 2-year decomposition period than the 1-year period. These results showed that the Q10 values of fine root litter of 0-0.5 and 0.5-2.0 mm have been shown to increase with lower temperatures and with the higher recalcitrance pool of the decomposed substrate during 2 years of decomposition. Thus, the temperature sensitivity of microbial respiration in root litter showed distinct patterns according to the decay period and season because of the temperature acclimation and adaptation of the microbial decomposer communities in root litter.

  19. Soil compaction: a review of past and present techniques for investigating effects on root growth.

    PubMed

    Tracy, Saoirse R; Black, Colin R; Roberts, Jeremy A; Mooney, Sacha J

    2011-07-01

    Soil compaction has been known to affect root growth for millennia. Root growth in natural soils is complex and soil compaction induces several stresses which may interact simultaneously, including increased soil strength, decreased aeration and reduced hydraulic conductivity. Yet, moderate soil compaction offers some benefits to growing roots by increasing root-soil contact so they can extract adequate resources. Until now, improving our understanding of the specific responses of roots to below-ground stimuli has been difficult. However, the advent of new technologies and practices, including X-ray computed tomography, to provide non-destructive, three-dimensional images of root systems throughout the plant's lifecycle now allows the responses of roots encountering changes in their physical, chemical or biotic environment to be established directly and non-invasively. Previous destructive methods, such as root washing, were incapable of identifying and characterising fine root architectural characteristics as these are inextricably linked to the composition of the soil matrix. X-ray computed tomography coupled with genetic approaches will provide a more comprehensive appreciation of the effect of soil compaction on root growth, and the knowledge required to generate improvements in plant breeding programmes and crop husbandry. Copyright © 2011 Society of Chemical Industry.

  20. Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations.

    PubMed

    Laclau, Jean-Paul; da Silva, Eder A; Rodrigues Lambais, George; Bernoux, Martial; le Maire, Guerric; Stape, José L; Bouillet, Jean-Pierre; Gonçalves, José L de Moraes; Jourdan, Christophe; Nouvellon, Yann

    2013-01-01

    Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle in Eucalyptus grandis plantations managed in short rotation. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1-3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5-, and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years) and 4 soil profiles down to 1.5-3.0 m deep. The root intersects were counted on 224 m(2) of trench walls in 15 pits. Monitoring the soil water content showed that, after clear-cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the rotation. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. A considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses.

  1. Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations

    PubMed Central

    Laclau, Jean-Paul; da Silva, Eder A.; Rodrigues Lambais, George; Bernoux, Martial; le Maire, Guerric; Stape, José L.; Bouillet, Jean-Pierre; Gonçalves, José L. de Moraes; Jourdan, Christophe; Nouvellon, Yann

    2013-01-01

    Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle in Eucalyptus grandis plantations managed in short rotation. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1–3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5-, and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years) and 4 soil profiles down to 1.5–3.0 m deep. The root intersects were counted on 224 m2 of trench walls in 15 pits. Monitoring the soil water content showed that, after clear-cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the rotation. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. A considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses. PMID:23847645

  2. Nine Years of Irrigation Cause Vegetation and Fine Root Shifts in a Water-Limited Pine Forest

    PubMed Central

    Herzog, Claude; Steffen, Jan; Graf Pannatier, Elisabeth; Hajdas, Irka; Brunner, Ivano

    2014-01-01

    Scots pines (Pinus sylvestris L.) in the inner-Alpine dry valleys of Switzerland have suffered from increased mortality during the past decades, which has been caused by longer and more frequent dry periods. In addition, a proceeding replacement of Scots pines by pubescent oaks (Quercus pubescens Willd.) has been observed. In 2003, an irrigation experiment was performed to track changes by reducing drought pressure on the natural pine forest. After nine years of irrigation, we observed major adaptations in the vegetation and shifts in Scots pine fine root abundance and structure. Irrigation permitted new plant species to assemble and promote canopy closure with a subsequent loss of herb and moss coverage. Fine root dry weight increased under irrigation and fine roots had a tendency to elongate. Structural composition of fine roots remained unaffected by irrigation, expressing preserved proportions of cellulose, lignin and phenolic substances. A shift to a more negative δ13C signal in the fine root C indicates an increased photosynthetic activity in irrigated pine trees. Using radiocarbon (14C) measurement, a reduced mean age of the fine roots in irrigated plots was revealed. The reason for this is either an increase in newly produced fine roots, supported by the increase in fine root biomass, or a reduced lifespan of fine roots which corresponds to an enhanced turnover rate. Overall, the responses belowground to irrigation are less conspicuous than the more rapid adaptations aboveground. Lagged and conservative adaptations of tree roots with decadal lifespans are challenging to detect, hence demanding for long-term surveys. Investigations concerning fine root turnover rate and degradation processes under a changing climate are crucial for a complete understanding of C cycling. PMID:24802642

  3. Nine years of irrigation cause vegetation and fine root shifts in a water-limited pine forest.

    PubMed

    Herzog, Claude; Steffen, Jan; Graf Pannatier, Elisabeth; Hajdas, Irka; Brunner, Ivano

    2014-01-01

    Scots pines (Pinus sylvestris L.) in the inner-Alpine dry valleys of Switzerland have suffered from increased mortality during the past decades, which has been caused by longer and more frequent dry periods. In addition, a proceeding replacement of Scots pines by pubescent oaks (Quercus pubescens Willd.) has been observed. In 2003, an irrigation experiment was performed to track changes by reducing drought pressure on the natural pine forest. After nine years of irrigation, we observed major adaptations in the vegetation and shifts in Scots pine fine root abundance and structure. Irrigation permitted new plant species to assemble and promote canopy closure with a subsequent loss of herb and moss coverage. Fine root dry weight increased under irrigation and fine roots had a tendency to elongate. Structural composition of fine roots remained unaffected by irrigation, expressing preserved proportions of cellulose, lignin and phenolic substances. A shift to a more negative δ13C signal in the fine root C indicates an increased photosynthetic activity in irrigated pine trees. Using radiocarbon (14C) measurement, a reduced mean age of the fine roots in irrigated plots was revealed. The reason for this is either an increase in newly produced fine roots, supported by the increase in fine root biomass, or a reduced lifespan of fine roots which corresponds to an enhanced turnover rate. Overall, the responses belowground to irrigation are less conspicuous than the more rapid adaptations aboveground. Lagged and conservative adaptations of tree roots with decadal lifespans are challenging to detect, hence demanding for long-term surveys. Investigations concerning fine root turnover rate and degradation processes under a changing climate are crucial for a complete understanding of C cycling.

  4. [Fine root biomass and its nutrient storage in karst ecosystems under different vegetations in Central Guizhou, China].

    PubMed

    Du, You-Xin; Pan, Gen-Xing; Li, Lian-Qing; Hu, Zhong-Liang; Wang, Xin-Zhou

    2010-08-01

    The degeneration of karst ecosystem is closely associated with the reduction of soil nutrients and fine root biomass, and the retention of soil nutrients is of significance in sustaining ecosystem functioning. To understand the changes in the fine root biomass and soil nutrient retention in degenerated karst ecosystems, a comparative study was conducted with three typical vegetation stands (forest, shrub, and shrub-grass) in Central Guizhou of Southwest China. Soil samples with fine roots were collected from the depths 0-5 cm, 5-10 cm, and 10-15 cm, with the related indices of fine roots and nutrients measured. In the three stands, fine roots dominantly distributed in 0 -10 cm soil layer, and decreased sharply with soil depth. The living fine root biomass in 0-10 cm soil layer under forest, shrub, and shrub-grass occupied 83.36%, 86.91%, and 93.79% of the total fine root biomass, and 42.78%, 56.75%, and 53.38% of the total living fine root biomass within the 0-15 cm soil layer, respectively. The fine root biomass of predominant plant species varied with vegetation types. The N and P storage of the living fine roots in 0-5 cm soil layer under forest stand was significantly higher than those under shrub stand and shrub-grass stand, and no significant differences were observed between the latter two stands. However, the N and P storage of the living fine roots in 5-10 cm soil layer under different stands decreased in the order of forest > shrub > shrub-grass (P < 0.05). There was a significant positive correlation between the plant aboveground biomass and the living fine root biomass in 0-10 cm soil layer, and a significant negative correlation between the N and P contents of plant leaves and the specific length of living fine roots, illustrating that the nutrient uptake and retention by the living fine roots could have particular importance in the aboveground biomass establishment and ecosystem functioning.

  5. Factors Controlling Decomposition Rates of Fine Root Litter in Temperate Forests and Grasslands

    NASA Astrophysics Data System (ADS)

    Solly, E.; Schöning, I.; Trumbore, S.; Michalzik, B.; Schrumpf, M.

    2013-12-01

    Fine root decomposition contributes significantly to biogeochemical cycling in terrestrial ecosystems. Recent studies suggest that root litter is stabilized preferentially compared to shoot litter, contributing in high amounts to soil organic matter. Land use and management may affect root litter decomposition through changes in plant species composition, effects on the decomposer community and differences in soil nutrient availability. We established a large scale root litter decomposition study in three German study regions using a combination of litterbags deployed in forest and grassland sites under different management and soil types. In all three study regions, we compared site-level differences in decomposition by deploying bags containing standardized forest litter in a total of 150 forest plots (50 in each of the three study regions). Bags with standardized grass litter, which had lower lignin content and lignin:N than standardized forest root litter, were similarly distributed across 50 grassland sites in each of the three regions. Standardized fine grass roots decomposed on average faster 23.5 × 6.3% compared to forest roots 11.7 × 4.4% (p < 0.001) when deployed in their respective land use. Fine root decomposition of standardized litter was affected by study region with higher mass losses in northern Germany followed by mass loss rates in central and southern Germany (p < 0.05). Given the standardized litter chemistry, these differences mainly reflect the influence of climate and soil differences between study regions. Within the central German region (Hainich-Dün), we also compared rates of mass loss of root litter collected on-site as part of a second, parallel litterbag deployment to tease apart the influences of litter quality from other factors (such as soil properties and climate) that affect mass loss rates. Despite differences in the initial fine root litter quality, the average mass lost during 12 months for on-site litter was similar to

  6. Forest fine-root production and nitrogen use under elevated CO2: Contrasting responses explained by a common principle

    SciTech Connect

    Franklin, Oscar; McMurtrie, Ross E; Iversen, Colleen M; Crous, Kristine; Finzi, Adrien C; Tissue, David Thomas; Ellsworth, David; Oren, Ram; Norby, Richard J

    2009-01-01

    Despite the importance of nitrogen (N) limitation of forest carbon (C) sequestration at rising atmospheric CO2 concentration, the mechanisms responsible are not well understood. To elucidate the interactive effects of elevated CO2 (eCO2) and soil N availability on forest productivity and C allocation, we hypothesized that 1) trees maximize fitness by allocating N and C to maximize their net growth, and 2) that N uptake is controlled by root exploration for N. We tested this model using data collected in FACE sites dominated by evergreen (Pinus taeda; Duke Forest) and deciduous (Liquidambar styraciflua; Oak Ridge National Laboratory ORNL) trees. The model explained 80-95% of variation in productivity and N-uptake data among eCO2, N fertilization and control treatments over six years. The model explains why fine-root production increased, and why N uptake increased despite reduced soil N availability under eCO2 at ORNL and Duke. In agreement with observations at other sites, soil N availability reduced below a critical level diminishes all eCO2 responses. At Duke, a negative feedback between reduced soil N availability and N uptake counteracted progressive reduction in soil N availability at eCO2. At ORNL, decreasing soil N availability was perpetuated as it generated no reduction in N uptake, due to strongly increased production of fast turnover fine-roots. This implies that species with fast root turnover could be more prone to progressive N limitation of carbon sequestration in woody biomass than species with slow root turnover, such as evergreens.

  7. Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization

    USDA-ARS?s Scientific Manuscript database

    Water deficits are known to alter fine root structure and function, but little is known about how these responses contribute to differences in drought resistance across grapevine rootstocks. We studied how water deficit affects root anatomical and physiological characteristics in two grapevine root...

  8. Effects of glycoalkaloids from Solanum plants on cucumber root growth.

    PubMed

    Sun, Fang; Li, Shengyu; He, Dajun; Cao, Gang; Ni, Xiuzhen; Tai, Guihua; Zhou, Yifa; Wang, Deli

    2010-09-01

    The phytotoxic effect of four glycoalkaloids and two 6-O-sulfated glycoalkaloid derivatives were evaluated by testing their inhibition of cucumber root growth. The bioassays were performed using both compounds singly and in equimolar mixtures, respectively. Cucumber root growth was reduced by chaconine (C), solanine (S), solamargine (SM) and solasonine (SS) with IC(50) values of 260 (C), 380 (S), 530 (SM), and 610 microM (SS). The inhibitory effect was concentration-dependent. 6-O-sulfated chaconine and 6-O-sulfated solamargine had no inhibitory effects, which indicated that the carbohydrate moieties play an important role in inhibiting cucumber root growth. The equimolar mixtures of paired glycoalkaloids, both chaconine/solanine and solamargine/solasonine, produced synergistic effects on inhibition of cucumber root growth. By contrast, mixtures of unpaired glycoalkaloids from different plants had no obviously synergistic effects. The growth inhibited plant roots lacked hairs, which implied that inhibition was perhaps at the level of root hair growth.

  9. Substituting root numbers for length: Improving the use of minirhizotrons to study fine root dynamics

    Treesearch

    Tracey L. Crocker; Ron L. Hendrick; Roger W. Ruess; Kurt S. Pregitzer; Andrew J. Burton; Michael F. Allen; Jianping Shan; Lawrence A. Morris

    2003-01-01

    Minirhizotrons provide a unique way to repeatedly measure the production and fate of individual root segments, while minimizing soil disturbance and the confounding of spatial-temporal variation. However, the time associated with processing videotaped minirhizotron images limits the amount of data that can be extracted in a reasonable amount of time. We found that this...

  10. The Effect of Phosphorus Availability on Fine Root Decomposition in Western Oregon

    NASA Astrophysics Data System (ADS)

    van Huysen, T.; Harmon, M.; Perakis, S.

    2005-12-01

    We are examining fine root decomposition at three sites in western Oregon, USA to determine whether phosphorus availability serves as a proximate control of nitrogen dynamics in fine root decomposition. More specifically, we are testing the hypothesis that external (soil P) and internal (root P content) supplies of P influence release of N from roots decomposing in soils that are low in available P. A factorial fertilization experiment is being used to test this hypothesis. At each of the three sites, P fertilizer has been added to six plots to enhance soil P availability and six plots have remained unfertilized. Litterbags containing Douglas-fir roots, needles, or twigs were placed in all plots. Half of the litterbags contain plant material from seedlings that were fertilized with P, resulting in four treatments: P added to soil and litter, P added to soil but not to litter, P added to litter but not to soil, and P not added to soil or litter (control). Data from soil cores collected in the treatment plots at each site and extracted with Bray solution indicate that extractable P is significantly higher (P < 0.001) in the plots that have been fertilized with P. Extractable P (mg P/kg soil) is approximately 50 mg higher in the fertilized plots than the unfertilized plots. Material from litterbags collected this summer is currently being processed and analyzed for C, N, and P content and mass loss to determine decomposition rates for the three litter types.

  11. Responses of fine roots and soil N availability to short-term nitrogen fertilization in a broad-leaved Korean pine mixed forest in northeastern China.

    PubMed

    Wang, Cunguo; Han, Shijie; Zhou, Yumei; Yan, Caifeng; Cheng, Xubing; Zheng, Xingbo; Li, Mai-He

    2012-01-01

    Knowledge of the responses of soil nitrogen (N) availability, fine root mass, production and turnover rates to atmospheric N deposition is crucial for understanding fine root dynamics and functioning in forest ecosystems. Fine root biomass and necromass, production and turnover rates, and soil nitrate-N and ammonium-N in relation to N fertilization (50 kg N ha(-1) year(-1)) were investigated in a temperate forest over the growing season of 2010, using sequential soil cores and ingrowth cores methods. N fertilization increased soil nitrate-N by 16% (P<0.001) and ammonium-N by 6% (P<0.01) compared to control plots. Fine root biomass and necromass in 0-20 cm soil were 13% (4.61 vs. 5.23 Mg ha(-1), P<0.001) and 34% (1.39 vs. 1.86 Mg ha(-1), P<0.001) less in N fertilization plots than those in control plots. The fine root mass was significantly negatively correlated with soil N availability and nitrate-N contents, especially in 0-10 cm soil layer. Both fine root production and turnover rates increased with N fertilization, indicating a rapid underground carbon cycling in environment with high nitrogen levels. Although high N supply has been widely recognized to promote aboveground growth rates, the present study suggests that high levels of nitrogen supply may reduce the pool size of the underground carbon. Hence, we conclude that high levels of atmospheric N deposition will stimulate the belowground carbon cycling, leading to changes in the carbon balance between aboveground and underground storage. The implications of the present study suggest that carbon model and prediction need to take the effects of nitrogen deposition on underground system into account.

  12. Responses of Fine Roots and Soil N Availability to Short-Term Nitrogen Fertilization in a Broad-Leaved Korean Pine Mixed Forest in Northeastern China

    PubMed Central

    Wang, Cunguo; Han, Shijie; Zhou, Yumei; Yan, Caifeng; Cheng, Xubing; Zheng, Xingbo; Li, Mai-He

    2012-01-01

    Knowledge of the responses of soil nitrogen (N) availability, fine root mass, production and turnover rates to atmospheric N deposition is crucial for understanding fine root dynamics and functioning in forest ecosystems. Fine root biomass and necromass, production and turnover rates, and soil nitrate-N and ammonium-N in relation to N fertilization (50 kg N ha−1 year−1) were investigated in a temperate forest over the growing season of 2010, using sequential soil cores and ingrowth cores methods. N fertilization increased soil nitrate-N by 16% (P<0.001) and ammonium-N by 6% (P<0.01) compared to control plots. Fine root biomass and necromass in 0–20 cm soil were 13% (4.61 vs. 5.23 Mg ha−1, P<0.001) and 34% (1.39 vs. 1.86 Mg ha−1, P<0.001) less in N fertilization plots than those in control plots. The fine root mass was significantly negatively correlated with soil N availability and nitrate-N contents, especially in 0–10 cm soil layer. Both fine root production and turnover rates increased with N fertilization, indicating a rapid underground carbon cycling in environment with high nitrogen levels. Although high N supply has been widely recognized to promote aboveground growth rates, the present study suggests that high levels of nitrogen supply may reduce the pool size of the underground carbon. Hence, we conclude that high levels of atmospheric N deposition will stimulate the belowground carbon cycling, leading to changes in the carbon balance between aboveground and underground storage. The implications of the present study suggest that carbon model and prediction need to take the effects of nitrogen deposition on underground system into account. PMID:22412833

  13. Determinate Root Growth and Meristem Maintenance in Angiosperms

    PubMed Central

    Shishkova, S.; Rost, T. L.; Dubrovsky, J. G.

    2008-01-01

    Background The difference between indeterminate and determinate growth in plants consists of the presence or absence of an active meristem in the fully developed organ. Determinate root growth implies that the root apical meristem (RAM) becomes exhausted. As a consequence, all cells in the root tip differentiate. This type of growth is widely found in roots of many angiosperm taxa and might have evolved as a developmental adaptation to water deficit (in desert Cactaceae), or low mineral content in the soil (proteoid roots in various taxa). Scope and Conclusions This review considers the mechanisms of determinate root growth to better understand how the RAM is maintained, how it functions, and the cellular and genetic bases of these processes. The role of the quiescent centre in RAM maintenance and exhaustion will be analysed. During root ageing, the RAM becomes smaller and its organization changes; however, it remains unknown whether every root is truly determinate in the sense that its RAM becomes exhausted before senescence. We define two types of determinate growth: constitutive where determinacy is a natural part of root development; and non-constitutive where determinacy is induced usually by an environmental factor. Determinate root growth is proposed to include two phases: the indeterminate growth phase, when the RAM continuously produces new cells; and the termination growth phase, when cell production gradually decreases and eventually ceases. Finally, new concepts regarding stem cells and a stem cell niche are discussed to help comprehend how the meristem is maintained in a broad taxonomic context. PMID:17954472

  14. Phene Synergism between Root Hair Length and Basal Root Growth Angle for Phosphorus Acquisition1[OPEN

    PubMed Central

    Miguel, Magalhaes Amade

    2015-01-01

    Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here. PMID:25699587

  15. Scots pine fine roots adjust along a 2000-km latitudinal climatic gradient.

    PubMed

    Zadworny, Marcin; McCormack, M Luke; Mucha, Joanna; Reich, Peter B; Oleksyn, Jacek

    2016-10-01

    Patterns of plant biomass allocation and functional adjustments along climatic gradients are poorly understood, particularly belowground. Generally, low temperatures suppress nutrient release and uptake, and forests under such conditions have a greater proportion of their biomass in roots. However, it is not clear whether 'more roots' means better capacity to acquire soil resources. Herein we quantified patterns of fine-root anatomy and their biomass distribution across Scots pine (Pinus sylvestris) populations both along a 2000-km latitudinal gradient and within a common garden experiment with a similar range of populations. We found that with decreasing mean temperature, a greater percentage of Scots pine root biomass was allocated to roots with higher potential absorptive capacity. Similar results were seen in the common experimental site, where cold-adapted populations produced roots with greater absorptive capacity than populations originating from warmer climates. These results demonstrate that plants growing in or originated from colder climates have more acquisitive roots, a trait that is likely adaptive in the face of the low resource availability typical of cold soils.

  16. Effects of spatiotemporal variation of soil salinity on fine root distribution in different plant configuration modes in new reclamation coastal saline field.

    PubMed

    Jiang, Hong; Du, Hongyu; Bai, Yingying; Hu, Yue; Rao, Yingfu; Chen, Chong; Cai, Yongli

    2016-04-01

    In order to study the effects of salinity on plant fine roots, we considered three different plant configuration modes (tree stand model (TSM), shrub stand model (SSM), and tree-shrub stand model (TSSM)). Soil samples were collected with the method of soil drilling. Significant differences of electrical conductivity (EC) in the soil depth of 0-60 cm were observed among the three modes (p < 0.05). In the above three modes, the variation of soil salinity among various soil layers and monthly variation of soil salinity were the highest in SSM and reached 2.30 and 2.23 mS/cm (EC1:5), respectively. Due to the effect of salinity, fine root biomass (FRB) showed significant differences in different soil depths (p < 0.05). More than 60% of FRB was concentrated in the soil depth above 30 cm. FRB showed exponential decline with soil depth (p < 0.05). FRB showed spatial heterogeneity in the 40-cm soil depth. In the above three modes, compared with FRB, specific root length (SRL) and fine root length density (FRLD) showed the similar changing trend. Fine roots showed significant seasonal differences among different modes (p < 0.05). FRB showed the bimodal variation and was the highest in July. However, we found that the high content of salts had obvious inhibitory effect on the distribution of FRB. Therefore, the salinity should be below 1.5 mS/cm, which was suitable for the growth of plant roots. Among the three modes, TSSM had the highest FRB, SRL, and FRLD and no obvious soil salt accumulation was observed. The results indicated that fine root biomass was affected by high salt and that TSSM had the strong effects of salt suppression and control. In our study, TSSM may be the optimal configuration mode for salt suppression and control in saline soil.

  17. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests.

    PubMed

    Xia, Mengxue; Talhelm, Alan F; Pregitzer, Kurt S

    2015-11-01

    Most studies of forest litter dynamics examine the biochemical characteristics and decomposition of leaf litter, but fine roots are also a large source of litter in forests. We quantified the concentrations of eight biochemical fractions and nitrogen (N) in leaf litter and fine roots at four sugar maple (Acer saccharum)-dominated hardwood forests in the north-central United States. We combined these results with litter production data to estimate ecosystem biochemical fluxes to soil. We also compared how leaf litter and fine root biochemistry responded to long-term simulated N deposition. Compared with leaf litter, fine roots contained 2.9-fold higher acid-insoluble fraction (AIF) and 2.3-fold more condensed tannins; both are relatively difficult to decompose. Comparatively, leaf litter had greater quantities of more labile components: nonstructural carbohydrates, cellulose and soluble phenolics. At an ecosystem scale, fine roots contributed over two-thirds of the fluxes of AIF and condensed tannins to soil. Fine root biochemistry was also less responsive than leaf litter to long-term simulated N deposition. Fine roots were the dominant source of difficult-to-decompose plant carbon fractions entering the soil at our four study sites. Based on our synthesis of the literature, this pattern appears to be widespread in boreal and temperate forests.

  18. Winter climate change and fine root biogenic silica in sugar maple trees (Acer saccharum): Implications for silica in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Maguire, Timothy J.; Templer, Pamela H.; Battles, John J.; Fulweiler, Robinson W.

    2017-03-01

    Winter temperatures are projected to increase over the next century, leading to reductions in winter snowpack and increased frequency of soil freezing in many northern forest ecosystems. Here we examine biogenic silica (BSi) concentrations in sugar maple (Acer saccharum) fine roots collected from a snow manipulation experiment at Hubbard Brook Experimental Forest (New Hampshire, USA). Increased soil freezing significantly lowered the BSi content of sugar maple fine roots potentially decreasing their capacity to take up water and dissolved nutrients. The reduced silica uptake (8 ± 1 kmol silica km-2) by sugar maple fine roots is comparable to silica export from temperate forest watersheds. We estimate that fine roots account for 29% of sugar maple BSi, despite accounting for only 4% of their biomass. These results suggest that increased frequency of soil freezing will reduce silica uptake by temperate tree roots, thereby changing silica availability in downstream receiving waters.

  19. Fine Root Productivity and Turnover of Ectomycorrhizal and Arbuscular Mycorrhizal Tree Species in a Temperate Broad-Leaved Mixed Forest

    PubMed Central

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2016-01-01

    Advancing our understanding of tree fine root dynamics is of high importance for tree physiology and forest biogeochemistry. In temperate broad-leaved forests, ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) tree species often are coexisting. It is not known whether EM and AM trees differ systematically in fine root dynamics and belowground resource foraging strategies. We measured fine root productivity (FRP) and fine root turnover (and its inverse, root longevity) of three EM and three AM broad-leaved tree species in a natural cool-temperate mixed forest using ingrowth cores and combined the productivity data with data on root biomass per root orders. FRP and root turnover were related to root morphological traits and aboveground productivity. FRP differed up to twofold among the six coexisting species with larger species differences in lower horizons than in the topsoil. Root turnover varied up to fivefold among the species with lowest values in Acer pseudoplatanus and highest in its congener Acer platanoides. Variation in root turnover was larger within the two groups than between EM and AM species. We conclude that the main determinant of FRP and turnover in this mixed forest is species identity, while the influence of mycorrhiza type seems to be less important. PMID:27617016

  20. Plant uptake, translocation, and return of polycyclic aromatic hydrocarbons via fine root branch orders in a subtropical forest ecosystem.

    PubMed

    Chen, Zheng-Xia; Ni, Hong-Gang; Jing, Xin; Chang, Wen-Jing; Sun, Jian-Lin; Zeng, Hui

    2015-07-01

    Fine roots of woody plants are a heterogeneous system differing markedly in structure and function. Nevertheless, knowledge about the plant uptake of organic pollutants via fine roots is scarce to date. In the present study, plant uptake, translocation, and return of polycyclic aromatic hydrocarbons (PAHs) via fine roots in a subtropical forest ecosystem were investigated. Levels of Σ15PAHs in different fine root branch orders of Michelia macclurei, Cryptocarya concinna, Cryptocarya chinensis, and Canthium dicoccums varied from 5072±1419 ng g(-1) to 6080±1656 ng g(-1), 4037±410 ng g(-1) to 6101±972 ng g(-1), 3308±1191 ng g(-1) to 4283±237 ng g(-1), and 3737±800 ng g(-1) to 4895±1216 ng g(-1), respectively. Overall, concentrations of low-molecular-weight PAHs with 2-3 aromatic rings were higher than high-molecular-weight PAHs with 4-6 aromatic rings in all fine root branch orders. There were obvious translocations of PAHs between adjacent branch orders and a net accumulation of PAHs may occur in the fourth- and fifth-order roots. The storage of PAHs in the fine root system showed an obvious increasing trend along the branch orders ascending for all tree species. The return flux of PAHs via fine roots mortality showed an obvious decreasing trend with the branch orders ascending across the four tree species. Lower order roots contributed greatly to the total PAHs return flux. Our results indicated that fine roots turnover is an effective pathway for perennial tree species to remove environmental toxicants absorbed into them. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Traceable Calibration, Performance Metrics, and Uncertainty Estimates of Minirhizotron Digital Imagery for Fine-Root Measurements

    PubMed Central

    Roberti, Joshua A.; SanClements, Michael D.; Loescher, Henry W.; Ayres, Edward

    2014-01-01

    Even though fine-root turnover is a highly studied topic, it is often poorly understood as a result of uncertainties inherent in its sampling, e.g., quantifying spatial and temporal variability. While many methods exist to quantify fine-root turnover, use of minirhizotrons has increased over the last two decades, making sensor errors another source of uncertainty. Currently, no standardized methodology exists to test and compare minirhizotron camera capability, imagery, and performance. This paper presents a reproducible, laboratory-based method by which minirhizotron cameras can be tested and validated in a traceable manner. The performance of camera characteristics was identified and test criteria were developed: we quantified the precision of camera location for successive images, estimated the trueness and precision of each camera's ability to quantify root diameter and root color, and also assessed the influence of heat dissipation introduced by the minirhizotron cameras and electrical components. We report detailed and defensible metrology analyses that examine the performance of two commercially available minirhizotron cameras. These cameras performed differently with regard to the various test criteria and uncertainty analyses. We recommend a defensible metrology approach to quantify the performance of minirhizotron camera characteristics and determine sensor-related measurement uncertainties prior to field use. This approach is also extensible to other digital imagery technologies. In turn, these approaches facilitate a greater understanding of measurement uncertainties (signal-to-noise ratio) inherent in the camera performance and allow such uncertainties to be quantified and mitigated so that estimates of fine-root turnover can be more confidently quantified. PMID:25391023

  2. Glucose control of root growth direction in Arabidopsis thaliana.

    PubMed

    Singh, Manjul; Gupta, Aditi; Laxmi, Ashverya

    2014-07-01

    Directional growth of roots is a complex process that is modulated by various environmental signals. This work shows that presence of glucose (Glc) in the medium also extensively modulated seedling root growth direction. Glc modulation of root growth direction was dramatically enhanced by simultaneous brassinosteroid (BR) application. Glc enhanced BR receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) endocytosis from plasma membrane to early endosomes. Glc-induced root deviation was highly enhanced in a PP2A-defective mutant, roots curl in naphthyl phthalamic acid 1-1 (rcn1-1) suggesting that there is a role of phosphatase in Glc-induced root-growth deviation. RCN1, therefore, acted as a link between Glc and the BR-signalling pathway. Polar auxin transport worked further downstream to BR in controlling Glc-induced root deviation response. Glc also affected other root directional responses such as root waving and coiling leading to altered root architecture. High light intensity mimicked the Glc-induced changes in root architecture that were highly reduced in Glc-signalling mutants. Thus, under natural environmental conditions, changing light flux in the environment may lead to enhanced Glc production/response and is a way to manipulate root architecture for optimized development via integrating several extrinsic and intrinsic signalling cues. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    PubMed

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  4. Growth of plant root cultures in liquid- and gas-dispersed reactor environments.

    PubMed

    McKelvey, S A; Gehrig, J A; Hollar, K A; Curtis, W R

    1993-01-01

    The growth of Agrobacterium transformed "hairy root" cultures of Hyoscyamus muticus was examined in various liquid- and gas-dispersed bioreactor configurations. Reactor runs were replicated to provide statistical comparisons of nutrient availability on culture performance. Accumulated tissue mass in submerged air-sparged reactors was 31% of gyratory shake-flask controls. Experiments demonstrate that poor performance of sparged reactors is not due to bubble shear damage, carbon dioxide stripping, settling, or flotation of roots. Impaired oxygen transfer due to channeling and stagnation of the liquid phase are the apparent causes of poor growth. Roots grown on a medium-perfused inclined plane grew at 48% of gyratory controls. This demonstrates the ability of cultures to partially compensate for poor liquid distribution through vascular transport of nutrients. A reactor configuration in which the medium is sprayed over the roots and permitted to drain down through the root tissue was able to provide growth rates which are statistically indistinguishable (95% T-test) from gyratory shake-flask controls. In this type of spray/trickle-bed configuration, it is shown that distribution of the roots becomes a key factor in controlling the rate of growth. Implications of these results regarding design and scale-up of bioreactors to produce fine chemicals from root cultures are discussed.

  5. Effects of elevated CO2 on the extractable amino acids of leaf litter and fine roots.

    PubMed

    Top, Sara M; Filley, Timothy R

    2014-06-01

    Elevated atmospheric CO2 concentrations can change chemistry and input rate of plant tissue to soil, potentially influencing above- and below-ground biogeochemical cycles. Given the important role played by leaf and root litter chemistry in controlling ecosystem function and vulnerability to environmental stresses, we investigated the hydrolyzable amino acid distribution and concentration in leaf and fine root litter among control and elevated CO2 treatments at the Rhinelander free air CO2 enrichment (FACE) experiment (WI, USA). We extracted hydrolyzable amino acids from leaf litter and fine (< 2 mm) roots at three depths for both control and elevated CO2 plots. We found that elevated CO2 decreased the proportion of total leaf amino acid carbon (C), but had no effect on total leaf amino acid nitrogen (N). There was no treatment effect for total root amino acid N or amino acid C for any depth. The decrease in leaf amino acids is probably a result of the shift of protein compounds to more structural compounds. Despite the decrease in leaf amino acid C concentrations, the overall increase in annual plant production under elevated CO2 would result in an increase in plant amino acids to the soil. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  6. Fine-scale genetic structure of grape phylloxera from the roots and leaves of Vitis.

    PubMed

    Corrie, A M; Hoffmann, A A

    2004-02-01

    Patterns of variation at microsatellite loci suggest that root populations of the pest grape phylloxera (Daktulosphaira vitifoliae) are largely parthenogenetic in Australian vineyards. To investigate reproduction in leaf galling phylloxera and the association between these individuals and phylloxera on roots, we examined in detail genetic variation in phylloxera from a vineyard block. Some genotypes found on leaf galls within this block were not present on roots, whereas others spanned both zones. There was no evidence that genotypes on roots were the product of sexual reproduction in leaf galls. mtDNA variation was not associated with the location of the phylloxera clones. The spatial distribution of genotypes within a root population was further investigated by intensively sampling phylloxera from another vineyard block. Join-count spatial autocorrelation statistics were used to explore fine-scale spatial structure. Clones were nonrandomly distributed within the block and there was evidence that the distribution of clones followed rows. These findings suggest firstly that there is limited dispersal of root and leaf feeding phylloxera, and secondly that factors, other than vine host, are likely to be important and contribute to clonal structure within populations.

  7. Coupling fine-scale root and canopy structure using ground-based remote sensing

    DOE PAGES

    Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.; ...

    2017-02-21

    Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less

  8. Phenotyping jasmonate regulation of root growth.

    PubMed

    Kellermeier, Fabian; Amtmann, Anna

    2013-01-01

    Root architecture is a complex and highly plastic feature of higher plants. Direct treatments with jasmonates and alterations in jasmonate signaling have been shown to elicit a range of root phenotypes. Here, we describe a fast, noninvasive, and semiautomatic method to monitor root architectural responses to environmental stimuli using plant tissue culture and the software tool EZ-RHIZO.

  9. CO/sub 2/ speeds root growth of cuttings

    SciTech Connect

    Yarris, L.

    1984-06-01

    Researchers have determined that CO/sub 2/ enrichment accelerates cutting root growth on foliage plants and flowering shrubs. For horticultural crops, including most woody ornamentals, apples, pears, and small fruit trees, roots consistently emerged 1 or 2 days earlier in the enriched atmosphere. These tests were conducted as part of a broad, ongoing study to determine how photosynthesis is related to rooting and whether rooting can be stimulated by stimulating photosynthesis.

  10. Carbon and Nitrogen Pools of Soil and Fine Roots across Alaskan Tundra and Boreal Forest Ecosystems.

    NASA Astrophysics Data System (ADS)

    McCulloch, L. A.; Loranty, M. M.; Cardelús, C. L.; Natali, S.; Kholodov, A. L.

    2016-12-01

    High-latitude terrestrial ecosystems are typically classified as extremely nitrogen-limited, where mineralization is the primary mechanism to create available nitrogen. Organic matter decomposition constitutes the largest source of soil nitrogen in these systems. High-latitude ecosystems have cold soils that are often saturated, allowing belowground biomass to accumulate as a result of slow decomposition rates. This accumulation of organic matter is an important pool of carbon and nitrogen. However, the decomposition of this organic matter will likely accelerate with warming temperatures, leading to an increase in nitrogen available to vegetation. Therefore, a surge in available nitrogen could contribute to predicted increases in vegetation productivity with climatic warming. This study examines variability in the C:N ratio, an indicator of nitrogen limitation, between live and dead fine root biomass and soil across Alaskan ecosystems in order to understand the spatial variability of the nitrogen cycle across a wide range of high-latitude ecosystems. Soils were collected along a latitudinal and climatic gradient throughout Interior Alaska, the Arctic North Slope and Coastal Western Alaska. Several sites located in close proximity were chosen to control for geological and climatic differences among sites, allowing differences to be attributed to the proximal ecosystem. Three paired samples of roots and soils were collected at each site. The belowground biomass samples were sorted into two categories including fine-live and fine-dead. We measured the carbon and nitrogen of the soil and ground fine roots on a Costech Elemental Analyzer. We found significant variation in C:N ratios of live and dead roots overall, as well as across sites. Contrasting predictions, dead roots had significantly lower ratios than live roots (32.16 ±1.54; p < 0.0001), possibly due to less carbon present from decomposition. Boreal forests had higher C:N ratios (49.51 ± 3.28) than tundra

  11. Tree Age Effects on Fine Root Biomass and Morphology over Chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa Stands

    PubMed Central

    Jagodzinski, Andrzej M.; Ziółkowski, Jędrzej; Warnkowska, Aleksandra; Prais, Hubert

    2016-01-01

    There are few data on fine root biomass and morphology change in relation to stand age. Based on chronosequences for beech (9–140 years old), oak (11–140 years) and alder (4–76 years old) we aimed to examine how stand age affects fine root biomass and morphology. Soil cores from depths of 0–15 cm and 16–30 cm were used for the study. In contrast to previously published studies that suggested that maximum fine root biomass is reached at the canopy closure stage of stand development, we found almost linear increases of fine root biomass over stand age within the chronosequences. We did not observe any fine root biomass peak in the canopy closure stage. However, we found statistically significant increases of mean fine root biomass for the average individual tree in each chronosequence. Mean fine root biomass (0–30 cm) differed significantly among tree species chronosequences studied and was 4.32 Mg ha-1, 3.71 Mg ha-1 and 1.53 Mg ha-1, for beech, oak and alder stands, respectively. The highest fine root length, surface area, volume and number of fine root tips (0–30 cm soil depth), expressed on a stand area basis, occurred in beech stands, with medium values for oak stands and the lowest for alder stands. In the alder chronosequence all these values increased with stand age, in the beech chronosequence they decreased and in the oak chronosequence they increased until ca. 50 year old stands and then reached steady-state. Our study has proved statistically significant negative relationships between stand age and specific root length (SRL) in 0–30 cm soil depth for beech and oak chronosequences. Mean SRLs for each chronosequence were not significantly different among species for either soil depth studied. The results of this study indicate high fine root plasticity. Although only limited datasets are currently available, these data have provided valuable insight into fine root biomass and morphology of beech, oak and alder stands. PMID:26859755

  12. Tree Age Effects on Fine Root Biomass and Morphology over Chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa Stands.

    PubMed

    Jagodzinski, Andrzej M; Ziółkowski, Jędrzej; Warnkowska, Aleksandra; Prais, Hubert

    2016-01-01

    There are few data on fine root biomass and morphology change in relation to stand age. Based on chronosequences for beech (9-140 years old), oak (11-140 years) and alder (4-76 years old) we aimed to examine how stand age affects fine root biomass and morphology. Soil cores from depths of 0-15 cm and 16-30 cm were used for the study. In contrast to previously published studies that suggested that maximum fine root biomass is reached at the canopy closure stage of stand development, we found almost linear increases of fine root biomass over stand age within the chronosequences. We did not observe any fine root biomass peak in the canopy closure stage. However, we found statistically significant increases of mean fine root biomass for the average individual tree in each chronosequence. Mean fine root biomass (0-30 cm) differed significantly among tree species chronosequences studied and was 4.32 Mg ha(-1), 3.71 Mg ha(-1) and 1.53 Mg ha(-1), for beech, oak and alder stands, respectively. The highest fine root length, surface area, volume and number of fine root tips (0-30 cm soil depth), expressed on a stand area basis, occurred in beech stands, with medium values for oak stands and the lowest for alder stands. In the alder chronosequence all these values increased with stand age, in the beech chronosequence they decreased and in the oak chronosequence they increased until ca. 50 year old stands and then reached steady-state. Our study has proved statistically significant negative relationships between stand age and specific root length (SRL) in 0-30 cm soil depth for beech and oak chronosequences. Mean SRLs for each chronosequence were not significantly different among species for either soil depth studied. The results of this study indicate high fine root plasticity. Although only limited datasets are currently available, these data have provided valuable insight into fine root biomass and morphology of beech, oak and alder stands.

  13. A Simple Device to Measure Root Growth Rates

    ERIC Educational Resources Information Center

    Rauser, Wilfried E.; Horton, Roger F.

    1975-01-01

    Describes construction and use of a simple auxanometer which students can use to accurately measure root growth rates of intact seedlings. Typical time course data are presented for the effect of ethylene and indole acetic acid on pea root growth. (Author/BR)

  14. A Simple Device to Measure Root Growth Rates

    ERIC Educational Resources Information Center

    Rauser, Wilfried E.; Horton, Roger F.

    1975-01-01

    Describes construction and use of a simple auxanometer which students can use to accurately measure root growth rates of intact seedlings. Typical time course data are presented for the effect of ethylene and indole acetic acid on pea root growth. (Author/BR)

  15. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination.

    PubMed

    Park, Sangkyu; Back, Kyoungwhan

    2012-11-01

    The effect of melatonin on root growth after germination was examined in transgenic rice seedlings expressing sheep serotonin N-acetyltransferase (NAT). Enhanced melatonin levels were found in T(3) homozygous seedlings because of the ectopic overexpression of sheep NAT, which is believed to be the rate-limiting enzyme in melatonin biosynthesis in animals. Compared with wild-type rice seeds, the transgenic rice seeds showed enhanced seminal root growth and an analogous number of adventitious roots 4 and 10 days after seeding on half-strength Murashige and Skoog medium. The enhanced initial seminal root growth in the transgenic seedlings matched their increased root biomass well. We also found that treatment with 0.5 and 1 μM melatonin promoted seminal root growth of the wild type under continuous light. These results indicate that melatonin plays an important role in regulating both seminal root length and root growth after germination in monocotyledonous rice plants. This is the first report on the effects of melatonin on root growth in gain-of-function mutant plants that produce high levels of melatonin. © 2012 John Wiley & Sons A/S.

  16. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.

    PubMed

    Liu, Bitao; Li, Hongbo; Zhu, Biao; Koide, Roger T; Eissenstat, David M; Guo, Dali

    2015-10-01

    In most cases, both roots and mycorrhizal fungi are needed for plant nutrient foraging. Frequently, the colonization of roots by arbuscular mycorrhizal (AM) fungi seems to be greater in species with thick and sparsely branched roots than in species with thin and densely branched roots. Yet, whether a complementarity exists between roots and mycorrhizal fungi across these two types of root system remains unclear. We measured traits related to nutrient foraging (root morphology, architecture and proliferation, AM colonization and extramatrical hyphal length) across 14 coexisting AM subtropical tree species following root pruning and nutrient addition treatments. After root pruning, species with thinner roots showed more root growth, but lower mycorrhizal colonization, than species with thicker roots. Under multi-nutrient (NPK) addition, root growth increased, but mycorrhizal colonization decreased significantly, whereas no significant changes were found under nitrogen or phosphate additions. Moreover, root length proliferation was mainly achieved by altering root architecture, but not root morphology. Thin-root species seem to forage nutrients mainly via roots, whereas thick-root species rely more on mycorrhizal fungi. In addition, the reliance on mycorrhizal fungi was reduced by nutrient additions across all species. These findings highlight complementary strategies for nutrient foraging across coexisting species with contrasting root traits.

  17. Effect of drought on fine roots productivity in poplar-based short rotation coppice

    NASA Astrophysics Data System (ADS)

    Mani Tripathi, Abhishek; Fischer, Milan; Berhongaray, Gonzalo; Orság, Matěj; Trnka, Miroslav

    2015-04-01

    Short rotation woody crops (SRWC) are alternative source of bioenergy, which apart from their 'carbon neutrality' have potential to store carbon (C) into soil and mitigate the increasing CO2 emission. Studies of below ground biomass of trees are divided into two types according to root diameter - analysis of fine roots (less than 2 mm) and coarse roots (more than 2 mm). Trees roots are spatially highly heterogeneous and it requires large number of samples to obtain a representative estimate of belowground biomass. For this study we used hybrid poplar clone J-105 (Populus nigra x P. maximowiczii) grown under short rotation coppice system in the region of Bohemian-Moravian Highland (49o32'N, 16o15'E and altitude 530 m a.s.l.) since April 2000. The plantation with planting density of 9,216 trees ha-1 was established on the former agricultural land and the length of the rotation cycle was set to 6-8 years. While mean annual rainfall was 609 mm with mean annual temperature 7.2oC during 1981-2013 significant increase of temperature and more frequent droughts are expected. In 2011, we established drought experiment based on throughfall exclusion system, reducing up to 70 % of throughfall precipitation. Thus 2 treatments with normal and lowered soil moisture levels were introduced. In January and February 2014, we cored 18 places including drought and control using root bipartite auger. The main goal of the study is to assess the response of fine roots productivity and fine roots vertical distribution on the reduced soil water availability. Results will be presented at the conference. Acknowledgements: This study was funded by research project IGA Mendel University 2014 "Study of below ground biomass in short rotation poplar coppice (J-105) in the Czech-Moravian Highlands", project PASED (KONTAKT II LH12037 ʺDevelopment of models for the assessment of abiotic stresses in selected energy woody plantsʺ and "Building up a multidisciplinary scientific team focused on drought

  18. Fine root respiration in mature eastern white pine (Pinus strobus) in situ: the importance of CO2 in controlled environments.

    Treesearch

    Barton D. Clinton; James M. Vose

    1999-01-01

    Clinton and Vose measured seasonal fine root respiration rate in situ while controlling chamber temperature and [CO2]. Atmospheric and [CO2] ([CO2]a) and measured soil [CO2] ([CO2]s) were alternately delivered...

  19. Differential growth and hormone redistribution in gravireacting maize roots.

    PubMed

    Pilet, P E

    1989-01-01

    When growing roots are placed in a horizontal position gravity induces a positive curvature. It is classically considered to be the consequence of a faster elongation rate by the upper side compared to the lower side. A critical examination indicates that the gravireaction is caused by differential cell extension depending on several processes. Some of the endogenous regulators which may control the growth and gravitropism of elongating roots are briefly presented. The growth inhibitors produced or released from the root cap move preferentially in a basipetal direction and accumulate in the lower side of the elongation zone of horizontally maintained roots. The identity of these compounds is far from clear, but one of these inhibitors could be abscisic acid (ABA). However, indol-3y1 acetic acid (IAA) is also important for root growth and gravitropism. ABA may interact with IAA. Two other aspects of root cell extension have also to be carefully considered. An elongation gradient measured from the tip to the base of the root was found to be important for the growth of both vertical and horizontal gravireactive roots. It was changed significantly during the gravipresentation and can be considered as the origin of the differential elongation. Sephadex beads have been used as both growth markers and as monitors of surface pH changes when they contain some pH indicator. This technique has shown that the distribution of cell extension along the main root axis is related to a pH gradient, the proton efflux being larger for faster growing parts of roots. A lateral movement of calcium is obtained when Ca2+ is applied across the tips of horizontally placed roots with a preferential transport towards the lower side. Endogenous calcium, which may accumulate inside the endoplasmic reticulum of some cap cells, may also act in the gravireception. These observations and several others strongly suggest that calcium may play an essential role in controlling root growth and several

  20. Phenolic profile within the fine-root branching orders of an evergreen species highlights a disconnect in root tissue quality predicted by elemental- and molecular-level carbon composition.

    PubMed

    Wang, Jun-Jian; Tharayil, Nishanth; Chow, Alex T; Suseela, Vidya; Zeng, Hui

    2015-06-01

    Fine roots constitute a significant source of plant productivity and litter turnover across terrestrial ecosystems, but less is known about the quantitative and qualitative profile of phenolic compounds within the fine-root architecture, which could regulate the potential contribution of plant roots to the soil organic matter pool. To understand the linkage between traditional macro-elemental and morphological traits of roots and their molecular-level carbon chemistry, we analyzed seasonal variations in monomeric yields of the free, bound, and lignin phenols in fine roots (distal five orders) and leaves of Ardisia quinquegona. Fine roots contained two-fold higher concentrations of bound phenols and three-fold higher concentrations of lignin phenols than leaves. Within fine roots, the concentrations of free and bound phenols decreased with increasing root order, and seasonal variation in the phenolic profile was more evident in lower order than in higher order roots. The morphological and macro-elemental root traits were decoupled from the quantity, composition and tissue association of phenolic compounds, revealing the potential inability of these traditional parameters to capture the molecular identity of phenolic carbon within the fine-root architecture and between fine roots and leaves. Our results highlight the molecular-level heterogeneity in phenolic carbon composition within the fine-root architecture, and imply that traits that capture the molecular identity of the root construct might better predict the decomposition dynamics within fine-root orders.

  1. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  2. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  3. Thresholds of heavy-metal toxicity in cuttings of European black poplar (Populus nigra L.) determined according to antioxidant status of fine roots and morphometrical disorders.

    PubMed

    Stobrawa, Krzysztof; Lorenc-Plucińska, Gabriela

    2008-02-01

    The effects of increasing concentrations of polluted soils collected from two different stands in the direct neighbourhood of a copper smelter were studied by analyzing the activity of lipid peroxidation and antioxidant enzymes in the fine roots of cuttings of black poplar (Populus nigra L.). Morphological parameters of affected and unaffected plants were compared and concentrations of heavy metals in their fine roots were estimated. Copper and lead were the major pollutants, and their threshold concentrations were determined on the basis of positive or negative impact on shoots and root growth, morphological disorders of the roots (thickening, decreasing of fine roots volume), stimulation or inhibition of the most important antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), guaiacol and ascorbate peroxidases (GPOX, APOX) and glutathione reductase (GR) as well as increasing MDA concentration. Finally, three thresholds of Cu and Pb concentrations resulting in increasing toxicity against plants were proposed, splitting the ranges of the non toxic presence of these metals into soil (Cu<100 ppm, Pb<30 ppm), full tolerance (Cu 100-220 ppm, Pb 30-70 ppm), limited tolerance (Cu 220-650 ppm, Pb 70-200 ppm) and breakdown of tolerance (Cu>650 ppm, Pb>200 ppm).

  4. Changes in very fine root respiration and morphology with time since last fire in a boreal forest

    NASA Astrophysics Data System (ADS)

    Makita, Naoki; Pumpanen, Jukka; Köster, Kajar; Berninger, Frank

    2016-04-01

    We examined the physiological and morphological responses of individual fine root segments in boreal forests stands with different age since the last fire to determine changes in specific fine root respiration and morphological traits during forest succession. We investigated the respiration of fine roots divided into three diameter classes (<0.5, 0.5-1.0, and 1.0-2.0 mm) in a Finnish boreal Pinus sylvestris L. in forest stands with 5, 45, 63, and 155 years since the last fire. Specific respiration rates of <0.5 mm roots in 155-year-old stands were 74%, 38%, and 31% higher than in 5-, 45-, and 63-year-old stands, respectively. However, the respiration rates of thicker diameter roots did not significantly change among stands with respect to time after fire. Similarly, fire disturbance had a strong impact on morphological traits of <0.5 mm roots, but not on thicker roots. Root respiration rates correlated positively with specific root length (length per unit mass) and negatively with root tissue density (mass per unit volume) in all stand ages. The linear regression lines fitted to the relationships between root respiration and specific root length or root tissue density showed significantly higher intercepts in 63- and 155-year-old than in 5-year-old stands. Significant shifts in the intercept of the common slope of respiration vs. morphology indicate the different magnitude of the changes in physiological performance among the fire age class. Despite a specific small geographic area, we suggest that the recovery of boreal forests following wildfire induces a strategy that favors carbon investment in nutrient and water exploitation efficiency with consequences for higher respiration, length, and lower tissue density of very fine roots.

  5. [Response of fine root decomposition to simulated nitrogen deposition in Pleioblastus amarus plantation, rainy area of West China].

    PubMed

    Tu, Li-Hua; Chen, Gang; Peng, Yong; Hu, Hong-Ling; Hu, Ting-Xing; Zhang, Jian

    2014-08-01

    As an important contributor to carbon (C) flux in the global C cycle, fine root litter decomposition in forests has the potential to be affected by the elevated nitrogen (N) deposition observed globally. From November 2007 to January 2013, a field experiment involving monthly simulated deposition of N in a Pleioblastus amarus plantation was conducted in the Rainy Area of West China. Four levels of nitrogen deposition were included as control (0 g N x m(-2) x a(-1)), low nitrogen (5 g N x m(-2) x a(-1)), medium nitrogen (15 g N x m(-2) x a(-1)) and high nitrogen (30 g N x m(-2) x a(-1)). After 3 years of simulated N deposition experiment (January 2011) , a two-year fine root decomposition experiment was conducted in the simulated N deposition plots using litterbag method, under monthly experimental N deposition. The decomposition rates of fine roots were fast first and then slow. Mass loss of fine roots in the first year of decomposition was up to 60%, and the change of the remaining mass was very slow in the second year. The time of 50% and 95% mass loss of fine roots was 1.20 and 5.17 years, respectively, under the conditions of no addition N input. In general, decomposition rates were underestimated using negative exponential model. Simulated N deposition significantly inhibited the decomposition of fine roots. The remaining mass in the high nitrogen treatment was 51.0% higher than that in the control, after two years of decomposition. Simulated N deposition increased C, P and K contents in the remaining mass of litter. Compared with the control, soil pH decreased significantly in the medium and high nitrogen treatments, soil organic C, total N, ammonium and nitrate contents and fine root biomass of P. amarus increased significantly in the high nitrogen treatment after simulated N deposition for 4. 5 years. Key words: nitrogen deposition; fine root decomposition; Pleioblastus amarus.

  6. [Fine root production in initial stage of Castanopsis carlesii under different regeneration modes in Sanming, Fujian Province, China].

    PubMed

    Hu, Shuang-chen; Xiong, De-cheng; Huang, Jin-xue; Deng, Fei; Chen, Yun-yu; Liu, Xiao-fei; Chen, Guang-shui

    2015-11-01

    Fine root biomass and production in initial stage of three different regeneration approaches, i.e., natural regeneration with anthropogenic promotion (AR) , the Castanopsis carlesii plantation ( CC) and the Cunninghamia lanceolata plantation ( CL) on the clear-cutting sites of the secondary forest of C. carlesii (CK), in Sanming, Fujian Province, were investigated by using both minrhizotrons and the soil coring methods. The results of a year observation showed that the average fine root biomass was 422.5, 253.1, 197.2 and 162.8 g · m(-2), and the fine root production was 284.0, 182.6, 136.7 and 15.4 g · m(-2) · a(-1) for AR, CC, CL and CK, respectively. The maximum value of production was found in spring for AR and CC, in autumn for CL, and in winter for CK. Fine root production of other plants was higher than that of target tree species in CC, and vice verse in CL. There was a significant positive correlation between monthly fine root production and monthly precipitation in AR and CC. Significant positive correlation was found between monthly fine root production of other plants and monthly temperature in CL. The fine root under annual production and annual average biomass of these three young forests mainly distributed in the soil layer of 20- 40 cm, and mainly in the diameter class of 0-1 mm. The study demonstrated that the biomass and production of fine root under anthropogenic promotion were greater than that of the plantation, and the method of anthropogenic promotion were more conducive to increase the returning of organic matter, improve soil fertility, and maintain a high productivity in initial stage of forest regeneration.

  7. Functional genomics of root growth and development in Arabidopsis

    PubMed Central

    Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N.

    2009-01-01

    Summary Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal. PMID:19117793

  8. Plant development in space: Observations on root formation and growth

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Kann, R. P.; Krikorian, Abraham D.

    1990-01-01

    Root growth in space is discussed and observations on root production from plants flown as part of the Chromex project that were defined as to their origin, stage of development and physiological status, are presented. Roots were generated from fully differentiated, aseptically maintained individuals of Haplopappus gracilis (Compositae) under spaceflight conditions. Results are compared for tissue culture generated plantlets and comparably sized seedling clone individuals, both of which had their roots trimmed on Earth before they were loaded into NASA's plant growth unit and subjected to a 5 day shuttle flight (STS-29). Asepsis was maintained throughout the experiment. Overall root production was 40 to 50 percent greater under spaceflight conditions than during ground control tests. However, root formation slowed down towards the end of the flight. This decrease in new roots did not occur in the ground controls that sought to simulate flight except for microgravity.

  9. Plant development in space: Observations on root formation and growth

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Kann, R. P.; Krikorian, Abraham D.

    1990-01-01

    Root growth in space is discussed and observations on root production from plants flown as part of the Chromex project that were defined as to their origin, stage of development and physiological status, are presented. Roots were generated from fully differentiated, aseptically maintained individuals of Haplopappus gracilis (Compositae) under spaceflight conditions. Results are compared for tissue culture generated plantlets and comparably sized seedling clone individuals, both of which had their roots trimmed on Earth before they were loaded into NASA's plant growth unit and subjected to a 5 day shuttle flight (STS-29). Asepsis was maintained throughout the experiment. Overall root production was 40 to 50 percent greater under spaceflight conditions than during ground control tests. However, root formation slowed down towards the end of the flight. This decrease in new roots did not occur in the ground controls that sought to simulate flight except for microgravity.

  10. Cytokinin and growth of excised roots of Bryophyllum calycinum.

    PubMed

    Robbins, W J; Hervey, A

    1971-02-01

    Excised roots of Bryophyllum calycinum require for growth both auxin and cytokinin. This is demonstrated by the poor growth of 2-mm root tips in a basal medium of mineral salts, sucrose, and vitamins supplemented with either an auxin or a cytokinin, and much better growth when the basal medium is supplemented with both auxin and cytokinin. However, both substances are synthesized by the root, as is demonstrated by the growth of large inocula (dry wt 6-7 mg) through many successive passages in a medium limited to mineral salts, sugar, and vitamins.

  11. Cytokinin and Growth of Excised Roots of Bryophyllum calycinum

    PubMed Central

    Robbins, William J.; Hervery, Annette

    1971-01-01

    Excised roots of Bryophyllum calycinum require for growth both auxin and cytokinin. This is demonstrated by the poor growth of 2-mm root tips in a basal medium of mineral salts, sucrose, and vitamins supplemented with either an auxin or a cytokinin, and much better growth when the basal medium is supplemented with both auxin and cytokinin. However, both substances are synthesized by the root, as is demonstrated by the growth of large inocula (dry wt 6-7 mg) through many successive passages in a medium limited to mineral salts, sugar, and vitamins. Images PMID:5277083

  12. [Woody plant fine root biomass and its spatial distribution in top soil of broad-leaved Korean pine forest in Changbai Mountain].

    PubMed

    Wang, Shu-Tang; Han, Shi-Jie; Zhang, Jun-Hui; Wang, Cun-Guo; Xu, Yuan; Li, Xue-Feng; Wang, Shu-Qi

    2010-03-01

    Geostatistic method was applied to study the spatial distribution of woody plant fine root biomass in a natural broad-leaved Korean pine (Pinus koraiensis) mixed forest soil in Changbai Mountain. The investigation was carried out in three selected plots, sized 50 m x 50 m, in 2008. In the three plots, the living fine root biomass in surface soil (0-20 cm) was 3.195, 1.930, and 2.085 t x hm(-2), and the dead fine root biomass was 0.971 0.581, and 0.790 t x hm(-2), respectively. In 0-10 cm soil layer, the living fine root biomass had no correlation with the dead fine root biomass; but in 10-20 cm soil layer, a significant positive correlation was found between them (r = 0.352, P < 0.05). The variograms of living fine root biomass and dead fine root biomass could be well fitted by spherical model. Spatial variation explained more than 70% of the total variance of fine root biomass across three plots. The regressed ranges were 5.2, 14. 6, and 9.8 m for living fine root biomass, and 4.3, 20.4, and 20.1 m for dead fine root biomass in plots 1, 2, and 3, respectively. For comparison, Bayesian method was also used to estimate the ranges for the fine root biomass. The results obtained by geostatistic method and Bayesian method were consistent with each other.

  13. Effects of elevated CO2 on fine root dynamics in a Mojave Desert community: A FACE study

    USGS Publications Warehouse

    Phillips, D.L.; Johnson, M.G.; Tingey, D.T.; Catricala, C.E.; Hoyman, T.L.; Nowak, R.S.

    2006-01-01

    Fine roots (??? 1mm diameter) are critical in plant water and nutrient absorption, and it is important to understand how rising atmospheric CO2 will affect them as part of terrestrial ecosystem responses to global change. This study's objective was to determine effects of elevated CO2 on production, mortality, and standing crops of fine root length over 2 years in a free-air CO2 enrichment (FACE) facility in the Mojave Desert of southern Nevada, USA. Three replicate 25m diameter FACE rings were maintained at ambient (??? 370 ??mol mol-1) and elevated CO2 (??? 550 ??mol mol-1) atmospheric concentrations. Twenty-eight minirhizotron tubes were placed in each ring to sample three microsite locations: evergreen Larrea shrubs, drought-deciduous Ambrosia shrubs, and along systematic community transects (primarily in shrub interspaces which account for ??? 85% of the area). Seasonal dynamics were similar for ambient and elevated CO2: fine root production peaked in April-June, with peak standing crop occurring about 1 month later, and peak mortality occurring during the hot summer months, with higher values for all three measures in a wet year compared with a dry year. Fine root standing crop, production, and mortality were not significantly different between treatments except standing crop along community transects, where fine root length was significantly lower in elevated CO2. Fine root turnover (annual cumulative mortality/mean standing crop) ranged from 2.33 to 3.17 year-1, and was not significantly different among CO2 treatments, except for community transect tubes where it was significantly lower for elevated CO2. There were no differences in fine root responses to CO2 between evergreen (Larrea) and drought-deciduous (Ambrosia) shrubs. Combined with observations of increased leaf-level water-use efficiency and lack of soil moisture differences, these results suggest that under elevated CO2 conditions, reduced root systems (compared with ambient CO2) appear sufficient

  14. Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure

    SciTech Connect

    Andersen, C.P.; Hogsett, W.E.; Wessling, R.; Plocher, M.

    1991-01-01

    Storage carbohydrates are extremely important for new shoot and root development following dormancy or during periods of high stress. The hypothesis that ozone decreases carbohydrate storage and decreases new root growth during the year following exposure was investigated. The results suggest that (1) ponderosa pine seedlings exposed to 122 and 169 ppm hrs ozone for one season have significantly less root starch reserves available just prior to and during bud break the following year, and (2) spring root growth is decreased following ozone exposure. The carry-over effects of ozone stress may be important in long-lived perennial species which are annually subjected to ozone.

  15. Effects of microgravity on the growth of Lepidium roots.

    PubMed

    Antonsen, F; Johnsson, A

    1998-10-01

    The normal growth dynamics of plant roots is partly controlled by the gravitational force. In order to study the detailed growth behavior in absence of gravity, the growth of Lepidium sativum roots was recorded by time lapse photography at 1h intervals in a Spacelab ESA-experiment (IML-2). Plants were germinated and kept in microgravity during the experiments, while control roots were at 1 g with normal static gravistimulation. Extended image analyses allowed new information to be achieved about movements of all parts of the roots, extending earlier published results. Root contours were extracted from the images and divided into 0.6mm segments. Deviation angles were calculated for each root segment, both for the first 8-10 h (phase I) and for the last 6-8 h of the experiment (phase II). For phase I, the present analysis confirmed that the average square deviation increased linearly with time for roots in microgravity, while for roots under 1 g conditions it stayed constant. This was consistent with a random walk hypothesis for the bending pattern. In phase II, roots in microgravity stopped their spontaneous curvatures and showed more straight growth or even diminished the root curvatures that had occurred during phase I. Thus, the growth is distinctly different in the two phases and is thought to be controlled by autotropic reactions in phase II. Root hairs developed when the roots passed into phase II. During phase I, the root growth rates were equal in microgravity and on the ground (0.50 mm h-1 with SE 0.04 and 0.51 mm h-1 with SE 0.03, respectively). In phase II the growth rate on the ground was higher than in microgravity (1.44 mm h-1 with SE 0.10 and 1.07 mm h-1 with SE 0.04 in microgravity). Microgravity conditions, therefore, clearly affect Lepidium root growth: In phase I the bending pattern is random in contrast to the normal straight growth under 1g. In phase II the growth rate is reduced, as compared to the growth rate under 1 g.

  16. Combining stable isotope and carbohydrate analyses in phloem sap and fine roots to study seasonal changes of source-sink relationships in a Mediterranean beech forest.

    PubMed

    Scartazza, Andrea; Moscatello, Stefano; Matteucci, Giorgio; Battistelli, Alberto; Brugnoli, Enrico

    2015-08-01

    Carbon isotope composition (δ(13)C) and carbohydrate content of phloem sap and fine roots were measured in a Mediterranean beech (Fagus sylvatica L.) forest throughout the growing season to study seasonal changes of source-sink relationships. Seasonal variations of δ(13)C and content of phloem sap sugars, collected during the daylight period, reflected the changes in soil and plant water status. The correlation between δ(13)C and content of phloem sap sugars, collected from plants belonging to different social classes, was significantly positive only during the driest month of July. In this month, δ(13)C of phloem sap sugars was inversely related to the increment of trunk radial growth and positively related to δ(13)C of fine roots. We conclude that the relationship between δ(13)C and the amount of phloem sap sugars is affected by a combination of causes, such as sink strength, tree social class, changes in phloem anatomy and transport capacity, and phloem loading of sugars to restore sieve tube turgor following the reduced plant water potential under drought conditions. However, δ(13)C and sugar composition of fine roots suggested that phloem transport of leaf sucrose to this belowground component was not impaired by mild drought and that sucrose was in a large part allocated towards fine roots in July, depending on tree social class. Hence, fine roots could represent a functional carbon sink during the dry seasonal periods, when transport and use of assimilates in other sink tissues are reduced. These results indicate a strict link between above- and belowground processes and highlight a rapid response of this Mediterranean forest to changes in environmental drivers to regulate source-sink relationships and carbon sink capacity.

  17. Influence of Root Diameter and Soil Depth on the Xylem Anatomy of Fine- to Medium-Sized Roots of Mature Beech Trees in the Top- and Subsoil.

    PubMed

    Kirfel, Kristina; Leuschner, Christoph; Hertel, Dietrich; Schuldt, Bernhard

    2017-01-01

    Despite their importance for water uptake and transport, the xylem anatomical and hydraulic properties of tree roots have only rarely been studied in the field. We measured mean vessel diameter (D), vessel density (VD), relative vessel lumen area (lumen area per xylem area) and derived potential hydraulic conductivity (Kp) in the xylem of 197 fine- to medium-diameter roots (1-10 mm) in the topsoil and subsoil (0-200 cm) of a mature European beech forest on sandy soil for examining the influence of root diameter and soil depth on xylem anatomical and derived hydraulic traits. All anatomical and functional traits showed strong dependence on root diameter and thus root age but no significant relation to soil depth. Averaged over topsoil and deep soil and variable flow path lengths in the roots, D increased linearly with root diameter from ∼50 μm in the smallest diameter class (1-2 mm) to ∼70 μm in 6-7 mm roots (corresponding to a mean root age of ∼12 years), but remained invariant in roots >7 mm. D never exceeded ∼82 μm in the 1-10 mm roots, probably in order to control the risk of frost- or drought-induced cavitation. This pattern was overlain by a high variability in xylem anatomy among similar-sized roots with Kp showing a higher variance component within than between root diameter classes. With 8% of the roots exceeding average Kp in their diameter class by 50-700%, we obtained evidence of the existence of 'high-conductivity roots' indicating functional differentiation among similar-sized roots. We conclude that the hydraulic properties of small to medium diameter roots of beech are mainly determined by root age, rendering root diameter a suitable predictor of hydraulic functioning, while soil depth - without referring to path length - had a negligible effect.

  18. Exogenous nitrate induces root branching and inhibits primary root growth in Capsicum chinense Jacq.

    PubMed

    Celis-Arámburo, Teresita de Jesús; Carrillo-Pech, Mildred; Castro-Concha, Lizbeth A; Miranda-Ham, María de Lourdes; Martínez-Estévez, Manuel; Echevarría-Machado, Ileana

    2011-12-01

    The effects of nitrate (NO₃⁻) on the root system are complex and depend on several factors, such as the concentration available to the plant, endogenous nitrogen status and the sensitivity of the species. Though these effects have been widely documented on Arabidopsis and cereals, no reports are available in the Capsicum genus. In this paper, we have determined the effect of an exogenous in vitro application of this nutrient on root growth in habanero pepper (Capsicum chinense Jacq.). Exposure to NO₃⁻ inhibited primary root growth in both, dose- and time-dependent manners. The highest inhibition was attained with 0.1 mM NO₃⁻ between the fourth and fifth days of treatment. Inhibition of primary root growth was observed by exposing the root to both homogeneous and heterogeneous conditions of the nutrient; in contrast, ammonium was not able to induce similar changes. NO₃⁻-induced inhibition of primary root growth was reversed by treating the roots with IAA or NPA, a polar auxin transport inhibitor. Heterogeneous NO₃⁻ application stimulated the formation and elongation of lateral roots in the segment where the nutrient was present, and this response was influenced by exogenous phytohormones. These results demonstrate that habanero pepper responds to NO₃⁻ in a similar fashion to other species with certain particular differences. Therefore, studies in this model could help to elucidate the mechanisms by which roots respond to NO₃⁻ in fluctuating soil environments.

  19. Use of Stored Carbon Reserves in Growth of Temperate Tree Roots and Leaf Buds: Analyses Using Radiocarbon Measurements and Modeling

    SciTech Connect

    Gaudinski, Julia B.; Torn, Margaret S.; Riley, W. J.; Swanston, Christopher W.; Trumbore, Susan E.; JoslinJr., John D.; Majdi, H; Dawson, Todd E.; Hanson, Paul J

    2009-01-01

    Characterizing the use of C reserves in trees is important for understanding stress responses, impacts of asynchrony between photosynthesis and growth demand, and isotopic exchanges in plant dynamic studies. Using an inadvertent, whole ecosystem radiocarbon (14C) exposure in a temperate deciduous oak forest and numerical modeling, we calculated that the mean age of stored C used to grow leaf buds and new fine root tissue is 0.5-1.0 y. The mean age of stored C used to grow new roots was about 0.7 y across a range of realistic values of 14C inputs to the system. The amount of stored C used on an annual basis to grow fine roots was between 15 and 55% of total root growth, with the range defined by the assumed 14C input profile. We estimate the annually-averaged mean age of C in new root tissues is 1-5 months. Therefore, accounting for storage C use in isotope root models may be unnecessary in all but the fastest cycling root populations (i.e., mean age <1 y). Consistent with the whole ecosystem labeling results, we found, using "bomb-14C," that the mean C age of new root tissues in three additional forest sites (one deciduous, two coniferous) was less than 2 years. We conclude that in many ecosystem types, growth from stored C is insufficient to impact bomb-14C based estimates of long root lifetimes.

  20. Root growth during molar eruption in extant great apes.

    PubMed

    Kelley, Jay; Dean, Christopher; Ross, Sasha

    2009-01-01

    While there is gradually accumulating knowledge about molar crown formation and the timing of molar eruption in extant great apes, very little is known about root formation during the eruption process. We measured mandibular first and second molar root lengths in extant great ape osteological specimens that died while either the first or second molars were in the process of erupting. For most specimens, teeth were removed so that root lengths could be measured directly. When this was not possible, roots were measured radiographically. We were particularly interested in the variation in the lengths of first molar roots near the point of gingival emergence, so specimens were divided into early, middle and late phases of eruption based on the number of cusps that showed protein staining, with one or two cusps stained equated with immediate post-gingival emergence. For first molars at this stage, Gorilla has the longest roots, followed by Pongo and Pan. Variation in first molar mesial root lengths at this stage in Gorilla and Pan, which comprise the largest samples, is relatively low and represents no more than a few months of growth in both taxa. Knowledge of root length at first molar emergence permits an assessment of the contribution of root growth toward differences between great apes and humans in the age at first molar emergence. Root growth makes up a greater percentage of the time between birth and first molar emergence in humans than it does in any of the great apes.

  1. Seasonal Fine Root Carbohydrate Relations of Plantation Loblolly Pine After Thinning

    Treesearch

    Mary A. Sword; Eric A. Kuehler; Zhenmin Tang

    2000-01-01

    Loblolly pine (Pinus taeda L.) occurs naturally on soils that are frequently low in fertility and water availability (Allen et al., 1990; Schultz 1997). Despite these limitations, this species maintains a high level of productivity on most sites (Schultz, 1997). Knowledge of plantation loblolly pine root system growth and physiology is needed to...

  2. Biomass and morphology of fine roots in temperate broad-leaved forests differing in tree species diversity: is there evidence of below-ground overyielding?

    PubMed

    Meinen, Catharina; Hertel, Dietrich; Leuschner, Christoph

    2009-08-01

    Biodiversity effects on ecosystem functioning in forests have only recently attracted increasing attention. The vast majority of studies in forests have focused on above-ground responses to differences in tree species diversity, while systematic analyses of the effects of biodiversity on root systems are virtually non-existent. By investigating the fine root systems in 12 temperate deciduous forest stands in Central Europe, we tested the hypotheses that (1) stand fine root biomass increases with tree diversity, and (2) 'below-ground overyielding' of species-rich stands in terms of fine root biomass is the consequence of spatial niche segregation of the roots of different species. The selected stands represent a gradient in tree species diversity on similar bedrock from almost pure beech forests to medium-diverse forests built by beech, ash, and lime, and highly-diverse stands dominated by beech, ash, lime, maple, and hornbeam. We investigated fine root biomass and necromass at 24 profiles per stand and analyzed species differences in fine root morphology by microscopic analysis. Fine root biomass ranged from 440 to 480 g m(-2) in the species-poor to species-rich stands, with 63-77% being concentrated in the upper 20 cm of the soil. In contradiction to our two hypotheses, the differences in tree species diversity affected neither stand fine root biomass nor vertical root distribution patterns. Fine root morphology showed marked distinctions between species, but these root morphological differences did not lead to significant differences in fine root surface area or root tip number on a stand area basis. Moreover, differences in species composition of the stands did not alter fine root morphology of the species. We conclude that 'below-ground overyielding' in terms of fine root biomass does not occur in the species-rich stands, which is most likely caused by the absence of significant spatial segregation of the root systems of these late-successional species.

  3. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.

    PubMed

    Xu, Liangzheng; Niu, Junfang; Li, Chunjian; Zhang, Fusuo

    2009-07-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  4. Impact of treated wastewater on growth, respiration and hydraulic conductivity of citrus root systems in light and heavy soils.

    PubMed

    Paudel, Indira; Cohen, Shabtai; Shaviv, Avi; Bar-Tal, Asher; Bernstein, Nirit; Heuer, Bruria; Ephrath, Jhonathan

    2016-06-01

    Roots interact with soil properties and irrigation water quality leading to changes in root growth, structure and function. We studied these interactions in an orchard and in lysimeters with clay and sandy loam soils. Minirhizotron imaging and manual sampling showed that root growth was three times lower in the clay relative to sandy loam soil. Treated wastewater (TWW) led to a large reduction in root growth with clay (45-55%) but not with sandy loam soil (<20%). Treated wastewater increased salt uptake, membrane leakage and proline content, and decreased root viability, carbohydrate content and osmotic potentials in the fine roots, especially in clay. These results provide evidence that TWW challenges and damages the root system. The phenology and physiology of root orders were studied in lysimeters. Soil type influenced diameter, specific root area, tissue density and cortex area similarly in all root orders, while TWW influenced these only in clay soil. Respiration rates were similar in both soils, and root hydraulic conductivity was severely reduced in clay soil. Treated wastewater increased respiration rate and reduced hydraulic conductivity of all root orders in clay but only of the lower root orders in sandy loam soil. Loss of hydraulic conductivity increased with root order in clay and clay irrigated with TWW. Respiration and hydraulic properties of all root orders were significantly affected by sodium-amended TWW in sandy loam soil. These changes in root order morphology, anatomy, physiology and hydraulic properties indicate rapid and major modifications of root systems in response to differences in soil type and water quality.

  5. Root morphology and growth of bare-root seedlings of Oregon white oak

    Treesearch

    Peter J. Gould; Constance A. Harrington

    2009-01-01

    Root morphology and stem size were evaluated as predictors of height and basal-area growth (measured at groundline) of 1-1 Oregon white oak (Quercus garryana Dougl. ex Hook.) seedlings planted in raised beds with or without an additional irrigation treatment. Seedlings were classified into three root classes based on a visual assessment of the...

  6. Jatropha curcas L. Root Structure and Growth in Diverse Soils

    PubMed Central

    Valdés-Rodríguez, Ofelia Andrea; Sánchez-Sánchez, Odilón; Pérez-Vázquez, Arturo; Caplan, Joshua S.; Danjon, Frédéric

    2013-01-01

    Unlike most biofuel species, Jatropha curcas has promise for use in marginal lands, but it may serve an additional role by stabilizing soils. We evaluated the growth and structural responsiveness of young J. curcas plants to diverse soil conditions. Soils included a sand, a sandy-loam, and a clay-loam from eastern Mexico. Growth and structural parameters were analyzed for shoots and roots, although the focus was the plasticity of the primary root system architecture (the taproot and four lateral roots). The sandy soil reduced the growth of both shoot and root systems significantly more than sandy-loam or clay-loam soils; there was particularly high plasticity in root and shoot thickness, as well as shoot length. However, the architecture of the primary root system did not vary with soil type; the departure of the primary root system from an index of perfect symmetry was 14 ± 5% (mean ± standard deviation). Although J. curcas developed more extensively in the sandy-loam and clay-loam soils than in sandy soil, it maintained a consistent root to shoot ratio and root system architecture across all types of soil. This strong genetic determination would make the species useful for soil stabilization purposes, even while being cultivated primarily for seed oil. PMID:23844412

  7. Aspen Sucker Production and Growth from Outplanted Root Cuttings

    Treesearch

    Donald A. Perala

    1978-01-01

    Aspen suckers from 1-m-long root cuttings survived and grew better than those from 12.5-cm-long cuttings. Sucker survival and growth were also inversely related to parent root diameter. Discusses the practical implications for aspen management.

  8. Distinct Litter Stabilization Dynamics Pathways for Decomposition of Pine Needle and Fine Root Within Soil

    NASA Astrophysics Data System (ADS)

    Mambelli, S.; Filley, T. R.; Bird, J.; Dawson, T.; Torn, M. S.

    2008-12-01

    The chemical composition of litter imparts a strong control on the initial rates of microbial decay but it is unclear how plant chemistry influences the ultimate stabilization of soil organic matter (SOM) and the nature of the products stabilized. We determined the concentration and 13C enrichment of lignin phenols and substituted fatty acids (SFA) in SOM fractions from an experiment in which 13C- and 15N-labeled needles or fine roots were added to the mineral soil in a Ponderosa pine (Pinus ponderosa) forest in the Sierra Nevada, CA, USA. 1.5 y after litter addition, we analyzed bulk soil (< 2 mm), free light fraction (LF, mean residence time (MRT) ~5 y) and alkali/acid insoluble humin (MRT ~270 y) fractions. Needles contained nearly 2 and 3x the lignin and SFA content per organic carbon unit as did roots. Lignin and SFA decreased from the free LF to the bulk soil to the humin fraction; and molecular properties were more similar within a SOM fraction regardless of the litter source. However, LF and humin from the root addition contained more lignin than from the needle addition. Based upon the relative movement of litter-derived 13C and 15N into SOM fractions during 1.5 y, it was proposed that the 13C accumulation in the humin fraction for needles was derived from high C/N, needle-derived biopolymer molecular fragments that are surficially associated with particles. In contrast, the root-derived material entering SOM fractions was much lower in C/N and was likely from microbial by-products. Consistent with this hypothesis, both lignin and SFA in the LF and humin fractions amended with enriched needles were highly enriched (+ 30-60 permil) with respect to the SOM fractions from soils amended with roots. These differences were large even considering the lower concentration of SFA and lignin in root material. Although the chemistry and MRT of LF and humin were dramatically different, the extent of 13C-enrichment among lignin and SFA were comparable for the needle

  9. Arabidopsis thaliana root growth kinetics and lunisolar tidal acceleration.

    PubMed

    Fisahn, Joachim; Yazdanbakhsh, Nima; Klingele, Emile; Barlow, Peter

    2012-07-01

    • All living organisms on Earth are continually exposed to diurnal variations in the gravitational tidal force due to the Sun and Moon. • Elongation of primary roots of Arabidopsis thaliana seedlings maintained at a constant temperature was monitored for periods of up to 14 d using high temporal- and spatial-resolution video imaging. The time-course of the half-hourly elongation rates exhibited an oscillation which was maintained when the roots were placed in the free-running condition of continuous illumination. • Correlation between the root growth kinetics collected from seedlings initially raised under several light protocols but whose roots were subsequently in the free-running condition and the lunisolar tidal profiles enabled us to identify that the latter is the probable exogenous determinant of the rhythmic variation in root elongation rate. Similar observations and correlations using roots of Arabidopsis starch mutants suggest a central function of starch metabolism in the response to the lunisolar tide. The periodicity of the lunisolar tidal signal and the concomitant adjustments in root growth rate indicate that an exogenous timer exists for the modulation of root growth and development. • We propose that, in addition to the sensitivity to Earthly 1G gravity, which is inherent to all animals and plants, there is another type of responsiveness which is attuned to the natural diurnal variations of the lunisolar tidal force.

  10. Root growth and development in response to CO2 enrichment

    NASA Technical Reports Server (NTRS)

    Day, Frank P., Jr.

    1994-01-01

    A non-destructive technique (minirhizotron observation tubes) was used to assess the effects of CO2 enrichment on root growth and development in experimental plots in a scrub oak-palmetto community at the Kennedy Space Center. Potential effects of CO2 enrichment on plants have a global significance in light of concerns over increasing CO2 concentrations in the Earth's atmosphere. The study at Kennedy Space Center focused on aboveground physiological responses (photosynthetic efficiency and water use efficiency), effects on process rates (litter decomposition and nutrient turnover), and belowground responses of the plants. Belowground dynamics are an exceptionally important component of total plant response but are frequently ignored due to methodological difficulties. Most methods used to examine root growth and development are destructive and, therefore, severely compromise results. Minirhizotrons allow nondestructive observation and quantification of the same soil volume and roots through time. Root length density and root phenology were evaluated for CO2 effects with this nondestructive technique.

  11. Growth and development of the root apical meristem.

    PubMed

    Perilli, Serena; Di Mambro, Riccardo; Sabatini, Sabrina

    2012-02-01

    A key question in plant developmental biology is how cell division and cell differentiation are balanced to modulate organ growth and shape organ size. In recent years, several advances have been made in understanding how this balance is achieved during root development. In the Arabidopsis root meristem, stem cells in the apical region of the meristem self-renew and produce daughter cells that differentiate in the distal meristem transition zone. Several factors have been implicated in controlling the different functional zones of the root meristem to modulate root growth; among these, plant hormones have been shown to play a main role. In this review, we summarize recent findings regarding the role of hormone signaling and transcriptional networks in regulating root development.

  12. Genetic improvement for root growth angle to enhance crop production

    PubMed Central

    Uga, Yusaku; Kitomi, Yuka; Ishikawa, Satoru; Yano, Masahiro

    2015-01-01

    The root system is an essential organ for taking up water and nutrients and anchoring shoots to the ground. On the other hand, the root system has rarely been regarded as breeding target, possibly because it is more laborious and time-consuming to evaluate roots (which require excavation) in a large number of plants than aboveground tissues. The root growth angle (RGA), which determines the direction of root elongation in the soil, affects the area in which roots capture water and nutrients. In this review, we describe the significance of RGA as a potential trait to improve crop production, and the physiological and molecular mechanisms that regulate RGA. We discuss the prospects for breeding to improve RGA based on current knowledge of quantitative trait loci for RGA in rice. PMID:26069440

  13. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height.

    PubMed

    Li, Zhaoxia; Zhang, Xinrui; Zhao, Yajie; Li, Yujie; Zhang, Guangfeng; Peng, Zhenghua; Zhang, Juren

    2017-05-12

    Maize is a globally important food, feed crop and raw material for the food and energy industry. Plant architecture optimization plays important roles in maize yield improvement. PIN-FORMED (PIN) proteins are important for regulating auxin spatiotemporal asymmetric distribution in multiple plant developmental processes. In this study, ZmPIN1a overexpression in maize increased the number of lateral roots and inhibited their elongation, forming a developed root system with longer seminal roots and denser lateral roots. ZmPIN1a overexpression reduced plant height, internode length and ear height. This modification of the maize phenotype increased the yield under high-density cultivation conditions, and the developed root system improved plant resistance to drought, lodging and a low-phosphate environment. IAA concentration, transport capacity determination and application of external IAA indicated that ZmPIN1a overexpression led to increased IAA transport from shoot to root. The increase in auxin in the root enabled the plant to allocate more carbohydrates to the roots, enhanced the growth of the root and improved plant resistance to environmental stress. These findings demonstrate that maize plant architecture can be improved by root breeding to create an ideal phenotype for further yield increases. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Contrasts between whole-plant and local nutrient levels determine root growth and death in Ailanthus altissima (Simaroubaceae).

    PubMed

    Hu, Fengqin; Mou, Paul P; Weiner, Jacob; Li, Shuo

    2014-05-01

    • There is an ongoing debate about the importance of whole-plant control vs. local modular mechanisms for root growth. We conducted a split-root experiment with different patch/background levels of nitrogen to examine whether local root growth and death are controlled by local resource levels or at the whole-plant level.• Three microrhizotrons with 0, 10, and 100 µg N/g growth medium levels (74 g growth medium each) were attached to pots of high or low soil N in which one Ailanthus altissima individual was growing. One fine root was guided into each of the microrhizotrons and photographed every 4 d. Plants were harvested after 28 d; root growth and mortality in the microrhizotrons were recorded. Changes in root length, number of laterals, and interlateral length were determined from the photos and analyzed.• While overall plant growth was influenced by background N level, both patch and background N levels influenced root growth and mortality in patches. Local roots proliferated most when the patch N level was high and background level low, and they proliferated least and showed highest mortality when patch N was low and the background level high.• The fate of roots growing in a patch is influenced by the resource environment of the plant's other roots as well as the resource levels in the patch itself. Thus, the growth and death of roots in patches is determined by both modular and whole-plant mechanisms. © 2014 Botanical Society of America, Inc.

  15. High-throughput phenotyping of root growth dynamics.

    PubMed

    Yazdanbakhsh, Nima; Fisahn, Joachim

    2012-01-01

    Plant organ phenotyping by noninvasive video imaging techniques provides a powerful tool to assess physiological traits, circadian and diurnal rhythms, and biomass production. In particular, growth of individual plant organs is known to exhibit a high plasticity and occurs as a result of the interaction between various endogenous and environmental processes. Thus, any investigation aiming to unravel mechanisms that determine plant or organ growth has to accurately control and document the environmental growth conditions. Here we describe challenges in establishing a recently developed plant root monitoring platform (PlaRoM) specially suited for noninvasive high-throughput plant growth analysis with highest emphasis on the detailed documentation of capture time, as well as light and temperature conditions. Furthermore, we discuss the experimental procedure for measuring root elongation kinetics and key points that must be considered in such measurements. PlaRoM consists of a robotized imaging platform enclosed in a custom designed phytochamber and a root extension profiling software application. This platform has been developed for multi-parallel recordings of root growth phenotypes of up to 50 individual seedlings over several days, with high spatial and temporal resolution. Two Petri dishes are mounted on a vertical sample stage in a custom designed phytochamber that provides exact temperature control. A computer-controlled positioning unit moves these Petri dishes in small increments and enables continuous screening of the surface under a binocular microscope. Detection of the root tip is achieved by applying thresholds on image pixel data and verifying the neighbourhood for each dark pixel. The growth parameters are visualized as position over time or growth rate over time graphs and averaged over consecutive days, light-dark periods and 24 h day periods. This setup enables the investigation of root extension profiles of different genotypes in various growth

  16. Incorporation and remobilization of ¹³C within the fine-root systems of individual Abies alba trees in a temperate coniferous stand.

    PubMed

    Endrulat, Tina; Saurer, Matthias; Buchmann, Nina; Brunner, Ivano

    2010-12-01

    Forest ecosystems have a large carbon (C) storage capacity, which depends on their productivity and the residence time of C. Therefore, the time interval between C assimilation and its return to the atmosphere is an important parameter for determining C storage. Especially fine roots (≤2 mm in diameter) undergo constant replacement and provide a large biomass input to the soil. In this study, we aimed to determine the residence time of C in living fine roots and the decomposition rates of dead fine roots. Therefore, we pulse-labelled nine 20-year-old individual silver fir trees (Abies alba Miller; ∼70 cm tall) with ¹³CO₂ in situ to trace the assimilated C over time into the fine-root systems. Whole trees were harvested at different time points after labelling in autumn, biomass was determined and cellulose and starch of fine roots were extracted. Moreover, soil cores were taken and ingrowth cores installed, in which fine roots were genetically identified, to assess incorporation and remobilization of ¹³C in the fine roots of silver fir trees; litterbags were used to determine fine-root decomposition rates. The ¹³C label was incorporated in the fine-root system as cellulose within 3 days, with highest values after 30 days, before reaching background levels after 1 year. The highest δ¹³C values were found in starch throughout the experiment. ¹³C recovery and carbon mean residence times did not differ significantly among fine-root diameter classes, indicating size-independent C turnover times in fine roots of A. alba trees of ∼219 days. Furthermore, carbon was remobilized from starch into newly grown fine roots in the next spring after our autumn labelling. One year after installation, litterbags with fine roots revealed a decrease of biomass of ∼40% with relative ¹³C content in fine-root bulk biomass and cellulose of ∼50%, indicating a faster loss of ¹³C-labelled compounds compared with bulk biomass. Our results also suggest that genetic

  17. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots

    NASA Astrophysics Data System (ADS)

    Sweet, M. J.; Singleton, I.

    2015-11-01

    Soil contamination by silver nanoparticles (AgNP) is of potential environmental concern but little work has been carried out on the effect of such contamination on ectomycorrhizal fungi (EMF). EMF are essential to forest ecosystem functions as they are known to enhance growth of trees by nutrient transfer. In this study, soil was experimentally contaminated with AgNP (0, 350 and 790 mg Ag/kg) and planted with Bishop pine seedlings. The effect of AgNP was subsequently measured, assessing variation in pine growth and ectomycorrhizal diversity associated with the root system. After only 1 month, the highest AgNP level had significantly reduced the root length of pine seedlings, which in turn had a small effect on above ground plant biomass. However, after 4 months growth, both AgNP levels utilised had significantly reduced both pine root and shoot biomass. For example, even the lower levels of AgNP (350 mg Ag/kg) soil, reduced fresh root biomass by approximately 57 %. The root systems of the plants grown in AgNP-contaminated soils lacked the lateral and fine root development seen in the control plants (no AgNP). Although, only five different genera of EMF were found on roots of the control plants, only one genus Laccaria was found on roots of plants grown in soil containing 350 mg AgNP/kg. At the higher levels of AgNP contamination, no EMF were observed. Furthermore, extractable silver was found in soils containing AgNP, indicating potential dissolution of silver ions (Ag+) from the solid AgNP.

  18. Mixing Eucalyptus and Acacia trees leads to fine root over-yielding and vertical segregation between species.

    PubMed

    Laclau, Jean-Paul; Nouvellon, Yann; Reine, Caroline; Gonçalves, José Leonardo de Moraes; Krushe, Alex Vladimir; Jourdan, Christophe; le Maire, Guerric; Bouillet, Jean-Pierre

    2013-07-01

    The consequences of diversity on belowground processes are still poorly known in tropical forests. The distributions of very fine roots (diameter <1 mm) and fine roots (diameter <3 mm) were studied in a randomized block design close to the harvest age of fast-growing plantations. A replacement series was set up in Brazil with mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and a mixture with the same stocking density and 50% of each species (50A:50E). The total fine root (FR) biomass down to a depth of 2 m was about 27% higher in 50A:50E than in 100A and 100E. Fine root over-yielding in 50A:50E resulted from a 72 % rise in E. grandis fine root biomass per tree relative to 100E, whereas A. mangium FR biomass per tree was 17% lower than in 100A. Mixing A. mangium with E. grandis trees led to a drop in A. mangium FR biomass in the upper 50 cm of soil relative to 100A, partially balanced by a rise in deep soil layers. Our results highlight similarities in the effects of directional resources on leaf and FR distributions in the mixture, with A. mangium leaves below the E. grandis canopy and a low density of A. mangium fine roots in the resource-rich soil layers relative to monospecific stands. The vertical segregation of resource-absorbing organs did not lead to niche complementarity expected to increase the total biomass production.

  19. Helical growth trajectories in plant roots interacting with stiff barriers

    NASA Astrophysics Data System (ADS)

    Gerbode, Sharon; Noar, Roslyn; Harrison, Maria

    2009-03-01

    Plant roots successfully navigate heterogeneous soil environments with varying nutrient and water concentrations, as well as a variety of stiff obstacles. While it is thought that the ability of roots to penetrate into a stiff lower soil layer is important for soil erosion, little is known about how a root actually responds to a rigid interface. We have developed a laser sheet imaging technique for recording the 3D growth dynamics of plant roots interacting with stiff barriers. We find that a root encountering an angled interface does not grow in a straight line along the surface, but instead follows a helical trajectory. These experiments build on the pioneering studies of roots grown on a tilted 2D surface, which reported ``root waving,'' a similar curved pattern thought to be caused by the root's sensitivity to both gravity and the rigid surface on which it is grown. Our measurements extend these results to the more physiologically relevant case of 3D growth, where the spiral trajectory can be altered by tuning the relative strengths of the gravity and touch stimuli, providing some intuition for the physical mechanism driving it.

  20. Radial force development during root growth measured by photoelasticity

    NASA Astrophysics Data System (ADS)

    Kolb, Evelyne; Hartmann, Christian; Genet, Patricia

    2012-02-01

    The mechanical and topological properties of a soil like the global porosity and the distribution of void sizes greatly affect the development of a plant root, which in turn affects the shoot development. In particular, plant roots growing in heterogeneous medium like sandy soils or cracked substrates have to adapt their morphology and exert radial forces depending on the pore size in which they penetrate. We propose a model experiment in which a pivot root (chick-pea seeds) of millimetric diameter has to grow in a size-controlled gap δ (δ ranging 0.5-2.3 mm) between two photoelastic grains. By time-lapse imaging, we continuously monitored the root growth and the development of optical fringes in the photoelastic neighbouring grains when the root enters the gap. Thus we measured simultaneously and in situ the root morphological changes (length and diameter growth rates, circumnutation) as well as the radial forces the root exerts. Radial forces were increasing in relation with gap constriction and experiment duration but a levelling of the force was not observed, even after 5 days and for narrow gaps. The inferred mechanical stress was consistent with the turgor pressure of compressed cells. Therefore our set-up could be a basis for testing mechanical models of cellular growth.

  1. Montane forest root growth and soil organic layer depth as potential factors stabilizing Cenozoic global change

    NASA Astrophysics Data System (ADS)

    Doughty, Christopher E.; Taylor, Lyla L.; Girardin, Cecile A. J.; Malhi, Yadvinder; Beerling, David J.

    2014-02-01

    Tree roots and their symbiotic fungal partners are believed to play a major role in regulating long-term global climate, but feedbacks between global temperature and biotic weathering have not yet been explored in detail. In situ field data from a 3000 m altitudinal transect in Peru show fine root growth decreases and organic layer depth increases with the cooler temperatures that prevail at increased altitude. We hypothesize that this observation suggests a negative feedback: as global temperatures rise, the soil organic layer will shrink, and more roots will grow in the mineral layer, thereby accelerating weathering and reducing atmospheric CO2. We examine this mechanism with a process-based biological weathering model and demonstrate that this negative feedback could have contributed to moderating long-term global Cenozoic climate during major Cenozoic CO2 changes linked to volcanic degassing and tectonic uplift events.

  2. Impact of tapping and soil water status on fine root dynamics in a rubber tree plantation in Thailand

    PubMed Central

    Chairungsee, Naruenat; Gay, Frederic; Thaler, Philippe; Kasemsap, Poonpipope; Thanisawanyangkura, Sornprach; Chantuma, Arak; Jourdan, Christophe

    2013-01-01

    Fine roots (FR) play a major role in the water and nutrient uptake of plants and contribute significantly to the carbon and nutrient cycles of ecosystems through their annual production and turnover. FR growth dynamics were studied to understand the endogenous and exogenous factors driving these processes in a 14-year-old plantation of rubber trees located in eastern Thailand. FR dynamics were observed using field rhizotrons from October 2007 to October 2009. This period covered two complete dry seasons (November to March) and two complete rainy seasons (April to October), allowing us to study the effect of rainfall seasonality on FR dynamics. Rainfall and its distribution during the two successive years showed strong differences with 1500 and 950 mm in 2008 and 2009, respectively. FR production (FRP) completely stopped during the dry seasons and resumed quickly after the first rains. During the rainy seasons, FRP and the daily root elongation rate (RER) were highly variable and exhibited strong annual variations with a total FRP of 139.8 and 40.4 mm-2 and an average RER of 0.16 and 0.12 cm day-1 in 2008 and 2009, respectively. The significant positive correlations found between FRP, RER, the appearance of new roots, and rainfall at monthly intervals revealed the impact of rainfall seasonality on FR dynamics. However, the rainfall patterns failed to explain the weekly variations of FR dynamics observed particularly during the rainy seasons. At this time step, FRP, RER, and the appearance of new FR were negatively correlated to the average soil matric potential measured at a depth of between 30 and 60 cm. In addition, our study revealed a significant negative correlation between FR dynamics and the monthly production of dry rubber. Consequently, latex harvesting might disturb carbon dynamics in the whole tree, far beyond the trunk where the tapping was performed. These results exhibit the impact of climatic conditions and tapping system in the carbon budget of

  3. Impact of tapping and soil water status on fine root dynamics in a rubber tree plantation in Thailand.

    PubMed

    Chairungsee, Naruenat; Gay, Frederic; Thaler, Philippe; Kasemsap, Poonpipope; Thanisawanyangkura, Sornprach; Chantuma, Arak; Jourdan, Christophe

    2013-01-01

    Fine roots (FR) play a major role in the water and nutrient uptake of plants and contribute significantly to the carbon and nutrient cycles of ecosystems through their annual production and turnover. FR growth dynamics were studied to understand the endogenous and exogenous factors driving these processes in a 14-year-old plantation of rubber trees located in eastern Thailand. FR dynamics were observed using field rhizotrons from October 2007 to October 2009. This period covered two complete dry seasons (November to March) and two complete rainy seasons (April to October), allowing us to study the effect of rainfall seasonality on FR dynamics. Rainfall and its distribution during the two successive years showed strong differences with 1500 and 950 mm in 2008 and 2009, respectively. FR production (FRP) completely stopped during the dry seasons and resumed quickly after the first rains. During the rainy seasons, FRP and the daily root elongation rate (RER) were highly variable and exhibited strong annual variations with a total FRP of 139.8 and 40.4 mm(-) (2) and an average RER of 0.16 and 0.12 cm day(-) (1) in 2008 and 2009, respectively. The significant positive correlations found between FRP, RER, the appearance of new roots, and rainfall at monthly intervals revealed the impact of rainfall seasonality on FR dynamics. However, the rainfall patterns failed to explain the weekly variations of FR dynamics observed particularly during the rainy seasons. At this time step, FRP, RER, and the appearance of new FR were negatively correlated to the average soil matric potential measured at a depth of between 30 and 60 cm. In addition, our study revealed a significant negative correlation between FR dynamics and the monthly production of dry rubber. Consequently, latex harvesting might disturb carbon dynamics in the whole tree, far beyond the trunk where the tapping was performed. These results exhibit the impact of climatic conditions and tapping system in the carbon

  4. Sampling open-top chambers and plantations for live fine-root biomass of loblolly pine. Forest Service research note

    SciTech Connect

    Zarnoch, S.J.; Marx, D.H.; Ruehle, J.L.; Baldwin, V.C.

    1993-09-08

    A soil-core sampling protocol was developed for estimating the standing crop of live fine-root biomass in young loblolly pines (Pinus taeda L.). Some of the pines were in ozone experiments in open-top chambers. Others were in young plantations. Attempts were made to find strata that would reduce the variability of estimates. With the pilot study estimates of variability, sampling designs were developed to meet specified criteria of precision. Estimates of fine-root biomass based on three soil-core sizes increased monotonically with core size.

  5. Effects of experimental throughfall reduction and soil warming on fine root biomass and its decomposition in a warm temperate oak forest.

    PubMed

    Liu, Yanchun; Liu, Shirong; Wan, Shiqiang; Wang, Jingxin; Wang, Hui; Liu, Kuan

    2017-01-01

    Fine root dynamics play a critical role in regulating carbon (C) cycling in terrestrial ecosystems. Examining responses of fine root biomass and its decomposition to altered precipitation pattern and climate warming is crucial to understand terrestrial C dynamics and its feedback to climate change. Fine root biomass and its decomposition rate were investigated in a warm temperate oak forest through a field manipulation experiment with throughfall reduction and soil warming conducted. Throughfall reduction significantly interacted with soil warming in affecting fine root biomass and its decomposition. Throughfall reduction substantially increased fine root biomass and its decomposition in unheated plots, but negative effects occurred in warmed plots. Soil warming significantly enhanced fine root biomass and its decomposition under ambient precipitation, but the opposite effects exhibited under throughfall reduction. Different responses in fine root biomass among different treatments could be largely attributed to soil total nitrogen (N), while fine root decomposition rate was more depended on microbial biomass C and N. Our observations indicate that decreased precipitation may offset the positive effect of soil warming on fine root biomass and decomposition.

  6. Physical effects of soil drying on roots and crop growth.

    PubMed

    Whitmore, Andrew P; Whalley, W Richard

    2009-01-01

    The nature and effect of the stresses on root growth in crops subject to drying is reviewed. Drought is a complex stress, impacting on plant growth in a number of interacting ways. In response, there are a number of ways in which the growing plant is able to adapt to or alleviate these stresses. It is suggested that the most significant opportunity for progress in overcoming drought stress and increasing crop yields is to understand and exploit the conditions in soil by which plant roots are able to maximize their use of resources. This may not be straightforward, with multiple stresses, sometimes competing functions of roots, and conditions which impact upon roots very differently depending upon what soil, what depth or what stage of growth the root is at. Several processes and the interaction between these processes in soil have been neglected. It is our view that drought is not a single, simple stress and that agronomic practice which seeks to adapt to climate change must take account of the multiple facets of both the stress induced by insufficient water as well as other interacting stresses such as heat, disease, soil strength, low nutrient status, and even hypoxia. The potential for adaptation is probably large, however. The possible changes in stress as a result of the climate change expected under UK conditions are assessed and it appears possible that wet warm winters will impact on root growth as much if not more than dry warm summers.

  7. Plant growth-promoting rhizobacteria and root system functioning

    PubMed Central

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  8. Plant growth-promoting rhizobacteria and root system functioning.

    PubMed

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-09-17

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.

  9. Effects of soil temperature on shoot and root growth and nutrient uptake of 5-year-old Norway spruce seedlings.

    PubMed

    Lahti, M; Aphalo, P J; Finér, L; Ryyppö, A; Lehto, T; Mannerkoski, H

    2005-01-01

    Soil temperature is a main factor limiting root growth in the boreal forest. To simulate the possible soil-warming effect of future climate change, 5-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were subjected to three simulated growing seasons in controlled environment rooms. The seedlings were acclimated to a soil temperature of 16 degrees C during the first (GS I) and third growing seasons (GS III), but were assigned to random soil-temperature treatments of 9, 13, 18 and 21 degrees C during the second growing season (GS II). In GS II, shoot diameter growth was lowest in the 21 degrees C treatment and root growth was lowest in the 9 degrees C treatment. In GS III, shoot height and root length growth improved in seedlings that had been kept at 9 degrees C during GS II, indicating compensatory growth in response to increased soil temperature. The temporary decrease in soil temperature had no long-lasting significant effect on seedling biomass or total nutrient uptake. At the end of GS III, fine roots of seedlings exposed to a soil temperature of 21 degrees C in GS II were distributed more evenly between the organic and mineral soil layers than roots of seedlings in the other treatments. During GS II and GS III, root growth started earlier than shoot growth, decreased during the rapid shoot elongation phase and increased again as shoot growth decreased.

  10. Correlations between polyamine ratios and growth patterns in seedling roots

    NASA Technical Reports Server (NTRS)

    Shen, H. J.; Galston, A. W.

    1985-01-01

    The levels of putrescine, cadaverine, spermidine and spermine were determined in seedling roots of pea, tomato, millet and corn, as well as in corn coleoptiles and pea internodes. In all roots, putrescine content increased as elongation progressed, and the putrescine/spermine ratio closely paralleled the sigmoid growth curve up until the time of lateral root initiation. Spermidine and spermine were most abundant near the apices and declined progressively with increasing age of the cells. In the zone of differentiation of root hairs in pea roots, putrescine rose progressively with increasing age, while cadaverine declined. In both pea internodes and corn coleoptiles, the putrescine/spermidine ratio rises with increasing age and elongation. Thus, a block in the conversion of the diamine putrescine to the triamine spermidine may be an important step in the change from cell division to cell elongation.

  11. Correlations between polyamine ratios and growth patterns in seedling roots

    NASA Technical Reports Server (NTRS)

    Shen, H. J.; Galston, A. W.

    1985-01-01

    The levels of putrescine, cadaverine, spermidine and spermine were determined in seedling roots of pea, tomato, millet and corn, as well as in corn coleoptiles and pea internodes. In all roots, putrescine content increased as elongation progressed, and the putrescine/spermine ratio closely paralleled the sigmoid growth curve up until the time of lateral root initiation. Spermidine and spermine were most abundant near the apices and declined progressively with increasing age of the cells. In the zone of differentiation of root hairs in pea roots, putrescine rose progressively with increasing age, while cadaverine declined. In both pea internodes and corn coleoptiles, the putrescine/spermidine ratio rises with increasing age and elongation. Thus, a block in the conversion of the diamine putrescine to the triamine spermidine may be an important step in the change from cell division to cell elongation.

  12. Phenotypic analysis of Arabidopsis mutants: quantitative analysis of root growth.

    PubMed

    Doerner, Peter

    2008-03-01

    INTRODUCTIONThe growth of plant roots is very easy to measure and is particularly straightforward in Arabidopsis thaliana, because the increase in organ size is essentially restricted to one dimension. The precise measurement of root apical growth can be used to accurately determine growth activity (the rate of growth at a given time) during development in mutants, transgenic backgrounds, or in response to experimental treatments. Root growth is measured in a number of ways, the simplest of which is to grow the seedlings in a Petri dish and record the position of the advancing root tip at appropriate time points. The increase in root length is measured with a ruler and the data are entered into Microsoft Excel for analysis. When dealing with large numbers of seedlings, however, this procedure can be tedious, as well as inaccurate. An alternative approach, described in this protocol, uses "snapshots" of the growing plants, which are taken using gel-documentation equipment (i.e., a video camera with a frame-grabber unit, now commonly used to capture images from ethidium-bromide-stained electrophoresis gels). The images are analyzed using publicly available software (NIH-Image), which allows the user simply to cut and paste data into Microsoft Excel.

  13. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    NASA Technical Reports Server (NTRS)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  14. Substrate supply, fine roots, and temperature control proteolytic enzyme activity in temperate forest soils.

    PubMed

    Brzostek, Edward R; Finzi, Adrien C

    2011-04-01

    Temperature and substrate availability constrain the activity of the extracellular enzymes that decompose and release nutrients from soil organic matter (SOM). Proteolytic enzymes are the primary class of enzymes involved in the depolymerization of nitrogen (N) from proteinaceous components of SOM, and their activity affects the rate of N cycling in forest soils. The objectives of this study were to determine whether and how temperature and substrate availability affect the activity of proteolytic enzymes in temperate forest soils, and whether the activity of proteolytic enzymes and other enzymes involved in the acquisition of N (i.e., chitinolytic and ligninolytic enzymes) differs between trees species that form associations with either ectomycorrhizal or arbuscular mycorrhizal fungi. Temperature limitation of proteolytic enzyme activity was observed only early in the growing season when soil temperatures in the field were near 4 degrees C. Substrate limitation to proteolytic activity persisted well into the growing season. Ligninolytic enzyme activity was higher in soils dominated by ectomycorrhizal associated tree species. In contrast, the activity of proteolytic and chitinolytic enzymes did not differ, but there were differences between mycorrhizal association in the control of roots on enzyme activity. Roots of ectomycorrhizal species but not those of arbuscular mycorrhizal species exerted significant control over proteolytic, chitinolytic, and ligninolytic enzyme activity; the absence of ectomycorrhizal fine roots reduced the activity of all three enzymes. These results suggest that climate warming in the absence of increases in substrate availability may have a modest effect on soil-N cycling, and that global changes that alter belowground carbon allocation by trees are likely to have a larger effect on nitrogen cycling in stands dominated by ectomycorrhizal fungi.

  15. AUXIN AND GROWTH OF EXCISED ROOTS OF Bryophyllum calycinum

    PubMed Central

    Robbins, William J.; Hervey, Annette

    1969-01-01

    Exogenous auxin (α-naphthalene acetic acid, indole acetic acid, or 2,4-dichlorophenoxyacetic acid) was essential for the growth of single excised root tips of Bryophyllum calycinum in 50 ml of a mineral salt-sucrose medium supplemented with vitamins. Large inocula with a dry weight of 2.0 mg or more grew with no auxin added to the medium. Evidence for the synthesis of auxin by the excised roots grown from the larger inocula is presented. Leaching of auxin from single root tips cultivated in 15 or 50 ml of basal medium is considered to account for their failure to grow. Images PMID:16591793

  16. AUXIN AND GROWTH OF EXCISED ROOTS OF Bryophyllum calycinum.

    PubMed

    Robbins, W J; Hervey, A

    1969-10-01

    Exogenous auxin (alpha-naphthalene acetic acid, indole acetic acid, or 2,4-dichlorophenoxyacetic acid) was essential for the growth of single excised root tips of Bryophyllum calycinum in 50 ml of a mineral salt-sucrose medium supplemented with vitamins. Large inocula with a dry weight of 2.0 mg or more grew with no auxin added to the medium. Evidence for the synthesis of auxin by the excised roots grown from the larger inocula is presented. Leaching of auxin from single root tips cultivated in 15 or 50 ml of basal medium is considered to account for their failure to grow.

  17. Root growth is modulated by differential hormonal sensitivity in neighboring cells.

    PubMed

    Fridman, Yulia; Elkouby, Liron; Holland, Neta; Vragović, Kristina; Elbaum, Rivka; Savaldi-Goldstein, Sigal

    2014-04-15

    Coherent plant growth requires spatial integration of hormonal pathways and cell wall remodeling activities. However, the mechanisms governing sensitivity to hormones and how cell wall structure integrates with hormonal effects are poorly understood. We found that coordination between two types of epidermal root cells, hair and nonhair cells, establishes root sensitivity to the plant hormones brassinosteroids (BRs). While expression of the BR receptor BRASSINOSTEROID-INSENSITIVE1 (BRI1) in hair cells promotes cell elongation in all tissues, its high relative expression in nonhair cells is inhibitory. Elevated ethylene and deposition of crystalline cellulose underlie the inhibitory effect of BRI1. We propose that the relative spatial distribution of BRI1, and not its absolute level, fine-tunes growth.

  18. Tungsten disrupts root growth in Arabidopsis thaliana by PIN targeting.

    PubMed

    Adamakis, Ioannis-Dimosthenis S; Panteris, Emmanuel; Eleftheriou, Eleftherios P

    2014-08-15

    Tungsten is a heavy metal with increasing concern over its environmental impact. In plants it is extensively used to deplete nitric oxide by inhibiting nitrate reductase, but its presumed toxicity as a heavy metal has been less explored. Accordingly, its effects on Arabidopsis thaliana primary root were assessed. The effects on root growth, mitotic cell percentage, nitric oxide and hydrogen peroxide levels, the cytoskeleton, cell ultrastructure, auxin and cytokinin activity, and auxin carrier distribution were investigated. It was found that tungsten reduced root growth, particularly by inhibiting cell expansion in the elongation zone, so that root hairs emerged closer to the root tip than in the control. Although extensive vacuolation was observed, even in meristematic cells, cell organelles were almost unaffected and microtubules were not depolymerized but reoriented. Tungsten affected auxin and cytokinin activity, as visualized by the DR5-GFP and TCS-GFP expressing lines, respectively. Cytokinin fluctuations were similar to those of the mitotic cell percentage. DR5-GFP signal appeared ectopically expressed, while the signals of PIN2-GFP and PIN3-GFP were diminished even after relatively short exposures. The observed effects were not reminiscent of those of any nitric oxide scavengers. Taken together, inhibition of root growth by tungsten might rather be related to a presumed interference with the basipetal flow of auxin, specifically affecting cell expansion in the elongation zone.

  19. Genetic control of root growth: from genes to networks

    PubMed Central

    Slovak, Radka; Ogura, Takehiko; Satbhai, Santosh B.; Ristova, Daniela; Busch, Wolfgang

    2016-01-01

    Background Roots are essential organs for higher plants. They provide the plant with nutrients and water, anchor the plant in the soil, and can serve as energy storage organs. One remarkable feature of roots is that they are able to adjust their growth to changing environments. This adjustment is possible through mechanisms that modulate a diverse set of root traits such as growth rate, diameter, growth direction and lateral root formation. The basis of these traits and their modulation are at the cellular level, where a multitude of genes and gene networks precisely regulate development in time and space and tune it to environmental conditions. Scope This review first describes the root system and then presents fundamental work that has shed light on the basic regulatory principles of root growth and development. It then considers emerging complexities and how they have been addressed using systems-biology approaches, and then describes and argues for a systems-genetics approach. For reasons of simplicity and conciseness, this review is mostly limited to work from the model plant Arabidopsis thaliana, in which much of the research in root growth regulation at the molecular level has been conducted. Conclusions While forward genetic approaches have identified key regulators and genetic pathways, systems-biology approaches have been successful in shedding light on complex biological processes, for instance molecular mechanisms involving the quantitative interaction of several molecular components, or the interaction of large numbers of genes. However, there are significant limitations in many of these methods for capturing dynamic processes, as well as relating these processes to genotypic and phenotypic variation. The emerging field of systems genetics promises to overcome some of these limitations by linking genotypes to complex phenotypic and molecular data using approaches from different fields, such as genetics, genomics, systems biology and phenomics. PMID

  20. Genetic control of root growth: from genes to networks.

    PubMed

    Slovak, Radka; Ogura, Takehiko; Satbhai, Santosh B; Ristova, Daniela; Busch, Wolfgang

    2016-01-01

    Roots are essential organs for higher plants. They provide the plant with nutrients and water, anchor the plant in the soil, and can serve as energy storage organs. One remarkable feature of roots is that they are able to adjust their growth to changing environments. This adjustment is possible through mechanisms that modulate a diverse set of root traits such as growth rate, diameter, growth direction and lateral root formation. The basis of these traits and their modulation are at the cellular level, where a multitude of genes and gene networks precisely regulate development in time and space and tune it to environmental conditions. This review first describes the root system and then presents fundamental work that has shed light on the basic regulatory principles of root growth and development. It then considers emerging complexities and how they have been addressed using systems-biology approaches, and then describes and argues for a systems-genetics approach. For reasons of simplicity and conciseness, this review is mostly limited to work from the model plant Arabidopsis thaliana, in which much of the research in root growth regulation at the molecular level has been conducted. While forward genetic approaches have identified key regulators and genetic pathways, systems-biology approaches have been successful in shedding light on complex biological processes, for instance molecular mechanisms involving the quantitative interaction of several molecular components, or the interaction of large numbers of genes. However, there are significant limitations in many of these methods for capturing dynamic processes, as well as relating these processes to genotypic and phenotypic variation. The emerging field of systems genetics promises to overcome some of these limitations by linking genotypes to complex phenotypic and molecular data using approaches from different fields, such as genetics, genomics, systems biology and phenomics. © The Author 2015. Published by

  1. The exploring root--root growth responses to local environmental conditions.

    PubMed

    Monshausen, Gabriele B; Gilroy, Simon

    2009-12-01

    Because of their sessile lifestyle, the areas which plants can access to forage for resources are confined to those which can be explored by growth. High sensitivity to environmental conditions coupled to the appropriate readjustment of growth and developmental responses are thus critical to plant survival. In this review, we focus on how roots perceive physical cues such as soil water status and mechanical properties and translate them into physiological signals to redirect organ growth and modulate root system architecture. Because the precise molecular identity of most of the sensors used by the root to sample the soil environment remain to be determined, the mechanisms underlying similar processes in microbes are providing important models for how these receptor systems may be functioning in plants.

  2. Root growth regulation and gravitropism in maize roots does not require the epidermis

    NASA Technical Reports Server (NTRS)

    Bjorkman, T.; Cleland, R. E.

    1991-01-01

    We have earlier published observations showing that endogenous alterations in growth rate during gravitropism in maize roots (Zea mays L.) are unaffected by the orientation of cuts which remove epidermal and cortical tissue in the growing zone (Bjorkman and Cleland, 1988, Planta 176, 513-518). We concluded that the epidermis and cortex are not essential for transporting a growth-regulating signal in gravitropism or straight growth, nor for regulating the rate of tissue expansion. This conclusion has been challenged by Yang et al. (1990, Planta 180, 530-536), who contend that a shallow girdle around the entire perimeter of the root blocks gravitropic curvature and that this inhibition is the result of a requirement for epidermal cells to transport the growth-regulating signal. In this paper we demonstrate that the entire epidermis can be removed without blocking gravitropic curvature and show that the position of narrow girdles does not affect the location of curvature. We therefore conclude that the epidermis is not required for transport of a growth-regulating substance from the root cap to the growing zone, nor does it regulate the growth rate of the elongating zone of roots.

  3. Root growth regulation and gravitropism in maize roots does not require the epidermis

    NASA Technical Reports Server (NTRS)

    Bjorkman, T.; Cleland, R. E.

    1991-01-01

    We have earlier published observations showing that endogenous alterations in growth rate during gravitropism in maize roots (Zea mays L.) are unaffected by the orientation of cuts which remove epidermal and cortical tissue in the growing zone (Bjorkman and Cleland, 1988, Planta 176, 513-518). We concluded that the epidermis and cortex are not essential for transporting a growth-regulating signal in gravitropism or straight growth, nor for regulating the rate of tissue expansion. This conclusion has been challenged by Yang et al. (1990, Planta 180, 530-536), who contend that a shallow girdle around the entire perimeter of the root blocks gravitropic curvature and that this inhibition is the result of a requirement for epidermal cells to transport the growth-regulating signal. In this paper we demonstrate that the entire epidermis can be removed without blocking gravitropic curvature and show that the position of narrow girdles does not affect the location of curvature. We therefore conclude that the epidermis is not required for transport of a growth-regulating substance from the root cap to the growing zone, nor does it regulate the growth rate of the elongating zone of roots.

  4. Regeneration of roots from callus reveals stability of the developmental program for determinate root growth in Sonoran Desert Cactaceae.

    PubMed

    Shishkova, Svetlana; García-Mendoza, Edith; Castillo-Díaz, Vicente; Moreno, Norma E; Arellano, Jesús; Dubrovsky, Joseph G

    2007-05-01

    In some Sonoran Desert Cactaceae the primary root has a determinate root growth: the cells of the root apical meristem undergo only a few cell division cycles and then differentiate. The determinate growth of primary roots in Cactaceae was found in plants cultivated under various growth conditions, and could not be reverted by any treatment tested. The mechanisms involved in root meristem maintenance and determinate root growth in plants remain poorly understood. In this study, we have shown that roots regenerated from the callus of two Cactaceae species, Stenocereus gummosus and Ferocactus peninsulae, have a determinate growth pattern, similar to that of the primary root. To demonstrate this, a protocol for root regeneration from callus was established. The determinate growth pattern of roots regenerated from callus suggests that the program of root development is very stable in these species. These findings will permit future analysis of the role of certain Cactaceae genes in the determinate pattern of root growth via the regeneration of transgenic roots from transformed calli.

  5. Control of root growth and development by reactive oxygen species.

    PubMed

    Tsukagoshi, Hironaka

    2016-02-01

    Reactive oxygen species (ROS) are relatively simple molecules that exist within cells growing in aerobic conditions. ROS were originally associated with oxidative stress and seen as highly reactive molecules that are injurious to many cell components. More recently, however, the function of ROS as signal molecules in many plant cellular processes has become more evident. One of the most important functions of ROS is their role as a plant growth regulator. For example, ROS are key molecules in regulating plant root development, and as such, are comparable to plant hormones. In this review, the molecular mechanisms of ROS that are mainly associated with plant root growth are discussed. The molecular links between root growth regulation by ROS and other signals will also be briefly discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Response of the Fine Root Production, Phenology, and Turnover Rate of Six Shrub Species from a Subtropical Forest to a Soil Moisture Gradient and Shading

    NASA Astrophysics Data System (ADS)

    Fu, X.; Dai, X.; Wang, H.

    2015-12-01

    Knowledge of the fine root dynamics of different life forms in forest ecosystems is critical to understanding how the overall belowground carbon cycling is affected by climate change. However, our current knowledge regarding how endogenous or exogenous factors regulate the root dynamics of understory vegetation is limited. We selected a suite of study sites representing different habitats with gradients of soil moisture and solar radiation (shading or no shading). We assessed the fine root production phenology, the total fine root production, and the turnover among six understory shrub species in a subtropical climate, and examined the responses of the fine root dynamics to gradients in the soil moisture and solar radiation. The shrubs included three evergreen species, Loropetalum chinense, Vaccinium bracteatum, and Adinandra millettii, and three deciduous species, Serissa serissoides, Rubus corchorifolius, and Lespedeza davidii. We observed that variations in the annual fine root production and turnover among species were significant in the deciduous group but not in the evergreen group. Notably, V. bracteatum and S. serissoides presented the greatest responses in terms of root phenology to gradients in the soil moisture and shading: high-moisture habitat led to a decrease and shade led to an increase in fine root production during spring. Species with smaller fine roots of the 1st+2nd-order diameter presented more sensitive responses in terms of fine root phenology to a soil moisture gradient. Species with a higher fine root nitrogen-to -carbon ratio exhibited more sensitive responses in terms of fine root annual production to shading. Soil moisture and shading did not change the annual fine root production as much as the turnover rate. The fine root dynamics of some understory shrubs varied significantly with soil moisture and solar radiation status and may be different from tree species. Our results emphasize the need to study the understory fine root dynamics

  7. Root growth studies of willow cuttings using Rhizoboxes

    NASA Astrophysics Data System (ADS)

    Omarova, Dinara; Lammeranner, Walter; Florineth, Florin

    2014-05-01

    Riparian forests (Tugay forests) in Central Asia (Kazakhstan) play a significant in soil protection. However, unadapted forest use leads to damage and loss of these fragile ecosystems. Willows have a crucial function in the ecosystem of these riparian forests. Willows facilitate the colonization with other important tree species and furthermore they protect the soil from wind and water erosion. To propagate willows and to estimate the beneficial effects of these plants it is important to know the root growth development. The research design is planned as model experiment with rhizoboxes. Rhizoboxes are non-invasive investigation methods which offer the possibility to survey the root system growth dynamics in time and space. A total of 33 rhizoboxes in size of 50cm x 75 cm x 5 cm will be constructed. The rhizoboxes will be tilted by 45 degrees using the gravitropism of the roots. The willow cuttings (Salix purpurea) will be planted in three different soil types. Each test series (growth period) will take three months. Investigated parameters will be root architecture, dynamic of root growth and above and below ground biomass allocation. Data will be drawn from photographic surveys which will be performed once a week. The contribution will present the methodology of these rhizobox investigations.

  8. CO2 AND N-FERTILIZATION EFFECTS ON FINE ROOT LENGTH, PRODUCTION, AND MORTALITY: A 4-YEAR PONDEROSA PINE STUDY

    EPA Science Inventory

    We conducted a 4-year study of Pinus ponderosa fine root (<2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at 3 CO2 levels (ambient, ambient+175 mol/mol, ambient+350 mol/mol) and 3 N-fertilization levels (0, 10, 20 g?m-2?yr-1). ...

  9. EFFECTS OF ELEVATED CO2 ON FINE ROOT DYNAMICS IN A MOJAVE DESERT COMMUNITY: A FACE STUDY

    EPA Science Inventory

    Fine roots ('1 mm diameter) are critical in plant water and nutrient absorption, and it is important to understand how rising atmospheric CO2 will affect them as part of terrestrial ecosystem responses to global change. This study's objective was to determine the effects of elev...

  10. Long-term patterns of mass loss during the decomposition of leaf and fine root litter: an intersite comparison

    Treesearch

    Mark E. Harmon; Whendee L. Silver; Becky Fasth; Hua Chen; Ingrid C. Burke; William J. Parton; Stephen C. Hart; William S. Currie; Ariel E. Lugo

    2009-01-01

    Decomposition is a critical process in global carbon cycling. During decomposition, leaf and fine root litter may undergo a later, relatively slow phase; past long-term experiments indicate this phase occurs, but whether it is a general phenomenon has not been examined. Data from Long-term Intersite Decomposition Experiment Team, representing 27 sites and nine litter...

  11. CO2 AND N-FERTILIZATION EFFECTS ON FINE ROOT LENGTH, PRODUCTION, AND MORTALITY: A 4-YEAR PONDEROSA PINE STUDY

    EPA Science Inventory

    We conducted a 4-year study of Pinus ponderosa fine root (<2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at 3 CO2 levels (ambient, ambient+175 mol/mol, ambient+350 mol/mol) and 3 N-fertilization levels (0, 10, 20 g?m-2?yr-1). ...

  12. The Role of Fine Root Dynamics in the N and P Cycles of Regenerating Upland Oak-Hickory Forests

    Treesearch

    Travis W. Idol; Phillip E. Pope; Jennifer Tucker; Felix, Jr. Ponder

    1998-01-01

    ln naturally regenerating hardwood forest stands, inputs of organic matter and nutrients from fine root turnover and decomposition are significant but not well-quantified. Four forest stands in southern Indiana-aged 6, 12, 31, and approximately 100 years since clearcutting at the time of the study-were chosen to represent the different developmental stages of upland...

  13. EFFECTS OF ELEVATED CO2 ON FINE ROOT DYNAMICS IN A MOJAVE DESERT COMMUNITY: A FACE STUDY

    EPA Science Inventory

    Fine roots ('1 mm diameter) are critical in plant water and nutrient absorption, and it is important to understand how rising atmospheric CO2 will affect them as part of terrestrial ecosystem responses to global change. This study's objective was to determine the effects of elev...

  14. Light perception in aerial tissues enhances DWF4 accumulation in root tips and induces root growth.

    PubMed

    Sakaguchi, Jun; Watanabe, Yuichiro

    2017-05-12

    Many attempts have been made to characterize the activities of brassinosteroids (BRs), which are important plant hormones. The crosstalk between light perception and the BR signalling pathway has been extensively studied regarding its effects on photomorphogenesis, especially in elongating etiolated hypocotyls. In contrast, how and where the light induces BR biosynthesis remain uncharacterized. DWF4 is one of the main enzymes involved in the BR biosynthesis pathway in Arabidopsis thaliana. We established DWF4-GUS A. thaliana lines in a homozygous dwf4-102 genetic background, but functionally complemented with a genomic DWF4 sequence fused in-frame with a β-glucuronidase (GUS) marker gene. The DWF4-GUS plants enabled the visualization of the accumulation of DWF4 under different conditions. We investigated the effects of aboveground light on root and hypocotyl growth. We observed that root length increased when shoots were maintained under light irrespective of whether roots were exposed to light. We also determined that light perception in aerial tissues enhanced DWF4 accumulation in the root tips. Overall, our data indicate that BR biosynthesis is promoted in the root tip regions by an unknown mechanism in distantly located shoot tissues exposed to light, leading to increased root growth.

  15. Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia

    USGS Publications Warehouse

    Cormier, Nicole; Twilley, Robert R.; Ewel, Katherine C.; Krauss, Ken W.

    2015-01-01

    Belowground biomass is thought to account for much of the total biomass in mangrove forests and may be related to soil fertility. The Yela River and the Sapwalap River, Federated States of Micronesia, contain a natural soil resource gradient defined by total phosphorus (P) density ranging from 0.05 to 0.42 mg cm−3 in different hydrogeomorphic settings. We used this fertility gradient to test the hypothesis that edaphic conditions constrain mangrove productivity through differential allocation of biomass to belowground roots. We removed sequential cores and implanted root ingrowth bags to measure in situ biomass and productivity, respectively. Belowground root biomass values ranged among sites from 0.448 ± 0.096 to 2.641 ± 0.534 kg m−2. Root productivity (roots ≤20 mm) did not vary significantly along the gradient (P = 0.3355) or with P fertilization after 6 months (P = 0.2968). Fine root productivity (roots ≤2 mm), however, did vary significantly among sites (P = 0.0363) and ranged from 45.88 ± 21.37 to 118.66 ± 38.05 g m−2 year−1. The distribution of total standing root biomass and fine root productivity followed patterns of N:P ratios as hypothesized, with larger root mass generally associated with lower relative P concentrations. Many of the processes of nutrient acquisition reported from nutrient-limited mangrove forests may also occur in forests of greater biomass and productivity when growing along soil nutrient gradients.

  16. Root foraging influences plant growth responses to earthworm foraging.

    PubMed

    Cameron, Erin K; Cahill, James F; Bayne, Erin M

    2014-01-01

    Interactions among the foraging behaviours of co-occurring animal species can impact population and community dynamics; the consequences of interactions between plant and animal foraging behaviours have received less attention. In North American forests, invasions by European earthworms have led to substantial changes in plant community composition. Changes in leaf litter have been identified as a critical indirect mechanism driving earthworm impacts on plants. However, there has been limited examination of the direct effects of earthworm burrowing on plant growth. Here we show a novel second pathway exists, whereby earthworms (Lumbricus terrestris L.) impact plant root foraging. In a mini-rhizotron experiment, roots occurred more frequently in burrows and soil cracks than in the soil matrix. The roots of Achillea millefolium L. preferentially occupied earthworm burrows, where nutrient availability was presumably higher than in cracks due to earthworm excreta. In contrast, the roots of Campanula rotundifolia L. were less likely to occur in burrows. This shift in root behaviour was associated with a 30% decline in the overall biomass of C. rotundifolia when earthworms were present. Our results indicate earthworm impacts on plant foraging can occur indirectly via physical and chemical changes to the soil and directly via root consumption or abrasion and thus may be one factor influencing plant growth and community change following earthworm invasion. More generally, this work demonstrates the potential for interactions to occur between the foraging behaviours of plants and soil animals and emphasizes the importance of integrating behavioural understanding in foraging studies involving plants.

  17. Root Foraging Influences Plant Growth Responses to Earthworm Foraging

    PubMed Central

    Cameron, Erin K.; Cahill, James F.; Bayne, Erin M.

    2014-01-01

    Interactions among the foraging behaviours of co-occurring animal species can impact population and community dynamics; the consequences of interactions between plant and animal foraging behaviours have received less attention. In North American forests, invasions by European earthworms have led to substantial changes in plant community composition. Changes in leaf litter have been identified as a critical indirect mechanism driving earthworm impacts on plants. However, there has been limited examination of the direct effects of earthworm burrowing on plant growth. Here we show a novel second pathway exists, whereby earthworms (Lumbricus terrestris L.) impact plant root foraging. In a mini-rhizotron experiment, roots occurred more frequently in burrows and soil cracks than in the soil matrix. The roots of Achillea millefolium L. preferentially occupied earthworm burrows, where nutrient availability was presumably higher than in cracks due to earthworm excreta. In contrast, the roots of Campanula rotundifolia L. were less likely to occur in burrows. This shift in root behaviour was associated with a 30% decline in the overall biomass of C. rotundifolia when earthworms were present. Our results indicate earthworm impacts on plant foraging can occur indirectly via physical and chemical changes to the soil and directly via root consumption or abrasion and thus may be one factor influencing plant growth and community change following earthworm invasion. More generally, this work demonstrates the potential for interactions to occur between the foraging behaviours of plants and soil animals and emphasizes the importance of integrating behavioural understanding in foraging studies involving plants. PMID:25268503

  18. ASSESSING THE EFFECTS OF ELEVATED ATMOSP;HERIC CO2 AND TEMPERATURE ON FINE ROOT PRODUCTION AND MORTALITY IN FORESTED SYSTEMS

    EPA Science Inventory

    Little is known about the effects of global climate change on the production and mortality of fine roots. To better understand these processes we have conducted a number of studies to investigate the factors that influence the production and mortality of fine roots in coniferous...

  19. ELEVATED CO2 AND ELEVATED TEMPERATURE HAVE NO EFFECT ON DOUGLAS-FIR FINE-ROOT DYNAMICS IN NITROGEN-POOR SOIL

    EPA Science Inventory

    Here, we investigate fine-root production, mortality and standing crop of Douglas-fir (Pseudotsuga menziesii) seedlings exposed to elevated atmospheric CO2 and elevated air temperature. We hypothesized that these treatments would increase fine-root production, but that mortality ...

  20. ELEVATED CO2 AND ELEVATED TEMPERATURE HAVE NO EFFECT ON DOUGLAS-FIR FINE-ROOT DYNAMICS IN NITROGEN-POOR SOIL

    EPA Science Inventory

    Here, we investigate fine-root production, mortality and standing crop of Douglas-fir (Pseudotsuga menziesii) seedlings exposed to elevated atmospheric CO2 and elevated air temperature. We hypothesized that these treatments would increase fine-root production, but that mortality ...

  1. ASSESSING THE EFFECTS OF ELEVATED ATMOSP;HERIC CO2 AND TEMPERATURE ON FINE ROOT PRODUCTION AND MORTALITY IN FORESTED SYSTEMS

    EPA Science Inventory

    Little is known about the effects of global climate change on the production and mortality of fine roots. To better understand these processes we have conducted a number of studies to investigate the factors that influence the production and mortality of fine roots in coniferous...

  2. Cinnamic Acid Increases Lignin Production and Inhibits Soybean Root Growth

    PubMed Central

    Salvador, Victor Hugo; Lima, Rogério Barbosa; dos Santos, Wanderley Dantas; Soares, Anderson Ricardo; Böhm, Paulo Alfredo Feitoza; Marchiosi, Rogério; Ferrarese, Maria de Lourdes Lucio; Ferrarese-Filho, Osvaldo

    2013-01-01

    Cinnamic acid is a known allelochemical that affects seed germination and plant root growth and therefore influences several metabolic processes. In the present work, we evaluated its effects on growth, indole-3-acetic acid (IAA) oxidase and cinnamate 4-hydroxylase (C4H) activities and lignin monomer composition in soybean (Glycine max) roots. The results revealed that exogenously applied cinnamic acid inhibited root growth and increased IAA oxidase and C4H activities. The allelochemical increased the total lignin content, thus altering the sum and ratios of the p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin monomers. When applied alone or with cinnamic acid, piperonylic acid (PIP, a quasi-irreversible inhibitor of C4H) reduced C4H activity, lignin and the H, G, S monomer content compared to the cinnamic acid treatment. Taken together, these results indicate that exogenously applied cinnamic acid can be channeled into the phenylpropanoid pathway via the C4H reaction, resulting in an increase in H lignin. In conjunction with enhanced IAA oxidase activity, these metabolic responses lead to the stiffening of the cell wall and are followed by a reduction in soybean root growth. PMID:23922685

  3. Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings.

    PubMed

    Erturk, Yasar; Ercisli, Sezai; Haznedar, Ayhan; Cakmakci, Ramazan

    2010-01-01

    The effects of plant growth promoting rhizobacteria (PGPR) on the rooting and root growth of semi-hardwood and hardwood kiwifruit stem cuttings were investigated. The PGPR used were Bacillus RC23, Paenibacillus polymyxa RC05, Bacillus subtilis OSU142, Bacillus RC03, Comamonas acidovorans RC41, Bacillus megaterium RC01 and Bacillus simplex RC19. All the bacteria showed indole-3-acetic acid (IAA) producing capacity. Among the PGPR used, the highest rooting ratios were obtained at 47.50% for semi-hardwood stem cuttings from Bacillus RC03 and Bacillus simplex RC19 treatments and 42.50% for hardwood stem cuttings from Bacillus RC03. As well, Comamonas acidovorans RC41 inoculations indicated higher value than control treatments. The results suggest that these PGPR can be used in organic nursery material production and point to the feasibility of synthetic auxin (IBA) replacement by organic management based on PGPR.

  4. Root Growth Patterns and Morphometric Change Based on the Growth Media

    NASA Astrophysics Data System (ADS)

    Schultz, Eric R.; Paul, Anna-Lisa; Ferl, Robert J.

    2016-12-01

    Arabidopsis thaliana roots skew with minimal waving in the microgravity environment of the International Space Station. Root skewing and root waving have been studied on the ground as well as in spaceflight, but often using different media types. In this study, Arabidopsis seedlings were grown on nutrient media plates that were comprised of various gelling agents with varied hardness in order to better assess these media for spaceflight research experiments. ImageJ was used to quantify the root morphology of 8-dayold seedlings, while R was used to perform statistical analyses. Root growth was drastically different between Difco agar, agarose, and Phytagel. Additionally, root waving masked skewing in certain media. Regression analysis revealed overall patterns when organized by hardness but also revealed that differences in media type had more of an impact on root growth than hardness itself. Different arrangements of media around the root tip revealed that roots grown on the media surface were longer and had fewer waves per millimeter than roots grown embedded in media. The implications for spaceflight research are discussed.

  5. The effect of increased air humidity on fine root and rhizome biomass and turnover of silver birch forest ecosystem - a FAHM study.

    NASA Astrophysics Data System (ADS)

    Ostonen, I.; Kupper, P.; Sõber, J.; Aosaar, J.; Varik, M.; Lõhmus, K.

    2012-04-01

    A facility for free air humidity manipulation (FAHM) was established to investigate the effect of increased air humidity on belowground biomass and turnover in silver birch (Betula pendula Roth.) forest ecosystems with respect to rising air humidity predicted for Northern Europe. Fine root and rhizomes are short-lived and recognized as the most important component contributing to below-ground C fluxes in forests. The FAHM system enables air relative humidity to be increased on average 7 units (%) over the ambient level during mist fumigation. The experimental site contains humidified (H) and control (C) plots; each plot contains sectors with diverse "forest" understory and early successional grasses. The trees were planted in 2006, humidification started in spring 2008, and soil cores to study fine root and rhizome biomass and turnover were taken in 2007, 2009 and 2010. In July 2009, total fine root and rhizome biomass was 8 tons per ha in C and 16 tons per ha in H plots. The roots of understory formed 86% in C and 93% H plots, respectively. Our preliminary data suggest that the increased humidity affected more the roots of understory plants: fine root and rhizome biomass and production increased approximately twice by increasing air humidity. However, the tendency was similar for fine root biomass and production of silver birch. Fine root turnover speeded up for both silver birch and understory roots in H plots. Hence, changes in air humidity can significantly affect forest carbon cycling.

  6. Using low energy x-ray radiography to evaluate root initiation and growth of Populus

    Treesearch

    Ronald S., Jr. Zalesny; A. L. Friend; B. Kodrzycki; D.W. McDonald; R. Michaels; A.H. Wiese; J.W. Powers

    2007-01-01

    Populus roots have been studied less than aboveground tissues. However, there is an overwhelming need to evaluate root initiation and growth in order to understand the genetics and physiology of rooting, along with genotype x environment interactions.

  7. Postembryonic control of root meristem growth and development.

    PubMed

    Sozzani, Rosangela; Iyer-Pascuzzi, Anjali

    2014-02-01

    Organ development in multicellular organisms is dependent on the proper balance between cell proliferation and differentiation. In the Arabidopsis root apical meristem, meristem growth is the result of cell divisions in the proximal meristem and cell differentiation in the elongation and differentiation zones. Hormones, transcription factors and small peptides underpin the molecular mechanisms governing these processes. Computer modeling has aided our understanding of the dynamic interactions involved in stem cell maintenance and meristem activity. Here we review recent advances in our understanding of postembryonic root stem cell maintenance and control of meristem size. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. [Effects of simulated nitrogen deposition on the fine root characteristics and soil respiration in a Pleioblastus amarus plantation in rainy area of West China].

    PubMed

    Tu, Li-hua; Hu, Ting-xing; Zhang, Jian; He, Yuan-yang; Tian, Xiang-yu; Xiao, Yin-long

    2010-10-01

    Fine root is critical in the belowground carbon (C) cycling in forest ecosystem. Aimed to understand the effects of nitrogen (N) deposition on the fine root characteristics and soil respiration in Pleioblastus amarus plantation, a two-year field experiment was conducted in the Rainy Area of West China. Four treatments with different levels of N deposition were installed, i. e., CK (0 g N x m(-2) x a(-1)), low N (5 g N x m(-2) x a(-1)), medium N (15 g N x m(-2) x a(-1)), and high N (30 g N x m(-2) x a(-1)). There were great differences in the biomass and element contents of <1 mm and 1-2 mm fine roots among the treatments. Comparing with < 1 mm fine roots, 1-2 mm fine roots had higher contents of lignin, P, and Mg, but lower contents of cellulose and Ca. Nitrogen deposition increased the biomass of < 2mm fine roots significantly, with the values being (533 +/- 89) g x m(-2) in CK, and (630 +/- 140), (632 +/- 168), and (820 +/- 161) g x m(-2) in treatments low N, medium N, and high N, respectively. The N, K, and Mg contents of <2 mm fine roots also had an obvious increase under N deposition. The annual soil respiration rate in treatments CK, low N, medium N, and high N was (5.85 +/- 0.43), (6.48 +/- 0.71), (6.84 +/- 0.57), and (7.62 +/- 0.55) t C x hm(-2) x a(-1), respectively, indicating that N deposition had obvious promotion effects on soil respiration. There were significant linear relationships between the annual soil respiration rate and the biomass and N content of <2 mm fine roots. N deposition increased the fine root biomass and promoted the root metabolism, and stimulated the rhizospheric soil respiration rate via promoting microbial activities.

  9. High-throughput 2D root system phenotyping platform facilitates genetic analysis of root growth and development

    USDA-ARS?s Scientific Manuscript database

    High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyz...

  10. The key players of the primary root growth and development also function in lateral roots in Arabidopsis.

    PubMed

    Tian, Huiyu; Jia, Yuebin; Niu, Tiantian; Yu, Qianqian; Ding, Zhaojun

    2014-05-01

    The core regulators which are required for primary root growth and development also function in lateral root development or lateral root stem cell niche maintenance. The primary root systems and the lateral root systems are the two important root systems which are vital to the survival of plants. Though the molecular mechanism of the growth and development of both the primary root systems and the lateral root systems have been extensively studied individually in Arabidopsis, there are not so much evidence to show that if both root systems share common regulatory mechanisms. AP2 family transcription factors such as PLT1 (PLETHORA1) and PLT2, GRAS family transcription factors such as SCR (SCARECROW) and SHR (SHORT ROOT) and WUSCHEL-RELATED HOMEOBOX transcription factor WOX5 have been extensively studied and found to be essential for primary root growth and development. In this study, through the expression pattern analysis and mutant examinations, we found that these core regulators also function in lateral root development or lateral root stem cell niche maintenance.

  11. Flooding, root temperature, physiology and growth of two Annona species.

    PubMed

    Ojeda, Maritza; Schaffer, Bruce; Davies, Frederick S

    2004-09-01

    The effects of root zone temperature (RZT) and flooding on physiology and growth of Annona glabra L. (pond apple) and A. muricata L. (soursop) were investigated. Trees planted in containers were exposed to RZTs of 5, 10, 20, 25 or 35 degrees C in controlled root temperature chambers. Trees at each RZT were either non-flooded (control) or continuously flooded. There were four replications over time for each treatment combination. Pond apple was more flood-tolerant than soursop. A combination of flooding and RZTs of 5 and 10 degrees C resulted in tree mortality of both species by Week 4. Only trees that appeared to develop morphological adaptations survived continuous flooding. In both species, net CO2 assimilation (A) decreased to nearly zero within 1 week following exposure to RZTs of 5 or 10 degrees C and became consistently negative over the remaining experimental period. Flooding reduced leaf chlorophyll index (measured with a SPAD meter), A and plant growth, and increased root electrolyte leakage from soursop. Optimum growth occurred at RZTs of 25 to 35 degrees C for non-flooded pond apple trees and at 20 to 25 degrees C for flooded trees. Soursop exhibited maximum growth at RZTs of 35 degrees C under non-flooded conditions and at 25 degrees C under flooded conditions.

  12. Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization

    PubMed Central

    Barrios-Masias, F.H.; Knipfer, T.; McElrone, A.J.

    2015-01-01

    Water deficits are known to alter fine root structure and function, but little is known about how these responses contribute to differences in drought resistance across grapevine rootstocks. The ways in which water deficit affects root anatomical and physiological characteristics were studied in two grapevine rootstocks considered as low–medium (101-14Mgt) and highly (110R) drought resistant. Rootstocks were grown under prolonged and repeated drying cycles or frequent watering (‘dry’ and ‘wet’ treatments, respectively), and the following parameters were evaluated: root osmotic and hydrostatic hydraulic conductivity (Lp os and Lp hyd, respectively), suberization, steady-state root pressure (P rs), sap exudation rates, sap osmotic potential, and exosmotic relaxation curves. For both rootstocks, the ‘dry’ treatment reduced fine root Lp, elicited earlier root suberization and higher sap osmotic potential, and generated greater P rs after rewatering, but the rootstocks responded differently under these conditions. Lp os, Lp hyd, and sap exudation rates were significantly higher in 110R than in 101-14Mgt, regardless of moisture treatment. Under ‘dry’ conditions, 110R maintained a similar Lp os and decreased the Lp hyd by 36% compared with ‘wet’ conditions, while both parameters were decreased by at least 50% for 101-14Mgt under ‘dry’ conditions. Interestingly, build-up of P rs in 110R was 34% lower on average than in 101-14Mgt, suggesting differences in the development of suberized apoplastic barriers between the rootstocks as visualized by analysis of suberization from fluorescence microscopy. Consistent with this pattern, 110R exhibited the greatest exosmotic Lp os (i.e. Lp os of water flowing from roots to the soil) as determined from relaxation curves under wet conditions, where backflow may have limited its capacity to generate positive xylem pressure. The traits studied here can be used in combination to provide new insights needed for

  13. Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization.

    PubMed

    Barrios-Masias, F H; Knipfer, T; McElrone, A J

    2015-09-01

    Water deficits are known to alter fine root structure and function, but little is known about how these responses contribute to differences in drought resistance across grapevine rootstocks. The ways in which water deficit affects root anatomical and physiological characteristics were studied in two grapevine rootstocks considered as low-medium (101-14Mgt) and highly (110R) drought resistant. Rootstocks were grown under prolonged and repeated drying cycles or frequent watering ('dry' and 'wet' treatments, respectively), and the following parameters were evaluated: root osmotic and hydrostatic hydraulic conductivity (Lp os and Lp hyd, respectively), suberization, steady-state root pressure (P rs), sap exudation rates, sap osmotic potential, and exosmotic relaxation curves. For both rootstocks, the 'dry' treatment reduced fine root Lp, elicited earlier root suberization and higher sap osmotic potential, and generated greater P rs after rewatering, but the rootstocks responded differently under these conditions. Lp os, Lp hyd, and sap exudation rates were significantly higher in 110R than in 101-14Mgt, regardless of moisture treatment. Under 'dry' conditions, 110R maintained a similar Lp os and decreased the Lp hyd by 36% compared with 'wet' conditions, while both parameters were decreased by at least 50% for 101-14Mgt under 'dry' conditions. Interestingly, build-up of P rs in 110R was 34% lower on average than in 101-14Mgt, suggesting differences in the development of suberized apoplastic barriers between the rootstocks as visualized by analysis of suberization from fluorescence microscopy. Consistent with this pattern, 110R exhibited the greatest exosmotic Lp os (i.e. Lp os of water flowing from roots to the soil) as determined from relaxation curves under wet conditions, where backflow may have limited its capacity to generate positive xylem pressure. The traits studied here can be used in combination to provide new insights needed for screening drought resistance

  14. Root-Growth Behavior of the Arabidopsis Mutant rgr11

    PubMed Central

    Mullen, Jack L.; Turk, Ed; Johnson, Karin; Wolverton, Chris; Ishikawa, Hideo; Simmons, Carl; Söll, Deiter; Evans, Michael L.

    1998-01-01

    In this study we investigated the kinetics of the gravitropic response of the Arabidopsis mutant rgr1 (reduced root gravitropism). Although the rate of curvature in rgr1, which is allelic to axr4, was smaller than in the wild type (ecotype Wassilewskija), curvature was initiated in the same region of the root, the distal elongation zone. The time lag for the response was unaffected in the mutant; however, the gravitropic response of rgr1 contained a feature not found in the wild type: when roots growing along the surface of an agar plate were gravistimulated, there was often an upward curvature that initiated in the central elongation zone. Because this response was dependent on the tactile environment of the root, it most likely resulted from the superposition of the waving/coiling phenomenon onto the gravitropic response. We found that the frequency of the waving pattern and circumnutation, a cyclic endogenous pattern of root growth, was the same in rgr1 and in the wild type, so the waving/coiling phenomenon is likely governed by circumnutation patterns. The amplitudes of these oscillations may then be selectively amplified by tactile stimulation to provide a directional preference to the slanting. PMID:9847088

  15. Hormonal interactions during root tropic growth: hydrotropism versus gravitropism.

    PubMed

    Takahashi, Hideyuki; Miyazawa, Yutaka; Fujii, Nobuharu

    2009-03-01

    Terrestrial plants have evolved remarkable morphological plasticity that enables them to adapt to their surroundings. One of the most important traits that plants have acquired is the ability to sense environmental cues and use them as a basis for governing their growth orientation. The directional growth of plant organs relative to the direction of environmental stimuli is a tropism. The Cholodny-Went theory proposes that auxin plays a key role in several tropisms. Recent molecular genetic studies have strongly supported this hypothesis for gravitropism. However, the molecular mechanisms of other tropisms are far less clear. Hydrotropism is the response of roots to a moisture gradient. Since its re-discovery in 1985, root hydrotropism has been shown to be common among higher plant species. Additionally, in some species, gravitropism interferes with hydrotropism, suggesting that both shared and divergent mechanisms mediating the two tropisms exist. This hypothesis has been supported by recent studies, which provide an understanding of how roots sense multiple environmental cues and exhibit different tropic responses. In this review, we focus on the overlapping and unique mechanisms of the hormonal regulation underlying gravitropism and hydrotropism in roots.

  16. Transcriptional profile of maize roots under acid soil growth

    PubMed Central

    2010-01-01

    Background Aluminum (Al) toxicity is one of the most important yield-limiting factors of many crops worldwide. The primary symptom of Al toxicity syndrome is the inhibition of root growth leading to poor water and nutrient absorption. Al tolerance has been extensively studied using hydroponic experiments. However, unlike soil conditions, this method does not address all of the components that are necessary for proper root growth and development. In the present study, we grew two maize genotypes with contrasting tolerance to Al in soil containing toxic levels of Al and then compared their transcriptomic responses. Results When grown in acid soil containing toxic levels of Al, the Al-sensitive genotype (S1587-17) showed greater root growth inhibition, more Al accumulation and more callose deposition in root tips than did the tolerant genotype (Cat100-6). Transcriptome profiling showed a higher number of genes differentially expressed in S1587-17 grown in acid soil, probably due to secondary effects of Al toxicity. Genes involved in the biosynthesis of organic acids, which are frequently associated with an Al tolerance response, were not differentially regulated in both genotypes after acid soil exposure. However, genes related to the biosynthesis of auxin, ethylene and lignin were up-regulated in the Al-sensitive genotype, indicating that these pathways might be associated with root growth inhibition. By comparing the two maize lines, we were able to discover genes up-regulated only in the Al-tolerant line that also presented higher absolute levels than those observed in the Al-sensitive line. These genes encoded a lipase hydrolase, a retinol dehydrogenase, a glycine-rich protein, a member of the WRKY transcriptional family and two unknown proteins. Conclusions This work provides the first characterization of the physiological and transcriptional responses of maize roots when grown in acid soil containing toxic levels of Al. The transcriptome profiles highlighted

  17. Carbon Allocation into Different Fine-Root Classes of Young Abies alba Trees Is Affected More by Phenology than by Simulated Browsing.

    PubMed

    Endrulat, Tina; Buchmann, Nina; Brunner, Ivano

    2016-01-01

    Abies alba (European silver fir) was used to investigate possible effects of simulated browsing on C allocation belowground by 13CO2 pulse-labelling at spring, summer or autumn, and by harvesting the trees at the same time point of the labelling or at a later season for biomass and for 13C-allocation into the fine-root system. Before budburst in spring, the leader shoots and 50% of all lateral shoots of half of the investigated 5-year old Abies alba saplings were clipped to simulate browsing. At harvest, different fine-root classes were separated, and starch as an important storage compartment was analysed for concentrations. The phenology had a strong effect on the allocation of the 13C-label from shoots to roots. In spring, shoots did not supply the fine-roots with high amounts of the 13C-label, because the fine-roots contained less than 1% of the applied 13C. In summer and autumn, however, shoots allocated relatively high amounts of the 13C-label to the fine roots. The incorporation of the 13C-label as structural C or as starch into the roots is strongly dependent on the root type and the root diameter. In newly formed fine roots, 3-5% of the applied 13C was incorporated, whereas 1-3% in the ≤0.5 mm root class and 1-1.5% in the >0.5-1.0 mm root class were recorded. Highest 13C-enrichment in the starch was recorded in the newly formed fine roots in autumn. The clipping treatment had a significant positive effect on the amount of allocated 13C-label to the fine roots after the spring labelling, with high relative 13C-contents observed in the ≤0.5 mm and the >0.5-1.0 mm fine-root classes of clipped trees. No effects of the clipping were observed after summer and autumn labelling in the 13C-allocation patterns. Overall, our data imply that the season of C assimilation and, thus, the phenology of trees is the main determinant of the C allocation from shoots to roots and is clearly more important than browsing.

  18. Carbon Allocation into Different Fine-Root Classes of Young Abies alba Trees Is Affected More by Phenology than by Simulated Browsing

    PubMed Central

    Endrulat, Tina; Buchmann, Nina; Brunner, Ivano

    2016-01-01

    Abies alba (European silver fir) was used to investigate possible effects of simulated browsing on C allocation belowground by 13CO2 pulse-labelling at spring, summer or autumn, and by harvesting the trees at the same time point of the labelling or at a later season for biomass and for 13C-allocation into the fine-root system. Before budburst in spring, the leader shoots and 50% of all lateral shoots of half of the investigated 5-year old Abies alba saplings were clipped to simulate browsing. At harvest, different fine-root classes were separated, and starch as an important storage compartment was analysed for concentrations. The phenology had a strong effect on the allocation of the 13C-label from shoots to roots. In spring, shoots did not supply the fine-roots with high amounts of the 13C-label, because the fine-roots contained less than 1% of the applied 13C. In summer and autumn, however, shoots allocated relatively high amounts of the 13C-label to the fine roots. The incorporation of the 13C-label as structural C or as starch into the roots is strongly dependent on the root type and the root diameter. In newly formed fine roots, 3–5% of the applied 13C was incorporated, whereas 1–3% in the ≤0.5 mm root class and 1–1.5% in the >0.5–1.0 mm root class were recorded. Highest 13C-enrichment in the starch was recorded in the newly formed fine roots in autumn. The clipping treatment had a significant positive effect on the amount of allocated 13C-label to the fine roots after the spring labelling, with high relative 13C-contents observed in the ≤0.5 mm and the >0.5–1.0 mm fine-root classes of clipped trees. No effects of the clipping were observed after summer and autumn labelling in the 13C-allocation patterns. Overall, our data imply that the season of C assimilation and, thus, the phenology of trees is the main determinant of the C allocation from shoots to roots and is clearly more important than browsing. PMID:27123860

  19. Growth, biomass allocation and photosynthetic responses are related to intensity of root severance and soil moisture conditions in the plantation tree Cunninghamia lanceolata.

    PubMed

    Dong, Tingfa; Duan, Baoli; Zhang, Sheng; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang

    2016-07-01

    We employed the warm temperate conifer Cunninghamia lanceolata (Lamb.) Hook. as a model of plantation forest species to investigate ecophysiological responses to root treatments (control (0%), and ∼25, 50 or 75% of the initial root mass) under well-watered and water-limited conditions. Our results indicated that total root dry mass accumulation was negatively associated with the severity of root pruning, but there was evidence of multiple compensatory responses. The plants exhibited higher instantaneous and long-term (assessed by carbon isotope composition, δ(13)C) water-use efficiency in pruning treatments, especially under low water availability. Root pruning also increased the fine root/total root mass ratio, specific root length and fine root vitality in both water availability treatments. As a result of the compensatory responses, under well-watered conditions, height, stem dry mass accumulation, leaf/fine root biomass ratio (L/FR), transpiration rate, photosynthetic capacity and photosynthetic nitrogen-use efficiency (EN) were the highest under 25% pruning. Yet, all these traits except L/FR and foliage nitrogen content were severely reduced under 75% pruning. Drought negatively affected growth and leaf gas exchange rates, and there was a greater negative effect on growth, water potential, gas exchange and EN when >25% of total root biomass was removed. The stem/aboveground mass ratio was the highest under 25% pruning in both watering conditions. These results indicate that the responses to root severance are related to the excision intensity and soil moisture content. A moderate root pruning proved to be an effective means to improve stem dry mass accumulation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Impact of root growth and root hydraulic conductance on water availability of young walnut trees

    NASA Astrophysics Data System (ADS)

    Jerszurki, Daniela; Couvreur, Valentin; Hopmans, Jan W.; Silva, Lucas C. R.; Shackel, Kenneth A.; de Souza, Jorge L. M.

    2015-04-01

    Walnut (Juglans regia L.) is a tree species of high economic importance in the Central Valley of California. This crop has particularly high water requirements, which makes it highly dependent on irrigation. The context of decreasing water availability in the state calls for efficient water management practices, which requires improving our understanding of the relationship between water application and walnut water availability. In addition to the soil's hydraulic conductivity, two plant properties are thought to control the supply of water from the bulk soil to the canopy: (i) root distribution and (ii) plant hydraulic conductance. Even though these properties are clearly linked to crop water requirements, their quantitative relation remains unclear. The aim of this study is to quantitatively explain walnut water requirements under water deficit from continuous measurements of its water consumption, soil and stem water potential, root growth and root system hydraulic conductance. For that purpose, a greenhouse experiment was conducted for a two month period. Young walnut trees were planted in transparent cylindrical pots, equipped with: (i) rhizotron tubes, which allowed for non-invasive monitoring of root growth, (ii) pressure transducer tensiometers for soil water potential, (iii) psychrometers attached to non-transpiring leaves for stem water potential, and (iv) weighing scales for plant transpiration. Treatments consisted of different irrigation rates: 100%, 75% and 50% of potential crop evapotranspiration. Plant responses were compared to predictions from three simple process-based soil-plant-atmosphere models of water flow: (i) a hydraulic model of stomatal regulation based on stem water potential and vapor pressure deficit, (ii) a model of plant hydraulics predicting stem water potential from soil-root interfaces water potential, and (iii) a model of soil water depletion predicting the water potential drop between the bulk soil and soil-root interfaces

  1. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development.

    PubMed

    Clark, Randy T; Famoso, Adam N; Zhao, Keyan; Shaff, Jon E; Craft, Eric J; Bustamante, Carlos D; McCouch, Susan R; Aneshansley, Daniel J; Kochian, Leon V

    2013-02-01

    High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyse these images. The platform and its components are adaptable to a wide range root phenotyping studies using diverse growth systems (hydroponics, paper pouches, gel and soil) involving several plant species, including, but not limited to, rice, maize, sorghum, tomato and Arabidopsis. The RootReader2D software tool is free and publicly available and was designed with both user-guided and automated features that increase flexibility and enhance efficiency when measuring root growth traits from specific roots or entire root systems during large-scale phenotyping studies. To demonstrate the unique capabilities and high-throughput capacity of this phenotyping platform for studying root systems, genome-wide association studies on rice (Oryza sativa) and maize (Zea mays) root growth were performed and root traits related to aluminium (Al) tolerance were analysed on the parents of the maize nested association mapping (NAM) population. © 2012 Blackwell Publishing Ltd.

  2. Apical control, gravitropic signaling, and the growth of lateral roots in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Mullen, Jack L.; Wolverton, Chris; Hangarter, Roger P.

    Most research on gravity responses in plants has focused on primary roots and shoots, which typically grow in a vertical orientation. However, the patterns of lateral organ growth, which generally have large effects on overall plant architecture, are such that the organs are typically not vertical. In lateral roots of Arabidopsis, growth is initially in a nearly horizontal orientation but changes to a near-vertical orientation as the lateral root develops. Although the non-vertical lateral roots are gravitropically competent, following gravitropic reorientation of seedlings, the lateral roots on the upper flank of the primary root have different growth patterns from those on the lower side of the primary root. The differences are in part dependent on reorientation of the primary root, suggesting that gravitropic signaling from the primary root also contributes to the control of lateral root growth. The hormone auxin appears to play a role in this signaling between the primary and lateral roots, as auxin transport inhibitors applied to the primary root affect lateral root growth. Also, lateral roots of pin3 mutants, which are impaired in polar auxin transport, have altered lateral root orientations. However, other signals from the primary root tip also play an important role in regulating lateral root growth.

  3. Root morphological and proteomic responses to growth restriction in maize plants supplied with sufficient N.

    PubMed

    Yan, Huifeng; Li, Ke; Ding, Hong; Liao, Chengsong; Li, Xuexian; Yuan, Lixing; Li, Chunjian

    2011-07-01

    The primary objective of this study was to better understand how root morphological alteration stimulates N uptake in maize plants after root growth restriction, by investigating the changes in length and number of lateral roots, (15)NO(3)(-) influx, the expression level of the low-affinity Nitrate transporter ZmNrt1.1, and proteomic composition of primary roots. Maize seedlings were hydroponically cultured with three different types of root systems: an intact root system, embryonic roots only, or primary roots only. In spite of sufficient N supply, root growth restriction stimulated compensatory growth of remaining roots, as indicated by the increased lateral root number and root density. On the other hand, there was no significant difference in (15)NO(3)(-) influx between control and primary root plants; neither in ZmNrt1.1 expression levels in primary roots of different treatments. Our data suggested that increased N uptake by maize seedlings experiencing root growth restriction is attributed to root morphological adaptation, rather than explained by the variation in N uptake activity. Eight proteins were differentially accumulated in embryonic and primary root plants compared to control plants. These differentially accumulated proteins were closely related to signal transduction and increased root growth.

  4. Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis.

    PubMed

    Luo, Jie; Qin, Jingjing; He, Fangfang; Li, Hong; Liu, Tongxian; Polle, Andrea; Peng, Changhui; Luo, Zhi-Bin

    2013-04-01

    Poplar plants are cultivated as woody crops, which are often fertilized by addition of ammonium (NH4(+)) and/or nitrate (NO3(-)) to improve yields. However, little is known about net NH4(+)/NO3(-) fluxes and their relation with H(+) fluxes in poplar roots. In this study, net NH4(+)/NO3(-) fluxes in association with H(+) fluxes were measured non-invasively using scanning ion-selective electrode technique in fine roots of Populus popularis. Spatial variability of NH4(+) and NO3(-) fluxes was found along root tips of P. popularis. The maximal net uptake of NH4(+) and NO3(-) occurred, respectively, at 10 and 15 mm from poplar root tips. Net NH4(+) uptake was induced by ca. 48 % with provision of NO3(-) together, but net NO3(-) uptake was inhibited by ca. 39 % with the presence of NH4(+) in poplar roots. Furthermore, inactivation of plasma membrane (PM) H(+)-ATPases by orthovanadate markedly inhibited net NH4(+)/NO3(-) uptake and even led to net NH4(+) release with NO3(-) co-provision. Linear correlations were observed between net NH4(+)/NO3(-) and H(+) fluxes in poplar roots except that no correlation was found between net NH4(+) and H(+) fluxes in roots exposed to NH4Cl and 0 mM vanadate. These results indicate that root tips play a key role in NH4(+)/NO3(-) uptake and that net NH4(+)/NO3(-) fluxes and the interaction of net fluxes of both ions are tightly associated with H(+) fluxes in poplar roots.

  5. Patterns of structural and defense investments in fine roots of Scots pine (Pinus sylvestris L.) across a strong temperature and latitudinal gradient in Europe.

    PubMed

    Zadworny, Marcin; McCormack, M Luke; Żytkowiak, Roma; Karolewski, Piotr; Mucha, Joanna; Oleksyn, Jacek

    2017-03-01

    Plant functional traits may be altered as plants adapt to various environmental constraints. Cold, low fertility growing conditions are often associated with root adjustments to increase acquisition of limiting nutrient resources, but they may also result in construction of roots with reduced uptake potential but higher tissue persistence. It is ultimately unclear whether plants produce fine roots of different structure in response to decreasing temperatures and whether these changes represent a trade-off between root function or potential root persistence. We assessed patterns of root construction based on various root morphological, biochemical and defense traits including root diameter, specific root length (SRL), root tissue density (RTD), C:N ratio, phenolic compounds, and number of phellem layers across up to 10 root orders in diverse populations of Scots pine along a 2000-km climatic gradient in Europe. Our results showed that different root traits are related to mean annual temperature (MAT) and expressed a pattern of higher root diameter and lower SRL and RTD in northern sites with lower MAT. Among absorptive roots, we observed a gradual decline in chemical defenses (phenolic compounds) with decreasing MAT. In contrast, decreasing MAT resulted in an increase of structural protection (number of phellem layers) in transport fine roots. This indicated that absorptive roots with high capacity for nutrient uptake, and transport roots with low uptake capacity, were characterized by distinct and contrasting trade-offs. Our observations suggest that diminishing structural and chemical investments into the more distal, absorptive roots in colder climates is consistent with building roots of higher absorptive capacity. At the same time, roots that play a more prominent role in transport of nutrients and water within the root system saw an increase in structural investment, which can increase persistence and reduce long-term costs associated with their frequent

  6. Effects of root morphology and leaf transpiration on Cd uptake and translocation in rice under different growth temperature.

    PubMed

    Ge, Liqiang; Cang, Long; Yang, Jie; Zhou, Dongmei

    2016-12-01

    With growing concerns on cadmium (Cd) contamination of rice grain from the public, the mechanism about the uptake and translocation of Cd in rice plant has been widely studied in recent years. However, the study about the effects of future warming on rice Cd accumulation was almost neglected. In the paper, hydroponic experiments of Cd exposure in growth chambers under different growth temperature (asymmetric and symmetric warming) were conducted to investigate how warming influenced Cd uptake and translocation in rice seedlings (6 liangyou 9368). The results showed that warming significantly increased Cd accumulation in shoot and root by 62.7 to 122 % and 65.5 to 73.9 %, respectively. Moreover, symmetric warming boosted Cd translocation from root to shoot, while antitranspirant treatment inhibited it significantly. The possible mechanisms may be that warming increased the fine root (diameter ≤ 0.5 mm) surface area and enlarged the active sites on root surface by influencing root morphology growth, thus promoted Cd uptake by root. Meanwhile, warming increased leaf transpiration and boosted the xylem stream from nutrient solution to above organs, thus enhanced Cd translocation. This study may provide new understanding and possible explanations about Cd uptake and translocation in rice plant under future warming.

  7. Root growth in response to nitrogen supply in Chinese maize hybrids released between 1973 and 2009.

    PubMed

    Wu, QiuPing; Chen, FanJun; Chen, YanLing; Yuan, LiXing; Zhang, FuSuo; Mi, GuoHua

    2011-07-01

    Root growth has a fundamental role in nitrogen (N) use efficiency. Nevertheless, little is known about how modern breeding progress has affected root growth and its responses to N supply. The root and shoot growth of a core set of 11 representative Chinese maize (Zea mays L.) hybrids released between 1973 and 2009 were investigated under high N (4 mmol L(-1), HN) and low N (0.04 mmol L(-1), LN) levels in a solution culture system. Compared with LN, HN treatment decreased root dry weight (RDW), the root: shoot ratio (R/S), and the relative growth rate for root dry weight (RGR(root)), but increased the total root length (TRL) and the total lateral root length (LRL). The total axial root length (ARL) per plant was reduced under HN, mostly in hybrids released before the 1990s. The number of seminal roots (SRN) was largely unaffected by different N levels. More recently released hybrids showed higher relative growth rates in the shoot under both HN and LN. However, the roots only showed increased RGR under HN treatment. Correspondingly, there was a positive linear relationship with the year of hybrid release for TRL, LRL and ARL under HN treatment. Together, these results suggest that while shoot growth of maize has improved, its root growth has only improved under high N conditions over the last 36 years of selective breeding in China. Improving root growth under LN conditions may be necessary to increase the N use efficiency of maize.

  8. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest.

    SciTech Connect

    Iversen, Colleen M; Childs, Joanne; Norby, Richard J

    2008-08-01

    Greater root production under elevated [CO2] may drive changes in soil C storage and N cycling. However, this depends on root population turnover and chemistry, and the soil depth at which the roots are produced. We assessed the effect of elevated [CO2] on root biomass and N inputs at several soil depths using a long-term minirhizotron data set combined with continuous, root-specific measurements of root mass per unit length and [N]. Our experiment was conducted in a Liquidambar styraciflua forest stand exposed to current or elevated atmospheric [CO2] for 9 years. CO2-enrichment had no effect on root tissue density or [N] within a given diameter class. Root biomass production, standing crop and mortality were doubled under elevated [CO2]. Over 9 years, root mortality resulted in 681 g m-2 of extra C and 9 g m-2 of extra N input to the soil system under elevated [CO2]. At least half of these inputs were below 30 cm soil depth. Quantification of the effects of elevated CO2 on root detritus, especially at depth in the soil, will provide critical information needed for predicting processes such as long-term soil C storage and N cycling.

  9. Growth in Turface® clay permits root hair phenotyping along the entire crown root in cereal crops and demonstrates that root hair growth can extend well beyond the root hair zone.

    PubMed

    Goron, Travis L; Watts, Sophia; Shearer, Charles; Raizada, Manish N

    2015-04-12

    In cereal crops, root hairs are reported to function within the root hair zone to carry out important roles in nutrient and water absorption. Nevertheless, these single cells remain understudied due to the practical challenges of phenotyping these delicate structures in large cereal crops growing on soil or other growth systems. Here we present an alternative growth system for examining the root hairs of cereal crops: the use of coarse Turface® clay alongside fertigation. This system allowed for root hairs to be easily visualized along the entire lengths of crown roots in three different cereal crops (maize, wheat, and finger millet). Surprisingly, we observed that the root hairs in these crops continued to grow beyond the canonical root hair zone, with the most root hair growth occurring on older crown root segments. We suggest that the Turface® fertigation system may permit a better understanding of the changing dynamics of root hairs as they age in large plants, and may facilitate new avenues for crop improvement below ground. However, the relevance of this system to field conditions must be further evaluated in other crops.

  10. Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem.

    PubMed

    Lipson, David A; Kuske, Cheryl R; Gallegos-Graves, La Verne; Oechel, Walter C

    2014-08-01

    Soil fungal communities are likely to be central in mediating microbial feedbacks to climate change through their effects on soil carbon (C) storage, nutrient cycling, and plant health. Plants often produce increased fine root biomass in response to elevated atmospheric carbon dioxide (CO2 ), but the responses of soil microbial communities are variable and uncertain, particularly in terms of species diversity. In this study, we describe the responses of the soil fungal community to free air CO2 enrichment (FACE) in a semiarid chaparral shrubland in Southern California (dominated by Adenomstoma fasciculatum) using large subunit rRNA gene sequencing. Community composition varied greatly over the landscape and responses to FACE were subtle, involving a few specific groups. Increased frequency of Sordariomycetes and Leotiomycetes, the latter including the Helotiales, a group that includes many dark septate endophytes known to associate positively with roots, was observed in the FACE plots. Fungal diversity, both in terms of richness and evenness, increased consistently in the FACE treatment, and was relatively high compared to other studies that used similar methods. Increases in diversity were observed across multiple phylogenetic levels, from genus to class, and were distributed broadly across fungal lineages. Diversity was also higher in samples collected close to (5 cm) plants compared to samples in canopy gaps (30 cm away from plants). Fungal biomass correlated well with soil organic matter (SOM) content, but patterns of diversity were correlated with fine root production rather than SOM. We conclude that the fungal community in this ecosystem is tightly linked to plant fine root production, and that future changes in the fungal community in response to elevated CO2 and other climatic changes will be primarily driven by changes in plant belowground allocation. Potential feedbacks mediated by soil fungi, such as soil C sequestration, nutrient cycling, and

  11. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth.

    PubMed

    Lin, Daohui; Xing, Baoshan

    2007-11-01

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50mg/L for radish, and about 20mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles.

  12. Growth and physiology of olive pioneer and fibrous roots exposed to soil moisture deficits.

    PubMed

    Polverigiani, S; McCormack, M L; Mueller, C W; Eissenstat, D M

    2011-11-01

    In woody plants, pioneer roots are the main roots used to expand the root system horizontally and vertically whereas fibrous 'feeder' roots are chiefly used in the absorption of water and nutrients. Because of their different roles, we expected newly emerged pioneer and fibrous roots to respond differently to restrictions in soil moisture. We hypothesized that fibrous roots would exhibit greater growth plasticity and greater physiological impairment from soil moisture deficits, especially under heterogeneous conditions. We compared the responses of fibrous and pioneer roots of olive seedlings (Olea europaea) to localized and uniform soil moisture deficits in transparent containers in the greenhouse. In comparison with uniformly wet conditions, uniformly dry conditions caused reduced shoot photosynthesis and reduced shoot growth, but no significant effect on root morphology, root respiration (measured in aerated buffer solution using excised roots) or electrolyte leakage as a function of root age. Under heterogeneous soil moisture conditions, root growth tended to preferentially occur in the moist sector, especially in the pioneer roots. In comparison with pioneer roots in the moist sector, pioneer roots in the dry sector had higher tissue density and higher suberin content, but no shift in root respiration, non-structural carbohydrates or electrolyte leakage. In contrast, fibrous roots in the dry sector exhibited evidence of impaired physiology in older (>38 days) roots compared with similar age fibrous roots in the moist sector. While we anticipated that, compared with pioneer roots, fibrous roots would be more sensitive to soil moisture deficits as expressed by higher electrolyte leakage, we did not expect the strong growth plasticity of pioneer roots under heterogeneous soil moisture conditions. Differentiating the responses of these two very different root types can improve our understanding of how different portions of the root system of woody plants cope with

  13. Intraspecific variation in fine root respiration and morphology in response to in situ soil nitrogen fertility in a 100-year-old Chamaecyparis obtusa forest.

    PubMed

    Makita, Naoki; Hirano, Yasuhiro; Sugimoto, Takanobu; Tanikawa, Toko; Ishii, Hiroaki

    2015-12-01

    Soil N fertility has an effect on belowground C allocation, but the physiological and morphological responses of individual fine root segments to variations in N availability under field conditions are still unclear. In this study, the direction and magnitude of the physiological and morphological function of fine roots in response to variable in situ soil N fertility in a forest site were determined. We measured the specific root respiration (Rr) rate, N concentration and morphology of fine root segments with 1-3 branching orders in a 100-year-old coniferous forest of Chamaecyparis obtusa. Higher soil N fertility induced higher Rr rates, root N concentration, and specific root length (SRL), and lower root tissue density (RTD). In all fertility levels, the Rr rates were significantly correlated positively with root N and SRL and negatively with RTD. The regression slopes of respiration with root N and RTD were significantly higher along the soil N fertility gradient. Although no differences in the slopes of Rr and SRL relationship were found across the levels, there were significant shifts in the intercept along the common slope. These results suggest that a contrasting pattern in intraspecific relationships between specific Rr and N, RTD, and SRL exists among soils with different N fertility. Consequently, substantial increases in soil N fertility would exert positive effects on organ-scale root performance by covarying the Rr, root N, and morphology for their potential nutrient and water uptake.

  14. A molecular method to identify species of fine roots and to predict the proportion of a species in mixed samples in subtropical forests

    PubMed Central

    Zeng, Weixian; Zhou, Bo; Lei, Pifeng; Zeng, Yeling; Liu, Yan; Liu, Cong; Xiang, Wenhua

    2015-01-01

    Understanding of belowground interactions among tree species and the fine root (≤2 mm in diameter) contribution of a species to forest ecosystem production are mostly restricted by experimental difficulties in the quantification of the species composition. The available approaches have various defects. By contrast, DNA-based methods can avoid these drawbacks. Quantitative real-time polymerase chain reaction (PCR) is an advanced molecular technology, but it is difficult to develop specific primer sets. The method of next-generation sequencing has several limitations, such as inaccurate sequencing of homopolymer regions, as well as being time-consuming, and requiring special knowledge for data analysis. This study evaluated the potential of the DNA-sequence-based method to identify tree species and to quantify the relative proportion of each species in mixed fine root samples. We discriminated the species by isolating DNA from individual fine roots and amplifying the plastid trnL(UAA; i.e., tRNA-Leu-UAA) intron using the PCR. To estimate relative proportions, we extracted DNA from fine root mixtures. After the plastid trnL(UAA) intron amplification and TA-cloning, we sequenced the positive clones from each mixture. Our results indicated that the plastid trnL(UAA) intron spacer successfully distinguished tree species of fine roots in subtropical forests. In addition, the DNA-sequence-based approach could reliably estimate the relative proportion of each species in mixed fine root samples. To our knowledge, this is the first time that the DNA-sequence-based method has been used to quantify tree species proportions in mixed fine root samples in Chinese subtropical forests. As the cost of DNA-sequencing declines and DNA-sequence-based methods improve, the molecular method will be more widely used to determine fine root species and abundance. PMID:25999977

  15. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Haworth, P.

    1994-01-01

    Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.

  16. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Haworth, P.

    1994-01-01

    Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.

  17. Identification of SHRUBBY, a SHORT-ROOT and SCARECROW interacting protein that controls root growth and radial patterning.

    PubMed

    Koizumi, Koji; Gallagher, Kimberly L

    2013-03-01

    The timing and extent of cell division is particularly important for the growth and development of multicellular organisms. Roots of the model organism Arabidopsis thaliana have been widely studied as a paradigm for organ development in plants. In the Arabidopsis root, the plant-specific GRAS family transcription factors SHORT-ROOT (SHR) and SCARECROW (SCR) are key regulators of root growth and of the asymmetric cell divisions that separate the ground tissue into two separate layers: the endodermis and cortex. To elucidate the role of SHR in root development, we identified 17 SHR-interacting proteins. Among those isolated was At5g24740, which we named SHRUBBY (SHBY). SHBY is a vacuolar sorting protein with similarity to the gene responsible for Cohen syndrome in humans. Hypomorphic alleles of shby caused poor root growth, decreased meristematic activity and defects in radial patterning that are characterized by an increase in the number of cell divisions in the ground tissue that lead to extra cells in the cortex and endodermis, as well as additional cell layers. Analysis of genetic and molecular markers indicates that SHBY acts in a pathway that partially overlaps with SHR, SCR, PLETHORA1 and PLETHORA2 (PLT1 and PLT2). The shby-1 root phenotype was partially phenocopied by treatment of wild-type roots with the proteosome inhibitor MG132 or the gibberellic acid (GA) synthesis inhibitor paclobutrazol (PAC). Our results indicate that SHBY controls root growth downstream of GA in part through the regulation of SHR and SCR.

  18. Mechanical failure of fine root cortical cells initiates plant hydraulic decline during drought

    USDA-ARS?s Scientific Manuscript database

    Root systems perform the crucial task of absorbing water from the soil to meet the demands of a transpiring canopy. Roots are thought to operate like electrical fuses, which break when carrying an excessive load under conditions of drought stress. Yet the exact site and sequence of this dysfunction ...

  19. Cytohistological analysis of roots whose growth is affected by a 60-Hz electric field

    SciTech Connect

    Brulfert, A.; Miller, M.W.; Robertson, D.; Dooley, D.A.; Economou, P.

    1985-01-01

    Roots of Pisum sativum were exposed for 48 h to 60-Hz electric fields of 430 V/m in an aqueous inorganic growth medium. The growth in length of the exposed roots was 44% of that for control roots. Root tips were analyzed for mitotic index and cell cycle duration. Mature, differentiated root sections from tissue produced after electrode energization were analyzed for cell lengths and number of files. The major reason for the observation that exposed roots are shorter than control roots is that cell elongation in the former is greatly diminished relative to controls. 15 references, 1 figures, 4 tables.

  20. Proteomic Profiling of the Microsomal Root Fraction: Discrimination of Pisum sativum L. Cultivars and Identification of Putative Root Growth Markers

    PubMed Central

    Meisrimler, Claudia-Nicole; Wienkoop, Stefanie; Lüthje, Sabine

    2017-01-01

    Legumes are a large and economically important family, containing a variety of crop plants. Alongside different cereals, some fruits, and tropical roots, a number of leguminosae evolved for millennia as crops with human society. One of these legumes is Pisum sativum L., the common garden pea. In the past, breeding has been largely selective on improved above-ground organs. However, parameters, such as root-growth, which determines acquisition of nutrients and water, have largely been underestimated. Although the genome of P. sativum is still not fully sequenced, multiple proteomic studies have been published on a variety of physiological aspects in the last years. The presented work focused on the connection between root length and the influence of the microsomal root proteome of four different pea cultivars after five days of germination (cultivar Vroege, Girl from the Rhineland, Kelvedon Wonder, and Blauwschokker). In total, 60 proteins were identified to have significantly differential abundances in the four cultivars. Root growth of five-days old seedlings and their microsomal proteome revealed a similar separation pattern, suggesting that cultivar-specific root growth performance is explained by differential membrane and ribosomal protein levels. Hence, we reveal and discuss several putative root growth protein markers possibly playing a key role for improved primary root growth breeding strategies. PMID:28257117

  1. Proteomic Profiling of the Microsomal Root Fraction: Discrimination of Pisum sativum L. Cultivars and Identification of Putative Root Growth Markers.

    PubMed

    Meisrimler, Claudia-Nicole; Wienkoop, Stefanie; Lüthje, Sabine

    2017-03-02

    Legumes are a large and economically important family, containing a variety of crop plants. Alongside different cereals, some fruits, and tropical roots, a number of leguminosae evolved for millennia as crops with human society. One of these legumes is Pisum sativum L., the common garden pea. In the past, breeding has been largely selective on improved above-ground organs. However, parameters, such as root-growth, which determines acquisition of nutrients and water, have largely been underestimated. Although the genome of P. sativum is still not fully sequenced, multiple proteomic studies have been published on a variety of physiological aspects in the last years. The presented work focused on the connection between root length and the influence of the microsomal root proteome of four different pea cultivars after five days of germination (cultivar Vroege, Girl from the Rhineland, Kelvedon Wonder, and Blauwschokker). In total, 60 proteins were identified to have significantly differential abundances in the four cultivars. Root growth of five-days old seedlings and their microsomal proteome revealed a similar separation pattern, suggesting that cultivar-specific root growth performance is explained by differential membrane and ribosomal protein levels. Hence, we reveal and discuss several putative root growth protein markers possibly playing a key role for improved primary root growth breeding strategies.

  2. Root respiratory costs of ion uptake, root growth, and root maintenance in wetland plants: efficiency and strategy of O2 use for adaptation to hypoxia.

    PubMed

    Nakamura, Takatoshi; Nakamura, Motoka

    2016-11-01

    Oxygen use in roots is an important aspect of wetland plant ecophysiology, and it depends on the respiratory costs of three major processes: ion uptake, root growth, and root maintenance. However, O2 allocation in wetland plants has received little attention. This study aimed to determine the O2 allocation and specific respiratory cost of each process under hypoxic conditions, to better understand the strategy and efficiency of O2 use in wetland plants. The root respiration rate, nitrogen uptake, and root growth in three Carex species with different growth rates were examined under hypoxic conditions using different N sources, and the respiratory costs of ion uptake, root growth, and root maintenance were statistically estimated. All species exhibited low specific costs and low ratios of O2 allocation for root growth (2.0 ± 0.4 mmol O2 g(-1) and 15.2 ± 2.7 %, respectively). The specific cost of ion uptake was 20-30 % lower in fast-growing species than in slow-growing species. As plant growth rate increased, the O2 allocation ratio for ion uptake increased, and that for root maintenance decreased. The cost was higher when NO3 (-) was fed, than when NH4 (+) was fed, although the pattern of O2 allocation ratios for three processes was similar for NO3 (-) and NH4 (+). Our results indicate that wetland plants primarily employ an O2 use strategy of minimising the respiratory costs of root growth, and fast-growing plants specifically use O2 to maximise ion uptake. These findings provide new insights into ecophysiological behaviours of roots in adaptation to hypoxia.

  3. Root features related to plant growth and nutrient removal of 35 wetland plants.

    PubMed

    Lai, Wen-Ling; Wang, Shu-Qiang; Peng, Chang-Lian; Chen, Zhang-He

    2011-07-01

    Morphological, structural, and eco-physiological features of roots, nutrient removal, and correlation between the indices were comparatively studied for 35 emergent wetland plants in small-scale wetlands for further investigation into the hypothesis of two types of wetland plant roots (Chen et al., 2004). Significant differences in root morphological, structural, and eco-physiological features were found among the 35 species. They were divided into two types: fibrous-root plants and thick-root plants. The fibrous-root plants had most or all roots of diameter (D) ≤ 1 mm. Roots of D > 1 mm also had many fine and long lateral roots of D ≤ 1 mm. The roots of these plants were long and had a thin epidermis and a low degree of lignification. The roots of the thick-root plants were almost all thicker than 1 mm, and generally had no further fine lateral roots. The roots were short, smooth, and fleshy, and had a thick epidermis. Root porosity of the fibrous-root plants was higher than that of the thick-root plants (p = 0.001). The aerenchyma of the fibrous-root plants was composed of large cavities which were formed from many small cavities, and distributed radially between the exodermis and vascular tissues. The aerenchyma of the thick-root plants had a large number of small cavities which were distributed in the mediopellis. The fibrous-root plants had a significantly larger root biomass of D ≤ 1 mm, of 1 mm < D < 3 mm, above-ground biomass, total biomass, and longer root system, but shorter root longevity than those of the thick-root plants (p = 0.003, 0.018, 0.020, 0.032, 0.042, 0.001). The fibrous-root plants also had significantly higher radial oxygen loss (ROL), root activity, photosynthetic rate, transpiration rate, and removal rates of total nitrogen and total phosphorus than the thick-root plants (p = 0.001, 0.008, 0.010, 0.004, 0.020, 0.002). The results indicate that significantly different root morphological and structural features existed among different

  4. Plant-in-chip: Microfluidic system for studying root growth and pathogenic interactions in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Parashar, Archana; Pandey, Santosh

    2011-06-01

    We report a microfluidic platform for the hydroponic growth of Arabidopsis plants with high-resolution visualization of root development and root-pathogen interactions. The platform comprises a set of parallel microchannels with individual input/output ports where 1-day old germinated seedlings are initially placed. Under optimum conditions, a root system grows in each microchannel and its images are recorded over a 198-h period. Different concentrations of plant growth media show different root growth characteristics. Later, the developed roots are inoculated with two plant pathogens (nematodes and zoospores) and their physicochemical interactions with the live root systems are observed.

  5. Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone

    Treesearch

    M.D. Coleman; R.E. Dickson; J.G. Isebrands; D.F. Karnosky

    1996-01-01

    We studied root growth and respiration of potted plants and field-grown aspen trees (Populus tremuloides Michx.) exposed to ambient or twice-ambient ozone. Root dry weight of potted plants decreased up to 45% after 12 weeks of ozone treatment, and root system respiration decreased by 27%. The ozone-induced decrease in root system respiration of...

  6. Root growth, mycorrhization and physiological effects of plants growing on oil tailing sands

    NASA Astrophysics Data System (ADS)

    Boldt-Burisch, Katja M.; Naeth, Anne M.; Schneider, Bernd Uwe; Hüttl, Reinhard F.

    2015-04-01

    Surface mining creates large, intense disturbances of soils and produces large volumes of by-products and waste materials. After mining processes these materials often provide the basis for land reclamation and ecosystem restoration. In the present study, tailing sands (TS) and processed mature fine tailings (pMFT) from Fort McMurray (Alberta, Canada) were used. They represent challenging material for ecosystem rebuilding because of very low nutrient contents of TS and oil residuals, high density of MFT material. In this context, little is known about the interactions of pure TS, respectively mixtures of TS and MFT and root growth, mycorrhization and plant physiological effects. Four herbaceous plant species (Elymus trachycaulus, Koeleria macrantha, Deschampsia cespitosa, Lotus corniculatus) were chosen to investigate root development, chlorophyll fluorescence and mycorrhization intensity with and without application of Glomus mosseae (arbuscular mycorrhizae) on mainly tailing sands. Surprisingly both, plants growing on pure TS and plants growing on TS with additional AM-application showed mycorrhization of roots. In general, the mycorrhization intensity was lower for plants growing on pure tailings sands, but it is an interesting fact that there is a potential for mycorrhization available in tailing sands. The mycorrhizal intensity strongly increased with application of G. mosseae for K. macrantha and L. corniculatus and even more for E. trachycaulus. For D. cespitosa similar high mycorrhiza infection frequency was found for both variants, with and without AM-application. By the application of G. mosseae, root growth of E. trachycaulus and K. macrantha was significantly positively influenced. Analysis of leaf chlorophyll fluorescence showed no significant differences for E. trachycaulus but significant positive influence of mycorrhizal application on the physiological status of L. corniculatus. However, this effect could not be detected when TS was mixed with MFT

  7. Analysis of Arabidopsis thaliana root growth kinetics with high temporal and spatial resolution

    PubMed Central

    Yazdanbakhsh, Nima; Fisahn, Joachim

    2010-01-01

    Background Methods exist to quantify the distribution of growth rate over the root axis. However, non-destructive, high-throughput evaluations of total root elongation in controlled environments and the field are lacking in growth studies. A new imaging approach to analyse total root elongation is described. Scope High pixel resolution of the images enables the study of growth in short time intervals and provides high temporal resolution. Using the method described, total root elongation rates are calculated from the displacement of the root tip. Although the absolute root elongation rate changes in response to growth conditions, this set-up enables root growth of Arabidopsis wild-type seedlings to be followed for more than 1 month after germination. The method provides an easy approach to decipher root extension rate and much simpler calculations compared with other methods that use segmental growth to address this question. Conclusions The high temporal resolution allows small modifications of total root elongation growth to be revealed. Furthermore, with the options to investigate growth of various mutants in diverse growth conditions the present tool allows modulations in root growth kinetics due to different biotic and abiotic stimuli to be unravelled. Measurements performed on Arabidopsis thaliana wild-type (Col0) plants revealed rhythms superimposed on root elongation. Results obtained from the starchless mutant pgm, however, present a clearly modified pattern. As expected, deviation is strongest during the dark period. PMID:20421235

  8. Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual-based model and quantitative comparisons to data.

    PubMed

    Dybzinski, Ray; Farrior, Caroline; Wolf, Adam; Reich, Peter B; Pacala, Stephen W

    2011-02-01

    We present a model that scales from the physiological and structural traits of individual trees competing for light and nitrogen across a gradient of soil nitrogen to their community-level consequences. The model predicts the most competitive (i.e., the evolutionarily stable strategy [ESS]) allocations to foliage, wood, and fine roots for canopy and understory stages of trees growing in old-growth forests. The ESS allocations, revealed as analytical functions of commonly measured physiological parameters, depend not on simple root-shoot relations but rather on diminishing returns of carbon investment that ensure any alternate strategy will underperform an ESS in monoculture because of the competitive environment that the ESS creates. As such, ESS allocations do not maximize nitrogen-limited growth rates in monoculture, highlighting the underappreciated idea that the most competitive strategy is not necessarily the "best," but rather that which creates conditions in which all others are "worse." Data from 152 stands support the model's surprising prediction that the dominant structural trade-off is between fine roots and wood, not foliage, suggesting the "root-shoot" trade-off is more precisely a "root-stem" trade-off for long-lived trees. Assuming other resources are abundant, the model predicts that forests are limited by both nitrogen and light, or nearly so.

  9. The influence of treeshelters and irrigation on shoot and root growth of three California oak species

    Treesearch

    Douglas McCreary; Laurence R. Costello; Jerry Tecklin; Katherine Jones; David Labadie

    2002-01-01

    Treeshelters are individual seedling protectors that can accelerate height growth of native California oaks. There is concern, however, that this growth may occur at the expense of the roots, resulting in poor long-term field performance. This study could detect no differences between protected and unprotected seedlings in shoot weight, root weight or shoot/root ratios...

  10. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize.

    PubMed

    Zhang, Deshan; Zhang, Chaochun; Tang, Xiaoyan; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R; Davies, William J; Shen, Jianbo

    2016-01-01

    Root growth is influenced by soil nutrients and neighbouring plants, but how these two drivers affect root interactions and regulate plant growth dynamics is poorly understood. Here, interactions between the roots of maize (Zea mays) and faba bean (Vicia faba) are characterized. Maize was grown alone (maize) or with maize (maize/maize) or faba bean (maize/faba bean) as competitors under five levels of phosphorus (P) supply, and with homogeneous or heterogeneous P distribution. Maize had longer root length and greater shoot biomass and P content when grown with faba bean than with maize. At each P supply rate, faba bean had a smaller root system than maize but greater exudation of citrate and acid phosphatase, suggesting a greater capacity to mobilize P in the rhizosphere. Heterogeneous P availability enhanced the root-length density of maize but not faba bean. Maize root proliferation in the P-rich patches was associated with increased shoot P uptake. Increased P availability by localized P application or by the presence of faba bean exudation stimulated root morphological plasticity and increased shoot growth in maize in the maize/faba bean mixture, suggesting that root interactions of neighbouring plants can be modified by increased P availability.

  11. Improving root-zone soil moisture estimations using dynamic root growth and crop phenology

    NASA Astrophysics Data System (ADS)

    Hashemian, Minoo; Ryu, Dongryeol; Crow, Wade T.; Kustas, William P.

    2015-12-01

    Water Energy Balance (WEB) Soil Vegetation Atmosphere Transfer (SVAT) modelling can be used to estimate soil moisture by forcing the model with observed data such as precipitation and solar radiation. Recently, an innovative approach that assimilates remotely sensed thermal infrared (TIR) observations into WEB-SVAT to improve the results has been proposed. However, the efficacy of the model-observation integration relies on the model's realistic representation of soil water processes. Here, we explore methods to improve the soil water processes of a simple WEB-SVAT model by adopting and incorporating an exponential root water uptake model with water stress compensation and establishing a more appropriate soil-biophysical linkage between root-zone moisture content, above-ground states and biophysical indices. The existing WEB-SVAT model is extended to a new Multi-layer WEB-SVAT with Dynamic Root distribution (MWSDR) that has five soil layers. Impacts of plant root depth variations, growth stages and phenological cycle of the vegetation on transpiration are considered in developing stages. Hydrometeorological and biogeophysical measurements collected from two experimental sites, one in Dookie, Victoria, Australia and the other in Ponca, Oklahoma, USA, are used to validate the new model. Results demonstrate that MWSDR provides improved soil moisture, transpiration and evaporation predictions which, in turn, can provide an improved physical basis for assimilating remotely sensed data into the model. Results also show the importance of having an adequate representation of vegetation-related transpiration process for an appropriate simulation of water transfer in a complicated system of soil, plants and atmosphere.

  12. Heparin localization and fine structure regulate Burkitt's lymphoma growth

    SciTech Connect

    Berry, David; Lynn, David M.; Berry, Eric; Sasisekharan, Ram; Langer, Robert . E-mail: rlanger@mit.edu

    2006-09-29

    Burkitt's lymphoma (BL) is a B-cell malignancy associated with the Epstein-Barr virus (EBV). Mounting evidence has implicated heparan sulfate proteoglycans and heparan sulfate-like glycosaminoglycans (HSGAGs) in the initiation, severity, and progression of the malignancy. The importance of HSGAGs in regulating BL cell growth was therefore examined. Extracellular exogenous heparin inhibited cell growth >30%, while heparin internalized with poly({beta}-amino ester)s promoted proliferation up to 58%. The growth-modulating effects of heparin and internalized heparin were dependent on cell surface HSGAGs, PI3K, and Erk/Mek. Treatment of cells with protamine sulfate or with heparinases potently inhibited proliferation, with the greatest effects induced by heparinase I. Cell surface HSGAGs therefore play an important role in regulating BL proliferation and may offer a potential target for therapeutic intervention.

  13. CO2 and N-fertilization effects on fine-root length, production, and mortality: a 4-year ponderosa pine study.

    PubMed

    Phillips, Donald L; Johnson, Mark G; Tingey, David T; Storm, Marjorie J; Ball, J Timothy; Johnson, Dale W

    2006-06-01

    We conducted a 4-year study of juvenile Pinus ponderosa fine root (< or =2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at three CO2 levels (ambient, ambient+175 mumol/mol, ambient+350 mumol/mol) and three N-fertilization levels (0, 10, 20 g m(-2) year(-1)). Length and width of individual roots were measured from minirhizotron video images bimonthly over 4 years starting when the seedlings were 1.5 years old. Neither CO2 nor N-fertilization treatments affected the seasonal patterns of root production or mortality. Yearly values of fine-root length standing crop (m m(-2)), production (m m(-2) year(-1)), and mortality (m m(-2) year(-1)) were consistently higher in elevated CO2 treatments throughout the study, except for mortality in the first year; however, the only statistically significant CO2 effects were in the fine-root length standing crop (m m(-2)) in the second and third years, and production and mortality (m m(-2) year(-1)) in the third year. Higher mortality (m m(-2) year(-1)) in elevated CO2 was due to greater standing crop rather than shorter life span, as fine roots lived longer in elevated CO2. No significant N effects were noted for annual cumulative production, cumulative mortality, or mean standing crop. N availability did not significantly affect responses of fine-root standing crop, production, or mortality to elevated CO2. Multi-year studies at all life stages of trees are important to characterize belowground responses to factors such as atmospheric CO2 and N-fertilization. This study showed the potential for juvenile ponderosa pine to increase fine-root C pools and C fluxes through root mortality in response to elevated CO2.

  14. PATTERNS OF ROOT GROWTH, TURNOVER, AND DISTRIBUTION IN DIFFERENT AGED PONDEROSA PINE STANDS

    EPA Science Inventory

    The objectives of this study are to examine the spatial distribution of roots in relation to canopy size and tree distribution, and to determine if rates of fine root production and turnover are similar in the different aged stands. During the fall of 1998, 54 clear plexiglass t...

  15. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine

    Treesearch

    John S. King; Timothy J. Albaugh; H. Lee Allen; Marilyn Buford; Boyd R. Strain; Phillip Dougherty

    2002-01-01

    Availability of growth limiting resources may alter root dynamics in forest ecosystems, possibly affecting the land-atmosphere exchange of carbon. This was evaluated for a commercially important southern timber species by installing a factorial experiment of fertilization and irrigation treatments in an 8-yr-old loblolly pine (Pinus taeda) plantation...

  16. How grow-and-switch gravitropism generates root coiling and root waving growth responses in Medicago truncatula.

    PubMed

    Tan, Tzer Han; Silverberg, Jesse L; Floss, Daniela S; Harrison, Maria J; Henley, Christopher L; Cohen, Itai

    2015-10-20

    Experimental studies show that plant root morphologies can vary widely from straight gravity-aligned primary roots to fractal-like root architectures. However, the opaqueness of soil makes it difficult to observe how environmental factors modulate these patterns. Here, we combine a transparent hydrogel growth medium with a custom built 3D laser scanner to directly image the morphology of Medicago truncatula primary roots. In our experiments, root growth is obstructed by an inclined plane in the growth medium. As the tilt of this rigid barrier is varied, we find Medicago transitions between randomly directed root coiling, sinusoidal root waving, and normal gravity-aligned morphologies. Although these root phenotypes appear morphologically distinct, our analysis demonstrates the divisions are less well defined, and instead, can be viewed as a 2D biased random walk that seeks the path of steepest decent along the inclined plane. Features of this growth response are remarkably similar to the widely known run-and-tumble chemotactic behavior of Escherichia coli bacteria, where biased random walks are used as optimal strategies for nutrient uptake.

  17. How grow-and-switch gravitropism generates root coiling and root waving growth responses in Medicago truncatula

    PubMed Central

    Tan, Tzer Han; Silverberg, Jesse L.; Floss, Daniela S.; Harrison, Maria J.; Henley, Christopher L.; Cohen, Itai

    2015-01-01

    Experimental studies show that plant root morphologies can vary widely from straight gravity-aligned primary roots to fractal-like root architectures. However, the opaqueness of soil makes it difficult to observe how environmental factors modulate these patterns. Here, we combine a transparent hydrogel growth medium with a custom built 3D laser scanner to directly image the morphology of Medicago truncatula primary roots. In our experiments, root growth is obstructed by an inclined plane in the growth medium. As the tilt of this rigid barrier is varied, we find Medicago transitions between randomly directed root coiling, sinusoidal root waving, and normal gravity-aligned morphologies. Although these root phenotypes appear morphologically distinct, our analysis demonstrates the divisions are less well defined, and instead, can be viewed as a 2D biased random walk that seeks the path of steepest decent along the inclined plane. Features of this growth response are remarkably similar to the widely known run-and-tumble chemotactic behavior of Escherichia coli bacteria, where biased random walks are used as optimal strategies for nutrient uptake. PMID:26432881

  18. Induction of hairy roots and characterization of peroxidase expression as a potential root growth marker in sesame.

    PubMed

    Chun, J-A; Lee, J-W; Yi, Y-B; Park, G-Y; Chung, C-H

    2009-01-01

    Using hypocotyl and cotyledon of sesame seedlings, hairy root cultures were established and cDNA coding for a peroxidase was cloned from the roots. The frequency of sesame hairy root formation was higher in hypocotyl (33.4%) than cotyledon (9.3%). Applicable levels of kanamycin and hygromycin as a selectable marker were 100 microg/mL and 30 microg/mL, respectively. The peroxidase cDNA showed relatively high sequence identity with and similarity to plant class III peroxidase family. The cDNA encoded polypeptide was identified with the presence of three sequence features: 1) the putative 4 disulfide bridges, 2) an ER-targeted signal sequence in the N-terminus, and 3) two triplets, NXS for glycosylation. A real-time RT-PCR exhibited an abrupt increase in the peroxidase transcription activity after 4-week cultures of the sesame hairy roots and its highest level in 6-week cultured hairy roots. In contrast, the growth pattern of sesame hairy roots showed a typical sigmoidal curve. The active hairy root growth began after 2-week culture and their stationary growth phase occurred after 5-week culture. These results suggested that the peroxidase expression patterns at its transcription level could be used a potential indicator signaling a message that there will be no longer active growth in hairy root cultures. The sesame peroxidase gene was differentially expressed in different tissues.

  19. Growth, gas exchange, and root respiration of Quercus rubra seedlings exposed to low root zone temperatures in solution culture

    Treesearch

    Kent G. Apostol; Douglass F. Jacobs; Barrett C. Wilson; K. Francis Salifu; R. Kasten Dumroese

    2007-01-01

    Spring planting is standard operational practice in the Central Hardwood Region, though little is known about potential impacts of low root temperature (RT) common during spring on establishment success of temperate deciduous forest tree species. The effects of low RTon growth, gas exchange, and root respiration following winter dormancy were studied in 1-year-old...

  20. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development.

    PubMed

    Mishra, Bhuwaneshwar S; Singh, Manjul; Aggrawal, Priyanka; Laxmi, Ashverya

    2009-01-01

    Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62%) genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35%) even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient conditions.

  1. Glucose and Auxin Signaling Interaction in Controlling Arabidopsis thaliana Seedlings Root Growth and Development

    PubMed Central

    Aggrawal, Priyanka; Laxmi, Ashverya

    2009-01-01

    Background Plant root growth and development is highly plastic and can adapt to many environmental conditions. Sugar signaling has been shown to affect root growth and development by interacting with phytohormones such as gibberellins, cytokinin and abscisic acid. Auxin signaling and transport has been earlier shown to be controlling plant root length, number of lateral roots, root hair and root growth direction. Principal Findings Increasing concentration of glucose not only controls root length, root hair and number of lateral roots but can also modulate root growth direction. Since root growth and development is also controlled by auxin, whole genome transcript profiling was done to find out the extent of interaction between glucose and auxin response pathways. Glucose alone could transcriptionally regulate 376 (62%) genes out of 604 genes affected by IAA. Presence of glucose could also modulate the extent of regulation 2 fold or more of almost 63% genes induced or repressed by IAA. Interestingly, glucose could affect induction or repression of IAA affected genes (35%) even if glucose alone had no significant effect on the transcription of these genes itself. Glucose could affect auxin biosynthetic YUCCA genes family members, auxin transporter PIN proteins, receptor TIR1 and members of a number of gene families including AUX/IAA, GH3 and SAUR involved in auxin signaling. Arabidopsis auxin receptor tir1 and response mutants, axr2, axr3 and slr1 not only display a defect in glucose induced change in root length, root hair elongation and lateral root production but also accentuate glucose induced increase in root growth randomization from vertical suggesting glucose effects on plant root growth and development are mediated by auxin signaling components. Conclusion Our findings implicate an important role of the glucose interacting with auxin signaling and transport machinery to control seedling root growth and development in changing nutrient conditions. PMID

  2. Effect of seed pelleting with biocontrol agents on growth and colonisation of roots of mungbean by root-infecting fungi.

    PubMed

    Ramzan, Nadia; Noreen, Nayara; Perveen, Zahida; Shahzad, Saleem

    2016-08-01

    Mungbean (Vigna radiata (L.) Wilczek) is a leguminous pulse crop that is a major source of proteins, vitamins and minerals. Root-infecting fungi produce severe plant diseases like root rot, charcoal rot, damping-off and stem rot. The soil-borne pathogens can be controlled by chemicals, but these chemicals have several negative effects. Use of microbial antagonist such as fungi and bacteria is a safe, effective and eco-friendly method for the control of many soil-borne pathogens. Biological control agents promote plant growth and develop disease resistance. Application of bacteria and fungi as seed dressing suppressed the root-infecting fungi on leguminous crops. Seeds of mungbean were pelleted with different biocontrol agents to determine their effect on plant growth and colonisation of roots by root-infecting fungi, viz. Fusarium solani, Macrophomina phaseolina, Pythium aphanidermatum, Rhizoctonia solani and Sclerotium rolfsii. Treatment of mungbean seeds with fungal antagonists showed more shoot and root length as compared to bacterial antagonists, whereas seed treated with bacterial antagonists showed maximum shoot and root weight. Trichoderma harzianum and Bacillus subtilis were the best among all the biocontrol agents since they provided the highest plant growth and greater reduction in root colonisation by all root-infecting fungi. Bacillus cereus, Trichoderma virens, Pseudomonas fluorescens and Micrococcus varians were also effective against root-infecting fungi but to a lesser extent. T. harzianum, T. virens, B. subtilis and P. fluorescens were found to be best among all biocontrol agents. The root-infecting fungi can be controlled by pelleting seeds with biocontrol agents as it is safe and effective method. Additionally, plant growth was promoted more by this method. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Spatial and directional variation of growth rates in Arabidopsis root apex: a modelling study.

    PubMed

    Nakielski, Jerzy; Lipowczan, Marcin

    2013-01-01

    Growth and cellular organization of the Arabidopsis root apex are investigated in various aspects, but still little is known about spatial and directional variation of growth rates in very apical part of the apex, especially in 3D. The present paper aims to fill this gap with the aid of a computer modelling based on the growth tensor method. The root apex with a typical shape and cellular pattern is considered. Previously, on the basis of two types of empirical data: the published velocity profile along the root axis and dimensions of cell packets formed in the lateral part of the root cap, the displacement velocity field for the root apex was determined. Here this field is adopted to calculate the linear growth rate in different points and directions. The results are interpreted taking principal growth directions into account. The root apex manifests a significant anisotropy of the linear growth rate. The directional preferences depend on a position within the root apex. In the root proper the rate in the periclinal direction predominates everywhere, while in the root cap the predominating direction varies with distance from the quiescent centre. The rhizodermis is distinguished from the neighbouring tissues (cortex, root cap) by relatively high contribution of the growth rate in the anticlinal direction. The degree of growth anisotropy calculated for planes defined by principal growth directions and exemplary cell walls may be as high as 25. The changes in the growth rate variation are modelled.

  4. Root growth dynamics linked to aboveground growth in walnuts (Juglans regia L.)

    USDA-ARS?s Scientific Manuscript database

    Background and Aims: Examination of belowground plant responses to canopy and soil moisture manipulation is scant compared to that aboveground but needed to understand whole plant responses to environmental factors. Plasticity in the seasonal timing and vertical distribution of root growth in respon...

  5. Flavonols Mediate Root Phototropism and Growth through Regulation of Proliferation-to-Differentiation Transition.

    PubMed

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Téllez-Robledo, Bárbara; Navarro-Neila, Sara; Carrasco, Víctor; Pollmann, Stephan; Gallego, F Javier; Del Pozo, Juan C

    2016-06-01

    Roots normally grow in darkness, but they may be exposed to light. After perceiving light, roots bend to escape from light (root light avoidance) and reduce their growth. How root light avoidance responses are regulated is not well understood. Here, we show that illumination induces the accumulation of flavonols in Arabidopsis thaliana roots. During root illumination, flavonols rapidly accumulate at the side closer to light in the transition zone. This accumulation promotes asymmetrical cell elongation and causes differential growth between the two sides, leading to root bending. Furthermore, roots illuminated for a long period of time accumulate high levels of flavonols. This high flavonol content decreases both auxin signaling and PLETHORA gradient as well as superoxide radical content, resulting in reduction of cell proliferation. In addition, cytokinin and hydrogen peroxide, which promote root differentiation, induce flavonol accumulation in the root transition zone. As an outcome of prolonged light exposure and flavonol accumulation, root growth is reduced and a different root developmental zonation is established. Finally, we observed that these differentiation-related pathways are required for root light avoidance. We propose that flavonols function as positional signals, integrating hormonal and reactive oxygen species pathways to regulate root growth direction and rate in response to light. © 2016 American Society of Plant Biologists. All rights reserved.

  6. [Impacts of root-zone hypoxia stress on muskmelon growth, its root respiratory metabolism, and antioxidative enzyme activities].

    PubMed

    Liu, Yi-Ling; Li, Tian-Lai; Sun, Zhou-Ping; Chen, Ya-Dong

    2010-06-01

    By using aeroponics culture system, this paper studied the impacts of root-zone hypoxia (10% O2 and 5% O2) stress on the plant growth, root respiratory metabolism, and antioxidative enzyme activities of muskmelon at its fruit development stage. Root-zone hypoxia stress inhibited the plant growth of muskmelon, resulting in the decrease of plant height, root length, and fresh and dry biomass. Comparing with the control (21% O2), hypoxia stress reduced the root respiration rate and malate dehydrogenase (MDH) activity significantly, and the impact of 5% O2 stress was more serious than that of 10% O2 stress. Under hypoxic conditions, the lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and the malondialdehyde (MDA) content were significantly higher than the control. The increment of antioxidative enzyme activities under 10% O2 stress was significantly higher than that under 5% O2 stress, while the MDA content was higher under 5% O2 stress than under 10% O2 stress, suggesting that when the root-zone oxygen concentration was below 10%, the aerobic respiration of muskmelon at its fruit development stage was obviously inhibited while the anaerobic respiration was accelerated, and the root antioxidative enzymes induced defense reaction. With the increasing duration of hypoxic stress, the lipid peroxidation would be aggravated, resulting in the damages on muskmelon roots, inhibition of plant growth, and decrease of fruit yield and quality.

  7. [Effects of drought stress on the root growth and development and physiological characteristics of peanut].

    PubMed

    Ding, Hong; Zhang, Zhi-Meng; Dai, Liang-Xiang; Kang, Tao; Ci, Dun-Wei; Song, Wen-Wu

    2013-06-01

    Taking two peanut varieties Huayu 17 and Tangke 8 as test objects, a soil column culture experiment was conducted in a rainproof tank to study the peanut root morphological development and physiological characteristics at late growth stages under moderate drought and well-watered conditions. Tanke 8 had more developed root system and higher yield and drought coefficient, while Huayu 17 had poorer root adaptability to drought stress. For the two varieties, their root length density and root biomass were mainly distributed in 0-40 cm soil layer, whereas their root traits differed in the same soil layer. The total root length, total root surface area, and total root volume of Huayu 17 at each growth stage were smaller under drought stress than under well-balanced water treatment, while these root characteristics of Tangke 8 under drought stress only decreased at flowering-pegging stage. Drought stress increased the root biomass, surface area, and volume of the two varieties in 20-40 cm soil layer, but decreased these root traits in the soil layers below 40 cm. Under drought stress, the root activity of the two varieties in the soil layers below 40 cm at pod filling stage decreased, and the decrement was larger for Huayu 17. The differences in the root system development and physiological characteristics of the two varieties at late growth stages under drought stress suggested that the root system of the two varieties had different water absorption and utilization under drought stress.

  8. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    PubMed Central

    Judd, Lesley A.; Jackson, Brian E.; Fonteno, William C.

    2015-01-01

    The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain. PMID:27135334

  9. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants.

    PubMed

    Judd, Lesley A; Jackson, Brian E; Fonteno, William C

    2015-07-03

    The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  10. Nonfumigant Nematicides for Control of Root-knot Nematode to Protect Carrot Root Growth in Organic Soils.

    PubMed

    Vrain, T C; Belair, G; Martel, P

    1979-10-01

    Greenhouse tests were conducted to determine the effects of two kinds of Meloidogyne hapla inoculum on the growth and quality of carrot roots, and the protection afforded in each case by nonfumigant nematicides in organic soils. For all treatments the percentage of carrots damaged was greater with larvae alone as inoculum than with larvae and eggs, indicating that most of the damage occurs early during formation of the taproot. Fosthietan, aldicarb, and oxamyl at 4 and 6 kg ai/ha protected the roots during formation and gave a lasting control of root-knot nematode. There was some nematode damage to the roots with phenamiphos and carbofuran at 4 and 6 kg ai/ha. Isazophos, diflubenzuron, and fenvalerate gave little protection to carrot roots and did not control root-knot nematode effectively.

  11. AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency

    PubMed Central

    Zheng, Hongyan; Pan, Xiaoying; Deng, Yuxia; Wu, Huamao; Liu, Pei; Li, Xuexian

    2016-01-01

    The primary root plays essential roles in root development, nutrient absorption, and root architectural establishment. Primary root growth is generally suppressed by phosphate (P) deficiency in A. thaliana; however, the underlying molecular mechanisms are largely elusive to date. We found that AtOPR3 specifically inhibited primary root growth under P deficiency via suppressing root tip growth at the transcriptional level, revealing an important novel function of AtOPR3 in regulating primary root response to the nutrient stress. Importantly, AtOPR3 functioned to down-regulate primary root growth under P limitation mostly by its own, rather than depending on the Jasmonic acid signaling pathway. Further, AtOPR3 interacted with ethylene and gibberellin signaling pathways to regulate primary root growth upon P deficiency. In addition, the AtOPR3’s function in inhibiting primary root growth upon P limitation was also partially dependent on auxin polar transport. Together, our studies provide new insights into how AtOPR3, together with hormone signaling interactions, modulates primary root growth in coping with the environmental stress in Arabidopsis. PMID:27101793

  12. Long-term Root Growth Response to Thinning, Fertilization, and Water Deficit in Plantation Loblolly Pine

    Treesearch

    M.A. Sword-Sayer; Z. Tang

    2004-01-01

    High water deficits limit the new root growth of loblolly pine (Pinus taeda L.), potentially reducing soil resource availability and stand growth. We evaluated new root growth and stand production in response to thinning and fertilization in loblolly pine over a 6-year period that consisted of 3 years of low water deficit followed by 3 years of high...

  13. Hepatocyte growth factor stimulates root growth during the development of mouse molar teeth.

    PubMed

    Sakuraba, H; Fujiwara, N; Sasaki-Oikawa, A; Sakano, M; Tabata, Y; Otsu, K; Ishizeki, K; Harada, H

    2012-02-01

    It is well known that tooth root formation is initiated by the development of Hertwig's epithelial root sheath (HERS). However, relatively little is known about the regulatory mechanisms involved in root development. As hepatocyte growth factor (HGF) is one of the mediators of epithelial-mesenchymal interactions in rodent tooth, the objective of this study was to examine the effects of HGF on the root development of mouse molars. The HERS of mouse molars and HERS01a, a cell line originated from HERS, were used in this study. For detection of HGF receptors in vivo and in vitro, we used immunochemical procedures. Root development was assessed by implanting molar tooth germs along with HGF-soaked beads into kidney capsules, by counting cell numbers in HERS01a cell cultures and by performing a 5'-bromo-2'-deoxyuridine (BrdU) assay in an organ-culture system. HGF receptors were expressed in the enamel epithelium of molar germs as well as in HERS cells. HGF stimulated root development in the transplanted tooth germs, the proliferation of HERS01a cells in culture and HERS elongation in the organ-culture system. Examination using BrdU revealed that cell proliferation in HERS was increased by treatment with HGF, especially that in the outer layer of HERS. This effect was down-regulated when antibody against HGF receptor was present in the culture medium. Our results raise the possibility that HGF signaling controls root formation via the development of HERS. This study is the first to show that HGF is one of the stimulators of root development. © 2011 John Wiley & Sons A/S.

  14. Larval growth of Diaprepes abbreviatus (Coleoptera: Curculionidae) and resulting root injury to three citrus varieties in two soil types.

    PubMed

    Rogers, S; Mccoy, C W; Graham, J H

    2000-04-01

    Larval growth and intraspecific competition of Diaprepes abbreviatus (L.) larvae and consequent root injury in container-grown citrus in the greenhouse were evaluated. Roots of Carrizo citrange, Citrus sinesis L. Osbeck x Poncirus trifoliata (L.) Raf.; Cleopatra mandarin, C. reticulata Blanco, and Swingle citrumelo, C. paradisi Macf. x P. trifoliata (L.) Raf. rootstock seedlings grown in Candler fine sand and potting soil were colonized with different populations of D. abbreviatus larvae. Larvae were exposed to the seedlings for 79 d. Larval growth and development increased steadily for approximately 70 d on all rootstock-soil combinations, at which time most larvae were instars 6-8. Most feeding injury occurred to roots when larvae were between instars 3 and 6. Larval weight reached a plateau at approximately 70 d, but often declined between 70 and 79 d. When larvae were small, injury to seedlings developed slowly, primarily on fibrous roots, then feeding increased rapidly, often resulting in total consumption of both fibrous root and bark tissue. Although not statistically significant, root injury developed slightly slower on Swingle citrumelo compared with Carrizo and Cleopatra rootstocks, but damage was comparable by 79 d. Little or no difference in consumptive benefit to the larvae was found between the rootstocks. Based on larval weight days, little feeding injury occurred during the first 21 d, but increased rapidly between 21 and 60 d. Soil type affected the rate of larval growth and development, with potting soil contributing to greater growth rates. Detritus in potting soil provided little or no nutritional resource, suggesting that the effect of potting soil on larval development was primarily physical. In addition, fewer inoculated larvae per seedling exhibited greater weight gains than higher infestation densities, suggesting that intraspecific competition for nutritional resources influenced larval development.

  15. DO ELEVATED CO2 AND N FERTILIZATION ALTER FINE ROOT-MYCORRHIZAE RELATIONSHIPS IN PINUS PONDEROSA?

    EPA Science Inventory

    Despite extensive studies on the response of plants to elevated CO2, climate change and N deposition, little is known about the response of roots and mycorrhizae in spite of their key role in plant water and nutrient acquisition. The effects of elevated CO2 and N fertilization on...

  16. The effect of deposited fine sediment on summer survival and growth of rainbow trout in riffles of a small stream

    Treesearch

    Bret C. Harvey; Jason L. White; Rodney J. Nakamoto

    2009-01-01

    Elevated fine-sediment inputs to streams can alter a variety of conditions and processes, including the amount of fine sediment stored in riffles. We sought to measure the influence of deposited fine sediment on the survival and growth of juvenile rainbow trout Oncorhynchus mykiss (106–130 mm fork length) using a field experiment that included 18 enclosures in riffles...

  17. Effect of calmodulin antagonists on the growth and graviresponsiveness of primary roots of maize

    NASA Technical Reports Server (NTRS)

    Stinemetz, C. L.; Hasenstein, K. H.; Young, L. M.; Evans, M. L.

    1992-01-01

    We examined the effect of calmodulin (CaM) antagonists applied at the root tip on root growth, gravity-induced root curvature, and the movement of calcium across the root tip and auxin (IAA) across the elongation zone of gravistimulated roots. All of the CaM antagonists used in these studies delayed gravity-induced curvature at a concentration (1 micromole) that did not affect root growth. Calmodulin antagonists (> or = 1 micromole) inhibited downward transport of label from 45Ca2+ across the caps of gravistimulated roots relative to the downward transport of 45Ca2+ in gravistimulated roots which were not treated with CaM antagonists. Application of CaM antagonists at the root tip (> or = 1 micromole) also decreased the relative downward movement of label from 3H-IAA applied to the upper side of the elongation zone of gravistimulated roots. In general, tip application of antagonists inhibited neither the upward transport of 45Ca2+ in the root tip nor the upward movement of label from 3H-IAA in the elongation zone of gravistimulated roots. Thus, roots treated with CaM antagonists > or = 1 micromole become less graviresponsive and exhibit reduced or even a reversal of downward polarity of calcium transport across the root tip and IAA transport across the elongation zone. The results indicate that calmodulin-regulated events play a role in root gravitropism.

  18. Effect of calmodulin antagonists on the growth and graviresponsiveness of primary roots of maize.

    PubMed

    Stinemetz, C L; Hasenstein, K H; Young, L M; Evans, M L

    1992-11-01

    We examined the effect of calmodulin (CaM) antagonists applied at the root tip on root growth, gravity-induced root curvature, and the movement of calcium across the root tip and auxin (IAA) across the elongation zone of gravistimulated roots. All of the CaM antagonists used in these studies delayed gravity-induced curvature at a concentration (1 micromole) that did not affect root growth. Calmodulin antagonists (> or = 1 micromole) inhibited downward transport of label from 45Ca2+ across the caps of gravistimulated roots relative to the downward transport of 45Ca2+ in gravistimulated roots which were not treated with CaM antagonists. Application of CaM antagonists at the root tip (> or = 1 micromole) also decreased the relative downward movement of label from 3H-IAA applied to the upper side of the elongation zone of gravistimulated roots. In general, tip application of antagonists inhibited neither the upward transport of 45Ca2+ in the root tip nor the upward movement of label from 3H-IAA in the elongation zone of gravistimulated roots. Thus, roots treated with CaM antagonists > or = 1 micromole become less graviresponsive and exhibit reduced or even a reversal of downward polarity of calcium transport across the root tip and IAA transport across the elongation zone. The results indicate that calmodulin-regulated events play a role in root gravitropism.

  19. Effect of calmodulin antagonists on the growth and graviresponsiveness of primary roots of maize

    NASA Technical Reports Server (NTRS)

    Stinemetz, C. L.; Hasenstein, K. H.; Young, L. M.; Evans, M. L.

    1992-01-01

    We examined the effect of calmodulin (CaM) antagonists applied at the root tip on root growth, gravity-induced root curvature, and the movement of calcium across the root tip and auxin (IAA) across the elongation zone of gravistimulated roots. All of the CaM antagonists used in these studies delayed gravity-induced curvature at a concentration (1 micromole) that did not affect root growth. Calmodulin antagonists (> or = 1 micromole) inhibited downward transport of label from 45Ca2+ across the caps of gravistimulated roots relative to the downward transport of 45Ca2+ in gravistimulated roots which were not treated with CaM antagonists. Application of CaM antagonists at the root tip (> or = 1 micromole) also decreased the relative downward movement of label from 3H-IAA applied to the upper side of the elongation zone of gravistimulated roots. In general, tip application of antagonists inhibited neither the upward transport of 45Ca2+ in the root tip nor the upward movement of label from 3H-IAA in the elongation zone of gravistimulated roots. Thus, roots treated with CaM antagonists > or = 1 micromole become less graviresponsive and exhibit reduced or even a reversal of downward polarity of calcium transport across the root tip and IAA transport across the elongation zone. The results indicate that calmodulin-regulated events play a role in root gravitropism.

  20. Near-Threshold Fatigue Crack Growth Behavior of Fine-Grain Nickel-Based Alloys

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Piascik, Robert S.

    2003-01-01

    Constant-Kmax fatigue crack growth tests were performed on two finegrain nickel-base alloys Inconel 718 (DA) and Ren 95 to determine if these alloys exhibit near-threshold time-dependent crack growth behavior observed for fine-grain aluminum alloys in room-temperature laboratory air. Test results showed that increases in K(sub max) values resulted in increased crack growth rates, but no evidence of time-dependent crack growth was observed for either nickel-base alloy at room temperature.

  1. Influence of Merosesquiterpenoids from Marine Sponges on Seedling Root Growth of Agricultural Plants.

    PubMed

    Chaikina, Elena L; Utkina, Natalia K; Anisimov, Mikhail M

    2016-01-01

    The impact of the merosesquiterpenoids avarol (1), avarone (2), 18-methylaminoavarone (3), melemeleone A (4), isospongiaquinone (5), ilimaquinone (6), and smenoquinone (7), isolated from marine sponges of the Dictyoceratida order, was studied on the root growth of seedlings of buckwheat (Fagopyrumesculentum Moench), wheat (Triticumaestivum L.), soy (Glycine max (L.) Merr.), and barley (Hordeumvulgare L.). Compounds 2and 6 were effective for the root growth of wheat seedlings, compound 3 stimulated the root growth of seedlings of buckwheat and soy, compound 4 affected the roots of barley seedlings, and compound 5 stimulated the root growth of seedlings of buckwheat and barley. Compounds 1 and 7 showed no activity on the root growth of the seedlings of any of the studied plants. The stimulatory effect depends on the chemical structure of the compounds and the type of crop plant.

  2. Measurement of fine structures in roentgenograms. III. Studies on root canals of teeth.

    PubMed

    Hedin, M

    1975-01-01

    A study of the projection of root canals of natural teeth on dental roentgenograms was carried out as a sequel to an earlier phantom study. The material consisted of extracted teeth and teeth in situ in jaw preparations. The same radiation source and focus-film distance were used throughout, but the exposure times and tube voltages were varied. The roentgenographic images of the root canals were analysed densitometrically and compared with measurements of the actual object dimensions. The root were sectioned at the level studied and their cross sections were traced and measured with the aid of a profile projector. There was good agreement between the true breadth of the canal and that projected on the film. The maximum contrast in the image of the canal and the densitometrically measured difference in substance, expressed in metal equivalents, were proportional to the depth of the canal in the direction of radiation. The breadth of the canal in the plane of the film was the same regardless of whether the tube voltage was 50, 60 or 90 kV. On the other hand, the tube voltage affected the photographic density differences between the canal and the dentine walls. Changing the voltage from 50 to 60 kV did not affect the results, but there was a highly significant difference between 90 and 50 or 60 kV. The clinical significance of tube voltage and exposure time is discussed.

  3. Individual tree differences confound effects of growth regulators in rooting sugar maple softwood cuttings

    Treesearch

    John R. Donnelly

    1971-01-01

    Softwood stem cuttings from three mature sugar maple trees were treated with several types and concentrations of growth regulators. Lack of statistical significance was due to extreme variability in tree response: low levels of auxin stimulated rooting in two study trees, while auxins inhibited rooting in the other tree. It is postulated that variations in rooting...

  4. Effect of pruning the parent root on growth of aspen suckers

    Treesearch

    Ashbel F. Hough

    1965-01-01

    Various portions of the root systems of bigtooth aspen (Populus grandidentata) suckers were severed, and the subsequent height and radial growth of stems were measured. Aspen vegetative regeneration is heavily dependent on the parent roots for at least 25 years following initial suckering. The distal portion of the parent root contributes more to...

  5. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Lomax, T. L.; Rayle, D. L.

    1995-01-01

    Roots of the tomato (Lycopersicon esculentum, Mill.) mutant (diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.

  6. Characterization of the growth and auxin physiology of roots of the tomato mutant, diageotropica

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Lomax, T. L.; Rayle, D. L.

    1995-01-01

    Roots of the tomato (Lycopersicon esculentum, Mill.) mutant (diageotropica (dgt) exhibit an altered phenotype. These roots are agravitropic and lack lateral roots. Relative to wild-type (VFN8) roots, dgt roots are less sensitive to growth inhibition by exogenously applied IAA and auxin transport inhibitors (phytotropins), and the roots exhibit a reduction in maximal growth inhibition in response to ethylene. However, IAA transport through roots, binding of the phytotropin, tritiated naphthylphthalamic acid ([3H]NPA), to root microsomal membranes, NPA-sensitive IAA uptake by root segments, and uptake of [3H]NPA into root segments are all similar in mutant and wild-type roots. We speculate that the reduced sensitivity of dgt root growth to auxin-transport inhibitors and ethylene is an indirect result of the reduction in sensitivity to auxin in this single gene, recessive mutant. We conclude that dgt roots, like dgt shoots, exhibit abnormalities indicating they have a defect associated with or affecting a primary site of auxin perception or action.

  7. Arabidopsis thaliana sku mutant seedlings show exaggerated surface-dependent alteration in root growth vector

    NASA Technical Reports Server (NTRS)

    Rutherford, R.; Masson, P. H.

    1996-01-01

    Roots of wild-type Arabidopsis thaliana seedlings in the Wassilewskija (WS) and Landsberg erecta (Ler) ecotypes often grow aslant on vertical agar surfaces. Slanted root growth always occurs to the right of the gravity vector when the root is viewed through the agar surface, and is not observed in the Columbia ecotype. Right-slanted root growth is surface-dependent and does not result directly from directional environmental stimuli or gradients in the plane of skewing. We have isolated two partially dominant mutations in WS (sku1 and sku2) that show an exaggerated right-slanting root-growth phenotype on agar surfaces. The right-slanting root-growth phenotype of wild-type and mutant roots is not the result of diagravitropism or of an alteration in root gravitropism. It is accompanied by a left-handed rotation of the root about its axis within the elongation zone, the rate of which positively correlates with the degree of right-slanted curvature. Our data suggest that the right-slanting root growth phenotype results from an endogenous structural asymmetry that expresses itself by a directional root-tip rotation.

  8. Arabidopsis thaliana sku mutant seedlings show exaggerated surface-dependent alteration in root growth vector

    NASA Technical Reports Server (NTRS)

    Rutherford, R.; Masson, P. H.

    1996-01-01

    Roots of wild-type Arabidopsis thaliana seedlings in the Wassilewskija (WS) and Landsberg erecta (Ler) ecotypes often grow aslant on vertical agar surfaces. Slanted root growth always occurs to the right of the gravity vector when the root is viewed through the agar surface, and is not observed in the Columbia ecotype. Right-slanted root growth is surface-dependent and does not result directly from directional environmental stimuli or gradients in the plane of skewing. We have isolated two partially dominant mutations in WS (sku1 and sku2) that show an exaggerated right-slanting root-growth phenotype on agar surfaces. The right-slanting root-growth phenotype of wild-type and mutant roots is not the result of diagravitropism or of an alteration in root gravitropism. It is accompanied by a left-handed rotation of the root about its axis within the elongation zone, the rate of which positively correlates with the degree of right-slanted curvature. Our data suggest that the right-slanting root growth phenotype results from an endogenous structural asymmetry that expresses itself by a directional root-tip rotation.

  9. Light regulation of the growth response in corn root gravitropism

    NASA Technical Reports Server (NTRS)

    Kelly, M. O.; Leopold, A. C.

    1992-01-01

    Roots of Merit variety corn (Zea mays L.) require red light for orthogravitropic curvature. Experiments were undertaken to identify the step in the pathway from gravity perception to asymmetric growth on which light may act. Red light was effective in inducing gravitropism whether it was supplied concomitant with or as long as 30 minutes after the gravity stimulus (GS). The presentation time was the same whether the GS was supplied in red light or in darkness. Red light given before the GS slightly enhanced the rate of curvature but had little effect on the lag time or on the final curvature. This enhancement was expanded by a delay between the red light pulse and the GS. These results indicate that gravity perception and at least the initial transduction steps proceed in the dark. Light may regulate the final growth (motor) phase of gravitropism. The time required for full expression of the light enhancement of curvature is consistent with its involvement in some light-stimulated biosynthetic event.

  10. Light regulation of the growth response in corn root gravitropism

    NASA Technical Reports Server (NTRS)

    Kelly, M. O.; Leopold, A. C.

    1992-01-01

    Roots of Merit variety corn (Zea mays L.) require red light for orthogravitropic curvature. Experiments were undertaken to identify the step in the pathway from gravity perception to asymmetric growth on which light may act. Red light was effective in inducing gravitropism whether it was supplied concomitant with or as long as 30 minutes after the gravity stimulus (GS). The presentation time was the same whether the GS was supplied in red light or in darkness. Red light given before the GS slightly enhanced the rate of curvature but had little effect on the lag time or on the final curvature. This enhancement was expanded by a delay between the red light pulse and the GS. These results indicate that gravity perception and at least the initial transduction steps proceed in the dark. Light may regulate the final growth (motor) phase of gravitropism. The time required for full expression of the light enhancement of curvature is consistent with its involvement in some light-stimulated biosynthetic event.

  11. Tree growth and management in Ugandan agroforestry systems: effects of root pruning on tree growth and crop yield.

    PubMed

    Wajja-Musukwe, Tellie-Nelson; Wilson, Julia; Sprent, Janet I; Ong, Chin K; Deans, J Douglas; Okorio, John

    2008-02-01

    Tree root pruning is a potential tool for managing belowground competition when trees and crops are grown together in agroforestry systems. We investigated the effects of tree root pruning on shoot growth and root distribution of Alnus acuminata (H.B. & K.), Casuarina equisetifolia L., Grevillea robusta A. Cunn. ex R. Br., Maesopsis eminii Engl. and Markhamia lutea (Benth.) K. Schum. and on yield of adjacent crops in sub-humid Uganda. The trees were 3 years old at the commencement of the study, and most species were competing strongly with crops. Tree roots were pruned 41 months after planting by cutting and back-filling a trench to a depth of 0.3 m, at a distance of 0.3 m from the trees, on one side of the tree row. The trench was reopened and roots recut at 50 and 62 months after planting. We assessed the effects on tree growth and root distribution over a 3 year period, and crop yield after the third root pruning at 62 months. Overall, root pruning had only a slight effect on aboveground tree growth: height growth was unaffected and diameter growth was reduced by only 4%. A substantial amount of root regrowth was observed by 11 months after pruning. Tree species varied in the number and distribution of roots, and C. equisetifolia and M. lutea had considerably more roots per unit of trunk volume than the other species, especially in the surface soil layers. Casuarina equisetifolia and M. eminii were the tree species most competitive with crops and G. robusta and M. lutea the least competitive. Crop yield data provided strong evidence of the redistribution of root activity following root pruning, with competition increasing on the unpruned side of tree rows. Thus, one-sided root pruning will be useful in only a few circumstances.

  12. Treeline advances and associated shifts in the ground vegetation alter fine root dynamics and mycelia production in the South and Polar Urals.

    PubMed

    Solly, Emily F; Djukic, Ika; Moiseev, Pavel A; Andreyashkina, Nelly I; Devi, Nadezhda M; Göransson, Hans; Mazepa, Valeriy S; Shiyatov, Stepan G; Trubina, Marina R; Schweingruber, Fritz H; Wilmking, Martin; Hagedorn, Frank

    2017-02-01

    Climate warming is shifting the elevational boundary between forests and tundra upwards, but the related belowground responses are poorly understood. In the pristine South and Polar Urals with shifts of the treeline ecotone documented by historical photographs, we investigated fine root dynamics and production of extramatrical mycorrhizal mycelia (EMM) along four elevational transects reaching from the closed forest to the treeless tundra. In addition, we analysed elevational differences in climate and vegetation structure, and excavated trees to estimate related changes in the partitioning between below- and aboveground biomass. Fine root biomass of trees (<2 mm) increased by 13-79% with elevation, paralleled by a 35-72% increase in ground vegetation fine roots from the closed forest to the tundra. During the first year of decomposition, mass loss of fine root litter from different vegetation types was greater at lower elevations in the forest-tundra ecotone. The ratio between fine roots of trees and stem biomass largely increased with elevation in both regions, but these increases were not accompanied by a distinct production of EMM. Production of EMM, however, increased with the presence of ectomycorrhizal trees at the transition from the tundra to the forest. Our results imply that the recorded upward expansion of forest into former tundra in the Ural Mountains by 4-8 m per decade is decreasing the partitioning of plant biomass to fine roots. They further suggest that climate-driven forest advances will alter EMM production rates with potential feedbacks on soil carbon and nutrient cycling in these ecosystems.

  13. Fine Structure of Bacteroids in Root Nodules of Vigna sinensis, Acacia longifolia, Viminaria juncea, and Lupinus angustifolius

    PubMed Central

    Dart, P. J.; Mercer, F. V.

    1966-01-01

    Dart, P. J. (University of Sydney, Sydney, Australia), and F. V. Mercer. Fine structure of bacteroids in root nodules of Vigna sinensis, Acacia longifolia, Viminaria juncea, and Lupinus angustifolius. J. Bacteriol. 91:1314–1319.—In nodules of Vigna sinensis, Acacia longifolia, and Viminaria juncea, membrane envelopes enclose groups of bacteroids. The bacteroids often contain inclusion granules and electron-dense bodies, expand little during development, and retain their rod form with a compact, central nucleoid area. The membrane envelope may persist around bacteroids after host cytoplasm breakdown. In nodules of Lupinus angustifolius, the membrane envelopes enclose only one or two bacteroids, which expand noticeably during development and change from their initial rod structure. Images PMID:5929757

  14. Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae.

    PubMed

    Pecenková, Tamara; Janda, Martin; Ortmannová, Jitka; Hajná, Vladimíra; Stehlíková, Zuzana; Žárský, Viktor

    2017-09-01

    Selected beneficial Pseudomonas spp. strains have the ability to influence root architecture in Arabidopsis thaliana by inhibiting primary root elongation and promoting lateral root and root hair formation. A crucial role for auxin in this long-term (1week), long-distance plant-microbe interaction has been demonstrated. Arabidopsis seedlings were cultivated in vitro on vertical plates and inoculated with pathogenic strains Pseudomonas syringae pv. maculicola (Psm) and P. syringae pv. tomato DC3000 (Pst), as well as Agrobacterium tumefaciens (Atu) and Escherichia coli (Eco). Root hair lengths were measured after 24 and 48h of direct exposure to each bacterial strain. Several Arabidopsis mutants with impaired responses to pathogens, impaired ethylene perception and defects in the exocyst vesicle tethering complex that is involved in secretion were also analysed. Arabidopsis seedling roots infected with Psm or Pst responded similarly to when infected with plant growth-promoting rhizobacteria; root hair growth was stimulated and primary root growth was inhibited. Other plant- and soil-adapted bacteria induced similar root hair responses. The most compromised root hair growth stimulation response was found for the knockout mutants exo70A1 and ein2. The single immune pathways dependent on salicylic acid, jasmonic acid and PAD4 are not directly involved in root hair growth stimulation; however, in the mutual cross-talk with ethylene, they indirectly modify the extent of the stimulation of root hair growth. The Flg22 peptide does not initiate root hair stimulation as intact bacteria do, but pretreatment with Flg22 prior to Psm inoculation abolished root hair growth stimulation in an FLS2 receptor kinase-dependent manner. These early response phenomena are not associated with changes in auxin levels, as monitored with the pDR5::GUS auxin reporter. Early stimulation of root hair growth is an effect of an unidentified component of living plant pathogenic bacteria. The root

  15. Stoichiometry in aboveground and fine roots of Seriphidium korovinii in desert grassland in response to artificial nitrogen addition.

    PubMed

    Li, Lei; Gao, Xiaopeng; Gui, Dongwei; Liu, Bo; Zhang, Bo; Li, Xiangyi

    2017-07-01

    Nitrogen (N) input by atmospheric deposition and human activity enhances the availability of N in various ecosystems, which may further affect N and phosphorus (P) cycling and use by plants. However, the internal use of N, P, and N:P stoichiometry by plants in response to N supply, particularly for grass species in a desert steppe ecosystem, remains unclear. In this work, a field experiment was conducted at an infertile area in a desert steppe to investigate the effects of N fertilizer addition rates on the stoichiometry of N and P in a dominant grass species, Seriphidium korovinii. Results showed that for both aboveground and fine roots of S. korovinii, N inputs exponentially increased the N concentration and N:P ratios while P concentrations decreased. Meanwhile, the relationships between N and P concentrations for both aboveground and fine roots were significantly negative. Furthermore, while the N concentrations in the plants were relatively low, P concentrations were higher than the global means, resulting in a relatively low N:P ratio. These results suggest that the stoichiometric characteristics of N were different from that of P for this desert plant species. Results also show that the intraspecific variations in the main element traits (N, P, and N:P ratios) were consistent at the whole-plant level. Our results also suggest that N should be part of any short-term fertilization plan that is part of a management strategy designed to restore degraded desert grassland. These findings highlight that nutrient addition by atmospheric N deposition and human activity can have significant effects on the internal use of N and P by plants. Therefore, establishing a nutrient-conservation strategy for desert grasslands is important.

  16. Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip.

    PubMed

    Grossmann, Guido; Meier, Matthias; Cartwright, Heather N; Sosso, Davide; Quake, Stephen R; Ehrhardt, David W; Frommer, Wolf B

    2012-07-07

    The root functions as the physical anchor of the plant and is the organ responsible for uptake of water and mineral nutrients such as nitrogen, phosphorus, sulfate and trace elements that plants acquire from the soil. If we want to develop sustainable approaches to producing high crop yield, we need to better understand how the root develops, takes up a wide spectrum of nutrients, and interacts with symbiotic and pathogenic organisms. To accomplish these goals, we need to be able to explore roots in microscopic detail over time periods ranging from minutes to days. We developed the RootChip, a polydimethylsiloxane (PDMS)- based microfluidic device, which allows us to grow and image roots from Arabidopsis seedlings while avoiding any physical stress to roots during preparation for imaging(1) (Figure 1). The device contains a bifurcated channel structure featuring micromechanical valves to guide the fluid flow from solution inlets to each of the eight observation chambers(2). This perfusion system allows the root microenvironment to be controlled and modified with precision and speed. The volume of the chambers is approximately 400 nl, thus requiring only minimal amounts of test solution. Here we provide a detailed protocol for studying root biology on the RootChip using imaging-based approaches with real time resolution. Roots can be analyzed over several days using time lapse microscopy. Roots can be perfused with nutrient solutions or inhibitors, and up to eight seedlings can be analyzed in parallel. This system has the potential for a wide range of applications, including analysis of root growth in the presence or absence of chemicals, fluorescence-based analysis of gene expression, and the analysis of biosensors, e.g. FRET nanosensors(3).

  17. Touch and gravitropic set-point angle interact to modulate gravitropic growth in roots

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Gilroy, S.

    2003-01-01

    Plant roots must sense and respond to a variety of environmental stimuli as they grow through the soil. Touch and gravity represent two of the mechanical signals that roots must integrate to elicit the appropriate root growth patterns and root system architecture. Obstacles such as rocks will impede the general downwardly directed gravitropic growth of the root system and so these soil features must be sensed and this information processed for an appropriate alteration in gravitropic growth to allow the root to avoid the obstruction. We show that primary and lateral roots of Arabidopsis do appear to sense and respond to mechanical barriers placed in their path of growth in a qualitatively similar fashion. Both types of roots exhibited a differential growth response upon contacting the obstacle that directed the main axis of elongation parallel to the barrier. This growth habit was m