Sample records for fine structural details

  1. Comparison of alternative image reformatting techniques in micro-computed tomography and tooth clearing for detailed canal morphology.

    PubMed

    Lee, Ki-Wook; Kim, Yeun; Perinpanayagam, Hiran; Lee, Jong-Ki; Yoo, Yeon-Jee; Lim, Sang-Min; Chang, Seok Woo; Ha, Byung-Hyun; Zhu, Qiang; Kum, Kee-Yeon

    2014-03-01

    Micro-computed tomography (MCT) shows detailed root canal morphology that is not seen with traditional tooth clearing. However, alternative image reformatting techniques in MCT involving 2-dimensional (2D) minimum intensity projection (MinIP) and 3-dimensional (3D) volume-rendering reconstruction have not been directly compared with clearing. The aim was to compare alternative image reformatting techniques in MCT with tooth clearing on the mesiobuccal (MB) root of maxillary first molars. Eighteen maxillary first molar MB roots were scanned, and 2D MinIP and 3D volume-rendered images were reconstructed. Subsequently, the same MB roots were processed by traditional tooth clearing. Images from 2D, 3D, 2D + 3D, and clearing techniques were assessed by 4 endodontists to classify canal configuration and to identify fine anatomic structures such as accessory canals, intercanal communications, and loops. All image reformatting techniques in MCT showed detailed configurations and numerous fine structures, such that none were classified as simple type I or II canals; several were classified as types III and IV according to Weine classification or types IV, V, and VI according to Vertucci; and most were nonclassifiable because of their complexity. The clearing images showed less detail, few fine structures, and numerous type I canals. Classification of canal configuration was in 100% intraobserver agreement for all 18 roots visualized by any of the image reformatting techniques in MCT but for only 4 roots (22.2%) classified according to Weine and 6 (33.3%) classified according to Vertucci, when using the clearing technique. The combination of 2D MinIP and 3D volume-rendered images showed the most detailed canal morphology and fine anatomic structures. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. QUIESCENT PROMINENCES IN THE ERA OF ALMA: SIMULATED OBSERVATIONS USING THE 3D WHOLE-PROMINENCE FINE STRUCTURE MODEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunár, Stanislav; Heinzel, Petr; Mackay, Duncan H.

    2016-12-20

    We use the detailed 3D whole-prominence fine structure model to produce the first simulated high-resolution ALMA observations of a modeled quiescent solar prominence. The maps of synthetic brightness temperature and optical thickness shown in the present paper are produced using a visualization method for synthesis of the submillimeter/millimeter radio continua. We have obtained the simulated observations of both the prominence at the limb and the filament on the disk at wavelengths covering a broad range that encompasses the full potential of ALMA. We demonstrate here extent to which the small-scale and large-scale prominence and filament structures will be visible inmore » the ALMA observations spanning both the optically thin and thick regimes. We analyze the relationship between the brightness and kinetic temperature of the prominence plasma. We also illustrate the opportunities ALMA will provide for studying the thermal structure of the prominence plasma from the cores of the cool prominence fine structure to the prominence–corona transition region. In addition, we show that detailed 3D modeling of entire prominences with their numerous fine structures will be important for the correct interpretation of future ALMA observations of prominences.« less

  3. The Effect of Quantum-Mechanical Interference on Precise Measurements of the n = 2 Triplet P Fine Structure of Helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsman, A.; Horbatsch, M.; Hessels, E. A., E-mail: hessels@yorku.ca

    2015-09-15

    For many decades, improvements in both theory and experiment of the fine structure of the n = 2 triplet P levels of helium have allowed for an increasingly precise determination of the fine-structure constant. Recently, it has been observed that quantum-mechanical interference between neighboring resonances can cause significant shifts, even if such neighboring resonances are separated by thousands of natural widths. The shifts depend in detail on the experimental method used for the measurement, as well as the specific experimental parameters employed. Here, we review how these shifts apply for the most precise measurements of the helium 2{sup 3}P fine-structuremore » intervals.« less

  4. Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.

    PubMed

    Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann

    2015-01-01

    Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.

  5. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunár, Stanislav; Mackay, Duncan H.

    2015-04-20

    We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique tomore » consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.« less

  6. Reconstruction of vessel structures from serial whole slide sections of murine liver samples

    NASA Astrophysics Data System (ADS)

    Schwier, Michael; Hahn, Horst K.; Dahmen, Uta; Dirsch, Olaf

    2013-03-01

    Image-based analysis of the vascular structures of murine liver samples is an important tool for scientists to understand liver physiology and morphology. Typical assessment methods are MicroCT, which allows for acquiring images of the whole organ while lacking resolution for fine details, and confocal laser scanning microscopy, which allows detailed insights into fine structures while lacking the broader context. Imaging of histological serial whole slide sections is a recent technology able to fill this gap, since it provides a fine resolution up to the cellular level, but on a whole organ scale. However, whole slide imaging is a modality providing only 2D images. Therefore the challenge is to use stacks of serial sections from which to reconstruct the 3D vessel structures. In this paper we present a semi-automatic procedure to achieve this goal. We employ an automatic method that detects vessel structures based on continuity and shape characteristics. Furthermore it supports the user to perform manual corrections where required. With our methods we were able to successfully extract and reconstruct vessel structures from a stack of 100 and a stack of 397 serial sections of a mouse liver lobe, thus proving the potential of our approach.

  7. Water Uptake along the Length of Grapevine Fine Roots: Developmental anatomy, tissue specific aquaporin expression, and pathways of water transport

    USDA-ARS?s Scientific Manuscript database

    To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine fine roots- from the tip to secondary growth zones. Our characterization included localization of suberized structures an...

  8. Rocket experiments for spectral estimation of electron density fine structure in the auroral and equatorial ionosphere and preliminary results

    NASA Technical Reports Server (NTRS)

    Tomei, B. A.; Smith, L. G.

    1986-01-01

    Sounding rockets equipped to monitor electron density and its fine structure were launched into the auroral and equatorial ionosphere in 1980 and 1983, respectively. The measurement electronics are based on the Langmuir probe and are described in detail. An approach to the spectral analysis of the density irregularities is addressed and a software algorithm implementing the approach is given. Preliminary results of the analysis are presented.

  9. Development of a sub-cm high resolution ion Doppler tomography diagnostics for fine structure measurement of guide field reconnection in TS-U

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; Koike, Hideya; Hatano, Hironori; Hayashi, Takumi; Cao, Qinghong; Himeno, Shunichi; Kaneda, Taishi; Akimitsu, Moe; Sawada, Asuka; Ono, Yasushi

    2017-10-01

    A new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics has been developed using ``multi-slit'' spectroscopy technique for detailed investigation of fine structure formation during high guide field magnetic reconnection. In the last three years, high field merging experiment in MAST pioneered new frontiers of reconnection heating: formation of highly peaked structure around X-point in high guide field condition (Bt > 0.3 T), outflow dissipation under the influence of better plasma confinement to form high temperature ring structure which aligns with closed flux surface of toroidal plasma, and interaction between ion and electron temperature profile during transport/confinement phase to form triple peak structure (τeiE 4 ms). To investigate more detailed mechanism with in-situ magnetic measurement, the university of Tokyo starts the upgrade of plasma parameters and spatial resolution of optical diagnostics as in MAST. Now, a new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics system construction has been completed and it successfully resolved fine structure of ion heating downstream, aligned with closed flux surface formed by reconnected field. This work was supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.

  10. Fine structural dependence of ultraviolet reflections in the King Penguin beak horn.

    PubMed

    Dresp, Birgitta; Langley, Keith

    2006-03-01

    The visual perception of many birds extends into the near-ultraviolet (UV) spectrum and ultraviolet is used by some to communicate. The beak horn of the King Penguin (Aptenodytes patagonicus) intensely reflects in the ultraviolet and this appears to be implicated in partner choice. In a preliminary study, we recently demonstrated that this ultraviolet reflectance has a structural basis, resulting from crystal-like photonic structures, capable of reflecting in the near-UV. The present study attempted to define the origin of the photonic elements that produce the UV reflectance and to better understand how the UV signal is optimized by their fine structure. Using light and electron microscopic analysis combined with new spectrophotometric data, we describe here in detail the fine structure of the entire King Penguin beak horn in addition to that of its photonic crystals. The data obtained reveal a one-dimensional structural periodicity within this tissue and demonstrate a direct relationship between its fine structure and its function. In addition, they suggest how the photonic structures are produced and how they are stabilized. The measured lattice dimensions of the photonic crystals, together with morphological data on its composition, permit predictions of the wavelength of reflected light. These correlate well with experimentally observed values. The way the UV signal is optimized by the fine structure of the beak tissue is discussed with regard to its putative biological role.

  11. A Protein in the Palm of Your Hand through Augmented Reality

    ERIC Educational Resources Information Center

    Berry, Colin; Board, Jason

    2014-01-01

    Understanding of proteins and other biological macromolecules must be based on an appreciation of their 3-dimensional shape and the fine details of their structure. Conveying these details in a clear and stimulating fashion can present challenges using conventional approaches and 2-dimensional monitors and projectors. Here we describe a method for…

  12. Horizontal Structure: A Neo-Piagetian Analysis of Structural Parallels across Domains.

    ERIC Educational Resources Information Center

    McKeough, Anne M.

    An analysis of children's narrative composition and art revealed concurrent development at both a general structural level and at a fine-grained detail level. A three-part study investigated whether this general cognitive pattern would be maintained across a different range of tasks: literary composition, scientific reasoning, and working memory.…

  13. Microwave spectroscopy of the 1 s n p P3J fine structure of high Rydberg states in 4He

    NASA Astrophysics Data System (ADS)

    Deller, A.; Hogan, S. D.

    2018-01-01

    The 1 s n p P3J fine structure of high Rydberg states in helium has been measured by microwave spectroscopy of single-photon transitions from 1 s n s S31 levels in pulsed supersonic beams. For states with principal quantum numbers in the range from n =34 to 36, the J =0 →2 and J =1 →2 fine structure intervals were both observed. For values of n between 45 and 51 only the larger J =0 →2 interval was resolved. The experimental results are in good agreement with theoretical predictions. Detailed characterization of residual uncanceled electric and magnetic fields in the experimental apparatus and calculations of the Stark and Zeeman structures of the Rydberg states in weak fields were used to quantify systematic contributions to the uncertainties in the measurements.

  14. R-matrix calculations for electron-impact excitation of C(+), N(2+), and O(3+) including fine structure

    NASA Technical Reports Server (NTRS)

    Luo, D.; Pradhan, A. K.

    1990-01-01

    The new R-matrix package for comprehensive close-coupling calculations for electron scattering with the first three ions in the boron isoelectronic sequence, the astrophysically significant C(+), N(2+), and O(3+), is presented. The collision strengths are calculated in the LS coupling approximation, as well as in pair-coupling scheme, for the transitions among the fine-structure sublevels. Calculations are carried out at a large number of energies in order to study the detailed effects of autoionizing resonances.

  15. Recovering the fine structures in solar images

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita; Habbal, S. R.; Golub, L.; Deluca, E.; Hudson, Hugh S.

    1994-01-01

    Several examples of the capability of the blind iterative deconvolution (BID) technique to recover the real point spread function, when limited a priori information is available about its characteristics. To demonstrate the potential of image post-processing for probing the fine scale and temporal variability of the solar atmosphere, the BID technique is applied to different samples of solar observations from space. The BID technique was originally proposed for correction of the effects of atmospheric turbulence on optical images. The processed images provide a detailed view of the spatial structure of the solar atmosphere at different heights in regions with different large-scale magnetic field structures.

  16. Fine structure of 25 extragalactic radio sources. [interferometric observations of quasars

    NASA Technical Reports Server (NTRS)

    Wittels, J. J.; Knight, C. A.; Shapiro, I. I.; Hinteregger, H. F.; Rogers, A. E. E.; Whitney, A. R.; Clark, T. A.; Hutton, L. K.; Marandino, G. E.; Niell, A. E.

    1975-01-01

    Interferometric observations taken at 7.8 GHz (gamma approximately = 3.8 cm) with five pairings of antennae of 25 extragalactic radio sources between April, 1972 and May, 1973 are reported. These sources exhibit a broad variety of fine structure from very simple to complex. The total flux and the correlated flux of some of the sources underwent large changes in a few weeks, while the structure and total power of others remained constant during the entire period of observation. Some aspects of the data processing and a discussion of errors are presented. Numerous figures are provided and explained. The individual radio sources are described in detail.

  17. Fine resolution mapping of population age-structures for health and development applications.

    PubMed

    Alegana, V A; Atkinson, P M; Pezzulo, C; Sorichetta, A; Weiss, D; Bird, T; Erbach-Schoenberg, E; Tatem, A J

    2015-04-06

    The age-group composition of populations varies considerably across the world, and obtaining accurate, spatially detailed estimates of numbers of children under 5 years is important in designing vaccination strategies, educational planning or maternal healthcare delivery. Traditionally, such estimates are derived from population censuses, but these can often be unreliable, outdated and of coarse resolution for resource-poor settings. Focusing on Nigeria, we use nationally representative household surveys and their cluster locations to predict the proportion of the under-five population in 1 × 1 km using a Bayesian hierarchical spatio-temporal model. Results showed that land cover, travel time to major settlements, night-time lights and vegetation index were good predictors and that accounting for fine-scale variation, rather than assuming a uniform proportion of under 5 year olds can result in significant differences in health metrics. The largest gaps in estimated bednet and vaccination coverage were in Kano, Katsina and Jigawa. Geolocated household surveys are a valuable resource for providing detailed, contemporary and regularly updated population age-structure data in the absence of recent census data. By combining these with covariate layers, age-structure maps of unprecedented detail can be produced to guide the targeting of interventions in resource-poor settings.

  18. Cavity-assisted emission of polarization-entangled photons from biexcitons in quantum dots with fine-structure splitting.

    PubMed

    Schumacher, Stefan; Förstner, Jens; Zrenner, Artur; Florian, Matthias; Gies, Christopher; Gartner, Paul; Jahnke, Frank

    2012-02-27

    We study the quantum properties and statistics of photons emitted by a quantum-dot biexciton inside a cavity. In the biexciton-exciton cascade, fine-structure splitting between exciton levels degrades polarization-entanglement for the emitted pair of photons. However, here we show that the polarization-entanglement can be preserved in such a system through simultaneous emission of two degenerate photons into cavity modes tuned to half the biexciton energy. Based on detailed theoretical calculations for realistic quantum-dot and cavity parameters, we quantify the degree of achievable entanglement.

  19. Topological quantization in units of the fine structure constant.

    PubMed

    Maciejko, Joseph; Qi, Xiao-Liang; Drew, H Dennis; Zhang, Shou-Cheng

    2010-10-15

    Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant α=e²/ℏc. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.

  20. The fine structure of the sperm of the round goby (Neogobius melanostomus)

    USGS Publications Warehouse

    Allen, Jeffrey D.; Walker, Glenn K.; Nichols, Susan J.; Sorenson, Dorothy

    2004-01-01

    The fine structural details of the spermatozoon of the round goby are presented for the first time in this study. Scanning and transmission electron microscopic examination of testis reveals an anacrosomal spermatozoon with a slightly elongate head and uniformly compacted chromatin. The midpiece contains a single, spherical mitochondrion. Two perpendicularly oriented centrioles lie in a deep, eccentric nuclear fossa with no regularly observed connection to the nucleus. The flagellum develops bilateral fins soon after emerging from the fossa; each extends approximately 1 A?m from the axoneme and persists nearly the length of the flagellum.

  1. Single organic microtwist with tunable pitch.

    PubMed

    Chen, Hai-Bo; Zhou, Yan; Yin, Jie; Yan, Jing; Ma, Yuguo; Wang, Lei; Cao, Yong; Wang, Jian; Pei, Jian

    2009-05-19

    A facile synthesis of previously unknown, well-separated, uniform chiral microstructures from achiral pi-conjugated organic molecules was developed by simple solution process. Detailed characterization and formation mechanism were presented. By simple structure modification or temperature change, the pitch of the chiral structure can be fine tuned. Our result opens new possibilities for novel materials in which structure chirality is coupled to device performance.

  2. High-resolution solution-state NMR of unfractionated plant cell walls

    Treesearch

    John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom

    2009-01-01

    Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...

  3. Structural dynamics of tropical moist forest gaps

    Treesearch

    Maria O. Hunter; Michael Keller; Douglas Morton; Bruce Cook; Michael Lefsky; Mark Ducey; Scott Saleska; Raimundo Cosme de Oliveira; Juliana Schietti

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest...

  4. Fine and distributed subcellular retinotopy of excitatory inputs to the dendritic tree of a collision-detecting neuron

    PubMed Central

    Zhu, Ying

    2016-01-01

    Individual neurons in several sensory systems receive synaptic inputs organized according to subcellular topographic maps, yet the fine structure of this topographic organization and its relation to dendritic morphology have not been studied in detail. Subcellular topography is expected to play a role in dendritic integration, particularly when dendrites are extended and active. The lobula giant movement detector (LGMD) neuron in the locust visual system is known to receive topographic excitatory inputs on part of its dendritic tree. The LGMD responds preferentially to objects approaching on a collision course and is thought to implement several interesting dendritic computations. To study the fine retinotopic mapping of visual inputs onto the excitatory dendrites of the LGMD, we designed a custom microscope allowing visual stimulation at the native sampling resolution of the locust compound eye while simultaneously performing two-photon calcium imaging on excitatory dendrites. We show that the LGMD receives a distributed, fine retinotopic projection from the eye facets and that adjacent facets activate overlapping portions of the same dendritic branches. We also demonstrate that adjacent retinal inputs most likely make independent synapses on the excitatory dendrites of the LGMD. Finally, we show that the fine topographic mapping can be studied using dynamic visual stimuli. Our results reveal the detailed structure of the dendritic input originating from individual facets on the eye and their relation to that of adjacent facets. The mapping of visual space onto the LGMD's dendrites is expected to have implications for dendritic computation. PMID:27009157

  5. Development of the surface-sensitive soft x-ray absorption fine structure measurement technique for the bulk insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonemura, Takumi, E-mail: yonemura-takumi@sei.co.jp; Iihara, Junji; Uemura, Shigeaki

    We have succeeded in measuring X-ray absorption fine structure (TEY-XAFS) spectra of insulating plate samples by total electron yield. The biggest problem is how to suppress the charge-up. We have attempted to deposit a gold stripe electrode on the surface and obtained a TEY-XAFS spectrum. This indicates that the metal stripe electrode is very useful in the TEY-XAFS measurement of the insulating plate samples. In the detailed analysis, we have found that the effective area for suppressing charge-up was approximately 120 μm from the edge of the electrode.

  6. Fine resolution mapping of population age-structures for health and development applications

    PubMed Central

    Alegana, V. A.; Atkinson, P. M.; Pezzulo, C.; Sorichetta, A.; Weiss, D.; Bird, T.; Erbach-Schoenberg, E.; Tatem, A. J.

    2015-01-01

    The age-group composition of populations varies considerably across the world, and obtaining accurate, spatially detailed estimates of numbers of children under 5 years is important in designing vaccination strategies, educational planning or maternal healthcare delivery. Traditionally, such estimates are derived from population censuses, but these can often be unreliable, outdated and of coarse resolution for resource-poor settings. Focusing on Nigeria, we use nationally representative household surveys and their cluster locations to predict the proportion of the under-five population in 1 × 1 km using a Bayesian hierarchical spatio-temporal model. Results showed that land cover, travel time to major settlements, night-time lights and vegetation index were good predictors and that accounting for fine-scale variation, rather than assuming a uniform proportion of under 5 year olds can result in significant differences in health metrics. The largest gaps in estimated bednet and vaccination coverage were in Kano, Katsina and Jigawa. Geolocated household surveys are a valuable resource for providing detailed, contemporary and regularly updated population age-structure data in the absence of recent census data. By combining these with covariate layers, age-structure maps of unprecedented detail can be produced to guide the targeting of interventions in resource-poor settings. PMID:25788540

  7. Temporal Organization of Sound Information in Auditory Memory.

    PubMed

    Song, Kun; Luo, Huan

    2017-01-01

    Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.

  8. A biomechanical modeling guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2017-03-01

    Four-dimensional (4D) cone-beam computed tomography (CBCT) enables motion tracking of anatomical structures and removes artifacts introduced by motion. However, the imaging time/dose of 4D-CBCT is substantially longer/higher than traditional 3D-CBCT. We previously developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, to reconstruct high-quality 4D-CBCT from limited number of projections to reduce the imaging time/dose. However, the accuracy of SMEIR is limited in reconstructing low-contrast regions with fine structure details. In this study, we incorporate biomechanical modeling into the SMEIR algorithm (SMEIR-Bio), to improve the reconstruction accuracy at low-contrast regions with fine details. The efficacy of SMEIR-Bio is evaluated using 11 lung patient cases and compared to that of the original SMEIR algorithm. Qualitative and quantitative comparisons showed that SMEIR-Bio greatly enhances the accuracy of reconstructed 4D-CBCT volume in low-contrast regions, which can potentially benefit multiple clinical applications including the treatment outcome analysis.

  9. [A modified intracellular labelling technique for high-resolution staining of neuron in 500 microm-thickness brain slice].

    PubMed

    Zhao, Ming-liang; Liu, Guo-long; Sui, Jian-feng; Ruan, Huai-zhen; Xiong, Ying

    2007-05-01

    To develop simple but reliable intracellular labelling method for high-resolution visualization of the fine structure of single neurons in brain slice with thickness of 500 microm. Biocytin was introduced into neurons in 500 microm-thickness brain slices while blind whole cell recording. Following processed for histochemistry using the avidin-biotin-complex method, stained slices were mounted in glycerol on special glass slides. Labelled cells were digital photomicrographed every 30 microm and reconstructed with Adobe Photoshop software. After histochemistry, limited background staining was produced. The resolution was so high that fine structure, including branching, termination of individual axons and even spines of neurons could be identified in exquisite detail with optic microscope. With the help of software, the neurons of interest could be reconstructed from a stack of photomicrographs. The modified method provides an easy and reliable approach to revealing the detailed morphological properties of single neurons in 500 microm-thickness brain slice. Without requisition of special equipment, it is suited to be broadly applied.

  10. Determination of the fine structure constant based on BLOCH oscillations of ultracold atoms in a vertical optical lattice.

    PubMed

    Cladé, Pierre; de Mirandes, Estefania; Cadoret, Malo; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François

    2006-01-27

    We report an accurate measurement of the recoil velocity of 87Rb atoms based on Bloch oscillations in a vertical accelerated optical lattice. We transfer about 900 recoil momenta with an efficiency of 99.97% per recoil. A set of 72 measurements of the recoil velocity, each one with a relative uncertainty of about 33 ppb in 20 min integration time, leads to a determination of the fine structure constant with a statistical relative uncertainty of 4.4 ppb. The detailed analysis of the different systematic errors yields to a relative uncertainty of 6.7 ppb. The deduced value of alpha-1 is 137.035 998 78(91).

  11. Effects of a suppressor tone on distortion product otoacoustic emissions fine structure: why a universal suppressor level is not a practical solution to obtaining single-generator DP-grams.

    PubMed

    Dhar, Sumitrajit; Shaffer, Lauren A

    2004-12-01

    The use of a suppressor tone has been proposed as the method of choice in obtaining single-generator distortion product (DP) grams, the speculation being that such DP grams will be more predictive of hearing thresholds. Current distortion product otoacoustic emissions (DPOAE) theory points to the ear canal DPOAE signal being a complex interaction between multiple components. The effectiveness of a suppressor tone is predicted to be dependent entirely on the relative levels of these components. We examine the validity of using a suppressor tone through a detailed examination of the effects of a suppressor on DPOAE fine structure in individual ears. DPOAE fine structure, recorded in 10 normal-hearing individuals with a suppressor tone at 45, 55, and 65 dB SPL, was compared with recordings without a suppressor. Behavioral hearing thresholds were also measured in the same subjects, using 2-dB steps. The effect of the suppressor tone on DPOAE fine structure varied between ears and was dependent on frequency within ears. Correlation between hearing thresholds and DPOAE level measured without a suppressor was similar to previous reports. The effects of the suppressor are explained in the theoretical framework of a model involving multiple DPOAE components. Our results suggest that a suppressor tone can have highly variable effects on fine structure across individuals or even across frequency within one ear, thereby making the use of a suppressor less viable as a clinical tool for obtaining single-generator DP grams.

  12. Rest-related consolidation protects the fine detail of new memories.

    PubMed

    Craig, Michael; Dewar, Michaela

    2018-05-01

    Newly encoded memories are labile and consolidate over time. The importance of sleep in memory consolidation has been well known for almost a decade. However, recent research has shown that awake quiescence, too, can support consolidation: people remember more new memories if they quietly rest after encoding than if they engage in a task. It is not yet known how exactly this rest-related consolidation benefits new memories, and whether it affects the fine detail of new memories. Using a sensitive picture recognition task, we show that awake quiescence aids the fine detail of new memories. Young adults were significantly better at discriminating recently encoded target pictures from similar lure pictures when the initial encoding of target pictures had been followed immediately by 10 minutes of awake quiescence than an unrelated perceptual task. This novel finding indicates that, in addition to influencing how much we remember, our behavioural state during wakeful consolidation determines, at least in part, the level of fine detail of our new memories. Thus, our results suggest that rest-related consolidation protects the fine detail of new memories, allowing us to retain detailed memories.

  13. Autoionization structure of nitric oxide (NO) at the first ionization limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miescher, E.; Lee, Y.T.; Guertler, P.

    1978-03-15

    A new and more detailed interpretation is given to the fine structure in the photoionization curve of cold NO observed by Ng, Mahan, and Lee. Resonances are assigned to autoionizing np and nddelta Rydberg levels which give prominent diffuse absorption bands in a spectrum recorded with the synchrotron radiation continuum. ..delta nu..<-1transitions in the vibrational autoionization process are substantiated.

  14. Galactic Abundance Gradients fro IR Fine Strucuture LInes in Compact H II regions

    NASA Technical Reports Server (NTRS)

    Afflerbach, A.; Churchwell, E.; Werner, M. W.

    1996-01-01

    We present observations of the [S III]19(micro)m, [O III]52 and 88(micro)m, and [N III]57(micro)m lines toward 18 compact and ultracompact (UC) H II regions. These data were combined with data from the literature and high-resolution radio continuum maps to construct detailed statistical equilibrium and ionization equilibrium models of 34 compact H II regions located at galactocentric distances (Dg)0-12kpc. Our models simultaneously fit the observed IR fine-structure lines and high-resolution radio continuum maps.

  15. Resolving the detailed structure of cortical and thalamic neurons in the adult rat brain with refined biotinylated dextran amine labeling.

    PubMed

    Ling, Changying; Hendrickson, Michael L; Kalil, Ronald E

    2012-01-01

    Biotinylated dextran amine (BDA) has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a) using 3,000 or 10,000 MW BDA; (b) injecting different volumes of BDA; (c) co-injecting BDA with NMDA; and (d) employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes.

  16. Fine-scale human genetic structure in Western France.

    PubMed

    Karakachoff, Matilde; Duforet-Frebourg, Nicolas; Simonet, Floriane; Le Scouarnec, Solena; Pellen, Nadine; Lecointe, Simon; Charpentier, Eric; Gros, Françoise; Cauchi, Stéphane; Froguel, Philippe; Copin, Nane; Le Tourneau, Thierry; Probst, Vincent; Le Marec, Hervé; Molinaro, Sabrina; Balkau, Beverley; Redon, Richard; Schott, Jean-Jacques; Blum, Michael Gb; Dina, Christian

    2015-06-01

    The difficulties arising from association analysis with rare variants underline the importance of suitable reference population cohorts, which integrate detailed spatial information. We analyzed a sample of 1684 individuals from Western France, who were genotyped at genome-wide level, from two cohorts D.E.S.I.R and CavsGen. We found that fine-scale population structure occurs at the scale of Western France, with distinct admixture proportions for individuals originating from the Brittany Region and the Vendée Department. Genetic differentiation increases with distance at a high rate in these two parts of Northwestern France and linkage disequilibrium is higher in Brittany suggesting a lower effective population size. When looking for genomic regions informative about Breton origin, we found two prominent associated regions that include the lactase region and the HLA complex. For both the lactase and the HLA regions, there is a low differentiation between Bretons and Irish, and this is also found at the genome-wide level. At a more refined scale, and within the Pays de la Loire Region, we also found evidence of fine-scale population structure, although principal component analysis showed that individuals from different departments cannot be confidently discriminated. Because of the evidence for fine-scale genetic structure in Western France, we anticipate that rare and geographically localized variants will be identified in future full-sequence analyses.

  17. Detection of Propagating Fast Sausage Waves through Detailed Analysis of a Zebra-pattern Fine Structure in a Solar Radio Burst

    NASA Astrophysics Data System (ADS)

    Kaneda, K.; Misawa, H.; Iwai, K.; Masuda, S.; Tsuchiya, F.; Katoh, Y.; Obara, T.

    2018-03-01

    Various magnetohydrodynamic (MHD) waves have recently been detected in the solar corona and investigated intensively in the context of coronal heating and coronal seismology. In this Letter, we report the first detection of short-period propagating fast sausage mode waves in a metric radio spectral fine structure observed with the Assembly of Metric-band Aperture Telescope and Real-time Analysis System. Analysis of Zebra patterns (ZPs) in a type-IV burst revealed a quasi-periodic modulation in the frequency separation between the adjacent stripes of the ZPs (Δf ). The observed quasi-periodic modulation had a period of 1–2 s and exhibited a characteristic negative frequency drift with a rate of 3–8 MHz s‑1. Based on the double plasma resonance model, the most accepted generation model of ZPs, the observed quasi-periodic modulation of the ZP can be interpreted in terms of fast sausage mode waves propagating upward at phase speeds of 3000–8000 km s‑1. These results provide us with new insights for probing the fine structure of coronal loops.

  18. Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope

    PubMed Central

    Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin

    2016-01-01

    Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459

  19. Joint the active source and passive source seismic to research the fine crustal structure of the Lushan area

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Yu, C.

    2017-12-01

    On April 20, 2013, Ms7.0 strong earthquake (Lushan earthquake) occurred in Lanshan County Ya'an City, Sichuan Province. It is another earthquake that occurred in the Longmenshan fault zone after the Wenchuan earthquake. However, there is still no conclusive conclusion in relationship between the fine structure of the Lushan area and triggering seismic fault . In this study, the crustal structure, the shallow structure and the hidden faults and the focal mechanism of the Lushan earthquake were analyzed by using the deep seismic reflection profile and the broadband seismic array data. Combined with the surface geological information, the structure and fracture cause of the Lishan earthquake were discussed.We have synthetic analyzed the seismic precursors, fine locating, focal mechanism analysis and time-tomographic imaging of the broadband seismic data before and after the earthquake in Lushan earthquake, and obtained the seismic distribution, the focal mechanism and the crustal fine structure in the Lushan area. And we use these results to detailed interpreted the deep reflection seismic section of the Lushan earthquake zone.The results show that the crust of the Lushan area is characterized by a distinct structure of upper crust with thickness about 14.75km. The nature of the faults is inferred to be thrusting in the region due to the pushing of the crustal material of the Tibetan plateau into the southeast part of the rigid Sichuan basin. The shuangshi-Dachuan fault stretches from the surface to the deep crust at a low angle, and is dominated by thrusting in a form of imbricate structure with small-scale faults nearby. Whereas the Guangyuan-Dayi fault is a positive flower structure with a listric shape, consisting of six branches. Its movement is dominated by thrusting with gentle horizontal slip.

  20. A TEM Investigation of the Fine-Grained Matrix of the Martian Basaltic Breccia NWA 7034

    NASA Technical Reports Server (NTRS)

    Muttik, N.; Keller, L. P.; Agee, C. B.; McCubbin, F. M.; Santos, A. R.; Rahman, Z.

    2014-01-01

    The martian basaltic breccia NWA 7034 is characterized by fine-grained groundmass containing several different types of mineral grains and lithologic clasts. The matrix composition closely resembles Martian crustal rock and soil composition measured by recent rover and orbiter missions. The first results of NWA 7034 suggest that the brecciation of this martian meteorite may have formed due to eruptive volcanic processes; however, impact related brecciation processes have been proposed for paired meteorites NWA 7533 and NWA 7475]. Due to the very fine grain size of matrix, its textural details are difficult to resolve by optical and microprobe observations. In order to examine the potential nature of brecciation, transmission electron microscopy (TEM) studies combined with focused ion-beam technique (FIB) has been undertaken. Here we present the preliminary observations of fine-grained groundmass of NWA 7034 from different matrix areas by describing its textural and mineralogical variations and micro-structural characteristics.

  1. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  2. Resolving the Detailed Structure of Cortical and Thalamic Neurons in the Adult Rat Brain with Refined Biotinylated Dextran Amine Labeling

    PubMed Central

    Ling, Changying; Hendrickson, Michael L.; Kalil, Ronald E.

    2012-01-01

    Biotinylated dextran amine (BDA) has been used frequently for both anterograde and retrograde pathway tracing in the central nervous system. Typically, BDA labels axons and cell somas in sufficient detail to identify their topographical location accurately. However, BDA labeling often has proved to be inadequate to resolve the fine structural details of axon arbors or the dendrites of neurons at a distance from the site of BDA injection. To overcome this limitation, we varied several experimental parameters associated with the BDA labeling of neurons in the adult rat brain in order to improve the sensitivity of the method. Specifically, we compared the effect on labeling sensitivity of: (a) using 3,000 or 10,000 MW BDA; (b) injecting different volumes of BDA; (c) co-injecting BDA with NMDA; and (d) employing various post-injection survival times. Following the extracellular injection of BDA into the visual cortex, labeled cells and axons were observed in both cortical and thalamic areas of all animals studied. However, the detailed morphology of axon arbors and distal dendrites was evident only under optimal conditions for BDA labeling that take into account the: molecular weight of the BDA used, concentration and volume of BDA injected, post-injection survival time, and toning of the resolved BDA with gold and silver. In these instances, anterogradely labeled axons and retrogradely labeled dendrites were resolved in fine detail, approximating that which can be achieved with intracellularly injected compounds such as biocytin or fluorescent dyes. PMID:23144777

  3. Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Nishimura, Yusaku F.; Suzuki, Ryo

    A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstratedmore » by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.« less

  4. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2018-02-01

    Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.

  5. The ZINGRS Radio Survey: Probing metallicities at high-z with far-IR fine-structure lines and the radio continuum

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl; Higdon, Sarah; Higdon, James L.; Tidwell, Hannah; Rangel, Miguel; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.; Brisbin, Drew

    2017-01-01

    The present day Universe is rich in metals that enable efficient cooling of gas in the ISM in order to form stars, create planets and make the building blocks of life as we know it. The Universe did not start in this state - we know that metals had to build up over time with successive generations of stars. Revealing the details of this evolution, however, is challenging and requires probes of metallicity that are not susceptible to dust extinction nor exhibit the degeneracies common to tracers in the visible regime. One possible indicator combines the far-IR fine structure lines with the radio continuum. Recently we have undertaken a multi-band radio continuum survey with the JVLA of high-z galaxies from ZINGRS. These observations will constrain the galaxies’ thermal and nonthermal radio emissions and demonstrate the use of far-IR lines together with radio continuum as a metallicity indicator. ZINGRS, the ZEUS 1 and 2 INvestigated Galaxy Reference Sample, includes ~30 galaxies from z ~ 1 - 4.5 for which the far-IR fine-structure lines (e.g. [CII] 158, [NII] 122, [OIII] 88) have been observed with the ZEUS-1 and 2 instruments. This is the largest collection of far-IR fine-structure line detections at high-z and is ideal for demonstrating the use of this new indicator. Here we describe the theory behind the new indicator, give an overview of ZINGRS, and report on the status of our radio survey.

  6. Order within disorder: The atomic structure of ion-beam sputtered amorphous tantala (a-Ta₂O₅)

    DOE PAGES

    Bassiri, Riccardo; Liou, Franklin; Abernathy, Matthew R.; ...

    2015-03-01

    Amorphous tantala (a-Ta₂O₅) is a technologically important material often used in high-performance coatings. Understanding this material at the atomic level provides a way to further improve performance. This work details extended X-ray absorption fine structure measurements of a-Ta₂O₅ coatings, where high-quality experimental data and theoretical fits have allowed a detailed interpretation of the nearest-neighbor distributions. It was found that the tantalum atom is surrounded by four shells of atoms in sequence; oxygen, tantalum, oxygen, and tantalum. A discussion is also included on how these models can be interpreted within the context of published crystalline Ta₂O₅ and other a-T₂O₅ studies.

  7. Positive ion densities and mobilities in the upper stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Leiden, S.

    1976-01-01

    A brief sketch of the theory concerning the use of the Gerdien condenser as a mobility spectrometer is presented. Data reduction of three parachute borne Gerdien condenser probes is given, as well as that of one blunt conductivity probe. Comparisons of concentrations calculated by two different methods indicate consistency of results. Mobility profiles demonstrating remarkable fine structure are discussed in detail. Finally, theoretical implications of the results on ionospheric structure, including possible night-day differences and latitudinal variations, are considered.

  8. The Anomalous Magnetoresistance of Graphite at High Magnetic Fields,

    DTIC Science & Technology

    1983-05-01

    magnetoresistance anomaly. In the present work, the unusual properties of this fine structure (which is periodic in magnetic field H ) is examined in more detail...structure associated with the magnetoresistance anomly is (AH/ H ) - 0.1 T/25 T or about 0.4 Z. Thus, for typical magnetic field sweep rates (10 T in 10...magnetoresistance above 12 T have been associated by lye at al.2 with a linear increase in carrier concentration with increasing H .1 The anomalous increase

  9. 3D WHOLE-PROMINENCE FINE STRUCTURE MODELING. II. PROMINENCE EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunár, Stanislav; Mackay, Duncan H.

    2015-10-20

    We use the new three-dimensional (3D) whole-prominence fine structure model to study the evolution of prominences and their fine structures in response to changes in the underlying photospheric magnetic flux distribution. The applied model combines a detailed 3D prominence magnetic field configuration with a realistic description of the prominence plasma distributed along multiple fine structures. In addition, we utilize an approximate Hα visualization technique to study the evolution of the visible cool prominence plasma both in emission (prominence) and absorption (filament). We show that the initial magnetic field configuration of the modeled prominence is significantly disturbed by the changing positionmore » of a single polarity of a magnetic bipole as the bipole is advected toward the main body of the filament. This leads to the creation of a barb, which becomes the dominant feature visible in the synthetic Hα images of both the prominence and filament views. The evolution of the bipole also creates conditions that lead to the disappearance and reappearance of large portions of the main body. We also show that an arch-like region containing a dark void (a bubble) can be naturally produced in the synthetic prominence Hα images. While not visible in terms of the magnetic field lines, it is due to a lack of Hα emission from low-pressure, low-density plasma located in shallow magnetic dips lying along the lines of sight intersecting the dark void. In addition, a quasi-vertical small-scale feature consisting of short and deep dips, piled one above the other, is produced.« less

  10. HDlive rendering images of the fetal stomach: a preliminary report.

    PubMed

    Inubashiri, Eisuke; Abe, Kiyotaka; Watanabe, Yukio; Akutagawa, Noriyuki; Kuroki, Katumaru; Sugawara, Masaki; Maeda, Nobuhiko; Minami, Kunihiro; Nomura, Yasuhiro

    2015-01-01

    This study aimed to show reconstruction of the fetal stomach using the HDlive rendering mode in ultrasound. Seventeen healthy singleton fetuses at 18-34 weeks' gestational age were observed using the HDlive rendering mode of ultrasound in utero. In all of the fetuses, we identified specific spatial structures, including macroscopic anatomical features (e.g., the pyrous, cardia, fundus, and great curvature) of the fetal stomach, using the HDlive rendering mode. In particular, HDlive rendering images showed remarkably fine details that appeared as if they were being viewed under an endoscope, with visible rugal folds after 27 weeks' gestational age. Our study suggests that the HDlive rendering mode can be used as an additional method for evaluating the fetal stomach. The HDlive rendering mode shows detailed 3D structural images and anatomically realistic images of the fetal stomach. This technique may be effective in prenatal diagnosis for examining detailed information of fetal organs.

  11. Modeling Fine Grinding

    NASA Astrophysics Data System (ADS)

    Frances, C.; Laguerie, C.; Dodds, J.; Guigon, P.; Thomas, A.

    The strategy of the current research programme on "Modeling Fine Grinding" which groups four French research teams is detailed. The experimental results on fine grinding of an alumina hydrate performed with different grinding machines are reported.

  12. Analysis of Gas-Particle Flows through Multi-Scale Simulations

    NASA Astrophysics Data System (ADS)

    Gu, Yile

    Multi-scale structures are inherent in gas-solid flows, which render the modeling efforts challenging. On one hand, detailed simulations where the fine structures are resolved and particle properties can be directly specified can account for complex flow behaviors, but they are too computationally expensive to apply for larger systems. On the other hand, coarse-grained simulations demand much less computations but they necessitate constitutive models which are often not readily available for given particle properties. The present study focuses on addressing this issue, as it seeks to provide a general framework through which one can obtain the required constitutive models from detailed simulations. To demonstrate the viability of this general framework in which closures can be proposed for different particle properties, we focus on the van der Waals force of interaction between particles. We start with Computational Fluid Dynamics (CFD) - Discrete Element Method (DEM) simulations where the fine structures are resolved and van der Waals force between particles can be directly specified, and obtain closures for stress and drag that are required for coarse-grained simulations. Specifically, we develop a new cohesion model that appropriately accounts for van der Waals force between particles to be used for CFD-DEM simulations. We then validate this cohesion model and the CFD-DEM approach by showing that it can qualitatively capture experimental results where the addition of small particles to gas fluidization reduces bubble sizes. Based on the DEM and CFD-DEM simulation results, we propose stress models that account for the van der Waals force between particles. Finally, we apply machine learning, specifically neural networks, to obtain a drag model that captures the effects from fine structures and inter-particle cohesion. We show that this novel approach using neural networks, which can be readily applied for other closures other than drag here, can take advantage of the large amount of data generated from simulations, and therefore offer superior modeling performance over traditional approaches.

  13. The roles of competition and habitat in the dynamics of populations and species distributions Ecology

    Treesearch

    Charles B. Yackulic; Janice Reid; James D. Nichols; James E. Hines; Raymond Davis; Eric Forsman

    2014-01-01

    The role of competition in structuring biotic communities at fine spatial scales is well known from detailed process-based studies. Our understanding of competition’s importance at broader scales is less resolved and mainly based on static species distribution maps. Here, we bridge this gap by examining the joint occupancy dynamics of an invading species (Barred Owl,...

  14. Myopia: the importance of seeing fine detail.

    PubMed

    Schaeffel, Frank

    2006-04-04

    Eye growth and myopia development are controlled by the retina. What properties of the image tell the retina how the eye should grow? A recent study has shown that, in chickens, fine details are necessary to prevent the development of myopia. Should we carefully avoid any defocus to avoid becoming myopic?

  15. Fine Structure of a Laser-Plasma Filament in Air

    NASA Astrophysics Data System (ADS)

    Eisenmann, Shmuel; Pukhov, Anatoly; Zigler, Arie

    2007-04-01

    The ability to select and stabilize a single filament during propagation of an ultrashort high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present detailed measurements of plasma density variations along laser propagation. Over the length of the filament, electron density variations of 3 orders of magnitude are measured. They display evidence of a meter-long postionization range, along which a self-guided structure is observed coupled with a low plasma density, corresponding to ˜3 orders of magnitude decrease from the peak density level.

  16. Investigation of internal structure of fine granules by microtomography using synchrotron X-ray radiation.

    PubMed

    Noguchi, Shuji; Kajihara, Ryusuke; Iwao, Yasunori; Fujinami, Yukari; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Miura, Keiko; Itai, Shigeru

    2013-03-10

    Computed tomography (CT) using synchrotron X-ray radiation was evaluated as a non-destructive structural analysis method for fine granules. Two kinds of granules have been investigated: a bromhexine hydrochloride (BHX)-layered Celphere CP-102 granule coated with pH-sensitive polymer Kollicoat Smartseal 30-D, and a wax-matrix granule constructed from acetaminophen (APAP), dibasic calcium phosphate dehydrate, and aminoalkyl methacrylate copolymer E (AMCE) manufactured by melt granulation. The diameters of both granules were 200-300 μm. CT analysis of CP-102 granule could visualize the laminar structures of BHX and Kollicoat layers, and also visualize the high talc-content regions in the Kollicoat layer that could not be detected by scanning electron microscopy. Moreover, CT analysis using X-ray energies above the absorption edge of Br specifically enhanced the contrast in the BHX layer. As for granules manufactured by melt granulation, CT analysis revealed that they had a small inner void space due to a uniform distribution of APAP and other excipients. The distribution of AMCE revealed by CT analysis was also found to involve in the differences of drug dissolution from the granules as described previously. These observations demonstrate that CT analysis using synchrotron X-ray radiation is a powerful method for the detailed internal structure analysis of fine granules. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Capturing Fine Details Involving Low-Cost Sensors -a Comparative Study

    NASA Astrophysics Data System (ADS)

    Rehany, N.; Barsi, A.; Lovas, T.

    2017-11-01

    Capturing the fine details on the surface of small objects is a real challenge to many conventional surveying methods. Our paper discusses the investigation of several data acquisition technologies, such as arm scanner, structured light scanner, terrestrial laser scanner, object line-scanner, DSLR camera, and mobile phone camera. A palm-sized embossed sculpture reproduction was used as a test object; it has been surveyed by all the instruments. The result point clouds and meshes were then analyzed, using the arm scanner's dataset as reference. In addition to general statistics, the results have been evaluated based both on 3D deviation maps and 2D deviation graphs; the latter allows even more accurate analysis of the characteristics of the different data acquisition approaches. Additionally, own-developed local minimum maps were created that nicely visualize the potential level of detail provided by the applied technologies. Besides the usual geometric assessment, the paper discusses the different resource needs (cost, time, expertise) of the discussed techniques. Our results proved that even amateur sensors operated by amateur users can provide high quality datasets that enable engineering analysis. Based on the results, the paper contains an outlook to potential future investigations in this field.

  18. A mechanical microcompressor for high resolution imaging of motile specimens

    PubMed Central

    Zinskie, Jessica A.; Shribak, Michael; Bruist, Michael F.; Aufderheide, Karl J.; Janetopoulos, Chris

    2015-01-01

    In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differential interference contrast (DIC) microscopy, orientation-independent (OI) DIC, and real-time birefringence imaging using a video-enhanced polychromatic polscope. We also describe an enhancement of our previous design by engineering a new device where the coverslip mount is fashioned onto the top of the base; so the entire apparatus is accessible on top of the stage. The new location allows for easier manipulation of the mount when compressing or releasing a specimen on an inverted microscope. Using this improved design, we imaged immobilized bacteria, yeast, paramecia, and nematode worms and obtained an unprecedented view of cell and specimen details. A variety of microscopic techniques were used to obtain high resolution images of static and dynamic cellular and physiological events. PMID:26192819

  19. A mechanical microcompressor for high resolution imaging of motile specimens.

    PubMed

    Zinskie, Jessica A; Shribak, Michael; Bruist, Michael F; Aufderheide, Karl J; Janetopoulos, Chris

    2015-10-01

    In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differential interference contrast (DIC) microscopy, orientation-independent (OI) DIC, and real-time birefringence imaging using a video-enhanced polychromatic polscope. We also describe an enhancement of our previous design by engineering a new device where the coverslip mount is fashioned onto the top of the base; so the entire apparatus is accessible on top of the stage. The new location allows for easier manipulation of the mount when compressing or releasing a specimen on an inverted microscope. Using this improved design, we imaged immobilized bacteria, yeast, paramecia, and nematode worms and obtained an unprecedented view of cell and specimen details. A variety of microscopic techniques were used to obtain high resolution images of static and dynamic cellular and physiological events. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Gross and fine dissection of inner ear sensory epithelia in adult zebrafish (Danio rerio).

    PubMed

    Liang, Jin; Burgess, Shawn M

    2009-05-08

    Neurosensory epithelia in the inner ear are the crucial structures for hearing and balance functions. Therefore, it is important to understand the cellular and molecular features of the epithelia, which are mainly composed of two types of cells: hair cells (HCs) and supporting cells (SCs). Here we choose to study the inner ear sensory epithelia in adult zebrafish not only because the epithelial structures are highly conserved in all vertebrates studied, but also because the adult zebrafish is able to regenerate HCs, an ability that mammals lose shortly after birth. We use the inner ear of adult zebrafish as a model system to study the mechanisms of inner ear HC regeneration in adult vertebrates that could be helpful for clinical therapy of hearing/balance deficits in human as a result of HC loss. Here we demonstrate how to do gross and fine dissections of inner ear sensory epithelia in adult zebrafish. The gross dissection removes the tissues surrounding the inner ear and is helpful for preparing tissue sections, which allows us to examine the detailed structure of the sensory epithelia. The fine dissection cleans up the non-sensory-epithelial tissues of each individual epithelium and enables us to examine the heterogeneity of the whole epithelium easily in whole-mount epithelial samples.

  1. Dynamic Relaxation: A Technique for Detailed Thermo-Elastic Structural Analysis of Transportation Structures

    NASA Astrophysics Data System (ADS)

    Shoukry, Samir N.; William, Gergis W.; Riad, Mourad Y.; McBride, Kevyn C.

    2006-08-01

    Dynamic relaxation is a technique developed to solve static problems through an explicit integration in finite element. The main advantage of such a technique is the ability to solve a large problem in a relatively short time compared with the traditional implicit techniques, especially when using nonlinear material models. This paper describes the use of such a technique in analyzing large transportation structures as dowel jointed concrete pavements and 306-m-long, reinforced concrete bridge superstructure under the effect of temperature variations. The main feature of the pavement model is the detailed modeling of dowel bars and their interfaces with the surrounding concrete using extremely fine mesh of solid elements, while in the bridge structure it is the detailed modeling of the girder-deck interface as well as the bracing members between the girders. The 3DFE results were found to be in a good agreement with experimentally measured data obtained from an instrumented pavements sections and a highway bridge constructed in West Virginia. Thus, such a technique provides a good tool for analyzing the response of large structures to static loads in a fraction of the time required by traditional, implicit finite element methods.

  2. Probing the Detailed Seismic Velocity Structure of Subduction Zones Using Advanced Seismic Tomography Methods

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Thurber, C. H.

    2005-12-01

    Subduction zones are one of the most important components of the Earth's plate tectonic system. Knowing the detailed seismic velocity structure within and around subducting slabs is vital to understand the constitution of the slab, the cause of intermediate depth earthquakes inside the slab, the fluid distribution and recycling, and tremor occurrence [Hacker et al., 2001; Obara, 2002].Thanks to the ability of double-difference tomography [Zhang and Thurber, 2003] to resolve the fine-scale structure near the source region and the favorable seismicity distribution inside many subducting slabs, it is now possible to characterize the fine details of the velocity structure and earthquake locations inside the slab, as shown in the study of the Japan subduction zone [Zhang et al., 2004]. We further develop the double-difference tomography method in two aspects: the first improvement is to use an adaptive inversion mesh rather than a regular inversion grid and the second improvement is to determine a reliable Vp/Vs structure using various strategies rather than directly from Vp and Vs [see our abstract ``Strategies to solve for a better Vp/Vs model using P and S arrival time'' at Session T29]. The adaptive mesh seismic tomography method is based on tetrahedral diagrams and can automatically adjust the inversion mesh according to the ray distribution so that the inversion mesh nodes are denser where there are more rays and vice versa [Zhang and Thurber, 2005]. As a result, the number of inversion mesh nodes is greatly reduced compared to a regular inversion grid with comparable spatial resolution, and the tomographic system is more stable and better conditioned. This improvement is quite valuable for characterizing the fine structure of the subduction zone considering the highly uneven distribution of earthquakes within and around the subducting slab. The second improvement, to determine a reliable Vp/Vs model, lies in jointly inverting Vp, Vs, and Vp/Vs using P, S, and S-P times in a manner similar to double-difference tomography. Obtaining a reliable Vp/Vs model of the subduction zone is more helpful for understanding its mechanical and petrologic properties. Our applications of the original version of double-difference tomography to several subduction zones beneath northern Honshu, Japan, the Wellington region, New Zealand, and Alaska, United States, have shown evident velocity variations within and around the subducting slab, which likely is evidence of dehydration reactions of various hydrous minerals that are hypothesized to be responsible for intermediate depth earthquakes. We will show the new velocity models for these subduction zones by applying our advanced tomographic methods.

  3. A comparative study of new and current methods for dental micro-CT image denoising

    PubMed Central

    Lashgari, Mojtaba; Qin, Jie; Swain, Michael

    2016-01-01

    Objectives: The aim of the current study was to evaluate the application of two advanced noise-reduction algorithms for dental micro-CT images and to implement a comparative analysis of the performance of new and current denoising algorithms. Methods: Denoising was performed using gaussian and median filters as the current filtering approaches and the block-matching and three-dimensional (BM3D) method and total variation method as the proposed new filtering techniques. The performance of the denoising methods was evaluated quantitatively using contrast-to-noise ratio (CNR), edge preserving index (EPI) and blurring indexes, as well as qualitatively using the double-stimulus continuous quality scale procedure. Results: The BM3D method had the best performance with regard to preservation of fine textural features (CNREdge), non-blurring of the whole image (blurring index), the clinical visual score in images with very fine features and the overall visual score for all types of images. On the other hand, the total variation method provided the best results with regard to smoothing of images in texture-free areas (CNRTex-free) and in preserving the edges and borders of image features (EPI). Conclusions: The BM3D method is the most reliable technique for denoising dental micro-CT images with very fine textural details, such as shallow enamel lesions, in which the preservation of the texture and fine features is of the greatest importance. On the other hand, the total variation method is the technique of choice for denoising images without very fine textural details in which the clinician or researcher is interested mainly in anatomical features and structural measurements. PMID:26764583

  4. Optical analysis of the fine crystalline structure of artificial opal films.

    PubMed

    Lozano, G; Dorado, L A; Schinca, D; Depine, R A; Míguez, H

    2009-11-17

    Herein, we present a detailed analysis of the structure of artificial opal films. We demonstrate that, rather than the generally assumed face centered cubic lattice of spheres, opal films are better approximated by rhombohedral assemblies of distorted colloids. Detailed analysis of the optical response in a very wide spectral range (0.4 < or = a/lambda < or = 2, where a is the conventional lattice constant), as well as at perpendicular and off-normal directions, unambiguously shows that the interparticle distance coincides very approximately with the expected diameter only along directions contained in the same close-packed plane but differs significantly in directions oblique to the [111] one. A full description of the real and reciprocal lattices of actual opal films is provided, as well as of the photonic band structure of the proposed arrangement. The implications of this distortion in the optical response of the lattice are discussed.

  5. Biomaterial-host interactions: consequences, determined by implant retrieval analysis.

    PubMed

    Kaplan, S S

    1994-01-01

    Prosthetic biomaterials have had a profound impact on reconstructive surgery but complete biocompatability remains illusive. This review considers the retrieval analysis of four common prosthetic structures: the hip, the knee, heart valves, and blood vessels. We show that despite a fine record of early success, deterioration due to mechanical failure or deleterious host responses to the implant may compromise long term function. The eventual retrieval and detailed analysis of implanted structures provides an invaluable opportunity to determine the characteristics of implant success or failure and to provoke the development of still better materials.

  6. An ethanol-based fixation method for anatomical and micro-morphological characterization of leaves of various tree species.

    PubMed

    Chieco, C; Rotondi, A; Morrone, L; Rapparini, F; Baraldi, R

    2013-02-01

    The use of formalin constitutes serious health hazards for laboratory workers. We investigated the suitability and performance of the ethanol-based fixative, FineFIX, as a substitute for formalin for anatomical and cellular structure investigations of leaves by light microscopy and for leaf surface and ultrastructural analysis by scanning electron microscopy (SEM). We compared the anatomical features of leaf materials prepared using conventional formalin fixation with the FineFIX. Leaves were collected from ornamental tree species commonly used in urban areas. FineFIX was also compared with glutaraldehyde fixation and air drying normally used for scanning electron microscopy to develop a new method for evaluating leaf morphology and microstructure in three ornamental tree species. The cytological features of the samples processed for histological analysis were well preserved by both fixatives as demonstrated by the absence of nuclear swelling or shrinkage, cell wall detachment or tissue flaking, and good presentation of cytoplasmic vacuolization. In addition, good preservation of surface details and the absence of shrinkage artefacts confirmed the efficacy of FineFIX fixation for SEM analysis. Cuticular wax was preserved only in air dried samples. Samples treated with chemical substances during the fixation and dehydration phases showed various alterations of the wax structures. In some air dried samples a loss of turgidity of the cells was observed that caused general wrinkling of the epidermal surfaces. Commercial FineFIX is an adequate substitute for formalin in histology and it can be applied successfully also for SEM investigation, while reducing the health risks of glutaraldehyde or other toxic fixatives. To investigate the potential for plants to absorb and capture particulates in air, which requires preservation of the natural morphology of trichomes and epicuticular waxes, a combination of FineFIX fixation and air drying is recommended.

  7. The effect of compression speed on intelligibility: simulated hearing-aid processing with and without original temporal fine structure information.

    PubMed

    Hopkins, Kathryn; King, Andrew; Moore, Brian C J

    2012-09-01

    Hearing aids use amplitude compression to compensate for the effects of loudness recruitment. The compression speed that gives the best speech intelligibility varies among individuals. Moore [(2008). Trends Amplif. 12, 300-315] suggested that an individual's sensitivity to temporal fine structure (TFS) information may affect which compression speed gives most benefit. This hypothesis was tested using normal-hearing listeners with a simulated hearing loss. Sentences in a competing talker background were processed using multi-channel fast or slow compression followed by a simulation of threshold elevation and loudness recruitment. Signals were either tone vocoded with 1-ERB(N)-wide channels (where ERB(N) is the bandwidth of normal auditory filters) to remove the original TFS information, or not processed further. In a second experiment, signals were vocoded with either 1 - or 2-ERB(N)-wide channels, to test whether the available spectral detail affects the optimal compression speed. Intelligibility was significantly better for fast than slow compression regardless of vocoder channel bandwidth. The results suggest that the availability of original TFS or detailed spectral information does not affect the optimal compression speed. This conclusion is tentative, since while the vocoder processing removed the original TFS information, listeners may have used the altered TFS in the vocoded signals.

  8. Microbial nature of fibrous kerite of Volyn

    NASA Astrophysics Data System (ADS)

    Gorlenko, Vladimir M.; Zhmur, Stanislav I.; Duda, Vitalii I.; Osipov, George A.; Suzina, Natalia; Dmitriev, Vladimir V.

    1999-12-01

    For the last few years there have been a lot of publications in geological literature on the problem of formation of morphologically unique fine fibrous kerites, found in one of the objects of kamera pegmatites of Volyn (1800 - 1750 mln. years). According to the opinion of all researchers who deal with them, they are an excellent example of a biogenic, highly constructive carbon substance. The meeting of objectives set was carried out by means of the study of ultra-thin section and replicas of kerite cryofractures under high resolution electronic microscope. The similarity of fine structured fibrous kerite of Volyn (KV) to prokaryotic microorganisms is proved by availability in KV of clearly exposed cellular ultrastructures: multilayered cell wall, cross septa and cytoplasmatic membrane and `intracytoplasmic' inclusions. Fatty acids obtained from kerites contain a number of components typical of prokaryotic microbial community. Suggestions were made on the formation of fibrous Volyn's kerites as a result of mummification of the cyanobacterial mat components from freshwater thermal spring of moderate temperature. Thus, the detailed fine structure of microfossils and their fatty acid composition can be used to support evidence of biogenic origin of the bacteriomorphic elements in paleo- and space objects.

  9. An Example-Based Super-Resolution Algorithm for Selfie Images

    PubMed Central

    William, Jino Hans; Venkateswaran, N.; Narayanan, Srinath; Ramachandran, Sandeep

    2016-01-01

    A selfie is typically a self-portrait captured using the front camera of a smartphone. Most state-of-the-art smartphones are equipped with a high-resolution (HR) rear camera and a low-resolution (LR) front camera. As selfies are captured by front camera with limited pixel resolution, the fine details in it are explicitly missed. This paper aims to improve the resolution of selfies by exploiting the fine details in HR images captured by rear camera using an example-based super-resolution (SR) algorithm. HR images captured by rear camera carry significant fine details and are used as an exemplar to train an optimal matrix-value regression (MVR) operator. The MVR operator serves as an image-pair priori which learns the correspondence between the LR-HR patch-pairs and is effectively used to super-resolve LR selfie images. The proposed MVR algorithm avoids vectorization of image patch-pairs and preserves image-level information during both learning and recovering process. The proposed algorithm is evaluated for its efficiency and effectiveness both qualitatively and quantitatively with other state-of-the-art SR algorithms. The results validate that the proposed algorithm is efficient as it requires less than 3 seconds to super-resolve LR selfie and is effective as it preserves sharp details without introducing any counterfeit fine details. PMID:27064500

  10. The hippocampus and related neocortical structures in memory transformation.

    PubMed

    Sekeres, Melanie J; Winocur, Gordon; Moscovitch, Morris

    2018-05-04

    Episodic memories are multifaceted and malleable, capable of being transformed with time and experience at both the neural level and psychological level. At the neural level, episodic memories are transformed from being dependent on the hippocampus to becoming represented in neocortical structures, such as the medial prefrontal cortex (mPFC), and back again, while at the psychological level, detailed, perceptually rich memories, are transformed to ones retaining only the gist of an experience or a schema related to it. Trace Transformation Theory (TTT) initially proposed that neural and psychological transformations are linked and proceed in tandem. Building on recent studies on the neurobiology of memory transformation in rodents and on the organization of the hippocampus and its functional cortical connectivity in humans, we present an updated version of TTT that is more precise and detailed with respect to the dynamic processes and structures implicated in memory transformation. At the heart of the updated TTT lies the long axis of the hippocampus whose functional differentiation and connectivity to neocortex make it a hub for memory formation and transformation. The posterior hippocampus, connected to perceptual and spatial representational systems in posterior neocortex, supports fine, perceptually rich, local details of memories; the anterior hippocampus, connected to conceptual systems in anterior neocortex, supports coarse, global representations that constitute the gist of a memory. Notable among the anterior structures is the medial prefrontal cortex which supports representation of schemas that code for common aspects of memories across different episodes. Linking the aHPC with mPFC is the entorhinal cortex (EC) which conveys information needed for the interaction/translation between gist and schemas. Thus, the long axis of the hippocampus, mPFC and EC provide the representational gradient, from fine to coarse and from perceptual to conceptual, that can implement processes implicated in memory transformation. Each of these representations of an episodic memory can co-exist with one another and be in dynamic flux as they interact with one another throughout the memory's lifetime, going from detailed to schematic and possibly back again, all mediated by corresponding changes in neural representation. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. On the Electronic Structure of Cu Chlorophyllin and Its Breakdown Products: A Carbon K-Edge X-ray Absorption Spectroscopy Study.

    PubMed

    Witte, Katharina; Mantouvalou, Ioanna; Sánchez-de-Armas, Rocío; Lokstein, Heiko; Lebendig-Kuhla, Janina; Jonas, Adrian; Roth, Friedrich; Kanngießer, Birgit; Stiel, Holger

    2018-02-15

    Using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, the carbon backbone of sodium copper chlorophyllin (SCC), a widely used chlorophyll derivative, and its breakdown products are analyzed to elucidate their electronic structure and physicochemical properties. Using various sample preparation methods and complementary spectroscopic methods (including UV/Vis, X-ray photoelectron spectroscopy), a comprehensive insight into the SCC breakdown process is presented. The experimental results are supported by density functional theory calculations, allowing a detailed assignment of characteristic NEXAFS features to specific C bonds. SCC can be seen as a model system for the large group of porphyrins; thus, this work provides a novel and detailed description of the electronic structure of the carbon backbone of those molecules and their breakdown products. The achieved results also promise prospective optical pump/X-ray probe investigations of dynamic processes in chlorophyll-containing photosynthetic complexes to be analyzed more precisely.

  12. A Protein in the palm of your hand through augmented reality.

    PubMed

    Berry, Colin; Board, Jason

    2014-01-01

    Understanding of proteins and other biological macromolecules must be based on an appreciation of their 3-dimensional shape and the fine details of their structure. Conveying these details in a clear and stimulating fashion can present challenges using conventional approaches and 2-dimensional monitors and projectors. Here we describe a method for the production of 3-D interactive images of protein structures that can be manipulated in real time through the use of augmented reality software. Users first see a real-time image of themselves using the computer's camera, then, when they hold up a trigger image, a model of a molecule appears automatically in the video. This model rotates and translates in space in response to movements of the trigger card. The system described has been optimized to allow customization for the display of user-selected structures to create engaging, educational visualizations to explore 3-D structures. Copyright © 2014 The International Union of Biochemistry and Molecular Biology.

  13. Enhanced interface perpendicular magnetic anisotropy in electrodeposited Co/Au(111) layers

    NASA Astrophysics Data System (ADS)

    Cagnon, L.; Devolder, T.; Cortes, R.; Morrone, A.; Schmidt, J. E.; Chappert, C.; Allongue, P.

    2001-03-01

    This work investigates the structure and interface perpendicular magnetic anisotropy (PMA) of electrodeposited Cu/Co/Au(111) sandwiches with variable Co thickness [2-20 monolayers (ML's)]. In optimum deposition conditions, polar magneto-optical Kerr effect measurements show that the axis of easy magnetization is perpendicular to the layers for thicknesses below ca. 7.2 ML's. This value is among the best ever reported for the Cu/Co/Au(111) structure. While extended x-ray-absorption fine structure indicates that layers are hcp, in situ STM imaging suggests that magnetoelastic effects contribute significantly to PMA. The correlation observed between the strength of PMA and film structure is discussed in details.

  14. Tackling The Dragon: Investigating Lensed Galaxy Structure

    NASA Astrophysics Data System (ADS)

    Fortenberry, Alexander; Livermore, Rachael

    2018-01-01

    Galaxies have been seen to have a rapid decrease in star formation beginning at a redshift of around 1-2 up to the present day. To understand the processes underpinning this change, we need to observe the inner structure of galaxies and understand where and how the stellar mass builds up. However, at high redshifts our observable resolution is limited, which hinders the accuracy of the data. The lack of resolution at high redshift can be counteracted with the use of gravitational lensing. The magnification provided by the gravitational lens between us and the galaxies in question enables us to see extreme detail within the galaxies. To begin fine-tuning this process, we used Hubble data of Abell 370, a galaxy cluster, which lenses a galaxy know as “The Dragon” at z=0.725. With the increased detail proved by the gravitational lens we provide a detailed analysis of the galaxy’s spatially resolved star formation rate, stellar age, and masses.

  15. Relative resolution: A hybrid formalism for fluid mixtures.

    PubMed

    Chaimovich, Aviel; Peter, Christine; Kremer, Kurt

    2015-12-28

    We show here that molecular resolution is inherently hybrid in terms of relative separation. While nearest neighbors are characterized by a fine-grained (geometrically detailed) model, other neighbors are characterized by a coarse-grained (isotropically simplified) model. We notably present an analytical expression for relating the two models via energy conservation. This hybrid framework is correspondingly capable of retrieving the structural and thermal behavior of various multi-component and multi-phase fluids across state space.

  16. Relative resolution: A hybrid formalism for fluid mixtures

    NASA Astrophysics Data System (ADS)

    Chaimovich, Aviel; Peter, Christine; Kremer, Kurt

    2015-12-01

    We show here that molecular resolution is inherently hybrid in terms of relative separation. While nearest neighbors are characterized by a fine-grained (geometrically detailed) model, other neighbors are characterized by a coarse-grained (isotropically simplified) model. We notably present an analytical expression for relating the two models via energy conservation. This hybrid framework is correspondingly capable of retrieving the structural and thermal behavior of various multi-component and multi-phase fluids across state space.

  17. Chromospheric counterparts of solar transition region unresolved fine structure loops

    NASA Astrophysics Data System (ADS)

    Pereira, Tiago M. D.; Rouppe van der Voort, Luc; Hansteen, Viggo H.; De Pontieu, Bart

    2018-04-01

    Low-lying loops have been discovered at the solar limb in transition region temperatures by the Interface Region Imaging Spectrograph (IRIS). They do not appear to reach coronal temperatures, and it has been suggested that they are the long-predicted unresolved fine structures (UFS). These loops are dynamic and believed to be visible during both heating and cooling phases. Making use of coordinated observations between IRIS and the Swedish 1-m Solar Telescope, we study how these loops impact the solar chromosphere. We show for the first time that there is indeed a chromospheric signal of these loops, seen mostly in the form of strong Doppler shifts and a conspicuous lack of chromospheric heating. In addition, we find that several instances have a inverse Y-shaped jet just above the loop, suggesting that magnetic reconnection is driving these events. Our observations add several puzzling details to the current knowledge of these newly discovered structures; this new information must be considered in theoretical models. Two movies associated to Fig. 1 are available at http://https://www.aanda.org

  18. Fine flow structures in the transition region small-scale loops

    NASA Astrophysics Data System (ADS)

    Yan, L.; Peter, H.; He, J.; Wei, Y.

    2016-12-01

    The observation and model have suggested that the transition region EUV emission from the quiet sun region is contributed by very small scale loops which have not been resolved. Recently, the observation from IRIS has revealed that this kind of small scale loops. Based on the high resolution spectral and imaging observation from IRIS, much more detail work needs to be done to reveal the fine flow features in this kind of loop to help us understand the loop heating. Here, we present a detail statistical study of the spatial and temporal evolution of Si IV line profiles of small scale loops and report the spectral features: there is a transition from blue (red) wing enhancement dominant to red (blue) wing enhancement dominant along the cross-section of the loop, which is independent of time. This feature appears as the loop appear and disappear as the loop un-visible. This is probably the signature of helical flow along the loop. The result suggests that the brightening of this kind of loop is probably due to the current dissipation heating in the twisted magnetic field flux tube.

  19. X-ray Absorption Fine Structure (XAFS) Studies of Oxide Glasses—A 45-Year Overview

    PubMed Central

    Zanotto, Edgar Dutra

    2018-01-01

    X-ray Absorption Fine Structure (XAFS) spectroscopy has been widely used to characterize the short-range order of glassy materials since the theoretical basis was established 45 years ago. Soon after the technique became accessible, mainly due to the existence of Synchrotron laboratories, a wide range of glassy materials was characterized. Silicate glasses have been the most studied because they are easy to prepare, they have commercial value and are similar to natural glasses, but borate, germanate, phosphate, tellurite and other less frequent oxide glasses have also been studied. In this manuscript, we review reported advances in the structural characterization of oxide-based glasses using this technique. A focus is on structural characterization of transition metal ions, especially Ti, Fe, and Ni, and their role in different properties of synthetic oxide-based glasses, as well as their important function in the formation of natural glasses and magmas, and in nucleation and crystallization. We also give some examples of XAFS applications for structural characterization of glasses submitted to high pressure, glasses used to store radioactive waste and medieval glasses. This updated, comprehensive review will likely serve as a useful guide to clarify the details of the short-range structure of oxide glasses. PMID:29382102

  20. Ethanol fixed brain imaging by phase-contrast X-ray technique

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Thet-Thet-Lwin; Kunii, Takuya; Sirai, Ryota; Ohizumi, Takahito; Maruyama, Hiroko; Hyodo, Kazuyuki; Yoneyama, Akio; Ueda, Kazuhiro

    2013-03-01

    The two-crystal phase-contrast X-ray imaging technique using an X-ray crystal interferometer can depict the fine structures of rat's brain such as cerebral cortex, white matter, and basal ganglia. Image quality and contrast by ethanol fixed brain showed significantly better than those by usually used formalin fixation at 35 keV X-ray energy. Image contrast of cortex by ethanol fixation was more than 3-times higher than that by formalin fixation. Thus, the technique of ethanol fixation might be better suited to image cerebral structural detail at 35 keV X-ray energy.

  1. Hydrogen positions in single nanocrystals revealed by electron diffraction

    NASA Astrophysics Data System (ADS)

    Palatinus, L.; Brázda, P.; Boullay, P.; Perez, O.; Klementová, M.; Petit, S.; Eigner, V.; Zaarour, M.; Mintova, S.

    2017-01-01

    The localization of hydrogen atoms is an essential part of crystal structure analysis, but it is difficult because of their small scattering power. We report the direct localization of hydrogen atoms in nanocrystalline materials, achieved using the recently developed approach of dynamical refinement of precession electron diffraction tomography data. We used this method to locate hydrogen atoms in both an organic (paracetamol) and an inorganic (framework cobalt aluminophosphate) material. The results demonstrate that the technique can reliably reveal fine structural details, including the positions of hydrogen atoms in single crystals with micro- to nanosized dimensions.

  2. Acoustic fine structure may encode biologically relevant information for zebra finches.

    PubMed

    Prior, Nora H; Smith, Edward; Lawson, Shelby; Ball, Gregory F; Dooling, Robert J

    2018-04-18

    The ability to discriminate changes in the fine structure of complex sounds is well developed in birds. However, the precise limit of this discrimination ability and how it is used in the context of natural communication remains unclear. Here we describe natural variability in acoustic fine structure of male and female zebra finch calls. Results from psychoacoustic experiments demonstrate that zebra finches are able to discriminate extremely small differences in fine structure, which are on the order of the variation in acoustic fine structure that is present in their vocal signals. Results from signal analysis methods also suggest that acoustic fine structure may carry information that distinguishes between biologically relevant categories including sex, call type and individual identity. Combined, our results are consistent with the hypothesis that zebra finches can encode biologically relevant information within the fine structure of their calls. This study provides a foundation for our understanding of how acoustic fine structure may be involved in animal communication.

  3. Fine structure of low-energy H(+) in the nightside auroral region

    NASA Technical Reports Server (NTRS)

    Liu, Chao; Perez, J. D.; Moore, T. E.; Chappell, C. R.; Slavin, J. A.

    1994-01-01

    Low-energy H(+) data with 6-s resolution from the retarding ion mass spectrometer instrument on Dynamics Explorer (DE) 1 have been analyzed to reveal the fine structure at middle altitudes of the nightside auroral region. A new method for deconvolving the energy-integrated count rate in the spin plane of the satellite has been used to derive the two-dimensional phase space density. A detailed analysis reveals an alternating conic-beam-conic pattern with the observed conics correlated with large earthward currents in the auroral region. The strong downward current (larger than 1 microamperes per sq m (equivalent value at ionosphere)) provides a free energy source for the perpendicular ion heating, that generates the ion conics with energies from several eV to tens of eV. The bowl shape distribution of the low-energy H(+) is caused by the extended perpendicular heating. The strong correlation between conics and large downward currents suggests that the current-driven electrostatic ion cyclotron wave is an appropriate candidate for the transverse heating mechanism.

  4. The Orion Nebula in the Far-Infrared: High-J CO and fine-structure lines mapped by FIFI-LS/SOFIA

    NASA Astrophysics Data System (ADS)

    Klein, Randolf; Looney, Leslie W.; Cox, Erin; Fischer, Christian; Iserlohe, Christof; Krabbe, Alfred

    2017-03-01

    The Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution. The large maps obtained with FIFI-LS cover the nebula from the BN/KL-object to the bar in several fine structure lines. They allow us to study the conditions of the photon-dominated region and the interface to the molecular cloud with unprecedented detail. Another investigation targeted the molecular gas in the BN/KL region of the Orion Nebula, which is stirred up by a violent explosion about 500 years ago. The explosion drives a wide angled molecular outflow. We present maps of several high-J CO observations, allowing us to analyze the heated molecular gas.

  5. Schaffer Collateral Inputs to CA1 Excitatory and Inhibitory Neurons Follow Different Connectivity Rules.

    PubMed

    Kwon, Osung; Feng, Linqing; Druckmann, Shaul; Kim, Jinhyun

    2018-05-30

    Neural circuits, governed by a complex interplay between excitatory and inhibitory neurons, are the substrate for information processing, and the organization of synaptic connectivity in neural network is an important determinant of circuit function. Here, we analyzed the fine structure of connectivity in hippocampal CA1 excitatory and inhibitory neurons innervated by Schaffer collaterals (SCs) using mGRASP in male mice. Our previous study revealed spatially structured synaptic connectivity between CA3 and CA1 pyramidal cells (PCs). Surprisingly, parvalbumin-positive interneurons (PVs) showed a significantly more random pattern spatial structure. Notably, application of Peters' rule for synapse prediction by random overlap between axons and dendrites enhanced structured connectivity in PCs, but, by contrast, made the connectivity pattern in PVs more random. In addition, PCs in a deep sublayer of striatum pyramidale appeared more highly structured than PCs in superficial layers, and little or no sublayer specificity was found in PVs. Our results show that CA1 excitatory PCs and inhibitory PVs innervated by the same SC inputs follow different connectivity rules. The different organizations of fine scale structured connectivity in hippocampal excitatory and inhibitory neurons provide important insights into the development and functions of neural networks. SIGNIFICANCE STATEMENT Understanding how neural circuits generate behavior is one of the central goals of neuroscience. An important component of this endeavor is the mapping of fine-scale connection patterns that underlie, and help us infer, signal processing in the brain. Here, using our recently developed synapse detection technology (mGRASP and neuTube), we provide detailed profiles of synaptic connectivity in excitatory (CA1 pyramidal) and inhibitory (CA1 parvalbumin-positive) neurons innervated by the same presynaptic inputs (CA3 Schaffer collaterals). Our results reveal that these two types of CA1 neurons follow different connectivity patterns. Our new evidence for differently structured connectivity at a fine scale in hippocampal excitatory and inhibitory neurons provides a better understanding of hippocampal networks and will guide theoretical and experimental studies. Copyright © 2018 the authors 0270-6474/18/385140-13$15.00/0.

  6. Near-edge X-ray absorption spectra for metallic Cu and Mn

    NASA Astrophysics Data System (ADS)

    Greaves, G. N.; Durham, P. J.; Diakun, G.; Quinn, P.

    1981-11-01

    The measurement of X-ray absorption fine structure of metals- both in the extended region (EXAFS) as well as in the near edge region (XANES)-has been widely discussed (see refs 1-6 for Cu and refs 7-9 for Mn). The recent availability of intense X-ray fluxes from storage rings has usually been exploited for EXAFS leaving the XANES often with poorer resolution than earlier work performed on conventional sources (for example, compare the near edge structure for copper in ref. 1 with refs 3 or 6). In addition, whilst the theory and analysis of EXAFS is relatively well-established2,10, a theory for the strong scattering regime near to the absorption edge has only recently been developed11. We report here the first high resolution XANES spectra for Cu and Mn which were performed at the SRS storage ring at Daresbury. Although both metals have close-packed structures consisting of atoms of similar size their local atomic structure is different in detail. Significant differences are found in their respective XANES reflecting the senstivity of this region of the X-ray absorption fine structure to the local atomic structure. Spectra for the two metals have been analysed using the new multiple scattering formalism. This is a real space calculation and unlike a conventional band structure approach it does not require structural periodicity but works from the local arrangement of atoms.

  7. Detailed α -decay study of 180Tl

    NASA Astrophysics Data System (ADS)

    Andel, B.; Andreyev, A. N.; Antalic, S.; Barzakh, A.; Bree, N.; Cocolios, T. E.; Comas, V. F.; Diriken, J.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Franchoo, S.; Ghys, L.; Heredia, J. A.; Huyse, M.; Ivanov, O.; Köster, U.; Liberati, V.; Marsh, B. A.; Nishio, K.; Page, R. D.; Patronis, N.; Seliverstov, M. D.; Tsekhanovich, I.; Van den Bergh, P.; Van De Walle, J.; Van Duppen, P.; Venhart, M.; Vermote, S.; Veselský, M.; Wagemans, C.

    2017-11-01

    A detailed α -decay spectroscopy study of 180Tl has been performed at ISOLDE (CERN). Z -selective ionization by the Resonance Ionization Laser Ion Source (RILIS) coupled to mass separation provided a high-purity beam of 180Tl. Fine-structure α decays to excited levels in the daughter 176Au were identified and an α -decay scheme of 180Tl was constructed based on an analysis of α -γ and α -γ -γ coincidences. Multipolarities of several γ -ray transitions deexciting levels in 176Au were determined. Based on the analysis of reduced α -decay widths, it was found that all α decays are hindered, which signifies a change of configuration between the parent and all daughter states.

  8. Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM).

    PubMed

    Liu, Airong; Zhang, Wei-xian

    2014-09-21

    An angstrom-resolution physical model of nanoscale zero-valent iron (nZVI) is generated with a combination of spherical aberration corrected scanning transmission electron microscopy (Cs-STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss spectroscopy (EELS) on the Fe L-edge. Bright-field (BF), high-angle annular dark-field (HAADF) and secondary electron (SE) imaging of nZVI acquired by a Hitachi HD-2700 STEM show near atomic resolution images and detailed morphological and structural information of nZVI. The STEM-EDS technique confirms that the fresh nZVI comprises of a metallic iron core encapsulated with a thin layer of iron oxides or oxyhydroxides. SAED patterns of the Fe core suggest the polycrystalline structure in the metallic core and amorphous nature of the oxide layer. Furthermore, Fe L-edge of EELS shows varied structural features from the innermost Fe core to the outer oxide shell. A qualitative analysis of the Fe L(2,3) edge fine structures reveals that the shell of nZVI consists of a mixed Fe(II)/Fe(III) phase close to the Fe (0) interface and a predominantly Fe(III) at the outer surface of nZVI.

  9. A New Catalogue of Fine Structures Superimposed on Solar Microwave Bursts

    NASA Astrophysics Data System (ADS)

    Fu, Qi-Jun; Yan, Yi-Hua; Liu, Yu-Ying; Wang, Min; Wang, Shu-Juan

    2004-04-01

    The 2.6--3.8 GHz, 4.5--7.5 GHz, 5.2--7.6 GHz and 0.7--1.5 GHz component spectrometers of Solar Broadband Radio Spectrometer (SBRS) started routine observations, respectively, in late August 1996, August 1999, August 1999, and June 2000. They just managed to catch the coming 23rd solar active maximum. Consequently, a large amount of microwave burst data with high temporal and high spectral resolutionand high sensitivity were obtained. A variety of fine structures (FS) superimposed on microwave bursts have been found. Some of them are known, such as microwave type III bursts, microwave spike emission, but these were observed with more detail; some are new. Reported for the first time here are microwave type U bursts with similar spectral morphology to those in decimetric and metric wavelengths, and with outstanding characteristics such as very short durations (tens to hundreds ms), narrow bandwidths, higher frequency drift rates and higher degrees of polarization. Type N and type M bursts were also observed. Detailed zebra pattern and fiber bursts at the high frequency were found. Drifting pulsation structure (DPS) phenomena closely associated with CME are considered to manifest the initial phase of the CME, and quasi-periodic pulsation with periods of tens ms have been recorded. Microwave ``patches", unlike those reported previously, were observed with very short durations (about 300 ms), very high flux densities (up to 1000 sfu), very high polarization (about 100% RCP), extremely narrow bandwidths (about 5%), and very high spectral indexes. These cannot be interpreted with the gyrosynchrotron process. A superfine structure in the form of microwave FS (ZPS, type U), consisting of microwave millisecond spike emission (MMS), was also found.

  10. A New Generation of Los Alamos Opacity Tables

    DOE PAGES

    Colgan, James Patrick; Kilcrease, David Parker; Magee, Jr., Norman H.; ...

    2016-01-26

    We present a new, publicly available, set of Los Alamos OPLIB opacity tables for the elements hydrogen through zinc. Our tables are computed using the Los Alamos ATOMIC opacity and plasma modeling code, and make use of atomic structure calculations that use fine-structure detail for all the elements considered. Our equation-of-state (EOS) model, known as ChemEOS, is based on the minimization of free energy in a chemical picture and appears to be a reasonable and robust approach to determining atomic state populations over a wide range of temperatures and densities. In this paper we discuss in detail the calculations thatmore » we have performed for the 30 elements considered, and present some comparisons of our monochromatic opacities with measurements and other opacity codes. We also use our new opacity tables in solar modeling calculations and compare and contrast such modeling with previous work.« less

  11. Graphical overview and navigation of electronic health records in a prototyping environment using Google Earth and openEHR archetypes.

    PubMed

    Sundvall, Erik; Nyström, Mikael; Forss, Mattias; Chen, Rong; Petersson, Håkan; Ahlfeldt, Hans

    2007-01-01

    This paper describes selected earlier approaches to graphically relating events to each other and to time; some new combinations are also suggested. These are then combined into a unified prototyping environment for visualization and navigation of electronic health records. Google Earth (GE) is used for handling display and interaction of clinical information stored using openEHR data structures and 'archetypes'. The strength of the approach comes from GE's sophisticated handling of detail levels, from coarse overviews to fine-grained details that has been combined with linear, polar and region-based views of clinical events related to time. The system should be easy to learn since all the visualization styles can use the same navigation. The structured and multifaceted approach to handling time that is possible with archetyped openEHR data lends itself well to visualizing and integration with openEHR components is provided in the environment.

  12. Iterative feature refinement for accurate undersampled MR image reconstruction

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Liu, Jianbo; Liu, Qiegen; Ying, Leslie; Liu, Xin; Zheng, Hairong; Liang, Dong

    2016-05-01

    Accelerating MR scan is of great significance for clinical, research and advanced applications, and one main effort to achieve this is the utilization of compressed sensing (CS) theory. Nevertheless, the existing CSMRI approaches still have limitations such as fine structure loss or high computational complexity. This paper proposes a novel iterative feature refinement (IFR) module for accurate MR image reconstruction from undersampled K-space data. Integrating IFR with CSMRI which is equipped with fixed transforms, we develop an IFR-CS method to restore meaningful structures and details that are originally discarded without introducing too much additional complexity. Specifically, the proposed IFR-CS is realized with three iterative steps, namely sparsity-promoting denoising, feature refinement and Tikhonov regularization. Experimental results on both simulated and in vivo MR datasets have shown that the proposed module has a strong capability to capture image details, and that IFR-CS is comparable and even superior to other state-of-the-art reconstruction approaches.

  13. Quantitative analysis of single-molecule superresolution images

    PubMed Central

    Coltharp, Carla; Yang, Xinxing; Xiao, Jie

    2014-01-01

    This review highlights the quantitative capabilities of single-molecule localization-based superresolution imaging methods. In addition to revealing fine structural details, the molecule coordinate lists generated by these methods provide the critical ability to quantify the number, clustering, and colocalization of molecules with 10 – 50 nm resolution. Here we describe typical workflows and precautions for quantitative analysis of single-molecule superresolution images. These guidelines include potential pitfalls and essential control experiments, allowing critical assessment and interpretation of superresolution images. PMID:25179006

  14. The nature of the Fe–graphene interface at the nanometer level

    DOE PAGES

    Cattelan, M.; Peng, G. W.; Cavaliere, E.; ...

    2014-12-22

    The emerging fields of graphene-based magnetic and spintronic devices require a deep understanding of the interface between graphene and ferromagnetic metals. This paper reports a detailed investigation at the nanometer level of the Fe–graphene interface carried out by angle-resolved photoemission, high-resolution photoemission from core levels, near edge X-ray absorption fine structure, scanning tunnelling microscopy and spin polarized density functional theory calculations. Quasi-free-standing graphene was grown on Pt(111), and the iron film was either deposited atop or intercalated beneath graphene. Here, calculations and experimental results show that iron strongly modifies the graphene band structure and lifts its π band spin degeneracy.

  15. Adjustable lossless image compression based on a natural splitting of an image into drawing, shading, and fine-grained components

    NASA Technical Reports Server (NTRS)

    Novik, Dmitry A.; Tilton, James C.

    1993-01-01

    The compression, or efficient coding, of single band or multispectral still images is becoming an increasingly important topic. While lossy compression approaches can produce reconstructions that are visually close to the original, many scientific and engineering applications require exact (lossless) reconstructions. However, the most popular and efficient lossless compression techniques do not fully exploit the two-dimensional structural links existing in the image data. We describe here a general approach to lossless data compression that effectively exploits two-dimensional structural links of any length. After describing in detail two main variants on this scheme, we discuss experimental results.

  16. Hubble Space Telescope: Fine guidance sensors instrument handbook. Version 2.1

    NASA Technical Reports Server (NTRS)

    Taff, Larry (Editor)

    1990-01-01

    The Fine Guidance Sensors (FGS) are a system of photomultiplier tubes and white light amplitude interferometers (Koester's prism) which are used for the fine guidance of the Hubble Space Telescope (HST). The purpose of the handbook is to provide information to a potential user of the FGS so that he may explore the feasibility of performing various observations. A brief overview is given of how the FGS works, along with an explanation of the instrument in some detail. The procedure for estimating exposure times is explained. The observing modes are described. Some details needed to specify the exposures and observation requirements on the proposal forms are explained. Data reduction procedures are outlined.

  17. Brain regions involved in the retrieval of spatial and episodic details associated with a familiar environment: an fMRI study.

    PubMed

    Hirshhorn, Marnie; Grady, Cheryl; Rosenbaum, R Shayna; Winocur, Gordon; Moscovitch, Morris

    2012-11-01

    Functional magnetic resonance imaging (fMRI) was used to compare brain activity during the retrieval of coarse- and fine-grained spatial details and episodic details associated with a familiar environment. Long-time Toronto residents compared pairs of landmarks based on their absolute geographic locations (requiring either coarse or fine discriminations) or based on previous visits to those landmarks (requiring episodic details). An ROI analysis of the hippocampus showed that all three conditions activated the hippocampus bilaterally. Fine-grained spatial judgments recruited an additional region of the right posterior hippocampus, while episodic judgments recruited an additional region of the right anterior hippocampus, and a more extensive region along the length of the left hippocampus. To examine whole-brain patterns of activity, Partial Least Squares (PLS) analysis was used to identify sets of brain regions whose activity covaried with the three conditions. All three comparison judgments recruited the default mode network including the posterior cingulate/retrosplenial cortex, middle frontal gyrus, hippocampus, and precuneus. Fine-grained spatial judgments also recruited additional regions of the precuneus, parahippocampal cortex and the supramarginal gyrus. Episodic judgments recruited the posterior cingulate and medial frontal lobes as well as the angular gyrus. These results are discussed in terms of their implications for theories of hippocampal function and spatial and episodic memory. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Diffraction-Enhanced Computed Tomographic Imaging of Growing Piglet Joints by Using a Synchrotron Light Source

    PubMed Central

    Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M

    2015-01-01

    The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464

  19. M553 sphere forming experiment: Pure nickel specimen evaluation

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Peters, E. T.

    1973-01-01

    A region or cap of very fine two-dimensional surface growth structure was observed at the top of three of the six pure nickel flight specimens. Such two-dimensional surface growth structures have been observed both on the ground-based specimens and on other surface areas of the flight specimens. However, the fine structures observed on the three flight samples are at least an order of magnitude finer than those previously observed, and resemble similar localized, fine, two-dimensional surface structures observed in both ground and flight specimens for the nickel alloys. The two-dimensional growth areas consist primarily of fine equiaxed grains, specimen SL-2.6, fine dendrites, specimen SL-2.5, or a core of fine equiaxed grains surrounded by a ring of fine dendrites, specimen SL-1.9.

  20. Signatures of non-adiabatic dynamics in the fine-structure state distributions of the OH( X ˜ / A ˜ ) products in the B-band photodissociation of H2O

    NASA Astrophysics Data System (ADS)

    Zhou, Linsen; Xie, Daiqian; Guo, Hua

    2015-03-01

    A detailed quantum mechanical characterization of the photodissociation dynamics of H2O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH( X ˜ / A ˜ ) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH( X ˜ , v = 0) exhibit very different characteristics. The A' states, produced mostly via the B ˜ → X ˜ conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B ˜ → A ˜ Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH( X ˜ ) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B ˜ → X ˜ non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH( A ˜ ) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces.

  1. Signatures of non-adiabatic dynamics in the fine-structure state distributions of the OH(X̃/Ã) products in the B-band photodissociation of H2O.

    PubMed

    Zhou, Linsen; Xie, Daiqian; Guo, Hua

    2015-03-28

    A detailed quantum mechanical characterization of the photodissociation dynamics of H2O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH(X̃/Ã) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH(X̃, v = 0) exhibit very different characteristics. The A' states, produced mostly via the B̃→X̃ conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B̃→Ã Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH(X̃) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B̃→X̃ non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH(Ã) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces.

  2. High accuracy analysis of whistlers measured simultaneously on ground station and on board of the DEMETER satellite

    NASA Astrophysics Data System (ADS)

    Hamar, D.; Ferencz, Cs.; Steinbach, P.; Lichtenberger, J.; Ferencz, O. E.; Parrot, M.

    2009-04-01

    Examining the mechanism and effect of the coupling of the electromagnetic signals from the lower ionosphere into the Earth-ionosphere waveguide (EIWG) can be maintained with the analysis of simultaneous broadband VLF recordings acquired at ground station (Tihany, Hungary) and on LEO orbiting satellite (DEMETER) during nearby passes. Single hop whistlers, selected from concurrent broadband VLF data sets were analyzed with high accuracy applying the matched filtering (MF) technique, developed previously for signal analysis. The accuracy of the frequency-time-amplitude pattern and the resolution of the closely spaced whistler traces were further increased with least-square estimation of the parameters of the output of MF procedure. One result of this analysis is the fine structure of the whistler which can not be recognized in conventional spectrogram. The comparison of the detailed fine structure of the whistlers measured on board and on the ground enabled us to select reliably the corresponding signal pairs. The remarkable difference seen in the fine structure of matching whistler occurrences in the satellite and the ground data series can be addressed e.g. to the effect of the inhomogeneous ionospheric plasma (trans-ionosperic impulse propagation) or the process of wave energy leaking out from the ionized medium into the EIWG. This field needs further investigations. References: Ferencz Cs., Ferencz O. E., Hamar D. and Lichtenberger, J., (2001) Whistler Phenomena, Short Impulse Propagation; Kluwer Academic Publisher, ISBN 0-7923-6995-5, Netherlands Lichtenberger, J., Hamar D. and Ferencz Cs.,(2003) Methods for analyzing the structure and propagation characteristics of whistlers, in: Very Low Frequency (VLF) Phenomena, Narosa Publishing House, New Delhi, p. 88-107.

  3. Understanding Multifunctional Agricultural Land by Using Low Cost and Open Source Solutions to Quantify Ecosystem Function and Services

    NASA Astrophysics Data System (ADS)

    Forsmoo, Joel; Anderson, Karen; Brazier, Richard; Macleod, Kit; Wilkinson, Mark

    2016-04-01

    There is a need to advance our understanding of how the spatial structure of farmed landscapes contributes to the provision of functions and services. Agricultural land is of critical importance in NW Europe, covering large parts of NW Europe's temperate land. Moreover, these agricultural areas are primarily intensively managed, with a focus on maximizing food and fibre production. Such landscapes therefore can provide a wealth of ecosystem goods and services (ESs) including regulation of climate, erosion regulation, hydrology, water quality, nutrient cycling and biodiversity conservation. However, it has been shown they are key sources of sediment, phosphorous, nitrogen and storm runoff contributing to flooding, and therefore it is likely that most agricultural landscapes do not maximize the services or benefits that they might provide. The focus of this study is the spatio-temporal assessment of carbon sequestration (particularly through proxies such as above-ground biomass) and hydrological processes on agricultural land. Understanding and quantifying both of these is important to (a) inform payments for ecosystem services frameworks, (b) evaluate and improve carbon sequestration models, (c) manage the flood risk, (d) downstream water security and (e) water quality. Quantifying both of these ESs is dependent on data describing the fine spatial and temporal structure and function of the landscape. Common practice has been to use remote sensing techniques, e.g. satellites, providing coarse spatial resolution (around 30cm at 20° off nadir) and/or temporal resolution (around 5 days revisit time at <20° off nadir). In this paper we will explain how imaging data from lightweight and easily deployed unmanned aerial vehicles (UAVs) can be used to generate structure from motion (SFM) products describing the very fine detailed (<3 cm pixel resolution) structure of the agricultural environment. We will demonstrate how these products can be delivered using advanced free and open source post-processing alternatives and low cost sensors (digital cameras) and platforms (UAVs). We furthermore draw attention to the influence post-processing solutions have on the accuracy of the final product, the digital surface model (DSM), by using recently acquired data. Specifically, when applied in a structurally complex field site with irregular surface roughness patterns, over a land use gradient, from livestock grazing to agricultural crops. We will demonstrate the added value of using very fine detail data, highlighting important structural properties and patterns overlooked with coarser spatial resolution data.

  4. Microstructural investigation using synchrotron radiation X-ray microtomography reveals taste-masking mechanism of acetaminophen microspheres.

    PubMed

    Guo, Zhen; Yin, Xianzhen; Liu, Congbiao; Wu, Li; Zhu, Weifeng; Shao, Qun; York, Peter; Patterson, Laurence; Zhang, Jiwen

    2016-02-29

    The structure of solid drug delivery systems has considerable influence on drug release behaviors from particles and granules and also impacts other properties relevant to release characteristics such as taste. In this study, lipid-based microspheres of acetaminophen were prepared to mask the undesirable taste of drug and therefore to identify the optimal formulation for drug release. Synchrotron radiation X-ray computed microtomography (SR-μCT) was used to investigate the fine structural architectures of microspheres non-destructively at different sampling times during drug release test, which were simultaneously determined to quantitatively correlate the structural data with drug release behaviors. The results demonstrated that the polymeric formulation component, namely, cationic polymethacrylate (Eudragit E100), was the key factor to mask the bitter taste of acetaminophen by inhibiting immediate drug release thereby reducing the interaction intensity of the bitter material with the oral cavity taste buds. The structure and morphology of the microspheres were found to be influenced by the shape and particle size of the drug, which was also an important factor for taste-masking performance. The quantitative analysis generated detailed structural information which was correlated well with drug release behaviors. Thus, SR-μCT has been proved as a powerful tool to investigate the fine microstructure of particles and provides a new approach in the design of particles for taste masking. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Hiding the weakness: structural robustness using origami design

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Santangelo, Christian; Cohen, Itai

    2015-03-01

    A non-deformable structure is typically associated with infinitely stiff materials that resist distortion. In this work, we designed a structure with a region that will not deform even though it is made of arbitrarily compliant materials. More specifically, we show that a foldable sheet with a circular hole in the middle can be deformed externally with the internal geometry of the hole unaffected. Instead of strengthening the local stiffness, we fine tune the crease patterns so that all the soft modes that can potentially deform the internal geometry are not accessible through strain on the external boundary. The inner structure is thus protected by the topological mechanics, based on the detailed geometry of how the vertices in the foldable sheet are connected. In this way, we isolate the structural robustness from the mechanical properties of the materials, which introduces an extra degree of freedom for structural design.

  6. Acoustic scaling: A re-evaluation of the acoustic model of Manchester Studio 7

    NASA Astrophysics Data System (ADS)

    Walker, R.

    1984-12-01

    The reasons for the reconstruction and re-evaluation of the acoustic scale mode of a large music studio are discussed. The design and construction of the model using mechanical and structural considerations rather than purely acoustic absorption criteria is described and the results obtained are given. The results confirm that structural elements within the studio gave rise to unexpected and unwanted low-frequency acoustic absorption. The results also show that at least for the relatively well understood mechanisms of sound energy absorption physical modelling of the structural and internal components gives an acoustically accurate scale model, within the usual tolerances of acoustic design. The poor reliability of measurements of acoustic absorption coefficients, is well illustrated. The conclusion is reached that such acoustic scale modelling is a valid and, for large scale projects, financially justifiable technique for predicting fundamental acoustic effects. It is not appropriate for the prediction of fine details because such small details are unlikely to be reproduced exactly at a different size without extensive measurements of the material's performance at both scales.

  7. Comparison of fine structures of electron cyclotron harmonic emissions in aurora

    NASA Astrophysics Data System (ADS)

    LaBelle, J.; Dundek, M.

    2015-10-01

    Recent discoveries of higher harmonic cyclotron emissions in aurora occurring under daylight conditions motivated the modification of radio receivers at South Pole Station, Antarctica, to measure fine structure of such emissions during two consecutive austral summers, 2013-2014 and 2014-2015. The experiment recorded 347 emission events over 376 days of observation. The seasonal distribution of these events reveals that successively higher harmonics require higher solar zenith angles for occurrence, as expected if they are generated at the matching condition fuh = Nfce, which for higher N requires higher electron densities which are associated with higher solar zenith angles. This result implies that generation of higher harmonics from lower harmonics via wave-wave processes explains only a minority of events. Detailed examination of 21 cases in which two harmonics occur simultaneously shows that in almost all events the higher harmonic comes from higher altitudes, and only for a small fraction of events is it plausible that the frequencies of the fine structures of the emissions are correlated and in exact integer ratio. This observation puts an upper bound of 15-20% on the fraction of emissions which can be explained by wave-wave interactions involving Z mode waves at fce and, combined with consideration of source altitudes, puts an upper bound of 75% on the fraction explained by coalescence of Z mode waves at 2fce. Taken together, these results suggest that the dominant mechanism for the higher harmonics is independent generation at the matching points fuh = Nfce and that the wave-wave interaction mechanisms explain a relatively small fraction of events.

  8. Comparison of mandibular first molar mesial root canal morphology using micro-computed tomography and clearing technique.

    PubMed

    Kim, Yeun; Perinpanayagam, Hiran; Lee, Jong-Ki; Yoo, Yeon-Jee; Oh, Soram; Gu, Yu; Lee, Seung-Pyo; Chang, Seok Woo; Lee, Woocheol; Baek, Seung-Ho; Zhu, Qiang; Kum, Kee-Yeon

    2015-08-01

    Micro-computed tomography (MCT) with alternative image reformatting techniques shows complex and detailed root canal anatomy. This study compared two-dimensional (2D) and 3D MCT image reformatting with standard tooth clearing for studying mandibular first molar mesial root canal morphology. Extracted human mandibular first molar mesial roots (n=31) were scanned by MCT (Skyscan 1172). 2D thin-slab minimum intensity projection (TS-MinIP) and 3D volume rendered images were constructed. The same teeth were then processed by clearing and staining. For each root, images obtained from clearing, 2D, 3D and combined 2D and 3D techniques were examined independently by four endodontists and categorized according to Vertucci's classification. Fine anatomical structures such as accessory canals, intercanal communications and loops were also identified. Agreement among the four techniques for Vertucci's classification was 45.2% (14/31). The most frequent were Vertucci's type IV and then type II, although many had complex configurations that were non-classifiable. Generally, complex canal systems were more clearly visible in MCT images than with standard clearing and staining. Fine anatomical structures such as intercanal communications, accessory canals and loops were mostly detected with a combination of 2D TS-MinIP and 3D volume-rendering MCT images. Canal configurations and fine anatomic structures were more clearly observed in the combined 2D and 3D MCT images than the clearing technique. The frequency of non-classifiable configurations demonstrated the complexity of mandibular first molar mesial root canal anatomy.

  9. Luminous Herbig-Haro objects from a massive protostar: The unique case of HH 80/81

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo

    2017-08-01

    Herbig-Haro (HH) objects are the optical manifestations of shock waves excited by outflows from young stars. They represent one of the few classes of spatially extended astronomical objects where both structural changes and proper motions can be measured on time scales of years to decades. HH 80/81 is a pair of HH objects in Sagittarius which are the intrinsically most luminous HH objects known. The driving source of HH 80/81 is the embedded star IRAS 18162-2048, which has a luminosity of 20,000 Lsun and excites a compact HII region, suggesting that it is a newborn massive star. HH objects associated with massive young stars are very rare, only a handful of cases are known, but what makes the HH 80/81 source unique among massive protostars is that it produces a finely collimated bipolar radio jet with extremely high velocity and pointing straight to HH 80/81. We propose to observe the HH 80/81 complex with WFC3 and the following four filters: Halpha 6563, Hbeta 4861, [SII] 6717/31, and [OIII] 5007. First epoch HST images were obtained 22 years ago, which now allows a very precise determination of proper motions. Groundbased optical and radio proper motions are not only uncertain, but actually contradict each other, a controversy that will be resolved by HST. The fine resolution of WFC3 allows a study of both fine structural details and structural changes of the shocks. Finally we will use a sophisticated adaptive grid code to interpret the (de-reddened) line ratios across the shocks.

  10. Influences of geomorphology and geology on alpine treeline in the American West - More important than climatic influences?

    USGS Publications Warehouse

    Butler, D.R.; Malanson, G.P.; Walsh, S.J.; Fagre, D.B.

    2007-01-01

    The spatial distribution and pattern of alpine treeline in the American West reflect the overarching influences of geological history, lithology and structure, and geomorphic processes and landforms, and geologic and geomorphic factors—both forms and processes—can control the spatiotemporal response of the ecotone to climate change. These influences occur at spatial scales ranging from the continental scale to fine scale processes and landforms at the slope scale. Past geomorphic influences, particularly Pleistocene glaciation, have also left their impact on treeline, and treelines across the west are still adjusting to post-Pleistocene conditions within Pleistocene-created landforms. Current fine scale processes include solifluction and changes on relict solifluction and digging by animals. These processes should be examined in detail in future studies to facilitate a better understanding of where individual tree seedlings become established as a primary response of the ecotone to climate change.

  11. What can the occult do for you?

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Keel, W. C.

    2017-03-01

    Interstellar dust is still a dominant uncertainty in Astronomy, limiting precision in e.g., cosmological distance estimates and models of how light is re-processed within a galaxy. When a foreground galaxy serendipitously overlaps a more distant one, the latter backlights the dusty structures in the nearer foreground galaxy. Such an overlapping or occulting galaxy pair can be used to measure the distribution of dust in the closest galaxy with great accuracy. The STARSMOG program uses Hubble to map the distribution of dust in foreground galaxies in fine (<100 pc) detail. Integral Field Unit (IFU) observations will map the effective extinction curve, disentangling the role of fine-scale geometry and grain composition on the path of light through a galaxy. The overlapping galaxy technique promises to deliver a clear understanding of the dust in galaxies: geometry, a probability function of dimming as a function of galaxy mass and radius, and its dependence on wavelength.

  12. Coarse-to-fine construction for high-resolution representation in visual working memory.

    PubMed

    Gao, Zaifeng; Ding, Xiaowei; Yang, Tong; Liang, Junying; Shui, Rende

    2013-01-01

    This study explored whether the high-resolution representations created by visual working memory (VWM) are constructed in a coarse-to-fine or all-or-none manner. The coarse-to-fine hypothesis suggests that coarse information precedes detailed information in entering VWM and that its resolution increases along with the processing time of the memory array, whereas the all-or-none hypothesis claims that either both enter into VWM simultaneously, or neither does. We tested the two hypotheses by asking participants to remember two or four complex objects. An ERP component, contralateral delay activity (CDA), was used as the neural marker. CDA is higher for four objects than for two objects when coarse information is primarily extracted; yet, this CDA difference vanishes when detailed information is encoded. Experiment 1 manipulated the comparison difficulty of the task under a 500-ms exposure time to determine a condition in which the detailed information was maintained. No CDA difference was found between two and four objects, even in an easy-comparison condition. Thus, Experiment 2 manipulated the memory array's exposure time under the easy-comparison condition and found a significant CDA difference at 100 ms while replicating Experiment 1's results at 500 ms. In Experiment 3, the 500-ms memory array was blurred to block the detailed information; this manipulation reestablished a significant CDA difference. These findings suggest that the creation of high-resolution representations in VWM is a coarse-to-fine process.

  13. Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission.

    PubMed

    Zuber, Maria T; Smith, David E; Watkins, Michael M; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Melosh, H Jay; Neumann, Gregory A; Phillips, Roger J; Solomon, Sean C; Wieczorek, Mark A; Williams, James G; Goossens, Sander J; Kruizinga, Gerhard; Mazarico, Erwan; Park, Ryan S; Yuan, Dah-Ning

    2013-02-08

    Spacecraft-to-spacecraft tracking observations from the Gravity Recovery and Interior Laboratory (GRAIL) have been used to construct a gravitational field of the Moon to spherical harmonic degree and order 420. The GRAIL field reveals features not previously resolved, including tectonic structures, volcanic landforms, basin rings, crater central peaks, and numerous simple craters. From degrees 80 through 300, over 98% of the gravitational signature is associated with topography, a result that reflects the preservation of crater relief in highly fractured crust. The remaining 2% represents fine details of subsurface structure not previously resolved. GRAIL elucidates the role of impact bombardment in homogenizing the distribution of shallow density anomalies on terrestrial planetary bodies.

  14. Fine structure of heliumlike ions and determination of the fine structure constant.

    PubMed

    Pachucki, Krzysztof; Yerokhin, Vladimir A

    2010-02-19

    We report a calculation of the fine-structure splitting in light heliumlike atoms, which accounts for all quantum electrodynamical effects up to order alpha{5} Ry. For the helium atom, we resolve the previously reported disagreement between theory and experiment and determine the fine-structure constant with an accuracy of 31 ppb. The calculational results are extensively checked by comparison with the experimental data for different nuclear charges and by evaluation of the hydrogenic limit of individual corrections.

  15. Structure and Function of Mammalian Carbohydrate-Lectin Interactions

    NASA Astrophysics Data System (ADS)

    Anderson, Kevin; Evers, David; Rice, Kevin G.

    Over the past three decades the field of glycobiology has expanded beyond a basic understanding of the structure and biosynthesis of glycoprotein, proteoglycans, and glycolipids toward a more detailed picture of how these molecules afford communication through binding to mammalian lectins. Although the number of different mammalian lectin domains appears to be finite and even much smaller than early estimates predicated based on the diversity of glycan structures, nature appears capable of using these in numerous combinations to fine tune specificity. The following provides an overview of the major classes of mammalian lectins and discusses their glycan binding specificity. The review provides a snapshot of the field of glycobiology that continues to grow providing an increasing number of examples of biological processes that rely upon glycan-lectin binding.

  16. Modeling filtration and fouling with a microstructured membrane filter

    NASA Astrophysics Data System (ADS)

    Cummings, Linda; Sanaei, Pejman

    2017-11-01

    Membrane filters find widespread use in diverse applications such as A/C systems and water purification. While the details of the filtration process may vary significantly, the broad challenge of efficient filtration is the same: to achieve finely-controlled separation at low power consumption. The obvious resolution to the challenge would appear simple: use the largest pore size consistent with the separation requirement. However, the membrane characteristics (and hence the filter performance) are far from constant over its lifetime: the particles removed from the feed are deposited within and on the membrane filter, fouling it and degrading the performance over time. The processes by which this occurs are complex, and depend on several factors, including: the internal structure of the membrane and the type of particles in the feed. We present a model for fouling of a simple microstructured membrane, and investigate how the details of the microstructure affect the filtration efficiency. Our idealized membrane consists of bifurcating pores, arranged in a layered structure, so that the number (and size) of pores changes in the depth of the membrane. In particular, we address how the details of the membrane microstructure affect the filter lifetime, and the total throughput. NSF DMS 1615719.

  17. Habitat Complexity in Aquatic Microcosms Affects Processes Driven by Detritivores

    PubMed Central

    Flores, Lorea; Bailey, R. A.; Elosegi, Arturo; Larrañaga, Aitor; Reiss, Julia

    2016-01-01

    Habitat complexity can influence predation rates (e.g. by providing refuge) but other ecosystem processes and species interactions might also be modulated by the properties of habitat structure. Here, we focussed on how complexity of artificial habitat (plastic plants), in microcosms, influenced short-term processes driven by three aquatic detritivores. The effects of habitat complexity on leaf decomposition, production of fine organic matter and pH levels were explored by measuring complexity in three ways: 1. as the presence vs. absence of habitat structure; 2. as the amount of structure (3 or 4.5 g of plastic plants); and 3. as the spatial configuration of structures (measured as fractal dimension). The experiment also addressed potential interactions among the consumers by running all possible species combinations. In the experimental microcosms, habitat complexity influenced how species performed, especially when comparing structure present vs. structure absent. Treatments with structure showed higher fine particulate matter production and lower pH compared to treatments without structures and this was probably due to higher digestion and respiration when structures were present. When we explored the effects of the different complexity levels, we found that the amount of structure added explained more than the fractal dimension of the structures. We give a detailed overview of the experimental design, statistical models and R codes, because our statistical analysis can be applied to other study systems (and disciplines such as restoration ecology). We further make suggestions of how to optimise statistical power when artificially assembling, and analysing, ‘habitat complexity’ by not confounding complexity with the amount of structure added. In summary, this study highlights the importance of habitat complexity for energy flow and the maintenance of ecosystem processes in aquatic ecosystems. PMID:27802267

  18. What Data to Use for Forest Conservation Planning? A Comparison of Coarse Open and Detailed Proprietary Forest Inventory Data in Finland

    PubMed Central

    Lehtomäki, Joona; Tuominen, Sakari; Toivonen, Tuuli; Leinonen, Antti

    2015-01-01

    The boreal region is facing intensifying resource extraction pressure, but the lack of comprehensive biodiversity data makes operative forest conservation planning difficult. Many countries have implemented forest inventory schemes and are making extensive and up-to-date forest databases increasingly available. Some of the more detailed inventory databases, however, remain proprietary and unavailable for conservation planning. Here, we investigate how well different open and proprietary forest inventory data sets suit the purpose of conservation prioritization in Finland. We also explore how much priorities are affected by using the less accurate but open data. First, we construct a set of indices for forest conservation value based on quantitative information commonly found in forest inventories. These include the maturity of the trees, tree species composition, and site fertility. Secondly, using these data and accounting for connectivity between forest types, we investigate the patterns in conservation priority. For prioritization, we use Zonation, a method and software for spatial conservation prioritization. We then validate the prioritizations by comparing them to known areas of high conservation value. We show that the overall priority patterns are relatively consistent across different data sources and analysis options. However, the coarse data cannot be used to accurately identify the high-priority areas as it misses much of the fine-scale variation in forest structures. We conclude that, while inventory data collected for forestry purposes may be useful for forest conservation purposes, it needs to be detailed enough to be able to account for more fine-scaled features of high conservation value. These results underline the importance of making detailed inventory data publicly available. Finally, we discuss how the prioritization methodology we used could be integrated into operative forest management, especially in countries in the boreal zone. PMID:26317227

  19. What Data to Use for Forest Conservation Planning? A Comparison of Coarse Open and Detailed Proprietary Forest Inventory Data in Finland.

    PubMed

    Lehtomäki, Joona; Tuominen, Sakari; Toivonen, Tuuli; Leinonen, Antti

    2015-01-01

    The boreal region is facing intensifying resource extraction pressure, but the lack of comprehensive biodiversity data makes operative forest conservation planning difficult. Many countries have implemented forest inventory schemes and are making extensive and up-to-date forest databases increasingly available. Some of the more detailed inventory databases, however, remain proprietary and unavailable for conservation planning. Here, we investigate how well different open and proprietary forest inventory data sets suit the purpose of conservation prioritization in Finland. We also explore how much priorities are affected by using the less accurate but open data. First, we construct a set of indices for forest conservation value based on quantitative information commonly found in forest inventories. These include the maturity of the trees, tree species composition, and site fertility. Secondly, using these data and accounting for connectivity between forest types, we investigate the patterns in conservation priority. For prioritization, we use Zonation, a method and software for spatial conservation prioritization. We then validate the prioritizations by comparing them to known areas of high conservation value. We show that the overall priority patterns are relatively consistent across different data sources and analysis options. However, the coarse data cannot be used to accurately identify the high-priority areas as it misses much of the fine-scale variation in forest structures. We conclude that, while inventory data collected for forestry purposes may be useful for forest conservation purposes, it needs to be detailed enough to be able to account for more fine-scaled features of high conservation value. These results underline the importance of making detailed inventory data publicly available. Finally, we discuss how the prioritization methodology we used could be integrated into operative forest management, especially in countries in the boreal zone.

  20. Lamb shift and fine structure at n =2 in a hydrogenlike muonic atom with the nuclear spin I =0

    NASA Astrophysics Data System (ADS)

    Korzinin, Evgeny Yu.; Shelyuto, Valery A.; Ivanov, Vladimir G.; Karshenboim, Savely G.

    2018-01-01

    The paper is devoted to the Lamb shift and fine structure in a hydrogenlike muonic atom with a spinless nucleus up to the order α5m with all the recoil corrections included. Enhanced contributions of a higher order are also considered. We present the results on the pure QED contribution and on the finite-nuclear-size contribution, proportional to RN2, with the higher-order corrections included. We also consider the consistency of the pure QED theory and the evaluation of the nuclear-structure effects. Most of the QED theory is the same as the theory for the case of the nuclear spin 1/2. Additional nuclear-spin-dependent terms are considered in detail. The issue of the difference for the theories with a spinor nucleus and a scalar one is discussed for the recoil contributions in the order (Zα ) 4m ,α (Zα ) 4m , and (Zα ) 5m . The numerical results are presented for the muonic atoms with two lightest scalar nuclei, helium-4 and beryllium-10. We compare the theory of those muonic atoms with theory for the muonic hydrogen. Some higher-order finite-nuclear-size corrections for the Lamb shift in muonic hydrogen are revisited.

  1. Sub-Doppler infrared spectroscopy of propargyl radical (H{sub 2}CCCH) in a slit supersonic expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chih-Hsuan; Nesbitt, David J.

    The acetylenic CH stretch mode (ν{sub 1}) of propargyl (H{sub 2}CCCH) radical has been studied at sub-Doppler resolution (∼60 MHz) via infrared laser absorption spectroscopy in a supersonic slit-jet discharge expansion, where low rotational temperatures (T{sub rot} = 13.5(4) K) and lack of spectral congestion permit improved determination of band origin and rotational constants for the excited state. For the lowest J states primarily populated in the slit jet cooled expansion, fine structure due to the unpaired electron spin is resolved completely, which permits accurate analysis of electron spin-rotation interactions in the vibrationally excited states (ε{sub aa} = − 518.1(1.8),more » ε{sub bb} = − 13.0(3), ε{sub cc} = − 1.8(3) MHz). In addition, hyperfine broadening in substantial excess of the sub-Doppler experimental linewidths is observed due to nuclear spin–electron spin contributions at the methylenic (—CH{sub 2}) and acetylenic (—CH) positions, which permits detailed modeling of the fine/hyperfine structure line contours. The results are consistent with a delocalized radical spin density extending over both methylenic and acetylenic C atoms, in excellent agreement with simple resonance structures as well as ab initio theoretical calculations.« less

  2. Fine-scale structure in the far-infrared Milky-Way

    NASA Technical Reports Server (NTRS)

    Waller, William H.; Wall, William F.; Reach, William T.; Varosi, Frank; Ebert, Rick; Laughlin, Gaylin; Boulanger, Francois

    1995-01-01

    This final report summarizes the work performed and which falls into five broad categories: (1) generation of a new data product (mosaics of the far-infrared emission in the Milky Way); (2) acquisition of associated data products at other wavelengths; (3) spatial filtering of the far-infrared mosaics and resulting images of the FIR fine-scale structure; (4) evaluation of the spatially filtered data; (5) characterization of the FIR fine-scale structure in terms of its spatial statistics; and (6) identification of interstellar counterparts to the FIR fine-scale structure.

  3. Effects of interaural time differences in fine structure and envelope on lateral discrimination in electric hearing.

    PubMed

    Majdak, Piotr; Laback, Bernhard; Baumgartner, Wolf-Dieter

    2006-10-01

    Bilateral cochlear implant (CI) listeners currently use stimulation strategies which encode interaural time differences (ITD) in the temporal envelope but which do not transmit ITD in the fine structure, due to the constant phase in the electric pulse train. To determine the utility of encoding ITD in the fine structure, ITD-based lateralization was investigated with four CI listeners and four normal hearing (NH) subjects listening to a simulation of electric stimulation. Lateralization discrimination was tested at different pulse rates for various combinations of independently controlled fine structure ITD and envelope ITD. Results for electric hearing show that the fine structure ITD had the strongest impact on lateralization at lower pulse rates, with significant effects for pulse rates up to 800 pulses per second. At higher pulse rates, lateralization discrimination depended solely on the envelope ITD. The data suggest that bilateral CI listeners benefit from transmitting fine structure ITD at lower pulse rates. However, there were strong interindividual differences: the better performing CI listeners performed comparably to the NH listeners.

  4. Comparison of Fine Structures of Electron Cyclotron Harmonic Emissions in Aurora

    NASA Astrophysics Data System (ADS)

    Labelle, J. W.; Dundek, M.

    2015-12-01

    Recent discoveries of emissions at four and five times the electron cyclotron frequency in aurora occuring under daylit conditions motivated the modification of radio receivers at South Pole Station, Antarctica, to measure fine structure of such emissions during two consecutive austral summers, 2013-4 and 2014-5. The experiment recorded 347 emission events over 376 days of observation. The seasonal distribution of these events revealed that successively higher harmonics require higher solar zenith angles for occurrence, as expected if they are generated at locations where the upper hybrid frequency matches the cyclotron harmonic, which for higher harmonics requires higher electron densities which are associated with higher solar zenith angles. Detailed examination of 21 cases in which two harmonics occur simultaneously showed that only rarely, about ten percent of the time, are the frequencies of the fine structures of the emissions in exact integer ratio (e.g., 3:2, 4:3, or 5:4 depending on which combination of harmonics is observed). In the remaining approximately ninety percent of the cases, the higher harmonic occurred at a lower ratio than the appropriate integer ratio, as expected if the harmonics are generated independently at their separate matching conditions in the bottomside ionosphere, where the upper hybrid frequency increases with altitude while the gyroharmonics decrease with altitude. (The bottomside is the most likely source of the emissions, since from there the mode converted Z-modes have access to ground-level.) Taken together, these results suggest that the dominant mechanism for the higher harmonics is independent generation at locations where the upper hybrid frequency matches each harmonic, i.e., at a separate source altitude for each harmonic. Generation of higher harmonics through coalescence of lower harmonic waves explains at most a small minority of events.

  5. Filtering of high noise breast thermal images using fast non-local means.

    PubMed

    Suganthi, S S; Ramakrishnan, S

    2014-01-01

    Analyses of breast thermograms are still a challenging task primarily due to the limitations such as low contrast, low signal to noise ratio and absence of clear edges. Therefore, always there is a requirement for preprocessing techniques before performing any quantitative analysis. In this work, a noise removal framework using fast non-local means algorithm, method noise and median filter was used to denoise breast thermograms. The images considered were subjected to Anscombe transformation to convert the distribution from Poisson to Gaussian. The pre-denoised image was obtained by subjecting the transformed image to fast non-local means filtering. The method noise which is the difference between the original and pre-denoised image was observed with the noise component merged in few structures and fine detail of the image. The image details presented in the method noise was extracted by smoothing the noise part using the median filter. The retrieved image part was added to the pre-denoised image to obtain the final denoised image. The performance of this technique was compared with that of Wiener and SUSAN filters. The results show that all the filters considered are able to remove the noise component. The performance of the proposed denoising framework is found to be good in preserving detail and removing noise. Further, the method noise is observed with negligible image details. Similarly, denoised image with no noise and smoothed edges are observed using Wiener filter and its method noise is contained with few structures and image details. The performance results of SUSAN filter is found to be blurred denoised image with little noise and also method noise with extensive structure and image details. Hence, it appears that the proposed denoising framework is able to preserve the edge information and generate clear image that could help in enhancing the diagnostic relevance of breast thermograms. In this paper, the introduction, objectives, materials and methods, results and discussion and conclusions are presented in detail.

  6. Convolute laminations and load structures in turbidites as indicators of flow reflections and decelerations against bounding slopes. Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France)

    NASA Astrophysics Data System (ADS)

    Tinterri, R.; Muzzi Magalhaes, P.; Tagliaferri, A.; Cunha, R. S.

    2016-10-01

    This work discusses the significance of particular types of soft-sediment deformations very common within turbidite deposits, namely convolute laminations and load structures. Detailed facies analyses of the foredeep turbidites in the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France) show that these deformational structures tend to increase near morphological obstacles, concomitantly with contained-reflected beds. The lateral and vertical distribution of convolute laminae and load structures, as well as their geometry, has a well-defined depositional logic related to flow decelerations and reflections against bounding slopes. This evidence suggests an interaction between fine-grained sediment and the presence of morphologic relief, and impulsive and cyclic-wave loadings, which are produced by flow impacts or reflected bores and internal waves related to impinging bipartite turbidity currents.

  7. Iridium profile for 10 million years across the Cretaceous-Tertiary boundary at Gubbio (Italy)

    NASA Technical Reports Server (NTRS)

    Alvarez, Walter; Asaro, Frank; Montanari, Alessandro

    1990-01-01

    The iridium anomaly at the Cretaceous-Tertiary (KT) boundary was discovered in the pelagic limestone sequence at Gubbio on the basis of 12 samples analyzed by neutron activation analysis (NAA) and was interpreted as indicating impact of a large extraterrestrial object at exactly the time of the KT mass extinction. Continuing controversy over the shape of the Ir profile at the Gubbio KT boundary and its interpretation called for a more detailed follow-up study. Analysis of a 57-meter-thick, 10-million-year-old part of the Gubbio sequence using improved NAA techniques revealed that there is only one Ir anomaly at the KT boundary, but this anomaly shows an intricate fine structure, the origin of which cannot yet be entirely explained. The KT Ir anomaly peaks in a 1-centimeter-thick clay layer, where the average Ir concentration is 3000 parts per trillion (ppt); this peak is flanked by tails with Ir concentrations of 20 to 80 ppt that rise above a background of 12 to 13 ppt. The fine structure of the tails is probably due in part to lateral reworking, diffusion, burrowing, and perhaps Milankovitch cyclicity.

  8. Fine structure of the landers fault zone: Segmentation and the rupture process

    USGS Publications Warehouse

    Li, Y.-G.; Vidale, J.E.; Aki, K.; Marone, C.J.; Lee, W.H.K.

    1994-01-01

    Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.

  9. Atomic Decay Data for Modeling K Lines of Iron Peak and Light Odd-Z Elements*

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Quinet, P.; Mendoza, C.; Bautista, M. A.; Garcia, J.; Witthoeft, M. C.; Kallman, T. R.

    2012-01-01

    Complete data sets of level energies, transition wavelengths, A-values, radiative and Auger widths and fluorescence yields for K-vacancy levels of the F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn isonuclear sequences have been computed by a Hartree-Fock method that includes relativistic corrections as implemented in Cowan's atomic structure computer suite. The atomic parameters for more than 3 million fine-structure K lines have been determined. Ions with electron number N greater than 9 are treated for the first time, and detailed comparisons with available measurements and theoretical data for ions with N less than or equal to 9 are carried out in order to estimate reliable accuracy ratings.

  10. [The role of temporal fine structure in tone recognition and music perception].

    PubMed

    Zhou, Q; Gu, X; Liu, B

    2017-11-07

    The sound signal can be decomposed into temporal envelope and temporal fine structure information. The temporal envelope information is crucial for speech perception in quiet environment, and the temporal fine structure information plays an important role in speech perception in noise, Mandarin tone recognition and music perception, especially the pitch and melody perception.

  11. Willis Lamb, Jr., the Hydrogen Atom, and the Lamb Shift

    Science.gov Websites

    1955, Lamb won the Nobel Prize in Physics for his discoveries concerning "the fine structure of , May 7 - September 30, 1979 Fine Structure of the Hydrogen Atom, Part I; Part II; Part III; Part IV ; Part V; Part VI (from Physical Review 1950-1953) Microwave Technique for Determining the Fine Structure

  12. Structural, electronic, magnetic, and transport properties of the equiatomic quaternary Heusler alloy CoRhMnGe: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Rani, Deepika; Enamullah, Suresh, K. G.; Yadav, A. K.; Jha, S. N.; Bhattacharyya, D.; Varma, Manoj Raama; Alam, Aftab

    2017-11-01

    In this work, we present structural, electronic, magnetic, mechanical, and transport properties of equiatomic quaternary Heusler alloy, CoRhMnGe, using theoretical and experimental techniques. A detailed structural analysis is performed using x-ray diffraction and extended x-ray absorption fine structure spectroscopy. The alloy is found to crystallize in Y -type structure having space group F 4 ¯3 m (no. 216). The ab initio simulation predicts half-metallic ferromagnetic characteristics leading to large spin polarization. The calculated magnetization is found to be in fair agreement with experiment as well as those predicted by the Slater-Pauling rule, which is a prerequisite for half-metallicity. The magnetic transition temperature (TC) is found to be ˜760 K. Measured electrical resistivity in the temperature range 2-400 K also gives an indication of half-metallic behavior. Effect of hydrostatic pressure on electronic structure, magnetic, and mechanical properties are investigated in detail. The alloy is found to preserve half-metallic characteristics up to 30.27 GPa, beyond which it transits to metallic phase. No magnetic phase transition is found to occur in the whole range of pressure. The system also satisfies the Born-Huang criteria for mechanical stability up to a limited range of pressure. All these properties make the CoRhMnGe alloy promising for spintronics devices.

  13. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun

    2014-01-01

    We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.

  14. Novel arabinan and galactan oligosaccharides from dicotyledonous plants

    NASA Astrophysics Data System (ADS)

    Wefers, Daniel; Tyl, Catrin; Bunzel, Mirko

    2014-11-01

    Arabinans and galactans are neutral pectic side chains and an important part of the cell walls of dicotyledonous plants. To get a detailed insight into their fine structure, various oligosaccharides were isolated from quinoa, potato galactan, and sugar beet pulp after enzymatic treatment. LC-MS2 and one- and two-dimensional NMR spectroscopy were used for unambiguous structural characterization. It was demonstrated that arabinans contain β-(1→3)-linked arabinobiose as a side chain in quinoa seeds, while potato galactan was comprised of β-(1→4)-linked galactopyranoses which are interspersed with α-(1→4)-linked arabinopyranoses. Additionally, an oligosaccharide with two adjacent arabinofuranose units O2-substituted with two ferulic acid monomers was characterized. The isolated oligosaccharides gave further insight into the structures of pectic side chains and may have an impact on plant physiology and dietary fiber fermentation.

  15. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    PubMed Central

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.

    2013-01-01

    Abstract. We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated. PMID:23797986

  16. Reservoir characterization of Mesaverde (Campanian) bedload fluvial meanderbelt sandstones, northwestern Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J.R. Jr.

    1984-04-01

    Reservoir characterization of Mesaverde meanderbelt sandstones is used to determined directional continuity of permeable zones. A 500-m (1600 ft) wide fluvial meanderbelt in the Mesaverde Group is exposed as laterally continuous 3-10-m (10-33-ft) high sandstone cliffs north of Rangely, Colorado. Forty-eight detailed measured sections through 3 point bar complexes oriented at right angles to the long axis of deposition and 1 complex oriented parallel to deposition were prepared. Sections were tied together by detailed sketches delineating and tracing major bounding surfaces such as scours and clay drapes. These complexes contain 3 to 8 multilateral sandstone packages separated by 5-20 cmmore » (2-8 in.) interbedded siltstone and shale beds. Component facies are point bars, crevasse splays, chute bars, and floodplain/overbank deposits. Two types of lateral accretion surfaces are recognized in the point bar facies. Gently dipping lateral accretions containing fining-upward sandstone packages. Large scale trough cross-bedding at the base grades upward into ripples and plane beds. Steeply dipping lateral accretion surfaces enclose beds characterized by climbing ripple cross laminations. Bounding surfaces draped by shale lags can seal vertically stacked point bars from reservoir communication. Scoured boundaries allow communication in some stacked point bars. Crevasse splays showing climbing ripples form tongues of very fine-grained sandstone which flank point bars. Chute channels commonly cut upper point bar surfaces at their downstream end. Chute facies are upward-fining with small scale troughs and common dewatering structures. Siltstones and shales underlie the point bar complexes and completely encase the meanderbelt system. Bounding surfaces at the base of the complexes are erosional and contain large shale rip-up clasts.« less

  17. Source apportionment of PM2.5 light extinction in an urban atmosphere in China.

    PubMed

    Lan, Zijuan; Zhang, Bin; Huang, Xiaofeng; Zhu, Qiao; Yuan, Jinfeng; Zeng, Liwu; Hu, Min; He, Lingyan

    2018-01-01

    Haze in China is primarily caused by high pollution of atmospheric fine particulates (PM 2.5 ). However, the detailed source structures of PM 2.5 light extinction have not been well established, especially for the roles of various organic aerosols, which makes haze management lack specified targets. This study obtained the mass concentrations of the chemical compositions and the light extinction coefficients of fine particles in the winter in Dongguan, Guangdong Province, using high time resolution aerosol observation instruments. We combined the positive matrix factor (PMF) analysis model of organic aerosols and the multiple linear regression method to establish a quantitative relationship model between the main chemical components, in particular the different sources of organic aerosols and the extinction coefficients of fine particles with a high goodness of fit (R 2 =0.953). The results show that the contribution rates of ammonium sulphate, ammonium nitrate, biomass burning organic aerosol (BBOA), secondary organic aerosol (SOA) and black carbon (BC) were 48.1%, 20.7%, 15.0%, 10.6%, and 5.6%, respectively. It can be seen that the contribution of the secondary aerosols is much higher than that of the primary aerosols (79.4% versus 20.6%) and are a major factor in the visibility decline. BBOA is found to have a high visibility destroying potential, with a high mass extinction coefficient, and was the largest contributor during some high pollution periods. A more detailed analysis indicates that the contribution of the enhanced absorption caused by BC mixing state was approximately 37.7% of the total particle absorption and should not be neglected. Copyright © 2017. Published by Elsevier B.V.

  18. Integrating Fine Arts Instruction with At Risk Students.

    ERIC Educational Resources Information Center

    Brieger, Charles; Kendall-Dudley, Lori; Sarmiento, Patty

    This report details a program design for improving fine arts instruction among at-risk students. The participants were in a second and third grade bilingual class and a first-through third-grade learning disabled and behavior disordered class in an at-risk elementary school along with a heterogeneous fourth-grade class in a neighboring Midwest…

  19. Structure of possible long-lived asteroid belts

    NASA Astrophysics Data System (ADS)

    Evans, N. W.; Tabachnik, S. A.

    2002-06-01

    High-resolution simulations are used to map out the detailed structure of two long-lived stable belts of asteroid orbits in the inner Solar system. The Vulcanoid belt extends from 0.09 to 0.20au, though with a gaps at 0.15 and 0.18au corresponding to de-stabilizing mean motion resonances with Mercury and Venus. As collisional evolution proceeds slower at larger heliocentric distances, km-sized or larger Vulcanoids are most likely to be found in the region between 0.16 and 0.18au. The optimum location to search is at geocentric ecliptic longitudes 9°<=|lg|<=10° and latitudes |βg|<1°. Dynamically speaking, the Earth-Mars belt between 1.08 and 1.28au is a stable repository for asteroids on nearly circular orbits. It is interrupted at 1.21au owing to the 3:4 commensurability with the Earth, while secular resonances with Saturn are troublesome beyond 1.17au. These detailed maps of the fine structure of the belts can be used to plan search methodologies. Strategies for detecting members of the belts are discussed, including the use of infrared wide-field imaging with VISTA, and forthcoming European Space Agency satellite missions such as GAIA and BepiColombo.

  20. Excitation of higher lying energy states in a rubidium DPAL

    NASA Astrophysics Data System (ADS)

    Wallerstein, A. J.; Perram, Glen; Rice, Christopher A.

    2018-02-01

    The spontaneous emission in a cw rubidium diode dumped alkali laser (DPAL) system was analyzed. The fluorescence from higher lying states decreases with additional buffer gas. The intermediate states (7S, 6P, 5D) decay more slowly with buffer gas and scale super-linearly with alkali density. A detailed kinetic model has been constructed, where the dominant mechanisms are energy pooling and single photon ionization. It also includes pumping into the non-Lorentzian wings of absorption profiles, fine structure mixing, collisional de-excitation, and Penning ionization. Effects of ionization in a high powered CW rubidium DPAL were assessed.

  1. Acoustic detail guides attention allocation in a selective listening task.

    PubMed

    Wöstmann, Malte; Schröger, Erich; Obleser, Jonas

    2015-05-01

    The flexible allocation of attention enables us to perceive and behave successfully despite irrelevant distractors. How do acoustic challenges influence this allocation of attention, and to what extent is this ability preserved in normally aging listeners? Younger and healthy older participants performed a masked auditory number comparison while EEG was recorded. To vary selective attention demands, we manipulated perceptual separability of spoken digits from a masking talker by varying acoustic detail (temporal fine structure). Listening conditions were adjusted individually to equalize stimulus audibility as well as the overall level of performance across participants. Accuracy increased, and response times decreased with more acoustic detail. The decrease in response times with more acoustic detail was stronger in the group of older participants. The onset of the distracting speech masker triggered a prominent contingent negative variation (CNV) in the EEG. Notably, CNV magnitude decreased parametrically with increasing acoustic detail in both age groups. Within identical levels of acoustic detail, larger CNV magnitude was associated with improved accuracy. Across age groups, neuropsychological markers further linked early CNV magnitude directly to individual attentional capacity. Results demonstrate for the first time that, in a demanding listening task, instantaneous acoustic conditions guide the allocation of attention. Second, such basic neural mechanisms of preparatory attention allocation seem preserved in healthy aging, despite impending sensory decline.

  2. Statistical Fine Structure in the Inhomogeneously Broadened Electronic Origin of Pentacene in p-Terphenyl.

    DTIC Science & Technology

    1988-01-29

    Electronic Origin of Pentacene in p-Terphenyl by T. P. Carter, M. Manavi, and W. E. Moerner Prepared for Publication inDTIC Journal of Chemical Physics...Classification) Statistical Fine Structure in the Inhomogeneously Broadened Electronic Origin of Pentacene in p-Terphenyl 12. PERSONAL AUTHOR(S) T. P...of pentacene in p-terphenyl using laser FM spectroscopy. Statistical fine structure is time-independent structure on the inhomogeneous line caused by

  3. Statistical Fine Structure of Inhomogeneously Broadened Absorption Lines.

    DTIC Science & Technology

    1987-07-31

    inhomogeneously broadened optical absorption of pentacene n p-terphenyl at liquid helium temperatures... SFS is the actual frequency- ependent, time...statistical fine structure (SFS) in the inhomogeneously broadened optical absorption of pentacene in p-terphenyl at liquid helium temperatures. SFS is the...quite difficult . -2- We have observed for the first time statistical fine structure in the inhomogeneously broadened optical absorption of pentacene

  4. Tephra Sedimentation from a Short-term Wind-affected Volcanic Plume of the 8 October 2016 Aso Nakadake Eruption, Japan

    NASA Astrophysics Data System (ADS)

    Tsuji, T.; Nishizaka, N.; Onishi, K.

    2017-12-01

    Sedimentation processes during explosive volcanic eruptions can be constrained based on detailed analysis of grain-size variation of tephra deposits. Especially, an accurate description of the amount of fine particles has also significant implications for the assessment of specific tephra hazards. Grain size studies for single short-term eruption has advantage to contribute understanding the sedimentation processes because it is simple compared to long-lasting eruption. The 2016 Aso Nakadake eruption, Japan represents an ideal for the study of short-term eruptions thanks to an accurate investigation. Then, we investigate the grain size variation with distance from the vent and sedimentological features of the deposit to discuss the sedimentation processes of the tephra fragments. The eruption provided pyroclastic flow deposit and fallout tephra which distributed NE to ENE direction from the vent. The deposits between 4 and 20 km from vent consist of fine-coated lapilli to coarse ash, ash pellet and mud droplet in ascending degree. The samples are lapilli-bearing within 20 km from vent and those outside of 20 km mainly consist of ash particles. Detailed analyses of individual samples highlight a rapid decay of maximum and mean grain size for the deposit from proximal to distal. The decay trend of maximum grain-size is approximated by three segments of exponential curves with two breaks-in-slope at 10 and 40 km from vent. Most of the sampled deposits are characterized by bimodal grain-size distributions, with the modes of the coarse subpopulation decreasing with distance from vent and those of the fine subpopulation being mostly stable. The fine subpopulation has been interpreted as being mostly associated with size-selective sedimentation processes (e.g., particle aggregation) confirmed by the existence of fine-coated particles, ash pellet and mud droplet. As the fine-coated particles generally have a higher terminal velocity than the individual constituent particles, those could be related with the rapid decrease of maximum grain-size with distance from vent at proximal area. Further detail grain-size analyses and theoretical studies can be contributed to understand the effect of fine ash aggregation on sedimentation processes quantitatively.

  5. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments

    NASA Astrophysics Data System (ADS)

    Stow, Dorrik A. V.; Shanmugam, Ganapathy

    1980-01-01

    A comparative study of the sequence of sedimentary structures in ancient and modern fine-grained turbidites is made in three contrasting areas. They are (1) Holocene and Pleistocene deep-sea muds of the Nova Scotian Slope and Rise, (2) Middle Ordovician Sevier Shale of the Valley and Ridge Province of the Southern Appalachians, and (3) Cambro-Ordovician Halifax Slate of the Meguma Group in Nova Scotia. A standard sequence of structures is proposed for fine-grained turbidites. The complete sequence has nine sub-divisions that are here termed T 0 to T 8. "The lower subdivision (T 0) comprises a silt lamina which has a sharp, scoured and load-cast base, internal parallel-lamination and cross-lamination, and a sharp current-lineated or wavy surface with 'fading-ripples' (= Type C etc. …)." (= Type C ripple-drift cross-lamination, Jopling and Walker, 1968). The overlying sequence shows textural and compositional grading through alternating silt and mud laminae. A convolute-laminated sub-division (T 1) is overlain by low-amplitude climbing ripples (T 2), thin regular laminae (T 3), thin indistinct laminae (T 4), and thin wipsy or convolute laminae (T 5). The topmost three divisions, graded mud (T 6), ungraded mud (T 7) and bioturbated mud (T 8), do not have silt laminae but rare patchy silt lenses and silt pseudonodules and a thin zone of micro-burrowing near the upper surface. The proposed sequence is analogous to the Bouma (1962) structural scheme for sandy turbidites and is approximately equivalent to Bouma's (C)DE divisions. The repetition of partial sequences characterizes different parts of the slope/base-of-slope/basin plain environment, and represents deposition from different stages of evolution of a large, muddy, turbidity flow. Microstructural detail and sequence are well preserved in ancient and even slightly metamorphosed sediments. Their recognition is important for determining depositional processes and for palaeoenvironmental interpretation.

  6. The fine scale genetic structure of the British population

    PubMed Central

    Davison, Dan; Boumertit, Abdelhamid; Day, Tammy; Hutnik, Katarzyna; Royrvik, Ellen C; Cunliffe, Barry; Lawson, Daniel J; Falush, Daniel; Freeman, Colin; Pirinen, Matti; Myers, Simon; Robinson, Mark; Donnelly, Peter; Bodmer, Walter

    2015-01-01

    Summary Fine-scale genetic variation between human populations is interesting as a signature of historical demographic events and because of its potential for confounding disease studies. We use haplotype-based statistical methods to analyse genome-wide SNP data from a carefully chosen geographically diverse sample of 2,039 individuals from the United Kingdom (UK). This reveals a rich and detailed pattern of genetic differentiation with remarkable concordance between genetic clusters and geography. The regional genetic differentiation and differing patterns of shared ancestry with 6,209 individuals from across Europe carry clear signals of historical demographic events. We estimate the genetic contribution to SE England from Anglo-Saxon migrations to be under half, identify the regions not carrying genetic material from these migrations, suggest significant pre-Roman but post-Mesolithic movement into SE England from the Continent, and show that in non-Saxon parts of the UK there exist genetically differentiated subgroups rather than a general “Celtic” population. PMID:25788095

  7. Atomic Fine-Structure Diagnostic and Cooling Transitions for Far Infrared and Submillimeter Observations

    NASA Astrophysics Data System (ADS)

    Balance, Connor

    Some of the strongest emission lines observed from a variety of astronomical sources originate from transitions between fine-structure levels in the ground term of neutral atoms and lowly-charged ions. These fine-structure levels are populated due to collisions with -, H+, H, He, and/or H2 depending on the temperature and ionization fraction of e the environment. As fine-structure excitation measurements are rare, modeling applications depend on theoretically determined rate coefficients. However, for many ions electron collision studies have not been performed for a decade or more, while over that time period the theoretical/computational methodology has significantly advanced. For heavy-particle collisions, very few systems have been studied. As a result, most models rely on estimates or on low-quality collisional data for fine-structure excitation. To significantly advance the state of fine-structure data for astrophysical models, we propose a collaborative effort in electron collisions, heavy-particle collisions, and quantum chemistry. Using the R-matrix method, fine-structure excitation due to electron collisions will be investigated for C, O, Ne^+, Ne^2+, Ar^+, Ar^2+, Fe, Fe^+, and Fe^2+. Fine-structure excitation due to heavy-particle collisions will be studied with a fully quantum molecular-orbital approach using potential energy surfaces computed with a multireference configuration-interaction method. The systems to be studied include: C/H^+, C/H2, O/H^+, O/H2, Ne^+/H, Ne^+/H2, Ne^2+/H, Ne^2+/H2, Fe/H^+, Fe^+/H, and Fe^2+/H. 2D rigid-rotor surfaces will be constructed for H2 collisions, internuclear distance dependent spin-orbit coupling will be computed in some cases, and all rate coefficients will be obtained for the temperature range 10-2000 K. The availability the proposed fine-structure excitation data will lead to deeper examination and understanding of the properties of many astrophysical environments, including young stellar objects, protoplanetary disks, planetary nebulae, photodissociation regions, active galactic nuclei, and x-ray dominated regions, hence elevating the scientific return from current (SOFIA, Spitzer, Herschel, HST) and upcoming (JWST) NASA IR/Submm astrophysics missions, as well as from ground-based telescopes.

  8. Electronic structure study of Ce1-xAxO2 (A = Zr & Hf) nanoparticles: NEXAFS and EXAFS investigations.

    PubMed

    Sharma, Aditya; Varshney, Mayora; Shin, Hyun-Joon; Park, Yong Jun; Kim, Min-Gyu; Ha, Tae-Kyun; Chae, Keun Hwa; Gautam, Sanjeev

    2014-10-07

    Single phase nanoparticles (NPs) of CeO2, Ce0.5Zr0.5O2, Ce0.5Hf0.5O2 and Ce0.5Hf0.25Zr0.25O2 were successfully synthesized by co-precipitation method at constant pH and temperature. The X-ray diffraction results revealed that the additive atoms did not segregate to form secondary phases but led to grain size variation in the NPs. The 10 Dq values in the near edge X-ray absorption fine structure (NEXAFS) spectra at the O K-edge did not vary in the same way as the average grain size was changed for the doped CeO2 NPs. The deconvolution of Ce M5-edge and detailed analysis of O K pre-edge peak have shown the higher Ce(+3)/(Ce(+3) + Ce(+4)) ratio in the Zr- and Hf-doped samples. The local atomic structure around the Ce, Zr and Hf atoms was investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy at Ce K-edge, Zr K-edge and Hf L3-edge, respectively, and the EXAFS data were fitted with the theoretical calculations. The 4f occupancy, Ce(+3)/(Ce(+3) + Ce(+4)) ratio of Ce ions, coordination number of Ce and Ce-Ce/Ce-O bond distances were sensitive to the additive atoms but not explicitly changed according to the grain size variation in the NPs.

  9. Relativistic opacities for astrophysical applications

    DOE PAGES

    Fontes, Christopher John; Fryer, Christopher Lee; Hungerford, Aimee L.; ...

    2015-06-29

    Here, we report on the use of the Los Alamos suite of relativistic atomic physics codes to generate radiative opacities for the modeling of astrophysically relevant plasmas under local thermodynamic equilibrium (LTE) conditions. The atomic structure calculations are carried out in fine-structure detail, including full configuration interaction. Three example applications are considered: iron opacities at conditions relevant to the base of the solar convection zone, nickel opacities for the modeling of stellar envelopes, and samarium opacities for the modeling of light curves produced by neutron star mergers. In the first two examples, comparisons are made between opacities that are generatedmore » with the fully and semi-relativistic capabilities in the Los Alamos suite of codes. As expected for these highly charged, iron-peak ions, the two methods produce reasonably similar results, providing confidence that the numerical methods have been correctly implemented. However, discrepancies greater than 10% are observed for nickel and investigated in detail. In the final application, the relativistic capability is used in a preliminary investigation of the complicated absorption spectrum associated with cold lanthanide elements.« less

  10. GLASS: detailed structure of high redshift galaxies from HST grism spectroscopy

    NASA Astrophysics Data System (ADS)

    Jones, Tucker; Treu, Tommaso; Schmidt, Kasper B.; Wang, Xin; Brammer, Gabriel; Glass

    2015-01-01

    The Grism Lens-Amplified Survey from Space (GLASS) is obtaining slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. The GLASS survey will have gathered more than ten thousand spectra upon completion in early 2015. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and Hα at z=1-3 as well as Lyα at z>6. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity (~1e-18 erg/s/cm2 RMS) with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. This enables precise measurements of metallicity gradients, the distribution of star formation, and other details of the physical structure of high redshift galaxies with masses as low as ~107 M⊙ at z=2. I will discuss measurements of these physical properties and implications for galaxy evolution based on the largest sample available to date with such high resolution at z>1.

  11. Genes determining the severity of cerebral palsy: the role of single nucleotide polymorphisms on the amount and structure of apolipoprotein E

    PubMed Central

    Lien, Espen; Andersen, Guro; Bao, Yongde; Gordish-Dressman, Heather; Skranes, Jon S.; Blackman, James A.; Vik, Torstein

    2015-01-01

    Aim ApolipoproteinE (apoE) influences repair and other processes in the brain and the apoE4 variant is a risk factor for Alzheimer's disease and for prolonged recovery following traumatic brain injury. We previously reported that specific single nucleotide polymorphisms in the APOE or TOMM40 genes affecting the structure and production of apoE were associated with epilepsy, more impaired hand function and gastrostomy tube feeding in children with cerebral palsy (CP). This study explored how various combinations of the same polymorphisms may affect these clinical manifestations. Methods Successful DNA analyses of APOE and TOMM40 were carried out on 227 children. The CP Register of Norway provided details of gross and fine motor function, epilepsy and gastrostomy tube feeding. Possible associations between these clinical manifestations and various combinations of the APOEε2, ε3 or ε4 alleles and of the rs59007384 polymorphism in the TOMM40 gene were explored. Results Epilepsy, impaired fine motor function and gastrostomy tube feeding were less common in children carrying the combination of rs59007384 GG and APOEε2 or ε3 than in children with other combinations. Conclusion Our findings suggest that specific combinations of genes influence the structure and production of apoE differently and affect the clinical manifestations of CP. PMID:25703783

  12. The nature of hematite depression with corn starch in the reverse flotation of iron ore.

    PubMed

    Shrimali, Kaustubh; Atluri, Venkata; Wang, Yan; Bacchuwar, Sanket; Wang, Xuming; Miller, Jan D

    2018-08-15

    The function of corn starch and the significance of the order of addition of corn starch and mono ether amine in the reverse flotation of iron ore has been investigated. Understanding hematite depression with starch and the corresponding hydrophilic state involves consideration of adsorption with amine as well as flocculation of fine hematite. Captive bubble contact angle and micro-flotation experiments indicated that amine has an affinity towards both hematite and quartz, and that the role of starch is to hinder the adsorption of amine at the hematite surface so that flotation is inhibited. Micro-flotation results confirmed that quartz does not have affinity towards starch at pH 10.5. In addition to competitive adsorption, flocculation of fine hematite occurs and images from high resolution X-ray computed tomography (HRXCT) and cryo-SEM reveal further detail regarding floc structure. These results provide substantial evidence that the fine hematite particles are flocculated in the presence of corn starch, and flocculation is dependent on the particle size of hematite, with greater flocculation for finer particles. Thus, starch is playing a dual role in the reverse flotation of iron ore, acting as a depressant by hindering amine adsorption at the hematite surface in order to maintain the hydrophilic surface state of hematite, and acting as a flocculant to aggregate fine hematite particles, which if not flocculated, could diminish the flotation separation efficiency by being transported to the froth phase during reverse flotation. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3

    EPA Science Inventory

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM2.5) generated by commercial aviation engines. The exhaust plumes of nine engine models were sampled during the three test campaigns of the Aircraft Particle Emissions eXperiment (AP...

  14. Hydrothermal recrystallization of transition metal nitroprussides. Formation of the most stable phases

    NASA Astrophysics Data System (ADS)

    Echevarría, F.; Reguera, L.; González M, M.; Galicia, J.; Ávila, M.; Reguera, E.

    2018-02-01

    Hydrothermal recrystallization appears to be an appropriate treatment to explore the structural diversity of porous coordination polymers. In this contribution, such a post-synthesis treatment is applied to divalent transition metal nitroprussides, T[Fe(CN)5NO]•xH2O with T =Mn, Fe, Co, Ni, Cu, Zn, Cd. This family of compounds forms an interesting series of nanoporous coordination polymers with a wide structural diversity, related to the synthesis route used and the solid hydration degree (x). The effect of a hydrothermal recrystallization of previously prepared fine powders using the precipitation method, on their crystal structure and related properties is herein discussed. In this series of coordination polymers, for Fe, Co, Ni the precipitated powders are obtained as cubic phase, with a high porosity related to presence of systematic vacancies for building unit [Fe(CN)5NO]. For Fe and Co a structural transition, from cubic to orthorhombic, was observed, which is associated to formation of a most compact structure. The crystal structure for the new orthorhombic phases was refined from the collected powder HR-XRD patterns. For Ni, the cubic phase remains stable even for large heating time, which is ascribed to the high polarizing power of this metal. The high porosity for the cubic phase allows an easy accommodation for the local deformations around the Ni atom coordination sphere. The structural information from XRD was complemented with CO2 and H2 adsorption and TG data, IR and UV-vis spectra, and magnetic measurements. The magnetic data, through the presence of spin-orbit coupling for Fe and Co in the two phases, provide fine details on the coordination environment for the metal linked at the N ends of the CN group.

  15. Inference of Population Structure using Dense Haplotype Data

    PubMed Central

    Lawson, Daniel John; Hellenthal, Garrett

    2012-01-01

    The advent of genome-wide dense variation data provides an opportunity to investigate ancestry in unprecedented detail, but presents new statistical challenges. We propose a novel inference framework that aims to efficiently capture information on population structure provided by patterns of haplotype similarity. Each individual in a sample is considered in turn as a recipient, whose chromosomes are reconstructed using chunks of DNA donated by the other individuals. Results of this “chromosome painting” can be summarized as a “coancestry matrix,” which directly reveals key information about ancestral relationships among individuals. If markers are viewed as independent, we show that this matrix almost completely captures the information used by both standard Principal Components Analysis (PCA) and model-based approaches such as STRUCTURE in a unified manner. Furthermore, when markers are in linkage disequilibrium, the matrix combines information across successive markers to increase the ability to discern fine-scale population structure using PCA. In parallel, we have developed an efficient model-based approach to identify discrete populations using this matrix, which offers advantages over PCA in terms of interpretability and over existing clustering algorithms in terms of speed, number of separable populations, and sensitivity to subtle population structure. We analyse Human Genome Diversity Panel data for 938 individuals and 641,000 markers, and we identify 226 populations reflecting differences on continental, regional, local, and family scales. We present multiple lines of evidence that, while many methods capture similar information among strongly differentiated groups, more subtle population structure in human populations is consistently present at a much finer level than currently available geographic labels and is only captured by the haplotype-based approach. The software used for this article, ChromoPainter and fineSTRUCTURE, is available from http://www.paintmychromosomes.com/. PMID:22291602

  16. Determination of the fine structure constant using helium fine structure.

    PubMed

    Smiciklas, Marc; Shiner, David

    2010-09-17

    We measure 31,908,131.25(30) kHz for the 2(3)}P J=0 to 2 fine structure interval in helium. The difference between this and theory to order mα7 (20 Hz numerical uncertainty) implies 0.22(30) kHz for uncalculated terms. The measurement is performed by using atomic beam and electro-optic laser techniques. Various checks include a 3He 2{3}S hyperfine measurement. We can obtain an independent value for the fine structure constant α with a 5 ppb experimental uncertainty. However, dominant mα8 terms (potentially 1.2 kHz) limit the overall uncertainty to a less competitive 20 ppb in α.

  17. g-Factor of heavy ions: a new access to the fine structure constant.

    PubMed

    Shabaev, V M; Glazov, D A; Oreshkina, N S; Volotka, A V; Plunien, G; Kluge, H-J; Quint, W

    2006-06-30

    A possibility for a determination of the fine structure constant in experiments on the bound-electron g-factor is examined. It is found that studying a specific difference of the g-factors of B- and H-like ions of the same spinless isotope in the Pb region to the currently accessible experimental accuracy of 7 x 10(-10) would lead to a determination of the fine structure constant to an accuracy which is better than that of the currently accepted value. Further improvements of the experimental and theoretical accuracy could provide a value of the fine structure constant which is several times more precise than the currently accepted one.

  18. XAFS SPECTROSCOPY ANALYSIS OF SELECTED HAP ELEMENTS IN FINE PM DERIVED FROM COAL COMBUSTION

    EPA Science Inventory

    X-ray absorption fine structure (XAFS) spectroscopy has been used to investigate the valence states and molecular structures of sulfur (S), chromium (Cr), arsenic (As), and zinc (Zn) in fine particulate matter (PM) separated from coal flyash produced in a realistic combustion sys...

  19. Using seismic reflection data to reveal high-resolution structure and pathway of the upper Western Boundary Undercurrent core at Eirik Drift

    NASA Astrophysics Data System (ADS)

    Müller-Michaelis, Antje; Uenzelmann-Neben, Gabriele

    2015-12-01

    The method of seismic oceanography was applied to identify fine structure and pathways of the Western Boundary Undercurrent (WBUC) at Eirik Drift, 200 km south of Greenland. Three high-velocity cores of the WBUC were distinguished: a deep core in depths >2600 m which carries Denmark Strait Overflow Water, an upper core in depths between ~1900 and 3000 m transporting Iceland-Scotland Overflow Water, and a split-off of this upper core, which crosses the main crest of Eirik Drift at depths between ~1900 and 2400 m. For the upper WBUC core a detailed analysis of the structure was conducted. The WBUC core has as a domed structure, which changes in style, width and height above seafloor along the lines of the changing topography. We proved not only the influence of the topography on pathway and structure of the WBUC core but also that this information cannot be gained by measuring the overflow waters with discrete CTD stations.

  20. Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals.

    PubMed

    Johnson, Justin C; Gerth, Kathrine A; Song, Qing; Murphy, James E; Nozik, Arthur J; Scholes, Gregory D

    2008-05-01

    The rates of fine structure relaxation in PbS, PbSe, and PbTe nanocrystals were measured on a femtosecond time scale as a function of temperature with no applied magnetic field by cross-polarized transient grating spectroscopy (CPTG) and circularly polarized pump-probe spectroscopy. The relaxation rates among exciton fine structure states follow trends with nanocrystal composition and size that are consistent with the expected influence of material dependent spin-orbit coupling, confinement enhanced electron-hole exchange interaction, and splitting between L valleys that are degenerate in the bulk. The size dependence of the fine structure relaxation rate is considerably different from what is observed for small CdSe nanocrystals, which appears to result from the unique material properties of the highly confined lead chalcogenide quantum dots. Modeling and qualitative considerations lead to conclusions about the fine structure of the lowest exciton absorption band, which has a potentially significant bearing on photophysical processes that make these materials attractive for practical purposes.

  1. Polygamy and an absence of fine-scale structure in Dendroctonus ponderosae (Hopk.) (Coleoptera: Curcilionidae) confirmed using molecular markers

    PubMed Central

    Janes, J K; Roe, A D; Rice, A V; Gorrell, J C; Coltman, D W; Langor, D W; Sperling, F A H

    2016-01-01

    An understanding of mating systems and fine-scale spatial genetic structure is required to effectively manage forest pest species such as Dendroctonus ponderosae (mountain pine beetle). Here we used genome-wide single-nucleotide polymorphisms to assess the fine-scale genetic structure and mating system of D. ponderosae collected from a single stand in Alberta, Canada. Fine-scale spatial genetic structure was absent within the stand and the majority of genetic variation was best explained at the individual level. Relatedness estimates support previous reports of pre-emergence mating. Parentage assignment tests indicate that a polygamous mating system better explains the relationships among individuals within a gallery than the previously reported female monogamous/male polygynous system. Furthermore, there is some evidence to suggest that females may exploit the galleries of other females, at least under epidemic conditions. Our results suggest that current management models are likely to be effective across large geographic areas based on the absence of fine-scale genetic structure. PMID:26286666

  2. Unresolved fine-scale structure in solar coronal loop-tops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scullion, E.; Van der Voort, L. Rouppe; Wedemeyer, S.

    2014-12-10

    New and advanced space-based observing facilities continue to lower the resolution limit and detect solar coronal loops in greater detail. We continue to discover even finer substructures within coronal loop cross-sections, in order to understand the nature of the solar corona. Here, we push this lower limit further to search for the finest coronal loop substructures, through taking advantage of the resolving power of the Swedish 1 m Solar Telescope/CRisp Imaging Spectro-Polarimeter (CRISP), together with co-observations from the Solar Dynamics Observatory/Atmospheric Image Assembly (AIA). High-resolution imaging of the chromospheric Hα 656.28 nm spectral line core and wings can, under certainmore » circumstances, allow one to deduce the topology of the local magnetic environment of the solar atmosphere where its observed. Here, we study post-flare coronal loops, which become filled with evaporated chromosphere that rapidly condenses into chromospheric clumps of plasma (detectable in Hα) known as a coronal rain, to investigate their fine-scale structure. We identify, through analysis of three data sets, large-scale catastrophic cooling in coronal loop-tops and the existence of multi-thermal, multi-stranded substructures. Many cool strands even extend fully intact from loop-top to footpoint. We discover that coronal loop fine-scale strands can appear bunched with as many as eight parallel strands within an AIA coronal loop cross-section. The strand number density versus cross-sectional width distribution, as detected by CRISP within AIA-defined coronal loops, most likely peaks at well below 100 km, and currently, 69% of the substructure strands are statistically unresolved in AIA coronal loops.« less

  3. Chameleonic dilaton, nonequivalent frames, and the cosmological constant problem in quantum string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanzi, Andrea

    2010-08-15

    The chameleonic behavior of the string theory dilaton is suggested. Some of the possible consequences of the chameleonic string dilaton are analyzed in detail. In particular, (1) we suggest a new stringy solution to the cosmological constant problem and (2) we point out the nonequivalence of different conformal frames at the quantum level. In order to obtain these results, we start taking into account the (strong coupling) string loop expansion in the string frame (S-frame), therefore the so-called form factors are present in the effective action. The correct dark energy scale is recovered in the Einstein frame (E-frame) without unnaturalmore » fine-tunings and this result is robust against all quantum corrections, granted that we assume a proper structure of the S-frame form factors in the strong coupling regime. At this stage, the possibility still exists that a certain amount of fine-tuning may be required to satisfy some phenomenological constraints. Moreover in the E-frame, in our proposal, all the interactions are switched off on cosmological length scales (i.e., the theory is IR-free), while higher derivative gravitational terms might be present locally (on short distances) and it remains to be seen whether these facts clash with phenomenology. A detailed phenomenological analysis is definitely necessary to clarify these points.« less

  4. Fusion of PET and MRI for Hybrid Imaging

    NASA Astrophysics Data System (ADS)

    Cho, Zang-Hee; Son, Young-Don; Kim, Young-Bo; Yoo, Seung-Schik

    Recently, the development of the fusion PET-MRI system has been actively studied to meet the increasing demand for integrated molecular and anatomical imaging. MRI can provide detailed anatomical information on the brain, such as the locations of gray and white matter, blood vessels, axonal tracts with high resolution, while PET can measure molecular and genetic information, such as glucose metabolism, neurotransmitter-neuroreceptor binding and affinity, protein-protein interactions, and gene trafficking among biological tissues. State-of-the-art MRI systems, such as the 7.0 T whole-body MRI, now can visualize super-fine structures including neuronal bundles in the pons, fine blood vessels (such as lenticulostriate arteries) without invasive contrast agents, in vivo hippocampal substructures, and substantia nigra with excellent image contrast. High-resolution PET, known as High-Resolution Research Tomograph (HRRT), is a brain-dedicated system capable of imaging minute changes of chemicals, such as neurotransmitters and -receptors, with high spatial resolution and sensitivity. The synergistic power of the two, i.e., ultra high-resolution anatomical information offered by a 7.0 T MRI system combined with the high-sensitivity molecular information offered by HRRT-PET, will significantly elevate the level of our current understanding of the human brain, one of the most delicate, complex, and mysterious biological organs. This chapter introduces MRI, PET, and PET-MRI fusion system, and its algorithms are discussed in detail.

  5. Juan Valverde de Hamusco's unauthorized reproduction of a brain dissection by Andreas Vesalius.

    PubMed

    Lanska, Douglas J; Lanska, John R

    2013-02-26

    The objective of the present work is to examine images of the brain dissection by Flemish-born anatomist Andreas Vesalius (1514-1564) as originally represented in the Fabrica (1543), and later copied without Vesalius' permission by Spanish anatomist Juan Valverde de Hamusco (c1525-c1587) in Historia de la composicion del cuerpo humano (1556). Illustrations of the brain dissection in the Fabrica were obtained in digital form, resized, and arranged in a comparable montage to that presented by Valverde. Computer manipulations were used to assess image correspondence. The Valverde illustrations are approximately half the size and are mirror images of those in the Fabrica, but otherwise show the same dissection stages, and identical transverse brain levels and structures. The Valverde illustrations lack shadowing and show minor variations in perspective and fine details (e.g., branching pattern of the middle meningeal artery) from those in the Fabrica. Craftsmen under the direction of Valverde copied the woodcut prints in the Fabrica in close but approximate form by freehand engraving onto copper plates. Differences in the sizes of the images, and in perspective and fine detail, preclude direct tracing of images as the means of copying. Because engravings are in effect "flipped over" to make further prints, subsequent prints made from Valverde's copperplate engravings are mirror images of the prints in Vesalius' Fabrica.

  6. Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation

    NASA Astrophysics Data System (ADS)

    Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.

    2018-01-01

    Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.

  7. IPUMS: Detailed global data on population characteristics

    NASA Astrophysics Data System (ADS)

    Kugler, T.

    2017-12-01

    Many new and exciting sources of data on human population distributions based on remote sensing, mobile technology, and other mechanisms are becoming available. These new data sources often provide fine scale spatial and/or temporal resolution. However, they typically focus on the location of population, with little or no information on population characteristics. The large and growing collection of data available through the IPUMS family of products complements datasets that provide spatial and temporal detail but little attribute detail by providing the full depth of characteristics covered by population censuses, including demographic, household structure, economic, employment, education, and housing characteristics. IPUMS International provides census microdata for 85 countries. Microdata provide the responses to every census question for each individual in a sample of households. Microdata identify the sub-national geographic unit in which a household is located, but for confidentiality reasons, identified units must include a minimum population, typically 20,000 people. Small-area aggregate data often describe much smaller geographic units, enabling study of detailed spatial patterns of population characteristics. However the structure of aggregate data tables is highly heterogeneous across countries, census years, and even topics within a given census, making these data difficult to work with in any systematic way. A recently funded project will assemble small-area aggregate population and agricultural census data published by national statistical offices. Through preliminary work collecting and cataloging over 10,000 tables, we have identified a small number of structural families that can be used to organize the many different structures. These structural families will form the basis for software tools to document and standardize the tables for ingest into a common database. Both the microdata and aggregate data are made available through IPUMS Terra, facilitating integration with land use, land cover, climate, and other environmental data. These data can be used to address pressing global challenges, such as food and water security, development and deforestation, and environmentally-influenced migration.

  8. Nanoclusters of α-Fe naturally formed in twinned martensite after martensitic transformation

    NASA Astrophysics Data System (ADS)

    Liu, X.; Ping, D. H.; Xiang, H. P.; Lu, X.; Shen, J.

    2018-05-01

    Various Fe-C binary alloys with the carbon content from 0.05 to 2.0 (wt. %) have been prepared and water-quenched at austenitizing temperatures. The fine structure of the twinned martensite in the quenched samples has been investigated by means of transmission electron microscopy (TEM) in order to understand the initial products during the formation of the martensite structure. In the twinned structure (body-centered-cubic {112}⟨111⟩-type twin), TEM dark field observations have revealed that both matrix and twinned crystal regions are fully composed of ultra-fine particles (α-Fe nano-crystallites). The particles tend to have the same preferred direction (or texture) in the twinned martensite and the size is almost the same (1-2 nm). The ultra-fine particle structure has been commonly observed regardless of the carbon content; however, such a fine particle structure has been observed only in the martensite with the twinning structure. After in-situ TEM heating, recrystallization occurred and the fine particles merged into larger α-Fe grains; at the same time, the twinned relationship also disappeared.

  9. Brain Regions Involved in the Retrieval of Spatial and Episodic Details Associated with a Familiar Environment: An fMRI Study

    ERIC Educational Resources Information Center

    Hirshhorn, Marnie; Grady, Cheryl; Rosenbaum, R. Shayna; Winocur, Gordon; Moscovitch, Morris

    2012-01-01

    Functional magnetic resonance imaging (fMRI) was used to compare brain activity during the retrieval of coarse- and fine-grained spatial details and episodic details associated with a familiar environment. Long-time Toronto residents compared pairs of landmarks based on their absolute geographic locations (requiring either coarse or fine…

  10. Nuclear Physics Around the Unitarity Limit.

    PubMed

    König, Sebastian; Grießhammer, Harald W; Hammer, H-W; van Kolck, U

    2017-05-19

    We argue that many features of the structure of nuclei emerge from a strictly perturbative expansion around the unitarity limit, where the two-nucleon S waves have bound states at zero energy. In this limit, the gross features of states in the nuclear chart are correlated to only one dimensionful parameter, which is related to the breaking of scale invariance to a discrete scaling symmetry and set by the triton binding energy. Observables are moved to their physical values by small perturbative corrections, much like in descriptions of the fine structure of atomic spectra. We provide evidence in favor of the conjecture that light, and possibly heavier, nuclei are bound weakly enough to be insensitive to the details of the interactions but strongly enough to be insensitive to the exact size of the two-nucleon system.

  11. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westre, Tami E.

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been appliedmore » to the study of non-heme iron enzyme active sites.« less

  12. Geometrical Properties of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Cremades, Hebe; Bothmer, Volker

    Based on the SOHO/LASCO dataset, a collection of "structured" coronal mass ejections (CMEs) has been compiled within the period 1996-2002, in order to analyze their three-dimensional configuration. These CME events exhibit white-light fine structures, likely indicative of their possible 3D topology. From a detailed investigation of the associated low coronal and photospheric source regions, a generic scheme has been deduced, which considers the white-light topology of a CME projected in the plane of the sky as being primarily dependent on the orientation and position of the source region's neutral line on the solar disk. The obtained results imply that structured CMEs are essentially organized along a symmetry axis, in a cylindrical manner. The measured dimensions of the cylinder's base and length yield a ratio of 1.6. These CMEs seem to be better approximated by elliptic cones, rather than by the classical ice cream cone, characterized by a circular cross section.

  13. Three-dimensional fine structure of the organization of microtubules in neurite varicosities by ultra-high voltage electron microscope tomography.

    PubMed

    Nishida, Tomoki; Yoshimura, Ryoichi; Endo, Yasuhisa

    2017-09-01

    Neurite varicosities are highly specialized compartments that are involved in neurotransmitter/ neuromodulator release and provide a physiological platform for neural functions. However, it remains unclear how microtubule organization contributes to the form of varicosity. Here, we examine the three-dimensional structure of microtubules in varicosities of a differentiated PC12 neural cell line using ultra-high voltage electron microscope tomography. Three-dimensional imaging showed that a part of the varicosities contained an accumulation of organelles that were separated from parallel microtubule arrays. Further detailed analysis using serial sections and whole-mount tomography revealed microtubules running in a spindle shape of swelling in some other types of varicosities. These electron tomographic results showed that the structural diversity and heterogeneity of microtubule organization supported the form of varicosities, suggesting that a different distribution pattern of microtubules in varicosities is crucial to the regulation of varicosities development.

  14. Bayes Forest: a data-intensive generator of morphological tree clones

    PubMed Central

    Järvenpää, Marko; Åkerblom, Markku; Raumonen, Pasi; Kaasalainen, Mikko

    2017-01-01

    Abstract Detailed and realistic tree form generators have numerous applications in ecology and forestry. For example, the varying morphology of trees contributes differently to formation of landscapes, natural habitats of species, and eco-physiological characteristics of the biosphere. Here, we present an algorithm for generating morphological tree “clones” based on the detailed reconstruction of the laser scanning data, statistical measure of similarity, and a plant growth model with simple stochastic rules. The algorithm is designed to produce tree forms, i.e., morphological clones, similar (and not identical) in respect to tree-level structure, but varying in fine-scale structural detail. Although we opted for certain choices in our algorithm, individual parts may vary depending on the application, making it a general adaptable pipeline. Namely, we showed that a specific multipurpose procedural stochastic growth model can be algorithmically adjusted to produce the morphological clones replicated from the target experimentally measured tree. For this, we developed a statistical measure of similarity (structural distance) between any given pair of trees, which allows for the comprehensive comparing of the tree morphologies by means of empirical distributions describing the geometrical and topological features of a tree. Finally, we developed a programmable interface to manipulate data required by the algorithm. Our algorithm can be used in a variety of applications for exploration of the morphological potential of the growth models (both theoretical and experimental), arising in all sectors of plant science research. PMID:29020742

  15. To acquire more detailed radiation drive by use of ``quasi-steady'' approximation in atomic kinetics

    NASA Astrophysics Data System (ADS)

    Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin

    2012-10-01

    In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM) in NLTE plasma description. However, the detailed experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum- number(nl-level) average atom model is a natural consideration, however the nl-level in-line calculation needs much more computational resource. By distinguishing the rapid bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to build up a more detailed bound electron distribution(nl-level even nlm-level) using in-line n-level calculated plasma conditions(temperature, density, and average ionization degree). We name this method ``quasi-steady approximation'' in atomic kinetics. Using this method, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more fine frequency-denpending spectrum structure which appears only in nl-level transition with same n number(n=0) .

  16. An Action-Based Fine-Grained Access Control Mechanism for Structured Documents and Its Application

    PubMed Central

    Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo

    2014-01-01

    This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical. PMID:25136651

  17. An action-based fine-grained access control mechanism for structured documents and its application.

    PubMed

    Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo

    2014-01-01

    This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical.

  18. InAs Band-Edge Exciton Fine Structure

    DTIC Science & Technology

    2015-07-29

    Chapter 1 InAs Band-Edge Exciton Fine Structure 1.1 Contributions This work was carried out in collaboration with Oscar Sandoval, a summer student at...diffusion,1,2 charg- ing,2,3 and excitonic fine structure.1,3–9 While spectral diffusion and charging are most likely photoinduced effects and thus can be...unavoidable. A complete understanding of the excitonic 1 Distribution A: Public Release energy landscape enables us to determine dephasing rates

  19. Atomic sulfur: Frequency measurement of the J = 0 left arrow 1 fine-structure transition at 56.3 microns by laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Evenson, Kenneth M.; Zink, Lyndon R.

    1994-01-01

    The J = 0 left arrow 1 fine-structure transition in atomic sulfur (S I) in its ground (3)P state has been detected in the laboratory by far-infrared laser magnetic resonance. The fine-structure interval has been measured accurately as 5,322,492.9 +/- 2.8 MHz which corresponds to a wavelength of 56.325572 +/- 0.000030 micrometers.

  20. First Results of Digital Topography Applied to Macromolecular Crystals

    NASA Technical Reports Server (NTRS)

    Lovelace, J.; Soares, A. S.; Bellamy, H.; Sweet, R. M.; Snell, E. H.; Borgstahl, G.

    2004-01-01

    An inexpensive digital CCD camera was used to record X-ray topographs directly from large imperfect crystals of cubic insulin. The topographs recorded were not as detailed as those which can be measured with film or emulsion plates but do show great promise. Six reflections were recorded using a set of finely spaced stills encompassing the rocking curve of each reflection. A complete topographic reflection profile could be digitally imaged in minutes. Interesting and complex internal structure was observed by this technique.The CCD chip used in the camera has anti-blooming circuitry and produced good data quality even when pixels became overloaded.

  1. The prominent photoinduced voltage effect of as-prepared macroscopically long Ag core/Ni shell nanoheterojunctions.

    PubMed

    Sun, Jia-Lin; Zhao, Xingchen; Zhu, Jia-Lin

    2008-02-27

    Macroscopically long Ag core/Ni shell nanoheterojunctions have been well prepared by a dynamic growth approach. The structure characterized in detail by scanning electron microscopy reveals that the Ag nanowire bundles are wrapped in Ni nanoshields and form multicore coaxial cable frames. Notable photoinduced voltage with a fine repeatability, for irradiation with a laser, is exhibited compared with the case for bulk Ag pole/Ni shell heterojunctions and Ag nanowire bundle/bulk Ni heterojunctions. The prominent photoinduced voltage and the substantial metal nanoscale Ohmic interconnects provided by this kind of nanoheterojunction may have a wide range of applications in the future.

  2. In situ measurements of the mesosphere and stratosphere

    NASA Technical Reports Server (NTRS)

    Crosky, C.

    1976-01-01

    The operation of a subsonic, Gerdien condenser probe for in situ measurements of the mesosphere and stratosphere is presented. The inclusion of a flashing Lyman alpha ultraviolet source provides an artifically produced ionization of particular constituents. Detailed theory of operation is presented and the data results from two flights are shown. A great deal of fine structure in mobility is observed due to the presence of various hydrated positive ions. The effect of the Lyman alpha source in the 35 km region was to dissociate a light hydrate ion rather than produce additional ionization. At the 70 km region, photodissociation of the heaviest ions (probably ice crystals) was also observed.

  3. Electron microscopy of a Gd-Ba-Cu-O superconductor

    NASA Technical Reports Server (NTRS)

    Ramesh, R.; Thomas, G.; Meng, R. L.; Hor, P. H.; Chu, C. W.

    1989-01-01

    An electron microscopy study has been carried out to characterize the microstructure of a sintered Gd-Ba-Cu-O superconductor alloy. The GdBa2Cu3O(7-x) phase in the oxygen annealed sample is orthorhombic, while in the vacuum annealed sample it is tetragonal. It is shown that the details of the fine structure in the 001-line zone axis convergent beam patterns can be used to distinguish between the orthorhombic form and the tetragonal form. In addition to this matrix phase, an amorphous phase is frequently observed at the triple grain junctions. Gd-rich inclusions have been observed inside the matrix phase.

  4. Fixation methods for electron microscopy of human and other liver

    PubMed Central

    Wisse, Eddie; Braet, Filip; Duimel, Hans; Vreuls, Celien; Koek, Ger; Olde Damink, Steven WM; van den Broek, Maartje AJ; De Geest, Bart; Dejong, Cees HC; Tateno, Chise; Frederik, Peter

    2010-01-01

    For an electron microscopic study of the liver, expertise and complicated, time-consuming processing of hepatic tissues and cells is needed. The interpretation of electron microscopy (EM) images requires knowledge of the liver fine structure and experience with the numerous artifacts in fixation, embedding, sectioning, contrast staining and microscopic imaging. Hence, the aim of this paper is to present a detailed summary of different methods for the preparation of hepatic cells and tissue, for the purpose of preserving long-standing expertise and to encourage new investigators and clinicians to include EM studies of liver cells and tissue in their projects. PMID:20556830

  5. Final Technical Report of Project DE-FG02-96ER14647

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundeen, Stephen R.

    This is the final technical report of work completed under DOE support over the period Sept. 1, 1996 until May 31, 2015. The title of the project was "Ion/Excited Atom Collision Studies with a Rydberg Target and a CO2 Laser" from 9/1/96 to 10/31/06, and "Properties of Actinide Ions from Measurements of Rydberg Ion Fine Structure" from 11/1/06 until 5/31/15. The primary technical results were a detailed experimental study of resonant charge transfer between Rydberg atoms and highly-charged ions, and unique measurements of many properties of multiply-charged Thorium ions.

  6. Resonance rotational level crossing in the fluorosulfate radical FSO3rad and experimental determination of the rotational A and the centrifugal distortion DK constants

    NASA Astrophysics Data System (ADS)

    Kolesniková, Lucie; Koucký, Jan; Kania, Patrik; Uhlíková, Tereza; Beckers, Helmut; Urban, Štěpán

    2018-01-01

    The resonance crossing of rotational levels with different fine-structure components and different k rotational quantum numbers was observed in the rotational spectra of the symmetric top fluorosulfate radical FSO3rad. Detailed measurements were performed to analyze these weak resonances as well as the A1-A2 splittings of the K = 3 and K = 6 transitions. The resonance level crossing enabled the experimental determination of "forbidden" parameters, the rotational A and the centrifugal distortion DK constants as well as the corresponding resonance off-diagonal matrix element.

  7. A simple approach to hybrid inorganic–organic step-growth hydrogels with scalable control of physicochemical properties and biodegradability† †Electronic supplementary information (ESI) available: Experimental details and characterization data as mentioned in the text. See DOI: 10.1039/c4py01789g Click here for additional data file.

    PubMed Central

    Alves, F.

    2015-01-01

    We prepared new and scalable, hybrid inorganic–organic step-growth hydrogels with polyhedral oligomeric silsesquioxane (POSS) network knot construction elements and hydrolytically degradable poly(ethylene glycol) (PEG) di-ester macromonomers by in situ radical-mediated thiol–ene photopolymerization. The physicochemical properties of the gels are fine-tailored over orders of magnitude including functionalization of their interior, a hierarchical gel structure, and biodegradability. PMID:25821524

  8. A High-Resolution, Three-Dimensional Model of Jupiter's Great Red Spot

    NASA Technical Reports Server (NTRS)

    Cho, James Y.-K.; delaTorreJuarez, Manuel; Ingersoll, Andrew P.; Dritschel, David G.

    2001-01-01

    The turbulent flow at the periphery of the Great Red Spot (GRS) contains many fine-scale filamentary structures, while the more quiescent core, bounded by a narrow high- velocity ring, exhibits organized, possibly counterrotating, motion. Past studies have neither been able to capture this complexity nor adequately study the effect of vertical stratification L(sub R)(zeta) on the GRS. We present results from a series of high-resolution, three-dimensional simulations that advect the dynamical tracer, potential vorticity. The detailed flow is successfully captured with a characteristic value of L(sub R) approx. equals 2000 km, independent of the precise vertical stratification profile.

  9. Growth of Nanoscale Nickel Ferrite on Carbonaceous Matrix- A Novel Method of Turning Harmful Particulates into a Functional Nanocomposite: An XAFS Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattanaik, S.; Huggins, F; Huffman, G

    2010-01-01

    Particulate matter (PM) emission from residual oil combustion typically consists of carbonaceous material accompanied by inorganic matter notably transition metal sulfates. Often a minor sulfide form is found in the coarse fraction while an oxide form is more common in the fine and ultrafine fractions. A composite comprising of nanoscale nickel ferrite dispersed on carbonaceous matrix has been obtained following liberation of metal sulfates from the fine PM - a novel method of turning harmful particulates into a functional nanocomposite without the need for elaborate preparation using expensive precursors. The nickel ferrite content in the composite varies with the Fe/Nimore » ratio in particulate, fuel type, and combustion condition. Such variation may lead to the composite exhibiting diverse physical behaviors. Detailed structure and cation distribution in dispersed ferrite have been studied using Fe and Ni K-edges XAFS spectroscopy. Peaks are identified in the radial structure function with specific atom pair correlations within the spinel ferrite from which the relative occupancy of the cations in the octahedral and tetrahedral sites can be discerned. The results show that Ni(II) has strong preference for the octahedral site, while Fe(III) prefers both sites which is consistent with that of an inverted spinel ferrite.« less

  10. Growth of nanoscale nickel ferrite on carbonaceous matrix--A novel method of turning harmful particulates into a functional nanocomposite: An XAFS study.

    PubMed

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P

    2010-06-15

    Particulate matter (PM) emission from residual oil combustion typically consists of carbonaceous material accompanied by inorganic matter notably transition metal sulfates. Often a minor sulfide form is found in the coarse fraction while an oxide form is more common in the fine and ultrafine fractions. A composite comprising of nanoscale nickel ferrite dispersed on carbonaceous matrix has been obtained following liberation of metal sulfates from the fine PM--a novel method of turning harmful particulates into a functional nanocomposite without the need for elaborate preparation using expensive precursors. The nickel ferrite content in the composite varies with the Fe/Ni ratio in particulate, fuel type, and combustion condition. Such variation may lead to the composite exhibiting diverse physical behaviors. Detailed structure and cation distribution in dispersed ferrite have been studied using Fe and Ni K-edges XAFS spectroscopy. Peaks are identified in the radial structure function with specific atom pair correlations within the spinel ferrite from which the relative occupancy of the cations in the octahedral and tetrahedral sites can be discerned. The results show that Ni(II) has strong preference for the octahedral site, while Fe(III) prefers both sites which is consistent with that of an inverted spinel ferrite. Copyright 2010 Elsevier B.V. All rights reserved.

  11. The Orion Nebula in the Far-Infrared: high-J CO and fine-structure lines mapped by FIFI-LS/SOFIA

    NASA Astrophysics Data System (ADS)

    Klein, Randolf; Looney, Leslie; Cox, Erin; Fischer, Christian; Iserlohe, Christof; Krabbe, Alfred

    2015-08-01

    The Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution.The large maps obtained with FIFI-LS cover the nebula from the BN/KL-object to the bar in several fine structure lines. These spectral maps are the largest and highest spatially resolved to date. They allow us to study the conditions of the photon-dominated region and the interface to the molecular cloud with unprecedented detail.Another investigation targeted the molecular gas in the BN/KL region of the Orion Nebula, which is stirred up by a violent explosion about 500 years ago. The explosion drives a wide angled molecular outflow. We present maps of several high-J CO observations (J in the range of 10 to 30), allowing us to analyse of the heated molecular gas.The observations were taken during the commissioning of FIFI-LS last year and as recent as this March. The results are still preliminary as the data reduction and calibration is still under development.

  12. log gf values for astrophysically important transitions Fe II

    NASA Astrophysics Data System (ADS)

    Deb, N. C.; Hibbert, A.

    2014-01-01

    Aims: In a recent measurement, Meléndez & Barbuy (2009, A&A, 497, 611) report accurate log gf values for 142 important astrophysical lines with wavelengths in the range 4000 Å to 8000 Å. Their results include both solar and laboratory measurements. In this paper, we describe a theoretical study of these lines. Methods: The CIV3 structure codes, combined with our "fine-tuning" extrapolation process, are used to undertake a large-scale CI calculation involving the lowest 262 fine-structure levels belonging to the 3d64s, 3d7, 3d54s2, 3d64p, and 3d54s4p configurations. Results: We find that many of the 142 transitions are very weak intercombination lines. Other transitions are weak because the dominant configurations in the two levels differ by two orbitals. Conclusions: The comparison between our log gf values and the experimental values generally shows good agreement for most of these transitions, with our theoretical values agreeing slightly more closely with the solar than with the laboratory measurements. A detailed analysis of the small number of transitions for which the agreement between theory and experiment is not as good shows that such disagreements largely arise from severe cancellation due to CI mixing.

  13. High axial resolution imaging system for large volume tissues using combination of inclined selective plane illumination and mechanical sectioning

    PubMed Central

    Zhang, Qi; Yang, Xiong; Hu, Qinglei; Bai, Ke; Yin, Fangfang; Li, Ning; Gang, Yadong; Wang, Xiaojun; Zeng, Shaoqun

    2017-01-01

    To resolve fine structures of biological systems like neurons, it is required to realize microscopic imaging with sufficient spatial resolution in three dimensional systems. With regular optical imaging systems, high lateral resolution is accessible while high axial resolution is hard to achieve in a large volume. We introduce an imaging system for high 3D resolution fluorescence imaging of large volume tissues. Selective plane illumination was adopted to provide high axial resolution. A scientific CMOS working in sub-array mode kept the imaging area in the sample surface, which restrained the adverse effect of aberrations caused by inclined illumination. Plastic embedding and precise mechanical sectioning extended the axial range and eliminated distortion during the whole imaging process. The combination of these techniques enabled 3D high resolution imaging of large tissues. Fluorescent bead imaging showed resolutions of 0.59 μm, 0.47μm, and 0.59 μm in the x, y, and z directions, respectively. Data acquired from the volume sample of brain tissue demonstrated the applicability of this imaging system. Imaging of different depths showed uniform performance where details could be recognized in either the near-soma area or terminal area, and fine structures of neurons could be seen in both the xy and xz sections. PMID:29296503

  14. Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Abrahamson, A. Louis; Jones, Michael G.

    1988-01-01

    An experiment was performed to validate two analytical models for predicting low frequency attenuation of duct liner configurations built from an array of seven resonators that could be individually tuned via adjustable cavity depths. These analytical models had previously been developed for high frequency aero-engine inlet duct liner design. In the low frequency application, the liner surface impedance distribution is unavoidably spatially varying by virtue of available fabrication techniques. The characteristic length of this spatial variation may be a significant fraction of the acoustic wavelength. Comparison of measured and predicted attenuation rates and transmission losses for both modal decomposition and finite element propagation models were in good to excellent agreement for a test frequency range that included the first and second cavity resonance frequencies. This was true for either of two surface impedance distribution modeling procedures used to simplify the impedance boundary conditions. In the presence of mean flow, measurements revealed a fine scale structure of acoustic hot spots in the attenuation and phase profiles. These details were accurately predicted by the finite element model. Since no impedance changes due to mean flow were assumed, it is concluded that this fine scale structure was due to convective effects of the mean flow interacting with the surface impedance nonuniformities.

  15. High Resolution Helium Ion Scanning Microscopy of the Rat Kidney

    PubMed Central

    Rice, William L.; Van Hoek, Alfred N.; Păunescu, Teodor G.; Huynh, Chuong; Goetze, Bernhard; Singh, Bipin; Scipioni, Larry; Stern, Lewis A.; Brown, Dennis

    2013-01-01

    Helium ion scanning microscopy is a novel imaging technology with the potential to provide sub-nanometer resolution images of uncoated biological tissues. So far, however, it has been used mainly in materials science applications. Here, we took advantage of helium ion microscopy to explore the epithelium of the rat kidney with unsurpassed image quality and detail. In addition, we evaluated different tissue preparation methods for their ability to preserve tissue architecture. We found that high contrast, high resolution imaging of the renal tubule surface is possible with a relatively simple processing procedure that consists of transcardial perfusion with aldehyde fixatives, vibratome tissue sectioning, tissue dehydration with graded methanol solutions and careful critical point drying. Coupled with the helium ion system, fine details such as membrane texture and membranous nanoprojections on the glomerular podocytes were visualized, and pores within the filtration slit diaphragm could be seen in much greater detail than in previous scanning EM studies. In the collecting duct, the extensive and striking apical microplicae of the intercalated cells were imaged without the shrunken or distorted appearance that is typical with conventional sample processing and scanning electron microscopy. Membrane depressions visible on principal cells suggest possible endo- or exocytotic events, and central cilia on these cells were imaged with remarkable preservation and clarity. We also demonstrate the use of colloidal gold probes for highlighting specific cell-surface proteins and find that 15 nm gold labels are practical and easily distinguishable, indicating that external labels of various sizes can be used to detect multiple targets in the same tissue. We conclude that this technology represents a technical breakthrough in imaging the topographical ultrastructure of animal tissues. Its use in future studies should allow the study of fine cellular details and provide significant advances in our understanding of cell surface structures and membrane organization. PMID:23505418

  16. Fine reservoir structure modeling based upon 3D visualized stratigraphic correlation between horizontal wells: methodology and its application

    NASA Astrophysics Data System (ADS)

    Chenghua, Ou; Chaochun, Li; Siyuan, Huang; Sheng, James J.; Yuan, Xu

    2017-12-01

    As the platform-based horizontal well production mode has been widely applied in petroleum industry, building a reliable fine reservoir structure model by using horizontal well stratigraphic correlation has become very important. Horizontal wells usually extend between the upper and bottom boundaries of the target formation, with limited penetration points. Using these limited penetration points to conduct well deviation correction means the formation depth information obtained is not accurate, which makes it hard to build a fine structure model. In order to solve this problem, a method of fine reservoir structure modeling, based on 3D visualized stratigraphic correlation among horizontal wells, is proposed. This method can increase the accuracy when estimating the depth of the penetration points, and can also effectively predict the top and bottom interfaces in the horizontal penetrating section. Moreover, this method will greatly increase not only the number of points of depth data available, but also the accuracy of these data, which achieves the goal of building a reliable fine reservoir structure model by using the stratigraphic correlation among horizontal wells. Using this method, four 3D fine structure layer models have been successfully built of a specimen shale gas field with platform-based horizontal well production mode. The shale gas field is located to the east of Sichuan Basin, China; the successful application of the method has proven its feasibility and reliability.

  17. Modeling Progressive Failure of Bonded Joints Using a Single Joint Finite Element

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.; Bednarcyk, Brett A.

    2010-01-01

    Enhanced finite elements are elements with an embedded analytical solution which can capture detailed local fields, enabling more efficient, mesh-independent finite element analysis. In the present study, an enhanced finite element is applied to generate a general framework capable of modeling an array of joint types. The joint field equations are derived using the principle of minimum potential energy, and the resulting solutions for the displacement fields are used to generate shape functions and a stiffness matrix for a single joint finite element. This single finite element thus captures the detailed stress and strain fields within the bonded joint, but it can function within a broader structural finite element model. The costs associated with a fine mesh of the joint can thus be avoided while still obtaining a detailed solution for the joint. Additionally, the capability to model non-linear adhesive constitutive behavior has been included within the method, and progressive failure of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint as the adhesive fails. Results of the model compare favorably with experimental and finite element results.

  18. Fine-structure-resolution for Rovibrational Excitation of CN Due to H2

    NASA Astrophysics Data System (ADS)

    Byrd, Nat; Yang, Benhui H.; Stancil, Phillip C.

    2018-06-01

    Diatomic molecules can be readily excited in interstellar environments exposed to intense UV radiation, such as the inner rim of a protoplanetary disk. Non-thermal populations of excited rovibrational levels can result, for example, following decay from electronically excited states to the electronic ground state. Competition between radiative decay and collisional processes, mostly due to H2, determine the resulting rovibrational emission spectrum. For CN, and other open-shell molecules, the resulting spectrum will be complicated due to fine-structure splitting of the rotational levels. In some cases, fine-structure resolution has been previously computed for rotational transitions in atom- or diatom-diatom collisional processes. Here we present the first fine-structure resolution for vibrational deexcitation for CN colliding with H2. The collisional cross sections were computed using a 6D potential energy surface with a full close-coupling approach. Fine-structure resolution is obtained by adopting an angular momentum recoupling scheme to transform the scattering matrices to a recoupled basis. Here we present low-energy calculations for the v=1 to 0 transition.This work was supported by NASA Grant NNX16AF09G.

  19. The impact of cochlear fine structure on hearing thresholds and DPOAE levels

    NASA Astrophysics Data System (ADS)

    Lee, Jungmee; Long, Glenis; Talmadge, Carrick L.

    2004-05-01

    Although otoacoustic emissions (OAE) are used as clinical and research tools, the correlation between OAE behavioral estimates of hearing status is not large. In normal-hearing individuals, the level of OAEs can vary as much as 30 dB when the frequency is changed less than 5%. These pseudoperiodic variations of OAE level with frequency are known as fine structure. Hearing thresholds measured with high-frequency resolution reveals a similar (up to 15 dB) fine structure. We examine the impact of OAE and threshold fine structures on the prediction of auditory thresholds from OAE levels. Distortion product otoacoustic emissions (DPOAEs) were measured with sweeping primary tones. Psychoacoustic detection thresholds were measured using pure tones, sweep tones, FM tones, and narrow-band noise. Sweep DPOAE and narrow-band threshold estimates provide estimates that are less influenced by cochlear fine structure and should lead to a higher correlation between OAE levels and psychoacoustic thresholds. [Research supported by PSC CUNY, NIDCD, National Institute on Disability and Rehabilitation Research in U.S. Department of Education, and The Ministry of Education in Korea.

  20. CONSTRAINTS ON SPATIAL VARIATIONS IN THE FINE-STRUCTURE CONSTANT FROM PLANCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Bryan, Jon; Smidt, Joseph; De Bernardis, Francesco

    2015-01-01

    We use the cosmic microwave background (CMB) anisotropy data from Planck to constrain the spatial fluctuations of the fine-structure constant α at a redshift of 1100. We use a quadratic estimator to measure the four-point correlation function of the CMB temperature anisotropies and extract the angular power spectrum fine-structure constant spatial variations projected along the line of sight at the last scattering surface. At tens of degree angular scales and above, we constrain the fractional rms fluctuations of the fine-structure constant to be (δα/α){sub rms} < 3.4 × 10{sup –3} at the 68% confidence level. We find no evidence formore » a spatially varying α at a redshift of 10{sup 3}.« less

  1. Positron follow-up in liquid water: I. A new Monte Carlo track-structure code.

    PubMed

    Champion, C; Le Loirec, C

    2006-04-07

    When biological matter is irradiated by charged particles, a wide variety of interactions occur, which lead to a deep modification of the cellular environment. To understand the fine structure of the microscopic distribution of energy deposits, Monte Carlo event-by-event simulations are particularly suitable. However, the development of these track-structure codes needs accurate interaction cross sections for all the electronic processes: ionization, excitation, positronium formation and even elastic scattering. Under these conditions, we have recently developed a Monte Carlo code for positrons in water, the latter being commonly used to simulate the biological medium. All the processes are studied in detail via theoretical differential and total cross-section calculations performed by using partial wave methods. Comparisons with existing theoretical and experimental data in terms of stopping powers, mean energy transfers and ranges show very good agreements. Moreover, thanks to the theoretical description of positronium formation, we have access, for the first time, to the complete kinematics of the electron capture process. Then, the present Monte Carlo code is able to describe the detailed positronium history, which will provide useful information for medical imaging (like positron emission tomography) where improvements are needed to define with the best accuracy the tumoural volumes.

  2. Spectral structure and stability studies on microstructure-fiber continuum

    NASA Astrophysics Data System (ADS)

    Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.

    2003-07-01

    Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.

  3. RADIATIVE TRANSFER MODELING OF THE ENIGMATIC SCATTERING POLARIZATION IN THE SOLAR Na i D{sub 1} LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belluzzi, Luca; Bueno, Javier Trujillo; Degl’Innocenti, Egidio Landi

    2015-12-01

    The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuousmore » distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D{sub 1} line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D{sub 1} line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D{sub 1} line without the need for ground-level polarization.« less

  4. Atomistic Free Energy Model for Nucleic Acids: Simulations of Single-Stranded DNA and the Entropy Landscape of RNA Stem-Loop Structures.

    PubMed

    Mak, Chi H

    2015-11-25

    While single-stranded (ss) segments of DNAs and RNAs are ubiquitous in biology, details about their structures have only recently begun to emerge. To study ssDNA and RNAs, we have developed a new Monte Carlo (MC) simulation using a free energy model for nucleic acids that has the atomisitic accuracy to capture fine molecular details of the sugar-phosphate backbone. Formulated on the basis of a first-principle calculation of the conformational entropy of the nucleic acid chain, this free energy model correctly reproduced both the long and short length-scale structural properties of ssDNA and RNAs in a rigorous comparison against recent data from fluorescence resonance energy transfer, small-angle X-ray scattering, force spectroscopy and fluorescence correlation transport measurements on sequences up to ∼100 nucleotides long. With this new MC algorithm, we conducted a comprehensive investigation of the entropy landscape of small RNA stem-loop structures. From a simulated ensemble of ∼10(6) equilibrium conformations, the entropy for the initiation of different size RNA hairpin loops was computed and compared against thermodynamic measurements. Starting from seeded hairpin loops, constrained MC simulations were then used to estimate the entropic costs associated with propagation of the stem. The numerical results provide new direct molecular insights into thermodynaimc measurement from macroscopic calorimetry and melting experiments.

  5. Spin fine structure of optically excited quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  6. An X-ray absorption spectroscopy study of the inversion degree in zinc ferrite nanocrystals dispersed on a highly porous silica aerogel matrix.

    PubMed

    Carta, D; Marras, C; Loche, D; Mountjoy, G; Ahmed, S I; Corrias, A

    2013-02-07

    The structural properties of zinc ferrite nanoparticles with spinel structure dispersed in a highly porous SiO(2) aerogel matrix were compared with a bulk zinc ferrite sample. In particular, the details of the cation distribution between the octahedral (B) and tetrahedral (A) sites of the spinel structure were determined using X-ray absorption spectroscopy. The analysis of both the X-ray absorption near edge structure and the extended X-ray absorption fine structure indicates that the degree of inversion of the zinc ferrite spinel structures varies with particle size. In particular, in the bulk microcrystalline sample, Zn(2+) ions are at the tetrahedral sites and trivalent Fe(3+) ions occupy octahedral sites (normal spinel). When particle size decreases, Zn(2+) ions are transferred to octahedral sites and the degree of inversion is found to increase as the nanoparticle size decreases. This is the first time that a variation of the degree of inversion with particle size is observed in ferrite nanoparticles grown within an aerogel matrix.

  7. Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307 - Origins and evidence for diverse, primitive nebular dust components

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.

    1993-01-01

    SEM, TEM, and electron microprobe analysis were used to investigate in detail the mineralogical and chemical characteristics of dark matrix and fine-grained rims in the unequilibrated CO3 chondrite ALHA77307. Data obtained revealed that there was a remarkable diversity of distinct mineralogical components, which can be identified using their chemical and textural characteristics. The matrix and rim components in ALHA77307 formed by disequilibrium condensation process as fine-grained amorphous dust that is represented by the abundant amorphous component in the matrix. Subsequent thermal processing of this condensate material, in a variety of environments in the nebula, caused partial or complete recrystallization of the fine-grained dust.

  8. Interactions of multi-scale heterogeneity in the lithosphere: Australia

    NASA Astrophysics Data System (ADS)

    Kennett, B. L. N.; Yoshizawa, K.; Furumura, T.

    2017-10-01

    Understanding the complex heterogeneity of the continental lithosphere involves a wide variety of spatial scales and the synthesis of multiple classes of information. Seismic surface waves and multiply reflected body waves provide the main constraints on broad-scale structure, and bounds on the extent of the lithosphere-asthenosphere transition (LAT) can be found from the vertical gradients of S wavespeed. Information on finer-scale structures comes through body wave studies, including detailed seismic tomography and P-wave reflectivity extracted from stacked autocorrelograms of continuous component records. With the inclusion of deterministic large-scale structure and realistic medium-scale stochastic features fine-scale variations are subdued. The resulting multi-scale heterogeneity model for the Australian region gives a good representation of the character of observed seismograms and their geographic variations and matches the observations of P-wave reflectivity. P reflections in the 0.5-3.0 Hz band in the uppermost mantle suggest variations on vertical scales of a few hundred metres with amplitudes of the order of 1%. Interference of waves reflected or converted at sequences of such modest variations in physical properties produce relatively simple behaviour for lower frequencies, which can suggest simpler structures than are actually present. Vertical changes in the character of fine-scale heterogeneity can produce apparent discontinuities. In Central Australia a 'mid-lithospheric discontinuity' can be tracked via changes in frequency content of station reflectivity, with links to the broad-scale pattern of wavespeed gradients and, in particular, the gradients of radial anisotropy. Comparisons with xenolith results from southeastern Australia indicate a strong tie between geochemical stratification and P-wave reflectivity.

  9. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study.

    PubMed

    Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard J A; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F

    2014-01-01

    The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system. We investigated resting state connectivity at both a fine and large scale within and across visual areas V1, V2 and V3 in ten human subjects using a 7Tesla scanner. We found evidence for several coexisting and overlapping connectivity structures at different spatial scales. At the fine-scale level we found enhanced connectivity between the same topographic locations in the fieldmaps of V1, V2 and V3, enhanced connectivity to the contralateral functional homologue, and to a lesser extent enhanced connectivity between iso-eccentric locations within the same visual area. However, by far the largest proportion of the resting state fluctuations occurred within large-scale bilateral networks. These large-scale networks mapped to some extent onto the architecture of the visual system and could thereby obscure fine-scale connectivity. In fact, most of the fine-scale connectivity only became apparent after the large-scale network fluctuations were filtered from the timeseries. We conclude that fMRI resting state fluctuations in the visual cortex may in fact be a composite signal of different overlapping sources. Isolating the different sources could enhance correlations between BOLD and electrophysiological correlates of resting state activity. © 2013 Elsevier Inc. All rights reserved.

  10. Silica-supported isolated gallium sites as highly active, selective and stable propane dehydrogenation catalysts† †Electronic supplementary information (ESI) available: Experimental details, material characterization data, catalytic measurement details and crystallographic details. CCDC 1499756. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc05178b Click here for additional data file. Click here for additional data file.

    PubMed Central

    Searles, Keith; Siddiqi, Georges; Safonova, Olga V.

    2017-01-01

    Single-site gallium centers on the surface of silica are prepared via grafting of [Ga(OSi(OtBu)3)3(THF)] on SiO2–700 followed by a thermolysis step. The resulting surface species corresponds to well-defined tetra-coordinate gallium single-sites, [( 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 SiO)3Ga(XOSi)] (X = –H or Si) according to IR, X-ray absorption near-edge structure and extended X-ray absorption fine structure analysis. These gallium sites show high activity, selectivity and stability for propane dehydrogenation with an initial turnover frequency of 20 per h per gallium center, propylene selectivity of ≥93% and remarkable stability over 20 h. The stability of the catalyst probably results from site-isolation of the active site on a non-reducible support such as silica, diminishing facile reduction typical of Ga2O3-based catalysts. PMID:28553501

  11. Nuclear Physics Around the Unitarity Limit

    DOE PAGES

    König, Sebastian; Grießhammer, Harald W.; Hammer, H. -W.; ...

    2017-05-15

    We argue that many features of the structure of nuclei emerge from a strictly perturbative expansion around the unitarity limit, where the two-nucleon S waves have bound states at zero energy. In this limit, the gross features of states in the nuclear chart are correlated to only one dimensionful parameter, which is related to the breaking of scale invariance to a discrete scaling symmetry and set by the triton binding energy. Observables are moved to their physical values by small perturbative corrections, much like in descriptions of the fine structure of atomic spectra. We provide evidence in favor of themore » conjecture that light, and possibly heavier, nuclei are bound weakly enough to be insensitive to the details of the interactions but strongly enough to be insensitive to the exact size of the two-nucleon system.« less

  12. Numerical FEM modeling in dental implantology

    NASA Astrophysics Data System (ADS)

    Roateşi, Iulia; Roateşi, Simona

    2016-06-01

    This paper is devoted to a numerical approach of the stress and displacement calculation of a system made up of dental implant, ceramic crown and surrounding bone. This is the simulation of a clinical situation involving both biological - the bone tissue, and non-biological - the implant and the crown, materials. On the other hand this problem deals with quite fine technical structure details - the threads, tapers, etc with a great impact in masticatory force transmission. Modeling the contact between the implant and the bone tissue is important to a proper bone-implant interface model and implant design. The authors proposed a three-dimensional numerical model to assess the biomechanical behaviour of this complex structure in order to evaluate its stability by determining the risk zones. A comparison between this numerical analysis and clinical cases is performed and a good agreement is obtained.

  13. Spin-orbit coupled potential energy surfaces and properties using effective relativistic coupling by asymptotic representation.

    PubMed

    Ndome, Hameth; Eisfeld, Wolfgang

    2012-08-14

    A new method has been reported recently [H. Ndome, R. Welsch, and W. Eisfeld, J. Chem. Phys. 136, 034103 (2012)] that allows the efficient generation of fully coupled potential energy surfaces (PESs) including derivative and spin-orbit (SO) coupling. The method is based on the diabatic asymptotic representation of the molecular fine structure states and an effective relativistic coupling operator and therefore is called effective relativistic coupling by asymptotic representation (ERCAR). The resulting diabatic spin-orbit coupling matrix is constant and the geometry dependence of the coupling between the eigenstates is accounted for by the diabatization. This approach allows to generate an analytical model for the fully coupled PESs without performing any ab initio SO calculations (except perhaps for the atoms) and thus is very efficient. In the present work, we study the performance of this new method for the example of hydrogen iodide as a well-established test case. Details of the diabatization and the accuracy of the results are investigated in comparison to reference ab initio calculations. The energies of the adiabatic fine structure states are reproduced in excellent agreement with reference ab initio data. It is shown that the accuracy of the ERCAR approach mainly depends on the quality of the underlying ab initio data. This is also the case for dissociation and vibrational level energies, which are influenced by the SO coupling. A method is presented how one-electron operators and the corresponding properties can be evaluated in the framework of the ERCAR approach. This allows the computation of dipole and transition moments of the fine structure states in good agreement with ab initio data. The new method is shown to be very promising for the construction of fully coupled PESs for more complex polyatomic systems to be used in quantum dynamics studies.

  14. Congenital amusia: a cognitive disorder limited to resolved harmonics and with no peripheral basis.

    PubMed

    Cousineau, Marion; Oxenham, Andrew J; Peretz, Isabelle

    2015-01-01

    Pitch plays a fundamental role in audition, from speech and music perception to auditory scene analysis. Congenital amusia is a neurogenetic disorder that appears to affect primarily pitch and melody perception. Pitch is normally conveyed by the spectro-temporal fine structure of low harmonics, but some pitch information is available in the temporal envelope produced by the interactions of higher harmonics. Using 10 amusic subjects and 10 matched controls, we tested the hypothesis that amusics suffer exclusively from impaired processing of spectro-temporal fine structure. We also tested whether the inability of amusics to process acoustic temporal fine structure extends beyond pitch by measuring sensitivity to interaural time differences, which also rely on temporal fine structure. Further tests were carried out on basic intensity and spectral resolution. As expected, pitch perception based on spectro-temporal fine structure was impaired in amusics; however, no significant deficits were observed in amusics' ability to perceive the pitch conveyed via temporal-envelope cues. Sensitivity to interaural time differences was also not significantly different between the amusic and control groups, ruling out deficits in the peripheral coding of temporal fine structure. Finally, no significant differences in intensity or spectral resolution were found between the amusic and control groups. The results demonstrate a pitch-specific deficit in fine spectro-temporal information processing in amusia that seems unrelated to temporal or spectral coding in the auditory periphery. These results are consistent with the view that there are distinct mechanisms dedicated to processing resolved and unresolved harmonics in the general population, the former being altered in congenital amusia while the latter is spared. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. An adaptively refined phase-space element method for cosmological simulations and collisionless dynamics

    NASA Astrophysics Data System (ADS)

    Hahn, Oliver; Angulo, Raul E.

    2016-01-01

    N-body simulations are essential for understanding the formation and evolution of structure in the Universe. However, the discrete nature of these simulations affects their accuracy when modelling collisionless systems. We introduce a new approach to simulate the gravitational evolution of cold collisionless fluids by solving the Vlasov-Poisson equations in terms of adaptively refineable `Lagrangian phase-space elements'. These geometrical elements are piecewise smooth maps between Lagrangian space and Eulerian phase-space and approximate the continuum structure of the distribution function. They allow for dynamical adaptive splitting to accurately follow the evolution even in regions of very strong mixing. We discuss in detail various one-, two- and three-dimensional test problems to demonstrate the performance of our method. Its advantages compared to N-body algorithms are: (I) explicit tracking of the fine-grained distribution function, (II) natural representation of caustics, (III) intrinsically smooth gravitational potential fields, thus (IV) eliminating the need for any type of ad hoc force softening. We show the potential of our method by simulating structure formation in a warm dark matter scenario. We discuss how spurious collisionality and large-scale discreteness noise of N-body methods are both strongly suppressed, which eliminates the artificial fragmentation of filaments. Therefore, we argue that our new approach improves on the N-body method when simulating self-gravitating cold and collisionless fluids, and is the first method that allows us to explicitly follow the fine-grained evolution in six-dimensional phase-space.

  16. Time evolution of fine structures in the solar chromosphere.

    NASA Astrophysics Data System (ADS)

    Tsiropoula, G.; Alissandrakis, C. E.; Schmieder, B.

    1994-10-01

    We have studied the temporal evolution of two quiet chromospheric regions, one with a typical rosette and another with chains of mottles at the junction of three supergranules. The observations were obtained during 15 minutes with the Multichannel Subtractive Double Pass spectrograph (MSDP) operating in Hα at the Pic du Midi Observatory. We derived intensity maps and Doppler shift velocities at different wavelengths along the Hα profile over a two dimensional field of view. The observed contrast profiles were matched with theoretical contrast profiles using Beckers' cloud model for a more accurate determination of the line of sight velocity. A statistical analysis with cross correlation functions showed that the fine structures were stable in intensity over the observation period (15 min), but the line of sight velocity showed important changes within a few minutes. A detailed analysis of the velocities along the axes of dark mottles showed that the predominant pattern of bulk motion is that of downflow at their footpoints and alternating phases of upflow and downflow at their tops. This motion is consistent with Pikel'ner's model for spicules, which attributes this pattern to the reconnection of opposite magnetic filed lines. This picture is also consistent with the velocity reversals with time observed in spicules and may be associated to the systematic downflows observed in the transition region. Doppler shift velocities in dark mottles are too low compared to those derived with the cloud model; the latter are comparable to those reported for spicules, strengthening the view that these structures are identical.

  17. Seismic reflection imaging of shallow oceanographic structures

    NASA Astrophysics Data System (ADS)

    Piété, Helen; Marié, Louis; Marsset, Bruno; Thomas, Yannick; Gutscher, Marc-André

    2013-05-01

    Multichannel seismic (MCS) reflection profiling can provide high lateral resolution images of deep ocean thermohaline fine structure. However, the shallowest layers of the water column (z < 150 m) have remained unexplored by this technique until recently. In order to explore the feasibility of shallow seismic oceanography (SO), we reprocessed and analyzed four multichannel seismic reflection sections featuring reflectors at depths between 10 and 150 m. The influence of the acquisition parameters was quantified. Seismic data processing dedicated to SO was also investigated. Conventional seismic acquisition systems were found to be ill-suited to the imaging of shallow oceanographic structures, because of a high antenna filter effect induced by large offsets and seismic trace lengths, and sources that typically cannot provide both a high level of emission and fine vertical resolution. We considered a test case, the imagery of the seasonal thermocline on the western Brittany continental shelf. New oceanographic data acquired in this area allowed simulation of the seismic acquisition. Sea trials of a specifically designed system were performed during the ASPEX survey, conducted in early summer 2012. The seismic device featured: (i) four seismic streamers, each consisting of six traces of 1.80 m; (ii) a 1000 J SIG sparker source, providing a 400 Hz signal with a level of emission of 205 dB re 1 μPa @ 1 m. This survey captured the 15 m thick, 30 m deep seasonal thermocline in unprecedented detail, showing images of vertical displacements most probably induced by internal waves.

  18. I/O Router Placement and Fine-Grained Routing on Titan to Support Spider II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezell, Matthew A; Dillow, David; Oral, H Sarp

    2014-01-01

    The Oak Ridge Leadership Computing Facility (OLCF) introduced the concept of Fine-Grained Routing in 2008 to improve I/O performance between the Jaguar supercomputer and Spider, OLCF s center-wide Lustre file system. Fine-grained routing organizes I/O paths to minimize congestion. Jaguar has since been upgraded to Titan, providing more than a ten-fold improvement in peak performance. To support the center s increased computational capacity and I/O demand, the Spider file system has been replaced with Spider II. Building on the lessons learned from Spider, an improved method for placing LNET routers was developed and implemented for Spider II. The fine-grained routingmore » scripts and configuration have been updated to provide additional optimizations and better match the system setup. This paper presents a brief history of fine-grained routing at OLCF, an introduction to the architectures of Titan and Spider II, methods for placing routers in Titan, and details about the fine-grained routing configuration.« less

  19. H I Structure and Topology of the Galaxy Revealed by the I-GALFA H I 21-cm Line Survey

    NASA Astrophysics Data System (ADS)

    Koo, Bon-Chul; Park, G.; Cho, W.; Gibson, S. J.; Kang, J.; Douglas, K. A.; Peek, J. E. G.; Korpela, E. J.; Heiles, C. E.

    2011-05-01

    The I-GALFA survey mapping all the H I in the inner Galactic disk visible to the Arecibo 305m telescope within 10 degrees of the Galactic plane (longitudes of 32 to 77 degrees at b = 0) completed observations in 2009 September and will soon be made publicly available. The high (3.4 arcmin) resolution and tremendous sensitivity of the survey offer a great opportunity to observe the fine details of H I both in the inner and in the far outer Galaxy. The reduced HI column density maps show that the HI structure is highly filamentary and clumpy, pervaded by shell-like structures, vertical filaments, and small clumps. By inspecting individual maps, we have found 36 shell candidates of angular sizes ranging from 0.4 to 12 degrees, half of which appear to be expanding. In order to characterize the filamentary/clumpy morphology of the HI structure, we have carried out statistical analyses of selected areas representing the spiral arms in the inner and outer Galaxy. Genus statistics that can distinguish the ``meatball'' and ``swiss-cheese'' topologies show that the HI topology is clump-like in most regions. The two-dimensional Fourier analysis further shows the HI structures are filamentary and mainly parallel to the plane in the outer Galaxy. We also examine the level-crossing statistics, the results of which are described in detail in an accompanying poster by Park et al.

  20. [Fine stereo structure for natural organic molecules, a preliminary study. II. Melting point influenced by structure factors].

    PubMed

    Lu, Y; Zheng, Q; Lu, D; Ma, P; Chen, Y

    1995-06-01

    Crystal structures of two compounds from Tripterygium wilfordii Hook f. have been determined by X-ray diffraction method. Structure factors influencing melting point of solid state have been analysed. Crystal class (or space group), recrystallization solvent, force between molecules and fine changes of molecular structures will all cause melting point changes of crystal substance.

  1. Sedimentary structures and stratal geometries at the foothills of Mount Sharp: their role in paleoenvironmental interpretation

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Rubin, D. M.; Sumner, D. Y.; Grotzinger, J. P.; Lewis, K. W.; Stack, K.; Kah, L. C.; Banham, S.; Edgett, K. S.

    2015-12-01

    The Mars Science Laboratory Curiosity rover has been exploring sedimentary rocks at the foothills of Mount Sharp since August 2014. Robust interpretation of the paleoenvironmental contexts requires detailed facies analysis of these rocks including analysis and interpretation of sedimentary structures and sediment body geometries. Here, we describe some of the detailed sedimentary structures and sedimentary geometries observed by Curiosity between the Pahrump_Hills field site and its current location at Marias Pass. The Pahrump Hills sedimentary section comprises a succession dominated by finely laminated mudstones of the Murray formation that are interpreted to have been deposited in an ancient lake within Gale crater. Toward the top of the Pahump Hills succession, we observe the appearance of coarser-grained sandstones that are interstratified within the lacustrine mudstones. These sandstones that include Whale Rock and Newspaper Rock show lenticular geometries, and are pervasively cross-stratified. These features indicate that currents eroded shallow scours in the lake beds that were then infilled by deposition from migrating subaqueous dunes. The paleoenvironmental setting may represent either a gullied delta front setting or one in which lake level fall caused fluvial erosion and infilling of the shallow scours. Since leaving Pahrump_Hills, Curiosity has imaged extensive exposures of strata that are partly correlative with and stratigraphically overlie the uppermost part of the Pahrump section. Isolated cross-bedded sandstones and possible interstratified conglomerates beds occur within Murray formation mudstones. Capping sandstones with a likely variety of environmental contexts overlie mudstones. Where imaged in detail, sedimentary structures, such as trough-cross bedding and possible eolian pinstriping, provide constraints on plausible sedimentary processes and bounds on depositional setting.

  2. Multi-scale Multi-dimensional Imaging and Characterization of Oil Shale Pyrolysis

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Saif, T.; Lin, Q.; Al-Khulaifi, Y.; Blunt, M. J.; Bijeljic, B.

    2017-12-01

    The microstructural evaluation of fine grained rocks is challenging which demands the use of several complementary methods. Oil shale, a fine-grained organic-rich sedimentary rock, represents a large and mostly untapped unconventional hydrocarbon resource with global reserves estimated at 4.8 trillion barrels. The largest known deposit is the Eocene Green River Formation in Western Colorado, Eastern Utah, and Southern Wyoming. An improved insight into the mineralogy, organic matter distribution and pore network structure before, during and after oil shale pyrolysis is critical to understanding hydrocarbon flow behaviour and improving recovery. In this study, we image Mahogany zone oil shale samples in two dimensions (2-D) using scanning electron microscopy (SEM), and in three dimensions (3-D) using focused ion beam scanning electron microscopy (FIB-SEM), laboratory-based X-ray micro-tomography (µCT) and synchrotron X-ray µCT to reveal a complex and variable fine grained microstructure dominated by organic-rich parallel laminations which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 300-500°C with the formation of micron-scale connected pore channels developing principally along the kerogen-rich lamellar structures.

  3. Fine structure of the Arabidopsis stem cuticle: effects of fixation and changes over development.

    PubMed

    Shumborski, Sarah J; Samuels, A Lacey; Bird, David A

    2016-10-01

    The Arabidopsis cuticle, as observed by electron microscopy, consists primarily of the cutin/cutan matrix. The cuticle possesses a complex substructure, which is correlated with the presence of intracuticular waxes. The plant cuticle is composed of an insoluble polyester, cutin, and organic solvent soluble cuticular waxes, which are embedded within and coat the surface of the cutin matrix. How these components are arranged in the cuticle is not well understood. The Arabidopsis cuticle is commonly understood as 'amorphous,' lacking in ultrastructural features, and is often observed as a thin (~80-100 nm) electron-dense layer on the surface of the cell wall. To examine this cuticle in more detail, we examined cuticles from both rapidly elongating and mature sections of the stem and compared the preservation of the cuticles using conventional chemical fixation methods and high-pressure freezing/freeze-substitution (HPF/FS). We found that HPF/FS preparation revealed a complex cuticle substructure, which was more evident in older stems. We also found that the cuticle increases in thickness with development, indicating an accretion of polymeric material, likely in the form of the non-hydrolyzable polymer, cutan. When wax was extracted by chloroform immersion prior to sample preparation, the contribution of waxes to cuticle morphology was revealed. Overall, the electron-dense cuticle layer was still visible but there was loss of the cuticle substructure. Furthermore, the cuticle of cer6, a wax-deficient mutant, also lacked this substructure, suggesting that these fine striations were dependent on the presence of cuticular waxes. Our findings show that HPF/FS preparation can better preserve plant cuticles, but also provide new insights into the fine structure of the Arabidopsis cuticle.

  4. Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference

    NASA Astrophysics Data System (ADS)

    Nakazumi, Tomoka; Sato, Tadatake; Narazaki, Aiko; Niino, Hiroyuki

    2016-09-01

    For crack-free marking of glass materials, a beam-scanning laser-induced backside wet etching (LIBWE) process by a beam spot with a fine periodic structure was examined. The fine periodic structure was produced within a beam spot by means of a Mach-Zehnder interferometer incorporated to the optical setup for the beam-scanning LIBWE. A fine structure with a period of 9 µm was observed within the microstructures with a diameter of ca. 40 µm fabricated by a laser shot under double-beam irradiation, and they could be homogeneously fabricated within an area of 800  ×  800 µm. The area filled with the microstructures, including fine periodic structures, could be observed in high contrast under a diffuse, on-axis illumination that was used in commercial QR code readers.

  5. [Ultraviolet spectroscopic study on the fine structures in the solar polar hole].

    PubMed

    Zhang, Min; Wang, Dong; Liu, Guo-Hong

    2014-07-01

    Fine structures in the south solar polar coronal hole were observed by N IV line of SOHO/SUMER spectrograph. The scales of the fine structures range spatially range from 1 arcsec to several arcsecs, temporally from 1 min to several minutes, and parts of them are in strip shape along the slit direction. The line-of-sight velocity of them is up to tens of km x s(-1) with red and blue shift intercrossed occasionally, which appear periodically as long as 100 minutes in some regions. Part of the fine structures can be clearly observed at the Ne V III line with higher formation temperature in the same spectral window. The time and location of some fine structures with high velocity in the Ne V III spectrum are almost the same as that in N IV spectrum, but they are extended and diffused in the Ne V III spectrum. Some fine structures have non-Gaussian profiles with the line-of-sight Doppler velocities up to 150 km x s(-1) in the N IV blue/red wings, which is similar with the explosive events in the transition region. In the past, explosive events are small-scale dynamic phenomena often observed in the quiet-sun (QS) region, while their properties in coronal holes (CHs) remain unclear. Here, we find the EE-like events with strong dynamics in the south solar polar coronal hole by N IV line of SOHO/SUMER spectrograph.

  6. Variations in Grain-Scale Sediment Structure in a Gravel-Bed Channel as a Function of Fine Sediment Content and Morphological Location

    NASA Astrophysics Data System (ADS)

    Voepel, H.; Ahmed, S. I.; Hodge, R. A.; Leyland, J.; Sear, D. A.

    2016-12-01

    One of the major causes of uncertainty in estimates of bedload transport rates in gravel bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on bed stability. Furthermore, grain-scale structure varies throughout a channel and over time in ways that have not been fully quantified. Our research aims to quantify variations in sediment structure caused by two key variables; morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel bed with a riffle-pool morphology. The fine sediment content of the bed was incrementally increased over a series of runs from gravel only, to coarse sand, fine sand and two concentrations of clay. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure through metrics including measurement of grain pivot angles, grain exposure and protrusion, and vertical variation in bed porosity and fine sediment content. Metrics derived from the CT data were verified using data from grain counts and tilt-table measurements on co-located samples. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure. These results have implications for the development of sediment entrainment models for gravel bed rivers.

  7. Reservoir studies with geostatistics to forecast performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, R.W.; Behrens, R.A.; Emanuel, A.S.

    1991-05-01

    In this paper example geostatistics and streamtube applications are presented for waterflood and CO{sub 2} flood in two low-permeability sandstone reservoirs. Thy hybrid approach of combining fine vertical resolution in cross-sectional models with streamtubes resulted in models that showed water channeling and provided realistic performance estimates. Results indicate that the combination of detailed geostatistical cross sections and fine-grid streamtube models offers a systematic approach for realistic performance forecasts.

  8. Holography: A Transformative Technology for Learning and Human Performance Improvement

    ERIC Educational Resources Information Center

    Frazer, Gary W.; Stevens, George H.

    2015-01-01

    Most past and current learning technologies have been one- or two-dimensional in presentation. This may be fine if one is looking at a map or even a fine painting. However, to fully appreciate the detail of a statue or a machine part, it is better to be able to look at it from all sides. Use of holographic images allows an item to be shared with a…

  9. Fine Structure of Anomalously Intense Pulses of PSR J0814+7429 Radio Emission in the Decameter Range

    NASA Astrophysics Data System (ADS)

    Skoryk, A. O.; Ulyanov, O. M.; Zakharenko, V. V.; Shevtsova, A. I.; Vasylieva, I. Y.; Plakhov, M. S.; Kravtsov, I. M.

    2017-06-01

    Purpose: The fine structure of the anomalously intense pulses of PSR J0814+7429 (B0809+74) has been studied. The pulsar radio emission fine structure is investigated to determine its parameters in the lowest part of spectrum available for groundbased observations. Design/methodology/approach: The scattering measure in the interstellar plasma have been estimated using the spectral and correlation analyses of pulsar data recorded by the UTR-2 radio telescope. Results: Two characteristic time scales of the anomalously intense pulses fine structure of the PSR J0814+7429 radio emission have been found. The strongest pulses of this pulsar in the decameter range can have a duration of about t 2÷3 ms. These pulses are emitted in short series. In some cases, they are emitted over the low-intensity plateau consisting of the “long” subpulse component. Conclusions: The narrowest correlation scale of pulsar J0814+7429 radio emission corresponds to the doubled scattering time constant of the interstellar medium impulse response. Broader scale of the fine structure of its radio emission can be explained by the radiation of a short series of narrow pulses or relatively broad pulses inside this pulsar magnetosphere.

  10. Chimaeric sounds reveal dichotomies in auditory perception

    PubMed Central

    Smith, Zachary M.; Delgutte, Bertrand; Oxenham, Andrew J.

    2008-01-01

    By Fourier's theorem1, signals can be decomposed into a sum of sinusoids of different frequencies. This is especially relevant for hearing, because the inner ear performs a form of mechanical Fourier transform by mapping frequencies along the length of the cochlear partition. An alternative signal decomposition, originated by Hilbert2, is to factor a signal into the product of a slowly varying envelope and a rapidly varying fine time structure. Neurons in the auditory brainstem3–6 sensitive to these features have been found in mammalian physiological studies. To investigate the relative perceptual importance of envelope and fine structure, we synthesized stimuli that we call ‘auditory chimaeras’, which have the envelope of one sound and the fine structure of another. Here we show that the envelope is most important for speech reception, and the fine structure is most important for pitch perception and sound localization. When the two features are in conflict, the sound of speech is heard at a location determined by the fine structure, but the words are identified according to the envelope. This finding reveals a possible acoustic basis for the hypothesized ‘what’ and ‘where’ pathways in the auditory cortex7–10. PMID:11882898

  11. Adaptive 3D Face Reconstruction from Unconstrained Photo Collections.

    PubMed

    Roth, Joseph; Tong, Yiying; Liu, Xiaoming

    2016-12-07

    Given a photo collection of "unconstrained" face images of one individual captured under a variety of unknown pose, expression, and illumination conditions, this paper presents a method for reconstructing a 3D face surface model of the individual along with albedo information. Unlike prior work on face reconstruction that requires large photo collections, we formulate an approach to adapt to photo collections with a high diversity in both the number of images and the image quality. To achieve this, we incorporate prior knowledge about face shape by fitting a 3D morphable model to form a personalized template, following by using a novel photometric stereo formulation to complete the fine details, under a coarse-to-fine scheme. Our scheme incorporates a structural similarity-based local selection step to help identify a common expression for reconstruction while discarding occluded portions of faces. The evaluation of reconstruction performance is through a novel quality measure, in the absence of ground truth 3D scans. Superior large-scale experimental results are reported on synthetic, Internet, and personal photo collections.

  12. Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Tchein, Gnofam Jacques; Jacquin, Dimitri; Coupard, Dominique; Lacoste, Eric; Girot Mata, Franck

    2018-06-01

    This paper is focused on the genesis of microstructures in friction stir welding (FSW) of the Ti-6Al-4V alloy. Several titanium joints, initially prepared with four different preheat treatments, were processed by FSW. Detailed microstructural analyses were performed in order to investigate change in the microstructure during the process. In this work, the FSW processing allows a controlled and stable microstructure to be produced in the stirring zone, regardless of the initial heat treatment or the welding conditions. The welded material undergoes a severe thermomechanical treatment which can be divided into two steps. First, the friction in the shoulder and the plastic strain give rise to the necessary conditions to allow a continuous dynamic recrystallization of the β phase. This operation produces a fine and equiaxed β grain structure. Second, once the pin has moved away, the temperature decreases, and the material undergoes a heat treatment equivalent to air quenching. The material thus exhibits a β → β + α transformation with germination of a fine intergranular Widmanstätten phase within the ex-fully-recrystallized- β grains.

  13. Sample-based synthesis of two-scale structures with anisotropy

    DOE PAGES

    Liu, Xingchen; Shapiro, Vadim

    2017-05-19

    A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less

  14. Sample-based synthesis of two-scale structures with anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xingchen; Shapiro, Vadim

    A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less

  15. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification

    NASA Astrophysics Data System (ADS)

    Zhang, Ce; Pan, Xin; Li, Huapeng; Gardiner, Andy; Sargent, Isabel; Hare, Jonathon; Atkinson, Peter M.

    2018-06-01

    The contextual-based convolutional neural network (CNN) with deep architecture and pixel-based multilayer perceptron (MLP) with shallow structure are well-recognized neural network algorithms, representing the state-of-the-art deep learning method and the classical non-parametric machine learning approach, respectively. The two algorithms, which have very different behaviours, were integrated in a concise and effective way using a rule-based decision fusion approach for the classification of very fine spatial resolution (VFSR) remotely sensed imagery. The decision fusion rules, designed primarily based on the classification confidence of the CNN, reflect the generally complementary patterns of the individual classifiers. In consequence, the proposed ensemble classifier MLP-CNN harvests the complementary results acquired from the CNN based on deep spatial feature representation and from the MLP based on spectral discrimination. Meanwhile, limitations of the CNN due to the adoption of convolutional filters such as the uncertainty in object boundary partition and loss of useful fine spatial resolution detail were compensated. The effectiveness of the ensemble MLP-CNN classifier was tested in both urban and rural areas using aerial photography together with an additional satellite sensor dataset. The MLP-CNN classifier achieved promising performance, consistently outperforming the pixel-based MLP, spectral and textural-based MLP, and the contextual-based CNN in terms of classification accuracy. This research paves the way to effectively address the complicated problem of VFSR image classification.

  16. Coupling fine-scale root and canopy structure using ground-based remote sensing

    Treesearch

    Brady Hardiman; Christopher Gough; John Butnor; Gil Bohrer; Matteo Detto; Peter Curtis

    2017-01-01

    Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in...

  17. Formation of fine {gamma} grain structure through fine {alpha}{sub 2}/{gamma} lamellar structure in Ti-rich TiAl alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumagai, T.; Abe, E.; Nakamura, M.

    1997-12-31

    Microstructural development of an extremely fine {alpha}{sub 2}-Ti{sub 32}Al/{gamma}-TiAl lamellar structure, which was formed by ice water quenching after solution-treatment in a high-temperature {alpha}-Ti phase field for a long period of time, was examined during isothermal treatment. In an as-quenched Ti-48at.%Al alloy, the massively transformed {gamma} ({gamma}{sub m}) and untransformed (meaning massively untransformed) fine {alpha}{sub 2}/{gamma} lamellar regions were observed. Fine {gamma} grains, which were similar to {gamma}{sub m}, were generated both within the fine {alpha}{sub 2}/{gamma} lamellae and at the boundary area between the {gamma}{sub m} and the fine {alpha}{sub 2}/{gamma} lamellar regions by aging at low-temperature (1,173 K)more » for a short time (180s). Further aging (1.8ks) caused the coarsening of these newly generated fine {gamma} grains. On the other hand, the coarsening of the {gamma} grains occurred by a high-temperature (1,323 K) aging treatment even for 180s. Fine {alpha}{sub 2} plates and particles, which were aligned to a particular direction, were observed in the {gamma} grain interiors, indicating that the newly generated {gamma} grains grew at the expense of the fine {alpha}{sub 2}/{gamma} lamellae. It can be considered that the {gamma} grain formation through the fine {alpha}{sub 2}/{gamma} lamellae is closely related to the {alpha}{sub 2}{yields}{gamma} reaction of the {alpha}{sub 2} plates sandwiched by the {gamma} plates, and needs the fast heating rate enough to overcome the {alpha}{sub 2}/{gamma}{yields}{gamma}/{gamma} lamellae reaction.« less

  18. Fine Structure of Trious and Excitons in Single GaAs Quantum Dots

    DTIC Science & Technology

    2002-08-30

    RAPID COMMUNICATIONS PHYSICAL REVIEW B 66, 081310~R! ~2002!Fine structure of trions and excitons in single GaAs quantum dots J. G. Tischler, A. S ...fine structure of single localized excitons and trions. DOI: 10.1103/PhysRevB.66.081310 PACS number~ s !: 78.67.Hc, 73.21.2b, 71.35.2yAlthough the...AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Research Laboratory

  19. New approaches in renal microscopy: volumetric imaging and superresolution microscopy.

    PubMed

    Kim, Alfred H J; Suleiman, Hani; Shaw, Andrey S

    2016-05-01

    Histologic and electron microscopic analysis of the kidney has provided tremendous insight into structures such as the glomerulus and nephron. Recent advances in imaging, such as deep volumetric approaches and superresolution microscopy, have the capacity to dramatically enhance our current understanding of the structure and function of the kidney. Volumetric imaging can generate images millimeters below the surface of the intact kidney. Superresolution microscopy breaks the diffraction barrier inherent in traditional light microscopy, enabling the visualization of fine structures. Here, we describe new approaches to deep volumetric and superresolution microscopy of the kidney. Rapid advances in lasers, microscopic objectives, and tissue preparation have transformed our ability to deep volumetric image the kidney. Innovations in sample preparation have allowed for superresolution imaging with electron microscopy correlation, providing unprecedented insight into the structures within the glomerulus. Technological advances in imaging have revolutionized our capacity to image both large volumes of tissue and the finest structural details of a cell. These new advances have the potential to provide additional profound observations into the normal and pathologic functions of the kidney.

  20. Monte Carlo Simulations of Electron Energy-Loss Spectra with the Addition of Fine Structure from Density Functional Theory Calculations.

    PubMed

    Attarian Shandiz, Mohammad; Guinel, Maxime J-F; Ahmadi, Majid; Gauvin, Raynald

    2016-02-01

    A new approach is presented to introduce the fine structure of core-loss excitations into the electron energy-loss spectra of ionization edges by Monte Carlo simulations based on an optical oscillator model. The optical oscillator strength is refined using the calculated electron energy-loss near-edge structure by density functional theory calculations. This approach can predict the effects of multiple scattering and thickness on the fine structure of ionization edges. In addition, effects of the fitting range for background removal and the integration range under the ionization edge on signal-to-noise ratio are investigated.

  1. Mapping Urban Tree Canopy Coverage and Structure using Data Fusion of High Resolution Satellite Imagery and Aerial Lidar

    NASA Astrophysics Data System (ADS)

    Elmes, A.; Rogan, J.; Williams, C. A.; Martin, D. G.; Ratick, S.; Nowak, D.

    2015-12-01

    Urban tree canopy (UTC) coverage is a critical component of sustainable urban areas. Trees provide a number of important ecosystem services, including air pollution mitigation, water runoff control, and aesthetic and cultural values. Critically, urban trees also act to mitigate the urban heat island (UHI) effect by shading impervious surfaces and via evaporative cooling. The cooling effect of urban trees can be seen locally, with individual trees reducing home HVAC costs, and at a citywide scale, reducing the extent and magnitude of an urban areas UHI. In order to accurately model the ecosystem services of a given urban forest, it is essential to map in detail the condition and composition of these trees at a fine scale, capturing individual tree crowns and their vertical structure. This paper presents methods for delineating UTC and measuring canopy structure at fine spatial resolution (<1m). These metrics are essential for modeling the HVAC benefits from UTC for individual homes, and for assessing the ecosystem services for entire urban areas. Such maps have previously been made using a variety of methods, typically relying on high resolution aerial or satellite imagery. This paper seeks to contribute to this growing body of methods, relying on a data fusion method to combine the information contained in high resolution WorldView-3 satellite imagery and aerial lidar data using an object-based image classification approach. The study area, Worcester, MA, has recently undergone a large-scale tree removal and reforestation program, following a pest eradication effort. Therefore, the urban canopy in this location provides a wide mix of tree age class and functional type, ideal for illustrating the effectiveness of the proposed methods. Early results show that the object-based classifier is indeed capable of identifying individual tree crowns, while continued research will focus on extracting crown structural characteristics using lidar-derived metrics. Ultimately, the resulting fine resolution UTC map will be compared with previously created UTC maps of the same area but for earlier dates, producing a canopy change map corresponding to the Worcester area tree removal and replanting effort.

  2. A simulation for gravity fine structure recovery from high-low GRAVSAT SST data

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Lancaster, E. R.

    1976-01-01

    Covariance error analysis techniques were applied to investigate estimation strategies for the high-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. Surface density blocks of 5 deg x 5 deg and 2 1/2 deg x 2 1/2 deg resolution were utilized to represent the high order geopotential with the drag-free GRAVSAT configured in a nearly circular polar orbit at 250 km. altitude. GEOPAUSE and geosynchronous satellites were considered as high relay spacecraft. It is demonstrated that knowledge of gravitational fine structure can be significantly improved at 5 deg x 5 deg resolution using SST data from a high-low configuration with reasonably accurate orbits for the low GRAVSAT. The gravity fine structure recoverability of the high-low SST mission is compared with the low-low configuration and shown to be superior.

  3. Revisiting place and temporal theories of pitch

    PubMed Central

    2014-01-01

    The nature of pitch and its neural coding have been studied for over a century. A popular debate has revolved around the question of whether pitch is coded via “place” cues in the cochlea, or via timing cues in the auditory nerve. In the most recent incarnation of this debate, the role of temporal fine structure has been emphasized in conveying important pitch and speech information, particularly because the lack of temporal fine structure coding in cochlear implants might explain some of the difficulties faced by cochlear implant users in perceiving music and pitch contours in speech. In addition, some studies have postulated that hearing-impaired listeners may have a specific deficit related to processing temporal fine structure. This article reviews some of the recent literature surrounding the debate, and argues that much of the recent evidence suggesting the importance of temporal fine structure processing can also be accounted for using spectral (place) or temporal-envelope cues. PMID:25364292

  4. Usage of Crushed Concrete Fines in Decorative Concrete

    NASA Astrophysics Data System (ADS)

    Pilipenko, Anton; Bazhenova, Sofia

    2017-10-01

    The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of the crushed concrete fines were provided. It is shown that the admixture of the crushed concrete fines has little effect on the colour characteristics of the decorative concrete products. The preferred options to improve the surfaces of decorative concrete are also proposed.

  5. Closing in on Jupiter North Pole

    NASA Image and Video Library

    2016-09-02

    As NASA's Juno spacecraft closed in on Jupiter for its Aug. 27, 2016 pass, its view grew sharper and fine details in the north polar region became increasingly visible. The JunoCam instrument obtained this view on August 27, about two hours before closest approach, when the spacecraft was 120,000 miles (195,000 kilometers) away from the giant planet (i.e., for Jupiter's center). Unlike the equatorial region's familiar structure of belts and zones, the poles are mottled with rotating storms of various sizes, similar to giant versions of terrestrial hurricanes. Jupiter's poles have not been seen from this perspective since the Pioneer 11 spacecraft flew by the planet in 1974. http://photojournal.jpl.nasa.gov/catalog/PIA21030

  6. Self-assembled nanostructures of linear arylacetylenes and their aza-substituted analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jia-Ju; Department of Physics and Materials Science and Centre of Super Diamond and Advanced Films; Yang, Xiong-Bo

    2016-06-15

    A series of linear phenylene ethynylene molecules have been synthesized, and aza-substitution has been used as a strategy to fine-tune the properties of the molecules. All the compounds exhibited pure blue emission both in solution and solid state, and fluorescence quantum yields as high as 0.66, 0.63 and 0.82 were found in chloroform solutions. The well-defined nanostructures such as quasi-cubes, cubes and rods were fabricated by self-assembly method from these compounds. The photophysical properties and aggregation behavior of self-assembled structures were analyzed in detail. The morphology as well as photophysical properties of these nanostructures have been tuned with selective requirements.

  7. Quantitative volumetric Raman imaging of three dimensional cell cultures

    NASA Astrophysics Data System (ADS)

    Kallepitis, Charalambos; Bergholt, Mads S.; Mazo, Manuel M.; Leonardo, Vincent; Skaalure, Stacey C.; Maynard, Stephanie A.; Stevens, Molly M.

    2017-03-01

    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy.

  8. Multiconfiguration Dirac-Hartree-Fock calculations of energy levels and radiative rates of Fe VII

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xu, Xiaokai; Li, Bowen; Jönsson, Per; Chen, Ximeng

    2018-06-01

    Detailed calculations are performed for 134 fine-structure levels of the 3p63d2, 3p63d4s, 3p53d3 and 3p63d4p configurations in Fe VII using the multiconfiguration Dirac-Hartree-Fock (MCDHF) and relativistic configuration interaction (RCI) methods. Important electron correlation effects are systematically accounted for through active space (AS) expansions. Our results compare well with experimental measurements, emphasizing the importance of a careful treatment of electron correlation, and provide some missing data in the NIST atomic database. The data obtained are expected to be useful in astrophysical applications, particularly for the research of the solar coronal plasma.

  9. Biochemical Composition Suggests Different Roles of Leaf Litter and Fine Roots in Soil Carbon Formation

    NASA Astrophysics Data System (ADS)

    Xia, M.; Pregitzer, K. S.; Talhelm, A. F.

    2012-12-01

    Plant litter is a major source of soil organic carbon (C). This litter is not homogenous, but instead primarily composed of fine root and leaf litter that adapted to different physiological functions. These unique functions suggest that root and leaf litter likely have different biochemical traits, and thus different decomposition patterns. However, few studies have compared their substrate quality and contributions to soil C. Also, much less attention has been given to fine roots although they can represent a substantial litter production. Here we hypothesize that 1) leaf litter and fine roots have different substrate quality as they are highly different in biochemical composition; 2) the biochemical composition of leaf litter and fine roots responds differently to the simulated nitrogen (N) deposition. To test these hypotheses, we collected leaf litter and fine roots of Acer saccharum (the dominant species in the northern temperate ecosystems we studied) in both ambient and N addition treatment plots at four sites of Michigan N deposition gradient study. We quantified ten biochemical components thought to be important on decomposition. Strikingly, we found a consistently three-fold higher lignin concentration in fine roots than that in leaf litter (P< 0.01). On average, lignin concentration of fine roots was 45.4±0.3% while that of leaf litter was 13.5±0.2%. Lignin has been considered highly recalcitrant and hypothesized as the major precursor of humus substance. Condensed tannin (CT) concentration in fine roots (13.13±0.51%) was also substantially higher than that in leaf litter (P< 0.01, 4.63±0.42 %). Tissue CT can inhibit litter decay by both precipitating proteins and by having antimicrobial properties. In contrast, fine roots exhibited lower concentrations of non-structural carbohydrates (NSC), soluble phenolics, and holocellulose (hemicelluloses & cellulose) than leaf litter (P< 0.01). These components are considered more easily accessible, and may stimulate the decay of lignin by providing required energy. Therefore, fine roots of Acer saccharum have a relatively recalcitrant nature based on their distinct biochemical composition, suggesting fine roots may be the major driver of soil carbon formation in the ecosystems we studied. Litter type and N addition had significant interactions on lignin, holocellulose, and NSC (P< 0.05), indicating these traits of different litter types respond differently to N addition. In leaf litter, the concentrations of lignin, NSC, and bound CT were affected by N addition (P< 0.05). By contrast, N addition only reduced the soluble protein concentration in fine roots (P< 0.05). Hence, substrate quality of leaf litter and fine roots responds differently to the simulated N deposition, and may eventually lead to different responses in decomposition pattern. This is one of few studies comparing the detailed biochemical profile of leaf litter and fine roots in a dominant tree species. Different biochemical traits of fine roots and leaf litter may reflect the different specializations for their physiological functions. This work highlights the importance of fine root in the soil carbon formation due to its recalcitrant nature, and emphasizes the necessity of differentiating the responses of leaf litter and fine root decompositions to environmental changes when modeling biogeochemical cycles.

  10. P-polarized reflectance spectroscopy: A high sensitive real-time monitoring technique to study surface kinetics under steady state epitaxial deposition conditions

    NASA Technical Reports Server (NTRS)

    Dietz, Nikolaus; Bachmann, Klaus J.

    1995-01-01

    This paper describes the results of real-time optical monitoring of epitaxial growth processes by p-polarized reflectance spectroscopy (PRS) using a single wavelength application under pulsed chemical beam epitaxy (PCBE) condition. The high surface sensitivity of PRS allows the monitoring of submonolayer precursors coverage on the surface as shown for GaP homoepitaxy and GaP on Si heteroepitaxy as examples. In the case of heteroepitaxy, the growth rate and optical properties are revealed by PRS using interference oscillations as they occur during growth. Super-imposed on these interference oscillations, the PRS signal exhibits a fine structure caused by the periodic alteration of the surface chemistry by the pulsed supply of chemical precursors. This fine structure is modeled under conditions where the surface chemistry cycles between phosphorus supersaturated and phosphorus depleted surfaces. The mathematical model describes the fine structure using a surface layer that increases during the tertiarybutyl phosphine (TBP) supply and decreases during and after the triethylgallium (TEG) pulse, which increases the growing GaP film thickness. The imaginary part of the dielectric function of the surface layer is revealed from the turning points in the fine structure, where the optical response to the first precursor pulse in the cycle sequence changes sign. The amplitude of the fine structure is determined by the surface layer thickness and the complex dielectric functions for the surface layer with the underlying bulk film. Surface kinetic data can be obtained by analyzing the rise and decay transients of the fine structure.

  11. Drawing Children into Reading: A Qualitative Case Study of a Preschool Drawing Curriculum

    ERIC Educational Resources Information Center

    DeFauw, Danielle L.

    2016-01-01

    This article details a qualitative case study of 24 preschool children engaged with step-by-step drawing instruction provided by five educators as they developed their fine motor skills and drew detailed objects using the Drawing Children Into Reading curriculum (Halperin, W. A. (2011a). "Project 50 preschool manual." South Haven, MI:…

  12. Video enhancement of X-ray and neutron radiographs

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1973-01-01

    System was devised for displaying radiographs on television screen and enhancing fine detail in picture. System uses analog-computer circuits to process television signal from low-noise television camera. Enhanced images are displayed in black and white and can be controlled to vary degree of enhancement and magnification of details in either radiographic transparencies or opaque photographs.

  13. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    Treesearch

    Gretchen H. Roffler; Sandra L. Talbot; Gordon Luikart; George K. Sage; Kristy L. Pilgrim; Layne G. Adams; Michael K. Schwartz

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale...

  14. Energy, fine structure, hyperfine structure, and radiative transition rates of the high-lying multi-excited states for B-like neon

    NASA Astrophysics Data System (ADS)

    Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin

    2015-04-01

    The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.

  15. Principal component analysis for surface reflection components and structure in facial images and synthesis of facial images for various ages

    NASA Astrophysics Data System (ADS)

    Hirose, Misa; Toyota, Saori; Ojima, Nobutoshi; Ogawa-Ochiai, Keiko; Tsumura, Norimichi

    2017-08-01

    In this paper, principal component analysis is applied to the distribution of pigmentation, surface reflectance, and landmarks in whole facial images to obtain feature values. The relationship between the obtained feature vectors and the age of the face is then estimated by multiple regression analysis so that facial images can be modulated for woman aged 10-70. In a previous study, we analyzed only the distribution of pigmentation, and the reproduced images appeared to be younger than the apparent age of the initial images. We believe that this happened because we did not modulate the facial structures and detailed surfaces, such as wrinkles. By considering landmarks and surface reflectance over the entire face, we were able to analyze the variation in the distributions of facial structures and fine asperity, and pigmentation. As a result, our method is able to appropriately modulate the appearance of a face so that it appears to be the correct age.

  16. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, J.C.

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal IImore » EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.« less

  17. Image processing of metal surface with structured light

    NASA Astrophysics Data System (ADS)

    Luo, Cong; Feng, Chang; Wang, Congzheng

    2014-09-01

    In structured light vision measurement system, the ideal image of structured light strip, in addition to black background , contains only the gray information of the position of the stripe. However, the actual image contains image noise, complex background and so on, which does not belong to the stripe, and it will cause interference to useful information. To extract the stripe center of mental surface accurately, a new processing method was presented. Through adaptive median filtering, the noise can be preliminary removed, and the noise which introduced by CCD camera and measured environment can be further removed with difference image method. To highlight fine details and enhance the blurred regions between the stripe and noise, the sharping algorithm is used which combine the best features of Laplacian operator and Sobel operator. Morphological opening operation and closing operation are used to compensate the loss of information.Experimental results show that this method is effective in the image processing, not only to restrain the information but also heighten contrast. It is beneficial for the following processing.

  18. Light element opacities of astrophysical interest from ATOMIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colgan, J.; Kilcrease, D. P.; Magee, N. H. Jr.

    We present new calculations of local-thermodynamic-equilibrium (LTE) light element opacities from the Los Alamos ATOMIC code for systems of astrophysical interest. ATOMIC is a multi-purpose code that can generate LTE or non-LTE quantities of interest at various levels of approximation. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. The ATOMIC code uses ab-initio atomic structure data computed from the CATS code, which is based on Cowan's atomic structure codes, and photoionization cross section data computed from the Los Alamos ionization code GIPPER. ATOMIC also incorporates a newmore » equation-of-state (EOS) model based on the chemical picture. ATOMIC incorporates some physics packages from LEDCOP and also includes additional physical processes, such as improved free-free cross sections and additional scattering mechanisms. Our new calculations are made for elements of astrophysical interest and for a wide range of temperatures and densities.« less

  19. Brain blood vessel segmentation using line-shaped profiles

    NASA Astrophysics Data System (ADS)

    Babin, Danilo; Pižurica, Aleksandra; De Vylder, Jonas; Vansteenkiste, Ewout; Philips, Wilfried

    2013-11-01

    Segmentation of cerebral blood vessels is of great importance in diagnostic and clinical applications, especially for embolization of cerebral aneurysms and arteriovenous malformations (AVMs). In order to perform embolization of the AVM, the structural and geometric information of blood vessels from 3D images is of utmost importance. For this reason, the in-depth segmentation of cerebral blood vessels is usually done as a fusion of different segmentation techniques, often requiring extensive user interaction. In this paper we introduce the idea of line-shaped profiling with an application to brain blood vessel and AVM segmentation, efficient both in terms of resolving details and in terms of computation time. Our method takes into account both local proximate and wider neighbourhood of the processed pixel, which makes it efficient for segmenting large blood vessel tree structures, as well as fine structures of the AVMs. Another advantage of our method is that it requires selection of only one parameter to perform segmentation, yielding very little user interaction.

  20. Imaging the Fine-Scale Structure of the San Andreas Fault in the Northern Gabilan Range with Explosion and Earthquake Sources

    NASA Astrophysics Data System (ADS)

    Xin, H.; Thurber, C. H.; Zhang, H.; Wang, F.

    2014-12-01

    A number of geophysical studies have been carried out along the San Andreas Fault (SAF) in the Northern Gabilan Range (NGR) with the purpose of characterizing in detail the fault zone structure. Previous seismic research has revealed the complex structure of the crustal volume in the NGR region in two-dimensions (Thurber et al., 1996, 1997), and there has been some work on the three-dimensional (3D) structure at a coarser scale (Lin and Roecker, 1997). In our study we use earthquake body-wave arrival times and differential times (P and S) and explosion arrival times (only P) to image the 3D P- and S-wave velocity structure of the upper crust along the SAF in the NGR using double-difference (DD) tomography. The earthquake and explosion data types have complementary strengths - the earthquake data have good resolution at depth and resolve both Vp and Vs structure, although only where there are sufficient seismic rays between hypocenter and stations, whereas the explosions contribute very good near-surface resolution but for P waves only. The original dataset analyzed by Thurber et al. (1996, 1997) included data from 77 local earthquakes and 8 explosions. We enlarge the dataset with 114 more earthquakes that occurred in the study area, obtain improved S-wave picks using an automated picker, and include absolute and cross-correlation differential times. The inversion code we use is the algorithm tomoDD (Zhang and Thurber, 2003). We assess how the P and S velocity models and earthquake locations vary as we alter the inversion parameters and the inversion grid. The new inversion results show clearly the fine-scale structure of the SAF at depth in 3D, sharpening the image of the velocity contrast from the southwest side to the northeast side.

  1. Sociolinguistic variables and cognition.

    PubMed

    Thomas, Erik R

    2011-11-01

    Sociolinguistics has examined mental organization of language only sporadically. Meanwhile, areas of linguistics that deal with cognitive organization seldom delve deeply into language variation. Variation is essential for understanding how language is structured cognitively, however. Three kinds of evidence are discussed to illustrate this point. First, style shifting demonstrates that language users develop detailed associations of when to produce specific linguistic forms, depending on the pragmatic context. Second, variation in fine-grained phonetic cues shows that cognitive organization applies to linguistic forms not otherwise known to be under speakers' control. Finally, experiments on dialect comprehension and identification demonstrate that listeners have detailed cognitive associations of language variants with groups of people, whether or not they can produce the same variants themselves. A model is presented for how sociolinguistic knowledge can be viewed in relation to other parts of language with regard to cognitive and neural representations. WIREs Cogni Sci 2011 2 701-716 DOI: 10.1002/wcs.152 For further resources related to this article, please visit the WIREs website. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Cnn Based Retinal Image Upscaling Using Zero Component Analysis

    NASA Astrophysics Data System (ADS)

    Nasonov, A.; Chesnakov, K.; Krylov, A.

    2017-05-01

    The aim of the paper is to obtain high quality of image upscaling for noisy images that are typical in medical image processing. A new training scenario for convolutional neural network based image upscaling method is proposed. Its main idea is a novel dataset preparation method for deep learning. The dataset contains pairs of noisy low-resolution images and corresponding noiseless highresolution images. To achieve better results at edges and textured areas, Zero Component Analysis is applied to these images. The upscaling results are compared with other state-of-the-art methods like DCCI, SI-3 and SRCNN on noisy medical ophthalmological images. Objective evaluation of the results confirms high quality of the proposed method. Visual analysis shows that fine details and structures like blood vessels are preserved, noise level is reduced and no artifacts or non-existing details are added. These properties are essential in retinal diagnosis establishment, so the proposed algorithm is recommended to be used in real medical applications.

  3. Precision measurement of the three 2(3)P(J) helium fine structure intervals.

    PubMed

    Zelevinsky, T; Farkas, D; Gabrielse, G

    2005-11-11

    The three 2(3)P fine structure intervals of 4H are measured at an improved accuracy that is sufficient to test two-electron QED theory and to determine the fine structure constant alpha to 14 parts in 10(9). The more accurate determination of alpha, to a precision higher than attained with the quantum Hall and Josephson effects, awaits the reconciliation of two inconsistent theoretical calculations now being compared term by term. A low pressure helium discharge presents experimental uncertainties quite different than for earlier measurements and allows direct measurements of light pressure shifts.

  4. Collisional excitation of CH2 rotational/fine-structure levels by helium

    NASA Astrophysics Data System (ADS)

    Dagdigian, P. J.; Lique, F.

    2018-02-01

    Accurate determination of the abundance of CH2 in interstellar media relies on both radiative and collisional rate coefficients. We investigate here the rotational/fine-structure excitation of CH2 induced by collisions with He. We employ a recoupling technique to generate fine-structure-resolved cross-sections and rate coefficients from close coupling spin-free scattering calculations. The calculations are based on a recent, high-accuracy CH2-He potential energy surface computed at the coupled clusters level of theory. The collisional cross-section calculations are performed for all fine-structure transitions among the first 22 and 24 energy levels of ortho- and para-CH2, respectively, and for temperatures up to 300 K. As a first application, we simulate the excitation of CH2 in typical molecular clouds. The excitation temperatures of the CH2 lines are found to be small at typical densities of molecular clouds, showing that the non-local thermodynamic equilibrium approach has to be used to analyse interstellar spectra. We also found that the fine-structure lines connected with the 404 - 313 and 505 - 414 rotational transitions show possible maser emissions so that they can be easily seen in emission. These calculations show that CH2 may have to be detected mainly through absorption spectra.

  5. Fine structure in plasma waves and radiation near the plasma frequency in Earth's foreshock

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1994-01-01

    Novel observations are presented of intrunsic fine structure in the frequency spectrum of electomagnetic (EM) radiation and plasma waves near the electron plasma frequency f(sub p) during a period of unusually high interplanetary magnetic field strength. Measured using the wideband receiver on the International Sun-Earth Explorer (ISEE) 1 spacecraft, fine-structured emissions are observed both in the solar wind and the foreshock, The fine structure is shown to correspond to emissions spaced above f(sub p) near half harmonies of the electon cyclotron frequency f(sub ce), i.e., near f(sub p) + nf(sub ce)/2. These appear to be the first space physics observations of emissions spaced by f(sub ce)/2. Indirect but strong arguments are used to discriminate between EM and electrostatic (ES) signals, to identify whether ISEE 1 is in the solar wind or the foreshock, and to determine the relative frequencies of the emissions and the local f(sub p). The data are consistent with generation of the ES and EM emissions in the foreshock, with subsequent propagation of the EM emissions into the solar wind. It remains possible that some emissions currently identified as ES have significant EM character. The ES and EM emisions often merge into one another with minimal changes in frequency, arguing that their source regions and generation mechanisms are related and imposing significant constraints on theories. The f(sub ce)/2 ES and EM fine structures observed may be intrinsic to the emission mechanisms or to superposition of two series of signals with f(sub ce) spacing that differ in starting frequency by f(sub ce)/2. Present theories for nonlinear wave coupling processes, cyclotron maser emission, and other linear instability processes are all unable to explain multiple EM and/or ES components spaced by approximately f(sub ce)/2 above f(sub p) for f(sub p)/f(sub ce) much greater than 1 and typical for shock beams parameters. Suitable avenues for further theoretical research are identified. Empirically, the observed fine structures appear very similar to those in split bnad and multiple-lane type II solar radio bursts; interpretation of both these type II fine structures in terms of f(sub ce)/2 splitting is suggested, thereby supporting and generalizing a suggestion by Wild (1950). A possible application to continuum radiation is mentioned. The ubiquity of these fine structures in the Earth's f(sub p) radiation and foreshock waves remains unknown. Only the ISEE 1 wideband receiver has sufficient frequency resolution (approximately less than or equal to 100 Hz) to perform a dedicated search. Further study of the ubiquity of these fine structures, of how reliably the splitting corresponds to f(sub ce)/2, and of the other interpretations above is necessary.

  6. Photocontrollable Fluorescent Proteins for Superresolution Imaging

    PubMed Central

    Shcherbakova, Daria M.; Sengupta, Prabuddha; Lippincott-Schwartz, Jennifer; Verkhusha, Vladislav V.

    2014-01-01

    Superresolution fluorescence microscopy permits the study of biological processes at scales small enough to visualize fine subcellular structures that are unresolvable by traditional diffraction-limited light microscopy. Many superresolution techniques, including those applicable to live cell imaging, utilize genetically encoded photocontrollable fluorescent proteins. The fluorescence of these proteins can be controlled by light of specific wavelengths. In this review, we discuss the biochemical and photophysical properties of photocontrollable fluorescent proteins that are relevant to their use in superresolution microscopy. We then describe the recently developed photoactivatable, photoswitchable, and reversibly photoswitchable fluorescent proteins, and we detail their particular usefulness in single-molecule localization–based and nonlinear ensemble–based superresolution techniques. Finally, we discuss recent applications of photocontrollable proteins in superresolution imaging, as well as how these applications help to clarify properties of intracellular structures and processes that are relevant to cell and developmental biology, neuroscience, cancer biology and biomedicine. PMID:24895855

  7. Clustering of 770,000 genomes reveals post-colonial population structure of North America

    NASA Astrophysics Data System (ADS)

    Han, Eunjung; Carbonetto, Peter; Curtis, Ross E.; Wang, Yong; Granka, Julie M.; Byrnes, Jake; Noto, Keith; Kermany, Amir R.; Myres, Natalie M.; Barber, Mathew J.; Rand, Kristin A.; Song, Shiya; Roman, Theodore; Battat, Erin; Elyashiv, Eyal; Guturu, Harendra; Hong, Eurie L.; Chahine, Kenneth G.; Ball, Catherine A.

    2017-02-01

    Despite strides in characterizing human history from genetic polymorphism data, progress in identifying genetic signatures of recent demography has been limited. Here we identify very recent fine-scale population structure in North America from a network of over 500 million genetic (identity-by-descent, IBD) connections among 770,000 genotyped individuals of US origin. We detect densely connected clusters within the network and annotate these clusters using a database of over 20 million genealogical records. Recent population patterns captured by IBD clustering include immigrants such as Scandinavians and French Canadians; groups with continental admixture such as Puerto Ricans; settlers such as the Amish and Appalachians who experienced geographic or cultural isolation; and broad historical trends, including reduced north-south gene flow. Our results yield a detailed historical portrait of North America after European settlement and support substantial genetic heterogeneity in the United States beyond that uncovered by previous studies.

  8. Clustering of 770,000 genomes reveals post-colonial population structure of North America

    PubMed Central

    Han, Eunjung; Carbonetto, Peter; Curtis, Ross E.; Wang, Yong; Granka, Julie M.; Byrnes, Jake; Noto, Keith; Kermany, Amir R.; Myres, Natalie M.; Barber, Mathew J.; Rand, Kristin A.; Song, Shiya; Roman, Theodore; Battat, Erin; Elyashiv, Eyal; Guturu, Harendra; Hong, Eurie L.; Chahine, Kenneth G.; Ball, Catherine A.

    2017-01-01

    Despite strides in characterizing human history from genetic polymorphism data, progress in identifying genetic signatures of recent demography has been limited. Here we identify very recent fine-scale population structure in North America from a network of over 500 million genetic (identity-by-descent, IBD) connections among 770,000 genotyped individuals of US origin. We detect densely connected clusters within the network and annotate these clusters using a database of over 20 million genealogical records. Recent population patterns captured by IBD clustering include immigrants such as Scandinavians and French Canadians; groups with continental admixture such as Puerto Ricans; settlers such as the Amish and Appalachians who experienced geographic or cultural isolation; and broad historical trends, including reduced north-south gene flow. Our results yield a detailed historical portrait of North America after European settlement and support substantial genetic heterogeneity in the United States beyond that uncovered by previous studies. PMID:28169989

  9. Inverted-V events simultaneously observed with the Freja satellite and from the ground

    NASA Astrophysics Data System (ADS)

    Haerendel, G.; Frey, H. U.; Bauer, O. H.; Rieger, E.; Clemmons, J.; Boehm, M. H.; Wallis, D. D.; Lühr, H.

    The paper reports data received from the Freja satellite during two passes over broad auroral arc systems or inverted-V events above Gillam/Manitoba when special wide-angle CCD cameras were operated at this location in addition to the CANOPUS network. Detailed comparisons of the visible structures with modulations of the primary electron fluxes are performed. Motions of this fine structures are interpreted in terms of high-altitude electric fields shielded from the lower ionosphere. Simultaneous readings of current density, accelerating voltage and energy flux, the latter determined both from particle and auroral brightness measurements, are found to be internally consistent. We calculate from these data the effective resistance encountered by the electric currents and find agreement with the kinetic theory of the mirror impedance, if we allow for substantial variations in density and energy of the source electrons in the magnetosphere.

  10. Digital synthetic impedance for application in vibration damping.

    PubMed

    Nečásek, J; Václavík, J; Marton, P

    2016-02-01

    In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.

  11. Digital synthetic impedance for application in vibration damping

    NASA Astrophysics Data System (ADS)

    Nečásek, J.; Václavík, J.; Marton, P.

    2016-02-01

    In this work we present construction details of a precision, standalone, and compact digital synthetic impedance for application in the field of vibration damping. The presented device is based on an embedded ARM microcontroller with external AD and DA converters and a special analog front-end. The performance of the device is tested by comparing the actually synthesized impedance with several prescribed impedances and shows very good match. Fine-tuning ability of the device, which is crucial for the considered application, is also demonstrated and reaches as small step as 0.1% for the most complicated impedance structure and drops below the level of direct measurability with less complex structures. The real application in vibration damping is demonstrated on a simple and well understood case of a one-dimensional vibrating spring-mass system with piezoelectric actuator embedded as the interface between source of vibrations and vibrating mass.

  12. Clustering of 770,000 genomes reveals post-colonial population structure of North America.

    PubMed

    Han, Eunjung; Carbonetto, Peter; Curtis, Ross E; Wang, Yong; Granka, Julie M; Byrnes, Jake; Noto, Keith; Kermany, Amir R; Myres, Natalie M; Barber, Mathew J; Rand, Kristin A; Song, Shiya; Roman, Theodore; Battat, Erin; Elyashiv, Eyal; Guturu, Harendra; Hong, Eurie L; Chahine, Kenneth G; Ball, Catherine A

    2017-02-07

    Despite strides in characterizing human history from genetic polymorphism data, progress in identifying genetic signatures of recent demography has been limited. Here we identify very recent fine-scale population structure in North America from a network of over 500 million genetic (identity-by-descent, IBD) connections among 770,000 genotyped individuals of US origin. We detect densely connected clusters within the network and annotate these clusters using a database of over 20 million genealogical records. Recent population patterns captured by IBD clustering include immigrants such as Scandinavians and French Canadians; groups with continental admixture such as Puerto Ricans; settlers such as the Amish and Appalachians who experienced geographic or cultural isolation; and broad historical trends, including reduced north-south gene flow. Our results yield a detailed historical portrait of North America after European settlement and support substantial genetic heterogeneity in the United States beyond that uncovered by previous studies.

  13. Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios.

    PubMed

    Yen, Haw; White, Michael J; Arnold, Jeffrey G; Keitzer, S Conor; Johnson, Mari-Vaughn V; Atwood, Jay D; Daggupati, Prasad; Herbert, Matthew E; Sowa, Scott P; Ludsin, Stuart A; Robertson, Dale M; Srinivasan, Raghavan; Rewa, Charles A

    2016-11-01

    Complex watershed simulation models are powerful tools that can help scientists and policy-makers address challenging topics, such as land use management and water security. In the Western Lake Erie Basin (WLEB), complex hydrological models have been applied at various scales to help describe relationships between land use and water, nutrient, and sediment dynamics. This manuscript evaluated the capacity of the current Soil and Water Assessment Tool (SWAT) to predict hydrological and water quality processes within WLEB at the finest resolution watershed boundary unit (NHDPlus) along with the current conditions and conservation scenarios. The process based SWAT model was capable of the fine-scale computation and complex routing used in this project, as indicated by measured data at five gaging stations. The level of detail required for fine-scale spatial simulation made the use of both hard and soft data necessary in model calibration, alongside other model adaptations. Limitations to the model's predictive capacity were due to a paucity of data in the region at the NHDPlus scale rather than due to SWAT functionality. Results of treatment scenarios demonstrate variable effects of structural practices and nutrient management on sediment and nutrient loss dynamics. Targeting treatment to acres with critical outstanding conservation needs provides the largest return on investment in terms of nutrient loss reduction per dollar spent, relative to treating acres with lower inherent nutrient loss vulnerabilities. Importantly, this research raises considerations about use of models to guide land management decisions at very fine spatial scales. Decision makers using these results should be aware of data limitations that hinder fine-scale model interpretation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Western Lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios

    USGS Publications Warehouse

    Yen, Haw; White, Michael J.; Arnold, Jeffrey G.; Keitzer, S. Conor; Johnson, Mari-Vaughn V; Atwood, Jay D.; Daggupati, Prasad; Herbert, Matthew E.; Sowa, Scott P.; Ludsin, Stuart A.; Robertson, Dale M.; Srinivasan, Raghavan; Rewa, Charles A.

    2016-01-01

    Complex watershed simulation models are powerful tools that can help scientists and policy-makers address challenging topics, such as land use management and water security. In the Western Lake Erie Basin (WLEB), complex hydrological models have been applied at various scales to help describe relationships between land use and water, nutrient, and sediment dynamics. This manuscript evaluated the capacity of the current Soil and Water Assessment Tool (SWAT2012) to predict hydrological and water quality processes within WLEB at the finest resolution watershed boundary unit (NHDPlus) along with the current conditions and conservation scenarios. The process based SWAT model was capable of the fine-scale computation and complex routing used in this project, as indicated by measured data at five gaging stations. The level of detail required for fine-scale spatial simulation made the use of both hard and soft data necessary in model calibration, alongside other model adaptations. Limitations to the model's predictive capacity were due to a paucity of data in the region at the NHDPlus scale rather than due to SWAT functionality. Results of treatment scenarios demonstrate variable effects of structural practices and nutrient management on sediment and nutrient loss dynamics. Targeting treatment to acres with critical outstanding conservation needs provides the largest return on investment in terms of nutrient loss reduction per dollar spent, relative to treating acres with lower inherent nutrient loss vulnerabilities. Importantly, this research raises considerations about use of models to guide land management decisions at very fine spatial scales. Decision makers using these results should be aware of data limitations that hinder fine-scale model interpretation.

  15. Retinoschisis (Juvenile)

    MedlinePlus

    ... Campaign to End Blindness Other Ways to Fight Blindness Corporate Support Volunteer Take Action You are here ... the retina responsible for fine visual detail and color perception. On examination, the fovea (the center of ...

  16. An automatic optimum kernel-size selection technique for edge enhancement

    USGS Publications Warehouse

    Chavez, Pat S.; Bauer, Brian P.

    1982-01-01

    Edge enhancement is a technique that can be considered, to a first order, a correction for the modulation transfer function of an imaging system. Digital imaging systems sample a continuous function at discrete intervals so that high-frequency information cannot be recorded at the same precision as lower frequency data. Because of this, fine detail or edge information in digital images is lost. Spatial filtering techniques can be used to enhance the fine detail information that does exist in the digital image, but the filter size is dependent on the type of area being processed. A technique has been developed by the authors that uses the horizontal first difference to automatically select the optimum kernel-size that should be used to enhance the edges that are contained in the image. 

  17. High Resolutions Studies of the Structure of the Solar Atmosphere

    DTIC Science & Technology

    1992-06-30

    Pairs in the Solar Wind", submitted to J. Geophys. Res., July 20, 1992. M. Karovska , F. Blundell and S. R. Habbal, "Fine Scale Structure of Active...Regions", manuscript in preparation. M. Karovska , F. Blundell and S. R. Habbal, "Fine Scale Structure of the Solar Limb in a Coronal Hole", manuscript in

  18. Fine-scale genetic structure of whitebark pine (Pinus albicaulis) associations with watershed and growth form

    Treesearch

    Deborah L. Rogers; Constance I. Millar; Robert D. Westfall

    1999-01-01

    The fine-scale genetic structure of a subalpine conifer, whitebark pine (Pinus albicaulis Engelm.), was studied at nested geographic levels from watershed to adjacent stems in the eastern Sierra Nevada Range of California. A combination of several characteristics contributed to unpredicted genetic structure in this species. This includes being one of...

  19. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  20. An edge-directed interpolation method for fetal spine MR images.

    PubMed

    Yu, Shaode; Zhang, Rui; Wu, Shibin; Hu, Jiani; Xie, Yaoqin

    2013-10-10

    Fetal spinal magnetic resonance imaging (MRI) is a prenatal routine for proper assessment of fetus development, especially when suspected spinal malformations occur while ultrasound fails to provide details. Limited by hardware, fetal spine MR images suffer from its low resolution.High-resolution MR images can directly enhance readability and improve diagnosis accuracy. Image interpolation for higher resolution is required in clinical situations, while many methods fail to preserve edge structures. Edge carries heavy structural messages of objects in visual scenes for doctors to detect suspicions, classify malformations and make correct diagnosis. Effective interpolation with well-preserved edge structures is still challenging. In this paper, we propose an edge-directed interpolation (EDI) method and apply it on a group of fetal spine MR images to evaluate its feasibility and performance. This method takes edge messages from Canny edge detector to guide further pixel modification. First, low-resolution (LR) images of fetal spine are interpolated into high-resolution (HR) images with targeted factor by bi-linear method. Then edge information from LR and HR images is put into a twofold strategy to sharpen or soften edge structures. Finally a HR image with well-preserved edge structures is generated. The HR images obtained from proposed method are validated and compared with that from other four EDI methods. Performances are evaluated from six metrics, and subjective analysis of visual quality is based on regions of interest (ROI). All these five EDI methods are able to generate HR images with enriched details. From quantitative analysis of six metrics, the proposed method outperforms the other four from signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM) and mutual information (MI) with seconds-level time consumptions (TC). Visual analysis of ROI shows that the proposed method maintains better consistency in edge structures with the original images. The proposed method classifies edge orientations into four categories and well preserves structures. It generates convincing HR images with fine details and is suitable in real-time situations. Iterative curvature-based interpolation (ICBI) method may result in crisper edges, while the other three methods are sensitive to noise and artifacts.

  1. New electrostatic coal cleaning method cuts sulfur content by 40%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-12-01

    An emission control system that electrically charges pollutants and coal particles promises to reduce sulfur 40% at half the cost. The dry coal cleaning processes offer superior performance and better economics than conventional flotation cleaning. Advanced Energy Dynamics, Inc. (AED) is developing both fine and ultra fine processes which increase combustion efficiency and boiler reliability and reduced operating costs. The article gives details from the performance tests and comparisons and summarizes the economic analyses. 4 tables.

  2. The contribution of visual information to the perception of speech in noise with and without informative temporal fine structure

    PubMed Central

    Stacey, Paula C.; Kitterick, Pádraig T.; Morris, Saffron D.; Sumner, Christian J.

    2017-01-01

    Understanding what is said in demanding listening situations is assisted greatly by looking at the face of a talker. Previous studies have observed that normal-hearing listeners can benefit from this visual information when a talker's voice is presented in background noise. These benefits have also been observed in quiet listening conditions in cochlear-implant users, whose device does not convey the informative temporal fine structure cues in speech, and when normal-hearing individuals listen to speech processed to remove these informative temporal fine structure cues. The current study (1) characterised the benefits of visual information when listening in background noise; and (2) used sine-wave vocoding to compare the size of the visual benefit when speech is presented with or without informative temporal fine structure. The accuracy with which normal-hearing individuals reported words in spoken sentences was assessed across three experiments. The availability of visual information and informative temporal fine structure cues was varied within and across the experiments. The results showed that visual benefit was observed using open- and closed-set tests of speech perception. The size of the benefit increased when informative temporal fine structure cues were removed. This finding suggests that visual information may play an important role in the ability of cochlear-implant users to understand speech in many everyday situations. Models of audio-visual integration were able to account for the additional benefit of visual information when speech was degraded and suggested that auditory and visual information was being integrated in a similar way in all conditions. The modelling results were consistent with the notion that audio-visual benefit is derived from the optimal combination of auditory and visual sensory cues. PMID:27085797

  3. Initial fate of fine ash and sulfur from large volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Niemeier, U.; Timmreck, C.; Graf, H.-F.; Kinne, S.; Rast, S.; Self, S.

    2009-08-01

    Large volcanic eruptions emit huge amounts of sulfur and fine ash into the stratosphere. These products cause an impact on radiative processes, temperature and wind patterns. In simulations with a General Circulation Model including detailed aerosol microphysics, the relation between the impact of sulfur and fine ash is determined for different eruption strengths and locations, one in the tropics and one in high Northern latitudes. Fine ash with effective radii between 1 μm and 15 μm has a lifetime of several days only. Nevertheless, the strong absorption of shortwave and longwave radiation causes additional heating and cooling of ±20 K/day and impacts the evolution of the volcanic cloud. Depending on the location of the volcanic eruption, transport direction changes due to the presence of fine ash, vortices develop and temperature anomalies at ground increase. The results show substantial impact on the local scale but only minor impact on the evolution of sulfate in the stratosphere in the month after the simulated eruptions.

  4. Initial fate of fine ash and sulfur from large volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Niemeier, U.; Timmreck, C.; Graf, H.-F.; Kinne, S.; Rast, S.; Self, S.

    2009-11-01

    Large volcanic eruptions emit huge amounts of sulfur and fine ash into the stratosphere. These products cause an impact on radiative processes, temperature and wind patterns. In simulations with a General Circulation Model including detailed aerosol microphysics, the relation between the impact of sulfur and fine ash is determined for different eruption strengths and locations, one in the tropics and one in high Northern latitudes. Fine ash with effective radii between 1 μm and 15 μm has a lifetime of several days only. Nevertheless, the strong absorption of shortwave and long-wave radiation causes additional heating and cooling of ±20 K/day and impacts the evolution of the volcanic cloud. Depending on the location of the volcanic eruption, transport direction changes due to the presence of fine ash, vortices develop and temperature anomalies at ground increase. The results show substantial impact on the local scale but only minor impact on the evolution of sulfate in the stratosphere in the month after the simulated eruptions.

  5. Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells

    DOE PAGES

    Lou, Yan-Ru; Kanninen, Liisa; Kaehr, Bryan; ...

    2015-09-01

    Three-dimensional (3D) cell cultures produce more in vivo-like multicellular structures such as spheroids that cannot be obtained in two-dimensional (2D) cell cultures. Thus, they are increasingly employed as models for cancer and drug research, as well as tissue engineering. It has proven challenging to stabilize spheroid architectures for detailed morphological examination. Here we overcome this issue using a silica bioreplication (SBR) process employed on spheroids formed from human pluripotent stem cells (hPSCs) and hepatocellular carcinoma HepG2 cells cultured in the nanofibrillar cellulose (NFC) hydrogel. The cells in the spheroids are more round and tightly interacting with each other than thosemore » in 2D cultures, and they develop microvilli-like structures on the cell membranes as seen in 2D cultures. Furthermore, SBR preserves extracellular matrix-like materials and cellular proteins. In conclusion, these findings provide the first evidence of intact hPSC spheroid architectures and similar fine structures to 2D-cultured cells, providing a pathway to enable our understanding of morphogenesis in 3D cultures.« less

  6. Hydrogenation and hydrogen intercalation of hexagonal boron nitride on Ni(1 1 1): reactivity and electronic structure

    NASA Astrophysics Data System (ADS)

    Späth, F.; Gebhardt, J.; Düll, F.; Bauer, U.; Bachmann, P.; Gleichweit, C.; Görling, A.; Steinrück, H.-P.; Papp, C.

    2017-09-01

    We investigate the reactivity of hexagonal boron nitride (h-BN) on a Ni(1 1 1) single crystal towards atomic hydrogen over a wide exposure range. Near edge x-ray absorption fine structure and x-ray photoelectron spectroscopy (XPS) show that for low hydrogen exposures hydrogenation of the h-BN sheet is found. In contrast, intercalation of hydrogen between h-BN and the Ni(1 1 1) substrate occurs for high exposures. For intermediate regimes, a mixture of intercalation and hydrogenation is observed. From temperature-programmed desorption and temperature-programmed XPS experiments, we conclude that the hydrogen covalently bound to h-BN is rather stable with a desorption temperature of 600 K, while intercalated hydrogen is desorbing already at 390 K. Further insight into the structural arrangements and the thermodynamics of the system is obtained by comparing our experimental results with extensive density-functional theory calculations. Together with ultraviolet photoelectron spectroscopy measurements, the calculations provide detailed insight into the influence of hydrogenation on the electronic structure of h-BN.

  7. Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lou, Yan-Ru; Kanninen, Liisa; Kaehr, Bryan

    Three-dimensional (3D) cell cultures produce more in vivo-like multicellular structures such as spheroids that cannot be obtained in two-dimensional (2D) cell cultures. Thus, they are increasingly employed as models for cancer and drug research, as well as tissue engineering. It has proven challenging to stabilize spheroid architectures for detailed morphological examination. Here we overcome this issue using a silica bioreplication (SBR) process employed on spheroids formed from human pluripotent stem cells (hPSCs) and hepatocellular carcinoma HepG2 cells cultured in the nanofibrillar cellulose (NFC) hydrogel. The cells in the spheroids are more round and tightly interacting with each other than thosemore » in 2D cultures, and they develop microvilli-like structures on the cell membranes as seen in 2D cultures. Furthermore, SBR preserves extracellular matrix-like materials and cellular proteins. In conclusion, these findings provide the first evidence of intact hPSC spheroid architectures and similar fine structures to 2D-cultured cells, providing a pathway to enable our understanding of morphogenesis in 3D cultures.« less

  8. Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells.

    PubMed

    Lou, Yan-Ru; Kanninen, Liisa; Kaehr, Bryan; Townson, Jason L; Niklander, Johanna; Harjumäki, Riina; Jeffrey Brinker, C; Yliperttula, Marjo

    2015-09-01

    Three-dimensional (3D) cell cultures produce more in vivo-like multicellular structures such as spheroids that cannot be obtained in two-dimensional (2D) cell cultures. Thus, they are increasingly employed as models for cancer and drug research, as well as tissue engineering. It has proven challenging to stabilize spheroid architectures for detailed morphological examination. Here we overcome this issue using a silica bioreplication (SBR) process employed on spheroids formed from human pluripotent stem cells (hPSCs) and hepatocellular carcinoma HepG2 cells cultured in the nanofibrillar cellulose (NFC) hydrogel. The cells in the spheroids are more round and tightly interacting with each other than those in 2D cultures, and they develop microvilli-like structures on the cell membranes as seen in 2D cultures. Furthermore, SBR preserves extracellular matrix-like materials and cellular proteins. These findings provide the first evidence of intact hPSC spheroid architectures and similar fine structures to 2D-cultured cells, providing a pathway to enable our understanding of morphogenesis in 3D cultures.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orfield, Noah J.; McBride, James R.; Wang, Feng

    Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. In this paper, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking “giant” CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging,more » rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive “dark” fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be “dark”. Finally and therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs.« less

  10. Fine Structure in Helium-like Fluorine by Fast-Beam Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Myers, E. G.; Thompson, J. K.; Silver, J. D.

    1998-05-01

    With the aim of providing an additional precise test of higher-order corrections to high precision calculations of fine structure in helium and helium-like ions(T. Zhang, Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 77), 1715 (1996)., a measurement of the 2^3P_2,F - 2^3P_1,F' fine structure in ^19F^7+ is in progress. The method involves doppler-tuned laser spectroscopy using a CO2 laser on a foil-stripped fluorine ion beam. We aim to achieve a higher precision, compared to an earlier measurement(E.G. Myers, P. Kuske, H.J. Andrae, I.A. Armour, H.A. Klein, J.D. Silver, and E. Traebert, Phys. Rev. Lett. 47), 87 (1981)., by using laser beams parallel and anti-parallel to the ion beam, to obtain partial cancellation of the doppler shift(J.K. Thompson, D.J.H. Howie and E.G. Myers, Phys. Rev. A 57), 180 (1998).. A calculation of the hyperfine structure, allowing for relativistic, QED and nuclear size effects, will be required to obtain the ``hyperfine-free'' fine structure interval from the measurements.

  11. Doppler-free spectroscopy of the atomic rubidium fine structure using ultrafast spatial coherent control method

    NASA Astrophysics Data System (ADS)

    Kim, Minhyuk; Kim, Kyungtae; Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2017-04-01

    Spectral programming solutions for the ultrafast spatial coherent control (USCC) method to resolve the fine-structure energy levels of atomic rubidium are reported. In USCC, a pair of counter-propagating ultrashort laser pulses are programmed to make a two-photon excitation pattern specific to particular transition pathways and atom species, thus allowing the involved transitions resolvable in space simultaneously. With a proper spectral phase and amplitude modulation, USCC has been also demonstrated for the systems with many intermediate energy levels. Pushing the limit of system complexity even further, we show here an experimental demonstration of the rubidium fine-structure excitation pattern resolvable by USCC. The spectral programming solution for the given USCC is achieved by combining a double-V-shape spectral phase function and a set of phase steps, where the former distinguishes the fine structure and the latter prevents resonant transitions. The experimental results will be presented along with its application in conjunction with the Doppler-free frequency-comb spectroscopy for rubidium hyperfine structure measurements. Samsung Science and Technology Foundation [SSTFBA1301-12].

  12. Designing, producing, and constructing fine-graded hot mix asphalt on Illinois roadways.

    DOT National Transportation Integrated Search

    2015-04-01

    Fine-graded (F-G) asphalt concrete mixtures are composed of an aggregate structure in which the fine fraction controls the : load-carrying capacity of the mix. Other states have reported benefits in using F-G mixtures, including improved compaction, ...

  13. Numerical and experimental investigation of DNAPL removal mechanisms in a layered porous medium by means of soil vapor extraction.

    PubMed

    Yoon, Hongkyu; Oostrom, Mart; Wietsma, Thomas W; Werth, Charles J; Valocchi, Albert J

    2009-10-13

    The purpose of this work is to identify the mechanisms that govern the removal of carbon tetrachloride (CT) during soil vapor extraction (SVE) by comparing numerical and analytical model simulations with a detailed data set from a well-defined intermediate-scale flow cell experiment. The flow cell was packed with a fine-grained sand layer embedded in a coarse-grained sand matrix. A total of 499 mL CT was injected at the top of the flow cell and allowed to redistribute in the variably saturated system. A dual-energy gamma radiation system was used to determine the initial NAPL saturation profile in the fine-grained sand layer. Gas concentrations at the outlet of the flow cell and 15 sampling ports inside the flow cell were measured during subsequent CT removal using SVE. Results show that CT mass was removed quickly in coarse-grained sand, followed by a slow removal from the fine-grained sand layer. Consequently, effluent gas concentrations decreased quickly at first, and then started to decrease gradually, resulting in long-term tailing. The long-term tailing was mainly due to diffusion from the fine-grained sand layer to the coarse-grained sand zone. An analytical solution for a one-dimensional advection and a first-order mass transfer model matched the tailing well with two fitting parameters. Given detailed knowledge of the permeability field and initial CT distribution, we were also able to predict the effluent concentration tailing and gas concentration profiles at sampling ports using a numerical simulator assuming equilibrium CT evaporation. The numerical model predictions were accurate within the uncertainty of independently measured or literature derived parameters. This study demonstrates that proper numerical modeling of CT removal through SVE can be achieved using equilibrium evaporation of NAPL if detailed fine-scale knowledge of the CT distribution and physical heterogeneity is incorporated into the model. However, CT removal could also be fit by a first-order mass transfer analytical model, potentially leading to an erroneous conclusion that the long-term tailing in the experiment was kinetically controlled due to rate-limited NAPL evaporation.

  14. Stability and Interaction of Coherent Structure in Supersonic Reactive Wakes

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1983-01-01

    A theoretical formulation and analysis is presented for a study of the stability and interaction of coherent structure in reacting free shear layers. The physical problem under investigation is a premixed hydrogen-oxygen reacting shear layer in the wake of a thin flat plate. The coherent structure is modeled as a periodic disturbance and its stability is determined by the application of linearized hydrodynamic stability theory which results in a generalized eigenvalue problem for reactive flows. Detailed stability analysis of the reactive wake for neutral, symmetrical and antisymmetrical disturbance is presented. Reactive stability criteria is shown to be quite different from classical non-reactive stability. The interaction between the mean flow, coherent structure and fine-scale turbulence is theoretically formulated using the von-Kaman integral technique. Both time-averaging and conditional phase averaging are necessary to separate the three types of motion. The resulting integro-differential equations can then be solved subject to initial conditions with appropriate shape functions. In the laminar flow transition region of interest, the spatial interaction between the mean motion and coherent structure is calculated for both non-reactive and reactive conditions and compared with experimental data wherever available. The fine-scale turbulent motion determined by the application of integral analysis to the fluctuation equations. Since at present this turbulence model is still untested, turbulence is modeled in the interaction problem by a simple algebraic eddy viscosity model. The applicability of the integral turbulence model formulated here is studied parametrically by integrating these equations for the simple case of self-similar mean motion with assumed shape functions. The effect of the motion of the coherent structure is studied and very good agreement is obtained with previous experimental and theoretical works for non-reactive flow. For the reactive case, lack of experimental data made direct comparison difficult. It was determined that the growth rate of the disturbance amplitude is lower for reactive case. The results indicate that the reactive flow stability is in qualitative agreement with experimental observation.

  15. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    NASA Technical Reports Server (NTRS)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  16. Variations in the fine-structure constant constraining gravity theories

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Cunha, M. S.; Muniz, C. R.; Tahim, M. O.; Vieira, H. S.

    2016-08-01

    In this paper, we investigate how the fine-structure constant, α, locally varies in the presence of a static and spherically symmetric gravitational source. The procedure consists in calculating the solution and the energy eigenvalues of a massive scalar field around that source, considering the weak-field regime. From this result, we obtain expressions for a spatially variable fine-structure constant by considering suitable modifications in the involved parameters admitting some scenarios of semi-classical and quantum gravities. Constraints on free parameters of the approached theories are calculated from astrophysical observations of the emission spectra of a white dwarf. Such constraints are finally compared with those obtained in the literature.

  17. Understanding the structure of skill through a detailed analysis of Individuals' performance on the Space Fortress game.

    PubMed

    Towne, Tyler J; Boot, Walter R; Ericsson, K Anders

    2016-09-01

    In this paper we describe a novel approach to the study of individual differences in acquired skilled performance in complex laboratory tasks based on an extension of the methodology of the expert-performance approach (Ericsson & Smith, 1991) to shorter periods of training and practice. In contrast to more traditional approaches that study the average performance of groups of participants, we explored detailed behavioral changes for individual participants across their development on the Space Fortress game. We focused on dramatic individual differences in learning and skill acquisition at the individual level by analyzing the archival game data of several interesting players to uncover the specific structure of their acquired skill. Our analysis revealed that even after maximal values for game-generated subscores were reached, the most skilled participant's behaviors such as his flight path, missile firing, and mine handling continued to be refined and improved (Participant 17 from Boot et al., 2010). We contrasted this participant's behavior with the behavior of several other participants and found striking differences in the structure of their performance, which calls into question the appropriateness of averaging their data. For example, some participants engaged in different control strategies such as "world wrapping" or maintaining a finely-tuned circular flight path around the fortress (in contrast to Participant 17's angular flight path). In light of these differences, we raise fundamental questions about how skill acquisition for individual participants should be studied and described. Our data suggest that a detailed analysis of individuals' data is an essential step for generating a general theory of skill acquisition that explains improvement at the group and individual levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Density Waves in Saturn's Rings from Cassini Radio Occultations

    NASA Astrophysics Data System (ADS)

    French, R. G.; Rappaport, N. J.; Marouf, E. A.; McGhee, C. A.

    2005-12-01

    The Cassini Radio Science Team conducted a set of optimized diametric occultations by Saturn and its rings from May to September 2005, providing 11 separate probes of Saturn's ionosphere and atmosphere, and 12 optical depth profiles of the complete ring system. Each event was observed by the stations of the Deep Space Net (DSN) at three radio frequencies (S, X, Ka bands, with corresponding wavelengths of ? = 13, 3.6, and 0.9 cm). Very accurate pointing by the spacecraft and ground antennas resulted in stable baseline signal levels, and the relatively large ring opening angle (B=19-25°) permitted us to probe even quite dense ring regions with excellent SNR. The RSS occultation technique enables us to recover very fine detailed radial structure by correcting for diffraction effects. Multiple occultation chords, covering a variety of ring longitudes and ring opening angles, reveal the structure of the rings in remarkable detail, including density and bending waves, satellite wakes, and subtle variations at the 100-m radius scale. Janus and Epimetheus are responsible for a particularly rich set of density waves, and their coorbital interactions result in a complex interplay of time-variable ring structure over the 8-year libration period of the two satellites. We compare the first-order 2:1, 4:3, 5:4, and 6:5 coorbital density waves from multiple occultation chords to linear density wave models based on a dynamical model of the orbital exchange between the moons. From the observed dispersion relation of the wave crests, we infer the surface mass density and eccentricity gradient of particle streamlines, and match the detailed shapes of the wave crests using a non-linear analysis. Second-order coorbital features are also evident, and there are even hints of third-order density waves in the high SNR radio occultation data.

  19. Study of Near-Stall Flow Behavior in a Modern Transonic Fan with Composite Sweep

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Shin, Hyoun-Woo

    2011-01-01

    Detailed flow behavior in a modern transonic fan with a composite sweep is investigated in this paper. Both unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) methods are applied to investigate the flow field over a wide operating range. The calculated flow fields are compared with the data from an array of high-frequency response pressure transducers embedded in the fan casing. The current study shows that a relatively fine computational grid is required to resolve the flow field adequately and to calculate the pressure rise across the fan correctly. The calculated flow field shows detailed flow structure near the fan rotor tip region. Due to the introduction of composite sweep toward the rotor tip, the flow structure at the rotor tip is much more stable compared to that of the conventional blade design. The passage shock stays very close to the leading edge at the rotor tip even at the throttle limit. On the other hand, the passage shock becomes stronger and detaches earlier from the blade passage at the radius where the blade sweep is in the opposite direction. The interaction between the tip clearance vortex and the passage shock becomes intense as the fan operates toward the stall limit, and tip clearance vortex breakdown occurs at near-stall operation. URANS calculates the time-averaged flow field fairly well. Details of measured RMS static pressure are not calculated with sufficient accuracy with URANS. On the other hand, LES calculates details of the measured unsteady flow features in the current transonic fan with composite sweep fairly well and reveals the flow mechanism behind the measured unsteady flow field.

  20. Macular degeneration (image)

    MedlinePlus

    Macular degeneration is a disease of the retina that affects the macula in the back of the eye. ... see fine details. There are two types of macular degeneration, dry and wet. Dry macular degeneration is more ...

  1. Fine Structure of Diffuse Scattering Rings in Al-Li-Cu Quasicrystal: A Comparative X-ray and Electron Diffraction Study

    NASA Astrophysics Data System (ADS)

    Donnadieu, P.; Dénoyer, F.

    1996-11-01

    A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.

  2. Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.

    PubMed

    Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai

    2016-07-20

    Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.

  3. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ionsmore » produced by photoionization.« less

  4. Tracking and Predicting Fine Scale Sea Ice Motion by Constructing Super-Resolution Images and Fusing Multiple Satellite Sensors

    DTIC Science & Technology

    2013-09-30

    COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Tracking and Predicting Fine Scale Sea Ice Motion by Constructing Super-Resolution Images...limited, but potentially provide more detailed data. Initial assessments have been made on MODIS data in terms of its suitability. While clouds obscure...estimates. 2 Data from Aqua, Terra, and Suomi NPP satellites were investigated. Aqua and Terra are older satellites that fly the MODIS instrument

  5. Broadsheet number 57: problems in fine needle biopsy of the thyroid.

    PubMed

    Orell, S R; Philips, J

    2000-08-01

    The role of fine needle biopsy and cytological diagnosis in the preoperative evaluation of thyroid nodules is reviewed on the basis of the current literature as well as the authors' personal experience. Technical aspects and guidelines for reporting thyroid samples are discussed in some detail. The main emphasis is on diagnostic pitfalls, those which may lead to a false-negative diagnosis, to a false-positive diagnosis or to an erroneous typing of the lesion, and their cytological patterns are described.

  6. Theories of dynamical phenomena in sunspots

    NASA Technical Reports Server (NTRS)

    Thomas, J. H.

    1981-01-01

    Attempts that have been made to understand and explain observed dynamical phenomena in sunspots within the framework of magnetohydrodynamic theory are surveyed. The qualitative aspects of the theory and physical arguments are emphasized, with mathematical details generally avoided. The dynamical phenomena in sunspots are divided into two categories: aperiodic (quasi-steady) and oscillatory. For each phenomenon discussed, the salient observational features that any theory should explain are summarized. The two contending theoretical models that can account for the fine structure of the Evershed motion, namely the convective roll model and the siphon flow model, are described. With regard to oscillatory phenomena, attention is given to overstability and oscillatory convection, umbral oscillations and flashes. penumbral waves, five-minute oscillations in sunspots, and the wave cooling of sunspots.

  7. Hybrid thrusters and reaction wheels strategy for large angle rapid reorientation with high precision

    NASA Astrophysics Data System (ADS)

    Ye, Dong; Sun, Zhaowei; Wu, Shunan

    2012-08-01

    The quaternion-based, high precision, large angle rapid reorientation of rigid spacecraft is the main problem investigated in this study. The operation is accomplished via a hybrid thrusters and reaction wheels strategy where thrusters are engaged in providing a primary maneuver torque in open loop, while reaction wheels provide fine control torque to achieve high precision in closed-loop control. The inaccuracy of thrusters is handled by a variable structure control (VSC). In addition, a signum function is mixed in the switching surface in VSC to produce a maneuver to the reference attitude trajectory in a shortest distance. Detailed proofs and numerical simulation examples are presented to illustrate all the technical aspects of this work.

  8. a Measurement of the Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Hensley, Joel M.; Wicht, Andreas; Sarajlic, Edina; Chu, Steven

    2002-06-01

    Using an atom interferometer method, we measure the recoil velocity of cesium due to the coherent scattering of a photon. This measurement is used to obtain a preliminary value of ħ/MCs and the fine structure constant, α, with an uncertainty Δα/α = 7.3 × 10-9.

  9. Heterogeneous Nucleation of Trichloroethylene Ozonation Products in the Formation of New Fine Particles

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Sun, Xiaomin; Chen, Jianmin; Li, Xiang

    2017-02-01

    Free radicals in atmosphere have played an important role in the atmospheric chemistry. The chloro-Criegee free radicals are produced easily in the decomposition of primary ozonide (POZ) of the trichloroethylene, and can react with O2, NO, NO2, SO2 and H2O subsequently. Then the inorganic salts, polar organic nitrogen and organic sulfur compounds, oxygen-containing heterocyclic intermediates and polyhydroxy compounds can be obtained. The heterogeneous nucleation of oxidation intermediates in the formation of fine particles is investigated using molecular dynamics simulation. The detailed nucleation processes are reported. According to molecular dynamics simulation, the nucleation with a diameter of 2 nm is formed in the Organic Compounds-(NH4)2SO4-H2O system. The spontaneous nucleation is an important process in the formation of fine particles in atmosphere. The model study gives a good example from volatile organic compounds to new fine particles.

  10. High visual resolution matters in audiovisual speech perception, but only for some.

    PubMed

    Alsius, Agnès; Wayne, Rachel V; Paré, Martin; Munhall, Kevin G

    2016-07-01

    The basis for individual differences in the degree to which visual speech input enhances comprehension of acoustically degraded speech is largely unknown. Previous research indicates that fine facial detail is not critical for visual enhancement when auditory information is available; however, these studies did not examine individual differences in ability to make use of fine facial detail in relation to audiovisual speech perception ability. Here, we compare participants based on their ability to benefit from visual speech information in the presence of an auditory signal degraded with noise, modulating the resolution of the visual signal through low-pass spatial frequency filtering and monitoring gaze behavior. Participants who benefited most from the addition of visual information (high visual gain) were more adversely affected by the removal of high spatial frequency information, compared to participants with low visual gain, for materials with both poor and rich contextual cues (i.e., words and sentences, respectively). Differences as a function of gaze behavior between participants with the highest and lowest visual gains were observed only for words, with participants with the highest visual gain fixating longer on the mouth region. Our results indicate that the individual variance in audiovisual speech in noise performance can be accounted for, in part, by better use of fine facial detail information extracted from the visual signal and increased fixation on mouth regions for short stimuli. Thus, for some, audiovisual speech perception may suffer when the visual input (in addition to the auditory signal) is less than perfect.

  11. Salt deposits in Los Medanos area, Eddy and Lea counties, New Mexico

    USGS Publications Warehouse

    Jones, C.L.; with sections on Ground water hydrology, Cooley; and Surficial Geology, Bachman

    1973-01-01

    The salt deposits of Los Medanos area, in Eddy and Lea Counties, southeastern New Mexico, are being considered for possible use as a receptacle for radioactive wastes in a pilot-plant repository. The salt deposits of the area. are in three evaporite formations: the Castile, Salado, and Rustler Formations, in ascending order. The three formations are dominantly anhydrite and rock salt, but some gypsum, potassium ores, carbonate rock, and fine-grained clastic rocks are present. They have combined thicknesses of slightly more than 4,000 feet, of which roughly one-half belongs to the Salado. Both the Castile and the Rustler are-richer in anhydrite-and poorer in rock salt-than the Salado, and they provide this salt-rich formation with considerable Protection from any fluids which might be present in underlying or overlying rocks. The Salado Formation contains many thick seams of rock salt at moderate depths below the surface. The rock salt has a substantial cover of well-consolidated rocks, and it is very little deformed structurally. Certain geological details essential for Waste-storage purposes are unknown or poorly known, and additional study involving drilling is required to identify seams of rock salt suitable for storage purposes and to establish critical details of their chemistry, stratigraphy, and structure.

  12. Real-Time Nonlocal Means-Based Despeckling.

    PubMed

    Breivik, Lars Hofsoy; Snare, Sten Roar; Steen, Erik Normann; Solberg, Anne H Schistad

    2017-06-01

    In this paper, we propose a multiscale nonlocal means-based despeckling method for medical ultrasound. The multiscale approach leads to large computational savings and improves despeckling results over single-scale iterative approaches. We present two variants of the method. The first, denoted multiscale nonlocal means (MNLM), yields uniform robust filtering of speckle both in structured and homogeneous regions. The second, denoted unnormalized MNLM (UMNLM), is more conservative in regions of structure assuring minimal disruption of salient image details. Due to the popularity of anisotropic diffusion-based methods in the despeckling literature, we review the connection between anisotropic diffusion and iterative variants of NLM. These iterative variants in turn relate to our multiscale variant. As part of our evaluation, we conduct a simulation study making use of ground truth phantoms generated from clinical B-mode ultrasound images. We evaluate our method against a set of popular methods from the despeckling literature on both fine and coarse speckle noise. In terms of computational efficiency, our method outperforms the other considered methods. Quantitatively on simulations and on a tissue-mimicking phantom, our method is found to be competitive with the state-of-the-art. On clinical B-mode images, our method is found to effectively smooth speckle while preserving low-contrast and highly localized salient image detail.

  13. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts

    NASA Astrophysics Data System (ADS)

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-04-01

    An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ~ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified.An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ~ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified. Electronic supplementary information (ESI) available: XRD patterns, TEM and 3D structure modelling methodology. See DOI: 10.1039/c5nr00800j

  14. Reproductive biology in Anophelinae mosquitoes (Diptera, Culicidae): Fine structure of the female accessory gland.

    PubMed

    Laghezza Masci, Valentina; Di Luca, Marco; Gambellini, Gabriella; Taddei, Anna Rita; Belardinelli, Maria Cristina; Guerra, Laura; Mazzini, Massimo; Fausto, Anna Maria

    2015-07-01

    The morphology and ultrastructure of female accessory reproductive glands of Anopheles maculipennis s.s., Anopheles labranchiae and Anopheles stephensi were investigated by light and electron microscopy. The reproductive system in these species is characterized by two ovaries, two lateral oviducts, a single spermatheca and a single accessory gland. The gland is globular and has a thin duct which empties into the vagina, near the opening of the spermathecal duct. Significant growth of the accessory reproductive gland is observed immediately after blood meal, but not at subsequent digestion steps. At ultrastructural level, the gland consists of functional glandular units belonging to type 3 ectodermal glands. The secretory cells are elongated and goblet shaped, with most of their cytoplasm and large nucleus in the basal part, close to the basement lamella. Finely fibrous electron-transparent material occupies the secretory cavity that is in contact with the end of a short efferent duct (ductule) emerging from the gland duct. The present study is the first detailed description of female accessory gland ultrastructure in Anophelinae and provides insights into the gland's functional role in the reproductive biology of these insects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Indirect contributions to electron-impact ionization of Li+ (1 s 2 s S31 ) ions: Role of intermediate double-K -vacancy states

    NASA Astrophysics Data System (ADS)

    Müller, A.; Borovik, A.; Huber, K.; Schippers, S.; Fursa, D. V.; Bray, I.

    2018-02-01

    Fine details of the cross section for electron-impact ionization of metastable two-electron Li+(1 s 2 s S31) ions are scrutinized by both experiment and theory. Beyond direct knockoff ionization, indirect ionization mechanisms proceeding via formation of intermediate double-K-vacancy (hollow) states either in a Li+ ion or in a neutral lithium atom and subsequent emission of one or two electrons, respectively, can contribute to the net production of Li2 + ions. The partial cross sections for such contributions are less than 4% of the total single-ionization cross section. The characteristic steps, resonances, and interference phenomena in the indirect ionization contribution are measured with an experimental energy spread of less than 0.9 eV and with a statistical relative uncertainty of the order of 1.7%, requiring a level of statistical uncertainty in the total single-ionization cross section of better than 0.05%. The measurements are accompanied by convergent-close-coupling calculations performed on a fine energy grid. Theory and experiment are in remarkable agreement concerning the fine details of the ionization cross section. Comparison with previous R-matrix results is less favorable.

  16. Simultaneous Speciation, Structure, and Equilibrium Constant Determination in the Ni2+-EDTA-CN- Ternary System via High-Resolution Laboratory X-ray Absorption Fine Structure Spectroscopy and Theoretical Calculations.

    PubMed

    Bajnóczi, Éva G; Németh, Zoltán; Vankó, György

    2017-11-20

    Even quite simple chemical systems can involve many components and chemical states, and sometimes it can be very difficult to differentiate them by their hardly separable physical-chemical properties. The Ni II -EDTA-CN - (EDTA = ethylenediaminetetraacetic acid) ternary system is a good example for this problem where, in spite of its fairly simple components and numerous investigations, several molecular combinations can exist, all of them not having been identified unambiguously yet. In order to achieve a detailed understanding of the reaction steps and chemical equilibria, methods are required in which the structural transitions in the different reaction steps can be followed via element-selective complex spectral feature sets. With the help of our recently developed von Hámos type high-resolution laboratory X-ray absorption spectrometer, both the structural variations and stability constants of the forming complexes were determined from the same measurement series, proving that X-ray absorption spectroscopy can be considered as a multifaced, table-top tool in coordination chemistry. Furthermore, with the help of theoretical calculations, independent structural evidence was also given for the formation of the [NiEDTA(CN)] 3- mixed complex.

  17. Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle x-ray scattering/ultrasmall-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Marchin, Stéphane; Putaux, Jean-Luc; Pignon, Frédéric; Léonil, Joëlle

    2007-01-01

    Casein micelles are colloidal protein-calcium-transport complexes whose structure has not been unequivocally elucidated. This study used small-angle x-ray scattering (SAXS) and ultrasmall angle x-ray scattering (USAXS) as well as cryo transmission electron microscopy (cryo-TEM) to provide fine structural details on their structure. Cryo-TEM observations of native casein micelles fractionated by differential centrifugation showed that colloidal calcium phosphate appeared as nanoclusters with a diameter of about 2.5nm. They were uniformly distributed in a homogeneous tangled web of caseins and were primarily responsible for the intensity distribution in the SAXS profiles at the highest q vectors corresponding to the internal structure of the casein micelles. A specific demineralization of casein micelles by decreasing the pH from 6.7 to 5.2 resulted in a reduced granular aspect of the micelles observed by cryo-TEM and the existence of a characteristic point of inflection in SAXS profiles. This supports the hypothesis that the smaller substructures detected by SAXS are colloidal calcium phosphate nanoclusters rather than putative submicelles.

  18. Quantum Yield Heterogeneity among Single Nonblinking Quantum Dots Revealed by Atomic Structure-Quantum Optics Correlation

    DOE PAGES

    Orfield, Noah J.; McBride, James R.; Wang, Feng; ...

    2016-02-05

    Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. In this paper, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking “giant” CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging,more » rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive “dark” fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be “dark”. Finally and therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs.« less

  19. Self-assembly of conjugated oligomers and polymers at the interface: structure and properties.

    PubMed

    Xu, Lirong; Yang, Liu; Lei, Shengbin

    2012-08-07

    In this review, we give a brief account on the recent scanning tunneling microscopy investigation of interfacial structures and properties of π-conjugated semiconducting oligomers and polymers, either at the solid-air (including solid-vacuum) or at the solid-liquid interface. The structural aspects of the self-assembly of both oligomers and polymers are highlighted. Conjugated oligomers can form well ordered supramolecular assemblies either at the air-solid or liquid-solid interface, thanks to the relatively high mobility and structural uniformity in comparison with polymers. The backbone structure, substitution of side chains and functional groups can affect the assembling behavior significantly, which offers the opportunity to tune the supramolecular structure of these conjugated oligomers at the interface. For conjugated polymers, the large molecular weight limits the mobility on the surface and the distribution in size also prevents the formation of long range ordered supramolecular assembly. The submolecular resolution obtained on the assembling monolayers enables a detailed investigation of the chain folding at the interface, both the structural details and the effect on electronic properties. Besides the ability in studying the assembling structures at the interfaces, STM also provides a reasonable way to evaluate the distribution of the molecular weight of conjugated polymers by statistic of the contour length of the adsorbed polymer chains. Both conjugated oligomers and polymers can form composite assemblies with other materials. The ordered assembly of oligomers can act as a template to controllably disperse other molecules such as coronene or fullerene. These investigations open a new avenue to fine tune the assembling structure at the interface and in turn the properties of the composite materials. To summarize scanning tunneling microscopy has demonstrated its surprising ability in the investigation of the assembling structures and properties of conjugated oligomers and polymers. The information obtained could benefit the understanding of the elements affecting the film morphology and helps the optimization of device performance.

  20. NASAL FILTERING OF FINE PARTICLES IN CHILDREN VS. ADULTS

    EPA Science Inventory

    Nasal efficiency for removing fine particles may be affected by developmental changes in nasal structure associated with age. In healthy Caucasian children (age 6-13, n=17) and adults (age 18-28, n=11) we measured the fractional deposition (DF) of fine particles (1 and 2um MMAD)...

  1. Detection of Propagating Fast Sausage Waves through a Detailed Analysis of a Zebra Pattern Fine Structure in a Solar Radio Burst

    NASA Astrophysics Data System (ADS)

    Kaneda, K.; Misawa, H.; Iwai, K.; Masuda, S.; Tsuchiya, F.; Katoh, Y.; Obara, T.

    2017-12-01

    Recent observations have revealed that various modes of magnetohydrodynamic (MHD) waves are ubiquitous in the corona. In imaging observations in EUV, propagating fast magnetoacoustic waves are difficult to observe due to the lack of time resolution. Quasi-periodic modulation of radio fine structures is an important source of information on these MHD waves. Zebra patterns (ZPs) are one of such fine structures in type IV bursts, which consist of several parallel stripes superimposed on the background continuum. Although the generation mechanism of ZPs has been discussed still, the most favorable model of ZPs is so-called double plasma resonance (DPR) model. In the DPR model, the frequency separation between the adjacent stripes (Δf) is determined by the plasma density and magnetic field in their source. Hence, the variation of Δf in time and frequency represents the disturbance in their source region in the corona. We report the detection of propagating fast sausage waves through the analysis of a ZP event on 2011 June 21. The variation of Δf in time and frequency was obtained using highly resolved spectral data from the Assembly of Metric-band Aperture Telescope and Real-time Analysis System (AMATERAS). We found that Δf increases with the increase of emission frequency as a whole, which is consistent with the DPR model. Furthermore, we also found that irregularities in Δf are repetitively drifting from the high frequency side to the low frequency side. Their frequency drift rate was 3 - 8 MHz/s and the repetitive frequency was several seconds. Assuming the ZP generation by the DPR model, the drifting irregularities in Δf correspond to propagating disturbances in plasma density and magnetic field with speeds of 3000 - 8000 km/s. Taking account of these facts, the observed modulations in Δf can be explained by fast sausage waves propagating through the corona. We will also discuss the plasma conditions in the corona estimated from the observational results.

  2. Fine Structure of Dark Energy and New Physics

    DOE PAGES

    Jejjala, Vishnu; Kavic, Michael; Minic, Djordje

    2007-01-01

    Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of darkmore » energy and constrain the distribution function.« less

  3. Quantum-gravity predictions for the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Held, Aaron; Wetterich, Christof

    2018-07-01

    Asymptotically safe quantum fluctuations of gravity can uniquely determine the value of the gauge coupling for a large class of grand unified models. In turn, this makes the electromagnetic fine-structure constant calculable. The balance of gravity and matter fluctuations results in a fixed point for the running of the gauge coupling. It is approached as the momentum scale is lowered in the transplanckian regime, leading to a uniquely predicted value of the gauge coupling at the Planck scale. The precise value of the predicted fine-structure constant depends on the matter content of the grand unified model. It is proportional to the gravitational fluctuation effects for which computational uncertainties remain to be settled.

  4. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: Statistical distribution and height-dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldmann, Elias, E-mail: goldmann@itp.uni-bremen.de; Barthel, Stefan; Florian, Matthias

    The variation of the excitonic fine-structure splitting is studied for semiconductor quantum dots under the influence of a strain-reducing layer, utilized to shift the emission wavelength of the excitonic transition into the telecom-wavelength regime of 1.3–1.5 μm. By means of a sp{sup 3}s{sup *}-tight-binding model and configuration interaction, we calculate wavelength shifts and fine-structure splittings for various quantum dot geometries. We find the splittings remaining small and even decreasing with strain-reducing layer composition for quantum dots with large height. Combined with an observed increased emission efficiency, the applicability for generation of entanglement photons is persistent.

  5. Micro-Macro Analysis of Complex Networks

    PubMed Central

    Marchiori, Massimo; Possamai, Lino

    2015-01-01

    Complex systems have attracted considerable interest because of their wide range of applications, and are often studied via a “classic” approach: study a specific system, find a complex network behind it, and analyze the corresponding properties. This simple methodology has produced a great deal of interesting results, but relies on an often implicit underlying assumption: the level of detail on which the system is observed. However, in many situations, physical or abstract, the level of detail can be one out of many, and might also depend on intrinsic limitations in viewing the data with a different level of abstraction or precision. So, a fundamental question arises: do properties of a network depend on its level of observability, or are they invariant? If there is a dependence, then an apparently correct network modeling could in fact just be a bad approximation of the true behavior of a complex system. In order to answer this question, we propose a novel micro-macro analysis of complex systems that quantitatively describes how the structure of complex networks varies as a function of the detail level. To this extent, we have developed a new telescopic algorithm that abstracts from the local properties of a system and reconstructs the original structure according to a fuzziness level. This way we can study what happens when passing from a fine level of detail (“micro”) to a different scale level (“macro”), and analyze the corresponding behavior in this transition, obtaining a deeper spectrum analysis. The obtained results show that many important properties are not universally invariant with respect to the level of detail, but instead strongly depend on the specific level on which a network is observed. Therefore, caution should be taken in every situation where a complex network is considered, if its context allows for different levels of observability. PMID:25635812

  6. A tale of two pectins: Diverse fine structures can result from identical processive PME treatments on similar high DM subtrates

    USDA-ARS?s Scientific Manuscript database

    The effects of a processive pectin-methylesterase treatment on two different pectins, both possessing a high degree of methylesterification, were investigated. While the starting samples were purportedly very similar in fine structure, and even though the sample-averaged degree of methylesterificati...

  7. Temporal Fine Structure and Applications to Cochlear Implants

    ERIC Educational Resources Information Center

    Li, Xing

    2013-01-01

    Complex broadband sounds are decomposed by the auditory filters into a series of relatively narrowband signals, each of which conveys information about the sound by time-varying features. The slow changes in the overall amplitude constitute envelope, while the more rapid events, such as zero crossings, constitute temporal fine structure (TFS).…

  8. Laser Spectroscopy of the Fine-Structure Splitting in the 2^{3}P_{J} Levels of ^{4}He.

    PubMed

    Zheng, X; Sun, Y R; Chen, J-J; Jiang, W; Pachucki, K; Hu, S-M

    2017-02-10

    The fine-structure splitting in the 2^{3}P_{J} (J=0, 1, 2) levels of ^{4}He is of great interest for tests of quantum electrodynamics and for the determination of the fine-structure constant α. The 2^{3}P_{0}-2^{3}P_{2} and 2^{3}P_{1}-2^{3}P_{2} intervals are measured by laser spectroscopy of the ^{3}P_{J}-2^{3}S_{1} transitions at 1083 nm in an atomic beam, and are determined to be 31 908 130.98±0.13  kHz and 2 291 177.56±0.19  kHz, respectively. Compared with calculations, which include terms up to α^{5}Ry, the deviation for the α-sensitive interval 2^{3}P_{0}-2^{3}P_{2} is only 0.22 kHz. It opens the window for further improvement of theoretical predictions and an independent determination of the fine-structure constant α with a precision of 2×10^{-9}.

  9. FRB microstructure revealed by the real-time detection of FRB170827

    NASA Astrophysics Data System (ADS)

    Farah, W.; Flynn, C.; Bailes, M.; Jameson, A.; Bannister, K. W.; Barr, E. D.; Bateman, T.; Bhandari, S.; Caleb, M.; Campbell-Wilson, D.; Chang, S.-W.; Deller, A.; Green, A. J.; Hunstead, R.; Jankowski, F.; Keane, E.; Macquart, J.-P.; Möller, A.; Onken, C. A.; Osłowski, S.; Parthasarathy, A.; Plant, K.; Ravi, V.; Shannon, R. M.; Tucker, B. E.; Venkatraman Krishnan, V.; Wolf, C.

    2018-07-01

    We report a new fast radio burst (FRB) discovered in real-time as part of the UTMOST project at the Molonglo Observatory Synthesis Radio Telescope. FRB170827 was first detected with our low-latency (<24 s) and machine-learning based FRB detection system. The FRB discovery was accompanied by the capture of voltage data at the native time and frequency resolution of the observing system, enabling coherent dedispersion and detailed off-line analysis that have unveiled fine temporal and frequency structure. The dispersion measure (DM) of 176.80 ± 0.04 pc cm-3 is the lowest of the FRB population. The Milky Way contribution along the line of sight is ˜40 pc cm-3, leaving an excess DM of ˜145 pc cm-3. The FRB has a fluence >20 ± 7 Jy ms, and is narrow with a width of ˜400 s at 10 per cent of its maximum amplitude. However, the burst shows three temporal components, the narrowest of which is ˜30 s, and a scattering time-scale of 4.1 ± 2.7 s. The FRB shows spectral modulations on frequency scales of 1.5 MHz and 0.1 MHz. Both are prominent in the dynamic spectrum, which shows a very bright region of emission between 841 and 843 MHz, and weaker and patchy emission across the entire band. We show that the fine spectral structure could arise in the FRB host galaxy, or its immediate vicinity.

  10. FRB microstructure revealed by the real-time detection of FRB170827

    NASA Astrophysics Data System (ADS)

    Farah, W.; Flynn, C.; Bailes, M.; Jameson, A.; Bannister, K. W.; Barr, E. D.; Bateman, T.; Bhandari, S.; Caleb, M.; Campbell-Wilson, D.; Chang, S.-W.; Deller, A.; Green, A. J.; Hunstead, R.; Jankowski, F.; Keane, E.; Macquart, J.-P.; Möller, A.; Onken, C. A.; Osłowski, S.; Parthasarathy, A.; Plant, K.; Ravi, V.; Shannon, R.; Tucker, B. E.; Venkatraman Krishnan, V.; Wolf, C.

    2018-05-01

    We report a new Fast Radio Burst (FRB) discovered in real-time as part of the UTMOST project at the Molonglo Observatory Synthesis Radio Telescope (MOST). FRB170827 is the first detected with our low-latency (<24 s), machine-learning-based FRB detection system. The FRB discovery was accompanied by the capture of voltage data at the native time and frequency resolution of the observing system, enabling coherent dedispersion and detailed off-line analysis, which have unveiled fine temporal and frequency structure. The dispersion measure (DM) of 176.80 ± 0.04 pc cm-3, is the lowest of the FRB population. The Milky Way contribution along the line of sight is ˜ 40 pc cm-3, leaving an excess DM of ˜ 145 pc cm-3. The FRB has a fluence > 20 ± 7 Jy ms, and is narrow, with a width of ˜ 400 μs at 10% of its maximum amplitude. However, the burst shows three temporal components, the narrowest of which is ˜ 30 μs, and a scattering timescale of 4.1 ± 2.7 μs. The FRB shows spectral modulations on frequency scales of 1.5 MHz and 0.1 MHz. Both are prominent in the dynamic spectrum, which shows a very bright region of emission between 841 and 843 MHz, and weaker, patchy emission across the entire band. We show the fine spectral structure could arise in the FRB host galaxy, or its immediate vicinity.

  11. Demonstrating the Uneven Importance of Fine-Scale Forest Structure on Snow Distributions using High Resolution Modeling

    NASA Astrophysics Data System (ADS)

    Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.

    2016-12-01

    Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications for improving land surface models that do not currently resolve or parameterize fine-scale canopy structure. In addition, these findings have implications for understanding the potential of different forest management strategies (i.e. thinning) based on local topography and climate to maximize the amount and retention of snow.

  12. Atomic resolution view into the structure–function relationships of the human myelin peripheral membrane protein P2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruskamo, Salla; University of Oulu, Oulu; Yadav, Ravi P.

    2014-01-01

    The structure of the human myelin peripheral membrane protein P2 has been refined at 0.93 Å resolution. In combination with functional experiments in vitro, in vivo and in silico, the fine details of the structure–function relationships in P2 are emerging. P2 is a fatty acid-binding protein expressed in vertebrate peripheral nerve myelin, where it may function in bilayer stacking and lipid transport. P2 binds to phospholipid membranes through its positively charged surface and a hydrophobic tip, and accommodates fatty acids inside its barrel structure. The structure of human P2 refined at the ultrahigh resolution of 0.93 Å allows detailed structuralmore » analyses, including the full organization of an internal hydrogen-bonding network. The orientation of the bound fatty-acid carboxyl group is linked to the protonation states of two coordinating arginine residues. An anion-binding site in the portal region is suggested to be relevant for membrane interactions and conformational changes. When bound to membrane multilayers, P2 has a preferred orientation and is stabilized, and the repeat distance indicates a single layer of P2 between membranes. Simulations show the formation of a double bilayer in the presence of P2, and in cultured cells wild-type P2 induces membrane-domain formation. Here, the most accurate structural and functional view to date on P2, a major component of peripheral nerve myelin, is presented, showing how it can interact with two membranes simultaneously while going through conformational changes at its portal region enabling ligand transfer.« less

  13. High resolution MRI anatomy of the cat brain at 3 Tesla

    PubMed Central

    Gray-Edwards, Heather L.; Salibi, Nouha; Josephson, Eleanor M.; Hudson, Judith A.; Cox, Nancy R.; Randle, Ashley N.; McCurdy, Victoria J.; Bradbury, Allison M.; Wilson, Diane U.; Beyers, Ronald J.; Denney, Thomas S.; Martin, Douglas R.

    2014-01-01

    Background Feline models of neurologic diseases, such as lysosomal storage diseases, leukodystrophies, Parkinson’s disease, stroke and NeuroAIDS, accurately recreate many aspects of human disease allowing for comparative study of neuropathology and the testing of novel therapeutics. Here we describe in vivo visualization of fine structures within the feline brain that were previously only visible post mortem. New Method 3 Tesla MR images were acquired using T1-weighted (T1w) 3D magnetization-prepared rapid gradient echo (MPRAGE) sequence (0.4mm isotropic resolution) and T2-weighted (T2w) turbo spin echo (TSE) images (0.3×0.3×1 mm3 resolution). Anatomic structures were identified based on feline and canine histology. Results T2w high resolution MR images with detailed structural identification are provided in transverse, sagittal and dorsal planes. T1w MR images are provided electronically in three dimensions for unrestricted spatial evaluation. Comparison with Existing Methods Many areas of the feline brain previously unresolvable on MRI are clearly visible in three orientations, including the dentate, interpositus and fastigial cerebellar nuclei, cranial nerves, lateral geniculate nucleus, optic radiation, cochlea, caudal colliculus, temporal lobe, precuneus, spinocerebellar tract, vestibular nuclei, reticular formation, pyramids and rostral and middle cerebral arteries. Additionally, the feline brain is represented in 3 dimensions for the first time. Conclusions These data establish normal appearance of detailed anatomical structures of the feline brain, which provide reference when evaluating neurologic disease or testing efficacy of novel therapeutics in animal models. PMID:24525327

  14. Relaxation of the structure of simple metal ion complexes in aqueous solutions at up to supercritical conditions

    USGS Publications Warehouse

    Mayanovic, Robert A.; Jayanetti, Sumedha; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2003-01-01

    Recently x-ray absorption fine structure (XAFS) studies of various ions in aqueous solutions showed a variation of cation-ligand bond lengths, often coupled with other structure changes, with increasing temperatures. Thus, the variations of the structure of several metal ion complexes with temperature based on observations from the X-ray absorption fine structure (XAFS) studies in the hope that it will stimulate the development of either first- principles theory or molecular dynamics simulations that might adequately describes these results are discussed.

  15. Fine-grained information extraction from German transthoracic echocardiography reports.

    PubMed

    Toepfer, Martin; Corovic, Hamo; Fette, Georg; Klügl, Peter; Störk, Stefan; Puppe, Frank

    2015-11-12

    Information extraction techniques that get structured representations out of unstructured data make a large amount of clinically relevant information about patients accessible for semantic applications. These methods typically rely on standardized terminologies that guide this process. Many languages and clinical domains, however, lack appropriate resources and tools, as well as evaluations of their applications, especially if detailed conceptualizations of the domain are required. For instance, German transthoracic echocardiography reports have not been targeted sufficiently before, despite of their importance for clinical trials. This work therefore aimed at development and evaluation of an information extraction component with a fine-grained terminology that enables to recognize almost all relevant information stated in German transthoracic echocardiography reports at the University Hospital of Würzburg. A domain expert validated and iteratively refined an automatically inferred base terminology. The terminology was used by an ontology-driven information extraction system that outputs attribute value pairs. The final component has been mapped to the central elements of a standardized terminology, and it has been evaluated according to documents with different layouts. The final system achieved state-of-the-art precision (micro average.996) and recall (micro average.961) on 100 test documents that represent more than 90 % of all reports. In particular, principal aspects as defined in a standardized external terminology were recognized with f 1=.989 (micro average) and f 1=.963 (macro average). As a result of keyword matching and restraint concept extraction, the system obtained high precision also on unstructured or exceptionally short documents, and documents with uncommon layout. The developed terminology and the proposed information extraction system allow to extract fine-grained information from German semi-structured transthoracic echocardiography reports with very high precision and high recall on the majority of documents at the University Hospital of Würzburg. Extracted results populate a clinical data warehouse which supports clinical research.

  16. On a fast calculation of structure factors at a subatomic resolution.

    PubMed

    Afonine, P V; Urzhumtsev, A

    2004-01-01

    In the last decade, the progress of protein crystallography allowed several protein structures to be solved at a resolution higher than 0.9 A. Such studies provide researchers with important new information reflecting very fine structural details. The signal from these details is very weak with respect to that corresponding to the whole structure. Its analysis requires high-quality data, which previously were available only for crystals of small molecules, and a high accuracy of calculations. The calculation of structure factors using direct formulae, traditional for 'small-molecule' crystallography, allows a relatively simple accuracy control. For macromolecular crystals, diffraction data sets at a subatomic resolution contain hundreds of thousands of reflections, and the number of parameters used to describe the corresponding models may reach the same order. Therefore, the direct way of calculating structure factors becomes very time expensive when applied to large molecules. These problems of high accuracy and computational efficiency require a re-examination of computer tools and algorithms. The calculation of model structure factors through an intermediate generation of an electron density [Sayre (1951). Acta Cryst. 4, 362-367; Ten Eyck (1977). Acta Cryst. A33, 486-492] may be much more computationally efficient, but contains some parameters (grid step, 'effective' atom radii etc.) whose influence on the accuracy of the calculation is not straightforward. At the same time, the choice of parameters within safety margins that largely ensure a sufficient accuracy may result in a significant loss of the CPU time, making it close to the time for the direct-formulae calculations. The impact of the different parameters on the computer efficiency of structure-factor calculation is studied. It is shown that an appropriate choice of these parameters allows the structure factors to be obtained with a high accuracy and in a significantly shorter time than that required when using the direct formulae. Practical algorithms for the optimal choice of the parameters are suggested.

  17. Current and high-β sheets in CIR streams: statistics and interaction with the HCS and the magnetosphere

    NASA Astrophysics Data System (ADS)

    Potapov, A. S.

    2018-04-01

    Thirty events of CIR streams (corotating interaction regions between fast and slow solar wind) were analyzed in order to study statistically plasma structure within the CIR shear zones and to examine the interaction of the CIRs with the heliospheric current sheet (HCS) and the Earth's magnetosphere. The occurrence of current layers and high-beta plasma sheets in the CIR structure has been estimated. It was found that on average, each of the CIR streams had four current layers in its structure with a current density of more than 0.12 A/m2 and about one and a half high-beta plasma regions with a beta value of more than five. Then we traced how and how often the high-speed stream associated with the CIR can catch up with the heliospheric current sheet (HCS) and connect to it. The interface of each fourth CIR stream coincided in time within an hour with the HCS, but in two thirds of cases, the CIR connection with the HCS was completely absent. One event of the simultaneous observation of the CIR stream in front of the magnetosphere by the ACE satellite in the vicinity of the L1 libration point and the Wind satellite in the remote geomagnetic tail was considered in detail. Measurements of the components of the interplanetary magnetic field and plasma parameters showed that the overall structure of the stream is conserved. Moreover, some details of the fine structure are also transferred through the magnetosphere. In particular, the so-called "magnetic hole" almost does not change its shape when moving from L1 point to a neighborhood of L2 point.

  18. Axial vs. Equatorial Ligand Rivalry in Controlling the Reactivity of Iron(IV)-Oxo Species: Single-State vs. Two-State Reactivity.

    PubMed

    Kumar, Ravi; Ansari, Azaj; Rajaraman, Gopalan

    2018-05-07

    High-valent iron-oxo species are known for their very high reactivity, and this aspect has been studied in detail over the years. The role of axial ligands in fine-tuning the reactivity of the iron(IV)-oxo species has been particularly well studied. The corresponding role of equatorial ligands, however, has rarely been explored, and is of prime importance in the development of non-heme chemistry. Here, we have undertaken detailed DFT calculations on [(L NHC )Fe IV (O)(CH 3 CN)] 2+ (1; L NHC =3,9,14,20-tetraaza1,6,12,17-tetraazoniapenta-cyclohexacosane-1(23),4,6(26),10,12(25),15,17(24),21-octaene) in comparison to compound II of cytochrome P450 [(porphyrin)Fe IV (O)(SH)] - (2) to probe this aspect. The electronic structures of 1 and 2 are found to vary significantly, implying a large variation in their reactivities. In particular, the strong equatorial ligand present in 1 significantly destabilizes the quintet states as compared to species 2. To fully understand the reactivity pattern of these species, we have modelled the hydroxylation of methane by both 1 and 2. Our calculations reveal that 1 reacts via a low-lying S=1 π pathway, and that the generally available S=2 σ pathway is not energetically accessible. In addition to having a significant barrier for C-H bond activation, the -OH rebound step is also computed to have a large barrier height, leading to a marked difference in reactivity between these two species. Of particular relevance here is the observation of pure triplet-state reactivity for 1. We have also attempted to test the role of axial ligands in fine-tuning the reactivity of 1, and our results demonstrate that, in contrast to heme systems, the axial ligands in 1 do not significantly influence the reactivity. This highlights the importance of designing equatorial ligands to fine-tune reactivity of high-valent iron(IV)-oxo species. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Q: How do Microscopes Work?

    ERIC Educational Resources Information Center

    Zimov, Sarah

    2004-01-01

    Microscopes allow scientists to examine everyday objects in extraordinary ways. They provide high-resolution images that show objects in fine detail. This brief article describes the many types of microscopes and how they are used in different scientific venues.

  20. Simple preparation of magnetic field-responsive structural colored Janus particles.

    PubMed

    Teshima, Midori; Seki, Takahiro; Takeoka, Yukikazu

    2018-03-08

    We established a simple method for preparing Janus particles displaying different structural colors using submicron-sized fine silica particles and magnetic nanoparticles composed of Fe 3 O 4 . A w/o emulsion is prepared by vortex-stirring a mixed aqueous solution of suspended fine silica particles and magnetic nanoparticles and of hexadecane containing an emulsifier. Subsequent drying of the emulsion on a hot plate using a magnetic stirrer provides a polydisperse particle aggregate displaying two different structural colors according to the ratio of the amount of fine silica particles to the amount of magnetic nanoparticles. This polydisperse particle aggregate can be converted into monodisperse particles simply by using a sieve made of stainless steel. In the presence of a magnet, the monodisperse Janus particles can change their orientation and can switch between two different structural colors.

  1. The fine-structure intervals of (N-14)+ by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Varberg, Thomas D.; Evenson, Kenneth M.; Cooksy, Andrew L.

    1994-01-01

    The far-infrared laser magnetic resonance spectra associated with both fine-structure transitions in (N-14)+ in its ground P-3 state have been recorded. This is the first laboratory observation of the J = 1 left arrow 0 transition and its frequency has been determined two orders of magnitude more accurately than previously. The remeasurement of the J = 2 left arrow 1 spectrum revealed a small error in the previous laboratory measurements. The fine-structure splittings (free of hyperfine interactions) determined in this work are (delta)E(sub 10) = 1461.13190 (61) GHz, (delta)E(sub 21) = 2459.38006 (37) GHz. Zero-field transition frequencies which include the effects of hyperfine structure have also been calculated. Refined values for the hyperfine constants and the g(sub J) factors have been obtained.

  2. Dynamical Study of Femtosecond-Laser-Ablated Liquid-Aluminum Nanoparticles Using Spatiotemporally Resolved X-Ray-Absorption Fine-Structure Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi

    2007-10-19

    We study the temperature evolution of aluminum nanoparticles generated by femtosecond laser ablation with spatiotemporally resolved x-ray-absorption fine-structure spectroscopy. We successfully identify the nanoparticles based on the L-edge absorption fine structure of the ablation plume in combination with the dependence of the edge structure on the irradiation intensity and the expansion velocity of the plume. In particular, we show that the lattice temperature of the nanoparticles is estimated from the L-edge slope, and that its spatial dependence reflects the cooling of the nanoparticles during plume expansion. The results reveal that the emitted nanoparticles travel in a vacuum as a condensedmore » liquid phase with a lattice temperature of about 2500 to 4200 K in the early stage of plume expansion.« less

  3. Magnetic field and radiative transfer modelling of a quiescent prominence

    NASA Astrophysics Data System (ADS)

    Gunár, S.; Schwartz, P.; Dudík, J.; Schmieder, B.; Heinzel, P.; Jurčák, J.

    2014-07-01

    Aims: The aim of this work is to analyse the multi-instrument observations of the June 22, 2010 prominence to study its structure in detail, including the prominence-corona transition region and the dark bubble located below the prominence body. Methods: We combined results of the 3D magnetic field modelling with 2D prominence fine structure radiative transfer models to fully exploit the available observations. Results: The 3D linear force-free field model with the unsheared bipole reproduces the morphology of the analysed prominence reasonably well, thus providing useful information about its magnetic field configuration and the location of the magnetic dips. The 2D models of the prominence fine structures provide a good representation of the local plasma configuration in the region dominated by the quasi-vertical threads. However, the low observed Lyman-α central intensities and the morphology of the analysed prominence suggest that its upper central part is not directly illuminated from the solar surface. Conclusions: This multi-disciplinary prominence study allows us to argue that a large part of the prominence-corona transition region plasma can be located inside the magnetic dips in small-scale features that surround the cool prominence material located in the dip centre. We also argue that the dark prominence bubbles can be formed because of perturbations of the prominence magnetic field by parasitic bipoles, causing them to be devoid of the magnetic dips. Magnetic dips, however, form thin layers that surround these bubbles, which might explain the occurrence of the cool prominence material in the lines of sight intersecting the prominence bubbles. Movie and Appendix A are available in electronic form at http://www.aanda.org

  4. Structure-property characterization of rheocast and VADER processed IN-100 superalloy. Ph.D. Thesis. Final Report

    NASA Technical Reports Server (NTRS)

    Cheng, J. J. A.; Apelian, D.

    1985-01-01

    Two recent solidification processes have been applied in the production of IN-100 nickel-base superalloy: rheocasting and vacuum arc double electrode remelting (VADER). A detailed microstructural examination has been made of the products of these two processes; associated tensile strength and fatigue crack propagation (FCP) rate at an elevated temperature were evaluated. In rheocasting, processing variables that have been evaluated include stirring speed, isothermal stirring time and volume fraction solid during isothermal stirring. VADER processed IN-100 was purchased from Special Metals Corp., New Hartford, NY. As-cast ingots were subjected to hot isostatic pressing (HIP) and heat treatment. Both rheocasting and VADER processed materials yield fine and equiaxed spherical structures, with reduced macrosegregation in comparison to ingot materials. The rheocast structures are discussed on the basis of the Vogel-Doherty-Cantor model of dendrite arm fragmentation. The rheocast ingots evaluated were superior in yield strength to both VADER and commercially cast IN-100 alloy. Rheocast and VADER ingots may have higher crack propagation resistance than P/M processed material.

  5. Methods in the study of discrete upper hybrid waves

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; Ye, S.; Labelle, J.; Weatherwax, A. T.; Menietti, J. D.

    2007-11-01

    Naturally occurring plasma waves characterized by fine frequency structure or discrete spectrum, detected by satellite, rocket-borne instruments, or ground-based receivers, can be interpreted as eigenmodes excited and trapped in field-aligned density structures. This paper overviews various theoretical methods to study such phenomena for a one-dimensional (1-D) density structure. Among the various methods are parabolic approximation, eikonal matching, eigenfunction matching, and full numerical solution based upon shooting method. Various approaches are compared against the full numerical solution. Among the analytic methods it is found that the eigenfunction matching technique best approximates the actual numerical solution. The analysis is further extended to 2-D geometry. A detailed comparative analysis between the eigenfunction matching and fully numerical methods is carried out for the 2-D case. Although in general the two methods compare favorably, significant differences are also found such that for application to actual observations it is prudent to employ the fully numerical method. Application of the methods developed in the present paper to actual geophysical problems will be given in a companion paper.

  6. Effect of intermolecular dipole-dipole interactions on interfacial supramolecular structures of C3-symmetric hexa-peri-hexabenzocoronene derivatives.

    PubMed

    Mu, Zhongcheng; Shao, Qi; Ye, Jun; Zeng, Zebing; Zhao, Yang; Hng, Huey Hoon; Boey, Freddy Yin Chiang; Wu, Jishan; Chen, Xiaodong

    2011-02-15

    Two-dimensional (2D) supramolecular assemblies of a series of novel C(3)-symmetric hexa-peri-hexabenzocoronene (HBC) derivatives bearing different substituents adsorbed on highly oriented pyrolytic graphite were studied by using scanning tunneling microscopy at a solid-liquid interface. It was found that the intermolecular dipole-dipole interactions play a critical role in controlling the interfacial supramolecular assembly of these C(3)-symmetric HBC derivatives at the solid-liquid interface. The HBC molecule bearing three -CF(3) groups could form 2D honeycomb structures because of antiparallel dipole-dipole interactions, whereas HBC molecules bearing three -CN or -NO(2) groups could form hexagonal superstructures because of a special trimeric arrangement induced by dipole-dipole interactions and weak hydrogen bonding interactions ([C-H···NC-] or [C-H···O(2)N-]). Molecular mechanics and dynamics simulations were performed to reveal the physics behind the 2D structures as well as detailed functional group interactions. This work provides an example of how intermolecular dipole-dipole interactions could enable fine control over the self-assembly of disklike π-conjugated molecules.

  7. Structures observed on the spot radiance fields during the FIRE experiment

    NASA Technical Reports Server (NTRS)

    Seze, Genevieve; Smith, Leonard; Desbois, Michel

    1990-01-01

    Three Spot images taken during the FIRE experiment on stratocumulus are analyzed. From this high resolution data detailed observations of the true cloud radiance field may be made. The structure and inhomogeneity of these radiance fields hold important implications for the radiation budget, while the fine scale structure in radiance field provides information on cloud dynamics. Wieliki and Welsh, and Parker et al., have quantified the inhomogeneities of the cumulus clouds through a careful examination of the distribution of cloud (and hole) size as functions of an effective cloud diameter and radiance threshold. Cahalan (1988) has compared for different cloud types of (stratocumulus, fair weather cumulus, convective clouds in the ITCZ) the distributions of clouds (and holes) sizes, the relation between the size and the perimeter of these clouds (and holes), and examining the possibility of scale invariance. These results are extended from LANDSAT resolution (57 m and 30 m) to the Spot resolution (10 m) resolution in the case of boundary layer clouds. Particular emphasis is placed on the statistics of zones of high and low reflectivity as a function of a threshold reflectivity.

  8. Revealing Roosevelt

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This image mosaic from the microscopic imager aboard NASA's Mars Exploration Rover Opportunity shows detailed structure of a small fin-like structure dubbed 'Roosevelt,' which sticks out from the outcrop pavement at the edge of 'Erebus Crater.'

    Roosevelt lines a fracture in the local pavement and scientists hypothesize that it is a fracture fill, formed by water that percolated through the fracture. This would mean the feature is younger than surrounding rocks and, therefore, might provide evidence of water that was present some time after the formation of Meridiani Planum sedimentary rocks.

    The image shows fine laminations (layers about 1 millimeter or .04 inch thick) that run parallel to the axis of the fin. Some of the textures visible in the image likely indicate that minerals precipitated from the outcrop rocks, but sediment grains are also apparent.

    The three frames combined into this mosaic were taken during Opportunity's 727th Martian day, or sol (Feb. 8, 2006). In subsequent days, the rover completed textural and chemical inspection of Roosevelt to help the science team understand this structure's significance for Martian history.

  9. Simulation of Two Dimensional Ultraviolet (2DUV) Spectroscopy of Amyloid Fibrils

    PubMed Central

    Jiang, Jun; Abramavicius, Darius; Falvo, Cyril; Bulheller, Benjamin M.; Hirst, Jonathan D.; Mukamel, Shaul

    2010-01-01

    Revealing the structure and aggregation mechanism of amyloid fibrils is essential for the treatment of over 20 diseases related to protein misfolding. Coherent two dimensional (2D) infrared spectroscopy is a novel tool that provides a wealth of new insight into the structure and dynamics of biomolecular systems. Recently developed ultrafast laser sources are extending multidimensional spectroscopy into the ultraviolet (UV) region, and this opens up new opportunities for probing fibrils. In a simulation study, we show that 2DUV spectra of the backbone of a 32-residue β-amyloid (Aβ9–40) fibril associated with Alzheimer’s disease, and two intermediate prefibrillar structures carry characteristic signatures of fibril size and geometry that could be used to monitor its formation kinetics. The dependence of these signals on the fibril size and geometry is explored. We demonstrate that the dominant features of the β-amyloid fibril spectra are determined by intramolecular interactions within a single Aβ9–40, while intermolecular interactions at the “external interface” have clear signatures in the fine details of these signals. PMID:20795695

  10. Adaptive root foraging strategies along a boreal-temperate forest gradient.

    PubMed

    Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak

    2017-08-01

    The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Super-resolution mapping using multi-viewing CHRIS/PROBA data

    NASA Astrophysics Data System (ADS)

    Dwivedi, Manish; Kumar, Vinay

    2016-04-01

    High-spatial resolution Remote Sensing (RS) data provides detailed information which ensures high-definition visual image analysis of earth surface features. These data sets also support improved information extraction capabilities at a fine scale. In order to improve the spatial resolution of coarser resolution RS data, the Super Resolution Reconstruction (SRR) technique has become widely acknowledged which focused on multi-angular image sequences. In this study multi-angle CHRIS/PROBA data of Kutch area is used for SR image reconstruction to enhance the spatial resolution from 18 m to 6m in the hope to obtain a better land cover classification. Various SR approaches like Projection onto Convex Sets (POCS), Robust, Iterative Back Projection (IBP), Non-Uniform Interpolation and Structure-Adaptive Normalized Convolution (SANC) chosen for this study. Subjective assessment through visual interpretation shows substantial improvement in land cover details. Quantitative measures including peak signal to noise ratio and structural similarity are used for the evaluation of the image quality. It was observed that SANC SR technique using Vandewalle algorithm for the low resolution image registration outperformed the other techniques. After that SVM based classifier is used for the classification of SRR and data resampled to 6m spatial resolution using bi-cubic interpolation. A comparative analysis is carried out between classified data of bicubic interpolated and SR derived images of CHRIS/PROBA and SR derived classified data have shown a significant improvement of 10-12% in the overall accuracy. The results demonstrated that SR methods is able to improve spatial detail of multi-angle images as well as the classification accuracy.

  12. A preliminary investigation of projectile shape effects in hypervelocity impact of a double-sheet structure

    NASA Technical Reports Server (NTRS)

    Morrison, R. H.

    1972-01-01

    Impact tests of a sphere and several cylinders of various masses and fineness ratios, all of aluminum, fired into an aluminum double-sheet structure at velocities near 7 km/sec, show that a cylinder, impacting in the direction of its axis, is considerably more effective as a penetrator than a sphere. Impacts of three cylinders of equal mass, but different fineness ratios, produced holes through the structures' rear sheet, whereas impact of a sphere of the same mass did not. Moreover, it was found that to prevent rear-sheet penetration, the mass of the 1/2-fineness-ratio cylinder had to be reduced by a factor greater than three. Further tests wherein the cylinder diameter was held constant while the cylinder length was systematically reduced showed that a cylinder with a fineness ratio of 0.07 and a mass of only 1/7 that of the sphere was still capable of producing a hole in the rear sheet.

  13. Clonal growth and fine-scale genetic structure in tanoak (Notholithocarpus densiflorus: Fagaceae)

    Treesearch

    Richard S. Dodd; Wasima Mayer; Alejandro Nettel; Zara Afzal-Rafii

    2013-01-01

    The combination of sprouting and reproduction by seed can have important consequences on fine-scale spatial distribution of genetic structure (SGS). SGS is an important consideration for species’ restoration because it determines the minimum distance among seed trees to maximize genetic diversity while not prejudicing locally adapted genotypes. Local environmental...

  14. Cation distribution in NiZn-ferrite films via extended x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.; Kirkland, J. P.

    1996-04-01

    We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films. A least-squares fitting of experimental EXAFS data with theoretical, multiple-scattering, EXAFS data allowed the quantitative determination of site distributions for all transition metal cations.

  15. Precision microwave measurement of the 2(3)P(1)-2(3)P(0) interval in atomic helium: a determination of the fine-structure constant.

    PubMed

    George, M C; Lombardi, L D; Hessels, E A

    2001-10-22

    The 2(3)P(1)-to- 2(3)P(0) interval in atomic helium is measured using a thermal beam of metastable helium atoms excited to the 2(3)P state using a 1.08-microm diode laser. The 2(3)P(1)-to- 2(3)P(0) transition is driven by 29.6-GHz microwaves in a rectangular waveguide cavity. Our result of 29,616,950.9+/-0.9 kHz is the most precise measurement of helium 2(3)P fine structure. When compared to precise theory for this interval, this measurement leads to a determination of the fine-structure constant of 1/137.0359864(31).

  16. Fine Structure of Reovirus Type 2

    PubMed Central

    Loh, Philip C.; Hohl, H. R.; Soergel, M.

    1965-01-01

    Loh, Philip C. (University of Hawaii, Honolulu), H. R. Hohl, and M. Soergel. Fine structure of reovirus type 2. J. Bacteriol. 89:1140–1144. 1965.—The fine structure reovirus type 2 was studied by electron microscopy with the negative-staining method. The virus has a mean diameter of 772 A and shows evidence of icosahedral shape and 5:3:2 symmetry. The particle is composed of a core, an inner layer, and a capsid composed of 92 elongated hollow capsomeres. These capsomeres have mean dimensions of 116 A × 110 A and a central hole 48 A in diameter. In size and architecture, reovirus type 2 is very similar to the other members (reoviruses types 1 and 3) of this group of animal viruses. Images PMID:14276109

  17. Nine Years of Irrigation Cause Vegetation and Fine Root Shifts in a Water-Limited Pine Forest

    PubMed Central

    Herzog, Claude; Steffen, Jan; Graf Pannatier, Elisabeth; Hajdas, Irka; Brunner, Ivano

    2014-01-01

    Scots pines (Pinus sylvestris L.) in the inner-Alpine dry valleys of Switzerland have suffered from increased mortality during the past decades, which has been caused by longer and more frequent dry periods. In addition, a proceeding replacement of Scots pines by pubescent oaks (Quercus pubescens Willd.) has been observed. In 2003, an irrigation experiment was performed to track changes by reducing drought pressure on the natural pine forest. After nine years of irrigation, we observed major adaptations in the vegetation and shifts in Scots pine fine root abundance and structure. Irrigation permitted new plant species to assemble and promote canopy closure with a subsequent loss of herb and moss coverage. Fine root dry weight increased under irrigation and fine roots had a tendency to elongate. Structural composition of fine roots remained unaffected by irrigation, expressing preserved proportions of cellulose, lignin and phenolic substances. A shift to a more negative δ13C signal in the fine root C indicates an increased photosynthetic activity in irrigated pine trees. Using radiocarbon (14C) measurement, a reduced mean age of the fine roots in irrigated plots was revealed. The reason for this is either an increase in newly produced fine roots, supported by the increase in fine root biomass, or a reduced lifespan of fine roots which corresponds to an enhanced turnover rate. Overall, the responses belowground to irrigation are less conspicuous than the more rapid adaptations aboveground. Lagged and conservative adaptations of tree roots with decadal lifespans are challenging to detect, hence demanding for long-term surveys. Investigations concerning fine root turnover rate and degradation processes under a changing climate are crucial for a complete understanding of C cycling. PMID:24802642

  18. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV

    DOE PAGES

    Colgan, James; Fontes, Christopher; Zhang, Honglin; ...

    2015-04-30

    We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that weremore » submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. As a result, we also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.« less

  19. Monitoring in-vitro bovine embryo development during the first days after fertilization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kandel, Mikhail E.; Rubessa, Marcello; Fernandes, Daniel; Nguyen, Tan H.; Wheeler, Matthew B.; Popescu, Gabriel

    2016-03-01

    Conventional label-based contrast enhancement techniques (e.g., fluorescence) frequently modify the genetic makeup of tagged cells, making them poor candidates for use in in-vitro fertilization applications. Instead, we choose a label-free form of contrast, based on interferometric imaging, sensitive to optical path length differences. Compared to, single HeLa cells, typical mammalian ova and embryos are more than an order of magnitude thicker. As a result, regions of large phase variation lead to phase wrapping and an overall reduction in signal intensity occurs due to multiple scattering. These effects manifest themselves in low-spatial frequencies (blurs), with the desired details buried in the background. We present a phase shifting interferometer that yields the derivative of the phase, a quantity whose value is particularly sensitive to local variations and fine details. We demonstrate that our new real-time imaging platform is valuable in measuring the multiday development of bovine embryos. Reconstructing the derivative of the image phase and amplitude, we characterize the motion of previously low-contrast structures, which are relevant for embryo viability tests.

  20. Fine root morphological traits determine variation in root respiration of Quercus serrata.

    PubMed

    Makita, Naoki; Hirano, Yasuhiro; Dannoura, Masako; Kominami, Yuji; Mizoguchi, Takeo; Ishii, Hiroaki; Kanazawa, Yoichi

    2009-04-01

    Fine root respiration is a significant component of carbon cycling in forest ecosystems. Although fine roots differ functionally from coarse roots, these root types have been distinguished based on arbitrary diameter cut-offs (e.g., 2 or 5 mm). Fine root morphology is directly related to physiological function, but few attempts have been made to understand the relationships between morphology and respiration of fine roots. To examine relationships between respiration rates and morphological traits of fine roots (0.15-1.4 mm in diameter) of mature Quercus serrata Murr., we measured respiration of small fine root segments in the field with a portable closed static chamber system. We found a significant power relationship between mean root diameter and respiration rate. Respiration rates of roots<0.4 mm in mean diameter were high and variable, ranging from 3.8 to 11.3 nmol CO2 g(-1) s(-1), compared with those of larger diameter roots (0.4-1.4 mm), which ranged from 1.8 to 3.0 nmol CO2 g(-1) s(-1). Fine root respiration rate was positively correlated with specific root length (SRL) as well as with root nitrogen (N) concentration. For roots<0.4 mm in diameter, SRL had a wider range (11.3-80.4 m g(-1)) and was more strongly correlated with respiration rate than diameter. Our results indicate that a more detailed classification of fine roots<2.0 mm is needed to represent the heterogeneity of root respiration and to evaluate root biomass and root morphological traits.

  1. Spatial downscaling of soil prediction models based on weighted generalized additive models in smallholder farm settings.

    PubMed

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P; Nair, Vimala D

    2017-09-11

    Digital soil mapping (DSM) is gaining momentum as a technique to help smallholder farmers secure soil security and food security in developing regions. However, communications of the digital soil mapping information between diverse audiences become problematic due to the inconsistent scale of DSM information. Spatial downscaling can make use of accessible soil information at relatively coarse spatial resolution to provide valuable soil information at relatively fine spatial resolution. The objective of this research was to disaggregate the coarse spatial resolution soil exchangeable potassium (K ex ) and soil total nitrogen (TN) base map into fine spatial resolution soil downscaled map using weighted generalized additive models (GAMs) in two smallholder villages in South India. By incorporating fine spatial resolution spectral indices in the downscaling process, the soil downscaled maps not only conserve the spatial information of coarse spatial resolution soil maps but also depict the spatial details of soil properties at fine spatial resolution. The results of this study demonstrated difference between the fine spatial resolution downscaled maps and fine spatial resolution base maps is smaller than the difference between coarse spatial resolution base maps and fine spatial resolution base maps. The appropriate and economical strategy to promote the DSM technique in smallholder farms is to develop the relatively coarse spatial resolution soil prediction maps or utilize available coarse spatial resolution soil maps at the regional scale and to disaggregate these maps to the fine spatial resolution downscaled soil maps at farm scale.

  2. Dispersal of fine sediment in nearshore coastal waters

    USGS Publications Warehouse

    Warrick, Jonathan A.

    2013-01-01

    Fine sediment (silt and clay) plays an important role in the physical, ecological, and environmental conditions of coastal systems, yet little is known about the dispersal and fate of fine sediment across coastal margin settings outside of river mouths. Here I provide simple physical scaling and detailed monitoring of a beach nourishment project near Imperial Beach, California, with a high portion of fines (40% silt and clay by weight). These results provide insights into the pathways and residence times of fine sediment transport across a wave-dominated coastal margin. Monitoring of the project used physical, optical, acoustic, and remote sensing techniques to track the fine portion of the nourishment sediment. The initial transport of fine sediment from the beach was influenced strongly by longshore currents of the surf zone that were established in response to the approach angles of the waves. The mean residence time of fine sediment in the surf zone—once it was suspended—was approximately 1 hour, and rapid decreases in surf zone fine sediment concentrations along the beach resulted from mixing and offshore transport in turbid rip heads. For example, during a day with oblique wave directions and surf zone longshore currents of approximately 25 cm/s, the offshore losses of fine sediment in rips resulted in a 95% reduction in alongshore surf zone fine sediment flux within 1 km of the nourishment site. However, because of the direct placement of nourishment sediment on the beach, fine suspended-sediment concentrations in the swash zone remained elevated for several days after nourishment, while fine sediment was winnowed from the beach. Once offshore of the surf zone, fine sediment settled downward in the water column and was observed to transport along and across the inner shelf. Vertically sheared currents influenced the directions and rates of fine sediment transport on the shelf. Sedimentation of fine sediment was greatest on the seafloor directly offshore of the nourishment site. However, a mass balance of sediment suggests that the majority of the fine sediment moved far away (over 2 km) from the nourishment site or to water depths greater than 10 m, where fine sediment represents a substantial portion of the bed material. Thus, the fate of fine sediment in nearshore waters was influenced strongly by wave conditions, surf zone and rip current transport, and the vertical density and flow conditions of coastal waters.

  3. Fine structure transitions in Fe XIV

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2013-07-01

    Results are reported for Fe XIV energy levels and transitions obtained from the ab initio relativistic Breit-Pauli R-matrix (BPRM) method. BPRM method developed under the Iron Project is capable of calculating very large number of fine structure energy levels and corresponding transitions. However, unlike in the atomic structure calculations, where levels are identified spectroscopically based on the leading percentage contributions of configurations, BPRM is incapable of such identification of the levels and hence the transitions. The main reason for it is that the percentage contributions can not be determined exactly from the large number of channels in the R-matrix space. The present report describes an identification method that uses considerations of quantum defects of channels, contributions of channel from outer regions, Hund's rule, and angular momenta algebra for addition and completeness of fine structure components. The present calculations are carried out using a close coupling wave function expansion that included 26 core excitations from configurations 2s22p63s2, 2s22p63s3p,2s22p63p2,2s22p63s3d, and 2s22p63p3d. A total of 1002 fine structure levels with n ⩽ 10, l⩽9, and 0.5 ⩽J⩽ 9.5 with even and odd parities and the corresponding 130,520 electric dipole allowed (E1) fine structure transitions, a most complete set for astrophysical modelings of spectral analysis and opacities, is presented. Large number of new energy levels are found and identified. The energies agree very well, mostly in less than 1% with the highest being 1.9%, with the 68 observed fine structure levels. While the high lying levels may have some uncertainty, an overall accuracy of energy levels should be within 10%. BPRM transitions have been benchmarked with the existing most accurate calculated transition probabilities with very good agreement for most cases. Based on the accuracy of the method and comparisons, most of the transitions can be rated with A (⩽10%) to C (⩽30%).

  4. Size structure of marine soft-bottom macrobenthic communities across natural habitat gradients: implications for productivity and ecosystem function.

    PubMed

    Macdonald, Tara A; Burd, Brenda J; van Roodselaar, Albert

    2012-01-01

    Size distributions of biotic assemblages are important modifiers of productivity and function in marine sediments. We investigated the distribution of proportional organic biomass among logarithmic size classes (2(-6)J to 2(16)J) in the soft-bottom macrofaunal communities of the Strait of Georgia, Salish Sea on the west coast of Canada. The study examines how size structure is influenced by 3 fundamental habitat descriptors: depth, sediment percent fines, and organic flux (modified by quality). These habitat variables are uncorrelated in this hydrographically diverse area, thus we examine their effects in combination and separately. Cluster analyses and cumulative biomass size spectra reveal clear and significant responses to each separate habitat variable. When combined, habitat factors result in three distinct assemblages: (1) communities with a high proportion of biomass in small organisms, typical of shallow areas (<10 m) with coarse sediments (<10% fines) and low accumulation of organic material (<3.0 gC/m(2)/yr/δ(15)N); (2) communities with high proportion of biomass in the largest organisms found in the Strait, typical of deep, fine sediments with high modified organic flux (>3 g C/m(2)/yr/δ(15)N) from the Fraser River; and (3) communities with biomass dominated by moderately large organisms, but lacking the smallest and largest size classes, typical of deep, fine sediments experiencing low modified organic flux (<3.0 gC/m(2)/yr/δ(15)N). The remaining assemblages had intermediate habitat types and size structures. Sediment percent fines and flux appear to elicit threshold responses in size structure, whereas depth has the most linear influence on community size structure. The ecological implications of size structure in the Strait of Georgia relative to environmental conditions, secondary production and sediment bioturbation are discussed.

  5. Size Structure of Marine Soft-Bottom Macrobenthic Communities across Natural Habitat Gradients: Implications for Productivity and Ecosystem Function

    PubMed Central

    Macdonald, Tara A.; Burd, Brenda J.; van Roodselaar, Albert

    2012-01-01

    Size distributions of biotic assemblages are important modifiers of productivity and function in marine sediments. We investigated the distribution of proportional organic biomass among logarithmic size classes (2−6J to 216J) in the soft-bottom macrofaunal communities of the Strait of Georgia, Salish Sea on the west coast of Canada. The study examines how size structure is influenced by 3 fundamental habitat descriptors: depth, sediment percent fines, and organic flux (modified by quality). These habitat variables are uncorrelated in this hydrographically diverse area, thus we examine their effects in combination and separately. Cluster analyses and cumulative biomass size spectra reveal clear and significant responses to each separate habitat variable. When combined, habitat factors result in three distinct assemblages: (1) communities with a high proportion of biomass in small organisms, typical of shallow areas (<10 m) with coarse sediments (<10% fines) and low accumulation of organic material (<3.0 gC/m2/yr/δ15N); (2) communities with high proportion of biomass in the largest organisms found in the Strait, typical of deep, fine sediments with high modified organic flux (>3 g C/m2/yr/δ15N) from the Fraser River; and (3) communities with biomass dominated by moderately large organisms, but lacking the smallest and largest size classes, typical of deep, fine sediments experiencing low modified organic flux (<3.0 gC/m2/yr/δ15N). The remaining assemblages had intermediate habitat types and size structures. Sediment percent fines and flux appear to elicit threshold responses in size structure, whereas depth has the most linear influence on community size structure. The ecological implications of size structure in the Strait of Georgia relative to environmental conditions, secondary production and sediment bioturbation are discussed. PMID:22911694

  6. SFG analysis of surface bound proteins: a route towards structure determination.

    PubMed

    Weidner, Tobias; Castner, David G

    2013-08-14

    The surface of a material is rapidly covered with proteins once that material is placed in a biological environment. The structure and function of these bound proteins play a key role in the interactions and communications of the material with the biological environment. Thus, it is crucial to gain a molecular level understanding of surface bound protein structure. While X-ray diffraction and solution phase NMR methods are well established for determining the structure of proteins in the crystalline or solution phase, there is not a corresponding single technique that can provide the same level of structural detail about proteins at surfaces or interfaces. However, recent advances in sum frequency generation (SFG) vibrational spectroscopy have significantly increased our ability to obtain structural information about surface bound proteins and peptides. A multi-technique approach of combining SFG with (1) protein engineering methods to selectively introduce mutations and isotopic labels, (2) other experimental methods such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and near edge X-ray absorption fine structure (NEXAFS) to provide complementary information, and (3) molecular dynamic (MD) simulations to extend the molecular level experimental results is a particularly promising route for structural characterization of surface bound proteins and peptides. By using model peptides and small proteins with well-defined structures, methods have been developed to determine the orientation of both backbone and side chains to the surface.

  7. SFG analysis of surface bound proteins: A route towards structure determination

    PubMed Central

    Weidner, Tobias; Castner, David G.

    2013-01-01

    The surface of a material is rapidly covered with proteins once that material is placed in a biological environment. The structure and function of these bound proteins play a key role in the interactions and communications of the material with the biological environment. Thus, it is crucial to gain a molecular level understanding of surface bound protein structure. While X-ray diffraction and solution phase NMR methods are well established for determining the structure of proteins in the crystalline or solution phase, there is not a corresponding single technique that can provide the same level of structural detail about proteins at surfaces or interfaces. However, recent advances in sum frequency generation (SFG) vibrational spectroscopy have significantly increased our ability to obtain structural information about surface bound proteins and peptides. A multi-technique approach of combining SFG with (1) protein engineering methods to selectively introduce mutations and isotopic labels, (2) other experimental methods such as time-of-flight secondary ion mass spectrometry (ToF-SIMS) and near edge x-ray absorption fine structure (NEXAFS) to provide complementary information, and (3) molecular dynamic (MD) simulations to extend the molecular level experimental results is a particularly promising route for structural characterization of surface bound proteins and peptides. By using model peptides and small proteins with well-defined structures, methods have been developed to determine the orientation of both backbone and side chains to the surface. PMID:23727992

  8. A theoretical and experimental investigation of graph theoretical measures for land development in satellite imagery.

    PubMed

    Unsalan, Cem; Boyer, Kim L

    2005-04-01

    Today's commercial satellite images enable experts to classify region types in great detail. In previous work, we considered discriminating rural and urban regions [23]. However, a more detailed classification is required for many purposes. These fine classifications assist government agencies in many ways including urban planning, transportation management, and rescue operations. In a step toward the automation of the fine classification process, this paper explores graph theoretical measures over grayscale images. The graphs are constructed by assigning photometric straight line segments to vertices, while graph edges encode their spatial relationships. We then introduce a set of measures based on various properties of the graph. These measures are nearly monotonic (positively correlated) with increasing structure (organization) in the image. Thus, increased cultural activity and land development are indicated by increases in these measures-without explicit extraction of road networks, buildings, residences, etc. These latter, time consuming (and still only partially automated) tasks can be restricted only to "promising" image regions, according to our measures. In some applications our measures may suffice. We present a theoretical basis for the measures followed by extensive experimental results in which the measures are first compared to manual evaluations of land development. We then present and test a method to focus on, and (pre)extract, suburban-style residential areas. These are of particular importance in many applications, and are especially difficult to extract. In this work, we consider commercial IKONOS data. These images are orthorectified to provide a fixed resolution of 1 meter per pixel on the ground. They are, therefore, metric in the sense that ground distance is fixed in scale to pixel distance. Our data set is large and diverse, including sea and coastline, rural, forest, residential, industrial, and urban areas.

  9. Detailed maps of tropical forest types are within reach: forest tree communities for Trinidad and Tobago mapped with multiseason Landsat and multiseason fine-resolution imagery

    Treesearch

    Eileen H. Helmer; Thomas S. Ruzycki; Jay Benner; Shannon M. Voggesser; Barbara P. Scobie; Courtenay Park; David W. Fanning; Seepersad Ramnarine

    2012-01-01

    Tropical forest managers need detailed maps of forest types for REDD+, but spectral similarity among forest types; cloud and scan-line gaps; and scarce vegetation ground plots make producing such maps with satellite imagery difficult. How can managers map tropical forest tree communities with satellite imagery given these challenges? Here we describe a case study of...

  10. Preparation and mounting of adult Drosophila structures in Canada balsam.

    PubMed

    Stern, David L; Sucena, Elio

    2012-03-01

    The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. To prepare fine "museum-quality," permanent slides, it is best to mount specimens in Canada Balsam. It is difficult to give precise recipes for Canada Balsam, because every user seems to prefer a slightly different viscosity. Dilute solutions spread easily and do not dry too rapidly while mounting specimens. The disadvantage is that there is actually less Balsam in a "drop" of the solution, and when dried, it can contract from the sides of the coverslip, sometimes disturbing the specimen. Unfortunately, there is no substitute for experience when using Canada Balsam. This protocol describes a procedure for mounting adult cuticles in Canada Balsam.

  11. The role of configuration interaction in the LTE opacity of Fe

    NASA Astrophysics Data System (ADS)

    Colgan, James; Kilcrease, David; Magee, Norm; Armstrong, Gregory; Abdallah, Joe; Sherrill, Manolo; Fontes, Christopher; Zhang, Honglin; Hakel, Peter

    2013-05-01

    The Los Alamos National Laboratory code ATOMIC has been recently used to generate a series of local-thermodynamic-equilibrium (LTE) light element opacities for the elements H through Ne. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. Recent efforts have resulted in comprehensive new calculations of the opacity of Fe. In this presentation we explore the role of configuration interaction (CI) in the Fe opacity, and show where CI influences the monochromatic opacity. We present such comparisons for conditions of astrophysical interest. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  12. Auto-oligomerization and hydration of pyrrole revealed by x-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advanced Light Source; Schwartz, Craig P.; Uejio, Janel S.

    Near edge x-ray absorption fine structure (NEXAFS) spectra have been measured at the carbon and nitrogen K-edges of the prototypical aromatic molecule, pyrrole, both in the gas phase and when solvated in water, and compared with spectra simulated using a combination of classical molecular dynamics and first principles density functional theory in the excited state core hole approximation. The excellent agreement enabled detailed assignments. Pyrrole is highly reactive, particularly in water, and reaction products formed by the auto-oligomerization of pyrrole are identified. The solvated spectra have been measured at two different temperatures, indicating that the final states remain largely unaffectedmore » by both hydration and temperature. This is somewhat unexpected, since the nitrogen in pyrrole can donate a hydrogen bond to water.« less

  13. Auto-oligomerization and hydration of pyrrole revealed by x-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.

    Near edge x-ray absorption fine structure spectra have been measured at the carbon and nitrogen K-edges of the prototypical aromatic molecule, pyrrole, both in the gas phase and when solvated in water, and compared with spectra simulated using a combination of classical molecular dynamics and first principles density functional theory in the excited state core hole approximation. The excellent agreement enabled detailed assignments. Pyrrole is highly reactive, particularly in water, and reaction products formed by the auto-oligomerization of pyrrole are identified. The solvated spectra have been measured at two different temperatures, indicating that the final states remain largely unaffected bymore » both hydration and temperature. This is somewhat unexpected, since the nitrogen in pyrrole can donate a hydrogen bond to water.« less

  14. Large-Eddy Simulation of Turbulent Wall-Pressure Fluctuations

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.

    1996-01-01

    Large-eddy simulations of a turbulent boundary layer with Reynolds number based on displacement thickness equal to 3500 were performed with two grid resolutions. The computations were continued for sufficient time to obtain frequency spectra with resolved frequencies that correspond to the most important structural frequencies on an aircraft fuselage. The turbulent stresses were adequately resolved with both resolutions. Detailed quantitative analysis of a variety of statistical quantities associated with the wall-pressure fluctuations revealed similar behavior for both simulations. The primary differences were associated with the lack of resolution of the high-frequency data in the coarse-grid calculation and the increased jitter (due to the lack of multiple realizations for averaging purposes) in the fine-grid calculation. A new curve fit was introduced to represent the spanwise coherence of the cross-spectral density.

  15. Herringbone bursts associated with type II solar radio emission

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.; Robinson, R. D.

    1987-01-01

    Detailed observations of the herringbone (HB) fine structure on type II solar radio bursts are presented. Data from the Culgoora radiospectrograph, radiometer and radioheliograph are analyzed. The characteristic spectral profiles, frequency drift rates and exciter velocities, fluxes, source sizes, brightness temperatures, and polarizations of individual HB bursts are determined. Correlations between individual bursts within the characteristic groups of bursts and the properties of the associated type II bursts are examined. These data are compatible with HB bursts being radiation at multiples of the plasma frequency generated by electron streams accelerated by the type II shock. HB bursts are physically distinct phenomena from type II and type III bursts, differing significantly in emission processes and/or source conditions; this conclusion indicates that many of the presently available theoretical ideas for HB bursts are incorrect.

  16. LookSeq: a browser-based viewer for deep sequencing data.

    PubMed

    Manske, Heinrich Magnus; Kwiatkowski, Dominic P

    2009-11-01

    Sequencing a genome to great depth can be highly informative about heterogeneity within an individual or a population. Here we address the problem of how to visualize the multiple layers of information contained in deep sequencing data. We propose an interactive AJAX-based web viewer for browsing large data sets of aligned sequence reads. By enabling seamless browsing and fast zooming, the LookSeq program assists the user to assimilate information at different levels of resolution, from an overview of a genomic region to fine details such as heterogeneity within the sample. A specific problem, particularly if the sample is heterogeneous, is how to depict information about structural variation. LookSeq provides a simple graphical representation of paired sequence reads that is more revealing about potential insertions and deletions than are conventional methods.

  17. Revealing fine microstructural morphology in the living human retina using Optical Coherence Tomography with pancorrection

    NASA Astrophysics Data System (ADS)

    Torti, C.; Považay, B.; Hofer, B.; Unterhuber, A.; Hermann, B.; Drexler, W.

    2008-09-01

    Ultra-high speed optical coherence tomography employing an ultra-broadband light source has been combined with adaptive optics utilizing a single high stroke deformable mirror and chromatic aberration compensation. The reduction of motion artefacts, geometric and chromatic aberrations (pancorrection) permits to achieve an isotropic resolution of 2-3 μm in the human eye. The performance of this non-invasive imaging modality enables to resolve cellular structures including cone photoreceptors, nerve fibre bundles and collagenous plates of the lamina cribrosa, and retinal pigment epithelial (RPE) cells in the human retina in vivo with superior detail. Alterations of cellular morphology due to cone degeneration in a colour-blind subject are investigated in ultra-high resolution with selective depth sectioning for the first time.

  18. XFAS SPECTROSCOPY ANALYSIS OF SELECTED HAP ELEMENTS IN FINE PM DERIVED FROM COAL COMBUSTION: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-RTP-P-646 Shoji, T., Huggins, F.E., Huffman, G.P., Linak*, W.P., and Miller*, C.A. XFAS Spectroscopy Analysis of Selected HAP Elements in Fine PM Derived from Coal Combustion. Energy and Fuels 16 (2): (2002). 11/30/2001 X-ray absorption fine structure (XAFS) spectroscop...

  19. Remote sensing, geographical information systems, and spatial modeling for analyzing public transit services

    NASA Astrophysics Data System (ADS)

    Wu, Changshan

    Public transit service is a promising transportation mode because of its potential to address urban sustainability. Current ridership of public transit, however, is very low in most urban regions, particularly those in the United States. This woeful transit ridership can be attributed to many factors, among which poor service quality is key. Given this, there is a need for transit planning and analysis to improve service quality. Traditionally, spatially aggregate data are utilized in transit analysis and planning. Examples include data associated with the census, zip codes, states, etc. Few studies, however, address the influences of spatially aggregate data on transit planning results. In this research, previous studies in transit planning that use spatially aggregate data are reviewed. Next, problems associated with the utilization of aggregate data, the so-called modifiable areal unit problem (MAUP), are detailed and the need for fine resolution data to support public transit planning is argued. Fine resolution data is generated using intelligent interpolation techniques with the help of remote sensing imagery. In particular, impervious surface fraction, an important socio-economic indicator, is estimated through a fully constrained linear spectral mixture model using Landsat Enhanced Thematic Mapper Plus (ETM+) data within the metropolitan area of Columbus, Ohio in the United States. Four endmembers, low albedo, high albedo, vegetation, and soil are selected to model heterogeneous urban land cover. Impervious surface fraction is estimated by analyzing low and high albedo endmembers. With the derived impervious surface fraction, three spatial interpolation methods, spatial regression, dasymetric mapping, and cokriging, are developed to interpolate detailed population density. Results suggest that cokriging applied to impervious surface is a better alternative for estimating fine resolution population density. With the derived fine resolution data, a multiple route maximal covering/shortest path (MRMCSP) model is proposed to address the tradeoff between public transit service quality and access coverage in an established bus-based transit system. Results show that it is possible to improve current transit service quality by eliminating redundant or underutilized service stops. This research illustrates that fine resolution data can be efficiently generated to support urban planning, management and analysis. Further, this detailed data may necessitate the development of new spatial optimization models for use in analysis.

  20. Structural studies with the use of XRD and Mössbauer spectroscopy of new high Manganese steels

    NASA Astrophysics Data System (ADS)

    Jablonska, Magdalena Barbara

    2014-04-01

    New high-strength austenitic and austenitic-ferritic manganese steels represent a significant potential in applications for structural components in the automotive and railway industry due to the excellent combination of high mechanical properties and good plasticity. They belong to the group of steels called AHSS (Advanced High Strength Steels) and UHSS (Ultra High Strength Steels). Application of this combination of properties allows a reduction in the weight of vehicles by the use of reduced cross-section components, and thus to reduce fuel consumption. The development and implementation of industrial production of such interesting and promising steel and its use as construction material requires an improvement of their casting properties and susceptibility to deformation in plastic working conditions. In this work, XRD, Transmission Mössbauer Spectroscopy and Conversion Electron Mössbauer Spectroscopy were employed in a study of the new high-manganese steels with a austenite and austenite-ferrite structure. The influence of the plastic deformation parameters on the changes in the structure, distribution of ferrite and disclosure of the presence of carbides was determined. The analysis of phase transformations in various times using CEMS method made possible to reveal their fine details.

  1. Hybrid-coded 3D structured illumination imaging with Bayesian estimation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Hsun; Luo, Yuan; Singh, Vijay R.

    2016-03-01

    Light induced fluorescent microscopy has long been developed to observe and understand the object at microscale, such as cellular sample. However, the transfer function of lense-based imaging system limits the resolution so that the fine and detailed structure of sample cannot be identified clearly. The techniques of resolution enhancement are fascinated to break the limit of resolution for objective given. In the past decades, the resolution enhancement imaging has been investigated through variety of strategies, including photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), stimulated emission depletion (STED), and structure illuminated microscopy (SIM). In those methods, only SIM can intrinsically improve the resolution limit for a system without taking the structure properties of object into account. In this paper, we develop a SIM associated with Bayesian estimation, furthermore, with optical sectioning capability rendered from HiLo processing, resulting the high resolution through 3D volume. This 3D SIM can provide the optical sectioning and resolution enhancement performance, and be robust to noise owing to the Data driven Bayesian estimation reconstruction proposed. For validating the 3D SIM, we show our simulation result of algorithm, and the experimental result demonstrating the 3D resolution enhancement.

  2. Effect of diurnal photosynthetic activity on the fine structure of amylopectin from normal and waxy barley starch.

    PubMed

    Goldstein, Avi; Annor, George; Blennow, Andreas; Bertoft, Eric

    2017-09-01

    The impact of diurnal photosynthetic activity on the fine structure of the amylopectin fraction of starch synthesized by normal barley (NBS) and waxy barley (WBS), the latter completely devoid of amylose biosynthesis, was determined following the cultivation under normal diurnal or constant light growing conditions. The amylopectin fine structures were analysed by characterizing its unit chain length profiles after enzymatic debranching as well as its φ,β-limit dextrins and its clusters and building blocks after their partial and complete hydrolysis with α-amylase from Bacillus amyloliquefaciens, respectively. Regardless of lighting conditions, no structural effects were found when comparing both the amylopectin side-chain distribution and the internal chain fragments of these amylopectins. However, the diurnally grown NBS and WBS both showed larger amylopectin clusters and these had lower branching density and longer average chain lengths than clusters derived from plants grown under constant light conditions. Amylopectin clusters from diurnally grown plants also consisted of a greater number of building blocks, and shorter inter-block chain lengths compared to clusters derived from plants grown under constant light. Our data demonstrate that the diurnal light regime influences the fine structure of the amylopectin component both in amylose and non-amylose starch granules. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Design and fabrication of integrated micro/macrostructure for 3D functional gradient systems based on additive manufacturing

    NASA Astrophysics Data System (ADS)

    Yin, Ming; Xie, Luofeng; Jiang, Weifeng; Yin, Guofu

    2018-05-01

    Functional gradient systems have important applications in many areas. Although a 2D dielectric structure that serves as the gradient index medium for controlling electromagnetic waves is well established, it may not be suitable for application in 3D case. In this paper, we present a method to realize functional gradient systems with 3D integrated micro/macrostructure. The homogenization of the structure is studied in detail by conducting band diagram analysis. The analysis shows that the effective medium approximation is valid even when periodicity is comparable to wavelength. The condition to ensure the polarization-invariant, isotropic, and frequency-independent property is investigated. The scheme for the design and fabrication of 3D systems requiring spatial material property distribution is presented. By using the vat photopolymerization process, a large overall size of macrostructure at the system level and precise fine features of microstructure at the unit cell level are realized, thus demonstrating considerable scalability of the system for wave manipulation.

  4. Scalable Low-Cost Fabrication of Disposable Paper Sensors for DNA Detection

    PubMed Central

    2015-01-01

    Controlled integration of features that enhance the analytical performance of a sensor chip is a challenging task in the development of paper sensors. A critical issue in the fabrication of low-cost biosensor chips is the activation of the device surface in a reliable and controllable manner compatible with large-scale production. Here, we report stable, well-adherent, and repeatable site-selective deposition of bioreactive amine functionalities and biorepellant polyethylene glycol-like (PEG) functionalities on paper sensors by aerosol-assisted, atmospheric-pressure, plasma-enhanced chemical vapor deposition. This approach requires only 20 s of deposition time, compared to previous reports on cellulose functionalization, which takes hours. A detailed analysis of the near-edge X-ray absorption fine structure (NEXAFS) and its sensitivity to the local electronic structure of the carbon and nitrogen functionalities. σ*, π*, and Rydberg transitions in C and N K-edges are presented. Application of the plasma-processed paper sensors in DNA detection is also demonstrated. PMID:25423585

  5. Lunar near-surface structure

    NASA Technical Reports Server (NTRS)

    Cooper, M. R.; Kovach, R. L.; Watkins, J. S.

    1974-01-01

    Seismic refraction data obtained at the Apollo 14, 16, and 17 landing sites permit a compressional wave velocity profile of the lunar near surface to be derived. Beneath the regolith at the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is material with a seismic velocity of about 300 m/sec, believed to be brecciated material or impact-derived debris. Considerable detail is known about the velocity structure at the Apollo 17 Taurus-Littrow site. Seismic velocities of 100, 327, 495, 960, and 4700 m/sec are observed. The depth to the top of the 4700-m/sec material is 1385 m, compatible with gravity estimates for the thickness of mare basaltic flows, which fill the Taurus-Littrow valley. The observed magnitude of the velocity change with depth and the implied steep velocity-depth gradient of more than 2 km/sec/km are much larger than have been observed on compaction experiments on granular materials and preclude simple cold compaction of a fine-grained rock powder to thicknesses of the order of kilometers.

  6. Macrolide antibiotic interaction and resistance on the bacterial ribosome.

    PubMed

    Poehlsgaard, Jacob; Douthwaite, Stephen

    2003-02-01

    Our understanding of the fine structure of many antibiotic target sites has reached a new level of enlightenment in the last couple of years due to the advent, by X-ray crystallography, of high-resolution structures of the bacterial ribosome. Many classes of clinically useful antibiotics bind to the ribosome to inhibit bacterial protein synthesis. Macrolide, lincosamide and streptogramin B (MLSB) antibiotics form one of the largest groups, and bind to the same site on the 50S ribosomal subunit. Here, we review the molecular details of the ribosomal MLSB site to put into perspective the main points from a wealth of biochemical and genetic data that have been collected over several decades. The information is now available to understand, at atomic resolution, how macrolide antibiotics interact with their ribosomal target, how the target is altered to confer resistance, and in which directions we need to look if we are to rationally design better drugs to overcome the extant resistance mechanisms.

  7. A review of rapid prototyping techniques for tissue engineering purposes.

    PubMed

    Peltola, Sanna M; Melchels, Ferry P W; Grijpma, Dirk W; Kellomäki, Minna

    2008-01-01

    Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically three-dimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of three-dimensional scaffolds with complex geometries and very fine structures. Adding micro- and nanometer details into the scaffolds improves the mechanical properties of the scaffold and ensures better cell adhesion to the scaffold surface. Thus, tissue engineering constructs can be customized according to the data acquired from the medical scans to match the each patient's individual needs. In addition RP enables the control of the scaffold porosity making it possible to fabricate applications with desired structural integrity. Unfortunately, every RP process has its own unique disadvantages in building tissue engineering scaffolds. Hence, the future research should be focused on the development of RP machines designed specifically for fabrication of tissue engineering scaffolds, although RP methods already can serve as a link between tissue and engineering.

  8. On a relationship between molecular polarizability and partial molar volume in water.

    PubMed

    Ratkova, Ekaterina L; Fedorov, Maxim V

    2011-12-28

    We reveal a universal relationship between molecular polarizability (a single-molecule property) and partial molar volume in water that is an ensemble property characterizing solute-solvent systems. Since both of these quantities are of the key importance to describe solvation behavior of dissolved molecular species in aqueous solutions, the obtained relationship should have a high impact in chemistry, pharmaceutical, and life sciences as well as in environments. We demonstrated that the obtained relationship between the partial molar volume in water and the molecular polarizability has in general a non-homogeneous character. We performed a detailed analysis of this relationship on a set of ~200 organic molecules from various chemical classes and revealed its fine well-organized structure. We found that this structure strongly depends on the chemical nature of the solutes and can be rationalized in terms of specific solute-solvent interactions. Efficiency and universality of the proposed approach was demonstrated on an external test set containing several dozens of polyfunctional and druglike molecules.

  9. Giant dielectric response in (Sr, Sb) codoped CaCu3Ti4O12 ceramics: A novel approach

    NASA Astrophysics Data System (ADS)

    Pradhan, M. K.; Rao, T. Lakshmana; Karna, Lipsarani; Dash, S.

    2018-04-01

    The CaCu3Ti4O12 (CCTO) remains as the best material for practical applications due to its high dielectric constant. To improve further the dielectric properties of CCTO to several orders in magnitude, a novel approach is adopted by codoping of Sr, Sb ions. The ceramic samples were fabricated by the conventional solid state route. The structure, morphology and detail dielectric properties were investigated systematically. All the samples crystalizes in a cubic symmetry with Im-3 space group. Sr substituted in Ca site can effectively suppress the grain growth, achieving a fine grained ceramic structure; however the grain size decreased slightly as Sb concentration increased further; whereas the dielectric permittivity of the ceramics increased drastically. The giant dielectric response was considered to be closely related with a reduction in the potential barrier height at grain boundaries (GBs) supported by the reduction in the activation energy for the conduction process.

  10. Scalable Low-Cost Fabrication of Disposable Paper Sensors for DNA Detection

    DOE PAGES

    Gandhiraman, Ram P.; Nordlund, Dennis; Jayan, Vivek; ...

    2014-11-25

    Controlled integration of features that enhance the analytical performance of a sensor chip is a challenging task in the development of paper sensors. A critical issue in the fabrication of low-cost biosensor chips is the activation of the device surface in a reliable and controllable manner compatible with large-scale production. Here, we report stable, well-adherent, and repeatable site-selective deposition of bioreactive amine functionalities and biorepellant polyethylene glycol-like (PEG) functionalities on paper sensors by aerosol-assisted, atmospheric-pressure, plasma-enhanced chemical vapor deposition. This approach requires only 20 s of deposition time, compared to previous reports on cellulose functionalization, which takes hours. We presentmore » a detailed analysis of the near-edge X-ray absorption fine structure (NEXAFS) and its sensitivity to the local electronic structure of the carbon and nitrogen functionalities. σ*, π*, and Rydberg transitions in C and N K-edges. Lastly, application of the plasma-processed paper sensors in DNA detection is also demonstrated.« less

  11. Deciphering fine molecular details of proteins' structure and function with a Protein Surface Topography (PST) method.

    PubMed

    Koromyslova, Anna D; Chugunov, Anton O; Efremov, Roman G

    2014-04-28

    Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection maps of entire protein surfaces and manipulate with them--protein surface topography (PST). It permits visualization and thoughtful analysis of surface properties. PST helps to easily portray conformational transitions, analyze proteins' properties and their dynamic behavior, improve docking performance, and reveal common patterns and dissimilarities in molecular surfaces of related bioactive peptides. This paper describes basic usage of PST with an example of small G-proteins conformational transitions, mapping of caspase-1 intersubunit interface, and intrinsic "complementarity" in the conotoxin-acetylcholine binding protein complex. We suggest that PST is a beneficial approach for structure-function studies of bioactive peptides and small proteins.

  12. Maltose conjugation to PCL: Advanced structural characterization and preliminary biological properties

    NASA Astrophysics Data System (ADS)

    Secchi, Valeria; Guizzardi, Roberto; Russo, Laura; Pastori, Valentina; Lecchi, Marzia; Franchi, Stefano; Iucci, Giovanna; Battocchio, Chiara; Cipolla, Laura

    2018-05-01

    The emerging trends in regenerative medicine rely among others on biomaterial-based therapies, with the use of biomaterials as a central delivery system for biochemical and physical cues to manipulate transplanted or ingrowth cells and to orchestrate tissue regeneration. Cell adhesion properties of a biomaterial strongly depend on its surface characteristics. Among others poly(ε-caprolactone) (PCL) is a biocompatible and biodegradable material with low cytotoxicity that is widely adopted as synthetic polymer in several applications. However, it is hydrophobic, which limits its use in tissue engineering. In order to improve its hydrophilicity and cellular compatibility, PCL surface was grafted with maltose through a two-step procedure in which controlled aminolysis of PCL ester bonds by hexanediamine was followed by reductive amination with the carbohydrate reducing end. The modified PCL surface was then characterized in detail by x-ray Photoelectron Spectroscopy (XPS) and Near Edge x-ray Absorption Fine Structure (NEXAFS) spectroscopies. In addition, the biocompatibility of the proposed biomaterial was investigated in preliminary biological assays.

  13. Reminiscences of research on the chemistry and biology of natural sterols in insects, plants and humans.

    PubMed

    Ikekawa, Nobuo; Fujimoto, Yoshinori; Ishiguro, Masaji

    2013-01-01

    Natural sterols often occur as a heterogeneous mixture of homologs, which had disturbed the progress of steroid research. Development and application of GC methodology overcame this difficulty and enabled us to obtain detailed sterol profiles. Together, fine synthesis of stereo-defined isomers and homologs of steroids having oxygenated side chains allowed us to compare them with natural samples as well as to investigate structure-activity relationship. Advance of HPLC technology also facilitated the determination of the stereochemical structure of naturally occurring steroidal compounds, which were obtained only in minute amounts. This review highlights three topics out of our steroid research that have been performed mainly at Tokyo Institute of Technology around 1970-1990. These are sterol metabolism in insects focusing on the mechanism of the conversion of plant sterols to cholesterol and ecdysone biosynthesis, the synthesis and biochemical research of active forms of vitamin D3 derivatives, and the synthesis and microanalysis of plant hormone brassinosteroids.

  14. A coarse-grained model for DNA origami.

    PubMed

    Reshetnikov, Roman V; Stolyarova, Anastasia V; Zalevsky, Arthur O; Panteleev, Dmitry Y; Pavlova, Galina V; Klinov, Dmitry V; Golovin, Andrey V; Protopopova, Anna D

    2018-02-16

    Modeling tools provide a valuable support for DNA origami design. However, current solutions have limited application for conformational analysis of the designs. In this work we present a tool for a thorough study of DNA origami structure and dynamics. The tool is based on a novel coarse-grained model dedicated to geometry optimization and conformational analysis of DNA origami. We explored the ability of the model to predict dynamic behavior, global shapes, and fine details of two single-layer systems designed in hexagonal and square lattices using atomic force microscopy, Förster resonance energy transfer spectroscopy, and all-atom molecular dynamic simulations for validation of the results. We also examined the performance of the model for multilayer systems by simulation of DNA origami with published cryo-electron microscopy and atomic force microscopy structures. A good agreement between the simulated and experimental data makes the model suitable for conformational analysis of DNA origami objects. The tool is available at http://vsb.fbb.msu.ru/cosm as a web-service and as a standalone version.

  15. Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qi; Chapleski, Robert C.; Plonka, Anna M.

    Ambient pressure in situ synchrotron-based spectroscopic techniques have been correlated to illuminate atomic-level details of bond breaking and formation during the hydrolysis of a chemical warfare nerve agent simulant over a polyoxometalate catalyst. Specifically, a Cs 8[Nb 6O 19] polyoxoniobate catalyst has been shown to react readily with dimethyl methylphosphonate (DMMP). The atomic-level transformations of all reactant moieties, the [Nb 6O 19] 8- polyanion, its Cs + counterions, and the DMMP substrate, were tracked under ambient conditions by a combination of X-ray absorption fine structure spectroscopy, Raman spectroscopy, and X-ray diffraction. Results reveal that the reaction mechanism follows general basemore » (in contrast to specific base) hydrolysis. Together with computational results, the work demonstrates that the ultimate fate of DMMP hydrolysis at the Cs 8[Nb 6O 19] catalyst is strong binding of the (methyl) methylphosphonic acid ((M)MPA) product to the polyanions, which ultimately inhibits catalytic turnover.« less

  16. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect

    PubMed Central

    1976-01-01

    Gallotannin, consisting mainly of low molecular weight esters such as penta- and hexagalloylglucoses (commercially available as tannic acid produced from Turkish nutgall), can be used for increasing and diversifying tissue contrast in electron microscopy. When applied on tissue specimens previously fixed by conventional methods (aldehydes and OsO4), the low molecular weight galloylglucoses (LMGG) penetrate satisfactorily the cells and induce general high contrast with fine delineation of extra- and intracellular structures, especially membranes. In some features, additional details of their intimate configuration are revealed. Various experimental conditions tested indicate that the LMGG display a complex effect on fixed tissues: they act primarily as a mordant between osmium-treated structures and lead, and concomitantly stabilize some tissue components against extraction incurred during dehydration and subsequent processing. Experiments with aldehyde blocking reagents (sodium borohydride and glycine) suggested that the LMGG mordanting effect is not dependent on residual aldehydes groups in tissues. PMID:783172

  17. Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition

    DOE PAGES

    Wang, Qi; Chapleski, Robert C.; Plonka, Anna M.; ...

    2017-04-10

    Ambient pressure in situ synchrotron-based spectroscopic techniques have been correlated to illuminate atomic-level details of bond breaking and formation during the hydrolysis of a chemical warfare nerve agent simulant over a polyoxometalate catalyst. Specifically, a Cs 8[Nb 6O 19] polyoxoniobate catalyst has been shown to react readily with dimethyl methylphosphonate (DMMP). The atomic-level transformations of all reactant moieties, the [Nb 6O 19] 8- polyanion, its Cs + counterions, and the DMMP substrate, were tracked under ambient conditions by a combination of X-ray absorption fine structure spectroscopy, Raman spectroscopy, and X-ray diffraction. Results reveal that the reaction mechanism follows general basemore » (in contrast to specific base) hydrolysis. Together with computational results, the work demonstrates that the ultimate fate of DMMP hydrolysis at the Cs 8[Nb 6O 19] catalyst is strong binding of the (methyl) methylphosphonic acid ((M)MPA) product to the polyanions, which ultimately inhibits catalytic turnover.« less

  18. A coarse-grained model for DNA origami

    PubMed Central

    Stolyarova, Anastasia V; Zalevsky, Arthur O; Panteleev, Dmitry Y; Pavlova, Galina V; Klinov, Dmitry V; Golovin, Andrey V; Protopopova, Anna D

    2018-01-01

    Abstract Modeling tools provide a valuable support for DNA origami design. However, current solutions have limited application for conformational analysis of the designs. In this work we present a tool for a thorough study of DNA origami structure and dynamics. The tool is based on a novel coarse-grained model dedicated to geometry optimization and conformational analysis of DNA origami. We explored the ability of the model to predict dynamic behavior, global shapes, and fine details of two single-layer systems designed in hexagonal and square lattices using atomic force microscopy, Förster resonance energy transfer spectroscopy, and all-atom molecular dynamic simulations for validation of the results. We also examined the performance of the model for multilayer systems by simulation of DNA origami with published cryo-electron microscopy and atomic force microscopy structures. A good agreement between the simulated and experimental data makes the model suitable for conformational analysis of DNA origami objects. The tool is available at http://vsb.fbb.msu.ru/cosm as a web-service and as a standalone version. PMID:29267876

  19. Developing a novel hierarchical approach for multiscale structural reliability predictions for ultra-high consequence applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, John M.; Coffin, Peter; Robbins, Brian A.

    Microstructural variabilities are among the predominant sources of uncertainty in structural performance and reliability. We seek to develop efficient algorithms for multiscale calcu- lations for polycrystalline alloys such as aluminum alloy 6061-T6 in environments where ductile fracture is the dominant failure mode. Our approach employs concurrent multiscale methods, but does not focus on their development. They are a necessary but not sufficient ingredient to multiscale reliability predictions. We have focused on how to efficiently use concurrent models for forward propagation because practical applications cannot include fine-scale details throughout the problem domain due to exorbitant computational demand. Our approach begins withmore » a low-fidelity prediction at the engineering scale that is sub- sequently refined with multiscale simulation. The results presented in this report focus on plasticity and damage at the meso-scale, efforts to expedite Monte Carlo simulation with mi- crostructural considerations, modeling aspects regarding geometric representation of grains and second-phase particles, and contrasting algorithms for scale coupling.« less

  20. Studies on the wintertime current structure and T-S fine-structure in the Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Hu, Jianyu; Fu, Zilang; Wu, Lianxing

    1990-12-01

    A cruise through the western sea area of the Taiwan Strait was carried out by the R/V Dong Fang Hong in December, 1987. Eight anchored and 10 not anchored stations were set up. Over 25 time-series current observations were made at each station and CTD (Conductivity-temperature-depth) measurements were made at 5 anchored and 10 not anchored stations. Based on the measured data. fine-structures and step-like vertical structures of temperature and salinity were analysed and a tentative wintertime current structure in the Taiwan Strait was described.

  1. Gravity Wave Interactions with Fine Structures in the Mesosphere and Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Mixa, Tyler; Fritts, David; Bossert, Katrina; Laughman, Brian; Wang, Ling; Lund, Thomas; Kantha, Lakshmi

    2017-04-01

    An anelastic numerical model is used to probe the influences of fine layering structures on gravity wave propagation in the Mesosphere and Lower Thermosphere (MLT). Recent lidar observations confirm the presence of persistent layered structures in the MLT that have sharp stratification and vertical scales below 1km. Gravity waves propagating through finely layered environments can excite and modulate the evolution of small scale instabilities that redefine the layering structure in these regions. Such layers in turn filter the outgoing wave spectra, promote ducting or reflection, hasten the onset of self-acceleration dynamics, and encourage wave/mean-flow interactions via energy and momentum transport. Using high resolution simulations of a localized gravity wave packet in a deep atmosphere, we identify the relative impacts of various wave and mean flow parameters to improve our understanding of these dynamics and complement recent state-of-the-art observations.

  2. Grain size effect on yield strength of titanium alloy implanted with aluminum ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popova, Natalya, E-mail: natalya-popova-44@mail.ru; Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk; Nikonenko, Elena, E-mail: vilatomsk@mail.ru

    2016-01-15

    The paper presents a transmission electron microscopy (TEM) study of the microstructure and phase state of commercially pure titanium VT1-0 implanted by aluminum ions. This study has been carried out before and after the ion implantation for different grain size, i.e. 0.3 µm (ultra-fine grain condition), 1.5 µm (fine grain condition), and 17 µm (polycrystalline condition). This paper presents details of calculations and analysis of strength components of the yield stress. It is shown that the ion implantation results in a considerable hardening of the entire thickness of the implanted layer in the both grain types. The grain size has, however, a differentmore » effect on the yield stress. So, both before and after the ion implantation, the increase of the grain size leads to the decrease of the alloy hardening. Thus, hardening in ultra-fine and fine grain alloys increased by four times, while in polycrystalline alloy it increased by over six times.« less

  3. Strained spiral vortex model for turbulent fine structure

    NASA Technical Reports Server (NTRS)

    Lundgren, T. S.

    1982-01-01

    A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.

  4. Photoionization modeling of the LWS fine-structure lines in IR bright galaxies

    NASA Technical Reports Server (NTRS)

    Satyapal, S.; Luhman, M. L.; Fischer, J.; Greenhouse, M. A.; Wolfire, M. G.

    1997-01-01

    The long wavelength spectrometer (LWS) fine structure line spectra from infrared luminous galaxies were modeled using stellar evolutionary synthesis models combined with photoionization and photodissociation region models. The calculations were carried out by using the computational code CLOUDY. Starburst and active galactic nuclei models are presented. The effects of dust in the ionized region are examined.

  5. Study of the Role of Vortex Annihilation in the Mechanism of Neutron and X-Ray Production in the Plasma Focus.

    DTIC Science & Technology

    This paper shows that an understanding of the nature of the x-ray and neutron producing processes in the plasma focus requires a study of the ’fine...structure’ of the plasma focus and that this fine structure study requires diagnostic techniques with spacial resolution down to 50 micrometers and

  6. Titanium dioxide fine structures by RF magnetron sputter method deposited on an electron-beam resist mask

    NASA Astrophysics Data System (ADS)

    Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko

    2013-09-01

    Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.

  7. Effective Collision Strengths for Fine-structure Transitions in Si VII

    NASA Astrophysics Data System (ADS)

    Sossah, A. M.; Tayal, S. S.

    2014-05-01

    The effective collision strengths for electron-impact excitation of fine-structure transitions in Si VII are calculated as a function of electron temperature in the range 5000-2,000,000 K. The B-spline Breit-Pauli R-matrix method has been used to calculate collision strengths by electron impact. The target wave functions have been obtained using the multi-configuration Hartree-Fock method with term-dependent non-orthogonal orbitals. The 92 fine-structure levels belonging to the 46 LS states of 2s 22p 4, 2s2p 5, 2p 6, 2s 22p 33s, 2s 22p 33p, 2s 22p 33d, and 2s2p 43s configurations are included in our calculations of oscillator strengths and collision strengths. There are 4186 possible fine-structure allowed and forbidden transitions among the 92 levels. The present excitation energies, oscillator strengths, and collision strengths have been compared with previous theoretical results and available experimental data. Generally, a good agreement is found with the 6 LS-state close-coupling approximation results of Butler & Zeippen and the 44 LS-state distorted wave calculation of Bhatia & Landi.

  8. Rotational and fine structure of open-shell molecules in nearly degenerate electronic states

    NASA Astrophysics Data System (ADS)

    Liu, Jinjun

    2018-03-01

    An effective Hamiltonian without symmetry restriction has been developed to model the rotational and fine structure of two nearly degenerate electronic states of an open-shell molecule. In addition to the rotational Hamiltonian for an asymmetric top, this spectroscopic model includes the energy separation between the two states due to difference potential and zero-point energy difference, as well as the spin-orbit (SO), Coriolis, and electron spin-molecular rotation (SR) interactions. Hamiltonian matrices are computed using orbitally and fully symmetrized case (a) and case (b) basis sets. Intensity formulae and selection rules for rotational transitions between a pair of nearly degenerate states and a nondegenerate state have also been derived using all four basis sets. It is demonstrated using real examples of free radicals that the fine structure of a single electronic state can be simulated with either a SR tensor or a combination of SO and Coriolis constants. The related molecular constants can be determined precisely only when all interacting levels are simulated simultaneously. The present study suggests that analysis of rotational and fine structure can provide quantitative insights into vibronic interactions and related effects.

  9. The loess-paleosol profile Datthausen, on the penultimate-glacial terrace of the upper Danube River: Sedimentological and paleopedological characteristics

    NASA Astrophysics Data System (ADS)

    Sauer, Daniela; Kadereit, Annette; Kühn, Peter; Herrmann, Ludger; Kösel, Michael; Miller, Christopher; Shinonaga, Taeko; Kreutzer, Sebastian; Starkovich, Britt

    2015-04-01

    Here we present a new loess profile, exposed in the gravel quarry Datthausen on the penultimate-glacial terrace of the upper Danube River, 40 km SW of Ulm, Germany. The loess in this region is by far not as thick and differentiated as in the Upper and Middle Rhine regions or in the Basin of Mainz; nevertheless, we found several similarities between those and the profile Datthausen. The profile is located in the East wall of the quarry, in a flat channel filled by reworked loess. It was sampled for grain size analysis, chemical standard analyses, analysis of the clay mineral assemblage (XRD of oriented clay specimen) and soil thin section analysis. Five luminescence dates provide a time frame (see Kadereit et al. in this session for further details). The profile starts above the Eemian paleosol, which is developed in penultimate-glacial gravel of the Danube River. No early Würmian soils are preserved; the basal section of the profile comprises a succession of several middle Würmian (MIS3) brown soil horizons (9BCr to 6Bg5; Table 1). Two additional brown horizons (5Bg4 and 5Bg3) follow on top. They both have a slight olive tint, and the upper one shows clear features of redox processes and reworking. A thin gravel band on top of the olive-brown soil horizons can be traced over ca. 170 m along the wall (4Bg2). Above the gravel band two brown, only slightly de-carbonated soil horizons (3Bw1 and 2Bg1) and two hydromorphic horizons (Cg2 and Cg1) follow. The top of the profile is made up of a Luvisol comprising the horizon sequence Ap-Bt-BCtg1-BCtg2. Table 1: Main soil-morphological characteristics of the loess-paleosol profile Datthausen Depth; horizon (FAO); color (dry, moist); structure; major characteristics -30 cm: Ap -70 cm: Bt; 10YR5/6, 10YR4/6; angular blocky and prismatic; earthworm feces, channels, clay coatings -100 cm: BCtg1; 10YR7/4, 10YR5/4; massive, pinholes; mottled, fine Mn nodules, clay coatings in channels -125 cm: BCtg2; 10YR6/4, 10YR4/4; massive, pinholes; mottled, fine Mn nodules, clay coatings in channels -150 cm: Cg1; 2.5Y7/4, 2.5Y5/; massive (fine sandy layers); fine rusty spots and Mn nodules -190 cm: Cg2; 2.5Y7/3, 2.5Y5/4; massive (fine sandy layers); mottled, fine rusty spots (2 mm) -220 cm: 2Bg1; 10YR6/4, 10YR4/4; massive to fine platy, pinholes; intense brown, slightly mottled -260 cm: 3Bw1; 10YR6/4, 10YR5/4; massive to fine platy, pinholes; snail shell fragments -275 cm: 4Bg2; 10YR6/4, 10YR5/4; massive to fine platy, pinholes; slightly mottled -300 cm: 5Bg3; 10YR6/4, 10YR5/4; massive to fine platy, pinholes; very fine Fe+Mn mottles, slight olive tint -312 cm: 5Bg4; 10YR6/4, 10YR4/4; massive to fine platy; slight olive tint, fine Fe mottles and Mn nodules -355 cm: 6Bg5; 10YR6/4, 10YR4/6; massive to fine platy; more reddish than 5Bg4, fine Mn nodules -400 cm: 7Bg6; 10YR6/4, 10YR4/4; weakly fine platy and sub. blocky, pinholes; Mn mottles and coatings -435 cm: 8Bw2; 10YR6/4, 10YR4/4; weakly subangular blocky, pinholes -465 cm: 9BCr; 2.5Y7/4, 2.5Y5/4; weakly subangular blocky; grayish, bleached and rusty mottles

  10. Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.

    PubMed

    Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya

    2018-04-10

    In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.

  11. Human brain detects short-time nonlinear predictability in the temporal fine structure of deterministic chaotic sounds

    NASA Astrophysics Data System (ADS)

    Itoh, Kosuke; Nakada, Tsutomu

    2013-04-01

    Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.

  12. The fine structure of human germ layers in vivo: clues to the early differentiation of embryonic stem cells in vitro.

    PubMed

    Sathananthan, Henry; Selvaraj, Kamala; Clark, Joan

    2011-08-01

    The fine structure of the three germ layers in human ectopic embryos (stage 7) have been documented by digital light and electron microscopy. The formation of ectoderm, endoderm and mesoderm and notochordal cells, and also the extraembryonic membranes, amnion and yolk sac, are imaged. The germ layers give rise to all the cells and tissues of the human body. Possible clues to the early differentiation of embryonic stem cells (ESC) in vitro were obtained, since these events are more or less mimicked in cultures of ESC derived from the inner cell mass of human blastocysts. The findings are discussed with reference to previous studies on the fine structure of ESC using the same technique. Copyright © 2011. Published by Elsevier Ltd.

  13. 21-cm radiation: a new probe of variation in the fine-structure constant.

    PubMed

    Khatri, Rishi; Wandelt, Benjamin D

    2007-03-16

    We investigate the effect of variation in the value of the fine-structure constant (alpha) at high redshifts (recombination > z > 30) on the absorption of the cosmic microwave background (CMB) at 21 cm hyperfine transition of the neutral atomic hydrogen. We find that the 21 cm signal is very sensitive to the variations in alpha and it is so far the only probe of the fine-structure constant in this redshift range. A change in the value of alpha by 1% changes the mean brightness temperature decrement of the CMB due to 21 cm absorption by >5% over the redshift range z < 50. There is an effect of similar magnitude on the amplitude of the fluctuations in the brightness temperature. The redshift of maximum absorption also changes by approximately 5%.

  14. Measuring the fine structure constant with Bragg diffraction and Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Parker, Richard; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger

    2017-04-01

    We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δÎ+/-/Î+/-=0.25ppb in the fine structure constant measurement, which gives over 10 million radians of phase difference between freely evolving matter waves. We have suppressed many systematic effects known in most atom interferometers with Raman beam splitters such as light shift, Zeeman effect shift as well as vibration. We have also simulated multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implemented spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.

  15. Ganymede - Dark Terrain in Galileo Regio

    NASA Image and Video Library

    1997-09-07

    This view of a part of the Galileo Regio region on Jupiter moon Ganymede shows fine details of the dark terrain that makes up about half of the surface of the planet-sized moon. http://photojournal.jpl.nasa.gov/catalog/PIA00278

  16. Leads integral with the internal interconnection that penetrate the molded wall of a package

    NASA Technical Reports Server (NTRS)

    Marley, J.

    1969-01-01

    Multiplicity of external ribbon leads makes possible connections to a sealed or encapsulated microassembly. The leads are integral with the internal connections on a single part that can be fabricated economically by fine-detail electroplating.

  17. Features of Inner Structure of Placer Gold of the North-Eastern Part Siberian Platform

    NASA Astrophysics Data System (ADS)

    Gerasimov, Boris; Zhuravlev, Anatolii; Ivanov, Alexey

    2017-12-01

    Mineral and raw material base of placer and ore gold is based on prognosis evaluation, which allows to define promising areas regarding gold-bearing deposit prospecting. But there are some difficulties in gold primary source predicting and prospecting at the North-east Siberian platform, because the studied area is overlapped by thick cover of the Cenozoic deposits, where traditional methods of gold deposit prospecting are ineffective. In this connection, detailed study of typomorphic features of placer gold is important, because it contains key genetic information, necessary for development of mineralogical criteria of prognosis evaluation of ore gold content. Authors studied mineralogical-geochemical features of placer gold of the Anabar placer area for 15 years, with a view to identify indicators of gold, typical for different formation types of primary sources. This article presents results of these works. In placer regions, where primary sources of gold are not identified, there is need to study typomorphic features of placer gold, because it contains important genetic information, necessary for the development of mineralogical criteria of prognosis evaluation of ore gold content. Inner structures of gold from the Anabar placer region are studied, as one of the diagnostic typomorphic criteria as described in prominent method, developed by N.V. Petrovskaya [1980]. Etching of gold was carried out using reagent: HCl + HNO3 + FeCl3 × 6H2O + CrO3 +thioureat + water. Identified inner structures wer studied in details by means of scanning electron microscope JEOL JSM-6480LV. Two types of gold are identified according to the features of inner structure of placer gold of the Anabar region. First type - medium-high karat fine, well processed gold with significantly changed inner structure. This gold is allochthonous, which was redeposited many times from ancient intermediate reservoirs to younger deposits. Second type - low-medium karat, poorly rounded gold with unchanged inner structure. Poor roundness of gold particles and preservation of their primary inner structures indicate close proximity of primary source.

  18. A Score of the Ability of a Three-Dimensional Protein Model to Retrieve Its Own Sequence as a Quantitative Measure of Its Quality and Appropriateness

    PubMed Central

    Martínez-Castilla, León P.; Rodríguez-Sotres, Rogelio

    2010-01-01

    Background Despite the remarkable progress of bioinformatics, how the primary structure of a protein leads to a three-dimensional fold, and in turn determines its function remains an elusive question. Alignments of sequences with known function can be used to identify proteins with the same or similar function with high success. However, identification of function-related and structure-related amino acid positions is only possible after a detailed study of every protein. Folding pattern diversity seems to be much narrower than sequence diversity, and the amino acid sequences of natural proteins have evolved under a selective pressure comprising structural and functional requirements acting in parallel. Principal Findings The approach described in this work begins by generating a large number of amino acid sequences using ROSETTA [Dantas G et al. (2003) J Mol Biol 332:449–460], a program with notable robustness in the assignment of amino acids to a known three-dimensional structure. The resulting sequence-sets showed no conservation of amino acids at active sites, or protein-protein interfaces. Hidden Markov models built from the resulting sequence sets were used to search sequence databases. Surprisingly, the models retrieved from the database sequences belonged to proteins with the same or a very similar function. Given an appropriate cutoff, the rate of false positives was zero. According to our results, this protocol, here referred to as Rd.HMM, detects fine structural details on the folding patterns, that seem to be tightly linked to the fitness of a structural framework for a specific biological function. Conclusion Because the sequence of the native protein used to create the Rd.HMM model was always amongst the top hits, the procedure is a reliable tool to score, very accurately, the quality and appropriateness of computer-modeled 3D-structures, without the need for spectroscopy data. However, Rd.HMM is very sensitive to the conformational features of the models' backbone. PMID:20830209

  19. Observation of Moon Jellyfish Spatial Distribution Using a Scientific Echo Sounder and Underwater Camera

    NASA Astrophysics Data System (ADS)

    Mano, T.; Guo, X.; Fujii, N.; Yoshie, N.; Takeoka, H.

    2016-02-01

    Jellyfishes often form dense aggregation that causes a variety of social problems such as clogging seawater intake of power plant, breaking fisheries net and more. Understanding on jellyfish aggregation is not sufficient due to the difficulty of observation on this phenomenon. In this study, high-resolution observations using scientific echo sounder and underwater camera were carried out to reveal the fine structure of moon jellyfish distribution in a 3D space, as well as its abundance and temporal variation. In addition, water temperature, salinity and current speed were also measured for inferring formation mechanisms of jellyfish aggregation. The field observations with a target on moon jellyfish were carried out in August 2013 and August 2014, in a semi-enclosed bay in Japan. The ship equipped with scientific echo sounder was cruised over the entire bay to reveal the distribution and the form of the moon jellyfish aggregation. In August 2013, the jellyfish aggregations present a high density (maximum: 70 ind. /m3) and their outline shows spherical or zonal shape with a hollow structure. In August 2014, the jellyfish aggregations present a low density (maximum: 20 ind./m3) and the jellyfishes distributed in a layer structure over a wide area. The depth of jellyfish aggregation was consistent with thermocline. During three days of observations in 2014, the average population density of jellyfish reduced by one-tenth, showing a possibility that the jellyfish abundance in a bay may vary significantly in a short timescale of several days. Not only the active swimming of jellyfishes but also the ambient flow field associated with internal waves or Langmuir circulation may contribute to the jellyfish aggregations. In order to clarify the mechanisms for the formation of high density patchy aggregation, we plan to perform more detailed observations and numerical simulations that are able to capture the fine structure of these physical processes in the future.

  20. Upper Mantle Seismic Structure for NE Tibet From Multiscale Tomography Method

    NASA Astrophysics Data System (ADS)

    Guo, B.; Liu, Q.; Chen, J.

    2013-12-01

    In the real seismic experiments, the spatial sampling of rays inside the studied volume is basically nonuniform because of the unequispaced distribution of the seismic stations as well as the earthquake events. The conventional seismic tomography schemes adopt fixed size of cells or grid spacing while the actual resolution varies. As a result, either the phantom velocity anomalies may be aroused in regions that are poorly illuminated by the seismic rays, or the best detailed velocity model is unable to be extracted from those with fine ray coverage. We present an adaptive wavelet parameterization solution for three-dimensional traveltime seismic tomography problem and apply it to the study of the tectonics in the Northeast Tibet region. Different from the traditional parameterization schemes, we discretize the velocity model in terms of the Haar wavelets and the parameters are adjusted adaptively based on both the density and the azimuthal coverage of rays. Therefore, the fine grids are used in regions with the good data coverage, whereas the poorly resolved areas are represented by the coarse grids. Using the traveltime data recorded by the portable seismic array and the regional seismic network in the northeastern Tibet area, we investigate the P wave velocity structure of the crust and upper mantle. Our results show that the structure of the crust and upper mantle in the northeastern Tibet region manifests a strong laterally inhomogeneity, which appears not only in the adjacent areas between the different blocks, but also within each block. The velocity of the crust and upper mantle is highly different between the northeastern Tibet and the Ordos plateau. Of these two regions, the former possesses a low-velocity feature while the latter is referred to a high-velocity pattern. Between the northeastern Tibet and the Ordos plateau, there is a transition zone of about 200km wide, which is associated with an extremely complex velocity structure in crust and upper mantle.

  1. The Dryline on 22 May 2002 during IHOP_2002: Convective-Scale Measurements at the Profiling Site

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Flamant, Cyrille; Weckwerth, Tammy; Whiteman, David; Evans, Keith; Fabry, Frederic; DiGirolamo, Paolo; Miller, David; Geerts, Bart; Brown, William; hide

    2006-01-01

    A detailed analysis of the structure of a double dryline observed over the Oklahoma panhandle during the first International H2O Project (IHOP_2002) convective initiation (CI) mission on 22 May 2002 is presented. A unique and unprecedented set of high temporal and spatial resolution measurements of water vapor mixing ratio, wind, and boundary layer structure parameters were acquired using the National Aeronautics and Space Administration (NASA) scanning Raman lidar (SRL), the Goddard Lidar Observatory for Winds (GLOW), and the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE), respectively. These measurements are combined with the vertical velocity measurements derived from the National Center for Atmospheric Research (NCAR) Multiple Antenna Profiler Radar (MAPR) and radar structure function from the high-resolution University of Massachusetts frequency-modulated continuous-wave (FMCW) radar to reveal the evolution and structure of the late afternoon double-dryline boundary layer. The eastern dryline advanced and then retreated over the Homestead profiling site in the Oklahoma panhandle, providing conditions ripe for a detailed observation of the small-scale variability within the boundary layer and the dryline. In situ aircraft data, dropsonde and radiosonde data, along with NCAR S-band dual-polarization Doppler radar (S-Pol) measurements, are also used to provide the larger-scale picture of the double-dryline environment. Moisture and temperature jumps of about 3 g kg(sup -1) and 1 -2 K, respectively, were observed across the eastern radar fine line (dryline), more than the moisture jumps (1-2 g kg(sup -1)) observed across the western radar fine line (secondary dryline). Most updraft plumes observed were located on the moist side of the eastern dryline with vertical velocities exceeding 3 m s(sup -1) and variable horizontal widths of 2-5 km, although some were as wide as 7-8 km. These updrafts were up to 1.5 g kg(sup -1) moister than the surrounding environment. Although models suggested deep convection over the Oklahoma panhandle and several cloud lines were observed near the dryline, the dryline itself did not initiate any storms over the intensive observation region (IOR). Possible reasons for this lack of convection are discussed. Strong capping inversion and moisture detrainment between the lifting condensation level and the level of free convection related to an overriding drier air, together with the relatively small near-surface moisture values (less than 10 g kg(sup -1)), were detrimental to CI in this case.

  2. Fine-Scale Population Estimation by 3D Reconstruction of Urban Residential Buildings

    PubMed Central

    Wang, Shixin; Tian, Ye; Zhou, Yi; Liu, Wenliang; Lin, Chenxi

    2016-01-01

    Fine-scale population estimation is essential in emergency response and epidemiological applications as well as urban planning and management. However, representing populations in heterogeneous urban regions with a finer resolution is a challenge. This study aims to obtain fine-scale population distribution based on 3D reconstruction of urban residential buildings with morphological operations using optical high-resolution (HR) images from the Chinese No. 3 Resources Satellite (ZY-3). Specifically, the research area was first divided into three categories when dasymetric mapping was taken into consideration. The results demonstrate that the morphological building index (MBI) yielded better results than built-up presence index (PanTex) in building detection, and the morphological shadow index (MSI) outperformed color invariant indices (CIIT) in shadow extraction and height retrieval. Building extraction and height retrieval were then combined to reconstruct 3D models and to estimate population. Final results show that this approach is effective in fine-scale population estimation, with a mean relative error of 16.46% and an overall Relative Total Absolute Error (RATE) of 0.158. This study gives significant insights into fine-scale population estimation in complicated urban landscapes, when detailed 3D information of buildings is unavailable. PMID:27775670

  3. The use of C-near edge X-ray absorption fine structure spectroscopy for the elaboration of chemistry in lignocellulosics

    Treesearch

    Lucian A. Lucia; Hiroki Nanko; Alan W. Rudie; Doug G. Mancosky; Sue Wirick

    2006-01-01

    The research presented elucidates the oxidation chemistry occurring in hydrogen peroxide bleached kraft pulp fibers by employing carbon near edge x-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft x-ray technique that selectively interrogates atomic moieties using photoelectrons (Xrays) of variable energies. The X1A beam line at the National...

  4. A New Multibeam Sonar Technique for Evaluating Fine-Scale Fish Behavior Near Hydroelectric Dam Guidance Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Robert L.; Simmons, Mary Ann; Simmons, Carver S.

    2002-03-07

    This book chapter describes a Dual-Head Multibeam Sonar (DHMS) system developed by Battelle and deployed at two dam sites on the Snake and Columbia rivers in Washington State to evaluate the fine-scale (

  5. Simple Model with Time-Varying Fine-Structure ``Constant''

    NASA Astrophysics Data System (ADS)

    Berman, M. S.

    2009-10-01

    Extending the original version written in colaboration with L.A. Trevisan, we study the generalisation of Dirac's LNH, so that time-variation of the fine-structure constant, due to varying electrical and magnetic permittivities is included along with other variations (cosmological and gravitational ``constants''), etc. We consider the present Universe, and also an inflationary scenario. Rotation of the Universe is a given possibility in this model.

  6. Accuracy of mapping the Earth's gravity field fine structure with a spaceborne gravity gradiometer mission

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.

    1984-01-01

    The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.

  7. Developmental changes in organization of structural brain networks.

    PubMed

    Khundrakpam, Budhachandra S; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C

    2013-09-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.

  8. Triosmium Clusters on a Support: Determination of Structure by X-Ray Absorption Spectroscopy and High-Resolution Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shareghe, Mehraeen; Chi, Miaofang; Browning, Nigel D.

    2011-01-01

    The structures of small, robust metal clusters on a solid support were determined by a combination of spectroscopic and microscopic methods: extended X-ray absorption fine structure (EXAFS) spectroscopy, scanning transmission electron microscopy (STEM), and aberration-corrected STEM. The samples were synthesized from [Os{sub 3}(CO){sub 12}] on MgO powder to provide supported clusters intended to be triosmium. The results demonstrate that the supported clusters are robust in the absence of oxidants. Conventional high-angle annular dark-field (HAADF) STEM images demonstrate a high degree of uniformity of the clusters, with root-mean-square (rms) radii of 2.03 {+-} 0.06 {angstrom}. The EXAFS OsOs coordination number ofmore » 2.1 {+-} 0.4 confirms the presence of triosmium clusters on average and correspondingly determines an average rms cluster radius of 2.02 {+-} 0.04 {angstrom}. The high-resolution STEM images show the individual Os atoms in the clusters, confirming the triangular structures of their frames and determining OsOs distances of 2.80 {+-} 0.14 {angstrom}, matching the EXAFS value of 2.89 {+-} 0.06 {angstrom}. IR and EXAFS spectra demonstrate the presence of CO ligands on the clusters. This set of techniques is recommended as optimal for detailed and reliable structural characterization of supported clusters.« less

  9. Extraction of sandy bedforms features through geodesic morphometry

    NASA Astrophysics Data System (ADS)

    Debese, Nathalie; Jacq, Jean-José; Garlan, Thierry

    2016-09-01

    State-of-art echosounders reveal fine-scale details of mobile sandy bedforms, which are commonly found on continental shelfs. At present, their dynamics are still far from being completely understood. These bedforms are a serious threat to navigation security, anthropic structures and activities, placing emphasis on research breakthroughs. Bedform geometries and their dynamics are closely linked; therefore, one approach is to develop semi-automatic tools aiming at extracting their structural features from bathymetric datasets. Current approaches mimic manual processes or rely on morphological simplification of bedforms. The 1D and 2D approaches cannot address the wide ranges of both types and complexities of bedforms. In contrast, this work attempts to follow a 3D global semi-automatic approach based on a bathymetric TIN. The currently extracted primitives are the salient ridge and valley lines of the sand structures, i.e., waves and mega-ripples. The main difficulty is eliminating the ripples that are found to heavily overprint any observations. To this end, an anisotropic filter that is able to discard these structures while still enhancing the wave ridges is proposed. The second part of the work addresses the semi-automatic interactive extraction and 3D augmented display of the main lines structures. The proposed protocol also allows geoscientists to interactively insert topological constraints.

  10. Comprehensive cellular‐resolution atlas of the adult human brain

    PubMed Central

    Royall, Joshua J.; Sunkin, Susan M.; Ng, Lydia; Facer, Benjamin A.C.; Lesnar, Phil; Guillozet‐Bongaarts, Angie; McMurray, Bergen; Szafer, Aaron; Dolbeare, Tim A.; Stevens, Allison; Tirrell, Lee; Benner, Thomas; Caldejon, Shiella; Dalley, Rachel A.; Dee, Nick; Lau, Christopher; Nyhus, Julie; Reding, Melissa; Riley, Zackery L.; Sandman, David; Shen, Elaine; van der Kouwe, Andre; Varjabedian, Ani; Write, Michelle; Zollei, Lilla; Dang, Chinh; Knowles, James A.; Koch, Christof; Phillips, John W.; Sestan, Nenad; Wohnoutka, Paul; Zielke, H. Ronald; Hohmann, John G.; Jones, Allan R.; Bernard, Amy; Hawrylycz, Michael J.; Hof, Patrick R.; Fischl, Bruce

    2016-01-01

    ABSTRACT Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:27418273

  11. Anatomy and histology of the male reproductive tract and spermatogenesis fine structure in the lesser anteater (Tamandua tetradactyla, Myrmecophagidae, Xenarthra): morphological evidences of reproductive functions.

    PubMed

    Rossi, L F; Luaces, J P; Aldana Marcos, H J; Cetica, P D; Perez Jimeno, G; Merani, M S

    2013-08-01

    The anatomy and histology of the male genital tract of the lesser anteater were studied. Fine details of spermatozoa regarding their genesis and morphology were also studied in six adult specimens. The testes lie in the pelvic cavity. The deferent duct emerges from the epididymis and opens into the ejaculatory duct, which drains into the membranous urethra. Accessory glands (prostate, seminal vesicle and bulbourethral gland) are histologically similar to those described in other mammals. The short penis presents an urethral orifice, while the corpus spongiosum becomes thinner at the end indicating the absence of a histologically defined glans. The seminiferous epithelium shows: (1) Sertoli cells with deep nuclear indentations, (2) spermatogonia with crusty-like chromatin, (3) spermatocytes at different stages of maturation and (4) three morphologically distinct stages of spermatid differentiation according to nuclear shape, acrosome development and chromatin condensation. Sperm heads appear oval. The length of the spermatozoa averages 67.33 ± 1.60 μm. Two specimens with inactive spermatogenesis were azoospermic. Their testes and epididymis presented sizes smaller than those with active spermatogenesis. These studies together with others in anteaters may contribute to successful breeding in conservation programmes. © 2012 Blackwell Verlag GmbH.

  12. Direct identification of trace metals in fine and ultrafine particles in the Detroit urban atmosphere.

    PubMed

    Utsunomiya, Satoshi; Jensen, Keld A; Keeler, Gerald J; Ewing, Rodney C

    2004-04-15

    Exposure to airborne particulates containing low concentrations of heavy metals, such as Pb, As, and Se, may have serious health effects. However, little is known about the speciation and particle size of these airborne metals. Fine- and ultrafine particles with heavy metals in aerosol samples from the Detroit urban area, Michigan, were examined in detail to investigate metal concentrations and speciation. The characterization of individual particles was completed using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with conventional high-resolution TEM techniques. The trace elements, Pb, As, La, Ce, Sr, Zn, Cr, Se, Sn, Y, Zr, Au, and Ag, were detected, and the elemental distributions were mapped in situ atthe nanoscale. The crystal structures of the particles containing Pb, Sr, Zn, and Au were determined from their electron diffraction patterns. Based on the characterization of the representative trace element particles, the potential health effects are discussed. Most of the trace element particles detected in this study were within a range of 0.01-1.0 microm in size, which has the longest atmospheric residence time (approximately 100 days). Increased chemical reactivity owing to the size of nanoparticles may be expected for most of the trace metal particles observed.

  13. Temporal, thermal, and light stability of continuously tunable cholesteric liquid crystal laser array.

    PubMed

    Jeong, Mi-Yun; Chung, Ki Soo; Wu, Jeong Weon

    2014-11-01

    Fine-structured polymerized cholesteric liquid crystal (PCLC) wedge laser devices have been realized, with high fine spatial tunability of the lasing wavelength. With resolution less than 0.3 nm in a broad spectral range, more than one hundred laser lines could be obtained in a PCLC cell without extra devices. For practical device application, we studied the stability of the device in detail over time, and in response to strong external light sources, and thermal perturbation. The PCLC wedge cells had good temporal stability for 1 year and showed good stability for strong perturbations, with the lasing wavelength shifting less than 1 nm, while the laser peak intensities decreased by up to 34%, and the high energy band edge of the photonic band gap (PBG) was red shifted 3 nm by temperature perturbation. However, when we consider the entire lasing spectrum for the PCLC cell, the 1-nm wavelength shift may not matter. Although the laser peak intensities were decreased by up to 34% in total for all of the perturbation cases, the remaining 34% laser peak intensity is considerable extent to make use. This good stability of the PCLC laser device is due to the polymerization of the CLC by UV curing. This study will be helpful for practical CLC laser device development.

  14. Technical description of endoscopic ultrasonography with fine-needle aspiration for the staging of lung cancer.

    PubMed

    Kramer, Henk; van Putten, John W G; Douma, W Rob; Smidt, Alie A; van Dullemen, Hendrik M; Groen, Harry J M

    2005-02-01

    Endoscopic ultrasonography (EUS) is a novel method for staging of the mediastinum in lung cancer patients. The recent development of linear scanners enables safe and accurate fine-needle aspiration (FNA) of mediastinal and upper abdominal structures under real-time ultrasound guidance. However, various methods and equipment for mediastinal EUS-FNA are being used throughout the world, and a detailed description of the procedures is lacking. A thorough description of linear EUS-FNA is needed. A step-by-step description of the linear EUS-FNA procedure as performed in our hospital will be provided. Ultrasonographic landmarks will be shown on images. The procedure will be related to published literature, with a systematic literature search. EUS-FNA is an outpatient procedure under conscious sedation. The typical linear EUS-FNA procedure starts with examination of the retroperitoneal area. After this, systematic scanning of the mediastinum is performed at intervals of 1-2cm. Abnormalities are noted, and FNA of the abnormalities can be performed. Specimens are assessed for cellularity on-site. The entire procedure takes 45-60 min. EUS-FNA is minimally invasive, accurate, and fast. Anatomical areas can be reached that are inaccessible for cervical mediastinoscopy. EUS-FNA is useful for the staging of lung cancer or the assessment and diagnosis of abnormalities in the posterior mediastinum.

  15. Multigrid methods in structural mechanics

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Bigelow, C. A.; Taasan, S.; Hussaini, M. Y.

    1986-01-01

    Although the application of multigrid methods to the equations of elasticity has been suggested, few such applications have been reported in the literature. In the present work, multigrid techniques are applied to the finite element analysis of a simply supported Bernoulli-Euler beam, and various aspects of the multigrid algorithm are studied and explained in detail. In this study, six grid levels were used to model half the beam. With linear prolongation and sequential ordering, the multigrid algorithm yielded results which were of machine accuracy with work equivalent to 200 standard Gauss-Seidel iterations on the fine grid. Also with linear prolongation and sequential ordering, the V(1,n) cycle with n greater than 2 yielded better convergence rates than the V(n,1) cycle. The restriction and prolongation operators were derived based on energy principles. Conserving energy during the inter-grid transfers required that the prolongation operator be the transpose of the restriction operator, and led to improved convergence rates. With energy-conserving prolongation and sequential ordering, the multigrid algorithm yielded results of machine accuracy with a work equivalent to 45 Gauss-Seidel iterations on the fine grid. The red-black ordering of relaxations yielded solutions of machine accuracy in a single V(1,1) cycle, which required work equivalent to about 4 iterations on the finest grid level.

  16. Fractional Diffusion, Low Exponent Lévy Stable Laws, and 'Slow Motion' Denoising of Helium Ion Microscope Nanoscale Imagery.

    PubMed

    Carasso, Alfred S; Vladár, András E

    2012-01-01

    Helium ion microscopes (HIM) are capable of acquiring images with better than 1 nm resolution, and HIM images are particularly rich in morphological surface details. However, such images are generally quite noisy. A major challenge is to denoise these images while preserving delicate surface information. This paper presents a powerful slow motion denoising technique, based on solving linear fractional diffusion equations forward in time. The method is easily implemented computationally, using fast Fourier transform (FFT) algorithms. When applied to actual HIM images, the method is found to reproduce the essential surface morphology of the sample with high fidelity. In contrast, such highly sophisticated methodologies as Curvelet Transform denoising, and Total Variation denoising using split Bregman iterations, are found to eliminate vital fine scale information, along with the noise. Image Lipschitz exponents are a useful image metrology tool for quantifying the fine structure content in an image. In this paper, this tool is applied to rank order the above three distinct denoising approaches, in terms of their texture preserving properties. In several denoising experiments on actual HIM images, it was found that fractional diffusion smoothing performed noticeably better than split Bregman TV, which in turn, performed slightly better than Curvelet denoising.

  17. Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance

    PubMed Central

    Moritake, Y.; Kanamori, Y.; Hane, K.

    2016-01-01

    We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers. PMID:27622503

  18. HOW MUCH OF STREAM HABITAT IS PREDETERMINED BY NATURAL GEOMORPHIC CONTROLS?

    EPA Science Inventory

    Detailed pre- and post-disturbance research has demonstrated the ability of human activities to alter stream channel characteristics, including the amounts of deep pool habitat and fine substrate. However, it is often difficult to demonstrate consistent associations between the...

  19. Microscopy Opening Up New Cancer Discovery Avenues

    Cancer.gov

    Today’s high-powered microscopes are allowing researchers to study the fine details of individual cells and to peer into cells, opening up new avenues of discovery about the inner workings of cells, including the events that can cause healthy cells to tra

  20. Detailed Aggregate Resources Study, Dry Lake Valley, Nevada.

    DTIC Science & Technology

    1981-05-29

    LOCAL SAND SOURCES IGENERALLY CYLINDERS. DRYING SHRINKAGE I COLLECTED WITHIN A FEW MILES OF CORRESPONDING LEDGE-ROCK SOURCES) SUPPLIED FINE MENS...COMPRESSIVE AND TENSILE STh LEDGE-ROCK SOURCES SUPPLIED COARSE AGGREGATES; LOCAL SAND SOURCES IGENERALLY CYLINDERS. DRYING SHRINKAGE COLLECTED WITHIN A FEW

  1. The impact of mating systems and dispersal on fine-scale genetic structure at maternally, paternally and biparentally inherited markers.

    PubMed

    Shaw, Robyn E; Banks, Sam C; Peakall, Rod

    2018-01-01

    For decades, studies have focused on how dispersal and mating systems influence genetic structure across populations or social groups. However, we still lack a thorough understanding of how these processes and their interaction shape spatial genetic patterns over a finer scale (tens-hundreds of metres). Using uniparentally inherited markers may help answer these questions, yet their potential has not been fully explored. Here, we use individual-level simulations to investigate the effects of dispersal and mating system on fine-scale genetic structure at autosomal, mitochondrial and Y chromosome markers. Using genetic spatial autocorrelation analysis, we found that dispersal was the major driver of fine-scale genetic structure across maternally, paternally and biparentally inherited markers. However, when dispersal was restricted (mean distance = 100 m), variation in mating behaviour created strong differences in the comparative level of structure detected at maternally and paternally inherited markers. Promiscuity reduced spatial genetic structure at Y chromosome loci (relative to monogamy), whereas structure increased under polygyny. In contrast, mitochondrial and autosomal markers were robust to differences in the specific mating system, although genetic structure increased across all markers when reproductive success was skewed towards fewer individuals. Comparing males and females at Y chromosome vs. mitochondrial markers, respectively, revealed that some mating systems can generate similar patterns to those expected under sex-biased dispersal. This demonstrates the need for caution when inferring ecological and behavioural processes from genetic results. Comparing patterns between the sexes, across a range of marker types, may help us tease apart the processes shaping fine-scale genetic structure. © 2017 John Wiley & Sons Ltd.

  2. Multielement mapping of alpha-SiC by scanning Auger microscopy

    NASA Technical Reports Server (NTRS)

    Browning, Ray; Smialek, James L.; Jacobson, Nathan S.

    1987-01-01

    Fine second-phase particles, numerous in sintered alpha-SiC, were analyzed by scanning Auger microscopy and conventional techniques. The Auger analysis utilized computer-controlled data acquisition, multielement correlation diagrams, and a high spatial resolution of 100 nm. This procedure enabled construction of false color maps and the detection of fine compositional details within these particles. Carbon, silicon oxide, and boron-rich particles (qualitatively as BN or B4C) predominated. The BN particles, sometimes having a carbon core, are believed to result from reaction between B4C additives and nitrogen sintering atmospheres.

  3. Photoionization of ground and excited levels of P II

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2017-01-01

    Photoionization cross section (σPI) of P II, (hν + P II → P III + e), from ground and a large number of excited levels are presented. The study includes the resonant structures and the characteristics of the background in photoionization cross sections. The present calculations were carried out in the Breit-Pauli R-matrix (BPRM) method that includes relativistic effects. The autoionizing resonances are delineated with a fine energy mesh to observe the fine structure effects. A singular resonance, formed by the coupling of channels in fine structure but not allowed in LS coupling, is seen at the ionization threshold of photoionization for the ground and many excited levels. The background cross section is seen enhanced compared to smooth decay for the excited levels. Examples are presented to illustrate the enhanced background cross sections at the energies of the core levels, 4P3/2 and 2D3/2, that are allowed for electric dipole transitions by the core ground level 2 P1/2o. In addition strong Seaton or photo-excitation-of-core (PEC) resonances are found in the photoionization of single valence electron excited levels. Calculations used a close coupling wave function expansion that included 18 fine structure levels of core P III from configurations 3s23p, 3s3p2, 3s23d, 3s24s, 3s24p and 3p3. Photoionization cross sections are presented for all 475 fine structure levels of P II found with n ≤ 10 and l ≤ 9. The present results will provide high precision parameters of various applications involving this less studied ion.

  4. Counting individual sulfur atoms in a protein by ultrahighresolution Fourier transform ion cyclotron resonance mass spectrometry: Experimental resolution of isotopic fine structure in proteins

    PubMed Central

    Shi, Stone D.-H.; Hendrickson, Christopher L.; Marshall, Alan G.

    1998-01-01

    A typical molecular ion mass spectrum consists of a sum of signals from species of various possible isotopic compositions. Only the monoisotopic peak (e.g., all carbons are 12C; all nitrogens are 14N, etc.) has a unique elemental composition. Every other isotope peak at approximately integer multiples of ∼1 Da higher in nominal mass represents a sum of contributions from isotope combinations differing by a few mDa (e.g., two 13C vs. two 15N vs. one 13C and one 15N vs. 34S, vs. 18O, etc., at ∼2 Da higher in mass than the monoisotopic mass). At sufficiently high mass resolving power, each of these nominal-mass peaks resolves into its isotopic fine structure. Here, we report resolution of the isotopic fine structure of proteins up to 15.8 kDa (isotopic 13C,15N doubly depleted tumor suppressor protein, p16), made possible by electrospray ionization followed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass analysis at 9.4 tesla. Further, a resolving power of m/Δm50% ≈8,000,000 has been achieved on bovine ubiquitin (8.6 kDa). These results represent a 10-fold increase in the highest mass at which isotopic fine structure previously had been observed. Finally, because isotopic fine structure reveals elemental composition directly, it can be used to confirm or determine molecular formula. For p16, for example, we were able to determine (5.1 ± 0.3) the correct number (five) of sulfur atoms solely from the abundance ratio of the resolved 34S peak to the monoisotopic peak. PMID:9751700

  5. Determinants of fish assemblage structure in Northwestern Great Plains streams

    USGS Publications Warehouse

    Mullen, J.A.; Bramblett, R.G.; Guy, C.S.; Zale, A.V.; Roberts, D.W.

    2011-01-01

    Prairie streams are known for their harsh and stochastic physical conditions, and the fish assemblages therein have been shown to be temporally variable. We assessed the spatial and temporal variation in fish assemblage structure in five intermittent, adventitious northwestern Great Plains streams representing a gradient of watershed areas. Fish assemblages and abiotic conditions varied more spatially than temporally. The most important variables explaining fish assemblage structure were longitudinal position and the proportion of fine substrates. The proportion of fine substrates increased proceeding upstream, approaching 100% in all five streams, and species richness declined upstream with increasing fine substrates. High levels of fine substrate in the upper reaches appeared to limit the distribution of obligate lithophilic fish species to reaches further downstream. Species richness and substrates were similar among all five streams at the lowermost and uppermost sites. However, in the middle reaches, species richness increased, the amount of fine substrate decreased, and connectivity increased as watershed area increased. Season and some dimensions of habitat (including thalweg depth, absolute distance to the main-stem river, and watershed size) were not essential in explaining the variation in fish assemblages. Fish species richness varied more temporally than overall fish assemblage structure did because common species were consistently abundant across seasons, whereas rare species were sometimes absent or perhaps not detected by sampling. The similarity in our results among five streams varying in watershed size and those from other studies supports the generalization that spatial variation exceeds temporal variation in the fish assemblages of prairie and warmwater streams. Furthermore, given longitudinal position, substrate, and stream size, general predictions regarding fish assemblage structure and function in prairie streams are possible. ?? American Fisheries Society 2011.

  6. TRIGGER MECHANISM OF SOLAR SUBFLARES IN A BRAIDED CORONAL MAGNETIC STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Sanjiv K.; Alexander, Caroline E.; Winebarger, Amy R.

    Fine-scale braiding of coronal magnetic loops by continuous footpoint motions may power coronal heating via nanoflares, which are spontaneous fine-scale bursts of internal reconnection. An initial nanoflare may trigger an avalanche of reconnection of the braids, making a microflare or larger subflare. In contrast to this internal triggering of subflares, we observe external triggering of subflares in a braided coronal magnetic field observed by the High-resolution Coronal Imager (Hi-C). We track the development of these subflares using 12 s cadence images acquired by SDO/AIA in 1600, 193, 94 Å, and registered magnetograms of SDO/HMI, over four hours centered on the Hi-Cmore » observing time. These data show numerous recurring small-scale brightenings in transition-region emission happening on polarity inversion lines where flux cancellation is occurring. We present in detail an example of an apparent burst of reconnection of two loops in the transition region under the braided coronal field which is appropriate for releasing a short reconnected loop downward and a longer reconnected loop upward. The short loop presumably submerges into the photosphere, participating in observed flux cancellation. A subflare in the overlying braided magnetic field is apparently triggered by the disturbance of the braided field by the reconnection-released upward loop. At least 10 subflares observed in this braided structure appear to be triggered this way. How common this external trigger mechanism for coronal subflares is in other active regions, and how important it is for coronal heating in general, remain to be seen.« less

  7. Forgotten research from 19th century: science should not follow fashion.

    PubMed

    Galler, Stefan

    2015-02-01

    The fine structure of cross-striated muscle and its changes during contraction were known already in considerable detail in the 19th century. This knowledge was the result of studying birefringence properties of muscle fibres under the polarization microscope, a method mainly established by Brücke (Denk Kais Akad Wiss Math Naturwiss Cl 15:69-84, 1858) in Vienna, Austria. The knowledge was seemingly forgotten in the first half of the 20th century before it was rediscovered in 1954. This rediscovery was essential for the formulation of the sliding filament theory which represents the commonly accepted concept of muscle contraction (A.F. Huxley and Niedergerke, Nature 173:971-973, 1954; H.E. Huxley and Hanson, Nature 173:973-976, 1954). The loss of knowledge was the result of prevailing views within the scientific community which could be attributed to "fashion": it was thought that the changes of cross-striations, which were observed under the microscope, were inconsequential for contraction since other types of movements like cell crawling and smooth muscle contraction were not associated with similar changes of the fine structure. The basis for this assumption was the view that all types of movements associated with life must be caused by the same mechanisms. Furthermore, it was assumed that the light microscopy was of little use, because the individual molecules that carry out life functions cannot be seen under the light microscope. This unfortunate episode of science history teaches us that the progress of science can severely be retarded by fashion.

  8. Structure of Co-Doped Alq3 thin films investigated by grazing incidence X-ray absorption fine structure and Fourier transform infrared spectroscopy.

    PubMed

    Lin, Liang; Pang, Zhiyong; Fang, Shaojie; Wang, Fenggong; Song, Shumei; Huang, Yuying; Wei, Xiangjun; Yu, Haisheng; Han, Shenghao

    2011-02-10

    The structural properties of Co-doped tris(8-hydroxyquinoline)aluminum (Alq(3)) have been studied by grazing incidence X-ray absorption fine structure (GIXAFS) and Fourier transform infrared spectroscopy (FTIR). GIXAFS analysis suggests that there are multivalent Co-Alq(3) complexes and the doped Co atoms tend to locate at the attraction center with respect to N and O atoms and bond with them. The FTIR spectra indicate that the Co atoms interact with the meridional (mer) isomer of Alq(3) rather than forming inorganic compounds.

  9. Lithofacies control in detrital zircon provenance studies: Insights from the Cretaceous Methow basin, southern Canadian Cordillera

    USGS Publications Warehouse

    DeGraaff-Surpless, K.; Mahoney, J.B.; Wooden, J.L.; McWilliams, M.O.

    2003-01-01

    High-frequency sampling for detrital zircon analysis can provide a detailed record of fine-scale basin evolution by revealing the temporal and spatial variability of detrital zircon ages within clastic sedimentary successions. This investigation employed detailed sampling of two sedimentary successions in the Methow/Methow-Tyaughton basin of the southern Canadian Cordillera to characterize the heterogeneity of detrital zircon signatures within single lithofacies and assess the applicability of detrital zircon analysis in distinguishing fine-scale provenance changes not apparent in lithologic analysis of the strata. The Methow/Methow-Tyaughton basin contains two distinct stratigraphic sequences of middle Albian to Santonian clastic sedimentary rocks: submarine-fan deposits of the Harts Pass Formation/Jackass Mountain Group and fluvial deposits of the Winthrop Formation. Although both stratigraphic sequences displayed consistent ranges in detrital zircon ages on a broad scale, detailed sampling within each succession revealed heterogeneity in the detrital zircon age distributions that was systematic and predictable in the turbidite succession but unpredictable in the fluvial succession. These results suggest that a high-density sampling approach permits interpretation of finescale changes within a lithologically uniform turbiditic sedimentary succession, but heterogeneity within fluvial systems may be too large and unpredictable to permit accurate fine-scale characterization of the evolution of source regions. The robust composite detrital zircon age signature developed for these two successions permits comparison of the Methow/Methow-Tyaughton basin age signature with known plutonic source-rock ages from major plutonic belts throughout the Cretaceous North American margin. The Methow/Methow-Tyaughton basin detrital zircon age signature matches best with source regions in the southern Canadian Cordillera, requiring that the basin developed in close proximity to the southern Canadian Cordillera and providing evidence against large-scale dextral translation of the Methow terrane.

  10. 3D visualization of ultra-fine ICON climate simulation data

    NASA Astrophysics Data System (ADS)

    Röber, Niklas; Spickermann, Dela; Böttinger, Michael

    2016-04-01

    Advances in high performance computing and model development allow the simulation of finer and more detailed climate experiments. The new ICON model is based on an unstructured triangular grid and can be used for a wide range of applications, ranging from global coupled climate simulations down to very detailed and high resolution regional experiments. It consists of an atmospheric and an oceanic component and scales very well for high numbers of cores. This allows us to conduct very detailed climate experiments with ultra-fine resolutions. ICON is jointly developed in partnership with DKRZ by the Max Planck Institute for Meteorology and the German Weather Service. This presentation discusses our current workflow for analyzing and visualizing this high resolution data. The ICON model has been used for eddy resolving (<10km) ocean simulations, as well as for ultra-fine cloud resolving (120m) atmospheric simulations. This results in very large 3D time dependent multi-variate data that need to be displayed and analyzed. We have developed specific plugins for the free available visualization software ParaView and Vapor, which allows us to read and handle that much data. Within ParaView, we can additionally compare prognostic variables with performance data side by side to investigate the performance and scalability of the model. With the simulation running in parallel on several hundred nodes, an equal load balance is imperative. In our presentation we show visualizations of high-resolution ICON oceanographic and HDCP2 atmospheric simulations that were created using ParaView and Vapor. Furthermore we discuss our current efforts to improve our visualization capabilities, thereby exploring the potential of regular in-situ visualization, as well as of in-situ compression / post visualization.

  11. Spin interactions in InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)

  12. Measuring h /mCs and the Fine Structure Constant with Bragg Diffraction and Bloch Oscillations

    NASA Astrophysics Data System (ADS)

    Parker, Richard

    2016-05-01

    We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δα / α =0.25ppb in the fine structure constant measurement, which gives up to 4.4 million radians of phase difference between freely evolving matter waves. We suppress many systematic effects, e.g., Zeeman shifts and effects from Earth's gravity and vibrations, use Bloch oscillations to increase the signal and reduce the diffraction phase, simulate multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implement spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.

  13. Porous-electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1981-09-17

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  14. Porous electrode preparation method

    DOEpatents

    Arons, Richard M.; Dusek, Joseph T.

    1983-01-01

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  15. Porous electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  16. Optimal Design of Experiments by Combining Coarse and Fine Measurements

    NASA Astrophysics Data System (ADS)

    Lee, Alpha A.; Brenner, Michael P.; Colwell, Lucy J.

    2017-11-01

    In many contexts, it is extremely costly to perform enough high-quality experimental measurements to accurately parametrize a predictive quantitative model. However, it is often much easier to carry out large numbers of experiments that indicate whether each sample is above or below a given threshold. Can many such categorical or "coarse" measurements be combined with a much smaller number of high-resolution or "fine" measurements to yield accurate models? Here, we demonstrate an intuitive strategy, inspired by statistical physics, wherein the coarse measurements are used to identify the salient features of the data, while the fine measurements determine the relative importance of these features. A linear model is inferred from the fine measurements, augmented by a quadratic term that captures the correlation structure of the coarse data. We illustrate our strategy by considering the problems of predicting the antimalarial potency and aqueous solubility of small organic molecules from their 2D molecular structure.

  17. Shigaraki UAV-Radar Experiment (ShUREX): overview of the campaign with some preliminary results

    NASA Astrophysics Data System (ADS)

    Kantha, Lakshmi; Lawrence, Dale; Luce, Hubert; Hashiguchi, Hiroyuki; Tsuda, Toshitaka; Wilson, Richard; Mixa, Tyler; Yabuki, Masanori

    2017-12-01

    The Shigaraki unmanned aerial vehicle (UAV)-Radar Experiment (ShUREX) is an international (USA-Japan-France) observational campaign, whose overarching goal is to demonstrate the utility of small, lightweight, inexpensive, autonomous UAVs in probing and monitoring the lower troposphere and to promote synergistic use of UAVs and very high frequency (VHF) radars. The 2-week campaign lasting from June 1 to June 14, 2015, was carried out at the Middle and Upper Atmosphere (MU) Observatory in Shigaraki, Japan. During the campaign, the DataHawk UAV, developed at the University of Colorado, Boulder, and equipped with high-frequency response cold wire and pitot tube sensors (as well as an iMET radiosonde), was flown near and over the VHF-band MU radar. Measurements in the atmospheric column in the immediate vicinity of the radar were obtained. Simultaneous and continuous operation of the radar in range imaging mode enabled fine-scale structures in the atmosphere to be visualized by the radar. It also permitted the UAV to be commanded to sample interesting structures, guided in near real time by the radar images. This overview provides a description of the ShUREX campaign and some interesting but preliminary results of the very first simultaneous and intensive probing of turbulent structures by UAVs and the MU radar. The campaign demonstrated the validity and utility of the radar range imaging technique in obtaining very high vertical resolution ( 20 m) images of echo power in the atmospheric column, which display evolving fine-scale atmospheric structures in unprecedented detail. The campaign also permitted for the very first time the evaluation of the consistency of turbulent kinetic energy dissipation rates in turbulent structures inferred from the spectral broadening of the backscattered radar signal and direct, in situ measurements by the high-frequency response velocity sensor on the UAV. The data also enabled other turbulence parameters such as the temperature structure function parameter {C}_T^2 and refractive index structure function parameter {C}_n^2 to be measured by sensors on the UAV, along with radar-inferred refractive index structure function parameter {C}_{n,radar}^2 . The comprehensive dataset collected during the campaign (from the radar, the UAV, the boundary layer lidar, the ceilometer, and radiosondes) is expected to help obtain a better understanding of turbulent atmospheric structures, as well as arrive at a better interpretation of the radar data.

  18. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapaev, V. V., E-mail: kapaev@sci.lebedev.ru; Kopaev, Yu. V.; Savinov, S. A.

    2013-03-15

    The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schroedinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In{sub 0.53}Ga{sub 0.47}As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V{sub dc} in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in suchmore » structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.« less

  19. High-performance Chinese multiclass traffic sign detection via coarse-to-fine cascade and parallel support vector machine detectors

    NASA Astrophysics Data System (ADS)

    Chang, Faliang; Liu, Chunsheng

    2017-09-01

    The high variability of sign colors and shapes in uncontrolled environments has made the detection of traffic signs a challenging problem in computer vision. We propose a traffic sign detection (TSD) method based on coarse-to-fine cascade and parallel support vector machine (SVM) detectors to detect Chinese warning and danger traffic signs. First, a region of interest (ROI) extraction method is proposed to extract ROIs using color contrast features in local regions. The ROI extraction can reduce scanning regions and save detection time. For multiclass TSD, we propose a structure that combines a coarse-to-fine cascaded tree with a parallel structure of histogram of oriented gradients (HOG) + SVM detectors. The cascaded tree is designed to detect different types of traffic signs in a coarse-to-fine process. The parallel HOG + SVM detectors are designed to do fine detection of different types of traffic signs. The experiments demonstrate the proposed TSD method can rapidly detect multiclass traffic signs with different colors and shapes in high accuracy.

  20. Limited Effects of Variable-Retention Harvesting on Fungal Communities Decomposing Fine Roots in Coastal Temperate Rainforests.

    PubMed

    Philpott, Timothy J; Barker, Jason S; Prescott, Cindy E; Grayston, Sue J

    2018-02-01

    Fine root litter is the principal source of carbon stored in forest soils and a dominant source of carbon for fungal decomposers. Differences in decomposer capacity between fungal species may be important determinants of fine-root decomposition rates. Variable-retention harvesting (VRH) provides refuge for ectomycorrhizal fungi, but its influence on fine-root decomposers is unknown, as are the effects of functional shifts in these fungal communities on carbon cycling. We compared fungal communities decomposing fine roots (in litter bags) under VRH, clear-cut, and uncut stands at two sites (6 and 13 years postharvest) and two decay stages (43 days and 1 year after burial) in Douglas fir forests in coastal British Columbia, Canada. Fungal species and guilds were identified from decomposed fine roots using high-throughput sequencing. Variable retention had short-term effects on β-diversity; harvest treatment modified the fungal community composition at the 6-year-postharvest site, but not at the 13-year-postharvest site. Ericoid and ectomycorrhizal guilds were not more abundant under VRH, but stand age significantly structured species composition. Guild composition varied by decay stage, with ruderal species later replaced by saprotrophs and ectomycorrhizae. Ectomycorrhizal abundance on decomposing fine roots may partially explain why fine roots typically decompose more slowly than surface litter. Our results indicate that stand age structures fine-root decomposers but that decay stage is more important in structuring the fungal community than shifts caused by harvesting. The rapid postharvest recovery of fungal communities decomposing fine roots suggests resiliency within this community, at least in these young regenerating stands in coastal British Columbia. IMPORTANCE Globally, fine roots are a dominant source of carbon in forest soils, yet the fungi that decompose this material and that drive the sequestration or respiration of this carbon remain largely uncharacterized. Fungi vary in their capacity to decompose plant litter, suggesting that fungal community composition is an important determinant of decomposition rates. Variable-retention harvesting is a forestry practice that modifies fungal communities by providing refuge for ectomycorrhizal fungi. We evaluated the effects of variable retention and clear-cut harvesting on fungal communities decomposing fine roots at two sites (6 and 13 years postharvest), at two decay stages (43 days and 1 year), and in uncut stands in temperate rainforests. Harvesting impacts on fungal community composition were detected only after 6 years after harvest. We suggest that fungal community composition may be an important factor that reduces fine-root decomposition rates relative to those of above-ground plant litter, which has important consequences for forest carbon cycling. Copyright © 2018 American Society for Microbiology.

  1. Study of Chemistry and Structure-Property Relationship on Tunable Plasmonic Nanostructures

    NASA Astrophysics Data System (ADS)

    Jing, Hao

    In this dissertation, the rational design and controllable fabrication of an array of novel plasmonic nanostructures with geometrically tunable optical properties are demonstrated, including metal-semiconductor hybrid hetero-nanoparticles, bimetallic noble metal nanoparticles and hollow nanostructures (nanobox and nanocage). Firstly, I have developed a robust wet chemistry approach to the geometry control of Ag-Cu2O core-shell nanoparticles through epitaxial growth of Cu2O nanoshells on the surfaces of various Ag nanostructures, such as quasi-spherical nanoparticles, nanocubes, and nanocuboids. Precise control over the core and the shell geometries enables me to develop detailed, quantitative understanding of how the Cu2O nanoshells introduce interesting modifications to the resonance frequencies and the extinction spectral line shapes of multiple plasmon modes of the Ag cores. Secondly, I present a detailed and systematic study of the controlled overgrowth of Pd on Au nanorods. The overgrowth of Pd nanoshells with fine-controlled dimensions and architectures on single-crystalline Au nanorods through seed-mediated growth protocol in the presence of various surfactants is investigated. Thirdly, I have demonstrated that creation of high-index facets on subwavelength metallic nanoparticles provides a unique approach to the integration of desired plasmonic and catalytic properties on the same nanoparticle. Through site-selective surface etching of metallic nanocuboids whose surfaces are dominated by low-index facets, I have controllably fabricated nanorice and nanodumbbell particles, which exhibit drastically enhanced catalytic activities arising from the catalytically active high index facets abundant on the particle surfaces. And the nanorice and nanodumbbell particles also possess appealing tunable plasmonic properties that allow us to gain quantitative insights into nanoparticle-catalyzed reactions with unprecedented sensitivity and detail through time-resolved plasmon-enhanced spectroscopic measurements, such as surface-enhanced Raman scattering (SERS). Last but not least, I have demonstrated that the capability of geometry control over Ag-Pd bimetallic hollow nanostructures through nanoscale galvanic replacement can be greatly enhanced by the use of appropriate mild reducing agents, such as ascorbic acid and formaldehyde. With the aid of mild reducing agents, we have been able to fine-tailor the compositions, interior architectures, and surface morphologies of Ag-Pd bimetallic hollow nanoparticles with increased structural complexity through surface ligand-free galvanic replacement processes at room temperature. This reducing agent-mediated galvanic replacement provides a unique way of achieving both enhanced optical tunability and optimized catalytic activities through deliberate control over the geometries of complex Ag-Pd bimetallic nanoparticles.

  2. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  3. Novel visualization studies of lignocellulosic oxidation chemistry by application of C-near edge X-ray absorption fine structure spectroscopy

    Treesearch

    Douglas G. Mancosky; Lucian A. Lucia; Hiroki Nanko; Sue Wirick; Alan W. Rudie; Robert Braun

    2005-01-01

    The research presented herein is the first attempt to probe the chemical nature of lignocellulosic samples by the application of carbon near edge X-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft X-ray technique that principally provides selective interrogation of discrete atomic moieties using photoelectrons of variable energies. The X1A beam...

  4. A correlational method to concurrently measure envelope and temporal fine structure weights: effects of age, cochlear pathology, and spectral shaping.

    PubMed

    Fogerty, Daniel; Humes, Larry E

    2012-09-01

    The speech signal may be divided into spectral frequency-bands, each band containing temporal properties of the envelope and fine structure. This study measured the perceptual weights for the envelope and fine structure in each of three frequency bands for sentence materials in young normal-hearing listeners, older normal-hearing listeners, aided older hearing-impaired listeners, and spectrally matched young normal-hearing listeners. The availability of each acoustic property was independently varied through noisy signal extraction. Thus, the full speech stimulus was presented with noise used to mask six different auditory channels. Perceptual weights were determined by correlating a listener's performance with the signal-to-noise ratio of each acoustic property on a trial-by-trial basis. Results demonstrate that temporal fine structure perceptual weights remain stable across the four listener groups. However, a different weighting typography was observed across the listener groups for envelope cues. Results suggest that spectral shaping used to preserve the audibility of the speech stimulus may alter the allocation of perceptual resources. The relative perceptual weighting of envelope cues may also change with age. Concurrent testing of sentences repeated once on a previous day demonstrated that weighting strategies for all listener groups can change, suggesting an initial stabilization period or susceptibility to auditory training.

  5. A combined NDE/FEA approach to evaluate the structural response of a metal foam

    NASA Astrophysics Data System (ADS)

    Ghosn, Louis J.; Abdul-Aziz, Ali; Raj, Sai V.; Rauser, Richard W.

    2007-04-01

    Metal foams are expected to find use in structural applications where weight is of particular concern, such as space vehicles, rotorcraft blades, car bodies or portable electronic devices. The obvious structural application of metal foam is for light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by a light weight metal foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. Since the face sheets carry the applied in-plane and bending loads, the sandwich architecture is a viable engineering concept. However, the metal foam core must resist transverse shear loads and compressive loads while remaining integral with the face sheets. Challenges relating to the fabrication and testing of these metal foam panels remain due to some mechanical properties falling short of their theoretical potential. Theoretical mechanical properties are based on an idealized foam microstructure and assumed cell geometry. But the actual testing is performed on as fabricated foam microstructure. Hence in this study, a detailed three dimensional foam structure is generated using series of 2D Computer Tomography (CT) scans. The series of the 2D images are assembled to construct a high precision solid model capturing all the fine details within the metal foam as detected by the CT scanning technique. Moreover, a finite element analysis is then performed on as fabricated metal foam microstructures, to calculate the foam mechanical properties with the idealized theory. The metal foam material is an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. Tensile and compressive mechanical properties are deduced from the FEA model and compared with the theoretical values for three different foam densities. The combined NDE/FEA provided insight in the variability of the mechanical properties compared to idealized theory.

  6. Rapid mounting of adult Drosophila structures in Hoyer's medium.

    PubMed

    Stern, David L; Sucena, Elio

    2012-01-01

    The Drosophila cuticle carries a rich array of morphological details. Thus, cuticle examination has had a central role in the history of genetics. This protocol describes a procedure for mounting adult cuticles in Hoyer's medium, a useful mountant for both larval and adult cuticles. The medium digests soft tissues rapidly, leaving the cuticle cleared for observation. In addition, samples can be transferred directly from water to Hoyer's medium. However, specimens mounted in Hoyer's medium degrade over time. For example, the fine denticles on the larval dorsum are best observed soon after mounting; they begin to fade after 1 week, and can disappear completely after several months. More robust features, such as the ventral denticle belts, will persist for a longer period of time. Because adults cannot profitably be mounted whole in Hoyer's medium, some dissection is necessary.

  7. Jupiter Down Under

    NASA Image and Video Library

    2016-09-02

    This image from NASA's Juno spacecraft provides a never-before-seen perspective on Jupiter's south pole. The JunoCam instrument acquired the view on August 27, 2016, when the spacecraft was about 58,700 miles (94,500 kilometers) above the polar region. At this point, the spacecraft was about an hour past its closest approach, and fine detail in the south polar region is clearly resolved. Unlike the equatorial region's familiar structure of belts and zones, the poles are mottled by clockwise and counterclockwise rotating storms of various sizes, similar to giant versions of terrestrial hurricanes. The south pole has never been seen from this viewpoint, although the Cassini spacecraft was able to observe most of the polar region at highly oblique angles as it flew past Jupiter on its way to Saturn in 2000. http://photojournal.jpl.nasa.gov/catalog/PIA21032

  8. TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow

    USGS Publications Warehouse

    Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.

    1993-01-01

    A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.

  9. Recrystallization as a controlling process in the wear of some f.c.c. metals

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Wisander, D.

    1977-01-01

    Detailed examination of copper specimens after sliding against 440 C steel in liquid methane at speeds up to 25 m/s and loads of up to 2 kg showed the metal comprising the wear surface to possess a fine cell recrystallized structure. Wear proceeded by the plastic shearing of metal in this near surface region without the occurrence of visible metal transfer. A dynamic balance between the intense shear process at the surface and the nucleation of recrystallized grains was proposed to account for the behavior of the metal at the wear surface. Sliding wear experiments were also conducted on Ag, Cu-10% Al, Cu-10% Sn, Ni and Al. It was found that low wear and the absence of heavy metal transfer were associated with those metals observed to undergo recrystallization nucleation without prior recovery.

  10. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  11. Effect of reflection and refraction on NEXAFS spectra measured in TEY mode

    PubMed Central

    2018-01-01

    The evolution of near-edge X-ray absorption fine structure in the vicinity of the K-absorption edge of oxygen for HfO2 over a wide range of incidence angles is analyzed by simultaneous implementation of the total-electron-yield (TEY) method and X-ray reflection spectroscopy. It is established that the effect of refraction on the TEY spectrum is greater than that of reflection and extends into the angular region up to angles 2θc. Within angles that are less than the critical angle, both the reflection and refraction strongly distort the shape of the TEY spectrum. Limitations of the technique for the calculation of optical constants from the reflection spectra using the Kramers–Kronig relation in the limited energy region in the vicinity of thresholds are discussed in detail. PMID:29271772

  12. Ancient Cosmology, superfine structure of the Universe and Anthropological Principle

    NASA Astrophysics Data System (ADS)

    Arakelyan, Hrant; Vardanyan, Susan

    2015-07-01

    The modern cosmology by its spirit, conception of the Big Bang is closer to the ancient cosmology, than to the cosmological paradigm of the XIX century. Repeating the speculations of the ancients, but using at the same time subtle mathematical methods and relying on the steadily accumulating empirical material, the modern theory tends to a quantitative description of nature, in which increasing role are playing the numerical ratios between the physical constants. The detailed analysis of the influence of the numerical values -- of physical quantities on the physical state of the universe revealed amazing relations called fine and hyperfine tuning. In order to explain, why the observable universe comes to be a certain set of interrelated fundamental parameters, in fact a speculative anthropic principle was proposed, which focuses on the fact of the existence of sentient beings.

  13. Age-of-Air, Tape Recorder, and Vertical Transport Schemes

    NASA Technical Reports Server (NTRS)

    Lin, S.-J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A numerical-analytic investigation of the impacts of vertical transport schemes on the model simulated age-of-air and the so-called 'tape recorder' will be presented using an idealized 1-D column transport model as well as a more realistic 3-D dynamical model. By comparing to the 'exact' solutions of 'age-of-air' and the 'tape recorder' obtainable in the 1-D setting, useful insight is gained on the impacts of numerical diffusion and dispersion of numerical schemes used in global models. Advantages and disadvantages of Eulerian, semi-Lagrangian, and Lagrangian transport schemes will be discussed. Vertical resolution requirement for numerical schemes as well as observing systems for capturing the fine details of the 'tape recorder' or any upward propagating wave-like structures can potentially be derived from the 1-D analytic model.

  14. Heat-Affected Zone Liquation Cracking Resistance of Friction Stir Processed Aluminum-Copper Alloy AA 2219

    NASA Astrophysics Data System (ADS)

    Karthik, G. M.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2017-04-01

    In the current work, the effect of friction stir processing on heat-affected zone (HAZ) liquation cracking resistance of aluminum-copper alloy AA 2219 was evaluated. In Gleeble hot-ductility tests and longitudinal Varestraint tests, the FSPed material, despite its very fine dynamically recrystallized equiaxed grain structure, showed considerably higher susceptibility to HAZ liquation cracking when compared to the base material. Detailed microstructural studies showed that the increased cracking susceptibility of the FSPed material is due to (i) increase in the amount of liquating θ phase (equilibrium Al2Cu) and (ii) increase in the population of grain boundary θ particles. An important learning from the current work is that, in certain materials like alloy 2219, the use of FSP as a pretreatment to fusion welding can be counterproductive.

  15. Development of a force sensor using atom interferometry to constrain theories on dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Schlupf, Chandler; Niederriter, Robert; Bohr, Eliot; Khamis, Sami; Park, Youna; Szwed, Erik; Hamilton, Paul

    2017-04-01

    Atom interferometry has been used in many precision measurements such as Newton's gravitational constant, the fine structure constant, and tests of the equivalence principle. We will perform atom interferometry in an optical lattice to measure the force felt by an atom due to a test mass in search of new forces suggested by dark matter and dark energy theories. We will be developing a new apparatus using laser-cooled ytterbium to continuously measure this force by observing their Bloch oscillations. Interfering atoms in an optical lattice allows continuous measurements in a small volume over a long period of time, enabling our device to be sensitive to time-varying forces while minimizing vibrational noise. We present the details of this experiment and the progress on it thus far.

  16. Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array

    DOE PAGES

    O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il; ...

    2017-02-17

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less

  17. Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less

  18. High-resolution observations of active region moss and its dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, R. J.; McLaughlin, J. A., E-mail: richard.morton@northumbria.ac.uk

    2014-07-10

    The High Resolution Coronal Imager has provided the sharpest view of the EUV corona to date. In this paper, we exploit its impressive resolving power to provide the first analysis of the fine-scale structure of moss in an active region. The data reveal that the moss is made up of a collection of fine threads that have widths with a mean and standard deviation of 440 ± 190 km (FWHM). The brightest moss emission is located at the visible head of the fine-scale structure and the fine structure appears to extend into the lower solar atmosphere. The emission decreases alongmore » the features, implying that the lower sections are most likely dominated by cooler transition region plasma. These threads appear to be the cool, lower legs of the hot loops. In addition, the increased resolution allows for the first direct observation of physical displacements of the moss fine structure in a direction transverse to its central axis. Some of these transverse displacements demonstrate periodic behavior, which we interpret as a signature of kink (Alfvénic) waves. Measurements of the properties of the transverse motions are made and the wave motions have means and standard deviations of 55 ± 37 km for the transverse displacement amplitude, 77 ± 33 s for the period, and 4.7 ± 2.5 km s{sup –1} for the velocity amplitude. The presence of waves in the transition region of hot loops could have important implications for the heating of active regions.« less

  19. Detection of fibrils associated with Rickettsia rickettsii.

    PubMed

    Todd, W J; Burgdorfer, W; Wray, G P

    1983-09-01

    The ultrastructural appearance of the "halozone" formed at the interface between the spotted fever agent Rickettsia rickettsii and the cytoplasm of persistently infected cultured vole cells (Microtus pennsylvanicus) was studied by transmission electron microscopy. In sections of epoxy-embedded specimens stained with uranyl acetate and lead citrate, the halozone appeared clear and devoid of ultrastructural features. However, when unembedded preparations of whole infected cells were examined at 1,000 kV, fine structural features were observed within the halozone. These features, associated with the rickettsial outer membrane, were more clearly detectable when the infected cells were extracted with the detergent Triton X-100 before fixation. Under such conditions, long extensions of the rickettsial outer membrane, microfilament-like structures attached to that membrane, and extensive attachments between adjacent rickettsiae were seen. The fine structural features within the rickettsial halozone were also seen at 75 kV when unembedded sections were prepared from polyethylene glycol-embedded specimens. Thus, epoxy-embedding medium obscures the fine structural features within the halozone surrounding the rickettsiae in infected cells.

  20. Detection of fibrils associated with Rickettsia rickettsii.

    PubMed Central

    Todd, W J; Burgdorfer, W; Wray, G P

    1983-01-01

    The ultrastructural appearance of the "halozone" formed at the interface between the spotted fever agent Rickettsia rickettsii and the cytoplasm of persistently infected cultured vole cells (Microtus pennsylvanicus) was studied by transmission electron microscopy. In sections of epoxy-embedded specimens stained with uranyl acetate and lead citrate, the halozone appeared clear and devoid of ultrastructural features. However, when unembedded preparations of whole infected cells were examined at 1,000 kV, fine structural features were observed within the halozone. These features, associated with the rickettsial outer membrane, were more clearly detectable when the infected cells were extracted with the detergent Triton X-100 before fixation. Under such conditions, long extensions of the rickettsial outer membrane, microfilament-like structures attached to that membrane, and extensive attachments between adjacent rickettsiae were seen. The fine structural features within the rickettsial halozone were also seen at 75 kV when unembedded sections were prepared from polyethylene glycol-embedded specimens. Thus, epoxy-embedding medium obscures the fine structural features within the halozone surrounding the rickettsiae in infected cells. Images PMID:6411620

  1. Julius Edgar Lilienfeld Prize Talk: Measuring the Electron Magnetic Moment and the Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Gabrielse, Gerald

    2011-05-01

    The electron magnetic moment in Bohr magnetons has been measured to a precision of 3 parts in 1013. This measurement, with quantum electrodynamics (AED) theory, provides the most precise value of the fine structure constant. This measurement, with a value of the fine structure from other measurements, also tests QED and sets a limit on the internal structure of the electron. A one-electron quantum cyclotron is at the heart of the measurement -- an electron suspended in a magnetic field and cooled enough that its lowest cyclotron and spin quantum states can be deduced with quantum nondemolition (QND) measurements. A cylindrical Penning trap cavity inhibits spontaneous emission and feedback methods make the electron excite and sustain its own motion for detection. A new apparatus is being commissioned in pursuit of more precise measurements. Adapted methods are promising for observing a proton spin flip, which should make it possible to compare the antiproton and proton magnetic moments a million times more accurately than is currently possible.

  2. New determination of the fine structure constant from the electron value and QED.

    PubMed

    Gabrielse, G; Hanneke, D; Kinoshita, T; Nio, M; Odom, B

    2006-07-21

    Quantum electrodynamics (QED) predicts a relationship between the dimensionless magnetic moment of the electron (g) and the fine structure constant (alpha). A new measurement of g using a one-electron quantum cyclotron, together with a QED calculation involving 891 eighth-order Feynman diagrams, determine alpha(-1)=137.035 999 710 (96) [0.70 ppb]. The uncertainties are 10 times smaller than those of nearest rival methods that include atom-recoil measurements. Comparisons of measured and calculated g test QED most stringently, and set a limit on internal electron structure.

  3. Fine root dynamics along an elevational gradient in tropical Amazonian and Andean forests

    NASA Astrophysics Data System (ADS)

    Girardin, C. A. J.; Aragão, L. E. O. C.; Malhi, Y.; Huaraca Huasco, W.; Metcalfe, D. B.; Durand, L.; Mamani, M.; Silva-Espejo, J. E.; Whittaker, R. J.

    2013-01-01

    The key role of tropical forest belowground carbon stocks and fluxes is well recognised as one of the main components of the terrestrial ecosystem carbon cycle. This study presents the first detailed investigation of spatial and temporal patterns of fine root stocks and fluxes in tropical forests along an elevational gradient, ranging from the Peruvian Andes (3020 m) to lowland Amazonia (194 m), with mean annual temperatures of 11.8°C to 26.4 °C and annual rainfall values of 1900 to 1560 mm yr-1, respectively. Specifically, we analyse abiotic parameters controlling fine root dynamics, fine root growth characteristics, and seasonality of net primary productivity along the elevation gradient. Root and soil carbon stocks were measured by means of soil cores, and fine root productivity was recorded using rhizotron chambers and ingrowth cores. We find that mean annual fine root below ground net primary productivity in the montane forests (0-30 cm depth) ranged between 4.27±0.56 Mg C ha-1 yr-1 (1855 m) and 1.72±0.87 Mg C ha-1 yr-1 (3020 m). These values include a correction for finest roots (<0.6 mm diameter), which we suspect are under sampled, resulting in an underestimation of fine roots by up to 31% in current ingrowth core counting methods. We investigate the spatial and seasonal variation of fine root dynamics using soil depth profiles and an analysis of seasonal amplitude along the elevation gradient. We report a stronger seasonality of NPPFineRoot within the cloud immersion zone, most likely synchronised to seasonality of solar radiation. Finally, we provide the first insights into root growth characteristics along a tropical elevation transect: fine root area and fine root length increase significantly in the montane cloud forest. These insights into belowground carbon dynamics of tropical lowland and montane forests have significant implications for our understanding of the global tropical forest carbon cycle.

  4. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hui; Khlystov, Andrey; Norford, Leslie K.; Tan, Zhen-Kang; Balasubramanian, Rajasekhar

    2017-07-01

    Vehicular traffic emission is an important source of particulate pollution in most urban areas. The detailed chemical speciation of traffic-related PM2.5 (fine particles) is relatively sparse in the literature, especially in Asian cities. To fill this knowledge gap, we carried out an intensive field study in Singapore from November 2015 to February 2016. PM2.5 samples were collected concurrently at a typical roadside microenvironment and at an urban background site. A detailed chemical speciation of PM2.5 samples was conducted to gain insights into the emission characteristics of traffic-related fine aerosols. Analyses of diagnostic ratios and molecular markers of selected chemical species were explored for source attribution of different classes of chemical constituents in traffic-related PM2.5. The human health risk due to inhalation of the particulate-bound PAHs (polycyclic aromatic hydrocarbons) and toxic trace elements was estimated for both adults and children. The overall results of the study indicate that gasoline-powered vehicles make a higher contribution to traffic-related fine aerosol components such as organic carbon (OC), particle-bound PAHs and particulate ammonium than that of diesel-powered vehicles. However, both types of vehicles contribute to traffic-related EC emissions significantly. The combustion of petroleum fuels and lubricating oil make significant contributions to the emission of n-alkanes and hopanes into the urban atmosphere, respectively. The study further reveals that some toxic trace elements are emitted from non-exhaust sources and that aromatic acids represent an important component of secondary organic aerosols. The emission of toxic trace elements from non-exhaust sources is of particular concern as they could pose a higher carcinogenic risk to both adults and children than other chemical species.

  5. Structural and electrical properties of In-implanted Ge

    DOE PAGES

    Feng, R.; Kremer, F.; Sprouster, D. J.; ...

    2015-10-22

    Here, we report on the effects of dopant concentration on the structural and electrical properties of In-implanted Ge. For In concentrations of ≤ 0.2 at. %, extended x-ray absorption fine structure and x-ray absorption near-edge structure measurements demonstrate that all In atoms occupy a substitutional lattice site while metallic In precipitates are apparent in transmission electron micrographs for In concentrations ≥0.6 at. %. Evidence of the formation of In-vacancy complexes deduced from extended x-ray absorption fine structure measurements is complimented by density functional theory simulations. Hall effect measurements of the conductivity, carrier density, and carrier mobility are then correlated withmore » the substitutional In fraction.« less

  6. Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel.

    PubMed

    Hall, David S; Lockwood, David J; Poirier, Shawn; Bock, Christina; MacDougall, Barry R

    2012-06-28

    The present work utilizes Raman and infrared (IR) spectroscopy, supported by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) to re-examine the fine structural details of Ni(OH)(2), which is a key material in many energy-related applications. This work also unifies the large body of literature on the topic. Samples were prepared by the galvanostatic basification of nickel salts and by aging the deposits in hot KOH solutions. A simplified model is presented consisting of two fundamental phases (α and β) of Ni(OH)(2) and a range of possible structural disorder arising from factors such as impurities, hydration, and crystal defects. For the first time, all of the lattice modes of β-Ni(OH)(2) have been identified and assigned using factor group analysis. Ni(OH)(2) films can be rapidly identified in pure and mixed samples using Raman or IR spectroscopy by measuring their strong O-H stretching modes, which act as fingerprints. Thus, this work establishes methods to measure the phase, or phases, and disorder at a Ni(OH)(2) sample surface and to correlate desired chemical properties to their structural origins.

  7. Detailed design of a lattice composite fuselage structure by a mixed optimization method

    NASA Astrophysics Data System (ADS)

    Liu, D.; Lohse-Busch, H.; Toropov, V.; Hühne, C.; Armani, U.

    2016-10-01

    In this article, a procedure for designing a lattice fuselage barrel is developed. It comprises three stages: first, topology optimization of an aircraft fuselage barrel is performed with respect to weight and structural performance to obtain the conceptual design. The interpretation of the optimal result is given to demonstrate the development of this new lattice airframe concept for the fuselage barrel. Subsequently, parametric optimization of the lattice aircraft fuselage barrel is carried out using genetic algorithms on metamodels generated with genetic programming from a 101-point optimal Latin hypercube design of experiments. The optimal design is achieved in terms of weight savings subject to stability, global stiffness and strain requirements, and then verified by the fine mesh finite element simulation of the lattice fuselage barrel. Finally, a practical design of the composite skin complying with the aircraft industry lay-up rules is presented. It is concluded that the mixed optimization method, combining topology optimization with the global metamodel-based approach, allows the problem to be solved with sufficient accuracy and provides the designers with a wealth of information on the structural behaviour of the novel anisogrid composite fuselage design.

  8. A Hybrid Approach to Data Assimilation for Reconstructing the Evolution of Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Liu, Lijun

    2017-11-01

    Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation approach that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics the best.

  9. Multilevel Green's function interpolation method for scattering from composite metallic and dielectric objects.

    PubMed

    Shi, Yan; Wang, Hao Gang; Li, Long; Chan, Chi Hou

    2008-10-01

    A multilevel Green's function interpolation method based on two kinds of multilevel partitioning schemes--the quasi-2D and the hybrid partitioning scheme--is proposed for analyzing electromagnetic scattering from objects comprising both conducting and dielectric parts. The problem is formulated using the surface integral equation for homogeneous dielectric and conducting bodies. A quasi-2D multilevel partitioning scheme is devised to improve the efficiency of the Green's function interpolation. In contrast to previous multilevel partitioning schemes, noncubic groups are introduced to discretize the whole EM structure in this quasi-2D multilevel partitioning scheme. Based on the detailed analysis of the dimension of the group in this partitioning scheme, a hybrid quasi-2D/3D multilevel partitioning scheme is proposed to effectively handle objects with fine local structures. Selection criteria for some key parameters relating to the interpolation technique are given. The proposed algorithm is ideal for the solution of problems involving objects such as missiles, microstrip antenna arrays, photonic bandgap structures, etc. Numerical examples are presented to show that CPU time is between O(N) and O(N log N) while the computer memory requirement is O(N).

  10. A Hybrid Forward-Adjoint Data Assimilation Method for Reconstructing the Temporal Evolution of Mantle Dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Liu, L.

    2017-12-01

    Quantifying past mantle dynamic processes represents a major challenge in understanding the temporal evolution of the solid earth. Mantle convection modeling with data assimilation is one of the most powerful tools to investigate the dynamics of plate subduction and mantle convection. Although various data assimilation methods, both forward and inverse, have been created, these methods all have limitations in their capabilities to represent the real earth. Pure forward models tend to miss important mantle structures due to the incorrect initial condition and thus may lead to incorrect mantle evolution. In contrast, pure tomography-based models cannot effectively resolve the fine slab structure and would fail to predict important subduction-zone dynamic processes. Here we propose a hybrid data assimilation method that combines the unique power of the sequential and adjoint algorithms, which can properly capture the detailed evolution of the downgoing slab and the tomographically constrained mantle structures, respectively. We apply this new method to reconstructing mantle dynamics below the western U.S. while considering large lateral viscosity variations. By comparing this result with those from several existing data assimilation methods, we demonstrate that the hybrid modeling approach recovers the realistic 4-D mantle dynamics to the best.

  11. Rocket observations of electron-density irregularities in the equatorial ionosphere below 200 km

    NASA Technical Reports Server (NTRS)

    Klaus, D. E.; Smith, L. G.

    1978-01-01

    Nike Apache rockets carring instrumentation to measure electron density and its fine structure in the equatorial ionosphere were launched from Chilca, Peru in May and June 1975. The fine structure experiment and the data reduction system are described. Results obtained from this system are presented and compared with those obtained by VHF radar and from other rocket studies. A description of the equatorial ionosphere and its features is also presented.

  12. Effective collision strengths for the electron impact excitation of Mg

    NASA Astrophysics Data System (ADS)

    Hudson, C. E.; Ramsbottom, C. A.; Norrington, P. H.; Scott, M. P.

    2008-05-01

    Electron impact excitation collision strengths for fine structure transitions of Mg,have been determined by a Breit-Pauli R-matrix calculation. The target states are represented by configuration interaction wavefunctions and consist of the 19 lowest LS states, having configurations 2s^22p^4, 2s2p^5, 2p^6, 2s^22p^33s and 2s^22p^33p. These target states give rise to 37 fine structure levels and 666 possible transitions. The effective collision strengths are calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities. Effective collision strengths for transitions between the fine structure levels are given for electron temperatures in the range 10Te(K) = 3.0 - 7.0. Results are compared with the previous R-matrix calculation of Butler & Zeippen (AASS, 1994) and the recent Distorted Wave evaluations of Bhatia, Landi & Eissner (ADNDT, 2006).

  13. Origin of fine structure of the giant dipole resonance in s d -shell nuclei

    NASA Astrophysics Data System (ADS)

    Fearick, R. W.; Erler, B.; Matsubara, H.; von Neumann-Cosel, P.; Richter, A.; Roth, R.; Tamii, A.

    2018-04-01

    A set of high-resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the giant dipole resonance (GDR) in s d -shell nuclei. Understanding is achieved by comparison with random phase approximation calculations for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows one to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement for scales in the range of a few hundred keV supports the surmise that the fine structure arises from ground-state deformation driven by α clustering.

  14. Annealing induced atomic rearrangements on (Ga,In) (N,As) probed by hard X-ray photoelectron spectroscopy and X-ray absorption fine structure.

    PubMed

    Ishikawa, Fumitaro; Higashi, Kotaro; Fuyuno, Satoshi; Morifuji, Masato; Kondow, Masahiko; Trampert, Achim

    2018-04-13

    We study the effects of annealing on (Ga 0.64 ,In 0.36 ) (N 0.045 ,As 0.955 ) using hard X-ray photoelectron spectroscopy and X-ray absorption fine structure measurements. We observed surface oxidation and termination of the N-As bond defects caused by the annealing process. Specifically, we observed a characteristic chemical shift towards lower binding energies in the photoelectron spectra related to In. This phenomenon appears to be caused by the atomic arrangement, which produces increased In-N bond configurations within the matrix, as indicated by the X-ray absorption fine structure measurements. The reduction in the binding energies of group-III In, which occurs concomitantly with the atomic rearrangements of the matrix, causes the differences in the electronic properties of the system before and after annealing.

  15. Dynamic Jahn-Teller effect: Calculation of fine structure spectrum, isotope shift and Zeeman behavior at deep center Ni2+ in CdS

    NASA Astrophysics Data System (ADS)

    Schoepp, Juergen

    The internal transition of the deep center Ni2+ in II to IV semiconductor cadmium sulfide is examined with reference to crystal field theory. An algorithm was developed for calculation, in a basis fitted to trigonal symmetry, of fine structure operator matrix which is made of the sum of operators from spin trajectory coupling, trigonal field and electron phonon coupling. The dependence of energy level on the mass was calculated in order to examine the isotropy effect at Ni2+ transition. The mass dependence of phonon energy was estimated in an atomic cluster by using a valence force model from Keating for elastic energy. The Zeeman behavior of Ni2+ transition was examined for magnetic fields; the Zeeman operator was added to the fine structure operator and the resulting matrix was diagonalized. It is noticed that calculations are quantitatively and qualitatively in agreement with experiments.

  16. Fine structure constant and quantized optical transparency of plasmonic nanoarrays.

    PubMed

    Kravets, V G; Schedin, F; Grigorenko, A N

    2012-01-24

    Optics is renowned for displaying quantum phenomena. Indeed, studies of emission and absorption lines, the photoelectric effect and blackbody radiation helped to build the foundations of quantum mechanics. Nevertheless, it came as a surprise that the visible transparency of suspended graphene is determined solely by the fine structure constant, as this kind of universality had been previously reserved only for quantized resistance and flux quanta in superconductors. Here we describe a plasmonic system in which relative optical transparency is determined solely by the fine structure constant. The system consists of a regular array of gold nanoparticles fabricated on a thin metallic sublayer. We show that its relative transparency can be quantized in the near-infrared, which we attribute to the quantized contact resistance between the nanoparticles and the metallic sublayer. Our results open new possibilities in the exploration of universal dynamic conductance in plasmonic nanooptics.

  17. Fine Structure of Beta Decay Strength Function and Anisotropy of Isovector Nuclear Dencity Component Oscillations in Deformed Nuclei

    NASA Astrophysics Data System (ADS)

    Izosimov, I. N.; Solnyshkin, A. A.; Khushvaktov, J. H.; Vaganov, Yu. A.

    2018-05-01

    The experimental measurement data on the fine structure of beta-decay strength function S β( E) in spherical, transitional, and deformed nuclei are analyzed. Modern high-resolution nuclear spectroscopy methods made it possible to identify the splitting of peaks in S β( E) for deformed nuclei. By analogy with splitting of the peak of E1 giant dipole resonance (GDR) in deformed nuclei, the peaks in S β( E) are split into two components from the axial nuclear deformation. In this report, the fine structure of S β( E) is discussed. Splitting of the peaks connected with the oscillations of neutrons against protons (E1GDR), of proton holes against neutrons (peaks in S β( E) of β+/ EC-decay), and of protons against neutron holes (peaks in S β( E) of β--decay) is discussed.

  18. Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals.

    PubMed

    Biadala, Louis; Siebers, Benjamin; Beyazit, Yasin; Tessier, Mickaël D; Dupont, Dorian; Hens, Zeger; Yakovlev, Dmitri R; Bayer, Manfred

    2016-03-22

    We report on a temperature-, time-, and spectrally resolved study of the photoluminescence of type-I InP/ZnS colloidal nanocrystals with varying core size. By studying the exciton recombination dynamics we assess the exciton fine structure in these systems. In addition to the typical bright-dark doublet, the photoluminescence stems from an upper bright state in spite of its large energy splitting (∼100 meV). This striking observation results from dramatically lengthened thermalization processes among the fine structure levels and points to optical-phonon bottleneck effects in InP/ZnS nanocrystals. Furthermore, our data show that the radiative recombination of the dark exciton scales linearly with the bright-dark energy splitting for CdSe and InP nanocrystals. This finding strongly suggests a universal dangling bonds-assisted recombination of the dark exciton in colloidal nanostructures.

  19. Planetary science

    NASA Technical Reports Server (NTRS)

    Marshall, John R.; Bridges, Frank; Gault, Donald; Greeley, Ronald; Houpis, Harry; Lin, Douglas; Weidenschilling, Stuart

    1987-01-01

    The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) low velocity collisions between fragile particles; (2) low velocity collisions of ice particles; (3) plasma-dust interaction; and (4) aggregation of finely-comminuted geological materials. The required capabilities and desired hardware for the facility are detailed.

  20. Resistivity Problems in Electrostatic Precipitation

    ERIC Educational Resources Information Center

    White, Harry J.

    1974-01-01

    The process of electrostatic precipitation has ever-increasing application in more efficient collection of fine particles from industrial air emissions. This article details a large number of new developments in the field. The emphasis is on high resistivity particles which are a common cause of poor precipitator performance. (LS)

Top