g-Factor of heavy ions: a new access to the fine structure constant.
Shabaev, V M; Glazov, D A; Oreshkina, N S; Volotka, A V; Plunien, G; Kluge, H-J; Quint, W
2006-06-30
A possibility for a determination of the fine structure constant in experiments on the bound-electron g-factor is examined. It is found that studying a specific difference of the g-factors of B- and H-like ions of the same spinless isotope in the Pb region to the currently accessible experimental accuracy of 7 x 10(-10) would lead to a determination of the fine structure constant to an accuracy which is better than that of the currently accepted value. Further improvements of the experimental and theoretical accuracy could provide a value of the fine structure constant which is several times more precise than the currently accepted one.
NASA Astrophysics Data System (ADS)
Schoepp, Juergen
The internal transition of the deep center Ni2+ in II to IV semiconductor cadmium sulfide is examined with reference to crystal field theory. An algorithm was developed for calculation, in a basis fitted to trigonal symmetry, of fine structure operator matrix which is made of the sum of operators from spin trajectory coupling, trigonal field and electron phonon coupling. The dependence of energy level on the mass was calculated in order to examine the isotropy effect at Ni2+ transition. The mass dependence of phonon energy was estimated in an atomic cluster by using a valence force model from Keating for elastic energy. The Zeeman behavior of Ni2+ transition was examined for magnetic fields; the Zeeman operator was added to the fine structure operator and the resulting matrix was diagonalized. It is noticed that calculations are quantitatively and qualitatively in agreement with experiments.
Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference
NASA Astrophysics Data System (ADS)
Nakazumi, Tomoka; Sato, Tadatake; Narazaki, Aiko; Niino, Hiroyuki
2016-09-01
For crack-free marking of glass materials, a beam-scanning laser-induced backside wet etching (LIBWE) process by a beam spot with a fine periodic structure was examined. The fine periodic structure was produced within a beam spot by means of a Mach-Zehnder interferometer incorporated to the optical setup for the beam-scanning LIBWE. A fine structure with a period of 9 µm was observed within the microstructures with a diameter of ca. 40 µm fabricated by a laser shot under double-beam irradiation, and they could be homogeneously fabricated within an area of 800 × 800 µm. The area filled with the microstructures, including fine periodic structures, could be observed in high contrast under a diffuse, on-axis illumination that was used in commercial QR code readers.
Photoionization modeling of the LWS fine-structure lines in IR bright galaxies
NASA Technical Reports Server (NTRS)
Satyapal, S.; Luhman, M. L.; Fischer, J.; Greenhouse, M. A.; Wolfire, M. G.
1997-01-01
The long wavelength spectrometer (LWS) fine structure line spectra from infrared luminous galaxies were modeled using stellar evolutionary synthesis models combined with photoionization and photodissociation region models. The calculations were carried out by using the computational code CLOUDY. Starburst and active galactic nuclei models are presented. The effects of dust in the ionized region are examined.
The impact of cochlear fine structure on hearing thresholds and DPOAE levels
NASA Astrophysics Data System (ADS)
Lee, Jungmee; Long, Glenis; Talmadge, Carrick L.
2004-05-01
Although otoacoustic emissions (OAE) are used as clinical and research tools, the correlation between OAE behavioral estimates of hearing status is not large. In normal-hearing individuals, the level of OAEs can vary as much as 30 dB when the frequency is changed less than 5%. These pseudoperiodic variations of OAE level with frequency are known as fine structure. Hearing thresholds measured with high-frequency resolution reveals a similar (up to 15 dB) fine structure. We examine the impact of OAE and threshold fine structures on the prediction of auditory thresholds from OAE levels. Distortion product otoacoustic emissions (DPOAEs) were measured with sweeping primary tones. Psychoacoustic detection thresholds were measured using pure tones, sweep tones, FM tones, and narrow-band noise. Sweep DPOAE and narrow-band threshold estimates provide estimates that are less influenced by cochlear fine structure and should lead to a higher correlation between OAE levels and psychoacoustic thresholds. [Research supported by PSC CUNY, NIDCD, National Institute on Disability and Rehabilitation Research in U.S. Department of Education, and The Ministry of Education in Korea.
NASA Technical Reports Server (NTRS)
Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.
1993-01-01
Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.
Metallurgical Examination of a Cast Turret Manufactured by the American Steel Foundries
1945-03-28
ferrite and a structure stmlar to tempered bainite tnd fine carb ides. 4. The results of this investigatio l inCicate that the American Steel Foundries...1hirrot No 11Mufac t~redj~ t!Le American~ Steel Poidcries J.J Wil jr;I 4?1 ’JJ No. B171; 11000 Picral Structure simuilar to temnpered bainite Lavsociated wita fine carbides and ferrite patcha.. FIGM I ...examination has been conducted on two samples of the. cast turret to. 3171 for the Hedium Tank II4, maiufactured by the i.meriaan Steel Foundries, which
Dhar, Sumitrajit; Shaffer, Lauren A
2004-12-01
The use of a suppressor tone has been proposed as the method of choice in obtaining single-generator distortion product (DP) grams, the speculation being that such DP grams will be more predictive of hearing thresholds. Current distortion product otoacoustic emissions (DPOAE) theory points to the ear canal DPOAE signal being a complex interaction between multiple components. The effectiveness of a suppressor tone is predicted to be dependent entirely on the relative levels of these components. We examine the validity of using a suppressor tone through a detailed examination of the effects of a suppressor on DPOAE fine structure in individual ears. DPOAE fine structure, recorded in 10 normal-hearing individuals with a suppressor tone at 45, 55, and 65 dB SPL, was compared with recordings without a suppressor. Behavioral hearing thresholds were also measured in the same subjects, using 2-dB steps. The effect of the suppressor tone on DPOAE fine structure varied between ears and was dependent on frequency within ears. Correlation between hearing thresholds and DPOAE level measured without a suppressor was similar to previous reports. The effects of the suppressor are explained in the theoretical framework of a model involving multiple DPOAE components. Our results suggest that a suppressor tone can have highly variable effects on fine structure across individuals or even across frequency within one ear, thereby making the use of a suppressor less viable as a clinical tool for obtaining single-generator DP grams.
Macdonald, Tara A; Burd, Brenda J; van Roodselaar, Albert
2012-01-01
Size distributions of biotic assemblages are important modifiers of productivity and function in marine sediments. We investigated the distribution of proportional organic biomass among logarithmic size classes (2(-6)J to 2(16)J) in the soft-bottom macrofaunal communities of the Strait of Georgia, Salish Sea on the west coast of Canada. The study examines how size structure is influenced by 3 fundamental habitat descriptors: depth, sediment percent fines, and organic flux (modified by quality). These habitat variables are uncorrelated in this hydrographically diverse area, thus we examine their effects in combination and separately. Cluster analyses and cumulative biomass size spectra reveal clear and significant responses to each separate habitat variable. When combined, habitat factors result in three distinct assemblages: (1) communities with a high proportion of biomass in small organisms, typical of shallow areas (<10 m) with coarse sediments (<10% fines) and low accumulation of organic material (<3.0 gC/m(2)/yr/δ(15)N); (2) communities with high proportion of biomass in the largest organisms found in the Strait, typical of deep, fine sediments with high modified organic flux (>3 g C/m(2)/yr/δ(15)N) from the Fraser River; and (3) communities with biomass dominated by moderately large organisms, but lacking the smallest and largest size classes, typical of deep, fine sediments experiencing low modified organic flux (<3.0 gC/m(2)/yr/δ(15)N). The remaining assemblages had intermediate habitat types and size structures. Sediment percent fines and flux appear to elicit threshold responses in size structure, whereas depth has the most linear influence on community size structure. The ecological implications of size structure in the Strait of Georgia relative to environmental conditions, secondary production and sediment bioturbation are discussed.
Macdonald, Tara A.; Burd, Brenda J.; van Roodselaar, Albert
2012-01-01
Size distributions of biotic assemblages are important modifiers of productivity and function in marine sediments. We investigated the distribution of proportional organic biomass among logarithmic size classes (2−6J to 216J) in the soft-bottom macrofaunal communities of the Strait of Georgia, Salish Sea on the west coast of Canada. The study examines how size structure is influenced by 3 fundamental habitat descriptors: depth, sediment percent fines, and organic flux (modified by quality). These habitat variables are uncorrelated in this hydrographically diverse area, thus we examine their effects in combination and separately. Cluster analyses and cumulative biomass size spectra reveal clear and significant responses to each separate habitat variable. When combined, habitat factors result in three distinct assemblages: (1) communities with a high proportion of biomass in small organisms, typical of shallow areas (<10 m) with coarse sediments (<10% fines) and low accumulation of organic material (<3.0 gC/m2/yr/δ15N); (2) communities with high proportion of biomass in the largest organisms found in the Strait, typical of deep, fine sediments with high modified organic flux (>3 g C/m2/yr/δ15N) from the Fraser River; and (3) communities with biomass dominated by moderately large organisms, but lacking the smallest and largest size classes, typical of deep, fine sediments experiencing low modified organic flux (<3.0 gC/m2/yr/δ15N). The remaining assemblages had intermediate habitat types and size structures. Sediment percent fines and flux appear to elicit threshold responses in size structure, whereas depth has the most linear influence on community size structure. The ecological implications of size structure in the Strait of Georgia relative to environmental conditions, secondary production and sediment bioturbation are discussed. PMID:22911694
NASA Astrophysics Data System (ADS)
Balance, Connor
Some of the strongest emission lines observed from a variety of astronomical sources originate from transitions between fine-structure levels in the ground term of neutral atoms and lowly-charged ions. These fine-structure levels are populated due to collisions with -, H+, H, He, and/or H2 depending on the temperature and ionization fraction of e the environment. As fine-structure excitation measurements are rare, modeling applications depend on theoretically determined rate coefficients. However, for many ions electron collision studies have not been performed for a decade or more, while over that time period the theoretical/computational methodology has significantly advanced. For heavy-particle collisions, very few systems have been studied. As a result, most models rely on estimates or on low-quality collisional data for fine-structure excitation. To significantly advance the state of fine-structure data for astrophysical models, we propose a collaborative effort in electron collisions, heavy-particle collisions, and quantum chemistry. Using the R-matrix method, fine-structure excitation due to electron collisions will be investigated for C, O, Ne^+, Ne^2+, Ar^+, Ar^2+, Fe, Fe^+, and Fe^2+. Fine-structure excitation due to heavy-particle collisions will be studied with a fully quantum molecular-orbital approach using potential energy surfaces computed with a multireference configuration-interaction method. The systems to be studied include: C/H^+, C/H2, O/H^+, O/H2, Ne^+/H, Ne^+/H2, Ne^2+/H, Ne^2+/H2, Fe/H^+, Fe^+/H, and Fe^2+/H. 2D rigid-rotor surfaces will be constructed for H2 collisions, internuclear distance dependent spin-orbit coupling will be computed in some cases, and all rate coefficients will be obtained for the temperature range 10-2000 K. The availability the proposed fine-structure excitation data will lead to deeper examination and understanding of the properties of many astrophysical environments, including young stellar objects, protoplanetary disks, planetary nebulae, photodissociation regions, active galactic nuclei, and x-ray dominated regions, hence elevating the scientific return from current (SOFIA, Spitzer, Herschel, HST) and upcoming (JWST) NASA IR/Submm astrophysics missions, as well as from ground-based telescopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumagai, T.; Abe, E.; Nakamura, M.
1997-12-31
Microstructural development of an extremely fine {alpha}{sub 2}-Ti{sub 32}Al/{gamma}-TiAl lamellar structure, which was formed by ice water quenching after solution-treatment in a high-temperature {alpha}-Ti phase field for a long period of time, was examined during isothermal treatment. In an as-quenched Ti-48at.%Al alloy, the massively transformed {gamma} ({gamma}{sub m}) and untransformed (meaning massively untransformed) fine {alpha}{sub 2}/{gamma} lamellar regions were observed. Fine {gamma} grains, which were similar to {gamma}{sub m}, were generated both within the fine {alpha}{sub 2}/{gamma} lamellae and at the boundary area between the {gamma}{sub m} and the fine {alpha}{sub 2}/{gamma} lamellar regions by aging at low-temperature (1,173 K)more » for a short time (180s). Further aging (1.8ks) caused the coarsening of these newly generated fine {gamma} grains. On the other hand, the coarsening of the {gamma} grains occurred by a high-temperature (1,323 K) aging treatment even for 180s. Fine {alpha}{sub 2} plates and particles, which were aligned to a particular direction, were observed in the {gamma} grain interiors, indicating that the newly generated {gamma} grains grew at the expense of the fine {alpha}{sub 2}/{gamma} lamellae. It can be considered that the {gamma} grain formation through the fine {alpha}{sub 2}/{gamma} lamellae is closely related to the {alpha}{sub 2}{yields}{gamma} reaction of the {alpha}{sub 2} plates sandwiched by the {gamma} plates, and needs the fast heating rate enough to overcome the {alpha}{sub 2}/{gamma}{yields}{gamma}/{gamma} lamellae reaction.« less
Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.
Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai
2016-07-20
Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.
An electron microscopy examination of primary recrystallization in TD-nickel.
NASA Technical Reports Server (NTRS)
Petrovic, J. J.; Ebert, L. J.
1972-01-01
Primary recrystallization in TD-nickel 1 in. bar has previously been regarded as the process by which the initial fine grain structure is converted to a coarse grain size (increases in grain size by 500 times) under suitable deformation and annealing conditions. This process is dependent on deformation mode. While it occurs readily after rolling transverse to the bar axis and annealing (800 C), it is completely inhibited by longitudinal rolling and swaging deformations, even for very high (1320 C) annealing temperatures. A transmission electron microscopy examination of deformation and annealing substructures indicates that primary recrystallization in TD-nickel 1 in. bar actually occurs on the sub-light optical level, to produce a grain structure similar in size to the initial fine grained state.
Fu, Xiaoli; Wang, Jianlei; Di, Yuebao; Wang, Huimin
2015-01-01
Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer. PMID:26047358
Fu, Xiaoli; Wang, Jianlei; Di, Yuebao; Wang, Huimin
2015-01-01
Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer.
Usage of Crushed Concrete Fines in Decorative Concrete
NASA Astrophysics Data System (ADS)
Pilipenko, Anton; Bazhenova, Sofia
2017-10-01
The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of the crushed concrete fines were provided. It is shown that the admixture of the crushed concrete fines has little effect on the colour characteristics of the decorative concrete products. The preferred options to improve the surfaces of decorative concrete are also proposed.
Detection of fibrils associated with Rickettsia rickettsii.
Todd, W J; Burgdorfer, W; Wray, G P
1983-09-01
The ultrastructural appearance of the "halozone" formed at the interface between the spotted fever agent Rickettsia rickettsii and the cytoplasm of persistently infected cultured vole cells (Microtus pennsylvanicus) was studied by transmission electron microscopy. In sections of epoxy-embedded specimens stained with uranyl acetate and lead citrate, the halozone appeared clear and devoid of ultrastructural features. However, when unembedded preparations of whole infected cells were examined at 1,000 kV, fine structural features were observed within the halozone. These features, associated with the rickettsial outer membrane, were more clearly detectable when the infected cells were extracted with the detergent Triton X-100 before fixation. Under such conditions, long extensions of the rickettsial outer membrane, microfilament-like structures attached to that membrane, and extensive attachments between adjacent rickettsiae were seen. The fine structural features within the rickettsial halozone were also seen at 75 kV when unembedded sections were prepared from polyethylene glycol-embedded specimens. Thus, epoxy-embedding medium obscures the fine structural features within the halozone surrounding the rickettsiae in infected cells.
Detection of fibrils associated with Rickettsia rickettsii.
Todd, W J; Burgdorfer, W; Wray, G P
1983-01-01
The ultrastructural appearance of the "halozone" formed at the interface between the spotted fever agent Rickettsia rickettsii and the cytoplasm of persistently infected cultured vole cells (Microtus pennsylvanicus) was studied by transmission electron microscopy. In sections of epoxy-embedded specimens stained with uranyl acetate and lead citrate, the halozone appeared clear and devoid of ultrastructural features. However, when unembedded preparations of whole infected cells were examined at 1,000 kV, fine structural features were observed within the halozone. These features, associated with the rickettsial outer membrane, were more clearly detectable when the infected cells were extracted with the detergent Triton X-100 before fixation. Under such conditions, long extensions of the rickettsial outer membrane, microfilament-like structures attached to that membrane, and extensive attachments between adjacent rickettsiae were seen. The fine structural features within the rickettsial halozone were also seen at 75 kV when unembedded sections were prepared from polyethylene glycol-embedded specimens. Thus, epoxy-embedding medium obscures the fine structural features within the halozone surrounding the rickettsiae in infected cells. Images PMID:6411620
Fujiyoshi, T; Mogi, G; Watanabe, T; Matsushita, F
1992-01-01
Using a novel method of cutting undecalcified temporal bone specimens, quantitative structural analysis in the human and the Japanese monkey was undertaken. One millimeter thick serial slices made from unembedded temporal bones retained fine structure. Therefore, gross to fine observation could be performed systematically at the macroscopic, light, scanning, and transmission electron microscopic levels. The entire temporal bone three-dimensional reconstruction was completed from embedded sections; consequently, the volume of the tubotympanum and air cell system could be calculated. Available methods by embedding, tungsten carbide sectioning, grinding, and microwave irradiation for decalcification were also examined. These morphologic studies suggest that these novel methods offer timesaving advantages over any presently available techniques, and allow for elucidation of temporal bone morphology with only a few specimens.
The fine structure of the sperm of the round goby (Neogobius melanostomus)
Allen, Jeffrey D.; Walker, Glenn K.; Nichols, Susan J.; Sorenson, Dorothy
2004-01-01
The fine structural details of the spermatozoon of the round goby are presented for the first time in this study. Scanning and transmission electron microscopic examination of testis reveals an anacrosomal spermatozoon with a slightly elongate head and uniformly compacted chromatin. The midpiece contains a single, spherical mitochondrion. Two perpendicularly oriented centrioles lie in a deep, eccentric nuclear fossa with no regularly observed connection to the nucleus. The flagellum develops bilateral fins soon after emerging from the fossa; each extends approximately 1 A?m from the axoneme and persists nearly the length of the flagellum.
NASA Astrophysics Data System (ADS)
Liu, Bin; Guo, Zai Ping; Du, Guodong; Nuli, Yanna; Hassan, Mohd Faiz; Jia, Dianzeng
Ultra-fine, porous, tin oxide-carbon (SnO 2/C) nanocomposites are fabricated by a molten salt method at 300 °C, and malic acid is decomposed as the carbon source. In situ synthesis is favourable for the combination of carbon and SnO 2. The structure and morphology are confirmed by X-ray diffraction analysis, specific surface-area measurements, and transmission electron microscopy (TEM). Examination of TEM images reveals that the SnO 2 nanoparticles are embedded in the carbon matrix, with sizes between 2 and 5 nm. The electrochemical measurements show that the nanocomposite delivers a high capacity with good capacity retention as an anode material for lithium-ion batteries, due to the combination of the ultra-fine porous structure and the carbon component.
Gross and fine dissection of inner ear sensory epithelia in adult zebrafish (Danio rerio).
Liang, Jin; Burgess, Shawn M
2009-05-08
Neurosensory epithelia in the inner ear are the crucial structures for hearing and balance functions. Therefore, it is important to understand the cellular and molecular features of the epithelia, which are mainly composed of two types of cells: hair cells (HCs) and supporting cells (SCs). Here we choose to study the inner ear sensory epithelia in adult zebrafish not only because the epithelial structures are highly conserved in all vertebrates studied, but also because the adult zebrafish is able to regenerate HCs, an ability that mammals lose shortly after birth. We use the inner ear of adult zebrafish as a model system to study the mechanisms of inner ear HC regeneration in adult vertebrates that could be helpful for clinical therapy of hearing/balance deficits in human as a result of HC loss. Here we demonstrate how to do gross and fine dissections of inner ear sensory epithelia in adult zebrafish. The gross dissection removes the tissues surrounding the inner ear and is helpful for preparing tissue sections, which allows us to examine the detailed structure of the sensory epithelia. The fine dissection cleans up the non-sensory-epithelial tissues of each individual epithelium and enables us to examine the heterogeneity of the whole epithelium easily in whole-mount epithelial samples.
NASA Technical Reports Server (NTRS)
Sondergaard, R.; Cantwell, B.; Mansour, N.
1997-01-01
Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.
Fine Structure of Plasmaspheric Hiss
NASA Astrophysics Data System (ADS)
Summers, D.; Omura, Y.; Nakamura, S.; Kletzing, C.
2014-12-01
Plasmaspheric hiss plays a key role in controlling the structure and dynamics of Earth's radiation belts.The quiet time slot region between the inner and outer belts can be explained as a steady-state balance between earthward radial diffusion and pitch-angle scattering loss of energetic electrons to the atmosphere induced by plasmaspheric hiss. Plasmaspheric hiss can also induce gradual precipitation loss of MeV electrons from the outer radiation belt. Plasmaspheric hiss has been widely regarded as a broadband,structureless,incoherent emission. Here, by examining burst-mode vector waveform data from the EMFISIS instrument on the Van Allen Probes mission,we show that plasmaspheric hiss is a coherent emission with complex fine structure. Specifically, plasmaspheric hiss appears as discrete rising tone and falling tone elements. By means of waveform analysis we identify typical amplitudes,phase profiles,and sweep rates of the rising and falling tone elements. The new observations reported here can be expected to fuel a re-examination of the properties of plasmaspheric hiss, including a further re-analysis of the generation mechanism for hiss.
Biological effects of long term fine limestone tailings discharge in a fjord ecosystem.
Brooks, Lucy; Melsom, Fredrik; Glette, Tormod
2015-07-15
Benthic infaunal data collected from 1993 to 2010 were analysed to examine the effect of long term discharge of fine limestone tailings on macrofaunal species assemblages in a fjord. Relative distance from the outfall and proportion of fine tailings in the sediment were correlated with benthic community structure. Diversity decreased with increasing proportion of fine tailings. Biological Traits Analysis (BTA) was used to explore the temporal and spatial effects of the tailings gradient on macrofaunal functional attributes. BTA revealed that all stations along a pressure gradient of fine limestone tailings were dominated by free-living species. As the proportion of fine tailings in the sediment increased, there was an increase in fauna that were smaller, highly mobile, living on or nearer the surface sediment, with shorter lifespans. There was a decrease in permanent tube dwellers, those fauna with low or no mobility, that live deeper in the sediment and have longer lifespans (>5 yrs). Copyright © 2015 Elsevier Ltd. All rights reserved.
Kojima, Toru; Yamada, Hiromi; Yamamoto, Toshihiko; Matsushita, Yasuyuki; Fukushima, Kazuhiko
2013-06-01
To develop more effective oxidative hair coloring products, it is important to understand the localization of colored chromophores, which are formed from oxidative dyes, in the fine structure of hair. However, the dyeing regions of oxidative hair dyes in the fine structure of hair have not been extensively examined. In this study, we investigated the distribution and localization of colored chromophores formed by an oxidative hair coloring product in the fine structure of human hair by using a stable isotope-labeled oxidative dye with nanoscale secondary ion mass spectrometry (NanoSIMS). First, formation of the colored chromophore from a deuterium-labeled oxidative dye was examined by visible spectra similarly to a study of its formation using nonlabeled oxidative dye. Furthermore, the formation of binuclear indo dye containing deuterium in its chemical structure was confirmed using time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis. As a result of the NanoSIMS image on a cross-sectional dyed hair, although deuterium ions were detected in whole hair cross-section, quite a few of them were detected at particulate regions. These particulate regions of the dyed black hair in which deuterium ions were intensely detected were identified as melanin granules, by comparing the dyeing behaviors of black and white hair. NanoSIMS analysis revealed that melanin granules of black human hair are important dyeing regions in oxidative hair coloring. Copyright © 2013 Elsevier B.V. All rights reserved.
Acoustic fine structure may encode biologically relevant information for zebra finches.
Prior, Nora H; Smith, Edward; Lawson, Shelby; Ball, Gregory F; Dooling, Robert J
2018-04-18
The ability to discriminate changes in the fine structure of complex sounds is well developed in birds. However, the precise limit of this discrimination ability and how it is used in the context of natural communication remains unclear. Here we describe natural variability in acoustic fine structure of male and female zebra finch calls. Results from psychoacoustic experiments demonstrate that zebra finches are able to discriminate extremely small differences in fine structure, which are on the order of the variation in acoustic fine structure that is present in their vocal signals. Results from signal analysis methods also suggest that acoustic fine structure may carry information that distinguishes between biologically relevant categories including sex, call type and individual identity. Combined, our results are consistent with the hypothesis that zebra finches can encode biologically relevant information within the fine structure of their calls. This study provides a foundation for our understanding of how acoustic fine structure may be involved in animal communication.
Fine-scale genetic structure and social organization in female white-tailed deer
Christopher E. Comer; John C. Kilgo; Gino J. D' Angelo; Travis C. Glenn; Karl V. Miller
2005-01-01
Social behavior of white-tailed deer (Odocoileus virginianus) can have important management implications. The formation of matrilineal social groups among female deer has been documented and management strategies have been proposed based on this well-developed social structure. Using radiocollared (n = 17) and hunter or vehicle-killed (n = 21) does, we examined spatial...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karagodova, T.Ya.
2005-06-15
Specific features of the coherent population trapping effect are considered in the generalized {lambda} system whose lower levels are the magnetic sublevels of the fine structure levels of the thallium atom. Numerical experiments were performed aimed at examination of the coherent population trapping for the case of nontrivial, but feasible, initial populations of the upper metastable fine structure level. Such populations may be obtained, for example, due to the photodissociation of TlBr molecules. The possibility of reducing the number of resonances of the coherent population trapping in a multilevel system, which may be useful for high-resolution spectroscopy, is demonstrated. Itmore » is shown that the magnitude and shape of the resonances can be controlled by varying the orientation of the polarization vectors of the light field components with respect to each other and to a magnetic field. In addition, studying the shape of the coherent population trapping resonances for the atoms obtained by photodissociation of molecules may provide information about these molecules.« less
Pernetta, A P; Allen, J A; Beebee, T J C; Reading, C J
2011-09-01
Human-induced alteration of natural habitats has the potential to impact on the genetic structuring of remnant populations at multiple spatial scales. Species from higher trophic levels, such as snakes, are expected to be particularly susceptible to land-use changes. We examined fine-scale population structure and looked for evidence of sex-biased dispersal in smooth snakes (Coronella austriaca), sampled from 10 heathland localities situated within a managed coniferous forest in Dorset, United Kingdom. Despite the limited distances between heathland areas (maximum <6 km), there was a small but significant structuring of populations based on eight microsatellite loci. This followed an isolation-by-distance model using both straight line and 'biological' distances between sampling sites, suggesting C. austriaca's low vagility as the causal factor, rather than closed canopy conifer forest exerting an effect as a barrier to dispersal. Within population comparisons of male and female snakes showed evidence for sex-biased dispersal, with three of four analyses finding significantly higher dispersal in males than in females. We suggest that the fine-scale spatial genetic structuring and sex-biased dispersal have important implications for the conservation of C. austriaca, and highlight the value of heathland areas within commercial conifer plantations with regards to their future management.
A TEM Investigation of the Fine-Grained Matrix of the Martian Basaltic Breccia NWA 7034
NASA Technical Reports Server (NTRS)
Muttik, N.; Keller, L. P.; Agee, C. B.; McCubbin, F. M.; Santos, A. R.; Rahman, Z.
2014-01-01
The martian basaltic breccia NWA 7034 is characterized by fine-grained groundmass containing several different types of mineral grains and lithologic clasts. The matrix composition closely resembles Martian crustal rock and soil composition measured by recent rover and orbiter missions. The first results of NWA 7034 suggest that the brecciation of this martian meteorite may have formed due to eruptive volcanic processes; however, impact related brecciation processes have been proposed for paired meteorites NWA 7533 and NWA 7475]. Due to the very fine grain size of matrix, its textural details are difficult to resolve by optical and microprobe observations. In order to examine the potential nature of brecciation, transmission electron microscopy (TEM) studies combined with focused ion-beam technique (FIB) has been undertaken. Here we present the preliminary observations of fine-grained groundmass of NWA 7034 from different matrix areas by describing its textural and mineralogical variations and micro-structural characteristics.
NASA Technical Reports Server (NTRS)
Spanos, G.; Ayers, J. D.; Vold, C. L.; Locci, I. E.
1993-01-01
A study is presented to determine if fine microstructures could be achieved using rapid solidification to produce a fine-grained fully austenitic starting structure and then using thermal processing cycles to produce an even finer ferrite-cementite structure. The evolution, mechanisms of grain refinement, and crystallography of the resultant microstructures were examined by TEM. A thermal processing cycle consisted of quenching the ribbon in liquid nitrogen, tempering at 600 C for 10 sec, 'upquenching' to 750 C for 10 sec, and subsequently quenching again in liquid nitrogen. The heat-treatment resulted in martensite grains with sizes of about 1 micron or less in both length and thickness and cementite particles of 0.4 micron or less. It is concluded that these microstructures could be used for producing fine-grained ultrahigh carbon steels of very high strength without the brittleness associated with the formation of coarse carbide particles of the loss of strength due to graphite formation.
Fine motor skills predict performance in the Jebsen Taylor Hand Function Test after stroke.
Allgöwer, Kathrin; Hermsdörfer, Joachim
2017-10-01
To determine factors characterizing the differences in fine motor performance between stroke patients and controls. To confirm the relevance of the factors by analyzing their predictive power with regard to the Jebsen Taylor Hand Function Test (JTHFT), a common clinical test of fine motor control. Twenty-two people with slight paresis in an early chronic phase following stroke and twenty-two healthy controls were examined. Performance on the JTHFT, Nine-Hole Peg Test and 2-point discrimination was evaluated. To analyze object manipulation skills, grip forces and temporal measures were examined during (1) lifting actions with variations of weight and surface (2) cyclic movements (3) predictive/reactive catching tasks. Three other aspects of force control included (4) visuomotor tracking (5) fast force changes and (6) grip strength. Based on 9 parameters which significantly distinguished fine motor performance in the two groups, we identified three principal components (factors): grip force scaling, motor coordination and speed of movement. The three factors are shown to predict JTHFT scores via linear regression (R 2 =0.687, p<0.001). We revealed a factor structure behind fine motor impairments following stroke and showed that it explains JTHFT results to a large extend. This result can serve as a basis for improving diagnostics and enabling more targeted therapy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
M553 sphere forming experiment: Pure nickel specimen evaluation
NASA Technical Reports Server (NTRS)
Johnson, P. C.; Peters, E. T.
1973-01-01
A region or cap of very fine two-dimensional surface growth structure was observed at the top of three of the six pure nickel flight specimens. Such two-dimensional surface growth structures have been observed both on the ground-based specimens and on other surface areas of the flight specimens. However, the fine structures observed on the three flight samples are at least an order of magnitude finer than those previously observed, and resemble similar localized, fine, two-dimensional surface structures observed in both ground and flight specimens for the nickel alloys. The two-dimensional growth areas consist primarily of fine equiaxed grains, specimen SL-2.6, fine dendrites, specimen SL-2.5, or a core of fine equiaxed grains surrounded by a ring of fine dendrites, specimen SL-1.9.
Influence of musical training on sensitivity to temporal fine structure.
Mishra, Srikanta K; Panda, Manasa R; Raj, Swapna
2015-04-01
The objective of this study was to extend the findings that temporal fine structure encoding is altered in musicians by examining sensitivity to temporal fine structure (TFS) in an alternative (non-Western) musician model that is rarely adopted--Indian classical music. The sensitivity to TFS was measured by the ability to discriminate two complex tones that differed in TFS but not in envelope repetition rate. Sixteen South Indian classical (Carnatic) musicians and 28 non-musicians with normal hearing participated in this study. Musicians have significantly lower relative frequency shift at threshold in the TFS task compared to non-musicians. A significant negative correlation was observed between years of musical experience and relative frequency shift at threshold in the TFS task. Test-retest repeatability of thresholds in the TFS tasks was similar for both musicians and non-musicians. The enhanced performance of the Carnatic-trained musicians suggests that the musician advantage for frequency and harmonicity discrimination is not restricted to training in Western classical music, on which much of the previous research on musical training has narrowly focused. The perceptual judgments obtained from non-musicians were as reliable as those of musicians.
Tvedten, Harold; Hillström, Anna
2013-06-01
A 6-year-old Wirehair Dachshund had a meningioma around the optic nerve that caused exophthalmos. A benign mesenchymal tumor was suspected based on the cytologic pattern of a fine-needle aspirate, and a meningioma was diagnosed by histopathologic examination. In addition to the meningioma cells, the cytologic smears included groups of cells from apparently 4 layers of normal retina. In particular, uniform rod-shaped structures in the cytologic sample could suggest rod-shaped bacteria, but these structures were identified as cylindrical outer segments of photoreceptor rod cells. Other retinal structures recognized included pigmented epithelial layer cells with their uniquely formed pigment granules, the characteristic bi-lobed, cleaved nuclei from the outer nuclear layer, and nerve tissue likely from the outer plexiform layer of the retina. © 2013 American Society for Veterinary Clinical Pathology.
The Relationship between Fine-Motor Play and Fine-Motor Skill
ERIC Educational Resources Information Center
Marr, Deborah; Cermak, Sharon; Cohn, Ellen S.; Henderson, Anne
2004-01-01
This study examined the relationship between free-play choices and fine-motor skill in 4-year-old children attending Head Start. Children with poor fine-motor skill were matched for age and gender with children in the same classroom that exhibited good fine-motor skill. Each pair was observed during free-play sessions to examine the degree of…
Adsorption and desorption of heavy metals in soils are primary factors that influence their bioavailability and mobility in the soil profile. To examine the characteristics of nickel (Ni) adsorption-desorption in soils, kinetic batch experiments were carried out followed by Ni re...
Another Fine MeSH: Clinical Medicine Meets Information Science.
ERIC Educational Resources Information Center
O'Rourke, Alan; Booth, Andrew; Ford, Nigel
1999-01-01
Discusses evidence-based medicine (EBM) and the need for systematic use of databases like MEDLINE with more sophisticated search strategies to optimize the retrieval of relevant papers. Describes an empirical study of hospital libraries that examined requests for information and search strategies using both structured and unstructured forms.…
Fine structure of heliumlike ions and determination of the fine structure constant.
Pachucki, Krzysztof; Yerokhin, Vladimir A
2010-02-19
We report a calculation of the fine-structure splitting in light heliumlike atoms, which accounts for all quantum electrodynamical effects up to order alpha{5} Ry. For the helium atom, we resolve the previously reported disagreement between theory and experiment and determine the fine-structure constant with an accuracy of 31 ppb. The calculational results are extensively checked by comparison with the experimental data for different nuclear charges and by evaluation of the hydrogenic limit of individual corrections.
Vasconcelos, Raquel O.; Fonseca, Paulo J.; Amorim, M. Clara P.; Ladich, Friedrich
2011-01-01
Many fishes rely on their auditory skills to interpret crucial information about predators and prey, and to communicate intraspecifically. Few studies, however, have examined how complex natural sounds are perceived in fishes. We investigated the representation of conspecific mating and agonistic calls in the auditory system of the Lusitanian toadfish Halobatrachus didactylus, and analysed auditory responses to heterospecific signals from ecologically relevant species: a sympatric vocal fish (meagre Argyrosomus regius) and a potential predator (dolphin Tursiops truncatus). Using auditory evoked potential (AEP) recordings, we showed that both sexes can resolve fine features of conspecific calls. The toadfish auditory system was most sensitive to frequencies well represented in the conspecific vocalizations (namely the mating boatwhistle), and revealed a fine representation of duration and pulsed structure of agonistic and mating calls. Stimuli and corresponding AEP amplitudes were highly correlated, indicating an accurate encoding of amplitude modulation. Moreover, Lusitanian toadfish were able to detect T. truncatus foraging sounds and A. regius calls, although at higher amplitudes. We provide strong evidence that the auditory system of a vocal fish, lacking accessory hearing structures, is capable of resolving fine features of complex vocalizations that are probably important for intraspecific communication and other relevant stimuli from the auditory scene. PMID:20861044
Ultrastructure of canine vasoformative tumors.
Madewell, B R; Griffey, S M; Munn, R J
1992-01-01
The transmission electron microscope was used to examine 20 spontaneous canine hemangiosarcomas or hemangiopericytomas in order to define their fine ultrastructural features, and to compare those features with descriptions of human counterpart neoplasms. From specimen to specimen the neoplasms examined showed considerable structural heterogeneity but, in composite, appeared similar to the prototype human tumors. These data suggest that the canine hemangiosarcoma and hemangiopericytoma might serve as comparative models for studies of the morphogenesis of vasoformative neoplasms.
Fine-scale structure in the far-infrared Milky-Way
NASA Technical Reports Server (NTRS)
Waller, William H.; Wall, William F.; Reach, William T.; Varosi, Frank; Ebert, Rick; Laughlin, Gaylin; Boulanger, Francois
1995-01-01
This final report summarizes the work performed and which falls into five broad categories: (1) generation of a new data product (mosaics of the far-infrared emission in the Milky Way); (2) acquisition of associated data products at other wavelengths; (3) spatial filtering of the far-infrared mosaics and resulting images of the FIR fine-scale structure; (4) evaluation of the spatially filtered data; (5) characterization of the FIR fine-scale structure in terms of its spatial statistics; and (6) identification of interstellar counterparts to the FIR fine-scale structure.
Bryce A. Richardson; Ned B. Klopfenstein; Steven J. Brunsfeld
2002-01-01
Maternally inherited mitochondrial DNA haplotypes in whitebark pine (Pinus albicaulis Engelm.) were used to examine the maternal genetic structure at three hierarchical spatial scales: fine scale, coarse scale, and interpopulation. These data were used to draw inferences into Clarkâs nutcracker (Nucifraga columbiana Wilson)...
Imaging Implicit Morphological Processing: Evidence from Hebrew
ERIC Educational Resources Information Center
Bick, Atira S.; Frost, Ram; Goelman, Gadi
2010-01-01
Is morphology a discrete and independent element of lexical structure or does it simply reflect a fine-tuning of the system to the statistical correlation that exists among orthographic and semantic properties of words? Hebrew provides a unique opportunity to examine morphological processing in the brain because of its rich morphological system.…
75 FR 46912 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-04
.... Intended Use: The instrument will be used for the fine structural examination of biological and soft/hard... Microscope. Manufacturer: JEOL, Ltd., Japan. Intended Use: This instrument will be used to study biological...: FEI Company, Czech Republic. Intended Use: This instrument will be used to study ultrathin (70 nm...
Roy, Justin; Yannic, Glenn; Côté, Steeve D; Bernatchez, Louis
2012-01-01
Although the dispersal of animals is influenced by a variety of factors, few studies have used a condition-dependent approach to assess it. The mechanisms underlying dispersal are thus poorly known in many species, especially in large mammals. We used 10 microsatellite loci to examine population density effects on sex-specific dispersal behavior in the American black bear, Ursus americanus. We tested whether dispersal increases with population density in both sexes. Fine-scale genetic structure was investigated in each of four sampling areas using Mantel tests and spatial autocorrelation analyses. Our results revealed male-biased dispersal pattern in low-density areas. As population density increased, females appeared to exhibit philopatry at smaller scales. Fine-scale genetic structure for males at higher densities may indicate reduced dispersal distances and delayed dispersal by subadults. PMID:22822432
Properties of HIPed stainless steel powder
NASA Astrophysics Data System (ADS)
Dellis, Ch.; Le Marois, G.; Gentzbittel, J. M.; Robert, G.; Moret, F.
1996-10-01
In the current design of ITER primary wall, 316LN stainless steel is the reference structural material. Austenitic stainless steel is used for water-cooling channels and structures. As material data on hot isostatic pressed (HIP) 316LN were not available in open literature and from powder producers, the main properties of unirradiated samples have been measured in CEA/CEREM. Fully dense material without any porosity is obtained when appropriate HIP parameters are applied. Microstructural examination and mechanical properties are confirmed that the HIPed 316LN material is equivalent to a very good fine-grain, isotropic and uniformly forged 316LN. Moreover, ultrasonic inspection showed that this fine and uniform microstructure produced a remarkably low noise, which allow the use of transverse waves at very high frequencies (4 MHz). Defects undetectable in forged material will be easily detected in HIPed material.
Hudlická, O; Garnham, A; Shiner, R; Egginton, S
2008-01-01
Acute ischaemia–reperfusion disrupts capillary fine structure and increases leukocyte adhesion in postcapillary venules. We determined whether chronic muscle ischaemia has similar consequences, and whether it is possible to ameliorate its effect on muscle performance. Following ischaemia (unilateral ligation, common iliac artery) rat hindlimb muscles were examined without other intervention or following treatment with an xanthine oxidase inhibitor (allopurinol), a Na+/H+ exchange blocker (amiloride), or an oxygen free radical scavenger (vitamin E). No significant leukocyte adhesion or rolling, nor changes in capillary fine structure were observed 3 days postsurgery, when limb use was limited. However, leukocyte rolling and adhesion almost trebled by 7 days (P < 0.001), when normal gait was largely restored. Capillary fine structure was disturbed over a similar time course, e.g. relative endothelial volume (control 46%, 7 days 61%; P < 0.05), that resolved by 5 weeks. Where activity was increased by mild electrical stimulation 3 days after ligation muscles showed enhanced capillary swelling (endothelial volume 66%versus 50%, P < 0.005), but improved fatigue index (52%versus 16%, P < 0.001) as a result of greater blood flow. Muscle fatigue after ligation was related to the extent of contraction-induced hyperaemia (R2= 0.725), but not capillary swelling. Amiloride, and to a lesser extent allopurinol but not vitamin E, significantly decreased leukocyte rolling and adhesion, as well as capillary endothelial swelling. We conclude that increased activity of ischaemic muscles on recovery is likely to accentuate acidosis accompanying changes in microcirculation and contribute to enhanced muscle fatigue, whereas formation of oxygen free radicals may be attenuated by endogenous protective mechanisms. PMID:18755748
Majdak, Piotr; Laback, Bernhard; Baumgartner, Wolf-Dieter
2006-10-01
Bilateral cochlear implant (CI) listeners currently use stimulation strategies which encode interaural time differences (ITD) in the temporal envelope but which do not transmit ITD in the fine structure, due to the constant phase in the electric pulse train. To determine the utility of encoding ITD in the fine structure, ITD-based lateralization was investigated with four CI listeners and four normal hearing (NH) subjects listening to a simulation of electric stimulation. Lateralization discrimination was tested at different pulse rates for various combinations of independently controlled fine structure ITD and envelope ITD. Results for electric hearing show that the fine structure ITD had the strongest impact on lateralization at lower pulse rates, with significant effects for pulse rates up to 800 pulses per second. At higher pulse rates, lateralization discrimination depended solely on the envelope ITD. The data suggest that bilateral CI listeners benefit from transmitting fine structure ITD at lower pulse rates. However, there were strong interindividual differences: the better performing CI listeners performed comparably to the NH listeners.
NASA Astrophysics Data System (ADS)
Turnbull, Matthew J.; Vaccarello, Daniel; Yiu, Yun Mui; Sham, Tsun-Kong; Ding, Zhifeng
2016-11-01
Solar cell performance is most affected by the quality of the light absorber layer. For thin-film devices, this becomes a two-fold problem of maintaining a low-cost design with well-ordered nanocrystal (NC) structure. The use of Cu2ZnSnS4 (CZTS) NCs as the light absorber films forms an ideal low-cost design, but the quaternary structure makes it difficult to maintain a well-ordered layer without the use of high-temperature treatments. There is little understanding of how CZTS NC structures affect the photoconversion efficiency, the charge-carriers, and therefore the performance of the device manufactured from it. To examine these relationships, the measured photoresponse from the photo-generation of charge-carrier electron-hole pairs was compared against the crystal structure, as short-range and long-range crystal orders for the films. The photoresponse simplifies the electronic properties into three basic steps that can be associated with changes in energy levels within the band structure. These changes result in the formation of barriers to charge-carrier flow. The extent of these barriers was determined using synchrotron-based X-ray absorbance fine structure to probe the individual metal centers in the film, and comparing these to molecular simulations of the ideal extended x-ray absorbance fine structure scattering. This allowed for the quantification of bond lengths, and thus an interpretation of the distortions in the crystal lattice. The various characteristics of the photoresponse were then correlated to the crystallographic order and used to gain physical insight into barriers to charge-carriers in the bulk and surface regions of CZTS films.
Neldam, Camilla Albeck; Pinholt, Else Marie
2014-09-01
Today X-ray micro computer tomography (μCT) imaging is used to investigate bone microarchitecture. μCT imaging is obtained by polychromatic X-ray beams, resulting in images with beam hardening artifacts, resolution levels at 10 μm, geometrical blurring, and lack of contrasts. When μCT is coupled to synchrotron sources (SRμCT) a spatial resolution up to one tenth of a μm may be achieved. A review of the literature concerning SRμCT was performed to investigate its usability and its strength in visualizing fine bone structures, vessels, and microarchitecture of bone. Although mainly limited to in vitro examinations, SRμCT is considered as a gold standard to image trabecular bone microarchitecture since it is possible in a 3D manner to visualize fine structural elements within mineralized tissue such as osteon boundaries, rods and plates structures, cement lines, and differences in mineralization. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, David H.; Reep, Jeffrey W.; Warren, Harry P.
Recent observations from the Interface Region Imaging Spectrograph ( IRIS ) have discovered a new class of numerous low-lying dynamic loop structures, and it has been argued that they are the long-postulated unresolved fine structures (UFSs) that dominate the emission of the solar transition region. In this letter, we combine IRIS measurements of the properties of a sample of 108 UFSs (intensities, lengths, widths, lifetimes) with one-dimensional non-equilibrium ionization simulations, using the HYDRAD hydrodynamic model to examine whether the UFSs are now truly spatially resolved in the sense of being individual structures rather than being composed of multiple magnetic threads.more » We find that a simulation of an impulsively heated single strand can reproduce most of the observed properties, suggesting that the UFSs may be resolved, and the distribution of UFS widths implies that they are structured on a spatial scale of 133 km on average. Spatial scales of a few hundred kilometers appear to be typical for a range of chromospheric and coronal structures, and we conjecture that this could be an important clue for understanding the coronal heating process.« less
[The role of temporal fine structure in tone recognition and music perception].
Zhou, Q; Gu, X; Liu, B
2017-11-07
The sound signal can be decomposed into temporal envelope and temporal fine structure information. The temporal envelope information is crucial for speech perception in quiet environment, and the temporal fine structure information plays an important role in speech perception in noise, Mandarin tone recognition and music perception, especially the pitch and melody perception.
Willis Lamb, Jr., the Hydrogen Atom, and the Lamb Shift
1955, Lamb won the Nobel Prize in Physics for his discoveries concerning "the fine structure of , May 7 - September 30, 1979 Fine Structure of the Hydrogen Atom, Part I; Part II; Part III; Part IV ; Part V; Part VI (from Physical Review 1950-1953) Microwave Technique for Determining the Fine Structure
Pancreatic Abscess in a cat due to Staphylococcus aureus infection.
Nemoto, Yuki; Haraguchi, Tomoya; Shimokawa Miyama, Takako; Kobayashi, Kosuke; Hama, Kaori; Kurogouchi, Yosuke; Fujiki, Noriyuki; Baba, Kenji; Okuda, Masaru; Mizuno, Takuya
2017-07-07
A 16-year-old spayed female American Shorthair cat was presented with lethargy, anorexia, and wamble. Physical and blood examination did not reveal any remarkable findings. Abdominal ultrasonography identified the presence of a localized anechoic structure with a thick wall in contact with the small intestine and adjacent to the liver. Ultrasound-guided fine-needle aspiration of the structure revealed fluid containing numerous cocci and neutrophils. Two days after antibiotic treatment, exploratory laparotomy was performed and the content of the structure was removed before multiple lavages. The pathological and bacteriological examination results supported a confirmatory diagnosis of pancreatic abscess due to Staphylococcus aureus infection, making this the first such report in a cat. The cat remained healthy thereafter with no disease recurrence.
The Acquisition of Pronouns by French Children: A Parallel Study of Production and Comprehension
ERIC Educational Resources Information Center
Zesiger, Pascal; Zesiger, Laurence Chillier; Arabatzi, Marina; Baranzini, Lara; Cronel-Ohayon, Stephany; Franck, Julie; Frauenfelder, Ulrich Hans; Hamann, Cornelia; Rizzi, Luigi
2010-01-01
This study examines syntactic and morphological aspects of the production and comprehension of pronouns by 99 typically developing French-speaking children aged 3 years, 5 months to 6 years, 5 months. A fine structural analysis of subject, object, and reflexive clitics suggests that whereas the object clitic chain crosses the subject chain, the…
Meteoroidal Impacts, Plasma, Fine Structure of Ringlets and Spokes on Saturn's Ring B
NASA Technical Reports Server (NTRS)
Cook, A. F.; Hunt, G. E.; Barrey, R.
1985-01-01
The role of bombardment of the rings by the dominant size of meteoroids is examined. Also considered are the circumstances which explain the observed presence of spokes on both the illuminated and unilluminated faces of the ring; leading-trailing asymmetry in the behavior of the spokes, and the forward tilt in the spokes.
Interaction of Language Processing and Motor Skill in Children with Specific Language Impairment
ERIC Educational Resources Information Center
DiDonato Brumbach, Andrea C.; Goffman, Lisa
2014-01-01
Purpose: To examine how language production interacts with speech motor and gross and fine motor skill in children with specific language impairment (SLI). Method: Eleven children with SLI and 12 age-matched peers (4-6 years) produced structurally primed sentences containing particles and prepositions. Utterances were analyzed for errors and for…
1988-01-29
Electronic Origin of Pentacene in p-Terphenyl by T. P. Carter, M. Manavi, and W. E. Moerner Prepared for Publication inDTIC Journal of Chemical Physics...Classification) Statistical Fine Structure in the Inhomogeneously Broadened Electronic Origin of Pentacene in p-Terphenyl 12. PERSONAL AUTHOR(S) T. P...of pentacene in p-terphenyl using laser FM spectroscopy. Statistical fine structure is time-independent structure on the inhomogeneous line caused by
Statistical Fine Structure of Inhomogeneously Broadened Absorption Lines.
1987-07-31
inhomogeneously broadened optical absorption of pentacene n p-terphenyl at liquid helium temperatures... SFS is the actual frequency- ependent, time...statistical fine structure (SFS) in the inhomogeneously broadened optical absorption of pentacene in p-terphenyl at liquid helium temperatures. SFS is the...quite difficult . -2- We have observed for the first time statistical fine structure in the inhomogeneously broadened optical absorption of pentacene
Contrasting patterns of fine-scale herb layer species composition in temperate forests
NASA Astrophysics Data System (ADS)
Chudomelová, Markéta; Zelený, David; Li, Ching-Feng
2017-04-01
Although being well described at the landscape level, patterns in species composition of forest herb layer are rarely studied at smaller scales. Here, we examined fine-scale environmental determinants and spatial structures of herb layer communities in thermophilous oak- and hornbeam dominated forests of the south-eastern part of the Czech Republic. Species composition of herb layer vegetation and environmental variables were recorded within a fixed grid of 2 × 2 m subplots regularly distributed within 1-ha quadrate plots in three forest stands. For each site, environmental models best explaining species composition were constructed using constrained ordination analysis. Spatial eigenvector mapping was used to model and account for spatial structures in community variation. Mean Ellenberg indicator values calculated for each subplot were used for ecological interpretation of spatially structured residual variation. The amount of variation explained by environmental and spatial models as well as the selection of variables with the best explanatory power differed among sites. As an important environmental factor, relative elevation was common to all three sites, while pH and canopy openness were shared by two sites. Both environmental and community variation was mostly coarse-scaled, as was the spatially structured portion of residual variation. When corrected for bias due to spatial autocorrelation, those environmental factors with already weak explanatory power lost their significance. Only a weak evidence of possibly omitted environmental predictor was found for autocorrelated residuals of site models using mean Ellenberg indicator values. Community structure was determined by different factors at different sites. The relative importance of environmental filtering vs. spatial processes was also site specific, implying that results of fine-scale studies tend to be shaped by local conditions. Contrary to expectations based on other studies, overall dominance of spatial processes at fine scale has not been detected. Ecologists should keep this in mind when making generalizations about community dynamics.
NASA Astrophysics Data System (ADS)
Melikhov, Y.; Konstantynov, P.; Domagala, J.; Sadowski, J.; Chernyshova, M.; Wojciechowski, T.; Syryanyy, Y.; Demchenko, I. N.
2016-05-01
The redistribution of Mn atoms in Ga1-xMnxAs layer during medium-temperature annealing, 250-450 oC, by Mn K-edge X-ray absorption fine structure (XAFS) recorded at ALBA facility, was studied. For this purpose Ga1-xMnxAs thin layer with x=0.01 was grown on AlAs buffer layer deposited on GaAs(100) substrate by molecular beam epitaxy (MBE) followed by annealing. The examined layer was detached from the substrate using a “lift-off” procedure in order to eliminate elastic scattering in XAFS spectra. Fourier transform analysis of experimentally obtained EXAFS spectra allowed to propose a model which describes a redistribution/diffusion of Mn atoms in the host matrix. Theoretical XANES spectra, simulated using multiple scattering formalism (FEFF code) with the support of density functional theory (WIEN2k code), qualitatively describe the features observed in the experimental fine structure.
NASA Technical Reports Server (NTRS)
Hotzler, R. K.; Glasgow, T. K.
1982-01-01
The requirement of large, recrystallized, highly elongated grains is of primary importance to the development of suitable high temperature properties in oxide dispersion strengthened-superalloys. In the present study the recrystallization behavior of MA 6000E, a recently developed Y2O3 strengthened superalloy produced by mechanical alloying, was examined using transmission and replication microscopy. Gradient and isothermal annealing treatments were applied to extruded and hot rolled products. It was found that conversion from a very fine (0.2 micron) grain structure to a coarse (approximately 10 mm) grain structure is controlled by the dissolution of the gamma prime phase, while grain shape was controlled primarily by the thermal gradient. The fine uniform oxide dispersion appeared to have only a secondary influence in determining the grain shape as columnar grains could be grown transverse to the working direction by appropriate application of the thermal gradient.
Silicon superlattices. 2: Si-Ge heterostructures and MOS systems
NASA Technical Reports Server (NTRS)
Moriarty, J. A.
1983-01-01
Five main areas were examined: (1) the valence-and conduction-band-edge electronic structure of the thin layer ( 11 A) silicon-superlattice systems; (2) extension of thin-layer calculations to layers of thickness 11 A, where most potential experimental interest lies; (3) the electronic structure of thicker-layer (11 to 110 A) silicon superlattices; (4) preliminary calculations of impurity-scattering-limited electron mobility in the thicker-layer superlattices; and (5) production of the fine metal lines that would be required to produce on MOS superlattice.
The Anomalous Magnetoresistance of Graphite at High Magnetic Fields,
1983-05-01
magnetoresistance anomaly. In the present work, the unusual properties of this fine structure (which is periodic in magnetic field H ) is examined in more detail...structure associated with the magnetoresistance anomly is (AH/ H ) - 0.1 T/25 T or about 0.4 Z. Thus, for typical magnetic field sweep rates (10 T in 10...magnetoresistance above 12 T have been associated by lye at al.2 with a linear increase in carrier concentration with increasing H .1 The anomalous increase
Rytter, Rose-Marie
2013-09-01
The effect of limited nitrogen (N) or water availability on fine root growth and turnover was examined in two deciduous species, Alnus incana L. and Salix viminalis L., grown under three different regimes: (i) supply of N and water in amounts which would not hamper growth, (ii) limited N supply and (iii) limited water supply. Plants were grown outdoors during three seasons in covered and buried lysimeters placed in a stand structure and filled with quartz sand. Computer-controlled irrigation and fertilization were supplied through drip tubes. Production and turnover of fine roots were estimated by combining minirhizotron observations and core sampling, or by sequential core sampling. Annual turnover rates of fine roots <1 mm (5-6 year(-1)) and 1-2 mm (0.9-2.8 year(-1)) were not affected by changes in N or water availability. Fine root production (<1 mm) differed between Alnus and Salix, and between treatments in Salix; i.e., absolute length and biomass production increased in the order: water limited < unlimited < N limited. Few treatment effects were detected for fine roots 1-2 mm. Proportionally more C was allocated to fine roots (≤2 mm) in N or water-limited Salix; 2.7 and 2.3 times the allocation to fine roots in the unlimited regime, respectively. Estimated input to soil organic carbon increased by ca. 20% at N limitation in Salix. However, future studies on fine root decomposition under various environmental conditions are required. Fine root growth responses to N or water limitation were less pronounced in Alnus, thus indicating species differences caused by N-fixing capacity and slower initial growth in Alnus, or higher fine root plasticity in Salix. A similar seasonal growth pattern across species and treatments suggested the influence of outer stimuli, such as temperature and light.
Yeo, Lami; Romero, Roberto
2013-09-01
To describe a novel method (Fetal Intelligent Navigation Echocardiography (FINE)) for visualization of standard fetal echocardiography views from volume datasets obtained with spatiotemporal image correlation (STIC) and application of 'intelligent navigation' technology. We developed a method to: 1) demonstrate nine cardiac diagnostic planes; and 2) spontaneously navigate the anatomy surrounding each of the nine cardiac diagnostic planes (Virtual Intelligent Sonographer Assistance (VIS-Assistance®)). The method consists of marking seven anatomical structures of the fetal heart. The following echocardiography views are then automatically generated: 1) four chamber; 2) five chamber; 3) left ventricular outflow tract; 4) short-axis view of great vessels/right ventricular outflow tract; 5) three vessels and trachea; 6) abdomen/stomach; 7) ductal arch; 8) aortic arch; and 9) superior and inferior vena cava. The FINE method was tested in a separate set of 50 STIC volumes of normal hearts (18.6-37.2 weeks of gestation), and visualization rates for fetal echocardiography views using diagnostic planes and/or VIS-Assistance® were calculated. To examine the feasibility of identifying abnormal cardiac anatomy, we tested the method in four cases with proven congenital heart defects (coarctation of aorta, tetralogy of Fallot, transposition of great vessels and pulmonary atresia with intact ventricular septum). In normal cases, the FINE method was able to generate nine fetal echocardiography views using: 1) diagnostic planes in 78-100% of cases; 2) VIS-Assistance® in 98-100% of cases; and 3) a combination of diagnostic planes and/or VIS-Assistance® in 98-100% of cases. In all four abnormal cases, the FINE method demonstrated evidence of abnormal fetal cardiac anatomy. The FINE method can be used to visualize nine standard fetal echocardiography views in normal hearts by applying 'intelligent navigation' technology to STIC volume datasets. This method can simplify examination of the fetal heart and reduce operator dependency. The observation of abnormal echocardiography views in the diagnostic planes and/or VIS-Assistance® should raise the index of suspicion for congenital heart disease. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Siu, Andrew M H; Lai, Cynthia Y Y; Chiu, Amy S M; Yip, Calvin C K
2011-01-01
Most of the fine-motor assessment tools used in Hong Kong have been designed in Western countries, so there is a need to develop a standardized assessment which is relevant to the culture and daily living tasks of the local (that is, Chinese) population. This study aimed to (1) develop a fine-motor assessment tool (the Hong Kong Preschool Fine-Motor Developmental Assessment [HK-PFMDA]) for use with young children in a Chinese population and (2) examine the HK-PFMDA's psychometric properties. The HK-PFMDA was developed by a group of occupational therapists specializing in the area of developmental disabilities in Hong Kong. A panel of 21 experts reviewed the content validity of the instrument. Rasch item analysis was used to examine the model fit of items against the rating scale model, and to explore the dimensionality of the test. Intra- and interrater reliability, convergent validity, and criterion-related validity were examined. The participants included 783 children without disabilities, 45 with autistic spectrum disorder, and 35 with developmental delay. The Rasch analysis suggested that the 87-item HK-PFMDA had a unidimensional structure, as the items explained most (91.6%) of the variance. The HK-PFMDA demonstrated excellent intra- (ICC = .99) and interrater reliability (ICC = .99), and internal consistency (α ranging from .83 to .92). In terms of validity, the HK-PFMDA had significant positive correlations with both age and the convergent measures of the Peabody Developmental Motor Scales (PDMS-2). A set of normative data for local children aged from birth to 6 years was established. The HK-PFMDA has shown excellent psychometric properties and is suitable for clinical application by occupational therapists in the assessment of fine-motor skills development of young children in Chinese populations. Copyright © 2010 Elsevier Ltd. All rights reserved.
Laser interferometric measurement of ion electrode shape and charge exchange erosion
NASA Technical Reports Server (NTRS)
Macrae, Gregory S.; Mercer, Carolyn R.
1991-01-01
A projected fringe profilometry system was applied to surface contour measurements of an accelerator electrode from an ion thrustor. The system permitted noncontact, nondestructive evaluation of the fine and gross structure of the electrode. A 3-D surface map of a dished electrode was generated without altering the electrode surface. The same system was used to examine charge exchange erosion pits near the periphery of the electrode to determine the depth, location, and volume of material lost. This electro-optical measurement system allowed rapid, nondestructive, digital data acquisition coupled with automated computer data processing. In addition, variable sensitivity allowed both coarse and fine measurements of objects having various surface finishes.
Determination of the fine structure constant using helium fine structure.
Smiciklas, Marc; Shiner, David
2010-09-17
We measure 31,908,131.25(30) kHz for the 2(3)}P J=0 to 2 fine structure interval in helium. The difference between this and theory to order mα7 (20 Hz numerical uncertainty) implies 0.22(30) kHz for uncalculated terms. The measurement is performed by using atomic beam and electro-optic laser techniques. Various checks include a 3He 2{3}S hyperfine measurement. We can obtain an independent value for the fine structure constant α with a 5 ppb experimental uncertainty. However, dominant mα8 terms (potentially 1.2 kHz) limit the overall uncertainty to a less competitive 20 ppb in α.
XAFS SPECTROSCOPY ANALYSIS OF SELECTED HAP ELEMENTS IN FINE PM DERIVED FROM COAL COMBUSTION
X-ray absorption fine structure (XAFS) spectroscopy has been used to investigate the valence states and molecular structures of sulfur (S), chromium (Cr), arsenic (As), and zinc (Zn) in fine particulate matter (PM) separated from coal flyash produced in a realistic combustion sys...
Pincus, Seth H.; Moran, Emily; Maresh, Grace; Jennings, Harold J.; Pritchard, David G.; Egan, Marianne L.; Blixt, Ola
2012-01-01
Group B streptococcus (GBS) is a major cause of neonatal sepsis and meningitis. Despite aggressive campaigns using antenatal prophylactic antibiotic therapy, infections continue. Developing an effective maternal vaccine is a public health priority. Antibody (Ab) to the capsular polysaccharide (CPS) is considered the dominant “protective” immune mediator. Here we study the fine specificity and potential host reactivity of a panel of well-characterized murine monoclonal Abs against the type III CPS by examining the binding of the Abs to intact and neuraminidase-digested GBS, purified CPS, synthetic carbohydrate structures, and cells. The results showed marked differences in the fine specificity among these mAbs to a single carbohydrate structure. Cross-reactions with synthetic GD3 and GT3 carbohydrates, representing structures found on surfaces of neural and developing cells, were demonstrated using carbohydrate array technology. The anti-CPSIII mAbs did not react with cells expressing GD3 and GT3, nor did mAbs specific for the host carbohydrates cross-react with GBS, raising questions about the physiological relevance of this cross-reaction. But in the process of these investigations, we serendipitously demonstrated cross-reactions of some anti-CPSIII mAbs with antigens, likely carbohydrates, found on human leukocytes. These studies suggest caution in the development of a maternal vaccine to prevent infection by this important human pathogen. PMID:22634296
Pincus, Seth H; Moran, Emily; Maresh, Grace; Jennings, Harold J; Pritchard, David G; Egan, Marianne L; Blixt, Ola
2012-07-06
Group B streptococcus (GBS) is a major cause of neonatal sepsis and meningitis. Despite aggressive campaigns using antenatal prophylactic antibiotic therapy, infections continue. Developing an effective maternal vaccine is a public health priority. Antibody (Ab) to the capsular polysaccharide (CPS) is considered the dominant "protective" immune mediator. Here we study the fine specificity and potential host reactivity of a panel of well-characterized murine monoclonal Abs against the type III CPS by examining the binding of the Abs to intact and neuraminidase-digested GBS, purified CPS, synthetic carbohydrate structures, and cells. The results showed marked differences in the fine specificity among these mAbs to a single carbohydrate structure. Cross-reactions with synthetic GD3 and GT3 carbohydrates, representing structures found on surfaces of neural and developing cells, were demonstrated using carbohydrate array technology. The anti-CPS(III) mAbs did not react with cells expressing GD3 and GT3, nor did mAbs specific for the host carbohydrates cross-react with GBS, raising questions about the physiological relevance of this cross-reaction. But in the process of these investigations, we serendipitously demonstrated cross-reactions of some anti-CPS(III) mAbs with antigens, likely carbohydrates, found on human leukocytes. These studies suggest caution in the development of a maternal vaccine to prevent infection by this important human pathogen. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals.
Johnson, Justin C; Gerth, Kathrine A; Song, Qing; Murphy, James E; Nozik, Arthur J; Scholes, Gregory D
2008-05-01
The rates of fine structure relaxation in PbS, PbSe, and PbTe nanocrystals were measured on a femtosecond time scale as a function of temperature with no applied magnetic field by cross-polarized transient grating spectroscopy (CPTG) and circularly polarized pump-probe spectroscopy. The relaxation rates among exciton fine structure states follow trends with nanocrystal composition and size that are consistent with the expected influence of material dependent spin-orbit coupling, confinement enhanced electron-hole exchange interaction, and splitting between L valleys that are degenerate in the bulk. The size dependence of the fine structure relaxation rate is considerably different from what is observed for small CdSe nanocrystals, which appears to result from the unique material properties of the highly confined lead chalcogenide quantum dots. Modeling and qualitative considerations lead to conclusions about the fine structure of the lowest exciton absorption band, which has a potentially significant bearing on photophysical processes that make these materials attractive for practical purposes.
Janes, J K; Roe, A D; Rice, A V; Gorrell, J C; Coltman, D W; Langor, D W; Sperling, F A H
2016-01-01
An understanding of mating systems and fine-scale spatial genetic structure is required to effectively manage forest pest species such as Dendroctonus ponderosae (mountain pine beetle). Here we used genome-wide single-nucleotide polymorphisms to assess the fine-scale genetic structure and mating system of D. ponderosae collected from a single stand in Alberta, Canada. Fine-scale spatial genetic structure was absent within the stand and the majority of genetic variation was best explained at the individual level. Relatedness estimates support previous reports of pre-emergence mating. Parentage assignment tests indicate that a polygamous mating system better explains the relationships among individuals within a gallery than the previously reported female monogamous/male polygynous system. Furthermore, there is some evidence to suggest that females may exploit the galleries of other females, at least under epidemic conditions. Our results suggest that current management models are likely to be effective across large geographic areas based on the absence of fine-scale genetic structure. PMID:26286666
Connecting traces of galaxy evolution: the missing core mass-morphological fine structure relation
NASA Astrophysics Data System (ADS)
Bonfini, P.; Bitsakis, T.; Zezas, A.; Duc, P.-A.; Iodice, E.; González-Martín, O.; Bruzual, G.; González Sanoja, A. J.
2018-01-01
Deep exposure imaging of early-type galaxies (ETGs) are revealing the second-order complexity of these objects, which have been long considered uniform, dispersion-supported spheroidals. `Fine structure' features (e.g. ripples, plumes, tidal tails, rings) as well as depleted stellar cores (i.e. central light deficits) characterize a number of massive ETG galaxies, and can be interpreted as the result of galaxy-galaxy interactions. We discuss how the time-scale for the evolution of cores and fine structures are comparable, and hence it is expected that they develop in parallel after the major interaction event which shaped the ETG. Using archival data, we compare the `depleted stellar mass' (i.e. the mass missing from the depleted stellar core) against the prominence of the fine structure features, and observe that they correlate inversely. This result confirms our expectation that, while the supermassive black hole (SMBH) binary (constituted by the SMBHs of the merger progenitors) excavates the core via three-body interactions, the gravitational potential of the newborn galaxy relaxes, and the fine structures fade below detection levels. We expect the inverse correlation to hold at least within the first Gyr from the merger which created the SMBH binary; after then, the fine structure evolves independently.
Nanoclusters of α-Fe naturally formed in twinned martensite after martensitic transformation
NASA Astrophysics Data System (ADS)
Liu, X.; Ping, D. H.; Xiang, H. P.; Lu, X.; Shen, J.
2018-05-01
Various Fe-C binary alloys with the carbon content from 0.05 to 2.0 (wt. %) have been prepared and water-quenched at austenitizing temperatures. The fine structure of the twinned martensite in the quenched samples has been investigated by means of transmission electron microscopy (TEM) in order to understand the initial products during the formation of the martensite structure. In the twinned structure (body-centered-cubic {112}⟨111⟩-type twin), TEM dark field observations have revealed that both matrix and twinned crystal regions are fully composed of ultra-fine particles (α-Fe nano-crystallites). The particles tend to have the same preferred direction (or texture) in the twinned martensite and the size is almost the same (1-2 nm). The ultra-fine particle structure has been commonly observed regardless of the carbon content; however, such a fine particle structure has been observed only in the martensite with the twinning structure. After in-situ TEM heating, recrystallization occurred and the fine particles merged into larger α-Fe grains; at the same time, the twinned relationship also disappeared.
Acoustic structure and propagation in highly porous, layered, fibrous materials
NASA Technical Reports Server (NTRS)
Lambert, R. F.; Tesar, J. S.
1984-01-01
The acoustic structure and propagation of sound in highly porous, layered, fine fiber materials is examined. Of particular interest is the utilization of the Kozeny number for determining the static flow resistance and the static structure factor based on flow permeability measurements. In this formulation the Kozeny number is a numerical constant independent of volume porosity at high porosities. The other essential parameters are then evaluated employing techniques developed earlier for open cell foams. The attenuation and progressive phase characteristics in bulk samples are measured and compared with predicted values. The agreements on the whole are very satisfactory.
Fine Structure of a Laser-Plasma Filament in Air
NASA Astrophysics Data System (ADS)
Eisenmann, Shmuel; Pukhov, Anatoly; Zigler, Arie
2007-04-01
The ability to select and stabilize a single filament during propagation of an ultrashort high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present detailed measurements of plasma density variations along laser propagation. Over the length of the filament, electron density variations of 3 orders of magnitude are measured. They display evidence of a meter-long postionization range, along which a self-guided structure is observed coupled with a low plasma density, corresponding to ˜3 orders of magnitude decrease from the peak density level.
E.B. Schilling; B.G. Lockaby; Robert Rummer
1999-01-01
Abstract: The influence of clear and partial cut harvests on belowground nutrient cycling processes was examined on the Pearl River floodplain, Mississippi. Foci examined by this study included fine root biomass and detritus, fine root production, fine root nutrient contents, soil respiration rates, and microbial biomass C, N, and P during the first...
Coupling fine-scale root and canopy structure using ground-based remote sensing
Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.; ...
2017-02-21
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less
Coupling fine-scale root and canopy structure using ground-based remote sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less
Orbito-nasal cyst in a young European short-haired cat.
Zemljič, Tadej; Matheis, Franziska L; Venzin, Claudio; Makara, Mariano; Grest, Paula; Spiess, Bernhard M; Pot, Simon A
2011-09-01
To describe a case of an orbito-nasal cyst in a cat. An 18-month-old male European short-haired cat was presented to the Ophthalmology service of the Vetsuisse Faculty, University of Zurich for a subcutaneous swelling in the medial canthal region of the right eye (OD). Ophthalmologic, ultrasound and CT examinations, and fine needle aspiration were performed. After lesion excision, the removed tissue was submitted for histopathology. CT examination was repeated 5 months after removal of the cyst. Ophthalmologic examination revealed a large fluctuant swelling inferonasal to OD. Despite patent lacrimal puncta, only the first few mm of the lacrimal canaliculi could be cannulated. A normal globe with moderate enophthalmos was present. Ultrasound examination showed a well-defined lobulated cyst-like structure in the right orbit, inferonasal and anterior to the eye. CT examination revealed extension of this lesion through the medial orbital wall into the right nasal cavity. Fine needle aspiration confirmed the cystic nature of the lesion. An orbito-nasal cyst was diagnosed. The orbital part of the cyst was dissected from the surrounding tissue and excised from the periosteum in the medial orbital wall defect. Part of the maxillary bone was removed to allow removal of the cyst from the nasal cavity. Histologically, the cyst wall consisted of a single to multilayered, mostly cuboidal epithelium and surrounding connective tissue. Follow-up revealed a good functional result and no recurrence 7 months after cyst removal. Similar orbito-nasal cystic structures were reported in dogs but not in cats. © 2011 American College of Veterinary Ophthalmologists.
An Action-Based Fine-Grained Access Control Mechanism for Structured Documents and Its Application
Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo
2014-01-01
This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical. PMID:25136651
An action-based fine-grained access control mechanism for structured documents and its application.
Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo
2014-01-01
This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical.
InAs Band-Edge Exciton Fine Structure
2015-07-29
Chapter 1 InAs Band-Edge Exciton Fine Structure 1.1 Contributions This work was carried out in collaboration with Oscar Sandoval, a summer student at...diffusion,1,2 charg- ing,2,3 and excitonic fine structure.1,3–9 While spectral diffusion and charging are most likely photoinduced effects and thus can be...unavoidable. A complete understanding of the excitonic 1 Distribution A: Public Release energy landscape enables us to determine dephasing rates
NASA Technical Reports Server (NTRS)
Brown, John M.; Evenson, Kenneth M.; Zink, Lyndon R.
1994-01-01
The J = 0 left arrow 1 fine-structure transition in atomic sulfur (S I) in its ground (3)P state has been detected in the laboratory by far-infrared laser magnetic resonance. The fine-structure interval has been measured accurately as 5,322,492.9 +/- 2.8 MHz which corresponds to a wavelength of 56.325572 +/- 0.000030 micrometers.
Frog tongue surface microstructures: functional and evolutionary patterns
Gorb, Stanislav N
2016-01-01
Summary Frogs (Lissamphibia: Anura) use adhesive tongues to capture fast moving, elusive prey. For this, the tongues are moved quickly and adhere instantaneously to various prey surfaces. Recently, the functional morphology of frog tongues was discussed in context of their adhesive performance. It was suggested that the interaction between the tongue surface and the mucus coating is important for generating strong pull-off forces. However, despite the general notions about its importance for a successful contact with the prey, little is known about the surface structure of frog tongues. Previous studies focused almost exclusively on species within the Ranidae and Bufonidae, neglecting the wide diversity of frogs. Here we examined the tongue surface in nine different frog species, comprising eight different taxa, i.e., the Alytidae, Bombinatoridae, Megophryidae, Hylidae, Ceratophryidae, Ranidae, Bufonidae, and Dendrobatidae. In all species examined herein, we found fungiform and filiform papillae on the tongue surface. Further, we observed a high degree of variation among tongues in different frogs. These differences can be seen in the size and shape of the papillae, in the fine-structures on the papillae, as well as in the three-dimensional organization of subsurface tissues. Notably, the fine-structures on the filiform papillae in frogs comprise hair-like protrusions (Megophryidae and Ranidae), microridges (Bufonidae and Dendrobatidae), or can be irregularly shaped or absent as observed in the remaining taxa examined herein. Some of this variation might be related to different degrees of adhesive performance and may point to differences in the spectra of prey items between frog taxa. PMID:27547606
Charles B. Yackulic; Janice Reid; James D. Nichols; James E. Hines; Raymond Davis; Eric Forsman
2014-01-01
The role of competition in structuring biotic communities at fine spatial scales is well known from detailed process-based studies. Our understanding of competitionâs importance at broader scales is less resolved and mainly based on static species distribution maps. Here, we bridge this gap by examining the joint occupancy dynamics of an invading species (Barred Owl,...
NASA Astrophysics Data System (ADS)
Chenghua, Ou; Chaochun, Li; Siyuan, Huang; Sheng, James J.; Yuan, Xu
2017-12-01
As the platform-based horizontal well production mode has been widely applied in petroleum industry, building a reliable fine reservoir structure model by using horizontal well stratigraphic correlation has become very important. Horizontal wells usually extend between the upper and bottom boundaries of the target formation, with limited penetration points. Using these limited penetration points to conduct well deviation correction means the formation depth information obtained is not accurate, which makes it hard to build a fine structure model. In order to solve this problem, a method of fine reservoir structure modeling, based on 3D visualized stratigraphic correlation among horizontal wells, is proposed. This method can increase the accuracy when estimating the depth of the penetration points, and can also effectively predict the top and bottom interfaces in the horizontal penetrating section. Moreover, this method will greatly increase not only the number of points of depth data available, but also the accuracy of these data, which achieves the goal of building a reliable fine reservoir structure model by using the stratigraphic correlation among horizontal wells. Using this method, four 3D fine structure layer models have been successfully built of a specimen shale gas field with platform-based horizontal well production mode. The shale gas field is located to the east of Sichuan Basin, China; the successful application of the method has proven its feasibility and reliability.
Fine-structure-resolution for Rovibrational Excitation of CN Due to H2
NASA Astrophysics Data System (ADS)
Byrd, Nat; Yang, Benhui H.; Stancil, Phillip C.
2018-06-01
Diatomic molecules can be readily excited in interstellar environments exposed to intense UV radiation, such as the inner rim of a protoplanetary disk. Non-thermal populations of excited rovibrational levels can result, for example, following decay from electronically excited states to the electronic ground state. Competition between radiative decay and collisional processes, mostly due to H2, determine the resulting rovibrational emission spectrum. For CN, and other open-shell molecules, the resulting spectrum will be complicated due to fine-structure splitting of the rotational levels. In some cases, fine-structure resolution has been previously computed for rotational transitions in atom- or diatom-diatom collisional processes. Here we present the first fine-structure resolution for vibrational deexcitation for CN colliding with H2. The collisional cross sections were computed using a 6D potential energy surface with a full close-coupling approach. Fine-structure resolution is obtained by adopting an angular momentum recoupling scheme to transform the scattering matrices to a recoupled basis. Here we present low-energy calculations for the v=1 to 0 transition.This work was supported by NASA Grant NNX16AF09G.
The relationship between executive function and fine motor control in young and older adults.
Corti, Emily J; Johnson, Andrew R; Riddle, Hayley; Gasson, Natalie; Kane, Robert; Loftus, Andrea M
2017-01-01
The present study examined the relationship between executive function (EF) and fine motor control in young and older healthy adults. Participants completed 3 measures of executive function; a spatial working memory (SWM) task, the Stockings of Cambridge task (planning), and the Intra-Dimensional Extra-Dimensional Set-Shift task (set-shifting). Fine motor control was assessed using 3 subtests of the Purdue Pegboard (unimanual, bimanual, sequencing). For the younger adults, there were no significant correlations between measures of EF and fine motor control. For the older adults, all EFs significantly correlated with all measures of fine motor control. Three separate regressions examined whether planning, SWM and set-shifting independently predicted unimanual, bimanual, and sequencing scores for the older adults. Planning was the primary predictor of performance on all three Purdue subtests. A multiple-groups mediation model examined whether planning predicted fine motor control scores independent of participants' age, suggesting that preservation of planning ability may support fine motor control in older adults. Planning remained a significant predictor of unimanual performance in the older age group, but not bimanual or sequencing performance. The findings are discussed in terms of compensation theory, whereby planning is a key compensatory resource for fine motor control in older adults. Copyright © 2016 Elsevier B.V. All rights reserved.
8 CFR 280.5 - Mitigation or remission of fines.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Mitigation or remission of fines. 280.5... AND COLLECTION OF FINES § 280.5 Mitigation or remission of fines. In any case in which mitigation or... Examinations, or the Director for the National Fines Office for such mitigation or remission. [22 FR 9807, Dec...
8 CFR 280.5 - Mitigation or remission of fines.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Mitigation or remission of fines. 280.5... AND COLLECTION OF FINES § 280.5 Mitigation or remission of fines. In any case in which mitigation or... Examinations, or the Director for the National Fines Office for such mitigation or remission. [22 FR 9807, Dec...
8 CFR 280.5 - Mitigation or remission of fines.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Mitigation or remission of fines. 280.5... AND COLLECTION OF FINES § 280.5 Mitigation or remission of fines. In any case in which mitigation or... Examinations, or the Director for the National Fines Office for such mitigation or remission. [22 FR 9807, Dec...
8 CFR 280.5 - Mitigation or remission of fines.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Mitigation or remission of fines. 280.5... AND COLLECTION OF FINES § 280.5 Mitigation or remission of fines. In any case in which mitigation or... Examinations, or the Director for the National Fines Office for such mitigation or remission. [22 FR 9807, Dec...
8 CFR 280.5 - Mitigation or remission of fines.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 8 Aliens and Nationality 1 2011-01-01 2011-01-01 false Mitigation or remission of fines. 280.5... AND COLLECTION OF FINES § 280.5 Mitigation or remission of fines. In any case in which mitigation or... Examinations, or the Director for the National Fines Office for such mitigation or remission. [22 FR 9807, Dec...
Quantizing and sampling considerations in digital phased-locked loops
NASA Technical Reports Server (NTRS)
Hurst, G. T.; Gupta, S. C.
1974-01-01
The quantizer problem is first considered. The conditions under which the uniform white sequence model for the quantizer error is valid are established independent of the sampling rate. An equivalent spectral density is defined for the quantizer error resulting in an effective SNR value. This effective SNR may be used to determine quantized performance from infinitely fine quantized results. Attention is given to sampling rate considerations. Sampling rate characteristics of the digital phase-locked loop (DPLL) structure are investigated for the infinitely fine quantized system. The predicted phase error variance equation is examined as a function of the sampling rate. Simulation results are presented and a method is described which enables the minimum required sampling rate to be determined from the predicted phase error variance equations.
Cui, Guodong; Wei, Xialu; Olevsky, Eugene A.; German, Randall M.; Chen, Junying
2016-01-01
High porosity (>40 vol %) iron specimens with micro- and nanoscale isotropic pores were fabricated by carrying out free pressureless spark plasma sintering (FPSPS) of submicron hollow Fe–N powders at 750 °C. Ultra-fine porous microstructures are obtained by imposing high heating rates during the preparation process. This specially designed approach not only avoids the extra procedures of adding and removing space holders during the formation of porous structures, but also triggers the continued phase transitions of the Fe–N system at relatively lower processing temperatures. The compressive strength and energy absorption characteristics of the FPSPS processed specimens are examined here to be correspondingly improved as a result of the refined microstructure. PMID:28773617
CONSTRAINTS ON SPATIAL VARIATIONS IN THE FINE-STRUCTURE CONSTANT FROM PLANCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Bryan, Jon; Smidt, Joseph; De Bernardis, Francesco
2015-01-01
We use the cosmic microwave background (CMB) anisotropy data from Planck to constrain the spatial fluctuations of the fine-structure constant α at a redshift of 1100. We use a quadratic estimator to measure the four-point correlation function of the CMB temperature anisotropies and extract the angular power spectrum fine-structure constant spatial variations projected along the line of sight at the last scattering surface. At tens of degree angular scales and above, we constrain the fractional rms fluctuations of the fine-structure constant to be (δα/α){sub rms} < 3.4 × 10{sup –3} at the 68% confidence level. We find no evidence formore » a spatially varying α at a redshift of 10{sup 3}.« less
Spectral structure and stability studies on microstructure-fiber continuum
NASA Astrophysics Data System (ADS)
Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.
2003-07-01
Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.
Fine structural dependence of ultraviolet reflections in the King Penguin beak horn.
Dresp, Birgitta; Langley, Keith
2006-03-01
The visual perception of many birds extends into the near-ultraviolet (UV) spectrum and ultraviolet is used by some to communicate. The beak horn of the King Penguin (Aptenodytes patagonicus) intensely reflects in the ultraviolet and this appears to be implicated in partner choice. In a preliminary study, we recently demonstrated that this ultraviolet reflectance has a structural basis, resulting from crystal-like photonic structures, capable of reflecting in the near-UV. The present study attempted to define the origin of the photonic elements that produce the UV reflectance and to better understand how the UV signal is optimized by their fine structure. Using light and electron microscopic analysis combined with new spectrophotometric data, we describe here in detail the fine structure of the entire King Penguin beak horn in addition to that of its photonic crystals. The data obtained reveal a one-dimensional structural periodicity within this tissue and demonstrate a direct relationship between its fine structure and its function. In addition, they suggest how the photonic structures are produced and how they are stabilized. The measured lattice dimensions of the photonic crystals, together with morphological data on its composition, permit predictions of the wavelength of reflected light. These correlate well with experimentally observed values. The way the UV signal is optimized by the fine structure of the beak tissue is discussed with regard to its putative biological role.
Roebers, Claudia M; Röthlisberger, Marianne; Neuenschwander, Regula; Cimeli, Patrizia; Michel, Eva; Jäger, Katja
2014-02-01
Both theoretically and empirically there is a continuous interest in understanding the specific relation between cognitive and motor development in childhood. In the present longitudinal study including three measurement points, this relation was targeted. At the beginning of the study, the participating children were 5-6-year-olds. By assessing participants' fine motor skills, their executive functioning, and their non-verbal intelligence, their cross-sectional and cross-lagged interrelations were examined. Additionally, performance in these three areas was used to predict early school achievement (in terms of mathematics, reading, and spelling) at the end of participants' first grade. Correlational analyses and structural equation modeling revealed that fine motor skills, non-verbal intelligence and executive functioning were significantly interrelated. Both fine motor skills and intelligence had significant links to later school achievement. However, when executive functioning was additionally included into the prediction of early academic achievement, fine motor skills and non-verbal intelligence were no longer significantly associated with later school performance suggesting that executive functioning plays an important role for the motor-cognitive performance link. Copyright © 2013 Elsevier B.V. All rights reserved.
Hasegawa, Tomoka; Li, Minqi; Hara, Kuniko; Sasaki, Muneteru; Tabata, Chihiro; de Freitas, Paulo Henrique Luiz; Hongo, Hiromi; Suzuki, Reiko; Kobayashi, Masatoshi; Inoue, Kiichiro; Yamamoto, Tsuneyuki; Oohata, Noboru; Oda, Kimimitsu; Akiyama, Yasuhiro; Amizuka, Norio
2011-08-01
Osteogenic disorder shionogi (ODS) rats carry a hereditary defect in ascorbic acid synthesis, mimicking human scurvy when fed with an ascorbic acid-deficient (aa-def) diet. As aa-def ODS rats were shown to feature disordered bone formation, we have examined the bone mineralization in this rat model. A fibrous tissue layer surrounding the trabeculae of tibial metaphyses was found in aa-def ODS rats, and this layer showed intense alkaline phosphatase activity and proliferating cell nuclear antigen-immunopositivity. Many osteoblasts detached from the bone surfaces and were characterized by round-shaped rough endoplasmic reticulum (rER), suggesting accumulation of malformed collagen inside the rER. Accordingly, fine, fragile fibrillar collagenous structures without evident striation were found in aa-def bones, which may result from misassembling of the triple helices of collagenous α-chains. Despite a marked reduction in bone formation, ascorbic acid deprivation seemed to have no effect on mineralization: while reduced in number, normal matrix vesicles and mineralized nodules could be seen in aa-def bones. Fine needle-like mineral crystals extended from these mineralized nodules, and were apparently bound to collagenous fibrillar structures. In summary, collagen mineralization seems unaffected by ascorbic acid deficiency in spite of the fine, fragile collagenous fibrils identified in the bones of our animal model.
Spin fine structure of optically excited quantum dot molecules
NASA Astrophysics Data System (ADS)
Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.
2007-06-01
The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.
Huang, Bolong
2016-04-05
The ground-state 4f fine-structure levels in the intrinsic optical transition gaps between the 2p and 5d orbitals of lanthanide sesquioxides (Ln2 O3 , Ln = La…Lu) were calculated by a two-way crossover search for the U parameters for DFT + U calculations. The original 4f-shell potential perturbation in the linear response method were reformulated within the constraint volume of the given solids. The band structures were also calculated. This method yields nearly constant optical transition gaps between Ln-5d and O-2p orbitals, with magnitudes of 5.3 to 5.5 eV. This result verifies that the error in the band structure calculations for Ln2 O3 is dominated by the inaccuracies in the predicted 4f levels in the 2p-5d transition gaps, which strongly and non-linearly depend on the on-site Hubbard U. The relationship between the 4f occupancies and Hubbard U is non-monotonic and is entirely different from that for materials with 3d or 4d orbitals, such as transition metal oxides. This new linear response DFT + U method can provide a simpler understanding of the electronic structure of Ln2 O3 and enables a quick examination of the electronic structures of lanthanide solids before hybrid functional or GW calculations. © 2015 Wiley Periodicals, Inc.
A high pressure La K-edge X-ray absorption fine structure spectroscopy investigation of La1/3NbO3
NASA Astrophysics Data System (ADS)
Marini, C.; Joseph, B.; Noked, O.; Shuker, R.; Kennedy, B. J.; Mathon, O.; Pascarelli, S.; Sterer, E.
2018-01-01
La K-edge X-ray absorption spectroscopy has been used to elucidate the changes in the local electronic and lattice structure that occur in the A-site deficient double perovskite La?NbO? up to 6 GPa. The pressure evolution of the oxygen dodecahedrum around the A-site has been examined. XANES (X-ray absorption near edge structure) data show modifications ascribed to the increase of bands overlapping as a consequence of the bond distance contraction, which has been directly probed by EXAFS (extended x-ray absorption fine structure) spectra. The La-O Debye Waller factors (DWFs) tend to increase whereas the La-Nb bond DWFs show only a tendency to decrease indicating the robustness of the crystal lattice structure, even in presence of the oxygen disordering. This permits the system to reverse back to its original conditions in this pressure range as evident from the measurements upon pressure release. The present results have been interpreted in the light of charge transfer related to the two-step reduction mechanism acting at the Nb site (with niobium ions passing from Nb? to Nb?) which also results in the elongation of the Nb-O bond distances in the octahedra, in agreement with the Nb K-edge results reported earlier.
The grape cluster, metal particle 63344,1. [in lunar coarse fines
NASA Technical Reports Server (NTRS)
Goldstein, J. I.; Axon, H. J.; Agrell, S. O.
1975-01-01
The grape cluster metal particle 63344,1 found in lunar coarse fines is examined using the scanning electron microscope (SEM), electron microprobe, and an optical microscope. This metal particle is approximately 0.5 cm in its largest dimension and consists of hundreds of metallic globules welded together to form a structure somewhat like a bunch of grapes. Electron microprobe analysis for Fe, Ni, Co, P, and S in the metal was carried out using wavelength dispersive detectors. No primary solidification structure is observed in the globules, and the particle is slow cooled from the solidification temperature (nearly 1300 C) taking days to probably months to reach 600 C. Two mechanisms for the formation of globules are proposed. One mechanism involves the primary impact of an iron meteorite which produces a metallic liquid and vapor phase. The second mechanism involves the formation of a liquid pool of metal after impact of an iron meteorite projectile followed by a secondary impact in the liquid metal pool.
da Costa, Elizabeth Oliveira; Ribeiro, Márcio Garcia; Ribeiro, Andréa Rentz; Rocha, Noeme Sousa; de Nardi Júnior, Geraldo
2004-07-01
Biopsy by fine needle aspiration together with microbiological examination and scanning electron microscopy were evaluated in diagnosis of clinical bovine mastitis in a Prototheca zopfii outbreak. Fine needle aspiration was performed in 21 mammary quarters from ten Holstein cows presenting clinical mastitis caused by P. zopfii. The algae were previously identified in the microbiological examination of milk collected from these cows. Material aspirated from these 21 mammary glands was submitted to cytological staining (Gram, Giemsa and/or Shor staining). Fine needle aspiration enabled cytological identification of the algae in these 21 mammary glands, from which P. zopfii was isolated in the milk. Simultaneously, five mammary fragments collected by fine needle aspiration from these 21 mammary glands presenting clinical mastitis were also submitted to microbiological examination. P. zopfii was also isolated from these five fragments. Scanning electron microscopy technique also identified three of these five P zopfii strains isolated from mammary fragments collected by cytological aspiration. These results suggest that fine needle aspiration may be an alternative method for the diagnosis of clinical mastitis.
Congenital amusia: a cognitive disorder limited to resolved harmonics and with no peripheral basis.
Cousineau, Marion; Oxenham, Andrew J; Peretz, Isabelle
2015-01-01
Pitch plays a fundamental role in audition, from speech and music perception to auditory scene analysis. Congenital amusia is a neurogenetic disorder that appears to affect primarily pitch and melody perception. Pitch is normally conveyed by the spectro-temporal fine structure of low harmonics, but some pitch information is available in the temporal envelope produced by the interactions of higher harmonics. Using 10 amusic subjects and 10 matched controls, we tested the hypothesis that amusics suffer exclusively from impaired processing of spectro-temporal fine structure. We also tested whether the inability of amusics to process acoustic temporal fine structure extends beyond pitch by measuring sensitivity to interaural time differences, which also rely on temporal fine structure. Further tests were carried out on basic intensity and spectral resolution. As expected, pitch perception based on spectro-temporal fine structure was impaired in amusics; however, no significant deficits were observed in amusics' ability to perceive the pitch conveyed via temporal-envelope cues. Sensitivity to interaural time differences was also not significantly different between the amusic and control groups, ruling out deficits in the peripheral coding of temporal fine structure. Finally, no significant differences in intensity or spectral resolution were found between the amusic and control groups. The results demonstrate a pitch-specific deficit in fine spectro-temporal information processing in amusia that seems unrelated to temporal or spectral coding in the auditory periphery. These results are consistent with the view that there are distinct mechanisms dedicated to processing resolved and unresolved harmonics in the general population, the former being altered in congenital amusia while the latter is spared. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lu, Y; Zheng, Q; Lu, D; Ma, P; Chen, Y
1995-06-01
Crystal structures of two compounds from Tripterygium wilfordii Hook f. have been determined by X-ray diffraction method. Structure factors influencing melting point of solid state have been analysed. Crystal class (or space group), recrystallization solvent, force between molecules and fine changes of molecular structures will all cause melting point changes of crystal substance.
3D WHOLE-PROMINENCE FINE STRUCTURE MODELING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunár, Stanislav; Mackay, Duncan H.
2015-04-20
We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique tomore » consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.« less
[Ultraviolet spectroscopic study on the fine structures in the solar polar hole].
Zhang, Min; Wang, Dong; Liu, Guo-Hong
2014-07-01
Fine structures in the south solar polar coronal hole were observed by N IV line of SOHO/SUMER spectrograph. The scales of the fine structures range spatially range from 1 arcsec to several arcsecs, temporally from 1 min to several minutes, and parts of them are in strip shape along the slit direction. The line-of-sight velocity of them is up to tens of km x s(-1) with red and blue shift intercrossed occasionally, which appear periodically as long as 100 minutes in some regions. Part of the fine structures can be clearly observed at the Ne V III line with higher formation temperature in the same spectral window. The time and location of some fine structures with high velocity in the Ne V III spectrum are almost the same as that in N IV spectrum, but they are extended and diffused in the Ne V III spectrum. Some fine structures have non-Gaussian profiles with the line-of-sight Doppler velocities up to 150 km x s(-1) in the N IV blue/red wings, which is similar with the explosive events in the transition region. In the past, explosive events are small-scale dynamic phenomena often observed in the quiet-sun (QS) region, while their properties in coronal holes (CHs) remain unclear. Here, we find the EE-like events with strong dynamics in the south solar polar coronal hole by N IV line of SOHO/SUMER spectrograph.
Deformation and annealing response of TD-nickel chromium sheet
NASA Technical Reports Server (NTRS)
Kane, R. D.; Ebert, L. J.
1973-01-01
The deformation and annealing response of TD-nickel chromium (TD-NiCr) 0.1 inch thick sheet was examined using various cold-rolling and annealing treatments. Upon annealing (above 816 C (1500 F), the as-received material was converted from an initially ultra-fine grain size (average grain dimension 0.51 micron) to a large grain structure. Increases in grain size by a factor of 100 to 200 were observed for this transformation. However, in those material states where the large grain transformation was absent, a fine grain recrystallized structure formed upon annealing (above 732 C (1350 F)). The deformation and annealing response of TD-NiCr sheet was evaluated with respect to the processing related variables as mode and severity of deformation and annealing temperature. Results indicate that the large grain transformation, classical primary recrystallization occurs. Using selected materials produced during the deformation and annealing study, the elevated temperature tensile properties of TD-NiCr sheet were examined in the temperature range 593 C (1100 F) to 1093 C (2000 F). It was observed that the elevated temperature tensile properties of TD-NiCr sheet could be optimized by the stabilization of a large grain size in this material using the cold working and/or annealing treatments developed during the present investigation.
NASA Astrophysics Data System (ADS)
Voepel, H.; Ahmed, S. I.; Hodge, R. A.; Leyland, J.; Sear, D. A.
2016-12-01
One of the major causes of uncertainty in estimates of bedload transport rates in gravel bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on bed stability. Furthermore, grain-scale structure varies throughout a channel and over time in ways that have not been fully quantified. Our research aims to quantify variations in sediment structure caused by two key variables; morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel bed with a riffle-pool morphology. The fine sediment content of the bed was incrementally increased over a series of runs from gravel only, to coarse sand, fine sand and two concentrations of clay. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure through metrics including measurement of grain pivot angles, grain exposure and protrusion, and vertical variation in bed porosity and fine sediment content. Metrics derived from the CT data were verified using data from grain counts and tilt-table measurements on co-located samples. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure. These results have implications for the development of sediment entrainment models for gravel bed rivers.
Fine structure of the Arabidopsis stem cuticle: effects of fixation and changes over development.
Shumborski, Sarah J; Samuels, A Lacey; Bird, David A
2016-10-01
The Arabidopsis cuticle, as observed by electron microscopy, consists primarily of the cutin/cutan matrix. The cuticle possesses a complex substructure, which is correlated with the presence of intracuticular waxes. The plant cuticle is composed of an insoluble polyester, cutin, and organic solvent soluble cuticular waxes, which are embedded within and coat the surface of the cutin matrix. How these components are arranged in the cuticle is not well understood. The Arabidopsis cuticle is commonly understood as 'amorphous,' lacking in ultrastructural features, and is often observed as a thin (~80-100 nm) electron-dense layer on the surface of the cell wall. To examine this cuticle in more detail, we examined cuticles from both rapidly elongating and mature sections of the stem and compared the preservation of the cuticles using conventional chemical fixation methods and high-pressure freezing/freeze-substitution (HPF/FS). We found that HPF/FS preparation revealed a complex cuticle substructure, which was more evident in older stems. We also found that the cuticle increases in thickness with development, indicating an accretion of polymeric material, likely in the form of the non-hydrolyzable polymer, cutan. When wax was extracted by chloroform immersion prior to sample preparation, the contribution of waxes to cuticle morphology was revealed. Overall, the electron-dense cuticle layer was still visible but there was loss of the cuticle substructure. Furthermore, the cuticle of cer6, a wax-deficient mutant, also lacked this substructure, suggesting that these fine striations were dependent on the presence of cuticular waxes. Our findings show that HPF/FS preparation can better preserve plant cuticles, but also provide new insights into the fine structure of the Arabidopsis cuticle.
Fine Structure of Anomalously Intense Pulses of PSR J0814+7429 Radio Emission in the Decameter Range
NASA Astrophysics Data System (ADS)
Skoryk, A. O.; Ulyanov, O. M.; Zakharenko, V. V.; Shevtsova, A. I.; Vasylieva, I. Y.; Plakhov, M. S.; Kravtsov, I. M.
2017-06-01
Purpose: The fine structure of the anomalously intense pulses of PSR J0814+7429 (B0809+74) has been studied. The pulsar radio emission fine structure is investigated to determine its parameters in the lowest part of spectrum available for groundbased observations. Design/methodology/approach: The scattering measure in the interstellar plasma have been estimated using the spectral and correlation analyses of pulsar data recorded by the UTR-2 radio telescope. Results: Two characteristic time scales of the anomalously intense pulses fine structure of the PSR J0814+7429 radio emission have been found. The strongest pulses of this pulsar in the decameter range can have a duration of about t 2÷3 ms. These pulses are emitted in short series. In some cases, they are emitted over the low-intensity plateau consisting of the “long” subpulse component. Conclusions: The narrowest correlation scale of pulsar J0814+7429 radio emission corresponds to the doubled scattering time constant of the interstellar medium impulse response. Broader scale of the fine structure of its radio emission can be explained by the radiation of a short series of narrow pulses or relatively broad pulses inside this pulsar magnetosphere.
Chimaeric sounds reveal dichotomies in auditory perception
Smith, Zachary M.; Delgutte, Bertrand; Oxenham, Andrew J.
2008-01-01
By Fourier's theorem1, signals can be decomposed into a sum of sinusoids of different frequencies. This is especially relevant for hearing, because the inner ear performs a form of mechanical Fourier transform by mapping frequencies along the length of the cochlear partition. An alternative signal decomposition, originated by Hilbert2, is to factor a signal into the product of a slowly varying envelope and a rapidly varying fine time structure. Neurons in the auditory brainstem3–6 sensitive to these features have been found in mammalian physiological studies. To investigate the relative perceptual importance of envelope and fine structure, we synthesized stimuli that we call ‘auditory chimaeras’, which have the envelope of one sound and the fine structure of another. Here we show that the envelope is most important for speech reception, and the fine structure is most important for pitch perception and sound localization. When the two features are in conflict, the sound of speech is heard at a location determined by the fine structure, but the words are identified according to the envelope. This finding reveals a possible acoustic basis for the hypothesized ‘what’ and ‘where’ pathways in the auditory cortex7–10. PMID:11882898
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsman, A.; Horbatsch, M.; Hessels, E. A., E-mail: hessels@yorku.ca
2015-09-15
For many decades, improvements in both theory and experiment of the fine structure of the n = 2 triplet P levels of helium have allowed for an increasingly precise determination of the fine-structure constant. Recently, it has been observed that quantum-mechanical interference between neighboring resonances can cause significant shifts, even if such neighboring resonances are separated by thousands of natural widths. The shifts depend in detail on the experimental method used for the measurement, as well as the specific experimental parameters employed. Here, we review how these shifts apply for the most precise measurements of the helium 2{sup 3}P fine-structuremore » intervals.« less
Sample-based synthesis of two-scale structures with anisotropy
Liu, Xingchen; Shapiro, Vadim
2017-05-19
A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less
Sample-based synthesis of two-scale structures with anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xingchen; Shapiro, Vadim
A vast majority of natural or synthetic materials are characterized by their anisotropic properties, such as stiffness. Such anisotropy is effected by the spatial distribution of the fine-scale structure and/or anisotropy of the constituent phases at a finer scale. In design, proper control of the anisotropy may greatly enhance the efficiency and performance of synthesized structures. In this paper, we propose a sample-based two-scale structure synthesis approach that explicitly controls anisotropic effective material properties of the structure on the coarse scale by orienting sampled material neighborhoods at the fine scale. We first characterize the non-uniform orientations distribution of the samplemore » structure by showing that the principal axes of an orthotropic material may be determined by the eigenvalue decomposition of its effective stiffness tensor. Such effective stiffness tensors can be efficiently estimated based on the two-point correlation functions of the fine-scale structures. Then we synthesize the two-scale structure by rotating fine-scale structures from the sample to follow a given target orientation field. Finally, the effectiveness of the proposed approach is demonstrated through examples in both 2D and 3D.« less
Coupling fine-scale root and canopy structure using ground-based remote sensing
Brady Hardiman; Christopher Gough; John Butnor; Gil Bohrer; Matteo Detto; Peter Curtis
2017-01-01
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in...
Fine Structure of Trious and Excitons in Single GaAs Quantum Dots
2002-08-30
RAPID COMMUNICATIONS PHYSICAL REVIEW B 66, 081310~R! ~2002!Fine structure of trions and excitons in single GaAs quantum dots J. G. Tischler, A. S ...fine structure of single localized excitons and trions. DOI: 10.1103/PhysRevB.66.081310 PACS number~ s !: 78.67.Hc, 73.21.2b, 71.35.2yAlthough the...AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Research Laboratory
Attarian Shandiz, Mohammad; Guinel, Maxime J-F; Ahmadi, Majid; Gauvin, Raynald
2016-02-01
A new approach is presented to introduce the fine structure of core-loss excitations into the electron energy-loss spectra of ionization edges by Monte Carlo simulations based on an optical oscillator model. The optical oscillator strength is refined using the calculated electron energy-loss near-edge structure by density functional theory calculations. This approach can predict the effects of multiple scattering and thickness on the fine structure of ionization edges. In addition, effects of the fitting range for background removal and the integration range under the ionization edge on signal-to-noise ratio are investigated.
A simulation for gravity fine structure recovery from high-low GRAVSAT SST data
NASA Technical Reports Server (NTRS)
Estes, R. H.; Lancaster, E. R.
1976-01-01
Covariance error analysis techniques were applied to investigate estimation strategies for the high-low SST mission for accurate local recovery of gravitational fine structure, considering the aliasing effects of unsolved for parameters. Surface density blocks of 5 deg x 5 deg and 2 1/2 deg x 2 1/2 deg resolution were utilized to represent the high order geopotential with the drag-free GRAVSAT configured in a nearly circular polar orbit at 250 km. altitude. GEOPAUSE and geosynchronous satellites were considered as high relay spacecraft. It is demonstrated that knowledge of gravitational fine structure can be significantly improved at 5 deg x 5 deg resolution using SST data from a high-low configuration with reasonably accurate orbits for the low GRAVSAT. The gravity fine structure recoverability of the high-low SST mission is compared with the low-low configuration and shown to be superior.
Revisiting place and temporal theories of pitch
2014-01-01
The nature of pitch and its neural coding have been studied for over a century. A popular debate has revolved around the question of whether pitch is coded via “place” cues in the cochlea, or via timing cues in the auditory nerve. In the most recent incarnation of this debate, the role of temporal fine structure has been emphasized in conveying important pitch and speech information, particularly because the lack of temporal fine structure coding in cochlear implants might explain some of the difficulties faced by cochlear implant users in perceiving music and pitch contours in speech. In addition, some studies have postulated that hearing-impaired listeners may have a specific deficit related to processing temporal fine structure. This article reviews some of the recent literature surrounding the debate, and argues that much of the recent evidence suggesting the importance of temporal fine structure processing can also be accounted for using spectral (place) or temporal-envelope cues. PMID:25364292
NASA Astrophysics Data System (ADS)
Hamar, D.; Ferencz, Cs.; Steinbach, P.; Lichtenberger, J.; Ferencz, O. E.; Parrot, M.
2009-04-01
Examining the mechanism and effect of the coupling of the electromagnetic signals from the lower ionosphere into the Earth-ionosphere waveguide (EIWG) can be maintained with the analysis of simultaneous broadband VLF recordings acquired at ground station (Tihany, Hungary) and on LEO orbiting satellite (DEMETER) during nearby passes. Single hop whistlers, selected from concurrent broadband VLF data sets were analyzed with high accuracy applying the matched filtering (MF) technique, developed previously for signal analysis. The accuracy of the frequency-time-amplitude pattern and the resolution of the closely spaced whistler traces were further increased with least-square estimation of the parameters of the output of MF procedure. One result of this analysis is the fine structure of the whistler which can not be recognized in conventional spectrogram. The comparison of the detailed fine structure of the whistlers measured on board and on the ground enabled us to select reliably the corresponding signal pairs. The remarkable difference seen in the fine structure of matching whistler occurrences in the satellite and the ground data series can be addressed e.g. to the effect of the inhomogeneous ionospheric plasma (trans-ionosperic impulse propagation) or the process of wave energy leaking out from the ionized medium into the EIWG. This field needs further investigations. References: Ferencz Cs., Ferencz O. E., Hamar D. and Lichtenberger, J., (2001) Whistler Phenomena, Short Impulse Propagation; Kluwer Academic Publisher, ISBN 0-7923-6995-5, Netherlands Lichtenberger, J., Hamar D. and Ferencz Cs.,(2003) Methods for analyzing the structure and propagation characteristics of whistlers, in: Very Low Frequency (VLF) Phenomena, Narosa Publishing House, New Delhi, p. 88-107.
NASA Technical Reports Server (NTRS)
Dietz, Nikolaus; Bachmann, Klaus J.
1995-01-01
This paper describes the results of real-time optical monitoring of epitaxial growth processes by p-polarized reflectance spectroscopy (PRS) using a single wavelength application under pulsed chemical beam epitaxy (PCBE) condition. The high surface sensitivity of PRS allows the monitoring of submonolayer precursors coverage on the surface as shown for GaP homoepitaxy and GaP on Si heteroepitaxy as examples. In the case of heteroepitaxy, the growth rate and optical properties are revealed by PRS using interference oscillations as they occur during growth. Super-imposed on these interference oscillations, the PRS signal exhibits a fine structure caused by the periodic alteration of the surface chemistry by the pulsed supply of chemical precursors. This fine structure is modeled under conditions where the surface chemistry cycles between phosphorus supersaturated and phosphorus depleted surfaces. The mathematical model describes the fine structure using a surface layer that increases during the tertiarybutyl phosphine (TBP) supply and decreases during and after the triethylgallium (TEG) pulse, which increases the growing GaP film thickness. The imaginary part of the dielectric function of the surface layer is revealed from the turning points in the fine structure, where the optical response to the first precursor pulse in the cycle sequence changes sign. The amplitude of the fine structure is determined by the surface layer thickness and the complex dielectric functions for the surface layer with the underlying bulk film. Surface kinetic data can be obtained by analyzing the rise and decay transients of the fine structure.
Fine- and hyperfine structure investigations of even configuration system of atomic terbium
NASA Astrophysics Data System (ADS)
Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.
2017-03-01
In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Min-Cherl; Zhang, Dongrong; Nikiforov, Gueorgui O.
Ultrathin (<6 nm) polycrystalline films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-P) are deposited with a two-step spin-coating process. The influence of spin-coating conditions on morphology of the resulting film was examined by atomic force microscopy. Film thickness and RMS surface roughness were in the range of 4.0–6.1 and 0.6–1.1 nm, respectively, except for small holes. Polycrystalline structure was confirmed by grazing incidence x-ray diffraction measurements. Near-edge x-ray absorption fine structure measurements suggested that the plane through aromatic rings of TIPS-P molecules was perpendicular to the substrate surface.
Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates
Gretchen H. Roffler; Sandra L. Talbot; Gordon Luikart; George K. Sage; Kristy L. Pilgrim; Layne G. Adams; Michael K. Schwartz
2014-01-01
Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale...
NASA Astrophysics Data System (ADS)
Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin
2015-04-01
The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.
Fine root dynamics and trace gas fluxes in two lowland tropical forest soils.
WHENDEE L. SILVER; ANDREW W. THOMPSON; MEGAN E . MCGRODDY; RUTH K. VARNER; JADSON D. DIAS; HUDSON SILVA; CRILL PATRICK M.; MICHAEL KELLER
2005-01-01
Fine root dynamics have the potential to contribute significantly to ecosystem-scale biogeochemical cycling, including the production and emission of greenhouse gases. This is particularly true in tropical forests which are often characterized as having large fine root biomass and rapid rates of root production and decomposition. We examined patterns in fine root...
Graham, Carly F; Eberts, Rebecca L; Morgan, Thomas D; Boreham, Douglas R; Lance, Stacey L; Manzon, Richard G; Martino, Jessica A; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M
2016-01-01
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment.
Sato, Shun'ichi; Inoda, Toshio; Niitsu, Shuhei; Kubota, Souichirou; Goto, Yuji; Kobayashi, Yukimasa
2017-11-01
The larvae of a water scavenger beetle, Hydrophilus acuminatus, have strongly asymmetric mandibles; the right one is long and slender, whereas the left one is short and stout. The fine structure and embryonic development of the head capsule and mandibles of this species were examined using light and scanning electron microscopy, and asymmetries in shape were detected in these structures applying an elliptic Fourier analysis. The larval mandibles are asymmetric in the following aspects: whole length, the number, structure and arrangement of retinacula (inner teeth), and size and shape of both the molar and incisor regions. The larval head is also asymmetric; the left half of the head capsule is larger than the right, and the left adductor muscle of the mandible is much thicker than the right. The origin and developmental process of asymmetric mandibles were traced in developing embryos whose developmental period is about 270 h and divided into 10 stages. Mandibular asymmetries are produced by the cumulative effects of six stepwise modifications that occur from about 36% of the total developmental time onward. The significance of these modifications was discussed with respect to the functional advantages of asymmetries and the phylogeny of members of the Hydrophilidae. Copyright © 2017 Elsevier Ltd. All rights reserved.
Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; Boreham, Douglas R.; Lance, Stacey L.; Manzon, Richard G.; Martino, Jessica A.; Rogers, Sean M.; Wilson, Joanna Y.; Somers, Christopher M.
2016-01-01
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment. PMID:26807722
Diagnostic accuracy of lymphoma established by fine-needle aspiration cytological biopsy
NASA Astrophysics Data System (ADS)
Delyuzar; Amir, Z.; Suryadi, D.
2018-03-01
Based on Globocan data in 2012, it is estimated that about 14,495 Indonesians suffer from lymphoma, both Hodgkin’s lymphoma, and non-Hodgkin’s lymphoma. Some areas of specialization still doubt the accuracy of cytology diagnosis of fine needle aspiration biopsy.This study is a diagnostic test with a cross sectional analytic design to see how the cytology diagnostic accuracy of fine needle aspiration aspirate in lymphoma. It was in Department of Anatomical Pathology Faculty of Medicine USU, Haji Adam Malik Hospital, Dr.Pirngadi hospital, or private clinic in Medan. Peripheral cytology technique biopsy of fine needle aspiration on lymph node subsequently stained with Giemsa, when the cytology of lymphoma is obtained and confirmed by histopathologic examination. Cytology and histopathologic examination will be tested by Diagnostic Test and assessed for its sensitivity and specificity. The diagnostic of lymphoma cytology provides 93.33% sensitivity and 92.31% specificity when confirmed by histopathological examination. Positive predictive value and negative predictive value of 96.55% and 85.71% respectively. In conclusion, the cytology of fine needle aspiration biopsy is accurate enough to be used as a diagnostic tool, so it is advisable to establish a lymphoma diagnosis to perform a needle aspiration biopsy examination.
Na, Hyuntae; Song, Guang
2015-07-01
In a recent work we developed a method for deriving accurate simplified models that capture the essentials of conventional all-atom NMA and identified two best simplified models: ssNMA and eANM, both of which have a significantly higher correlation with NMA in mean square fluctuation calculations than existing elastic network models such as ANM and ANMr2, a variant of ANM that uses the inverse of the squared separation distances as spring constants. Here, we examine closely how the performance of these elastic network models depends on various factors, namely, the presence of hydrogen atoms in the model, the quality of input structures, and the effect of crystal packing. The study reveals the strengths and limitations of these models. Our results indicate that ssNMA and eANM are the best fine-grained elastic network models but their performance is sensitive to the quality of input structures. When the quality of input structures is poor, ANMr2 is a good alternative for computing mean-square fluctuations while ANM model is a good alternative for obtaining normal modes. © 2015 Wiley Periodicals, Inc.
Chung, Mi Yoon; Nason, John D; Chung, Myong Gi
2011-12-01
Fine-scale genetic structure (FSGS) in plants is influenced by variation in spatial and temporal demographic processes. To determine how demographic structure and FSGS change with stages of population succession, we studied replicate expanding and senescing populations of the Asian terrestrial orchid Cymbidium goeringii. We used spatial autocorrelation methods (O-ring and kinship statistics) to quantify spatial demographic structure and FSGS in two expanding and two senescing populations, also measuring genetic diversity and inbreeding in each. All populations exhibited significant aggregation of individuals and FSGS at short spatial scales. In expanding populations, this finding was associated with high recruitment rates, suggesting restricted seed dispersal. In senescing populations, recruitment was minimal, suggesting alternative mechanisms of aggregation, perhaps including spatial associations with mycorrhizal fungi. All populations had significant evidence of genetic bottlenecks, and inbreeding levels were consistently high. Our results indicate that different successional stages can generate similar patterns of spatial demographic and genetic structure, but as a consequence of different processes. These results contrast with the only other study of senescence effects on population genetic structure in an herbaceous perennial, which found little to no FSGS in senescing populations. With the exception of populations subject to mass collection by orchid sellers, significant FSGS is characteristic of the 16 terrestrial orchid species examined to date. From a conservation perspective, this result suggests that inference of orchid population history will benefit from analyses of both FSGS and demographic structure in combination with other ecological field data.
Precision measurement of the three 2(3)P(J) helium fine structure intervals.
Zelevinsky, T; Farkas, D; Gabrielse, G
2005-11-11
The three 2(3)P fine structure intervals of 4H are measured at an improved accuracy that is sufficient to test two-electron QED theory and to determine the fine structure constant alpha to 14 parts in 10(9). The more accurate determination of alpha, to a precision higher than attained with the quantum Hall and Josephson effects, awaits the reconciliation of two inconsistent theoretical calculations now being compared term by term. A low pressure helium discharge presents experimental uncertainties quite different than for earlier measurements and allows direct measurements of light pressure shifts.
Collisional excitation of CH2 rotational/fine-structure levels by helium
NASA Astrophysics Data System (ADS)
Dagdigian, P. J.; Lique, F.
2018-02-01
Accurate determination of the abundance of CH2 in interstellar media relies on both radiative and collisional rate coefficients. We investigate here the rotational/fine-structure excitation of CH2 induced by collisions with He. We employ a recoupling technique to generate fine-structure-resolved cross-sections and rate coefficients from close coupling spin-free scattering calculations. The calculations are based on a recent, high-accuracy CH2-He potential energy surface computed at the coupled clusters level of theory. The collisional cross-section calculations are performed for all fine-structure transitions among the first 22 and 24 energy levels of ortho- and para-CH2, respectively, and for temperatures up to 300 K. As a first application, we simulate the excitation of CH2 in typical molecular clouds. The excitation temperatures of the CH2 lines are found to be small at typical densities of molecular clouds, showing that the non-local thermodynamic equilibrium approach has to be used to analyse interstellar spectra. We also found that the fine-structure lines connected with the 404 - 313 and 505 - 414 rotational transitions show possible maser emissions so that they can be easily seen in emission. These calculations show that CH2 may have to be detected mainly through absorption spectra.
Fine structure in plasma waves and radiation near the plasma frequency in Earth's foreshock
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
1994-01-01
Novel observations are presented of intrunsic fine structure in the frequency spectrum of electomagnetic (EM) radiation and plasma waves near the electron plasma frequency f(sub p) during a period of unusually high interplanetary magnetic field strength. Measured using the wideband receiver on the International Sun-Earth Explorer (ISEE) 1 spacecraft, fine-structured emissions are observed both in the solar wind and the foreshock, The fine structure is shown to correspond to emissions spaced above f(sub p) near half harmonies of the electon cyclotron frequency f(sub ce), i.e., near f(sub p) + nf(sub ce)/2. These appear to be the first space physics observations of emissions spaced by f(sub ce)/2. Indirect but strong arguments are used to discriminate between EM and electrostatic (ES) signals, to identify whether ISEE 1 is in the solar wind or the foreshock, and to determine the relative frequencies of the emissions and the local f(sub p). The data are consistent with generation of the ES and EM emissions in the foreshock, with subsequent propagation of the EM emissions into the solar wind. It remains possible that some emissions currently identified as ES have significant EM character. The ES and EM emisions often merge into one another with minimal changes in frequency, arguing that their source regions and generation mechanisms are related and imposing significant constraints on theories. The f(sub ce)/2 ES and EM fine structures observed may be intrinsic to the emission mechanisms or to superposition of two series of signals with f(sub ce) spacing that differ in starting frequency by f(sub ce)/2. Present theories for nonlinear wave coupling processes, cyclotron maser emission, and other linear instability processes are all unable to explain multiple EM and/or ES components spaced by approximately f(sub ce)/2 above f(sub p) for f(sub p)/f(sub ce) much greater than 1 and typical for shock beams parameters. Suitable avenues for further theoretical research are identified. Empirically, the observed fine structures appear very similar to those in split bnad and multiple-lane type II solar radio bursts; interpretation of both these type II fine structures in terms of f(sub ce)/2 splitting is suggested, thereby supporting and generalizing a suggestion by Wild (1950). A possible application to continuum radiation is mentioned. The ubiquity of these fine structures in the Earth's f(sub p) radiation and foreshock waves remains unknown. Only the ISEE 1 wideband receiver has sufficient frequency resolution (approximately less than or equal to 100 Hz) to perform a dedicated search. Further study of the ubiquity of these fine structures, of how reliably the splitting corresponds to f(sub ce)/2, and of the other interpretations above is necessary.
Rudén, Jonas; Frenning, Göran; Bramer, Tobias; Thalberg, Kyrre; Alderborn, Göran
2018-04-25
The aim of this paper was to study relationships between the content of fine particles and the powder mechanics of binary adhesive mixtures and link these relationships to the blend state. Mixtures with increasing amounts of fine particles (increasing surface coverage ratios (SCR)) were prepared using Lactopress SD as carrier and micro particles of lactose as fines (2.7 µm). Indicators of unsettled bulk density, compressibility and flowability were derived and the blend state was visually examined by imaging. The powder properties studied showed relationships to the SCR characterised by stages. At low SCR, the fine particles predominantly gathered in cavities of the carriers, giving increased bulk density and unchanged or improved flow. Thereafter, increased SCR gave a deposition of particles at the enveloped carrier surface with a gradually more irregular adhesion layer leading to a reduced bulk density and a step-wise reduced flowability. The mechanics of the mixtures at a certain stage were dependent on the structure and the dynamics of the adhesion layer and transitions between the stages were controlled by the evolution of the adhesion layer. It is advisable to use techniques based on different types of flow in order to comprehensively study the mechanics of adhesive mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.
Gross anatomy of central nervous system in firefly, Pteroptyx tener (Coleoptera: Lampyridae)
NASA Astrophysics Data System (ADS)
Hudawiyah, Nur; Wahida, O. Nurul; Norela, S.
2015-09-01
This paper describes for the first time the organization and fine structure of the central nervous system (CNS) in the fireflies, Pteroptyx tener (Coleoptera: Lampyridae). The morphology of the CNS was examined by using Carl Zeiss AxioScope A1 photomicroscope with iSolution Lite software. Some specific structural features such as the localization of protocerebrum, deutocerebrum and tritocerebrum in the brain region were analyzed. Other than that, the nerve cord and its peripheral structure were also analyzed. This study suggests that, there is a very obvious difference between male and female central nervous system which illustrates that they may differ in function in controlling physiological and behavioral activities.
Rasic, Gordana; Keyghobadi, Nusha
2012-01-01
The spatial scale at which samples are collected and analysed influences the inferences that can be drawn from landscape genetic studies. We examined genetic structure and its landscape correlates in the pitcher plant midge, Metriocnemus knabi, an inhabitant of the purple pitcher plant, Sarracenia purpurea, across several spatial scales that are naturally delimited by the midge's habitat (leaf, plant, cluster of plants, bog and system of bogs). We analysed 11 microsatellite loci in 710 M. knabi larvae from two systems of bogs in Algonquin Provincial Park (Canada) and tested the hypotheses that variables related to habitat structure are associated with genetic differentiation in this midge. Up to 54% of variation in individual-based genetic distances at several scales was explained by broadscale landscape variables of bog size, pitcher plant density within bogs and connectivity of pitcher plant clusters. Our results indicate that oviposition behaviour of females at fine scales, as inferred from the spatial locations of full-sib larvae, and spatially limited gene flow at broad scales represent the important processes underlying observed genetic patterns in M. knabi. Broadscale landscape features (bog size and plant density) appear to influence oviposition behaviour of midges, which in turn influences the patterns of genetic differentiation observed at both fine and broad scales. Thus, we inferred linkages among genetic patterns, landscape patterns and ecological processes across spatial scales in M. knabi. Our results reinforce the value of exploring such links simultaneously across multiple spatial scales and landscapes when investigating genetic diversity within a species. © 2011 Blackwell Publishing Ltd.
Comparison of fine structures of electron cyclotron harmonic emissions in aurora
NASA Astrophysics Data System (ADS)
LaBelle, J.; Dundek, M.
2015-10-01
Recent discoveries of higher harmonic cyclotron emissions in aurora occurring under daylight conditions motivated the modification of radio receivers at South Pole Station, Antarctica, to measure fine structure of such emissions during two consecutive austral summers, 2013-2014 and 2014-2015. The experiment recorded 347 emission events over 376 days of observation. The seasonal distribution of these events reveals that successively higher harmonics require higher solar zenith angles for occurrence, as expected if they are generated at the matching condition fuh = Nfce, which for higher N requires higher electron densities which are associated with higher solar zenith angles. This result implies that generation of higher harmonics from lower harmonics via wave-wave processes explains only a minority of events. Detailed examination of 21 cases in which two harmonics occur simultaneously shows that in almost all events the higher harmonic comes from higher altitudes, and only for a small fraction of events is it plausible that the frequencies of the fine structures of the emissions are correlated and in exact integer ratio. This observation puts an upper bound of 15-20% on the fraction of emissions which can be explained by wave-wave interactions involving Z mode waves at fce and, combined with consideration of source altitudes, puts an upper bound of 75% on the fraction explained by coalescence of Z mode waves at 2fce. Taken together, these results suggest that the dominant mechanism for the higher harmonics is independent generation at the matching points fuh = Nfce and that the wave-wave interaction mechanisms explain a relatively small fraction of events.
Kim, Yeun; Perinpanayagam, Hiran; Lee, Jong-Ki; Yoo, Yeon-Jee; Oh, Soram; Gu, Yu; Lee, Seung-Pyo; Chang, Seok Woo; Lee, Woocheol; Baek, Seung-Ho; Zhu, Qiang; Kum, Kee-Yeon
2015-08-01
Micro-computed tomography (MCT) with alternative image reformatting techniques shows complex and detailed root canal anatomy. This study compared two-dimensional (2D) and 3D MCT image reformatting with standard tooth clearing for studying mandibular first molar mesial root canal morphology. Extracted human mandibular first molar mesial roots (n=31) were scanned by MCT (Skyscan 1172). 2D thin-slab minimum intensity projection (TS-MinIP) and 3D volume rendered images were constructed. The same teeth were then processed by clearing and staining. For each root, images obtained from clearing, 2D, 3D and combined 2D and 3D techniques were examined independently by four endodontists and categorized according to Vertucci's classification. Fine anatomical structures such as accessory canals, intercanal communications and loops were also identified. Agreement among the four techniques for Vertucci's classification was 45.2% (14/31). The most frequent were Vertucci's type IV and then type II, although many had complex configurations that were non-classifiable. Generally, complex canal systems were more clearly visible in MCT images than with standard clearing and staining. Fine anatomical structures such as intercanal communications, accessory canals and loops were mostly detected with a combination of 2D TS-MinIP and 3D volume-rendering MCT images. Canal configurations and fine anatomic structures were more clearly observed in the combined 2D and 3D MCT images than the clearing technique. The frequency of non-classifiable configurations demonstrated the complexity of mandibular first molar mesial root canal anatomy.
Korneva, Janetta V; Kornienko, Svetlana A; Jones, Malcolm K
2016-06-01
Some cyclophyllidean cestodes provide protection for their eggs in the external environment by providing them with additional protective layers around the egg membranes. In attempting to examine such adaptations, the microanatomy and fine structure of the uterus of pregravid and gravid proglottids of the cyclophyllidean cestode Orthoskrjabinia junlanae, a parasite of mammals that inhabit a terrestrial but moist environment, were studied. In the initial stages of uterine development, developing embryos locate freely in the lumen of a saccate uterus that later partitions into chambers. Each chamber that forms encloses several embryos. The chambers are surrounded by muscle cells that synthesize extracellular matrix actively. The paruterine organs consist of stacks of flattened long outgrowths of muscular cells, interspersed with small lipid droplets. In the gravid proglottids, the size of paruterine organ increases and consists of flattened basal and small rounded apical parts separated by constrictions. The fine structure of the organ wall remains the same: sparse nuclei and stacks of flattened cytoplasmic outgrowths but internal invaginations or lumen in the paruterine organ are absent. Completely developed eggs remain localized in the uterus. Based on the comparative morpho-functional analysis of uterine and paruterine organs and uterine capsules in cestodes, we conclude that these non-functioning paruterine organ in O. junlanae is an example of an atavism. We postulate that the life cycle of the parasite, which infects mammals living in wet habitats, where threats of desiccation of parasite ova is reduced, has favoured a reversion to a more ancestral form of uterine development.
High Resolutions Studies of the Structure of the Solar Atmosphere
1992-06-30
Pairs in the Solar Wind", submitted to J. Geophys. Res., July 20, 1992. M. Karovska , F. Blundell and S. R. Habbal, "Fine Scale Structure of Active...Regions", manuscript in preparation. M. Karovska , F. Blundell and S. R. Habbal, "Fine Scale Structure of the Solar Limb in a Coronal Hole", manuscript in
Deborah L. Rogers; Constance I. Millar; Robert D. Westfall
1999-01-01
The fine-scale genetic structure of a subalpine conifer, whitebark pine (Pinus albicaulis Engelm.), was studied at nested geographic levels from watershed to adjacent stems in the eastern Sierra Nevada Range of California. A combination of several characteristics contributed to unpredicted genetic structure in this species. This includes being one of...
Germann, Matthias; Willitsch, Stefan
2016-07-28
We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.
Van Rooijen, Maaike; Verhoeven, Ludo; Steenbergen, Bert
2016-01-01
Early numeracy is an important precursor for arithmetic performance, academic proficiency, and work success. Besides their apparent motor difficulties, children with cerebral palsy (CP) often show additional cognitive disturbances. In this study, we examine whether working memory, non-verbal intelligence, linguistic skills, counting and fine motor skills are positively related to the early numeracy performance of 6-year-old children with CP. A total of 56 children (M = 6.0, SD = 0.61, 37 boys) from Dutch special education schools participated in this cross-sectional study. Of the total group, 81% of the children have the spastic type of CP (33% unilateral and 66% bilateral), 9% have been diagnosed as having diskinetic CP, 8% have been diagnosed as having spastic and diskinetic CP and 2% have been diagnosed as having a combination of diskinetic and atactic CP. The children completed standardized tests assessing early numeracy performance, working memory, non-verbal intelligence, sentence understanding and fine motor skills. In addition, an experimental task was administered to examine their basic counting performance. Structural equation modeling showed that working memory and fine motor skills were significantly related to the early numeracy performance of the children (β = .79 and p < .001, β = .41 and p < .001, respectively). Furthermore, counting was a mediating variable between working memory and early numeracy (β = .57, p < .001). Together, these findings highlight the importance of working memory for early numeracy performance in children with CP and they warrant further research into the efficacy of intervention programs aimed at working memory training.
Stacey, Paula C.; Kitterick, Pádraig T.; Morris, Saffron D.; Sumner, Christian J.
2017-01-01
Understanding what is said in demanding listening situations is assisted greatly by looking at the face of a talker. Previous studies have observed that normal-hearing listeners can benefit from this visual information when a talker's voice is presented in background noise. These benefits have also been observed in quiet listening conditions in cochlear-implant users, whose device does not convey the informative temporal fine structure cues in speech, and when normal-hearing individuals listen to speech processed to remove these informative temporal fine structure cues. The current study (1) characterised the benefits of visual information when listening in background noise; and (2) used sine-wave vocoding to compare the size of the visual benefit when speech is presented with or without informative temporal fine structure. The accuracy with which normal-hearing individuals reported words in spoken sentences was assessed across three experiments. The availability of visual information and informative temporal fine structure cues was varied within and across the experiments. The results showed that visual benefit was observed using open- and closed-set tests of speech perception. The size of the benefit increased when informative temporal fine structure cues were removed. This finding suggests that visual information may play an important role in the ability of cochlear-implant users to understand speech in many everyday situations. Models of audio-visual integration were able to account for the additional benefit of visual information when speech was degraded and suggested that auditory and visual information was being integrated in a similar way in all conditions. The modelling results were consistent with the notion that audio-visual benefit is derived from the optimal combination of auditory and visual sensory cues. PMID:27085797
Becheler, Ronan; Cassone, Anne-Laure; Noel, Philippe; Mouchel, Olivier; Morrison, Cheryl L.; Arnaud-Haond, Sophie
2017-01-01
Sampling in the deep sea is a technical challenge, which has hindered the acquisition of robust datasets that are necessary to determine the fine-grained biological patterns and processes that may shape genetic diversity. Estimates of the extent of clonality in deep-sea species, despite the importance of clonality in shaping the local dynamics and evolutionary trajectories, have been largely obscured by such limitations. Cold-water coral reefs along European margins are formed mainly by two reef-building species, Lophelia pertusa and Madrepora oculata. Here we present a fine-grained analysis of the genotypic and genetic composition of reefs occurring in the Bay of Biscay, based on an innovative deep-sea sampling protocol. This strategy was designed to be standardized, random, and allowed the georeferencing of all sampled colonies. Clonal lineages discriminated through their Multi-Locus Genotypes (MLG) at 6–7 microsatellite markers could thus be mapped to assess the level of clonality and the spatial spread of clonal lineages. High values of clonal richness were observed for both species across all sites suggesting a limited occurrence of clonality, which likely originated through fragmentation. Additionally, spatial autocorrelation analysis underlined the possible occurrence of fine-grained genetic structure in several populations of both L. pertusa and M. oculata. The two cold-water coral species examined had contrasting patterns of connectivity among canyons, with among-canyon genetic structuring detected in M. oculata, whereas L. pertusa was panmictic at the canyon scale. This study exemplifies that a standardized, random and georeferenced sampling strategy, while challenging, can be applied in the deep sea, and associated benefits outlined here include improved estimates of fine grained patterns of clonality and dispersal that are comparable across sites and among species.
Stirnemann, Ingrid; Mortelliti, Alessio; Gibbons, Philip; Lindenmayer, David B.
2015-01-01
Vegetation heterogeneity is an inherent feature of most ecosystems, characterises the structure of habitat, and is considered an important driver of species distribution patterns. However, quantifying fine-scale heterogeneity of vegetation cover can be time consuming, and therefore it is seldom measured. Here, we determine if heterogeneity is worthwhile measuring, in addition to the amount of cover, when examining species distribution patterns. Further, we investigated the effect of the surrounding landscape heterogeneity on species occupancy. We tested the effect of cover and heterogeneity of trees and shrubs, and the context of the surrounding landscape (number of habitats and distance to an ecotone) on site occupancy of three mammal species (the black wallaby [Wallabia bicolor], the long-nosed bandicoot [Perameles nasuta], and the bush rat [Rattus fuscipes]) within a naturally heterogeneous landscape in a temperate region of Australia. We found that fine-scale heterogeneity of vegetation attributes is an important driver of mammal occurrence of two of these species. Further, we found that, although all three species responded positively to vegetation heterogeneity, different mammals vary in their response to different types of vegetation heterogeneity measurement. For example, the black wallaby responded to the proximity of an ecotone, and the bush rat and the long-nosed bandicoot responded to fine-scale heterogeneity of small tree cover, whereas none of the mammals responded to broad scale heterogeneity (i.e., the number of habitat types). Our results highlight the influence of methodological decisions, such as how heterogeneity vegetation is measured, in quantifying species responses to habitat structures. The findings confirm the importance of choosing meaningful heterogeneity measures when modelling the factors influencing occupancy of the species of interest. PMID:26394327
NASA Astrophysics Data System (ADS)
Becheler, Ronan; Cassone, Anne-Laure; Noël, Philippe; Mouchel, Olivier; Morrison, Cheryl L.; Arnaud-Haond, Sophie
2017-11-01
Sampling in the deep sea is a technical challenge, which has hindered the acquisition of robust datasets that are necessary to determine the fine-grained biological patterns and processes that may shape genetic diversity. Estimates of the extent of clonality in deep-sea species, despite the importance of clonality in shaping the local dynamics and evolutionary trajectories, have been largely obscured by such limitations. Cold-water coral reefs along European margins are formed mainly by two reef-building species, Lophelia pertusa and Madrepora oculata. Here we present a fine-grained analysis of the genotypic and genetic composition of reefs occurring in the Bay of Biscay, based on an innovative deep-sea sampling protocol. This strategy was designed to be standardized, random, and allowed the georeferencing of all sampled colonies. Clonal lineages discriminated through their Multi-Locus Genotypes (MLG) at 6-7 microsatellite markers could thus be mapped to assess the level of clonality and the spatial spread of clonal lineages. High values of clonal richness were observed for both species across all sites suggesting a limited occurrence of clonality, which likely originated through fragmentation. Additionally, spatial autocorrelation analysis underlined the possible occurrence of fine-grained genetic structure in several populations of both L. pertusa and M. oculata. The two cold-water coral species examined had contrasting patterns of connectivity among canyons, with among-canyon genetic structuring detected in M. oculata, whereas L. pertusa was panmictic at the canyon scale. This study exemplifies that a standardized, random and georeferenced sampling strategy, while challenging, can be applied in the deep sea, and associated benefits outlined here include improved estimates of fine grained patterns of clonality and dispersal that are comparable across sites and among species.
Fine Structure in Helium-like Fluorine by Fast-Beam Laser Spectroscopy
NASA Astrophysics Data System (ADS)
Myers, E. G.; Thompson, J. K.; Silver, J. D.
1998-05-01
With the aim of providing an additional precise test of higher-order corrections to high precision calculations of fine structure in helium and helium-like ions(T. Zhang, Z.-C. Yan and G.W.F. Drake, Phys. Rev. Lett. 77), 1715 (1996)., a measurement of the 2^3P_2,F - 2^3P_1,F' fine structure in ^19F^7+ is in progress. The method involves doppler-tuned laser spectroscopy using a CO2 laser on a foil-stripped fluorine ion beam. We aim to achieve a higher precision, compared to an earlier measurement(E.G. Myers, P. Kuske, H.J. Andrae, I.A. Armour, H.A. Klein, J.D. Silver, and E. Traebert, Phys. Rev. Lett. 47), 87 (1981)., by using laser beams parallel and anti-parallel to the ion beam, to obtain partial cancellation of the doppler shift(J.K. Thompson, D.J.H. Howie and E.G. Myers, Phys. Rev. A 57), 180 (1998).. A calculation of the hyperfine structure, allowing for relativistic, QED and nuclear size effects, will be required to obtain the ``hyperfine-free'' fine structure interval from the measurements.
NASA Astrophysics Data System (ADS)
Kim, Minhyuk; Kim, Kyungtae; Lee, Woojun; Kim, Hyosub; Ahn, Jaewook
2017-04-01
Spectral programming solutions for the ultrafast spatial coherent control (USCC) method to resolve the fine-structure energy levels of atomic rubidium are reported. In USCC, a pair of counter-propagating ultrashort laser pulses are programmed to make a two-photon excitation pattern specific to particular transition pathways and atom species, thus allowing the involved transitions resolvable in space simultaneously. With a proper spectral phase and amplitude modulation, USCC has been also demonstrated for the systems with many intermediate energy levels. Pushing the limit of system complexity even further, we show here an experimental demonstration of the rubidium fine-structure excitation pattern resolvable by USCC. The spectral programming solution for the given USCC is achieved by combining a double-V-shape spectral phase function and a set of phase steps, where the former distinguishes the fine structure and the latter prevents resonant transitions. The experimental results will be presented along with its application in conjunction with the Doppler-free frequency-comb spectroscopy for rubidium hyperfine structure measurements. Samsung Science and Technology Foundation [SSTFBA1301-12].
2007-02-01
cyanoacrylic glue. Mounted otoliths were ground to the midplane using fine-grained lapping film. Ground otoliths were examined for oxytetracycline marks...were mounted and ground to the midplane with fine-grained lapping film. Ground otoliths were examined for oxytetracycline marks under a UV light source
Lamb Shift of n = 1 and n = 2 States of Hydrogen-like Atoms, 1 ≤ Z ≤ 110
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yerokhin, V. A.; Shabaev, V. M.
2015-09-15
Theoretical energy levels of the n = 1 and n = 2 states of hydrogen-like atoms with the nuclear charge numbers 1 ≤ Z ≤ 110 are tabulated. The tabulation is based on ab initio quantum electrodynamics calculations performed to all orders in the nuclear binding strength parameter Zα, where α is the fine structure constant. Theoretical errors due to various effects are critically examined and estimated.
Designing, producing, and constructing fine-graded hot mix asphalt on Illinois roadways.
DOT National Transportation Integrated Search
2015-04-01
Fine-graded (F-G) asphalt concrete mixtures are composed of an aggregate structure in which the fine fraction controls the : load-carrying capacity of the mix. Other states have reported benefits in using F-G mixtures, including improved compaction, ...
Spectral behavior of hydrated sulfate salts: implications for Europa mission spectrometer design
NASA Technical Reports Server (NTRS)
Dalton, James Bradley 3rd
2003-01-01
Remote sensing of the surface of Europa with near-infrared instruments has suggested the presence of hydrated materials, including sulfate salts. Attention has been focused on these salts for the information they might yield regarding the evolution of a putative interior ocean, and the evaluation of its astrobiological potential. These materials exhibit distinct infrared absorption features due to bound water. The interactions of this water with the host molecules lead to fine structure that can be used to discriminate among these materials on the basis of their spectral behavior. This fine structure is even more pronounced at the low temperatures prevalent on icy satellites. Examination of hydrated sulfate salt spectra measured under cryogenic temperature conditions provides realistic constraints for future remote-sensing missions to Europa. In particular, it suggests that a spectrometer system capable of 2-5 nm spectral resolution or better, with a spatial resolution approaching 100 m, would be able to differentiate among proposed hydrated surface materials, if present, and constrain their distributions across the surface. Such information would provide valuable insights into the evolutionary history of Europa.
Spectral behavior of hydrated sulfate salts: implications for Europa mission spectrometer design.
Dalton, James Bradley
2003-01-01
Remote sensing of the surface of Europa with near-infrared instruments has suggested the presence of hydrated materials, including sulfate salts. Attention has been focused on these salts for the information they might yield regarding the evolution of a putative interior ocean, and the evaluation of its astrobiological potential. These materials exhibit distinct infrared absorption features due to bound water. The interactions of this water with the host molecules lead to fine structure that can be used to discriminate among these materials on the basis of their spectral behavior. This fine structure is even more pronounced at the low temperatures prevalent on icy satellites. Examination of hydrated sulfate salt spectra measured under cryogenic temperature conditions provides realistic constraints for future remote-sensing missions to Europa. In particular, it suggests that a spectrometer system capable of 2-5 nm spectral resolution or better, with a spatial resolution approaching 100 m, would be able to differentiate among proposed hydrated surface materials, if present, and constrain their distributions across the surface. Such information would provide valuable insights into the evolutionary history of Europa.
Schuttler, Stephanie G; Philbrick, Jessica A; Jeffery, Kathryn J; Eggert, Lori S
2014-01-01
Spatial patterns of relatedness within animal populations are important in the evolution of mating and social systems, and have the potential to reveal information on species that are difficult to observe in the wild. This study examines the fine-scale genetic structure and connectivity of groups within African forest elephants, Loxodonta cyclotis, which are often difficult to observe due to forest habitat. We tested the hypothesis that genetic similarity will decline with increasing geographic distance, as we expect kin to be in closer proximity, using spatial autocorrelation analyses and Tau K(r) tests. Associations between individuals were investigated through a non-invasive genetic capture-recapture approach using network models, and were predicted to be more extensive than the small groups found in observational studies, similar to fission-fusion sociality found in African savanna (Loxodonta africana) and Asian (Elephas maximus) species. Dung samples were collected in Lopé National Park, Gabon in 2008 and 2010 and genotyped at 10 microsatellite loci, genetically sexed, and sequenced at the mitochondrial DNA control region. We conducted analyses on samples collected at three different temporal scales: a day, within six-day sampling sessions, and within each year. Spatial autocorrelation and Tau K(r) tests revealed genetic structure, but results were weak and inconsistent between sampling sessions. Positive spatial autocorrelation was found in distance classes of 0-5 km, and was strongest for the single day session. Despite weak genetic structure, individuals within groups were significantly more related to each other than to individuals between groups. Social networks revealed some components to have large, extensive groups of up to 22 individuals, and most groups were composed of individuals of the same matriline. Although fine-scale population genetic structure was weak, forest elephants are typically found in groups consisting of kin and based on matrilines, with some individuals having more associates than observed from group sizes alone.
Variations in the fine-structure constant constraining gravity theories
NASA Astrophysics Data System (ADS)
Bezerra, V. B.; Cunha, M. S.; Muniz, C. R.; Tahim, M. O.; Vieira, H. S.
2016-08-01
In this paper, we investigate how the fine-structure constant, α, locally varies in the presence of a static and spherically symmetric gravitational source. The procedure consists in calculating the solution and the energy eigenvalues of a massive scalar field around that source, considering the weak-field regime. From this result, we obtain expressions for a spatially variable fine-structure constant by considering suitable modifications in the involved parameters admitting some scenarios of semi-classical and quantum gravities. Constraints on free parameters of the approached theories are calculated from astrophysical observations of the emission spectra of a white dwarf. Such constraints are finally compared with those obtained in the literature.
Spatial structure of morphological and neutral genetic variation in Brook Trout
Kazyak, David C.; Hilderbrand, Robert H.; Keller, Stephen R.; Colaw, Mark C.; Holloway, Amanda E.; Morgan, Raymond P.; King, Timothy L.
2015-01-01
Brook Trout Salvelinus fontinalis exhibit exceptional levels of life history variation, remarkable genetic variability, and fine-scale population structure. In many cases, neighboring populations may be highly differentiated from one another to an extent that is comparable with species-level distinctions in other taxa. Although genetic samples have been collected from hundreds of populations and tens of thousands of individuals, little is known about whether differentiation at neutral markers reflects phenotypic differences among Brook Trout populations. We compared differentiation in morphology and neutral molecular markers among populations from four geographically proximate locations (all within 24 km) to examine how genetic diversity covaries with morphology. We found significant differences among and/or within streams for all three morphological axes examined and identified the source stream of many individuals based on morphology (52.3% classification efficiency). Although molecular and morphological differentiation among streams ranged considerably (mean pairwise FST: 0.023–0.264; pairwise PST: 0.000–0.339), the two measures were not significantly correlated. While in some cases morphological characters appear to have diverged to a greater extent than expected by neutral genetic drift, many traits were conserved to a greater extent than were neutral genetic markers. Thus, while Brook Trout exhibit fine-scale spatial patterns in both morphology and neutral genetic diversity, these types of biological variabilities are being structured by different ecological and evolutionary processes. The relative influences of genetic drift versus selection and phenotypic plasticity in shaping morphology appear to vary among populations occupying nearby streams.
Light trapping structures in wing scales of butterfly Trogonoptera brookiana.
Han, Zhiwu; Niu, Shichao; Shang, Chunhui; Liu, Zhenning; Ren, Luquan
2012-04-28
The fine optical structures in wing scales of Trogonoptera brookiana, a tropical butterfly exhibiting efficient light trapping effect, were carefully examined and the reflectivity was measured using reflectance spectrometry. The optimized 3D configuration of the coupling structure was determined using SEM and TEM data, and the light trapping mechanism of butterfly scales was studied. It is found that the front and back sides of butterfly wings possess different light trapping structures, but both can significantly increase the optical path and thus result in almost total absorption of all incident light. An optical model was created to check the properties of this light trapping structure. The simulated reflectance spectra are in concordance with the experimental ones. The results reliably confirm that these structures induce efficient light trapping effect. This functional "biomimetic structure" would have a potential value in wide engineering and optical applications. This journal is © The Royal Society of Chemistry 2012
NASA Astrophysics Data System (ADS)
Donnadieu, P.; Dénoyer, F.
1996-11-01
A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch
2016-07-28
We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ionsmore » produced by photoionization.« less
A global exploration of fine-root trait variation: opening the black box
USDA-ARS?s Scientific Manuscript database
A major part of ecosystem functioning relies on processes below ground, which are governed by fine root traits. This study synthesizes published and unpublished fine-root trait data available worldwide (>9000 observations from >1100 species on 14 traits) and examines their ecological value and globa...
NASA Astrophysics Data System (ADS)
Strand, A.; Beidler, K.; McGlinn, D.; Pritchard, S. G.
2016-12-01
Fine root turnover represents the most significant mode of flux from plants into soil C pools. Unfortunately fine root senescence and decomposition, processes critical in turnover, are particularly understudied. For example, little is known about either the factors that influence fine-root decomposition or the fate of compounds they contain during root death. Better understanding fine root senescence and decomposition should reduce uncertainty associated with global climate models; including re-uptake of materials in dying leaves into these models has already been shown to increase their accuracy. Over 4400 individual fine-roots and 4734 rhizomorphs were tracked from initiation until disintegration over 12 years using minirhizotrons at the Duke FACE site. Image-based approaches such as minirhizotrons cannot directly assess fine-root physiological status. To assess fine-root function directly, we are now conducting manipulative experiments in P. taeda in which fine-root senescence is induced through two treatments, steam- and direct hand-girdling. Physiological status is then assessed by examining gene-expression, root anatomy and chemical composition of manipulated roots. Changing [CO2] did not change persistence times for roots, but did impact rhizomorph persistence. Both roots and rhizomorphs showed interactions between effects of N and CO2 on persistence. Most interesting is the interaction between fine-roots and rhizomorphs: fine root persistence times are reduced in the presence of rhizomorphs, but this effect depends on the amount of N available. Finally, we found experimentally inducing senescence via steam girdling to be very effective relative to hand-girdling. These results provide evidence of the importance of priming on function of soil fungi and the role of N availability on fine-root turnover. The ability to stimulate fine-root senescence provides a powerful experimental tool to examine the fates of resources contained in fine-root pools as these roots turn over.
a Measurement of the Fine Structure Constant
NASA Astrophysics Data System (ADS)
Hensley, Joel M.; Wicht, Andreas; Sarajlic, Edina; Chu, Steven
2002-06-01
Using an atom interferometer method, we measure the recoil velocity of cesium due to the coherent scattering of a photon. This measurement is used to obtain a preliminary value of ħ/M
Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; ...
2016-01-25
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species ( Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ 13C and δ 15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearbymore » reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (F st, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species ( Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ 13C and δ 15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearbymore » reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (F st, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less
Sea-Ice Feature Mapping using JERS-1 Imagery
NASA Technical Reports Server (NTRS)
Maslanik, James; Heinrichs, John
1994-01-01
JERS-1 SAR and OPS imagery are examined in combination with other data sets to investigate the utility of the JERS-1 sensors for mapping fine-scale sea ice conditions. Combining ERS-1 C band and JERS-1 L band SAR aids in discriminating multiyear and first-year ice. Analysis of OPS imagery for a field site in the Canadian Archipelago highlights the advantages of OPS's high spatial and spectral resolution for mapping ice structure, melt pond distribution, and surface albedo.
NASAL FILTERING OF FINE PARTICLES IN CHILDREN VS. ADULTS
Nasal efficiency for removing fine particles may be affected by developmental changes in nasal structure associated with age. In healthy Caucasian children (age 6-13, n=17) and adults (age 18-28, n=11) we measured the fractional deposition (DF) of fine particles (1 and 2um MMAD)...
Fine Structure of Dark Energy and New Physics
Jejjala, Vishnu; Kavic, Michael; Minic, Djordje
2007-01-01
Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of darkmore » energy and constrain the distribution function.« less
Quantum-gravity predictions for the fine-structure constant
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Held, Aaron; Wetterich, Christof
2018-07-01
Asymptotically safe quantum fluctuations of gravity can uniquely determine the value of the gauge coupling for a large class of grand unified models. In turn, this makes the electromagnetic fine-structure constant calculable. The balance of gravity and matter fluctuations results in a fixed point for the running of the gauge coupling. It is approached as the momentum scale is lowered in the transplanckian regime, leading to a uniquely predicted value of the gauge coupling at the Planck scale. The precise value of the predicted fine-structure constant depends on the matter content of the grand unified model. It is proportional to the gravitational fluctuation effects for which computational uncertainties remain to be settled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldmann, Elias, E-mail: goldmann@itp.uni-bremen.de; Barthel, Stefan; Florian, Matthias
The variation of the excitonic fine-structure splitting is studied for semiconductor quantum dots under the influence of a strain-reducing layer, utilized to shift the emission wavelength of the excitonic transition into the telecom-wavelength regime of 1.3–1.5 μm. By means of a sp{sup 3}s{sup *}-tight-binding model and configuration interaction, we calculate wavelength shifts and fine-structure splittings for various quantum dot geometries. We find the splittings remaining small and even decreasing with strain-reducing layer composition for quantum dots with large height. Combined with an observed increased emission efficiency, the applicability for generation of entanglement photons is persistent.
Comparison of Fine Structures of Electron Cyclotron Harmonic Emissions in Aurora
NASA Astrophysics Data System (ADS)
Labelle, J. W.; Dundek, M.
2015-12-01
Recent discoveries of emissions at four and five times the electron cyclotron frequency in aurora occuring under daylit conditions motivated the modification of radio receivers at South Pole Station, Antarctica, to measure fine structure of such emissions during two consecutive austral summers, 2013-4 and 2014-5. The experiment recorded 347 emission events over 376 days of observation. The seasonal distribution of these events revealed that successively higher harmonics require higher solar zenith angles for occurrence, as expected if they are generated at locations where the upper hybrid frequency matches the cyclotron harmonic, which for higher harmonics requires higher electron densities which are associated with higher solar zenith angles. Detailed examination of 21 cases in which two harmonics occur simultaneously showed that only rarely, about ten percent of the time, are the frequencies of the fine structures of the emissions in exact integer ratio (e.g., 3:2, 4:3, or 5:4 depending on which combination of harmonics is observed). In the remaining approximately ninety percent of the cases, the higher harmonic occurred at a lower ratio than the appropriate integer ratio, as expected if the harmonics are generated independently at their separate matching conditions in the bottomside ionosphere, where the upper hybrid frequency increases with altitude while the gyroharmonics decrease with altitude. (The bottomside is the most likely source of the emissions, since from there the mode converted Z-modes have access to ground-level.) Taken together, these results suggest that the dominant mechanism for the higher harmonics is independent generation at locations where the upper hybrid frequency matches each harmonic, i.e., at a separate source altitude for each harmonic. Generation of higher harmonics through coalescence of lower harmonic waves explains at most a small minority of events.
Dawes, Nickki Pearce; Modecki, Kathryn L; Gonzales, Nancy; Dumka, Larry; Millsap, Roger
2015-11-01
The potential benefits of participation in extracurricular activities may be especially important for youth who are at risk for academic underachievement, such as low income Mexican-origin youth in the U.S. To advance understanding of factors that drive participation for this population, this study examined Mexican-origin youth's trajectories of participation in extracurricular activities across Grades 7-12 and tested theoretically-derived predictors of these trajectories. Participants were 178 adolescents (53.9 % Female, Mage = 12.28) and their mothers who separately completed in-home interviews. Youth reported the frequency of their participation across a range of extracurricular activities. Latent growth curve models of overall extracurricular activities participation, sports participation, and fine arts participation were individually estimated via structural equation modeling. The findings demonstrated developmental declines in overall participation and in sports participation. For fine arts, declines in participation in middle school were followed by subsequent increases during high school (a curvilinear pattern). Motivationally-salient predictors of participation trajectories included youth's traditional cultural values orientation (sports), the mothers' educational aspirations for the youth (sports, fine arts, overall activity), and youth gender (sports, fine arts). Overall, the results suggest variability in participation trajectories based on program type, and highlight the need for additional research to enhance our understanding of the impact of culturally-relevant predictors on participation over time.
Parental Writing Support and Preschoolers' Early Literacy, Language, and Fine Motor Skills
Bindman, Samantha W.; Skibbe, Lori E.; Hindman, Annemarie H.; Aram, Dorit; Morrison, Frederick J.
2014-01-01
The current study examines the nature and variability of parents' aid to preschoolers in the context of a shared writing task, as well as the relations between this support and children's literacy, vocabulary, and fine motor skills. In total, 135 preschool children (72 girls) and their parents (primarily mothers) in an ethnically diverse, middle-income community were observed while writing a semi-structured invitation for a pretend birthday party together. Children's phonological awareness, alphabet knowledge, word decoding, vocabulary, and fine motor skills were also assessed. Results revealed that parents provided variable, but generally low–level, support for children's approximation of sound-symbol correspondence in their writing (i.e., graphophonemic support), as well as for their production of letter forms (i.e., print support). Parents frequently accepted errors rather than asking for corrections (i.e., demand for precision). Further analysis of the parent-child dyads (n = 103) who wrote the child's name on the invitation showed that parents provided higher graphophonemic, but not print, support when writing the child's name than other words. Overall parental graphophonemic support was positively linked to children's decoding and fine motor skills, whereas print support and demand for precision were not related to any of the child outcomes. In sum, this study indicates that while parental support for preschoolers' writing may be minimal, it is uniquely linked to key literacy-related outcomes in preschool. PMID:25284957
Parental Writing Support and Preschoolers' Early Literacy, Language, and Fine Motor Skills.
Bindman, Samantha W; Skibbe, Lori E; Hindman, Annemarie H; Aram, Dorit; Morrison, Frederick J
2014-01-01
The current study examines the nature and variability of parents' aid to preschoolers in the context of a shared writing task, as well as the relations between this support and children's literacy, vocabulary, and fine motor skills. In total, 135 preschool children (72 girls) and their parents (primarily mothers) in an ethnically diverse, middle-income community were observed while writing a semi-structured invitation for a pretend birthday party together. Children's phonological awareness, alphabet knowledge, word decoding, vocabulary, and fine motor skills were also assessed. Results revealed that parents provided variable, but generally low-level, support for children's approximation of sound-symbol correspondence in their writing (i.e., graphophonemic support), as well as for their production of letter forms (i.e., print support). Parents frequently accepted errors rather than asking for corrections (i.e., demand for precision). Further analysis of the parent-child dyads ( n = 103) who wrote the child's name on the invitation showed that parents provided higher graphophonemic, but not print, support when writing the child's name than other words. Overall parental graphophonemic support was positively linked to children's decoding and fine motor skills, whereas print support and demand for precision were not related to any of the child outcomes. In sum, this study indicates that while parental support for preschoolers' writing may be minimal, it is uniquely linked to key literacy-related outcomes in preschool.
Assessment of Fine-Motor Development of Primary Students with Informal Medical Tests.
ERIC Educational Resources Information Center
Traynelis-Yurek, Elaine; Strong, Mary W.
This study examined whether informal medical assessments could be used by classroom teachers to assess fine-motor ability and if there is any connection between fine-motor ability and reading achievement. Subjects were 174 half-day kindergarten children from whole-language classrooms in three states. Subjects were pretested in October and…
Microstructural stability of fine-grained fully lamellar XD TiAl alloys by step aging
NASA Astrophysics Data System (ADS)
Zhu, Hanliang; Maruyama, K.; Seo, D. Y.; Au, P.
2005-05-01
XD TiAl alloys (Ti-45 and 47Al-2Nb-2Mn+0.8 vol pct TiB2) (at. pct) were oil quenched to produce fine-grained fully lamellar (FGFL) structures, and aging treatments at different temperatures for different durations were carried out to stabilize the FGFL structures. Microstructural examinations show that the aging treatments cause phase transformation of α 2 to γ, resulting in stabilization of the lamellar structure, as indicated by a significant decrease in α 2 volume fraction. However, several degradation processes are also introduced. After aging, within lamellar colonies, the α 2 lamellae become finer due to dissolution, whereas most of the γ lamellae coarsen. The dissolution of α 2 involves longitudinal dissolution and lateral dissolution. In addition, at lamellar colony boundaries, lamellar termination migration, nucleation and growth of γ grains, and discontinuous coarsening occur. With the exception of longitudinal dissolution, all the other transformation modes are considered as degradation processes as they result in a reduction in α 2/ γ interfaces. Different phase transformation modes are present to varying degrees in the aged FGFL structures, depending on aging conditions and Al content. A multiple step aging reduces the drive force for phase transformation at high temperature by promoting phase transformation via longitudinal dissolution at low temperatures. As a result, this aging procedure effectively stabilizes the lamellar structure and suppresses other degradation processes. Therefore, the multiple step aging is suggested to be an optimal aging condition for stabilizing FGFL XD TiAl alloys.
Self-monitoring of driving speed.
Etzioni, Shelly; Erev, Ido; Ishaq, Robert; Elias, Wafa; Shiftan, Yoram
2017-09-01
In-vehicle data recorders (IVDR) have been found to facilitate safe driving and are highly valuable in accident analysis. Nevertheless, it is not easy to convince drivers to use them. Part of the difficulty is related to the "Big Brother" concern: installing IVDR impairs the drivers' privacy. The "Big Brother" concern can be mitigated by adding a turn-off switch to the IVDR. However, this addition comes at the expense of increasing speed variability between drivers, which is known to impair safety. The current experimental study examines the significance of this negative effect of a turn-off switch under two experimental settings representing different incentive structures: small and large fines for speeding. 199 students were asked to participate in a computerized speeding dilemma task, where they could control the speed of their "car" using "brake" and "speed" buttons, corresponding to automatic car foot pedals. The participants in two experimental conditions had IVDR installed in their "cars", and were told that they could turn it off at any time. Driving with active IVDR implied some probability of "fines" for speeding, and the two experimental groups differed with respect to the fine's magnitude, small or large. The results indicate that the option to use IVDR reduced speeding and speed variance. In addition, the results indicate that the reduction of speed variability was maximal in the small fine group. These results suggest that using IVDR with gentle fines and with a turn-off option maintains the positive effect of IVDR, addresses the "Big Brother" concern, and does not increase speed variance. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The effects of a processive pectin-methylesterase treatment on two different pectins, both possessing a high degree of methylesterification, were investigated. While the starting samples were purportedly very similar in fine structure, and even though the sample-averaged degree of methylesterificati...
Temporal Fine Structure and Applications to Cochlear Implants
ERIC Educational Resources Information Center
Li, Xing
2013-01-01
Complex broadband sounds are decomposed by the auditory filters into a series of relatively narrowband signals, each of which conveys information about the sound by time-varying features. The slow changes in the overall amplitude constitute envelope, while the more rapid events, such as zero crossings, constitute temporal fine structure (TFS).…
Laser Spectroscopy of the Fine-Structure Splitting in the 2^{3}P_{J} Levels of ^{4}He.
Zheng, X; Sun, Y R; Chen, J-J; Jiang, W; Pachucki, K; Hu, S-M
2017-02-10
The fine-structure splitting in the 2^{3}P_{J} (J=0, 1, 2) levels of ^{4}He is of great interest for tests of quantum electrodynamics and for the determination of the fine-structure constant α. The 2^{3}P_{0}-2^{3}P_{2} and 2^{3}P_{1}-2^{3}P_{2} intervals are measured by laser spectroscopy of the ^{3}P_{J}-2^{3}S_{1} transitions at 1083 nm in an atomic beam, and are determined to be 31 908 130.98±0.13 kHz and 2 291 177.56±0.19 kHz, respectively. Compared with calculations, which include terms up to α^{5}Ry, the deviation for the α-sensitive interval 2^{3}P_{0}-2^{3}P_{2} is only 0.22 kHz. It opens the window for further improvement of theoretical predictions and an independent determination of the fine-structure constant α with a precision of 2×10^{-9}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunár, Stanislav; Heinzel, Petr; Mackay, Duncan H.
2016-12-20
We use the detailed 3D whole-prominence fine structure model to produce the first simulated high-resolution ALMA observations of a modeled quiescent solar prominence. The maps of synthetic brightness temperature and optical thickness shown in the present paper are produced using a visualization method for synthesis of the submillimeter/millimeter radio continua. We have obtained the simulated observations of both the prominence at the limb and the filament on the disk at wavelengths covering a broad range that encompasses the full potential of ALMA. We demonstrate here extent to which the small-scale and large-scale prominence and filament structures will be visible inmore » the ALMA observations spanning both the optically thin and thick regimes. We analyze the relationship between the brightness and kinetic temperature of the prominence plasma. We also illustrate the opportunities ALMA will provide for studying the thermal structure of the prominence plasma from the cores of the cool prominence fine structure to the prominence–corona transition region. In addition, we show that detailed 3D modeling of entire prominences with their numerous fine structures will be important for the correct interpretation of future ALMA observations of prominences.« less
NASA Astrophysics Data System (ADS)
Broxton, P. D.; Harpold, A. A.; van Leeuwen, W.; Biederman, J. A.
2016-12-01
Quantifying the amount of snow in forested mountainous environments, as well as how it may change due to warming and forest disturbance, is critical given its importance for water supply and ecosystem health. Forest canopies affect snow accumulation and ablation in ways that are difficult to observe and model. Furthermore, fine-scale forest structure can accentuate or diminish the effects of forest-snow interactions. Despite decades of research demonstrating the importance of fine-scale forest structure (e.g. canopy edges and gaps) on snow, we still lack a comprehensive understanding of where and when forest structure has the largest impact on snowpack mass and energy budgets. Here, we use a hyper-resolution (1 meter spatial resolution) mass and energy balance snow model called the Snow Physics and Laser Mapping (SnowPALM) model along with LIDAR-derived forest structure to determine where spatial variability of fine-scale forest structure has the largest influence on large scale mass and energy budgets. SnowPALM was set up and calibrated at sites representing diverse climates in New Mexico, Arizona, and California. Then, we compared simulations at different model resolutions (i.e. 1, 10, and 100 m) to elucidate the effects of including versus not including information about fine scale canopy structure. These experiments were repeated for different prescribed topographies (i.e. flat, 30% slope north, and south-facing) at each site. Higher resolution simulations had more snow at lower canopy cover, with the opposite being true at high canopy cover. Furthermore, there is considerable scatter, indicating that different canopy arrangements can lead to different amounts of snow, even when the overall canopy coverage is the same. This modeling is contributing to the development of a high resolution machine learning algorithm called the Snow Water Artificial Network (SWANN) model to generate predictions of snow distributions over much larger domains, which has implications for improving land surface models that do not currently resolve or parameterize fine-scale canopy structure. In addition, these findings have implications for understanding the potential of different forest management strategies (i.e. thinning) based on local topography and climate to maximize the amount and retention of snow.
Butler, D.R.; Malanson, G.P.; Walsh, S.J.; Fagre, D.B.
2007-01-01
The spatial distribution and pattern of alpine treeline in the American West reflect the overarching influences of geological history, lithology and structure, and geomorphic processes and landforms, and geologic and geomorphic factors—both forms and processes—can control the spatiotemporal response of the ecotone to climate change. These influences occur at spatial scales ranging from the continental scale to fine scale processes and landforms at the slope scale. Past geomorphic influences, particularly Pleistocene glaciation, have also left their impact on treeline, and treelines across the west are still adjusting to post-Pleistocene conditions within Pleistocene-created landforms. Current fine scale processes include solifluction and changes on relict solifluction and digging by animals. These processes should be examined in detail in future studies to facilitate a better understanding of where individual tree seedlings become established as a primary response of the ecotone to climate change.
Jinnah, Alexander H; Emory, Cynthia L; Mai, Nicholas H; Bergman, Simon; Salih, Ziyan T
2016-05-01
Hidradenocarcinoma (HAC) is a rare adenexal tumor with a propensity for the head and neck region and extremities. We report a case of hidradenocarcinnoma in a 56-year-old woman with a mass on her right palm sampled by fine-needle aspiration and later confirmed on histological examination. Fine-needle aspiration cytology revealed a dual population of cells including polyhedral eosinophilic cells and glycogen containing cells with pale/clear cytoplasm. The nuclei were pleomorphic with prominent nucleoli. Occassional papillary structures were identified on the cell block material. A series of immunohistochemical stains were performed and an adnexal neoplasm was suggested. The mass was resected. On histologic sections, infiltration into the adjacent soft tissue was identified. After an additional series of immunohistochemical stains, the diagnosis was confirmed as a HAC. Herein, we present our findings and discuss the differential diagnoses. © 2016 Wiley Periodicals, Inc.
Fabrication, characterization and fracture study of a machinable hydroxyapatite ceramic.
Shareef, M Y; Messer, P F; van Noort, R
1993-01-01
In this study the preparation of a machinable hydroxyapatite from mixtures of a fine, submicrometer powder and either a coarse powder composed of porous aggregates up to 50 microns or a medium powder composed of dense particles of 3 microns median size is described. These were characterized using X-ray diffraction, transmission and scanning electron microscopy and infra-red spectroscopy. Test-pieces were formed by powder pressing and slip casting mixtures of various combinations of the fine, medium and coarse powders. The fired test-pieces were subjected to measurements of firing shrinkage, porosity, bulk density, tensile strength and fracture toughness. The microstructure and composition were examined using scanning electron microscopy and X-ray diffraction. For both processing methods, a uniform interconnected microporous structure was produced of a high-purity hydroxyapatite. The maximum tensile strength and fracture toughness that could be attained while retaining machinability were 37 MPa and 0.8 MPa m1/2 respectively.
Manufacturing an advanced process characterization reticle incorporating halftone biasing
NASA Astrophysics Data System (ADS)
Nakagawa, Kent H.; Van Den Broeke, Douglas J.; Chen, J. Fung; Laidig, Thomas L.; Wampler, Kurt E.; Caldwell, Roger F.
1999-04-01
As the semiconductor roadmap continues to require imaging of smaller feature son wafers, we continue to explore new approaches in OPC strategies to extend the lifespan of existing technology. In this paper, we study a new OPC technology, called halftone biasing, and its application on an OPC characterization reticle, designed by MicroUnity Systems Engineering, Inc. The RTP9 test reticle is the latest in a series of 'LineSweeper' characterization reticles. Each reticle contains a wide range of line width sand pitches, each with several alternative OPC treatments, including references cases, scattering bars, and fine biasing. One of RTP9's design requirements was to support very fine, incremental biases for densely-pitched lines. Ordinarily, this would dictate a reduced address unit and with it the costly penalty of a square-law increase in e- beam write time. RTP9 incorporates a new OPC strategy, called halftone biasing, which has been proposed to address this problem. Taking advantage of optical reduction printing, this technique applies a sub-resolution halftone screen to the edges of figures to accomplish fine biasing equivalent to using an address unit one-fourth of the size of the actual e-beam writing grid. The resulting edge structure has some of the characteristics of aggressive OPC structures, but can be used in areas where traditional scattering bars cannot be placed. The trade-off between the faster write times achieved and the inflation of pattern file size is examined. The manufacturability and inspectability of halftone-biased lines on the RTP9 test reticle are explored. Pattern fidelity is examined using both optical and SEM tools. Printed 0.18 micrometers DUV resist line edge profiles are compared for both halftone and non- halftone feature edges. The CD uniformity of the OPC features, and result of die-to-database inspection are reported. The application of halftone biasing to real circuits, including the impact of data volume and saved write time, is also discussed.
Mayanovic, Robert A.; Jayanetti, Sumedha; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming
2003-01-01
Recently x-ray absorption fine structure (XAFS) studies of various ions in aqueous solutions showed a variation of cation-ligand bond lengths, often coupled with other structure changes, with increasing temperatures. Thus, the variations of the structure of several metal ion complexes with temperature based on observations from the X-ray absorption fine structure (XAFS) studies in the hope that it will stimulate the development of either first- principles theory or molecular dynamics simulations that might adequately describes these results are discussed.
Comparison of Observed Spatio-temporal Aftershock Patterns with Earthquake Simulator Results
NASA Astrophysics Data System (ADS)
Kroll, K.; Richards-Dinger, K. B.; Dieterich, J. H.
2013-12-01
Due to the complex nature of faulting in southern California, knowledge of rupture behavior near fault step-overs is of critical importance to properly quantify and mitigate seismic hazards. Estimates of earthquake probability are complicated by the uncertainty that a rupture will stop at or jump a fault step-over, which affects both the magnitude and frequency of occurrence of earthquakes. In recent years, earthquake simulators and dynamic rupture models have begun to address the effects of complex fault geometries on earthquake ground motions and rupture propagation. Early models incorporated vertical faults with highly simplified geometries. Many current studies examine the effects of varied fault geometry, fault step-overs, and fault bends on rupture patterns; however, these works are limited by the small numbers of integrated fault segments and simplified orientations. The previous work of Kroll et al., 2013 on the northern extent of the 2010 El Mayor-Cucapah rupture in the Yuha Desert region uses precise aftershock relocations to show an area of complex conjugate faulting within the step-over region between the Elsinore and Laguna Salada faults. Here, we employ an innovative approach of incorporating this fine-scale fault structure defined through seismological, geologic and geodetic means in the physics-based earthquake simulator, RSQSim, to explore the effects of fine-scale structures on stress transfer and rupture propagation and examine the mechanisms that control aftershock activity and local triggering of other large events. We run simulations with primary fault structures in state of California and northern Baja California and incorporate complex secondary faults in the Yuha Desert region. These models produce aftershock activity that enables comparison between the observed and predicted distribution and allow for examination of the mechanisms that control them. We investigate how the spatial and temporal distribution of aftershocks are affected by changes to model parameters such as shear and normal stress, rate-and-state frictional properties, fault geometry, and slip rate.
Simple preparation of magnetic field-responsive structural colored Janus particles.
Teshima, Midori; Seki, Takahiro; Takeoka, Yukikazu
2018-03-08
We established a simple method for preparing Janus particles displaying different structural colors using submicron-sized fine silica particles and magnetic nanoparticles composed of Fe 3 O 4 . A w/o emulsion is prepared by vortex-stirring a mixed aqueous solution of suspended fine silica particles and magnetic nanoparticles and of hexadecane containing an emulsifier. Subsequent drying of the emulsion on a hot plate using a magnetic stirrer provides a polydisperse particle aggregate displaying two different structural colors according to the ratio of the amount of fine silica particles to the amount of magnetic nanoparticles. This polydisperse particle aggregate can be converted into monodisperse particles simply by using a sieve made of stainless steel. In the presence of a magnet, the monodisperse Janus particles can change their orientation and can switch between two different structural colors.
The fine-structure intervals of (N-14)+ by far-infrared laser magnetic resonance
NASA Technical Reports Server (NTRS)
Brown, John M.; Varberg, Thomas D.; Evenson, Kenneth M.; Cooksy, Andrew L.
1994-01-01
The far-infrared laser magnetic resonance spectra associated with both fine-structure transitions in (N-14)+ in its ground P-3 state have been recorded. This is the first laboratory observation of the J = 1 left arrow 0 transition and its frequency has been determined two orders of magnitude more accurately than previously. The remeasurement of the J = 2 left arrow 1 spectrum revealed a small error in the previous laboratory measurements. The fine-structure splittings (free of hyperfine interactions) determined in this work are (delta)E(sub 10) = 1461.13190 (61) GHz, (delta)E(sub 21) = 2459.38006 (37) GHz. Zero-field transition frequencies which include the effects of hyperfine structure have also been calculated. Refined values for the hyperfine constants and the g(sub J) factors have been obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi
2007-10-19
We study the temperature evolution of aluminum nanoparticles generated by femtosecond laser ablation with spatiotemporally resolved x-ray-absorption fine-structure spectroscopy. We successfully identify the nanoparticles based on the L-edge absorption fine structure of the ablation plume in combination with the dependence of the edge structure on the irradiation intensity and the expansion velocity of the plume. In particular, we show that the lattice temperature of the nanoparticles is estimated from the L-edge slope, and that its spatial dependence reflects the cooling of the nanoparticles during plume expansion. The results reveal that the emitted nanoparticles travel in a vacuum as a condensedmore » liquid phase with a lattice temperature of about 2500 to 4200 K in the early stage of plume expansion.« less
ERIC Educational Resources Information Center
Dinehart, Laura; Manfra, Louis
2013-01-01
Research Findings: Given the growing literature pertaining to the importance of fine motor skills for later academic achievement (D. W. Grissmer, K. J. Grimm, S. M. Aiyer, W. M. Murrah, & J. S. Steele, 2010), the current study examines whether the fine motor skills of economically disadvantaged preschool students predict later academic…
Fine Motor Skills and Executive Function Both Contribute to Kindergarten Achievement
ERIC Educational Resources Information Center
Cameron, Claire E.; Brock, Laura L.; Murrah, William M.; Bell, Lindsay H.; Worzalla, Samantha L.; Grissmer, David; Morrison, Frederick J.
2012-01-01
This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on 6 standardized assessments in a sample of middle-socioeconomic status kindergarteners. Three- and 4-year-olds' (n = 213) fine and gross motor skills were assessed in a home visit before kindergarten, EF was measured at fall…
Strong influence of regional species pools on continent-wide structuring of local communities.
Lessard, Jean-Philippe; Borregaard, Michael K; Fordyce, James A; Rahbek, Carsten; Weiser, Michael D; Dunn, Robert R; Sanders, Nathan J
2012-01-22
There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use a continent-wide dataset of local ant communities and implement ecologically explicit source pool definitions to examine the relative importance of regional species pools and local interactions for shaping community structure. Then we assess which factors underlie systematic variation in the structure of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution of climatic niches influences the phylogenetic structure of regional source pools and that the influence of regional source pools on local community structure is strong.
Local atomic and electronic structures of epitaxial strained LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Sterbinsky, G. E.; Ryan, P. J.; Kim, J.-W.; Karapetrova, E.; Ma, J. X.; Shi, J.; Woicik, J. C.
2012-01-01
We have examined the atomic and electronic structures of perovskite lanthanum cobaltite (LaCoO3) thin films using Co K-edge x-ray absorption fine structure (XAFS) spectroscopy. Extended XAFS (EXAFS) demonstrates that a large difference between in-plane and out-of-plane Co-O bond lengths results from tetragonal distortion in highly strained films. The structural distortions are strongly coupled to the hybridization between atomic orbitals of the Co and O atoms, as shown by x-ray absorption near edge spectroscopy (XANES). Our results indicate that increased hybridization is not the cause of ferromagnetism in strained LaCoO3 films. Instead, we suggest that the strain-induced distortions of the oxygen octahedra increase the population of eg electrons and concurrently depopulate t2g electrons beyond a stabilization threshold for ferromagnetic order.
Adaptive root foraging strategies along a boreal-temperate forest gradient.
Ostonen, Ivika; Truu, Marika; Helmisaari, Heljä-Sisko; Lukac, Martin; Borken, Werner; Vanguelova, Elena; Godbold, Douglas L; Lõhmus, Krista; Zang, Ulrich; Tedersoo, Leho; Preem, Jens-Konrad; Rosenvald, Katrin; Aosaar, Jürgen; Armolaitis, Kęstutis; Frey, Jane; Kabral, Naima; Kukumägi, Mai; Leppälammi-Kujansuu, Jaana; Lindroos, Antti-Jussi; Merilä, Päivi; Napa, Ülle; Nöjd, Pekka; Parts, Kaarin; Uri, Veiko; Varik, Mats; Truu, Jaak
2017-08-01
The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Morrison, R. H.
1972-01-01
Impact tests of a sphere and several cylinders of various masses and fineness ratios, all of aluminum, fired into an aluminum double-sheet structure at velocities near 7 km/sec, show that a cylinder, impacting in the direction of its axis, is considerably more effective as a penetrator than a sphere. Impacts of three cylinders of equal mass, but different fineness ratios, produced holes through the structures' rear sheet, whereas impact of a sphere of the same mass did not. Moreover, it was found that to prevent rear-sheet penetration, the mass of the 1/2-fineness-ratio cylinder had to be reduced by a factor greater than three. Further tests wherein the cylinder diameter was held constant while the cylinder length was systematically reduced showed that a cylinder with a fineness ratio of 0.07 and a mass of only 1/7 that of the sphere was still capable of producing a hole in the rear sheet.
Clonal growth and fine-scale genetic structure in tanoak (Notholithocarpus densiflorus: Fagaceae)
Richard S. Dodd; Wasima Mayer; Alejandro Nettel; Zara Afzal-Rafii
2013-01-01
The combination of sprouting and reproduction by seed can have important consequences on fine-scale spatial distribution of genetic structure (SGS). SGS is an important consideration for speciesâ restoration because it determines the minimum distance among seed trees to maximize genetic diversity while not prejudicing locally adapted genotypes. Local environmental...
Cation distribution in NiZn-ferrite films via extended x-ray absorption fine structure
NASA Astrophysics Data System (ADS)
Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.; Kirkland, J. P.
1996-04-01
We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films. A least-squares fitting of experimental EXAFS data with theoretical, multiple-scattering, EXAFS data allowed the quantitative determination of site distributions for all transition metal cations.
George, M C; Lombardi, L D; Hessels, E A
2001-10-22
The 2(3)P(1)-to- 2(3)P(0) interval in atomic helium is measured using a thermal beam of metastable helium atoms excited to the 2(3)P state using a 1.08-microm diode laser. The 2(3)P(1)-to- 2(3)P(0) transition is driven by 29.6-GHz microwaves in a rectangular waveguide cavity. Our result of 29,616,950.9+/-0.9 kHz is the most precise measurement of helium 2(3)P fine structure. When compared to precise theory for this interval, this measurement leads to a determination of the fine-structure constant of 1/137.0359864(31).
Fine Structure of Reovirus Type 2
Loh, Philip C.; Hohl, H. R.; Soergel, M.
1965-01-01
Loh, Philip C. (University of Hawaii, Honolulu), H. R. Hohl, and M. Soergel. Fine structure of reovirus type 2. J. Bacteriol. 89:1140–1144. 1965.—The fine structure reovirus type 2 was studied by electron microscopy with the negative-staining method. The virus has a mean diameter of 772 A and shows evidence of icosahedral shape and 5:3:2 symmetry. The particle is composed of a core, an inner layer, and a capsid composed of 92 elongated hollow capsomeres. These capsomeres have mean dimensions of 116 A × 110 A and a central hole 48 A in diameter. In size and architecture, reovirus type 2 is very similar to the other members (reoviruses types 1 and 3) of this group of animal viruses. Images PMID:14276109
Carlson, Abby G; Rowe, Ellen; Curby, Timothy W
2013-01-01
Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout childhood and adolescence. Furthermore, the majority of research linking fine motor skills and academic achievement has not determined which specific components of fine motor skill are driving this relation. The few studies that have looked at associations of separate fine motor tasks with achievement suggest that copying tasks that tap visual-spatial integration skills are most closely related to achievement. The present study examined two separate elements of fine motor skills--visual-motor coordination and visual-spatial integration--and their associations with various measures of academic achievement. Visual-motor coordination was measured using tracing tasks, while visual-spatial integration was measured using copy-a-figure tasks. After controlling for gender, socioeconomic status, IQ, and visual-motor coordination, and visual-spatial integration explained significant variance in children's math and written expression achievement. Knowing that visual-spatial integration skills are associated with these two achievement domains suggests potential avenues for targeted math and writing interventions for children of all ages.
Cracking of porcelain surfaces arising from abrasive grinding with a dental air turbine.
Chang, Chee W; Waddell, J Neil; Lyons, Karl M; Swain, Michael V
2011-12-01
The purpose of this in vitro study was to evaluate porcelain cracking induced by abrasive grinding with a conventional dental air turbine and abrasive diamond burs. Four commercially available porcelains were examined-Wieland ALLUX, Wieland ZIROX, IPS e.max Ceram, and IPS Empress Esthetic Veneering porcelain. Sixty discs of each porcelain type were fabricated according to manufacturer instructions, followed by an auto-glaze cycle. Abrasive grinding using fine, extra-fine, and ultra-fine diamond burs was carried out, using a conventional dental air turbine. The grinding parameters were standardized with regard to the magnitude of the force applied, rotational speed of the diamond bur, and flow rate of the water coolant. A testing apparatus was used to control the magnitude of force applied during the grinding procedure. The ground surfaces were then examined under scanning electron microscope. Cracking was seen for all porcelain types when ground with the fine bur. Cracking was not seen for specimens ground with the extra-fine or the ultra-fine bur. Wet abrasive grinding with a conventional dental air turbine and fine grit diamond burs has the potential to cause cracking in the four porcelain types tested. Similar abrasive grinding with smaller grit size particles does not cause similar observable cracking. © 2011 by the American College of Prosthodontists.
ERIC Educational Resources Information Center
Uygun, Mehtap Aydiner; Kilinçer, Özlem
2017-01-01
Like every field of learning, it is important to use various strategies in instrumental music to learn it easily and permanently and to attain the skills to learn independently. This requires determining the strategies used by students studying instrument education. The purpose of this study was to examine the strategies fine arts high school…
Nine Years of Irrigation Cause Vegetation and Fine Root Shifts in a Water-Limited Pine Forest
Herzog, Claude; Steffen, Jan; Graf Pannatier, Elisabeth; Hajdas, Irka; Brunner, Ivano
2014-01-01
Scots pines (Pinus sylvestris L.) in the inner-Alpine dry valleys of Switzerland have suffered from increased mortality during the past decades, which has been caused by longer and more frequent dry periods. In addition, a proceeding replacement of Scots pines by pubescent oaks (Quercus pubescens Willd.) has been observed. In 2003, an irrigation experiment was performed to track changes by reducing drought pressure on the natural pine forest. After nine years of irrigation, we observed major adaptations in the vegetation and shifts in Scots pine fine root abundance and structure. Irrigation permitted new plant species to assemble and promote canopy closure with a subsequent loss of herb and moss coverage. Fine root dry weight increased under irrigation and fine roots had a tendency to elongate. Structural composition of fine roots remained unaffected by irrigation, expressing preserved proportions of cellulose, lignin and phenolic substances. A shift to a more negative δ13C signal in the fine root C indicates an increased photosynthetic activity in irrigated pine trees. Using radiocarbon (14C) measurement, a reduced mean age of the fine roots in irrigated plots was revealed. The reason for this is either an increase in newly produced fine roots, supported by the increase in fine root biomass, or a reduced lifespan of fine roots which corresponds to an enhanced turnover rate. Overall, the responses belowground to irrigation are less conspicuous than the more rapid adaptations aboveground. Lagged and conservative adaptations of tree roots with decadal lifespans are challenging to detect, hence demanding for long-term surveys. Investigations concerning fine root turnover rate and degradation processes under a changing climate are crucial for a complete understanding of C cycling. PMID:24802642
Tinea nigra showing a parallel ridge pattern on dermoscopy.
Noguchi, Hiromitsu; Hiruma, Masataro; Inoue, Yuji; Miyata, Keishi; Tanaka, Masaru; Ihn, Hironobu
2015-05-01
An 18-year-old healthy female student noticed a brown macule measuring 21 mm in diameter on the left palm and visited our clinic concerned about a cancerous mole. Dermoscopic examination revealed a brown, fine-dotted and granule-like structure overlapping an amorphous light brown macule. However, unlike previous cases, analysis of the high dynamic range-converted image revealed the parallel ridge pattern frequently observed in malignant melanomas. Brown mycelia were detected on direct microscopic examination; black colonies were isolated on fungal culture and the fungus was identified as Hortaea werneckii. The lesion was treated with topical ketoconazole cream, and it diminished 1 month later. © 2015 Japanese Dermatological Association.
Wilker, Elissa H; Preis, Sarah R; Beiser, Alexa S; Wolf, Philip A; Au, Rhoda; Kloog, Itai; Li, Wenyuan; Schwartz, Joel; Koutrakis, Petros; DeCarli, Charles; Seshadri, Sudha; Mittleman, Murray A
2015-05-01
Long-term exposure to ambient air pollution is associated with cerebrovascular disease and cognitive impairment, but whether it is related to structural changes in the brain is not clear. We examined the associations between residential long-term exposure to ambient air pollution and markers of brain aging using magnetic resonance imaging. Framingham Offspring Study participants who attended the seventh examination were at least 60 years old and free of dementia and stroke were included. We evaluated associations between exposures (fine particulate matter [PM2.5] and residential proximity to major roadways) and measures of total cerebral brain volume, hippocampal volume, white matter hyperintensity volume (log-transformed and extensive white matter hyperintensity volume for age), and covert brain infarcts. Models were adjusted for age, clinical covariates, indicators of socioeconomic position, and temporal trends. A 2-μg/m(3) increase in PM2.5 was associated with -0.32% (95% confidence interval, -0.59 to -0.05) smaller total cerebral brain volume and 1.46 (95% confidence interval, 1.10 to 1.94) higher odds of covert brain infarcts. Living further away from a major roadway was associated with 0.10 (95% confidence interval, 0.01 to 0.19) greater log-transformed white matter hyperintensity volume for an interquartile range difference in distance, but no clear pattern of association was observed for extensive white matter. Exposure to elevated levels of PM2.5 was associated with smaller total cerebral brain volume, a marker of age-associated brain atrophy, and with higher odds of covert brain infarcts. These findings suggest that air pollution is associated with insidious effects on structural brain aging even in dementia- and stroke-free persons. © 2015 American Heart Association, Inc.
Fine structure transitions in Fe XIV
NASA Astrophysics Data System (ADS)
Nahar, Sultana N.
2013-07-01
Results are reported for Fe XIV energy levels and transitions obtained from the ab initio relativistic Breit-Pauli R-matrix (BPRM) method. BPRM method developed under the Iron Project is capable of calculating very large number of fine structure energy levels and corresponding transitions. However, unlike in the atomic structure calculations, where levels are identified spectroscopically based on the leading percentage contributions of configurations, BPRM is incapable of such identification of the levels and hence the transitions. The main reason for it is that the percentage contributions can not be determined exactly from the large number of channels in the R-matrix space. The present report describes an identification method that uses considerations of quantum defects of channels, contributions of channel from outer regions, Hund's rule, and angular momenta algebra for addition and completeness of fine structure components. The present calculations are carried out using a close coupling wave function expansion that included 26 core excitations from configurations 2s22p63s2, 2s22p63s3p,2s22p63p2,2s22p63s3d, and 2s22p63p3d. A total of 1002 fine structure levels with n ⩽ 10, l⩽9, and 0.5 ⩽J⩽ 9.5 with even and odd parities and the corresponding 130,520 electric dipole allowed (E1) fine structure transitions, a most complete set for astrophysical modelings of spectral analysis and opacities, is presented. Large number of new energy levels are found and identified. The energies agree very well, mostly in less than 1% with the highest being 1.9%, with the 68 observed fine structure levels. While the high lying levels may have some uncertainty, an overall accuracy of energy levels should be within 10%. BPRM transitions have been benchmarked with the existing most accurate calculated transition probabilities with very good agreement for most cases. Based on the accuracy of the method and comparisons, most of the transitions can be rated with A (⩽10%) to C (⩽30%).
NRMRL-RTP-P-646 Shoji, T., Huggins, F.E., Huffman, G.P., Linak*, W.P., and Miller*, C.A. XFAS Spectroscopy Analysis of Selected HAP Elements in Fine PM Derived from Coal Combustion. Energy and Fuels 16 (2): (2002). 11/30/2001 X-ray absorption fine structure (XAFS) spectroscop...
Goldstein, Avi; Annor, George; Blennow, Andreas; Bertoft, Eric
2017-09-01
The impact of diurnal photosynthetic activity on the fine structure of the amylopectin fraction of starch synthesized by normal barley (NBS) and waxy barley (WBS), the latter completely devoid of amylose biosynthesis, was determined following the cultivation under normal diurnal or constant light growing conditions. The amylopectin fine structures were analysed by characterizing its unit chain length profiles after enzymatic debranching as well as its φ,β-limit dextrins and its clusters and building blocks after their partial and complete hydrolysis with α-amylase from Bacillus amyloliquefaciens, respectively. Regardless of lighting conditions, no structural effects were found when comparing both the amylopectin side-chain distribution and the internal chain fragments of these amylopectins. However, the diurnally grown NBS and WBS both showed larger amylopectin clusters and these had lower branching density and longer average chain lengths than clusters derived from plants grown under constant light conditions. Amylopectin clusters from diurnally grown plants also consisted of a greater number of building blocks, and shorter inter-block chain lengths compared to clusters derived from plants grown under constant light. Our data demonstrate that the diurnal light regime influences the fine structure of the amylopectin component both in amylose and non-amylose starch granules. Copyright © 2017 Elsevier B.V. All rights reserved.
The structural and optical properties of type III human collagen biosynthetic corneal substitutes
Hayes, Sally; Lewis, Phillip; Islam, M. Mirazul; Doutch, James; Sorensen, Thomas; White, Tomas; Griffith, May; Meek, Keith M.
2015-01-01
The structural and optical properties of clinically biocompatible, cell-free hydrogels comprised of synthetically cross-linked and moulded recombinant human collagen type III (RHCIII) with and without the incorporation of 2-methacryloyloxyethyl phosphorylcholine (MPC) were assessed using transmission electron microscopy (TEM), X-ray scattering, spectroscopy and refractometry. These findings were examined alongside similarly obtained data from 21 human donor corneas. TEM demonstrated the presence of loosely bundled aggregates of fine collagen filaments within both RHCIII and RHCIII-MPC implants, which X-ray scattering showed to lack D-banding and be preferentially aligned in a uniaxial orientation throughout. This arrangement differs from the predominantly biaxial alignment of collagen fibrils that exists in the human cornea. By virtue of their high water content (90%), very fine collagen filaments (2–9 nm) and lack of cells, the collagen hydrogels were found to transmit almost all incident light in the visible spectrum. They also transmitted a large proportion of UV light compared to the cornea which acts as an effective UV filter. Patients implanted with these hydrogels should be cautious about UV exposure prior to regrowth of the epithelium and in-growth of corneal cells into the implants. PMID:26159106
Arbuscular mycorrhizas are present on Spitsbergen.
Newsham, K K; Eidesen, P B; Davey, M L; Axelsen, J; Courtecuisse, E; Flintrop, C; Johansson, A G; Kiepert, M; Larsen, S E; Lorberau, K E; Maurset, M; McQuilkin, J; Misiak, M; Pop, A; Thompson, S; Read, D J
2017-10-01
A previous study of 76 plant species on Spitsbergen in the High Arctic concluded that structures resembling arbuscular mycorrhizas were absent from roots. Here, we report a survey examining the roots of 13 grass and forb species collected from 12 sites on the island for arbuscular mycorrhizal (AM) colonisation. Of the 102 individuals collected, we recorded AM endophytes in the roots of 41 plants of 11 species (Alopecurus ovatus, Deschampsia alpina, Festuca rubra ssp. richardsonii, putative viviparous hybrids of Poa arctica and Poa pratensis, Poa arctica ssp. arctica, Trisetum spicatum, Coptidium spitsbergense, Ranunculus nivalis, Ranunculus pygmaeus, Ranunculus sulphureus and Taraxacum arcticum) sampled from 10 sites. Both coarse AM endophyte, with hyphae of 5-10 μm width, vesicles and occasional arbuscules, and fine endophyte, consisting of hyphae of 1-3 μm width and sparse arbuscules, were recorded in roots. Coarse AM hyphae, vesicles, arbuscules and fine endophyte hyphae occupied 1.0-30.7, 0.8-18.3, 0.7-11.9 and 0.7-12.8% of the root lengths of colonised plants, respectively. Principal component analysis indicated no associations between the abundances of AM structures in roots and edaphic factors. We conclude that the AM symbiosis is present in grass and forb roots on Spitsbergen.
Churchill, Tyler H; Kan, Alan; Goupell, Matthew J; Litovsky, Ruth Y
2014-09-01
Most contemporary cochlear implant (CI) processing strategies discard acoustic temporal fine structure (TFS) information, and this may contribute to the observed deficits in bilateral CI listeners' ability to localize sounds when compared to normal hearing listeners. Additionally, for best speech envelope representation, most contemporary speech processing strategies use high-rate carriers (≥900 Hz) that exceed the limit for interaural pulse timing to provide useful binaural information. Many bilateral CI listeners are sensitive to interaural time differences (ITDs) in low-rate (<300 Hz) constant-amplitude pulse trains. This study explored the trade-off between superior speech temporal envelope representation with high-rate carriers and binaural pulse timing sensitivity with low-rate carriers. The effects of carrier pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition in quiet were examined in eight bilateral CI listeners. Stimuli consisted of speech tokens processed at different electrical stimulation rates, and pulse timings that either preserved or did not preserve acoustic TFS cues. Results showed that CI listeners were able to use low-rate pulse timing cues derived from acoustic TFS when presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli.
X-ray absorption fine structure (XAFS) analysis of titanium-implanted soft tissue.
Uo, Motohiro; Asakura, Kiyotaka; Yokoyama, Atsuro; Ishikawa, Makoto; Tamura, Kazuchika; Totsuka, Yasunori; Akasaka, Tsukasa; Watari, Fumio
2007-03-01
Tissues contacting Ti dental implants were subjected to X-ray absorption fine structure (XAFS) analysis to examine the chemical state of Ti transferred from the placed implant into the surrounding tissue. Nine tissues that contacted pure Ti cover screws for several months were excised in a second surgery whereby healing abutments were set. Six tissues that surrounded implants retrieved due to their failure were also excised. Ti distributions in the excised specimens were confirmed by X-ray scanning analytical microscopy (XSAM), and the specimens were subjected to fluorescence XAFS analysis to determine the chemical states of the low concentrations of Ti in the tissues surrounding Ti dental implants. Ti mostly existed in the metallic state and was considered to be debris derived from the abrasion of implant pieces during implant surgery. Oxidized forms of Ti, such as anatase and rutile, were also detected in a few specimens-and existed in either a pure state or mixed state with metallic Ti. It was concluded that the existence of Ti in the tissue did not cause implant failure. Moreover, the usefulness of XAFS for analysis of the chemical states of rarely contained elements in biological tissue was demonstrated.
ERIC Educational Resources Information Center
Carlson, Abby G.; Rowe, Ellen; Curby, Timothy W.
2013-01-01
Recent research has established a connection between children's fine motor skills and their academic performance. Previous research has focused on fine motor skills measured prior to elementary school, while the present sample included children ages 5-18 years old, making it possible to examine whether this link remains relevant throughout…
Studies on the wintertime current structure and T-S fine-structure in the Taiwan Strait
NASA Astrophysics Data System (ADS)
Hu, Jianyu; Fu, Zilang; Wu, Lianxing
1990-12-01
A cruise through the western sea area of the Taiwan Strait was carried out by the R/V Dong Fang Hong in December, 1987. Eight anchored and 10 not anchored stations were set up. Over 25 time-series current observations were made at each station and CTD (Conductivity-temperature-depth) measurements were made at 5 anchored and 10 not anchored stations. Based on the measured data. fine-structures and step-like vertical structures of temperature and salinity were analysed and a tentative wintertime current structure in the Taiwan Strait was described.
Microwave spectroscopy of the 1 s n p P3J fine structure of high Rydberg states in 4He
NASA Astrophysics Data System (ADS)
Deller, A.; Hogan, S. D.
2018-01-01
The 1 s n p P3J fine structure of high Rydberg states in helium has been measured by microwave spectroscopy of single-photon transitions from 1 s n s S31 levels in pulsed supersonic beams. For states with principal quantum numbers in the range from n =34 to 36, the J =0 →2 and J =1 →2 fine structure intervals were both observed. For values of n between 45 and 51 only the larger J =0 →2 interval was resolved. The experimental results are in good agreement with theoretical predictions. Detailed characterization of residual uncanceled electric and magnetic fields in the experimental apparatus and calculations of the Stark and Zeeman structures of the Rydberg states in weak fields were used to quantify systematic contributions to the uncertainties in the measurements.
Gravity Wave Interactions with Fine Structures in the Mesosphere and Lower Thermosphere
NASA Astrophysics Data System (ADS)
Mixa, Tyler; Fritts, David; Bossert, Katrina; Laughman, Brian; Wang, Ling; Lund, Thomas; Kantha, Lakshmi
2017-04-01
An anelastic numerical model is used to probe the influences of fine layering structures on gravity wave propagation in the Mesosphere and Lower Thermosphere (MLT). Recent lidar observations confirm the presence of persistent layered structures in the MLT that have sharp stratification and vertical scales below 1km. Gravity waves propagating through finely layered environments can excite and modulate the evolution of small scale instabilities that redefine the layering structure in these regions. Such layers in turn filter the outgoing wave spectra, promote ducting or reflection, hasten the onset of self-acceleration dynamics, and encourage wave/mean-flow interactions via energy and momentum transport. Using high resolution simulations of a localized gravity wave packet in a deep atmosphere, we identify the relative impacts of various wave and mean flow parameters to improve our understanding of these dynamics and complement recent state-of-the-art observations.
Strained spiral vortex model for turbulent fine structure
NASA Technical Reports Server (NTRS)
Lundgren, T. S.
1982-01-01
A model for the intermittent fine structure of high Reynolds number turbulence is proposed. The model consists of slender axially strained spiral vortex solutions of the Navier-Stokes equation. The tightening of the spiral turns by the differential rotation of the induced swirling velocity produces a cascade of velocity fluctuations to smaller scale. The Kolmogorov energy spectrum is a result of this model.
This paper shows that an understanding of the nature of the x-ray and neutron producing processes in the plasma focus requires a study of the ’fine...structure’ of the plasma focus and that this fine structure study requires diagnostic techniques with spacial resolution down to 50 micrometers and
NASA Astrophysics Data System (ADS)
Hashiba, Hideomi; Miyazaki, Yuta; Matsushita, Sachiko
2013-09-01
Titanium dioxide (TiO2) has been draw attention for wide range of applications from photonic crystals for visible light range by its catalytic characteristics to tera-hertz range by its high refractive index. We present an experimental study of fabrication of fine structures of TiO2 with a ZEP electron beam resist mask followed by Ti sputter deposition techniques. A TiO2 thin layer of 150 nm thick was grown on an FTO glass substrate with a fine patterned ZEP resist mask by a conventional RF magnetron sputter method with Ti target. The deposition was carried out with argon-oxygen gases at a pressure of 5.0 x 10 -1 Pa in a chamber. During the deposition, ratio of Ar-O2 gas was kept to the ratio of 2:1 and the deposition ratio was around 0.5 Å/s to ensure enough oxygen to form TiO2 and low temperature to avoid deformation of fine pattern of the ZPU resist mask. Deposited TiO2 layers are white-transparent, amorphous, and those roughnesses are around 7 nm. Fabricated TiO2 PCs have wider TiO2 slabs of 112 nm width leaving periodic 410 x 410 nm2 air gaps. We also studied transformation of TiO2 layers and TiO2 fine structures by baking at 500 °C. XRD measurement for TiO2 shows that the amorphous TiO2 transforms to rutile and anatase forms by the baking while keeping the same profile of the fine structures. Our fabrication method can be one of a promising technique to optic devices on researches and industrial area.
Effective Collision Strengths for Fine-structure Transitions in Si VII
NASA Astrophysics Data System (ADS)
Sossah, A. M.; Tayal, S. S.
2014-05-01
The effective collision strengths for electron-impact excitation of fine-structure transitions in Si VII are calculated as a function of electron temperature in the range 5000-2,000,000 K. The B-spline Breit-Pauli R-matrix method has been used to calculate collision strengths by electron impact. The target wave functions have been obtained using the multi-configuration Hartree-Fock method with term-dependent non-orthogonal orbitals. The 92 fine-structure levels belonging to the 46 LS states of 2s 22p 4, 2s2p 5, 2p 6, 2s 22p 33s, 2s 22p 33p, 2s 22p 33d, and 2s2p 43s configurations are included in our calculations of oscillator strengths and collision strengths. There are 4186 possible fine-structure allowed and forbidden transitions among the 92 levels. The present excitation energies, oscillator strengths, and collision strengths have been compared with previous theoretical results and available experimental data. Generally, a good agreement is found with the 6 LS-state close-coupling approximation results of Butler & Zeippen and the 44 LS-state distorted wave calculation of Bhatia & Landi.
Rotational and fine structure of open-shell molecules in nearly degenerate electronic states
NASA Astrophysics Data System (ADS)
Liu, Jinjun
2018-03-01
An effective Hamiltonian without symmetry restriction has been developed to model the rotational and fine structure of two nearly degenerate electronic states of an open-shell molecule. In addition to the rotational Hamiltonian for an asymmetric top, this spectroscopic model includes the energy separation between the two states due to difference potential and zero-point energy difference, as well as the spin-orbit (SO), Coriolis, and electron spin-molecular rotation (SR) interactions. Hamiltonian matrices are computed using orbitally and fully symmetrized case (a) and case (b) basis sets. Intensity formulae and selection rules for rotational transitions between a pair of nearly degenerate states and a nondegenerate state have also been derived using all four basis sets. It is demonstrated using real examples of free radicals that the fine structure of a single electronic state can be simulated with either a SR tensor or a combination of SO and Coriolis constants. The related molecular constants can be determined precisely only when all interacting levels are simulated simultaneously. The present study suggests that analysis of rotational and fine structure can provide quantitative insights into vibronic interactions and related effects.
ERIC Educational Resources Information Center
Mechling, Linda C.; Swindle, Catherine O.
2013-01-01
This investigation examined the effects of video modeling on the fine and gross motor task performance by three students with a diagnosis of moderate intellectual disability (Group 1) and by three students with a diagnosis of autism spectrum disorder (Group 2). Using a multiple probe design across three sets of tasks, the study examined the…
Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.
Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya
2018-04-10
In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.
NASA Astrophysics Data System (ADS)
Itoh, Kosuke; Nakada, Tsutomu
2013-04-01
Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.
Sathananthan, Henry; Selvaraj, Kamala; Clark, Joan
2011-08-01
The fine structure of the three germ layers in human ectopic embryos (stage 7) have been documented by digital light and electron microscopy. The formation of ectoderm, endoderm and mesoderm and notochordal cells, and also the extraembryonic membranes, amnion and yolk sac, are imaged. The germ layers give rise to all the cells and tissues of the human body. Possible clues to the early differentiation of embryonic stem cells (ESC) in vitro were obtained, since these events are more or less mimicked in cultures of ESC derived from the inner cell mass of human blastocysts. The findings are discussed with reference to previous studies on the fine structure of ESC using the same technique. Copyright © 2011. Published by Elsevier Ltd.
21-cm radiation: a new probe of variation in the fine-structure constant.
Khatri, Rishi; Wandelt, Benjamin D
2007-03-16
We investigate the effect of variation in the value of the fine-structure constant (alpha) at high redshifts (recombination > z > 30) on the absorption of the cosmic microwave background (CMB) at 21 cm hyperfine transition of the neutral atomic hydrogen. We find that the 21 cm signal is very sensitive to the variations in alpha and it is so far the only probe of the fine-structure constant in this redshift range. A change in the value of alpha by 1% changes the mean brightness temperature decrement of the CMB due to 21 cm absorption by >5% over the redshift range z < 50. There is an effect of similar magnitude on the amplitude of the fluctuations in the brightness temperature. The redshift of maximum absorption also changes by approximately 5%.
Measuring the fine structure constant with Bragg diffraction and Bloch oscillations
NASA Astrophysics Data System (ADS)
Parker, Richard; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger
2017-04-01
We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δÎ+/-/Î+/-=0.25ppb in the fine structure constant measurement, which gives over 10 million radians of phase difference between freely evolving matter waves. We have suppressed many systematic effects known in most atom interferometers with Raman beam splitters such as light shift, Zeeman effect shift as well as vibration. We have also simulated multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implemented spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. E. APPLE; C. I. THEE; V. L. SMITH-LONGOZO
2004-01-01
The percentage of fine roots colonized by arbuscular mycorrhizal (AM) fungi varied with season and with species in the co-dominant shrubs Lurreu tridentutu and Ambrosia dumosu at a site adjacent to the Nevada Desert FACE (Free-Air CO{sub 2} Enrichment) Facility (NDFF) in the Mojave Desert. We excavated downward and outward from the shrub bases in both species to collect and examine fine roots (< 1.0 mm diameter) at monthly intervals throughout 2001 and from October 2002 to September 2003. Fungal structures became visible in cleared roots stained with trypan blue. We quantified the percent colonization of roots by AM fungimore » via the line intercept method. In both years and for both species, colonization was highest in fall, relatively low in spring when root growth began, increased in late spring, and decreased during summer drought periods. Increases in colonization during summer and fall reflect corresponding increases in precipitation. Spring mycorrhizal colonization is low despite peaks in soil water availability and precipitation, indicating that precipitation is not the only factor influencing mycorrhizal colonization. Because the spring decrease in mycorrhizal colonization occurs when these shrubs initiate a major flush of fine root growth, other phenological events such as competing demands for carbon by fine root initiation, early season shoot growth, and flowering may reduce carbon availability to the fungus, and hence decrease colonization. Another possibility is that root growth exceeds the rate of mycorrhizal colonization.« less
ERIC Educational Resources Information Center
Papastergiou, Marina; Pollatou, Elisana; Theofylaktou, Ioannis; Karadimou, Konstantina
2014-01-01
Research on the utilization of the Web for complex fine motor skill learning that involves whole body movements is still scarce. The aim of this study was to evaluate the impact of the introduction of a multimedia web-based learning environment, which was targeted at a rhythmic gymnastics routine consisting of eight fine motor skills, into an…
Oh, Myung Eun; Driever, Pablo Hernáiz; Khajuria, Rajiv K; Rueckriegel, Stefan Mark; Koustenis, Elisabeth; Bruhn, Harald; Thomale, Ulrich-Wilhelm
2017-01-01
Pediatric posterior fossa (PF) tumor survivors experience long-term motor deficits. Specific cerebrocerebellar connections may be involved in incidence and severity of motor dysfunction. We examined the relationship between long-term ataxia as well as fine motor function and alteration of differential cerebellar efferent and afferent pathways using diffusion tensor imaging (DTI) and tractography. DTI-based tractography was performed in 19 patients (10 pilocytic astrocytoma (PA) and 9 medulloblastoma patients (MB)) and 20 healthy peers. Efferent Cerebello-Thalamo-Cerebral (CTC) and afferent Cerebro-Ponto-Cerebellar (CPC) tracts were reconstructed and analyzed concerning fractional anisotropy (FA) and volumetric measurements. Clinical outcome was assessed with the International Cooperative Ataxia Rating Scale (ICARS). Kinematic parameters of fine motor function (speed, automation, variability, and pressure) were obtained by employing a digitizing graphic tablet. ICARS scores were significantly higher in MB patients than in PA patients. Poorer ICARS scores and impaired fine motor function correlated significantly with volume loss of CTC pathway in MB patients, but not in PA patients. Patients with pediatric post-operative cerebellar mutism syndrome showed higher loss of CTC pathway volume and were more atactic. CPC pathway volume was significantly reduced in PA patients, but not in MB patients. Neither relationship was observed between the CPC pathway and ICARS or fine motor function. There was no group difference of FA values between the patients and healthy peers. Reduced CTC pathway volumes in our cohorts were associated with severity of long-term ataxia and impaired fine motor function in survivors of MBs. We suggest that the CTC pathway seems to play a role in extent of ataxia and fine motor dysfunction after childhood cerebellar tumor treatment. DTI may be a useful tool to identify relevant structures of the CTC pathway and possibly avoid surgically induced long-term neurological sequelae.
Fine-Scale Human Population Structure in Southern Africa Reflects Ecogeographic Boundaries
Uren, Caitlin; Kim, Minju; Martin, Alicia R.; Bobo, Dean; Gignoux, Christopher R.; van Helden, Paul D.; Möller, Marlo; Hoal, Eileen G.; Henn, Brenna M.
2016-01-01
Recent genetic studies have established that the KhoeSan populations of southern Africa are distinct from all other African populations and have remained largely isolated during human prehistory until ∼2000 years ago. Dozens of different KhoeSan groups exist, belonging to three different language families, but very little is known about their population history. We examine new genome-wide polymorphism data and whole mitochondrial genomes for >100 South Africans from the ≠Khomani San and Nama populations of the Northern Cape, analyzed in conjunction with 19 additional southern African populations. Our analyses reveal fine-scale population structure in and around the Kalahari Desert. Surprisingly, this structure does not always correspond to linguistic or subsistence categories as previously suggested, but rather reflects the role of geographic barriers and the ecology of the greater Kalahari Basin. Regardless of subsistence strategy, the indigenous Khoe-speaking Nama pastoralists and the N|u-speaking ≠Khomani (formerly hunter-gatherers) share ancestry with other Khoe-speaking forager populations that form a rim around the Kalahari Desert. We reconstruct earlier migration patterns and estimate that the southern Kalahari populations were among the last to experience gene flow from Bantu speakers, ∼14 generations ago. We conclude that local adoption of pastoralism, at least by the Nama, appears to have been primarily a cultural process with limited genetic impact from eastern Africa. PMID:27474727
Simultaneous Purification and Perforation of Low-Grade Si Sources for Lithium-Ion Battery Anode.
Jin, Yan; Zhang, Su; Zhu, Bin; Tan, Yingling; Hu, Xiaozhen; Zong, Linqi; Zhu, Jia
2015-11-11
Silicon is regarded as one of the most promising candidates for lithium-ion battery anodes because of its abundance and high theoretical capacity. Various silicon nanostructures have been heavily investigated to improve electrochemical performance by addressing issues related to structure fracture and unstable solid-electrolyte interphase (SEI). However, to further enable widespread applications, scalable and cost-effective processes need to be developed to produce these nanostructures at large quantity with finely controlled structures and morphologies. In this study, we develop a scalable and low cost process to produce porous silicon directly from low grade silicon through ball-milling and modified metal-assisted chemical etching. The morphology of porous silicon can be drastically changed from porous-network to nanowire-array by adjusting the component in reaction solutions. Meanwhile, this perforation process can also effectively remove the impurities and, therefore, increase Si purity (up to 99.4%) significantly from low-grade and low-cost ferrosilicon (purity of 83.4%) sources. The electrochemical examinations indicate that these porous silicon structures with carbon treatment can deliver a stable capacity of 1287 mAh g(-1) over 100 cycles at a current density of 2 A g(-1). This type of purified porous silicon with finely controlled morphology, produced by a scalable and cost-effective fabrication process, can also serve as promising candidates for many other energy applications, such as thermoelectrics and solar energy conversion devices.
Concrete with onyx waste aggregate as aesthetically valued structural concrete
NASA Astrophysics Data System (ADS)
Setyowati E., W.; Soehardjono, A.; Wisnumurti
2017-09-01
The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.
Lucian A. Lucia; Hiroki Nanko; Alan W. Rudie; Doug G. Mancosky; Sue Wirick
2006-01-01
The research presented elucidates the oxidation chemistry occurring in hydrogen peroxide bleached kraft pulp fibers by employing carbon near edge x-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft x-ray technique that selectively interrogates atomic moieties using photoelectrons (Xrays) of variable energies. The X1A beam line at the National...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Robert L.; Simmons, Mary Ann; Simmons, Carver S.
2002-03-07
This book chapter describes a Dual-Head Multibeam Sonar (DHMS) system developed by Battelle and deployed at two dam sites on the Snake and Columbia rivers in Washington State to evaluate the fine-scale (
Simple Model with Time-Varying Fine-Structure ``Constant''
NASA Astrophysics Data System (ADS)
Berman, M. S.
2009-10-01
Extending the original version written in colaboration with L.A. Trevisan, we study the generalisation of Dirac's LNH, so that time-variation of the fine-structure constant, due to varying electrical and magnetic permittivities is included along with other variations (cosmological and gravitational ``constants''), etc. We consider the present Universe, and also an inflationary scenario. Rotation of the Universe is a given possibility in this model.
NASA Technical Reports Server (NTRS)
Kahn, W. D.
1984-01-01
The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.
Moritake, Y.; Kanamori, Y.; Hane, K.
2016-01-01
We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy in the order of 10 nm, resonant wavelengths of Fano resonance were controlled from 1296 to 1416 nm. Fluorescence of QDs embedded in a polymer layer on ADB metamaterials were modified due to coupling to Fano resonance and fine tuning from 1350 to 1376 nm was observed. Wavelength tuning of modified fluorescence was reproduced by analysis using absorption peaks of Fano resonance. Tuning range of modified fluorescence became narrow, which was interpreted by a simple Gaussian model and resulted from comparable FWHM in QD fluorescence and Fano resonant peaks. The results will help the design and fabrication of metamaterial devices with fluorophores such as light sources and biomarkers. PMID:27622503
Shaw, Robyn E; Banks, Sam C; Peakall, Rod
2018-01-01
For decades, studies have focused on how dispersal and mating systems influence genetic structure across populations or social groups. However, we still lack a thorough understanding of how these processes and their interaction shape spatial genetic patterns over a finer scale (tens-hundreds of metres). Using uniparentally inherited markers may help answer these questions, yet their potential has not been fully explored. Here, we use individual-level simulations to investigate the effects of dispersal and mating system on fine-scale genetic structure at autosomal, mitochondrial and Y chromosome markers. Using genetic spatial autocorrelation analysis, we found that dispersal was the major driver of fine-scale genetic structure across maternally, paternally and biparentally inherited markers. However, when dispersal was restricted (mean distance = 100 m), variation in mating behaviour created strong differences in the comparative level of structure detected at maternally and paternally inherited markers. Promiscuity reduced spatial genetic structure at Y chromosome loci (relative to monogamy), whereas structure increased under polygyny. In contrast, mitochondrial and autosomal markers were robust to differences in the specific mating system, although genetic structure increased across all markers when reproductive success was skewed towards fewer individuals. Comparing males and females at Y chromosome vs. mitochondrial markers, respectively, revealed that some mating systems can generate similar patterns to those expected under sex-biased dispersal. This demonstrates the need for caution when inferring ecological and behavioural processes from genetic results. Comparing patterns between the sexes, across a range of marker types, may help us tease apart the processes shaping fine-scale genetic structure. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Chen, Q.; Yu, C.
2017-12-01
On April 20, 2013, Ms7.0 strong earthquake (Lushan earthquake) occurred in Lanshan County Ya'an City, Sichuan Province. It is another earthquake that occurred in the Longmenshan fault zone after the Wenchuan earthquake. However, there is still no conclusive conclusion in relationship between the fine structure of the Lushan area and triggering seismic fault . In this study, the crustal structure, the shallow structure and the hidden faults and the focal mechanism of the Lushan earthquake were analyzed by using the deep seismic reflection profile and the broadband seismic array data. Combined with the surface geological information, the structure and fracture cause of the Lishan earthquake were discussed.We have synthetic analyzed the seismic precursors, fine locating, focal mechanism analysis and time-tomographic imaging of the broadband seismic data before and after the earthquake in Lushan earthquake, and obtained the seismic distribution, the focal mechanism and the crustal fine structure in the Lushan area. And we use these results to detailed interpreted the deep reflection seismic section of the Lushan earthquake zone.The results show that the crust of the Lushan area is characterized by a distinct structure of upper crust with thickness about 14.75km. The nature of the faults is inferred to be thrusting in the region due to the pushing of the crustal material of the Tibetan plateau into the southeast part of the rigid Sichuan basin. The shuangshi-Dachuan fault stretches from the surface to the deep crust at a low angle, and is dominated by thrusting in a form of imbricate structure with small-scale faults nearby. Whereas the Guangyuan-Dayi fault is a positive flower structure with a listric shape, consisting of six branches. Its movement is dominated by thrusting with gentle horizontal slip.
NASA Astrophysics Data System (ADS)
Maeda, Yoshihito; Wakagi, Masatoshi
1991-01-01
The local structure and crystallization of amorphous GeTe (a-GeTe) were examined by means of Ge K-edge EXAFS. In a-GeTe, both Ge-Ge and Ge-Te bonds were observed to exist in nearest neighbors of Ge. The average coordination number around Ge is 3.7, which is close to the tetrahedral structure. A random covalent network (RCN) model seems to be suitable for the local Structure. After a-GeTe crystallizes at 129°C, the Ge-Ge bond disappears and the Ge-Te bond length increases considerably. As temperature rises, in a-GeTe the Debye-Waller factor of the Ge-Te bond increases greatly, while that of the Ge-Ge bond increases only slightly. At the crystallization, it is found that the fluctuation of the Ge-Te bond length plays a major role in the change of the local structure and bonding state around Ge.
Photoionization of ground and excited levels of P II
NASA Astrophysics Data System (ADS)
Nahar, Sultana N.
2017-01-01
Photoionization cross section (σPI) of P II, (hν + P II → P III + e), from ground and a large number of excited levels are presented. The study includes the resonant structures and the characteristics of the background in photoionization cross sections. The present calculations were carried out in the Breit-Pauli R-matrix (BPRM) method that includes relativistic effects. The autoionizing resonances are delineated with a fine energy mesh to observe the fine structure effects. A singular resonance, formed by the coupling of channels in fine structure but not allowed in LS coupling, is seen at the ionization threshold of photoionization for the ground and many excited levels. The background cross section is seen enhanced compared to smooth decay for the excited levels. Examples are presented to illustrate the enhanced background cross sections at the energies of the core levels, 4P3/2 and 2D3/2, that are allowed for electric dipole transitions by the core ground level 2 P1/2o. In addition strong Seaton or photo-excitation-of-core (PEC) resonances are found in the photoionization of single valence electron excited levels. Calculations used a close coupling wave function expansion that included 18 fine structure levels of core P III from configurations 3s23p, 3s3p2, 3s23d, 3s24s, 3s24p and 3p3. Photoionization cross sections are presented for all 475 fine structure levels of P II found with n ≤ 10 and l ≤ 9. The present results will provide high precision parameters of various applications involving this less studied ion.
Shi, Stone D.-H.; Hendrickson, Christopher L.; Marshall, Alan G.
1998-01-01
A typical molecular ion mass spectrum consists of a sum of signals from species of various possible isotopic compositions. Only the monoisotopic peak (e.g., all carbons are 12C; all nitrogens are 14N, etc.) has a unique elemental composition. Every other isotope peak at approximately integer multiples of ∼1 Da higher in nominal mass represents a sum of contributions from isotope combinations differing by a few mDa (e.g., two 13C vs. two 15N vs. one 13C and one 15N vs. 34S, vs. 18O, etc., at ∼2 Da higher in mass than the monoisotopic mass). At sufficiently high mass resolving power, each of these nominal-mass peaks resolves into its isotopic fine structure. Here, we report resolution of the isotopic fine structure of proteins up to 15.8 kDa (isotopic 13C,15N doubly depleted tumor suppressor protein, p16), made possible by electrospray ionization followed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass analysis at 9.4 tesla. Further, a resolving power of m/Δm50% ≈8,000,000 has been achieved on bovine ubiquitin (8.6 kDa). These results represent a 10-fold increase in the highest mass at which isotopic fine structure previously had been observed. Finally, because isotopic fine structure reveals elemental composition directly, it can be used to confirm or determine molecular formula. For p16, for example, we were able to determine (5.1 ± 0.3) the correct number (five) of sulfur atoms solely from the abundance ratio of the resolved 34S peak to the monoisotopic peak. PMID:9751700
Determinants of fish assemblage structure in Northwestern Great Plains streams
Mullen, J.A.; Bramblett, R.G.; Guy, C.S.; Zale, A.V.; Roberts, D.W.
2011-01-01
Prairie streams are known for their harsh and stochastic physical conditions, and the fish assemblages therein have been shown to be temporally variable. We assessed the spatial and temporal variation in fish assemblage structure in five intermittent, adventitious northwestern Great Plains streams representing a gradient of watershed areas. Fish assemblages and abiotic conditions varied more spatially than temporally. The most important variables explaining fish assemblage structure were longitudinal position and the proportion of fine substrates. The proportion of fine substrates increased proceeding upstream, approaching 100% in all five streams, and species richness declined upstream with increasing fine substrates. High levels of fine substrate in the upper reaches appeared to limit the distribution of obligate lithophilic fish species to reaches further downstream. Species richness and substrates were similar among all five streams at the lowermost and uppermost sites. However, in the middle reaches, species richness increased, the amount of fine substrate decreased, and connectivity increased as watershed area increased. Season and some dimensions of habitat (including thalweg depth, absolute distance to the main-stem river, and watershed size) were not essential in explaining the variation in fish assemblages. Fish species richness varied more temporally than overall fish assemblage structure did because common species were consistently abundant across seasons, whereas rare species were sometimes absent or perhaps not detected by sampling. The similarity in our results among five streams varying in watershed size and those from other studies supports the generalization that spatial variation exceeds temporal variation in the fish assemblages of prairie and warmwater streams. Furthermore, given longitudinal position, substrate, and stream size, general predictions regarding fish assemblage structure and function in prairie streams are possible. ?? American Fisheries Society 2011.
Fungal biomineralization of montmorillonite and goethite to short-range-ordered minerals
NASA Astrophysics Data System (ADS)
Li, Huan; Hu, Shuijin; Polizzotto, Matthew L.; Chang, Xiaoli; Shen, Qirong; Ran, Wei; Yu, Guanghui
2016-10-01
Highly reactive nano-scale minerals, e.g., short-range-ordered minerals (SROs) and other nanoparticles, play an important role in soil carbon (C) retention. Yet, the mechanisms that govern biomineralization from bulk minerals to highly reactive nano-scale minerals remain largely unexplored, which critically hinders our efforts toward managing nano-scale minerals for soil C retention. Here we report the results from a study that explores structural changes during Aspergillus fumigatus Z5 transformation of montmorillonite and goethite to SROs. We examined the morphology and structure of nano-scale minerals, using high-resolution transmission electron microscopy, time-resolved solid-state 27Al and 29Si NMR, and Fe K-edge X-ray absorption fine structure spectroscopy combined with two dimensional correlation spectroscopy (2D COS) analysis. Our results showed that after a 48-h cultivation of montmorillonite and goethite with Z5, new biogenic intracellular and extracellular reactive nano-scale minerals with a size of 3-5 nm became abundant. Analysis of 2D COS further suggested that montmorillonite and goethite were the precursors of the dominant biogenic nano-scale minerals. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectra and their deconvolution results demonstrated that during fungus Z5 growth, carboxylic C (288.4-289.1 eV) was the dominant organic group, accounting for approximately 34% and 59% in the medium and aggregates, respectively. This result suggested that high percentage of the production of organic acids during the growth of Z5 was the driving factor for structural changes during biomineralization. This is, to the best of our knowledge, the first report of the structural characterization of nano-scale minerals by 2D COS, highlighting its potential to elucidate biomineralization pathways and thus identify the precursors of nano-scale minerals.
Lin, Liang; Pang, Zhiyong; Fang, Shaojie; Wang, Fenggong; Song, Shumei; Huang, Yuying; Wei, Xiangjun; Yu, Haisheng; Han, Shenghao
2011-02-10
The structural properties of Co-doped tris(8-hydroxyquinoline)aluminum (Alq(3)) have been studied by grazing incidence X-ray absorption fine structure (GIXAFS) and Fourier transform infrared spectroscopy (FTIR). GIXAFS analysis suggests that there are multivalent Co-Alq(3) complexes and the doped Co atoms tend to locate at the attraction center with respect to N and O atoms and bond with them. The FTIR spectra indicate that the Co atoms interact with the meridional (mer) isomer of Alq(3) rather than forming inorganic compounds.
Vincristine and fine motor function of children with acute lymphoblastic leukemia
Sabarre, Cheryl L; Rassekh, Shahrad R; Zwicker, Jill G
2014-10-01
Children with acute lymphoblastic leukemia receive vincristine, a chemotherapy drug known to cause peripheral neuropathy. Yet, few studies have examined the association of vincristine to fine motor function. This study will describe the fine motor skills and function of children with acute lymphoblastic leukemia on maintenance vincristine. A prospective case series design assessed manual dexterity and parent-reported fine motor dysfunction of 15 children with acute lymphoblastic leukemia in relation to cumulative vincristine exposure. Almost half of the participants had below-average fine motor skills compared to age-related norms, and 57% of parents observed functional motor problems in their children. No significant associations were found between vincristine, manual dexterity, and functional motor skills. Early detection and intervention for fine motor difficulties is suggested. Research with a larger sample is necessary to further explore the association of vincristine and fine motor function in this clinical population.
Structures observed on the spot radiance fields during the FIRE experiment
NASA Technical Reports Server (NTRS)
Seze, Genevieve; Smith, Leonard; Desbois, Michel
1990-01-01
Three Spot images taken during the FIRE experiment on stratocumulus are analyzed. From this high resolution data detailed observations of the true cloud radiance field may be made. The structure and inhomogeneity of these radiance fields hold important implications for the radiation budget, while the fine scale structure in radiance field provides information on cloud dynamics. Wieliki and Welsh, and Parker et al., have quantified the inhomogeneities of the cumulus clouds through a careful examination of the distribution of cloud (and hole) size as functions of an effective cloud diameter and radiance threshold. Cahalan (1988) has compared for different cloud types of (stratocumulus, fair weather cumulus, convective clouds in the ITCZ) the distributions of clouds (and holes) sizes, the relation between the size and the perimeter of these clouds (and holes), and examining the possibility of scale invariance. These results are extended from LANDSAT resolution (57 m and 30 m) to the Spot resolution (10 m) resolution in the case of boundary layer clouds. Particular emphasis is placed on the statistics of zones of high and low reflectivity as a function of a threshold reflectivity.
Spin interactions in InAs quantum dots
NASA Astrophysics Data System (ADS)
Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.
2006-03-01
Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)
Measuring h /mCs and the Fine Structure Constant with Bragg Diffraction and Bloch Oscillations
NASA Astrophysics Data System (ADS)
Parker, Richard
2016-05-01
We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δα / α =0.25ppb in the fine structure constant measurement, which gives up to 4.4 million radians of phase difference between freely evolving matter waves. We suppress many systematic effects, e.g., Zeeman shifts and effects from Earth's gravity and vibrations, use Bloch oscillations to increase the signal and reduce the diffraction phase, simulate multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implement spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.
Porous-electrode preparation method
Arons, R.M.; Dusek, J.T.
1981-09-17
A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.
Porous electrode preparation method
Arons, Richard M.; Dusek, Joseph T.
1983-01-01
A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.
Porous electrode preparation method
Arons, R.M.; Dusek, J.T.
1983-10-18
A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.
Optimal Design of Experiments by Combining Coarse and Fine Measurements
NASA Astrophysics Data System (ADS)
Lee, Alpha A.; Brenner, Michael P.; Colwell, Lucy J.
2017-11-01
In many contexts, it is extremely costly to perform enough high-quality experimental measurements to accurately parametrize a predictive quantitative model. However, it is often much easier to carry out large numbers of experiments that indicate whether each sample is above or below a given threshold. Can many such categorical or "coarse" measurements be combined with a much smaller number of high-resolution or "fine" measurements to yield accurate models? Here, we demonstrate an intuitive strategy, inspired by statistical physics, wherein the coarse measurements are used to identify the salient features of the data, while the fine measurements determine the relative importance of these features. A linear model is inferred from the fine measurements, augmented by a quadratic term that captures the correlation structure of the coarse data. We illustrate our strategy by considering the problems of predicting the antimalarial potency and aqueous solubility of small organic molecules from their 2D molecular structure.
Reducing the fine-tuning of gauge-mediated SUSY breaking
NASA Astrophysics Data System (ADS)
Casas, J. Alberto; Moreno, Jesús M.; Robles, Sandra; Rolbiecki, Krzysztof
2016-08-01
Despite their appealing features, models with gauge-mediated supersymmetry breaking (GMSB) typically present a high degree of fine-tuning, due to the initial absence of the top trilinear scalar couplings, A_t=0. In this paper, we carefully evaluate such a tuning, showing that is worse than per mil in the minimal model. Then, we examine some existing proposals to generate A_t≠ 0 term in this context. We find that, although the stops can be made lighter, usually the tuning does not improve (it may be even worse), with some exceptions, which involve the generation of A_t at one loop or tree level. We examine both possibilities and propose a conceptually simplified version of the latter; which is arguably the optimum GMSB setup (with minimal matter content), concerning the fine-tuning issue. The resulting fine-tuning is better than one per mil, still severe but similar to other minimal supersymmetric standard model constructions. We also explore the so-called "little A_t^2/m^2 problem", i.e. the fact that a large A_t-term is normally accompanied by a similar or larger sfermion mass, which typically implies an increase in the fine-tuning. Finally, we find the version of GMSB for which this ratio is optimized, which, nevertheless, does not minimize the fine-tuning.
Optical characteristics of fine and coarse particulates at Grand Canyon, Arizona
NASA Astrophysics Data System (ADS)
Malm, William C.; Johnson, Christopher E.
The relationship between airborne particulate matter and atmospheric light extinction was examined using the multivariate techniques of principal component analysis and multiple linear regression on data gathered at the Grand Canyon, Arizona, from December 1979 to November 1981. Results showed that, on the average, fine sulfates were most strongly associated with light attenuation in the atmosphere. Other fine mass (nitrates, organics, soot and carbonaceous material) and coarse mass (primarily windblown dust) were much less associated with atmospheric extinction. Fine sulfate mass at the Grand Canyon was responsible for 63% of atmospheric light extinction while other fine mass and coarse mass were responsible for 17 and 20% of atmospheric extinction, respectively.
Müller, Boje; Groscurth, Sira; Menzel, Matthias; Rüping, Boris A.; Twyman, Richard M.; Prüfer, Dirk; Noll, Gundula A.
2014-01-01
Background and Aims Forisomes are specialized structural phloem proteins that mediate sieve element occlusion after wounding exclusively in papilionoid legumes, but most studies of forisome structure and function have focused on the Old World clade rather than the early lineages. A comprehensive phylogenetic, molecular, structural and functional analysis of forisomes from species covering a broad spectrum of the papilionoid legumes was therefore carried out, including the first analysis of Dipteryx panamensis forisomes, representing the earliest branch of the Papilionoideae lineage. The aim was to study the molecular, structural and functional conservation among forisomes from different tribes and to establish the roles of individual forisome subunits. Methods Sequence analysis and bioinformatics were combined with structural and functional analysis of native forisomes and artificial forisome-like protein bodies, the latter produced by expressing forisome genes from different legumes in a heterologous background. The structure of these bodies was analysed using a combination of confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the function of individual subunits was examined by combinatorial expression, micromanipulation and light microscopy. Key Results Dipteryx panamensis native forisomes and homomeric protein bodies assembled from the single sieve element occlusion by forisome (SEO-F) subunit identified in this species were structurally and functionally similar to forisomes from the Old World clade. In contrast, homomeric protein bodies assembled from individual SEO-F subunits from Old World species yielded artificial forisomes differing in proportion to their native counterparts, suggesting that multiple SEO-F proteins are required for forisome assembly in these plants. Structural differences between Medicago truncatula native forisomes, homomeric protein bodies and heteromeric bodies containing all possible subunit combinations suggested that combinations of SEO-F proteins may fine-tune the geometric proportions and reactivity of forisomes. Conclusions It is concluded that forisome structure and function have been strongly conserved during evolution and that species-dependent subsets of SEO-F proteins may have evolved to fine-tune the structure of native forisomes. PMID:24694827
NASA Astrophysics Data System (ADS)
Chang, Faliang; Liu, Chunsheng
2017-09-01
The high variability of sign colors and shapes in uncontrolled environments has made the detection of traffic signs a challenging problem in computer vision. We propose a traffic sign detection (TSD) method based on coarse-to-fine cascade and parallel support vector machine (SVM) detectors to detect Chinese warning and danger traffic signs. First, a region of interest (ROI) extraction method is proposed to extract ROIs using color contrast features in local regions. The ROI extraction can reduce scanning regions and save detection time. For multiclass TSD, we propose a structure that combines a coarse-to-fine cascaded tree with a parallel structure of histogram of oriented gradients (HOG) + SVM detectors. The cascaded tree is designed to detect different types of traffic signs in a coarse-to-fine process. The parallel HOG + SVM detectors are designed to do fine detection of different types of traffic signs. The experiments demonstrate the proposed TSD method can rapidly detect multiclass traffic signs with different colors and shapes in high accuracy.
Possibilities and limits of imaging endodontic structures with CBCT.
Weber, Marie-Theres; Stratz, Nadja; Fleiner, Jonathan; Schulze, Dirk; Hannig, Christian
2015-01-01
An adequate portrayal of the root canal anatomy by diagnostic imaging is a prerequisite for a successful diagnosis and therapy in endodontics. The introduction of dental cone beam computed tomography (CBCT) has considerably expanded the scope of imaging diagnostics. The aim of the following study was to evaluate the imaging of endodontic structures with CBCT. One hundred and twenty teeth were examined with a CBCT device (ProMax 3D). Subsequently, the findings of the three-dimensional images were evaluated and compared to those of dental radiographs and tangential section preparations of the examined teeth. Results with high prevalence, such as existing roots and root canals, as well as results with low prevalence, e.g., extremely fine anatomical structures of the endodontic tissue, could be visualized precisely by dental CBCT; side canals, ramifications, communications, pulp stones, and obliterations could also be detected. Additionally, the length of curved root canals could be determined accurately. Likewise, root fractures were visualized reliably with CBCT. However, carious lesions could not be diagnosed adequately, and the evaluation of fillings and prosthetic restorations was complicated due to scattered X-ray artifacts. CBCT datasets qualify to visualize and diagnose small anatomical structures of the endodontic tissue.
Philpott, Timothy J; Barker, Jason S; Prescott, Cindy E; Grayston, Sue J
2018-02-01
Fine root litter is the principal source of carbon stored in forest soils and a dominant source of carbon for fungal decomposers. Differences in decomposer capacity between fungal species may be important determinants of fine-root decomposition rates. Variable-retention harvesting (VRH) provides refuge for ectomycorrhizal fungi, but its influence on fine-root decomposers is unknown, as are the effects of functional shifts in these fungal communities on carbon cycling. We compared fungal communities decomposing fine roots (in litter bags) under VRH, clear-cut, and uncut stands at two sites (6 and 13 years postharvest) and two decay stages (43 days and 1 year after burial) in Douglas fir forests in coastal British Columbia, Canada. Fungal species and guilds were identified from decomposed fine roots using high-throughput sequencing. Variable retention had short-term effects on β-diversity; harvest treatment modified the fungal community composition at the 6-year-postharvest site, but not at the 13-year-postharvest site. Ericoid and ectomycorrhizal guilds were not more abundant under VRH, but stand age significantly structured species composition. Guild composition varied by decay stage, with ruderal species later replaced by saprotrophs and ectomycorrhizae. Ectomycorrhizal abundance on decomposing fine roots may partially explain why fine roots typically decompose more slowly than surface litter. Our results indicate that stand age structures fine-root decomposers but that decay stage is more important in structuring the fungal community than shifts caused by harvesting. The rapid postharvest recovery of fungal communities decomposing fine roots suggests resiliency within this community, at least in these young regenerating stands in coastal British Columbia. IMPORTANCE Globally, fine roots are a dominant source of carbon in forest soils, yet the fungi that decompose this material and that drive the sequestration or respiration of this carbon remain largely uncharacterized. Fungi vary in their capacity to decompose plant litter, suggesting that fungal community composition is an important determinant of decomposition rates. Variable-retention harvesting is a forestry practice that modifies fungal communities by providing refuge for ectomycorrhizal fungi. We evaluated the effects of variable retention and clear-cut harvesting on fungal communities decomposing fine roots at two sites (6 and 13 years postharvest), at two decay stages (43 days and 1 year), and in uncut stands in temperate rainforests. Harvesting impacts on fungal community composition were detected only after 6 years after harvest. We suggest that fungal community composition may be an important factor that reduces fine-root decomposition rates relative to those of above-ground plant litter, which has important consequences for forest carbon cycling. Copyright © 2018 American Society for Microbiology.
Gass, Katherine; Balachandran, Sivaraman; Chang, Howard H.; Russell, Armistead G.; Strickland, Matthew J.
2015-01-01
Epidemiologic studies utilizing source apportionment (SA) of fine particulate matter have shown that particles from certain sources might be more detrimental to health than others; however, it is difficult to quantify the uncertainty associated with a given SA approach. In the present study, we examined associations between source contributions of fine particulate matter and emergency department visits for pediatric asthma in Atlanta, Georgia (2002–2010) using a novel ensemble-based SA technique. Six daily source contributions from 4 SA approaches were combined into an ensemble source contribution. To better account for exposure uncertainty, 10 source profiles were sampled from their posterior distributions, resulting in 10 time series with daily SA concentrations. For each of these time series, Poisson generalized linear models with varying lag structures were used to estimate the health associations for the 6 sources. The rate ratios for the source-specific health associations from the 10 imputed source contribution time series were combined, resulting in health associations with inflated confidence intervals to better account for exposure uncertainty. Adverse associations with pediatric asthma were observed for 8-day exposure to particles generated from diesel-fueled vehicles (rate ratio = 1.06, 95% confidence interval: 1.01, 1.10) and gasoline-fueled vehicles (rate ratio = 1.10, 95% confidence interval: 1.04, 1.17). PMID:25776011
Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy
NASA Technical Reports Server (NTRS)
Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.
1991-01-01
Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.
Douglas G. Mancosky; Lucian A. Lucia; Hiroki Nanko; Sue Wirick; Alan W. Rudie; Robert Braun
2005-01-01
The research presented herein is the first attempt to probe the chemical nature of lignocellulosic samples by the application of carbon near edge X-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft X-ray technique that principally provides selective interrogation of discrete atomic moieties using photoelectrons of variable energies. The X1A beam...
Pointing and tracking control for freedom's Solar Dynamic modules and vibration control of freedom
NASA Technical Reports Server (NTRS)
Quinn, Roger D.; Chen, Jiunn-Liang
1992-01-01
A control strategy is presented for pointing particular modules of flexible multibody space structures while simultaneously attenuating structural vibrations. The application that is addressed is the planned Space Station Freedom in a growth configuration with Solar Dynamic (SD) module. A NASTRAN model of Freedom is used to demonstrate the control strategy. Two cases of SD concentrator fine-pointing controller bandwidths are studied with examples. The effect of limiting the controller motor torques to realistic baseline values is examined. SD pointing and station vibration control is accomplished during realistic disturbances due to aerodynamic drag, Shuttle docking, and Shuttle reaction control system plume impingement on SD. Gravity gradient induced torques on SD are relatively small and pseudo-steady.
Fogerty, Daniel; Humes, Larry E
2012-09-01
The speech signal may be divided into spectral frequency-bands, each band containing temporal properties of the envelope and fine structure. This study measured the perceptual weights for the envelope and fine structure in each of three frequency bands for sentence materials in young normal-hearing listeners, older normal-hearing listeners, aided older hearing-impaired listeners, and spectrally matched young normal-hearing listeners. The availability of each acoustic property was independently varied through noisy signal extraction. Thus, the full speech stimulus was presented with noise used to mask six different auditory channels. Perceptual weights were determined by correlating a listener's performance with the signal-to-noise ratio of each acoustic property on a trial-by-trial basis. Results demonstrate that temporal fine structure perceptual weights remain stable across the four listener groups. However, a different weighting typography was observed across the listener groups for envelope cues. Results suggest that spectral shaping used to preserve the audibility of the speech stimulus may alter the allocation of perceptual resources. The relative perceptual weighting of envelope cues may also change with age. Concurrent testing of sentences repeated once on a previous day demonstrated that weighting strategies for all listener groups can change, suggesting an initial stabilization period or susceptibility to auditory training.
Lightning-channel morphology by return-stroke radiation field waveforms
NASA Technical Reports Server (NTRS)
Willett, J. C.; Le Vine, D. M.; Idone, V. P.
1995-01-01
Simultaneous video and wideband electric field recordings of 32 cloud-to-ground lightning flashes in Florida were analyzed to show the formation of new channels to ground can be detected by examination of the return-stroke radiation fields alone. The return-stroke E and dE/dt waveforms were subjectively classified according to their fine structure. Then the video images were examined field by field to identify each waveform with a visible channel to ground. Fifty-five correlated waveforms and channel images were obtained. Of these, all 34 first-stroke waveforms (multiple jagged E peaks, noisy dE/dt), 8 of which were not radiated by the chronologically first stroke in the flash, came from new channels to ground (not previously seen on video). All 18 subsequent-stroke waveforms (smoothly rounded E and quiet dE/dt after initial peak) were radiated by old channels (illuminated by a previous stroke). Two double-ground waveforms (two distinct first-return-stroke pulses separated by tens of microseconds or less) coincided with video fields showing two new channels. One `anomalous-stroke' waveform (beginning like a first stroke and ending like a subsequent) was produced by a new channel segment to ground branching off an old channel. This waveform classification depends on the presence or absence of high-frequency fine structure. Fourier analysis shows that first-stroke waveforms contain about 18 dB more spectral power in the frequency interval from 500 kHz to at least 7 MHz than subsequent-stroke waveforms for at least 13 microseconds after the main peak.
Torroba-Balmori, Paloma; Budde, Katharina B; Heer, Katrin; González-Martínez, Santiago C; Olsson, Sanna; Scotti-Saintagne, Caroline; Casalis, Maxime; Sonké, Bonaventure; Dick, Christopher W; Heuertz, Myriam
2017-01-01
The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae) to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé) displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs) and had a stronger spatial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations.
Torroba-Balmori, Paloma; Budde, Katharina B.; Heer, Katrin; González-Martínez, Santiago C.; Olsson, Sanna; Scotti-Saintagne, Caroline; Sonké, Bonaventure; Dick, Christopher W.
2017-01-01
The analysis of fine-scale spatial genetic structure (FSGS) within populations can provide insights into eco-evolutionary processes. Restricted dispersal and locally occurring genetic drift are the primary causes for FSGS at equilibrium, as described in the isolation by distance (IBD) model. Beyond IBD expectations, spatial, environmental or historical factors can affect FSGS. We examined FSGS in seven African and Neotropical populations of the late-successional rain forest tree Symphonia globulifera L. f. (Clusiaceae) to discriminate the influence of drift-dispersal vs. landscape/ecological features and historical processes on FSGS. We used spatial principal component analysis and Bayesian clustering to assess spatial genetic heterogeneity at SSRs and examined its association with plastid DNA and habitat features. African populations (from Cameroon and São Tomé) displayed a stronger FSGS than Neotropical populations at both marker types (mean Sp = 0.025 vs. Sp = 0.008 at SSRs) and had a stronger spatial genetic heterogeneity. All three African populations occurred in pronounced altitudinal gradients, possibly restricting animal-mediated seed dispersal. Cyto-nuclear disequilibria in Cameroonian populations also suggested a legacy of biogeographic history to explain these genetic patterns. Conversely, Neotropical populations exhibited a weaker FSGS, which may reflect more efficient wide-ranging seed dispersal by Neotropical bats and other dispersers. The population from French Guiana displayed an association of plastid haplotypes with two morphotypes characterized by differential habitat preferences. Our results highlight the importance of the microenvironment for eco-evolutionary processes within persistent tropical tree populations. PMID:28771629
Urgert, R; Schulz, A G; Katan, M B
1995-01-01
The diterpenes cafestol and kahweol are present in unfiltered coffee in oil droplets and floating fines. They elevate serum cholesterol and alanine aminotransferase (ALT). We measured fines in coffee brews, and examined diterpene availability from spent grounds in healthy volunteers. Turkish or Scandinavian boiled coffee contained 2-5 g fines/L and French press coffee contained 1.5 g fines/L. An intake of 8 g fine grounds/d for 3 wk increased cholesterol by 0.65 mmol/L (95% CI 0.41-0.89 mmol/L) and ALT by 18 U/L (95% CI 4-32 U/L) relative to control subjects (n = 7/group). In a crossover study (n = 15), mean serum cholesterol was 4.9 mmol/L after consumption of both fine and coarse grounds for 10 d (P = 0.43). Serum ALT activities were 29 U/L on fine and 21 U/L on coarse grounds (P = 0.02). Floating fines could contribute substantially to the hyperlipidemic and ALT-elevating effect of unfiltered coffee. Diterpene measurements in coffee brews should include the contribution of fines.
Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina
2016-02-15
To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cloutis, Edward A.; Smith, Dorian G.; Lambert, Richard St. J.; Gaffey, Michael J.
1990-01-01
In a search for diagnostic spectral parameters which can be used to distinguish different materials on the surface of asteroids and to provide information on the detection limits for mafic silicates, the 0.3- to 2.6-micron reflectance spectra of meteoritic enstatite (nearly pure MgSiO3), iron meteorite metal, magnetite, and amorphous carbon as well as various mixtures of these materials with mafic silicates were examined. Results are presented on the dependence of the spectral detectability of mafic silicates associated with metal, carbon, and magnetite on the particle sizes of the phases, their chemistries, crystal structures, and abundances. It is shown that the observational data for a representative M-class asteroid, (16) Psyche, are largely consistent with a fine-grained metal-rich surface assemblage, whereas data for the E-class asteroid (44) Nysa indicate that its surface is composed of fine-grained material similar to enstatite achondrites, with a small amount of material comparable to the chondritic inclusions found in the Cumberland Falls aubrite.
NASA Technical Reports Server (NTRS)
Tessler, Alexander; DiSciuva, Marco; Gherlone, marco
2010-01-01
The Refined Zigzag Theory (RZT) for homogeneous, laminated composite, and sandwich plates is presented from a multi-scale formalism starting with the inplane displacement field expressed as a superposition of coarse and fine contributions. The coarse kinematic field is that of first-order shear-deformation theory, whereas the fine kinematic field has a piecewise-linear zigzag distribution through the thickness. The condition of limiting homogeneity of transverse-shear properties is proposed and yields four distinct sets of zigzag functions. By examining elastostatic solutions for highly heterogeneous sandwich plates, the best-performing zigzag functions are identified. The RZT predictive capabilities to model homogeneous and highly heterogeneous sandwich plates are critically assessed, demonstrating its superior efficiency, accuracy ; and a wide range of applicability. The present theory, which is derived from the virtual work principle, is well-suited for developing computationally efficient CO-continuous finite elements, and is thus appropriate for the analysis and design of high-performance load-bearing aerospace structures.
High-resolution observations of active region moss and its dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, R. J.; McLaughlin, J. A., E-mail: richard.morton@northumbria.ac.uk
2014-07-10
The High Resolution Coronal Imager has provided the sharpest view of the EUV corona to date. In this paper, we exploit its impressive resolving power to provide the first analysis of the fine-scale structure of moss in an active region. The data reveal that the moss is made up of a collection of fine threads that have widths with a mean and standard deviation of 440 ± 190 km (FWHM). The brightest moss emission is located at the visible head of the fine-scale structure and the fine structure appears to extend into the lower solar atmosphere. The emission decreases alongmore » the features, implying that the lower sections are most likely dominated by cooler transition region plasma. These threads appear to be the cool, lower legs of the hot loops. In addition, the increased resolution allows for the first direct observation of physical displacements of the moss fine structure in a direction transverse to its central axis. Some of these transverse displacements demonstrate periodic behavior, which we interpret as a signature of kink (Alfvénic) waves. Measurements of the properties of the transverse motions are made and the wave motions have means and standard deviations of 55 ± 37 km for the transverse displacement amplitude, 77 ± 33 s for the period, and 4.7 ± 2.5 km s{sup –1} for the velocity amplitude. The presence of waves in the transition region of hot loops could have important implications for the heating of active regions.« less
NASA Astrophysics Data System (ADS)
Gabrielse, Gerald
2011-05-01
The electron magnetic moment in Bohr magnetons has been measured to a precision of 3 parts in 1013. This measurement, with quantum electrodynamics (AED) theory, provides the most precise value of the fine structure constant. This measurement, with a value of the fine structure from other measurements, also tests QED and sets a limit on the internal structure of the electron. A one-electron quantum cyclotron is at the heart of the measurement -- an electron suspended in a magnetic field and cooled enough that its lowest cyclotron and spin quantum states can be deduced with quantum nondemolition (QND) measurements. A cylindrical Penning trap cavity inhibits spontaneous emission and feedback methods make the electron excite and sustain its own motion for detection. A new apparatus is being commissioned in pursuit of more precise measurements. Adapted methods are promising for observing a proton spin flip, which should make it possible to compare the antiproton and proton magnetic moments a million times more accurately than is currently possible.
New determination of the fine structure constant from the electron value and QED.
Gabrielse, G; Hanneke, D; Kinoshita, T; Nio, M; Odom, B
2006-07-21
Quantum electrodynamics (QED) predicts a relationship between the dimensionless magnetic moment of the electron (g) and the fine structure constant (alpha). A new measurement of g using a one-electron quantum cyclotron, together with a QED calculation involving 891 eighth-order Feynman diagrams, determine alpha(-1)=137.035 999 710 (96) [0.70 ppb]. The uncertainties are 10 times smaller than those of nearest rival methods that include atom-recoil measurements. Comparisons of measured and calculated g test QED most stringently, and set a limit on internal electron structure.
Mistakes in ultrasound examination of salivary glands
Jakubowski, Wiesław
2016-01-01
Ultrasonography is the first imaging method applied in the case of diseases of the salivary glands. The article discusses basic mistakes that can be made during an ultrasound examination of these structures. The reasons for these mistakes may be examiner-dependent or may be beyond their control. The latter may include, inter alia, difficult conditions during examination (technical or patient-related), similarity of ultrasound images in different diseases, the lack of clinical and laboratory data as well as the lack of results of other examinations, their insufficient number or incorrectness. Doctor-related mistakes include: the lack of knowledge of normal anatomy, characteristics of ultrasound images in various salivary gland diseases and statistical incidence of diseases, but also attaching excessive importance to such statistical data. The complex anatomical structures of the floor of the oral cavity may be mistaken for benign or malignant tumors. Fragments of correct anatomical structures (bones, arterial wall fibrosis, air bubbles in the mouth) can be wrongly interpreted as deposits in the salivary gland or in its excretory duct. Correct lymph nodes in the parotid glands may be treated as pathologic structures. Lesions not being a simple cyst, e.g. lymphoma, benign or malignant tumors of the salivary glands or metastatic lymph nodes, can be mistaken for one. The image of disseminated focal changes, both anechoic and solid, is not pathognomonic for specific diseases in the salivary glands. However, in part, it occurs typically and requires an extended differential diagnosis. Small focal changes and infiltrative lesions pose a diagnostic problem because their etiology cannot be safely suggested on the basis of an ultrasound examination itself. The safest approach is to refer patients with abnormal focal changes for an ultrasoundguided fine-needle aspiration biopsy. PMID:27446603
Liu, Yanchun; Liu, Shirong; Wan, Shiqiang; Wang, Jingxin; Wang, Hui; Liu, Kuan
2017-01-01
Fine root dynamics play a critical role in regulating carbon (C) cycling in terrestrial ecosystems. Examining responses of fine root biomass and its decomposition to altered precipitation pattern and climate warming is crucial to understand terrestrial C dynamics and its feedback to climate change. Fine root biomass and its decomposition rate were investigated in a warm temperate oak forest through a field manipulation experiment with throughfall reduction and soil warming conducted. Throughfall reduction significantly interacted with soil warming in affecting fine root biomass and its decomposition. Throughfall reduction substantially increased fine root biomass and its decomposition in unheated plots, but negative effects occurred in warmed plots. Soil warming significantly enhanced fine root biomass and its decomposition under ambient precipitation, but the opposite effects exhibited under throughfall reduction. Different responses in fine root biomass among different treatments could be largely attributed to soil total nitrogen (N), while fine root decomposition rate was more depended on microbial biomass C and N. Our observations indicate that decreased precipitation may offset the positive effect of soil warming on fine root biomass and decomposition. Copyright © 2016 Elsevier B.V. All rights reserved.
The potential of space exploration for the fine arts
NASA Technical Reports Server (NTRS)
Mclaughlin, William I.
1993-01-01
Art provides an integrating function between the 'upper' and 'lower' centers of the human psyche. The nature of this function can be made more specific through the triune model of the brain. The evolution of the fine arts - painting, drawing, architecture, sculpture, literature, music, dance, and drama, plus cinema and mathematics-as-a-fine-art - are examined in the context of their probable stimulations by space exploration: near term and long term.
A Quaterback Club for the High School Fine Arts Department
ERIC Educational Resources Information Center
Tindel, Robert James
1977-01-01
Examines the creation of a high school fine arts club to provide financial support for the music, art and theatre arts departments and to help enhance cooperation among these departments while providing broader cultural experiences for the club members. (MH)
Structural and electrical properties of In-implanted Ge
Feng, R.; Kremer, F.; Sprouster, D. J.; ...
2015-10-22
Here, we report on the effects of dopant concentration on the structural and electrical properties of In-implanted Ge. For In concentrations of ≤ 0.2 at. %, extended x-ray absorption fine structure and x-ray absorption near-edge structure measurements demonstrate that all In atoms occupy a substitutional lattice site while metallic In precipitates are apparent in transmission electron micrographs for In concentrations ≥0.6 at. %. Evidence of the formation of In-vacancy complexes deduced from extended x-ray absorption fine structure measurements is complimented by density functional theory simulations. Hall effect measurements of the conductivity, carrier density, and carrier mobility are then correlated withmore » the substitutional In fraction.« less
Decapitation in reality and fine art: A review.
Nikolić, Valentina; Savić, Slobodan; Antunović, Vaso; Marinković, Slobodan; Andrieux, Charlotte; Tomić, Irina
2017-11-01
The aim of our study was to examine all types of decapitation from forensic literature, including our own case, and to analyze the presentation of beheading in fine art, popular literature, and music. To do this, over 200 scientific articles in regard to decapitation were analyzed, as well as more than 10,000 artworks, and several hundreds of literary works and music pieces. In addition, a macroscopic examination of a decapitated victim was performed. Finally, a multislice computerized tomography (MSCT) examination of the cervical spine in two live volunteers was undertaken to present the osteological relationships. The forensic and criminal investigation revealed that a female victim was murdered by her jealous husband by applying several strikes with an axe, which resulted in an incomplete decapitation. All the main neck structures were transected, including the cervical spine, except a smaller part of the skin and soft tissue in the nuchal region. The mentioned MSCT examination in both the neutral position and flexion showed that the mandible can also be injured in a higher cervical location of the severance line. Various types of beheading were mentioned, including a homicidal, suicidal, accidental, judicial, internal, pathophysiological, and foetal ones. The status of consciousness and emotions in individuals just before and after decapitation was discussed. Finally, it was found that decapitation was the subject of many artists, and some writers and musicians. In conclusion, we presented a rare case of a homicide beheading performed with an axe. In addition, forensic importance of decapitation was discussed, as well as its great medical, social, anthropological, and artistic significance. Copyright © 2017 Elsevier B.V. All rights reserved.
Apollo 15 coarse fines (4-10 mm): Sample classification, description and inventory
NASA Technical Reports Server (NTRS)
Powell, B. N.
1972-01-01
A particle by particle binocular microscopic examination of all of the Apollo 15 4-10 mm fines samples is reported. These particles are classified according to their macroscopic lithologic features in order to provide a basis for sample allocations and future study. The relatively large size of these particles renders them too vaulable to permit treatment along with the other bulk fines, yet they are too small (and numerous) to practically receive full individual descriptive treatment as given the larger rock samples. This examination, classification and description of subgroups represents a compromise treatment. In most cases and for many types of investigation the individual particles should be large enough to permit the application of more than one type of analysis.
Changes in pore structure of coal caused by coal-to-gas bioconversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Rui; Liu, Shimin; Bahadur, Jitendra
Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less
Changes in pore structure of coal caused by coal-to-gas bioconversion
Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...
2017-06-19
Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less
Controlled replication of butterfly wings for achieving tunable photonic properties.
Huang, Jingyun; Wang, Xudong; Wang, Zhong Lin
2006-10-01
The fine structure of the wing scale of a Morpho Peleides butterfly was examined carefully, and the entire configuration was completely replicated by a uniform Al(2)O(3) coating through a low-temperature ALD process. An inverted structure was achieved by removing the butterfly wing template at high temperature, forming a polycrystalline Al(2)O(3) shell structure with precisely controlled thickness. Other than the copy of the morphology of the structure, the optical property, such as the existence of PBG, was also inherited by the alumina replica. Reflection peaks at the violet/blue range were detected on both original wings and their replica, while a simple alumina coating shifted the reflection peak to longer wavelength because of the change of periodicity and refraction index. The alumina replicas also exhibited similar functional structures as waveguide and beam splitter, which may be used as the building blocks for photonic ICs with high reproducibility and lower fabrication cost compared to traditional lithography techniques.
Rocket observations of electron-density irregularities in the equatorial ionosphere below 200 km
NASA Technical Reports Server (NTRS)
Klaus, D. E.; Smith, L. G.
1978-01-01
Nike Apache rockets carring instrumentation to measure electron density and its fine structure in the equatorial ionosphere were launched from Chilca, Peru in May and June 1975. The fine structure experiment and the data reduction system are described. Results obtained from this system are presented and compared with those obtained by VHF radar and from other rocket studies. A description of the equatorial ionosphere and its features is also presented.
Effective collision strengths for the electron impact excitation of Mg
NASA Astrophysics Data System (ADS)
Hudson, C. E.; Ramsbottom, C. A.; Norrington, P. H.; Scott, M. P.
2008-05-01
Electron impact excitation collision strengths for fine structure transitions of Mg,have been determined by a Breit-Pauli R-matrix calculation. The target states are represented by configuration interaction wavefunctions and consist of the 19 lowest LS states, having configurations 2s^22p^4, 2s2p^5, 2p^6, 2s^22p^33s and 2s^22p^33p. These target states give rise to 37 fine structure levels and 666 possible transitions. The effective collision strengths are calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities. Effective collision strengths for transitions between the fine structure levels are given for electron temperatures in the range 10Te(K) = 3.0 - 7.0. Results are compared with the previous R-matrix calculation of Butler & Zeippen (AASS, 1994) and the recent Distorted Wave evaluations of Bhatia, Landi & Eissner (ADNDT, 2006).
Origin of fine structure of the giant dipole resonance in s d -shell nuclei
NASA Astrophysics Data System (ADS)
Fearick, R. W.; Erler, B.; Matsubara, H.; von Neumann-Cosel, P.; Richter, A.; Roth, R.; Tamii, A.
2018-04-01
A set of high-resolution zero-degree inelastic proton scattering data on 24Mg, 28Si, 32S, and 40Ca provides new insight into the long-standing puzzle of the origin of fragmentation of the giant dipole resonance (GDR) in s d -shell nuclei. Understanding is achieved by comparison with random phase approximation calculations for deformed nuclei using for the first time a realistic nucleon-nucleon interaction derived from the Argonne V18 potential with the unitary correlation operator method and supplemented by a phenomenological three-nucleon contact interaction. A wavelet analysis allows one to extract significant scales both in the data and calculations characterizing the fine structure of the GDR. The fair agreement for scales in the range of a few hundred keV supports the surmise that the fine structure arises from ground-state deformation driven by α clustering.
Ishikawa, Fumitaro; Higashi, Kotaro; Fuyuno, Satoshi; Morifuji, Masato; Kondow, Masahiko; Trampert, Achim
2018-04-13
We study the effects of annealing on (Ga 0.64 ,In 0.36 ) (N 0.045 ,As 0.955 ) using hard X-ray photoelectron spectroscopy and X-ray absorption fine structure measurements. We observed surface oxidation and termination of the N-As bond defects caused by the annealing process. Specifically, we observed a characteristic chemical shift towards lower binding energies in the photoelectron spectra related to In. This phenomenon appears to be caused by the atomic arrangement, which produces increased In-N bond configurations within the matrix, as indicated by the X-ray absorption fine structure measurements. The reduction in the binding energies of group-III In, which occurs concomitantly with the atomic rearrangements of the matrix, causes the differences in the electronic properties of the system before and after annealing.
Fine structure constant and quantized optical transparency of plasmonic nanoarrays.
Kravets, V G; Schedin, F; Grigorenko, A N
2012-01-24
Optics is renowned for displaying quantum phenomena. Indeed, studies of emission and absorption lines, the photoelectric effect and blackbody radiation helped to build the foundations of quantum mechanics. Nevertheless, it came as a surprise that the visible transparency of suspended graphene is determined solely by the fine structure constant, as this kind of universality had been previously reserved only for quantized resistance and flux quanta in superconductors. Here we describe a plasmonic system in which relative optical transparency is determined solely by the fine structure constant. The system consists of a regular array of gold nanoparticles fabricated on a thin metallic sublayer. We show that its relative transparency can be quantized in the near-infrared, which we attribute to the quantized contact resistance between the nanoparticles and the metallic sublayer. Our results open new possibilities in the exploration of universal dynamic conductance in plasmonic nanooptics.
NASA Astrophysics Data System (ADS)
Izosimov, I. N.; Solnyshkin, A. A.; Khushvaktov, J. H.; Vaganov, Yu. A.
2018-05-01
The experimental measurement data on the fine structure of beta-decay strength function S β( E) in spherical, transitional, and deformed nuclei are analyzed. Modern high-resolution nuclear spectroscopy methods made it possible to identify the splitting of peaks in S β( E) for deformed nuclei. By analogy with splitting of the peak of E1 giant dipole resonance (GDR) in deformed nuclei, the peaks in S β( E) are split into two components from the axial nuclear deformation. In this report, the fine structure of S β( E) is discussed. Splitting of the peaks connected with the oscillations of neutrons against protons (E1GDR), of proton holes against neutrons (peaks in S β( E) of β+/ EC-decay), and of protons against neutron holes (peaks in S β( E) of β--decay) is discussed.
Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals.
Biadala, Louis; Siebers, Benjamin; Beyazit, Yasin; Tessier, Mickaël D; Dupont, Dorian; Hens, Zeger; Yakovlev, Dmitri R; Bayer, Manfred
2016-03-22
We report on a temperature-, time-, and spectrally resolved study of the photoluminescence of type-I InP/ZnS colloidal nanocrystals with varying core size. By studying the exciton recombination dynamics we assess the exciton fine structure in these systems. In addition to the typical bright-dark doublet, the photoluminescence stems from an upper bright state in spite of its large energy splitting (∼100 meV). This striking observation results from dramatically lengthened thermalization processes among the fine structure levels and points to optical-phonon bottleneck effects in InP/ZnS nanocrystals. Furthermore, our data show that the radiative recombination of the dark exciton scales linearly with the bright-dark energy splitting for CdSe and InP nanocrystals. This finding strongly suggests a universal dangling bonds-assisted recombination of the dark exciton in colloidal nanostructures.
Examining the role of the tectorial membrane in otoacoustic emission generation
NASA Astrophysics Data System (ADS)
Cheatham, Marry Ann; Goodyear, Richard J.; Charaziak, Karolina K.; Conklin, Tess; Zheng, Jing; Dallos, Peter; Richardson, Guy P.; Siegel, Jonathan H.
2015-12-01
A mouse lacking CEACAM16, a member of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family of proteins, shows changes in tectorial membrane (TM) structure including loss of a defined striated-sheet matrix, absence of Hensen's stripe and increased porosity. In spite of these changes, thresholds for distortion product emissions (DPOAEs) and auditory brainstem responses (ABR) are near normal for most frequencies in the mouse audiogram [11]. In contrast, stimulus frequency emissions (SFOAE) are larger in knockouts (KO) and the incidence of spontaneous emissions (SOAE) is ˜70% [5]. This latter statistic is remarkable considering that SOAEs are uncommon in normal wild-type (WT) mice. In order to understand how the TM might influence emissions, SFOAE magnitude and phase were examined and group delays computed. As in humans, an approximately one-cycle phase change is observed in association with SFOAE fine structure. In addition, CEACAM16 KO mice and their WT controls showed similar group delays/phase slopes indicating no obvious changes in the mechanisms associated with emission generation.
NASA Astrophysics Data System (ADS)
Kenward, D. R.; Lessard, M.; Lynch, K. A.; Hysell, D. L.; Hampton, D. L.; Michell, R.; Samara, M.; Varney, R. H.; Oksavik, K.; Clausen, L. B. N.; Hecht, J. H.; Clemmons, J. H.; Fritz, B.
2017-12-01
The RENU2 sounding rocket (launched from Andoya rocket range on December 13th, 2015) observed Poleward Moving Auroral Forms within the dayside cusp. The ISINGLASS rockets (launched from Poker Flat rocket range on February 22, 2017 and March 2, 2017) both observed aurora during a substorm event. Despite observing very different events, both campaigns witnessed a high degree of small scale structuring within the larger auroral boundary, including Alfvenic signatures. These observations suggest a method of coupling large-scale energy input to fine scale structures within aurorae. During RENU2, small (sub-km) scale drivers persist for long (10s of minutes) time scales and result in large scale ionospheric (thermal electron) and thermospheric response (neutral upwelling). ISINGLASS observations show small scale drivers, but with short (minute) time scales, with ionospheric response characterized by the flight's thermal electron instrument (ERPA). The comparison of the two flights provides an excellent opportunity to examine ionospheric and thermospheric response to small scale drivers over different integration times.
Hyperfine structure parametrisation in Maple
NASA Astrophysics Data System (ADS)
Gaigalas, G.; Scharf, O.; Fritzsche, S.
2006-02-01
In hyperfine structure examinations, routine high resolution spectroscopy methods have to be combined with exact fine structure calculations. The so-called magnetic A and electric B factor of the fine structure levels allow to check for a correct fine structure analysis, to find errors in the level designation, to find new levels and to probe the electron wavefunctions and its mixing coefficients. This is done by parametrisation of these factors into different contributions of the subshell electrons, which are split further into their radial and spin-angular part. Due to the routine with which hyperfine structure measurements are done, a tool for keeping the necessary information together, performing checks online with the experiment and deriving standard quantities is of great help. MAPLE [Maple is a registered trademark of Waterloo Maple Inc.] is a highly-developed symbolic programming language, often referred to as the pocket calculator of the future. Packages for theoretical atomic calculation exist ( RACAH and JUCYS) and the language meets all the requirements to keep and present information accessible for the user in a fast and practical way. We slightly extended the RACAH package [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51] and set up an environment for experimental hyperfine structure calculations, the HFS package. Supplying the fine structure and nuclear data, one is in the position to obtain information about the hyperfine spectrum, the different contributions to the splitting and to perform a least square fit of the radial parameters based on the semiempirical method. Experimentalist as well as theoretical physicist can do a complete hyperfine structure analysis using MAPLE. Program summaryTitle of program: H FS Catalogue number: ADXD Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXD Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers for which the program is designed: All computers with a license of the computer algebra package MAPLE Installations: University of Kassel (Germany) Operating systems under which the program has been tested: Linux 9.0 Program language used:MAPLE, Release 7, 8 and 9 Memory required to execute with typical data: 5 MB No. of lines in distributed program, including test data, etc.: 34 300 No. of bytes in distributed program, including test data, etc.: 954 196 Distribution format: tar.gz Nature of the physical problem: Atomic state functions of an many configuration many electron atom with several open shells are defined by a number of quantum numbers, by their coupling and selection rules such as the Pauli exclusion principal or parity conservation. The matrix elements of any one-particle operator acting on these wavefunctions can be analytically integrated up to the radial part [G. Gaigalas, O. Scharf, S. Fritzsche, Central European J. Phys. 2 (2004) 720]. The decoupling of the interacting electrons is general, the obtained submatrix element holds all the peculiarities of the operator in question. These so-called submatrix elements are the key to do hyperfine structure calculations. The interaction between the electrons and the atomic nucleus leads to an additional splitting of the fine structure lines, the hyperfine structure. The leading components are the magnetic dipole interaction defining the so-called A factor and the electric quadrupole interaction, defining the so-called B factor. They express the energetic splitting of the spectral lines. Moreover, they are obtained directly by experiments and can be calculated theoretically in an ab initio approach. A semiempirical approach allows the fitting of the radial parts of the wavefunction to the experimentally obtained A and B factors. Method of solution: Extending the existing csf_LS() and asf_LS() to several open shells and implementing a data structure level_LS() for the fine structure level, the atomic environment is defined in MAPLE. It is used in a general approach to decouple the interacting shells for any one-particle operator. Further submatrix elements for the magnetic dipole and electric quadrupole interaction are implemented, allowing to calculate the A and B factors up to the radial part. Several procedures for standard quantities of the hyperfine structure are defined, too. The calculations are accelerated by using a hyper-geometric approach for three, six and nine symbols. Restrictions onto the complexity of the problem: Only atomic state functions in nonrelativistic LS-coupling with states having l⩽3 are supported. Typical running time: The program replies promptly on most requests. The least square fit depends heavily on the number of levels and can take a few minutes.
Reconstruction of vessel structures from serial whole slide sections of murine liver samples
NASA Astrophysics Data System (ADS)
Schwier, Michael; Hahn, Horst K.; Dahmen, Uta; Dirsch, Olaf
2013-03-01
Image-based analysis of the vascular structures of murine liver samples is an important tool for scientists to understand liver physiology and morphology. Typical assessment methods are MicroCT, which allows for acquiring images of the whole organ while lacking resolution for fine details, and confocal laser scanning microscopy, which allows detailed insights into fine structures while lacking the broader context. Imaging of histological serial whole slide sections is a recent technology able to fill this gap, since it provides a fine resolution up to the cellular level, but on a whole organ scale. However, whole slide imaging is a modality providing only 2D images. Therefore the challenge is to use stacks of serial sections from which to reconstruct the 3D vessel structures. In this paper we present a semi-automatic procedure to achieve this goal. We employ an automatic method that detects vessel structures based on continuity and shape characteristics. Furthermore it supports the user to perform manual corrections where required. With our methods we were able to successfully extract and reconstruct vessel structures from a stack of 100 and a stack of 397 serial sections of a mouse liver lobe, thus proving the potential of our approach.
Pérez de Rosas, Alicia R; Segura, Elsa L; Fusco, Octavio; Guiñazú, Adolfo L Bareiro; García, Beatriz A
2013-03-01
Fine scale patterns of genetic structure and dispersal in Triatoma infestans populations from Argentina was analysed. A total of 314 insects from 22 domestic and peridomestic sites from the locality of San Martín (Capayán department, Catamarca province) were typed for 10 polymorphic microsatellite loci. The results confirm subdivision of T. infestans populations with restricted dispersal among sampling sites and suggest inbreeding and/or stratification within the different domestic and peridomestic structures. Spatial correlation analysis showed that the scale of structuring is approximately of 400 m, indicating that active dispersal would occur within this distance range. It was detected difference in scale of structuring among sexes, with females dispersing over greater distances than males. This study suggests that insecticide treatment and surveillance should be extended within a radius of 400 m around the infested area, which would help to reduce the probability of reinfestation by covering an area of active dispersal. The inferences made from fine-scale spatial genetic structure analyses of T. infestans populations has demonstrated to be important for community-wide control programs, providing a complementary approach to help improve vector control strategies.
Fine motor skills in children with prenatal alcohol exposure or fetal alcohol spectrum disorder.
Doney, Robyn; Lucas, Barbara R; Jones, Taryn; Howat, Peter; Sauer, Kay; Elliott, Elizabeth J
2014-01-01
Prenatal alcohol exposure (PAE) can cause fetal alcohol spectrum disorders (FASD) and associated neurodevelopmental impairments. It is uncertain which types of fine motor skills are most likely to be affected after PAE or which assessment tools are most appropriate to use in FASD diagnostic assessments. This systematic review examined which types of fine motor skills are impaired in children with PAE or FASD; which fine motor assessments are appropriate for FASD diagnosis; and whether fine motor impairments are evident at both "low" and "high" PAE levels. A systematic review of relevant databases was undertaken using key terms. Relevant studies were extracted using a standardized form, and methodological quality was rated using a critical appraisal tool. Twenty-four studies met inclusion criteria. Complex fine motor skills, such as visual-motor integration, were more frequently impaired than basic fine motor skills, such as grip strength. Assessment tools that specifically assessed fine motor skills more consistently identified impairments than those which assessed fine motor skills as part of a generalized neurodevelopmental assessment. Fine motor impairments were associated with "moderate" to "high" PAE levels. Few studies reported fine motor skills of children with "low" PAE levels, so the effect of lower PAE levels on fine motor skills remains uncertain. Comprehensive assessment of a range of fine motor skills in children with PAE is important to ensure an accurate FASD diagnosis and develop appropriate therapeutic interventions for children with PAE-related fine motor impairments.
Saito, Masaya; Matsuura, Tomokazu; Nagatsuma, Keisuke; Tanaka, Ken; Maehashi, Haruka; Shimizu, Keiko; Hataba, Yoshiaki; Kato, Fumitaka; Kashimori, Isao; Tajiri, Hisao; Braet, Filip
2007-06-01
Functional intact liver organoid can be reconstructed in a radial-flow bioreactor when human hepatocellular carcinoma (FLC-5), mouse immortalized sinusoidal endothelial M1 (SEC) and A7 (HSC) hepatic stellate cell lines are cocultured. The structural and functional characteristics of the reconstructed organoid closely resemble the in vivo liver situation. Previous liver organoid studies indicated that cell-to-cell communications might be an important factor for the functional and structural integrity of the reconstructed organoid, including the expression of fenestrae. Therefore, we examined the possible relationship between functional intact gap junctional intercellular communication (GJIC) and fenestrae dynamics in M1-SEC cells. The fine morphology of liver organoid was studied in the presence of (1) irsogladine maleate (IM), (2) oleamide and (3) oleamide followed by IM treatment. Fine ultrastructural changes were studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and compared with control liver organoid data. TEM revealed that oleamide affected the integrity of cell-to-cell contacts predominantly in FLC-5 hepatocytes. SEM observation showed the presence of fenestrae on M1-SEC cells; however, oleamide inhibited fenestrae expression on the surface of endothelial cells. Interestingly, fenestrae reappeared when IM was added after initial oleamide exposure. GJIC mediates the number of fenestrae in endothelial cells of the liver organoid.
Enhanced renal image contrast by ethanol fixation in phase-contrast X-ray computed tomography.
Shirai, Ryota; Kunii, Takuya; Yoneyama, Akio; Ooizumi, Takahito; Maruyama, Hiroko; Lwin, Thet Thet; Hyodo, Kazuyuki; Takeda, Tohoru
2014-07-01
Phase-contrast X-ray imaging using a crystal X-ray interferometer can depict the fine structures of biological objects without the use of a contrast agent. To obtain higher image contrast, fixation techniques have been examined with 100% ethanol and the commonly used 10% formalin, since ethanol causes increased density differences against background due to its physical properties and greater dehydration of soft tissue. Histological comparison was also performed. A phase-contrast X-ray system was used, fitted with a two-crystal X-ray interferometer at 35 keV X-ray energy. Fine structures, including cortex, tubules in the medulla, and the vessels of ethanol-fixed kidney could be visualized more clearly than that of formalin-fixed tissues. In the optical microscopic images, shrinkage of soft tissue and decreased luminal space were observed in ethanol-fixed kidney; and this change was significantly shown in the cortex and outer stripe of the outer medulla. The ethanol fixation technique enhances image contrast by approximately 2.7-3.2 times in the cortex and the outer stripe of the outer medulla; the effect of shrinkage and the physical effect of ethanol cause an increment of approximately 78% and 22%, respectively. Thus, the ethanol-fixation technique enables the image contrast to be enhanced in phase-contrast X-ray imaging.
Léger, Agnès C.; Reed, Charlotte M.; Desloge, Joseph G.; Swaminathan, Jayaganesh; Braida, Louis D.
2015-01-01
Consonant-identification ability was examined in normal-hearing (NH) and hearing-impaired (HI) listeners in the presence of steady-state and 10-Hz square-wave interrupted speech-shaped noise. The Hilbert transform was used to process speech stimuli (16 consonants in a-C-a syllables) to present envelope cues, temporal fine-structure (TFS) cues, or envelope cues recovered from TFS speech. The performance of the HI listeners was inferior to that of the NH listeners both in terms of lower levels of performance in the baseline condition and in the need for higher signal-to-noise ratio to yield a given level of performance. For NH listeners, scores were higher in interrupted noise than in steady-state noise for all speech types (indicating substantial masking release). For HI listeners, masking release was typically observed for TFS and recovered-envelope speech but not for unprocessed and envelope speech. For both groups of listeners, TFS and recovered-envelope speech yielded similar levels of performance and consonant confusion patterns. The masking release observed for TFS and recovered-envelope speech may be related to level effects associated with the manner in which the TFS processing interacts with the interrupted noise signal, rather than to the contributions of TFS cues per se. PMID:26233038
NASA Astrophysics Data System (ADS)
Takaya, K.; Okabe, M.; Sawataishi, M.; Takashima, H.; Yoshida, T.
2003-01-01
Ion microscopy (IM) of air-dried or freeze-dried cryostat and semi-thin cryosections has provided ion images of elements and organic substances in wide areas of the tissue. For reproducible ion images by a shorter time of exposure to the primary ion beam, fresh frozen dried ultrathin sections were prepared by freezing the tissue in propane chilled with liquid nitrogen, cryocut at 60 nm, mounted on grids and silicon wafer pieces, and freeze-dried. Rat Cowper gland and sciatic nerve, bone marrow of the rat administered of lithium carbonate, tree frog and African toad spleen and buffy coat of atopic dermatitis patients were examined. Fine structures and ion images of the corresponding areas in the same or neighboring sections were observed by transmission electron microscopy (TEM) followed by sector type and time-of-flight type IM. Cells in the buffy coat contained larger amounts of potassium and magnesium while plasma had larger amounts of sodium and calcium. However, in the tissues, lithium, sodium, magnesium, calcium and potassium were distributed in the cell and calcium showed a granular appearance. A granular cell of the tree frog spleen contained sodium and potassium over the cell and magnesium and calcium were confined to granules.
Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure
Griffin, Kevin L.; Anderson, O. Roger; Gastrich, Mary D.; Lewis, James D.; Lin, Guanghui; Schuster, William; Seemann, Jeffrey R.; Tissue, David T.; Turnbull, Matthew H.; Whitehead, David
2001-01-01
With increasing interest in the effects of elevated atmospheric CO2 on plant growth and the global carbon balance, there is a need for greater understanding of how plants respond to variations in atmospheric partial pressure of CO2. Our research shows that elevated CO2 produces significant fine structural changes in major cellular organelles that appear to be an important component of the metabolic responses of plants to this global change. Nine species (representing seven plant families) in several experimental facilities with different CO2-dosing technologies were examined. Growth in elevated CO2 increased numbers of mitochondria per unit cell area by 1.3–2.4 times the number in control plants grown in lower CO2 and produced a statistically significant increase in the amount of chloroplast stroma (nonappressed) thylakoid membranes compared with those in lower CO2 treatments. There was no observable change in size of the mitochondria. However, in contrast to the CO2 effect on mitochondrial number, elevated CO2 promoted a decrease in the rate of mass-based dark respiration. These changes may reflect a major shift in plant metabolism and energy balance that may help to explain enhanced plant productivity in response to elevated atmospheric CO2 concentrations. PMID:11226263
Restricted gene flow and fine-scale population structuring in tool using New Caledonian crows
NASA Astrophysics Data System (ADS)
Rutz, C.; Ryder, T. B.; Fleischer, R. C.
2012-04-01
New Caledonian crows Corvus moneduloides are the most prolific avian tool users. It has been suggested that some aspects of their complex tool use behaviour are under the influence of cultural processes, involving the social transmission—and perhaps even progressive refinement—of tool designs. Using microsatellite and mt-haplotype profiling of crows from three distinct habitats (dry forest, farmland and beachside habitat), we show that New Caledonian crow populations can exhibit significant fine-scale genetic structuring. Our finding that some sites of <10 km apart were highly differentiated demonstrates considerable potential for genetic and/or cultural isolation of crow groups. Restricted movement of birds between local populations at such small spatial scales, especially across habitat boundaries, illustrates how specific tool designs could be preserved over time, and how tool technologies of different crow groups could diverge due to drift and local selection pressures. Young New Caledonian crows have an unusually long juvenile dependency period, during which they acquire complex tool-related foraging skills. We suggest that the resulting delayed natal dispersal drives population-divergence patterns in this species. Our work provides essential context for future studies that examine the genetic makeup of crow populations across larger geographic areas, including localities with suspected cultural differences in crow tool technologies.
Singh, Nadia D.; Aquadro, Charles F.; Clark, Andrew G.
2009-01-01
Accurate assessment of local recombination rate variation is crucial for understanding the recombination process and for determining the impact of natural selection on linked sites. In Drosophila, local recombination intensity has been estimated primarily by statistical approaches, estimating the local slope of the relationship between the physical and genetic maps. However, these estimates are limited in resolution, and as a result, the physical scale at which recombination intensity varies in Drosophila is largely unknown. While there is some evidence suggesting as much as a 40-fold variation in crossover rate at a local scale in D. pseudoobscura, little is known about the fine-scale structure of recombination rate variation in D. melanogaster. Here, we experimentally examine the fine-scale distribution of crossover events in a 1.2 Mb region on the D. melanogaster X chromosome using a classic genetic mapping approach. Our results show that crossover frequency is significantly heterogeneous within this region, varying ~ 3.5 fold. Simulations suggest that this degree of heterogeneity is sufficient to affect levels of standing nucleotide diversity, although the magnitude of this effect is small. We recover no statistical association between empirical estimates of nucleotide diversity and recombination intensity, which is likely due to the limited number of loci sampled in our population genetic dataset. However, codon bias is significantly negatively correlated with fine-scale recombination intensity estimates, as expected. Our results shed light on the relevant physical scale to consider in evolutionary analyses relating to recombination rate, and highlight the motivations to increase the resolution of the recombination map in Drosophila. PMID:19504037
Facilities Guidelines for Fine Arts Programs.
ERIC Educational Resources Information Center
Maryland State Dept. of Education, Baltimore.
This manual of facility guidelines examines the planning process and design features and considerations for public school fine arts programs in Maryland. Planning concepts and trends are highlighted followed by planning guidelines for dance, music, theater, visual arts, general education, and performance spaces. General design considerations…
Infilling of Cobble Substrate used by White Sturgeon on the Nechako River, at Vanderhoof BC
NASA Astrophysics Data System (ADS)
Zimmermann, A. E.; Argast, T.; Sary, Z.
2013-12-01
Nechako white sturgeon are experiencing a recruitment failure, which has been attributed to the failure of eggs and larvae to survive as a result of changes in the substrate at the locations where they are known to spawn. As part of the overall recovery effort initiative, cobble substrate was placed at two locations to provide clean spawning substrate. Subsequently, the condition of the substrate has been investigated using an underwater camera and freeze core sampling. These observations have shown that coarse sand and fine gravels (fine bedoad) have in-filled the coarse substrate where it was placed along the inside corner of the bends, while placed substrate located on the outside of the bends has remained free of this size fraction. This observation has lead to the quandary: Is placed cobble substrate on the outside corner of the bends not being filled in with fine bedload because fine bedload is not moving past these sites, or are post-regulation flood flows sufficient to ensure fines remain suspended and are not deposited in the interstitial spaces? To assess this question a number of field based techniques will be used in August of 2013 during high flows to examine the movement of fine bedload. The techniques employed will include an underwater camera, P61 suspended sediment sampler, a HellySmith and KAROLYI bedload sampler and an ADCP with RTK for bottom tracking. The intent is to examine the movement of fine bedload across the channel at a number of potential spawning sites. The poster will summarize the observations to date about the movement of fine bedload at the spawning sites, and discuss the implications for spawning substrate improvement efforts.
A review of hybrid implicit explicit finite difference time domain method
NASA Astrophysics Data System (ADS)
Chen, Juan
2018-06-01
The finite-difference time-domain (FDTD) method has been extensively used to simulate varieties of electromagnetic interaction problems. However, because of its Courant-Friedrich-Levy (CFL) condition, the maximum time step size of this method is limited by the minimum size of cell used in the computational domain. So the FDTD method is inefficient to simulate the electromagnetic problems which have very fine structures. To deal with this problem, the Hybrid Implicit Explicit (HIE)-FDTD method is developed. The HIE-FDTD method uses the hybrid implicit explicit difference in the direction with fine structures to avoid the confinement of the fine spatial mesh on the time step size. So this method has much higher computational efficiency than the FDTD method, and is extremely useful for the problems which have fine structures in one direction. In this paper, the basic formulations, time stability condition and dispersion error of the HIE-FDTD method are presented. The implementations of several boundary conditions, including the connect boundary, absorbing boundary and periodic boundary are described, then some applications and important developments of this method are provided. The goal of this paper is to provide an historical overview and future prospects of the HIE-FDTD method.
Takakusagi, Satoru; Nojima, Hirotaka; Ariga, Hiroko; Uehara, Hiromitsu; Miyazaki, Kotaro; Chun, Wang-Jae; Iwasawa, Yasuhiro; Asakura, Kiyotaka
2013-09-07
Three-dimensional structures of vacuum-deposited Cu species formed on TiO2(110) surfaces premodified with three mercaptobenzoic acid (MBA) isomers were studied using polarization-dependent total reflection fluorescence X-ray absorption fine structure (PTRF-XAFS). We explored the possibility of fine tuning and orientation control of the surface Cu structures, including their coordination and configuration against the surface, according to the different mercapto group positions of the three MBA isomers (o-, m-, and p-MBA). Almost linear S-Cu-O (lattice O of TiO2) surface compounds were formed on the three MBA-modified TiO2(110) surfaces; however, the orientation of the Cu species on the o- and m-MBA-modified TiO2(110) surfaces (40-45° inclined from the surface normal) was different from that on the p-MBA-modified TiO2(110) surface (60° from the surface normal). This work suggests that the selection of a different MBA isomer for premodification of a single crystal TiO2(110) surface enables fine tuning and orientation control of surface Cu complexes.
Dimitroff, George; Little, Alan; Lahnstein, Jelle; Schwerdt, Julian G; Srivastava, Vaibhav; Bulone, Vincent; Burton, Rachel A; Fincher, Geoffrey B
2016-04-05
Cellulose synthase-like F6 (CslF6) genes encode polysaccharide synthases responsible for (1,3;1,4)-β-glucan biosynthesis in cereal grains. However, it is not clear how both (1,3)- and (1,4)-linkages are incorporated into a single polysaccharide chain and how the frequency and arrangement of the two linkage types that define the fine structure of the polysaccharide are controlled. Through transient expression in Nicotiana benthamiana leaves, two CSLF6 orthologs from different cereal species were shown to mediate the synthesis of (1,3;1,4)-β-glucans with very different fine structures. Chimeric cDNA constructs with interchanged sections of the barley and sorghum CslF6 genes were developed to identify regions of the synthase enzyme responsible for these differences. A single amino acid residue upstream of the TED motif in the catalytic region was shown to dramatically change the fine structure of the polysaccharide produced. The structural basis of this effect can be rationalized by reference to a homology model of the enzyme and appears to be related to the position and flexibility of the TED motif in the active site of the enzyme. The region and amino acid residue identified provide opportunities to manipulate the solubility of (1,3;1,4)-β-glucan in grains and vegetative tissues of the grasses and, in particular, to enhance the solubility of dietary fibers that are beneficial to human health.
Liu, Xiao Hui; Yue, Ling Fen; Wang, Da Wei; Li, Ning; Cong, Lin
2013-01-01
Inbreeding depression is a major evolutionary and ecological force influencing population dynamics and the evolution of inbreeding-avoidance traits such as mating systems and dispersal. Mating systems and dispersal are fundamental determinants of population genetic structure. Resolving the relationships among genetic structure, seasonal breeding-related mating systems and dispersal will facilitate our understanding of the evolution of inbreeding avoidance. The goals of this study were as follows: (i) to determine whether females actively avoided mating with relatives in a group-living rodent species, Brandt’s voles (Lasiopodomys brandtii), by combined analysis of their mating system, dispersal and genetic structure; and (ii) to analyze the relationships among the variation in fine-genetic structure, inbreeding avoidance, season-dependent mating strategies and individual dispersal. Using both individual- and population-level analyses, we found that the majority of Brandt’s vole groups consisted of close relatives. However, both group-specific FISs, an inbreeding coefficient that expresses the expected percentage rate of homozygosity arising from a given breeding system, and relatedness of mates showed no sign of inbreeding. Using group pedigrees and paternity analysis, we show that the mating system of Brandt’s voles consists of a type of polygyny for males and extra-group polyandry for females, which may decrease inbreeding by increasing the frequency of mating among distantly-related individuals. The consistent variation in within-group relatedness, among-group relatedness and fine-scale genetic structures was mostly due to dispersal, which primarily occurred during the breeding season. Biologically relevant variation in the fine-scale genetic structure suggests that dispersal during the mating season may be a strategy to avoid inbreeding and drive the polygynous and extra-group polyandrous mating system of this species. PMID:23516435
ERIC Educational Resources Information Center
Hamilton, Michelle; Liu, Ting
2018-01-01
The purpose of this study was to examine the effects of a motor skill intervention on gross and fine motor skill performance of Hispanic pre-K children from low SES backgrounds. One hundred and forty-nine pre-K children were randomly assigned to an intervention group (n = 74) and control group (n = 75). All children were assessed on fine and gross…
McCormack, M. Luke; Dickie, Ian A.; Eissenstat, David M.; ...
2015-03-10
Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain due to challenges in consistent measurement and interpretation of fine-root systems. We define fine roots as all roots less than or equal to 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. We demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, finemore » roots are separated into either individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine root pool. Furthermore, using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally a ca. 30% reduction from previous estimates assuming a single fine-root pool. In the future we hope to develop tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi in fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand belowground processes in the terrestrial biosphere.« less
Soft X-ray characterization technique for Li batteries under operating conditions.
Petersburg, Cole F; Daniel, Robert C; Jaye, Cherno; Fischer, Daniel A; Alamgir, Faisal M
2009-09-01
O K-edge and Co L-edge near-edge X-ray absorption fine structure has been used to examine the cathode of an intact solid-state lithium ion battery. The novel technique allowed for the simultaneous acquisition of partial electron yield and fluorescence yield data during the first charge cycle of a LiCoO(2)-based battery below the intercalation voltage. The chemical environments of oxygen and cobalt at the surface are shown to differ chemically from those in the bulk. The present design enables a wide variety of in situ spectroscopies, microscopies and scattering techniques.
Sertoli cell tumour in an Amur tiger.
Scudamore, C L; Meredith, A L
2001-01-01
The histological and immunohistochemical characteristics of a malignant Sertoli cell tumour in a 17-year-old Amur tiger (Panthera tigris altaica) are described. Histological examination of the primary lesion in the right testis and metastatic lesions throughout the internal organs showed a variable cellular pattern with an admixture of tubular structures divided by fine stroma filled with fusiform to stellate cells, and sheets of polygonal cells with abundant vacuolated cytoplasm. Immunohistochemical techniques demonstrated strong positive staining for neuron-specific enolase and variable positive staining for vimentin in neoplastic cells, supporting a diagnosis of a tumour of Sertoli cell origin.
Laser-assisted solar cell metallization processing
NASA Technical Reports Server (NTRS)
Dutta, S.
1984-01-01
Laser-assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are examined. Two basic techniques for metal deposition are investigated; (1) photochemical decomposition of liquid or gas phase organometallic compounds utilizing either a focused, CW ultraviolet laser (System 1) or a mask and ultraviolet flood illumination, such as that provided by a repetitively pulsed, defocused excimer laser (System 2), for pattern definition, and (2) thermal deposition of metals from organometallic solutions or vapors utilizing a focused, CW laser beam as a local heat source to draw the metallization pattern.
Recovery and fine structure variability of RGII sub-domains in wine (Vitis vinifera Merlot)
Buffetto, F.; Ropartz, D.; Zhang, X. J.; Gilbert, H. J.; Guillon, F.; Ralet, M.-C.
2014-01-01
Background and Aims Rhamnogalacturonan II (RGII) is a structurally complex pectic sub-domain composed of more than 12 different sugars and 20 different linkages distributed in five side chains along a homogalacturonan backbone. Although RGII has long been described as highly conserved over plant evolution, recent studies have revealed variations in the structure of the polysaccharide. This study examines the fine structure variability of RGII in wine, focusing on the side chains A and B obtained after sequential mild acid hydrolysis. Specifically, this study aims to differentiate intrinsic structural variations in these RGII side chains from structural variations due to acid hydrolysis. Methods RGII from wine (Vitis vinifera Merlot) was sequentially hydrolysed with trifluoroacetic acid (TFA) and the hydrolysis products were separated by anion-exchange chromatography (AEC). AEC fractions or total hydrolysates were analysed by MALDI-TOF mass spectrometry. Key Results The optimal conditions to recover non-degraded side chain B, side chain A and RGII backbone were 0·1 m TFA at 40 °C for 16 h, 0·48 m TFA at 40 °C for 16 h (or 0·1 m TFA at 60 °C for 8 h) and 0·1 m TFA at 60 °C for 16 h, respectively. Side chain B was particularly prone to acid degradation. Side chain A and the RGII GalA backbone were partly degraded by 0·1 m TFA at 80 °C for 1–4 h. AEC allowed separation of side chain B, methyl-esterified side chain A and non-methyl-esterified side chain A. The structure of side chain A and the GalA backbone were highly variable. Conclusions Several modifications to the RGII structure of wine were identified. The observed dearabinosylation and deacetylation were primarily the consequence of acidic treatment, while variation in methyl-esterification, methyl-ether linkages and oxidation reflect natural diversity. The physiological significance of this variability, however, remains to be determined. PMID:24908680
Compact cell-centered discretization stencils at fine-coarse block structured grid interfaces
NASA Astrophysics Data System (ADS)
Pletzer, Alexander; Jamroz, Ben; Crockett, Robert; Sides, Scott
2014-03-01
Different strategies for coupling fine-coarse grid patches are explored in the context of the adaptive mesh refinement (AMR) method. We show that applying linear interpolation to fill in the fine grid ghost values can produce a finite volume stencil of comparable accuracy to quadratic interpolation provided the cell volumes are adjusted. The volume of fine cells expands whereas the volume of neighboring coarse cells contracts. The amount by which the cells contract/expand depends on whether the interface is a face, an edge, or a corner. It is shown that quadratic or better interpolation is required when the conductivity is spatially varying, anisotropic, the refinement ratio is other than two, or when the fine-coarse interface is concave.
Paperna, L; Lainson, R
1999-12-01
An account is given of the fine structure of Acroeimerio pintoi, an epicytoplasmic coccidium infecting the small intestine of the teiid lizard Ameiva ameiva in north Brazil. The merozoile becomes encircled by outgrowths of the host-cell wall which then merge to form a parasitophorous sack in which the parasite continues to develop when this bulges out above the epithelium surface. The account includes a description of merozoites, young meronts and young and mature macrogamonts. The parasitophorous vacuole has a complex tubular system connected to its junction with the host-cell. The parasites are coated with a droplet-like glycocalyx and covered by a fine filamentous layer.
Quark mass variations of nuclear forces, BBN, and all that
NASA Astrophysics Data System (ADS)
Meissner, Ulf-G.
2014-03-01
In this talk, I discuss the modifications of the nuclear forces due to variations of the light quark masses and of the fine structure constant. This is based on the chiral nuclear effective field theory, that successfully describes a large body of data. The generation of the light elements in the Big Bang Nucleosynthesis provides important constraints on these modifications. In addition, I discuss the role of the anthropic principle in the triple-alpha process that underlies carbon and oxygen generation in hot stars. It appears that a fine-tuning of the quark masses and the fine structure constant within 2 to 3 per cent is required to make life on Earth viable. Supported in part by DFG, HGF and the BMBF.
Rare variation facilitates inferences of fine-scale population structure in humans.
O'Connor, Timothy D; Fu, Wenqing; Mychaleckyj, Josyf C; Logsdon, Benjamin; Auer, Paul; Carlson, Christopher S; Leal, Suzanne M; Smith, Joshua D; Rieder, Mark J; Bamshad, Michael J; Nickerson, Deborah A; Akey, Joshua M
2015-03-01
Understanding the genetic structure of human populations has important implications for the design and interpretation of disease mapping studies and reconstructing human evolutionary history. To date, inferences of human population structure have primarily been made with common variants. However, recent large-scale resequencing studies have shown an abundance of rare variation in humans, which may be particularly useful for making inferences of fine-scale population structure. To this end, we used an information theory framework and extensive coalescent simulations to rigorously quantify the informativeness of rare and common variation to detect signatures of fine-scale population structure. We show that rare variation affords unique insights into patterns of recent population structure. Furthermore, to empirically assess our theoretical findings, we analyzed high-coverage exome sequences in 6,515 European and African American individuals. As predicted, rare variants are more informative than common polymorphisms in revealing a distinct cluster of European-American individuals, and subsequent analyses demonstrate that these individuals are likely of Ashkenazi Jewish ancestry. Our results provide new insights into the population structure using rare variation, which will be an important factor to account for in rare variant association studies. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
FINE PARTICLE EXPOSURE IS ASSOCIATED WITH ALTERED VENTRICULAR REPOLARIZATION
Exposure to fine airborne particulate matter (PM2.5) has previously been associated with cardiac events, especially in older people with cardiovascular disease and in diabetics. This study examined the cardiac effects of short-term exposures to ambient PM2.5 in a prospective pane...
RESPIRATORY TOXICOLOGCAL EFFECTS OF WORLD TRADE CENTER FINE PARTICULATE MATTER IN MICE
ABSTRACT BODY:
The destruction of the World Trade Center (WTC) caused the release of high levels of airborne pollutants which were reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate mat...
NASA Technical Reports Server (NTRS)
Tomei, B. A.; Smith, L. G.
1986-01-01
Sounding rockets equipped to monitor electron density and its fine structure were launched into the auroral and equatorial ionosphere in 1980 and 1983, respectively. The measurement electronics are based on the Langmuir probe and are described in detail. An approach to the spectral analysis of the density irregularities is addressed and a software algorithm implementing the approach is given. Preliminary results of the analysis are presented.
Re/Os constraint on the time variability of the fine-structure constant.
Fujii, Yasunori; Iwamoto, Akira
2003-12-31
We argue that the accuracy by which the isochron parameters of the decay 187Re-->187Os are determined by dating iron meteorites may constrain the possible time dependence of the decay rate and hence of the fine-structure constant alpha, not directly but only in a model-dependent manner. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the quasistellar-object absorption lines are reexamined.
Fogerty, Daniel; Humes, Larry E.
2012-01-01
The speech signal may be divided into spectral frequency-bands, each band containing temporal properties of the envelope and fine structure. This study measured the perceptual weights for the envelope and fine structure in each of three frequency bands for sentence materials in young normal-hearing listeners, older normal-hearing listeners, aided older hearing-impaired listeners, and spectrally matched young normal-hearing listeners. The availability of each acoustic property was independently varied through noisy signal extraction. Thus, the full speech stimulus was presented with noise used to mask six different auditory channels. Perceptual weights were determined by correlating a listener’s performance with the signal-to-noise ratio of each acoustic property on a trial-by-trial basis. Results demonstrate that temporal fine structure perceptual weights remain stable across the four listener groups. However, a different weighting typography was observed across the listener groups for envelope cues. Results suggest that spectral shaping used to preserve the audibility of the speech stimulus may alter the allocation of perceptual resources. The relative perceptual weighting of envelope cues may also change with age. Concurrent testing of sentences repeated once on a previous day demonstrated that weighting strategies for all listener groups can change, suggesting an initial stabilization period or susceptibility to auditory training. PMID:22978896
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pentlehner, D.; Slenczka, A., E-mail: alkwin.slenczka@chemie.uni-regensburg.de
2015-01-07
Electronic spectra of organic molecules doped into superfluid helium nanodroplets show characteristic features induced by the helium environment. Besides a solvent induced shift of the electronic transition frequency, in many cases, a spectral fine structure can be resolved for electronic and vibronic transitions which goes beyond the expected feature of a zero phonon line accompanied by a phonon wing as known from matrix isolation spectroscopy. The spectral shape of the zero phonon line and the helium induced phonon wing depends strongly on the dopant species. Phonon wings, for example, are reported ranging from single or multiple sharp transitions to broadmore » (Δν > 100 cm{sup −1}) diffuse signals. Despite the large number of example spectra in the literature, a quantitative understanding of the helium induced fine structure of the zero phonon line and the phonon wing is missing. Our approach is a systematic investigation of related molecular compounds, which may help to shed light on this key feature of microsolvation in superfluid helium droplets. This paper is part of a comparative study of the helium induced fine structure observed in electronic spectra of anthracene derivatives with particular emphasis on a spectrally sharp multiplet splitting at the electronic origin. In addition to previously discussed species, 9-cyanoanthracene and 9-chloroanthracene will be presented in this study for the first time.« less
Fine-scale human genetic structure in Western France.
Karakachoff, Matilde; Duforet-Frebourg, Nicolas; Simonet, Floriane; Le Scouarnec, Solena; Pellen, Nadine; Lecointe, Simon; Charpentier, Eric; Gros, Françoise; Cauchi, Stéphane; Froguel, Philippe; Copin, Nane; Le Tourneau, Thierry; Probst, Vincent; Le Marec, Hervé; Molinaro, Sabrina; Balkau, Beverley; Redon, Richard; Schott, Jean-Jacques; Blum, Michael Gb; Dina, Christian
2015-06-01
The difficulties arising from association analysis with rare variants underline the importance of suitable reference population cohorts, which integrate detailed spatial information. We analyzed a sample of 1684 individuals from Western France, who were genotyped at genome-wide level, from two cohorts D.E.S.I.R and CavsGen. We found that fine-scale population structure occurs at the scale of Western France, with distinct admixture proportions for individuals originating from the Brittany Region and the Vendée Department. Genetic differentiation increases with distance at a high rate in these two parts of Northwestern France and linkage disequilibrium is higher in Brittany suggesting a lower effective population size. When looking for genomic regions informative about Breton origin, we found two prominent associated regions that include the lactase region and the HLA complex. For both the lactase and the HLA regions, there is a low differentiation between Bretons and Irish, and this is also found at the genome-wide level. At a more refined scale, and within the Pays de la Loire Region, we also found evidence of fine-scale population structure, although principal component analysis showed that individuals from different departments cannot be confidently discriminated. Because of the evidence for fine-scale genetic structure in Western France, we anticipate that rare and geographically localized variants will be identified in future full-sequence analyses.
Tian, Chen; Zhao, Jian; Ou, Xinwen; Wan, Jieting; Cai, Yuepeng; Lin, Zhang; Dang, Zhi; Xing, Baoshan
2018-03-20
p-Arsanilic acid ( p-ASA) is an emerging organoarsenic pollutant comprising both inorganic and organic moieties. For the efficient removal of p-ASA, adsorbents with high adsorption affinity are urgently needed. Herein, amine-modified UiO-67 (UiO-67-NH 2 ) metal-organic frameworks (MOFs) were synthesized, and their adsorption affinities toward p-ASA were 2 times higher than that of the pristine UiO-67. Extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculation results revealed adsorption through a combination of As-O-Zr coordination, hydrogen bonding, and π-π stacking, among which As-O-Zr coordination was the dominant force. Amine groups played a significant role in enhancing the adsorption affinity through strengthening the As-O-Zr coordination and π-π stacking, as well as forming new adsorption sites via hydrogen bonding. UiO-67-NH 2 s could remove p-ASA at low concentrations (<5 mg L -1 ) in simulated natural and wastewaters to an arsenic level lower than that of the drinking water standard of World Health Organization (WHO) and the surface water standard of China, respectively. This work provided an emerging and promising method to increase the adsorption affinity of MOFs toward pollutants containing both organic and inorganic moieties, via modifying functional groups based on the pollutant structure to achieve synergistic adsorption effect.
Nishida, Tomoki; Yoshimura, Ryoichi; Endo, Yasuhisa
2017-09-01
Neurite varicosities are highly specialized compartments that are involved in neurotransmitter/ neuromodulator release and provide a physiological platform for neural functions. However, it remains unclear how microtubule organization contributes to the form of varicosity. Here, we examine the three-dimensional structure of microtubules in varicosities of a differentiated PC12 neural cell line using ultra-high voltage electron microscope tomography. Three-dimensional imaging showed that a part of the varicosities contained an accumulation of organelles that were separated from parallel microtubule arrays. Further detailed analysis using serial sections and whole-mount tomography revealed microtubules running in a spindle shape of swelling in some other types of varicosities. These electron tomographic results showed that the structural diversity and heterogeneity of microtubule organization supported the form of varicosities, suggesting that a different distribution pattern of microtubules in varicosities is crucial to the regulation of varicosities development.
Fine structures of azimuthal correlations of two gluons in the glasma
NASA Astrophysics Data System (ADS)
Zhang, Hengying; Zhang, Donghai; Zhao, Yeyin; Xu, Mingmei; Pan, Xue; Wu, Yuanfang
2018-02-01
We investigate the azimuthal correlations of the glasma in p-p collisions at √{sNN}=7 TeV by using the color glass condensate (CGC) formalism. As expected, the azimuthal correlations show two peaks at Δ ϕ =0 and π , which represent collimation production in the CGC. Beyond that, azimuthal correlations show fine structures, i.e., bumps or shoulders between the two peaks, when at least one gluon has small x . The structures are demonstrated to be associated with saturation momentum and likely appear at transverse momentum around 2 Qsp=1.8 GeV /c .
Chemiluminescence in cryogenic matrices
NASA Astrophysics Data System (ADS)
Lotnik, S. V.; Kazakov, Valeri P.
1989-04-01
The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.
Fine motor skills and executive function both contribute to kindergarten achievement
Cameron, Claire E.; Brock, Laura L.; Murrah, William M.; Bell, Lindsay H.; Worzalla, Samantha L.; Grissmer, David; Morrison, Frederick J.
2012-01-01
This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on six standardized assessments in a sample of middle-SES kindergarteners. 3- and 4-year-olds’ (N=213) fine and gross motor skills were assessed in a home visit before kindergarten; EF was measured at fall of kindergarten; and Woodcock-Johnson III (WJ III) Tests of Academic Achievement were administered at fall and spring. Correlations indicated that EF and fine motor skills appeared distinct. Further, controlling for background variables, higher levels of both EF and fine motor skills, specifically design copy, predicted higher achievement on multiple subtests at kindergarten entry, as well as improvement from fall to spring. Implications for research on school readiness are discussed. PMID:22537276
National Institute of Standards and Technology Data Gateway
SRD 30 NIST Structural Ceramics Database (Web, free access) The NIST Structural Ceramics Database (WebSCD) provides evaluated materials property data for a wide range of advanced ceramics known variously as structural ceramics, engineering ceramics, and fine ceramics.
Wilkins, A D; Morgus, L; Hernandez-Guzman, J; Huennekens, J; Hickman, A P
2005-09-22
Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational levels of the 1 3delta state of NaK have been extended to include high lying rovibrational levels with v < or = 59, of which the highest levels lie within approximately 4 cm(-1) of the dissociation limit. A potential curve is determined using the inverted perturbation approximation method that reproduces these levels to an accuracy of approximately 0.026 cm(-1). For the largest values of v, the outer turning points occur near R approximately 12.7 angstroms, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The fine and hyperfine structure of the 1 3delta rovibrational levels has been fit using the matrix diagonalization method that has been applied to other states of NaK, leading to values of the spin-orbit coupling constant A(v) and the Fermi contact constant b(F). New values determined for v < or = 33 are consistent with values determined by a simpler method and reported earlier. The measured fine and hyperfine structure for v in the range 44 < or = v < or = 49 exhibits anomalous behavior whose origin is believed to be the mixing between the 1 3delta and 1 1delta states. The matrix diagonalization method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. The analysis leads to accurate values for A(v) and b(F) for all values of v < or = 49. For higher v (50 < or = v < or = 59), several rovibrational levels have been assigned, but the pattern of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from effects not included in the current model.
NASA Astrophysics Data System (ADS)
Gaudinski, J. B.; Riley, W. J.; Torn, M. S.; Dawson, T. E.; Trumbore, S. E.; Joslin, J. D.; Majdi, H.; Hanson, P. J.; Swanston, C.
2008-12-01
This work seeks to improve our ability to quantify C cycling rates in fine roots of trees in mature deciduous and coniferous forests. We use two different types of atmospheric 14CO2 enrichment to trace the time elapsed since C in plant tissues was fixed from the atmosphere by photosynthesis. The first uses a local enrichment of 14CO2 which occurred in early summer 1999, at the Oak Ridge Reservation, Tennessee. The second, employed at three different sites, uses the global enrichment in background atmospheric 14CO2 caused by thermonuclear weapons testing (bomb-14C). In both cases we employ a new model (Radix1.0) to track C and 14C fluxes through fine root populations. Radix simulates two live-root populations (the longer-lived one having structural and non-structural C components), two dead-root pools, non-normally distributed root mortality turnover times, a stored C pool, seasonal growth and respiration patterns, a best-fit to measurements approach to estimate model parameters, and Monte Carlo uncertainty analysis. Our results show that: (1) New fine-root growth contains a lot of stored C (~55%) but it is young in age (0.7 y). (2) The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models should take stored reserves into account, particularly for pulse labeling studies and fast-cycling roots (< 1 y). (3) Radiocarbon values show a stronger correlation with position on the root branch system than they do with diameter or depth in the soil profile. (4) Live fine root dynamics are well described by a short-lived and a long-lived population, with mean turnover times <1 y and ~12 y, respectively. (5) Dead root decomposition is best modeled with (at least) two pools, with moderate (~2 y) and slow (~10 y) decomposition turnover times. (6) Root respiration has a large effect on fine root biomass and isotopic composition, and should be included in ecosystem C and isotope models. (7) It is important to distinguish structural from non-structural components in the long-lived root pool. Otherwise the 14C signature of root respiration is significantly different than atmospheric. We conclude that realistic quantification of C flows through fine roots requires a model with a level of complexity similar to Radix. Moreover, future root research efforts should seek to sample and sort roots by position on the root branch system rather than by diameter size class and improve estimates of root respiration within fine root populations.
NASA Astrophysics Data System (ADS)
Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua
2008-10-01
In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.
Riddle, Catherine; Czerwinski, Kenneth; Kim, Eunja; ...
2016-01-18
We studied the speciation of pentavalent and hexavalent americium (Am) complexes in nitric acidicby X-ray absorption fine structure spectroscopy (XAFS), UV-visible spectroscopy, and density functional theory (DFT). Extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) results were consistent with the presence of a mixture of AmO 2 + and AmO 2 2+ with only a small amount AmO 2 present. The resulting average bond distances we found were 1.71 Å for Am=O and 2.44 Å for Am-O. All-electron scalar relativistic calculations were also carried out using DFT to predict the equilibrium geometries and properties ofmore » the AmO 2 + and AmO 2 2+ aquo complexes. Calculated bond distances for the Am(VI) complex are in reasonable agreement with EXAFS data and the computed energy gaps between frontier molecular orbitals suggest a slightly higher kinetic stability and chemical hardness of Am(VI) compared to Am(V).« less
Ancient wet aeolian environments on Earth: Clues to presence of fossil/live microorganisms on Mars
Mahaney, W.C.; Milner, M.W.; Netoff, D.I.; Malloch, D.; Dohm, J.M.; Baker, V.R.; Miyamoto, H.; Hare, T.M.; Komatsu, G.
2004-01-01
Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and constructional landforms at the surface. This constructional process on Mars may help unravel the complex history of some of the piping structures observed on Earth; on Earth, evidence for the constructional landforms has been all but erased and the near-surface piping structures exposed through millions of years of differential erosion and topographic inversion now occur as high-standing promontories. If the features on both Earth and Mars formed by similar processes, especially involving water and other volatiles, and since the piping structures of Earth provided suitable environments for life to thrive in, the martian features in the northern plains should be considered as prime targets for physico/mineral/chemical/microbiological analyses once the astrobiological exploration of the red planet begins in earnest. ?? 2004 Elsevier Inc. All rights reserved.
Ancient wet aeolian environments on Earth: clues to presence of fossil/live microorganisms on Mars
NASA Astrophysics Data System (ADS)
Mahaney, William C.; Milner, Michael W.; Netoff, D. I.; Malloch, David; Dohm, James M.; Baker, Victor R.; Miyamoto, Hideaki; Hare, Trent M.; Komatsu, Goro
2004-09-01
Ancient wet aeolian (wet-sabkha) environments on Earth, represented in the Entrada and Navajo sandstones of Utah, contain pipe structures considered to be the product of gas/water release under pressure. The sediments originally had considerable porosity allowing the ingress of living plant structures, microorganisms, clay minerals, and fine-grained primary minerals of silt and sand size from the surface downward in the sedimentary column. Host rock material is of a similar size and porosity and presumably the downward migration of fine-grained material would have been possible prior to lithogenesis and final cementation. Recent field emission scanning electron microscopy (FESEM) and EDS (energy-dispersive spectrometry) examination of sands from fluidized pipes in the Early Jurassic Navajo Sandstone reveal the presence of fossil forms resembling fungal filaments, some bearing hyphopodium-like structures similar to those produced by modern tropical leaf parasites. The tropical origin of the fungi is consistent with the paleogeography of the sandstone, which was deposited in a tropical arid environment. These fossil fungi are silicized, with minor amounts of CaCO 3 and Fe, and in some cases a Si/Al ratio similar to smectite. They exist as pseudomorphs, totally depleted in nitrogen, adhering to the surfaces of fine-grained sands, principally quartz and orthoclase. Similar wet aeolian paleoenvironments are suspected for Mars, especially following catastrophic sediment-charged floods of enormous magnitudes that are believed to have contributed to rapid formation of large water bodies in the northern plains, ranging from lakes to oceans. These events are suspected to have contributed to a high frequency of constructional landforms (also known as pseudocraters) related to trapped volatiles and water-enriched sediment underneath a thick blanket of materials that were subsequently released to the martian surface, forming piping structures at the near surface and constructional landforms at the surface. This constructional process on Mars may help unravel the complex history of some of the piping structures observed on Earth; on Earth, evidence for the constructional landforms has been all but erased and the near-surface piping structures exposed through millions of years of differential erosion and topographic inversion now occur as high-standing promontories. If the features on both Earth and Mars formed by similar processes, especially involving water and other volatiles, and since the piping structures of Earth provided suitable environments for life to thrive in, the martian features in the northern plains should be considered as prime targets for physico/mineral/chemical/microbiological analyses once the astrobiological exploration of the red planet begins in earnest.
Ultra-Fine Scale Spatially-Integrated Mapping of Habitat and Occupancy Using Structure-From-Motion.
McDowall, Philip; Lynch, Heather J
2017-01-01
Organisms respond to and often simultaneously modify their environment. While these interactions are apparent at the landscape extent, the driving mechanisms often occur at very fine spatial scales. Structure-from-Motion (SfM), a computer vision technique, allows the simultaneous mapping of organisms and fine scale habitat, and will greatly improve our understanding of habitat suitability, ecophysiology, and the bi-directional relationship between geomorphology and habitat use. SfM can be used to create high-resolution (centimeter-scale) three-dimensional (3D) habitat models at low cost. These models can capture the abiotic conditions formed by terrain and simultaneously record the position of individual organisms within that terrain. While coloniality is common in seabird species, we have a poor understanding of the extent to which dense breeding aggregations are driven by fine-scale active aggregation or limited suitable habitat. We demonstrate the use of SfM for fine-scale habitat suitability by reconstructing the locations of nests in a gentoo penguin colony and fitting models that explicitly account for conspecific attraction. The resulting digital elevation models (DEMs) are used as covariates in an inhomogeneous hybrid point process model. We find that gentoo penguin nest site selection is a function of the topography of the landscape, but that nests are far more aggregated than would be expected based on terrain alone, suggesting a strong role of behavioral aggregation in driving coloniality in this species. This integrated mapping of organisms and fine scale habitat will greatly improve our understanding of fine-scale habitat suitability, ecophysiology, and the complex bi-directional relationship between geomorphology and habitat use.
Sedimentation Investigation at Masirah Island, Oman.
1983-11-01
source of fine-graine"’ rJ-.e.i _. BAt Is .iA Anchorage t-e botton is gravel and coarse sand. C’. rrents are so swift there, fine meterial will not settle...stable and with the proposed pier (a gravity structure to -3 m MLW) and the new intake groin, it will likely remain stable in the future. The volume of...US-BUILT SALTWATER INTAKE GROIN. This shore-normal gravity structure, which affects adjacent shores in .alythe same manner a groin would, was completed
The 16th International Conference on X-ray Absorption Fine Structure (XAFS16)
NASA Astrophysics Data System (ADS)
Grunwaldt, J.-D.; Hagelstein, M.; Rothe, J.
2016-05-01
This preface of the proceedings volume of the 16th International Conference on X- ray Absorption Fine Structure (XAFS16) gives a glance on the five days of cutting-edge X-ray science which were held in Karlsruhe, Germany, August 23 - 28, 2015. In addition, several satellite meetings took place in Hamburg, Berlin and Stuttgart, a Sino-German workshop, three data analysis tutorials as well as special symposia on industrial catalysis and XFELs were held at the conference venue.
Physics based calculation of the fine structure constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lestone, John Paul
2009-01-01
We assume that the coupling between particles and photons is defined by a surface area and a temperature, and that the square of the temperature is the inverse of the surface area ({Dirac_h}=c= 1). By making assumptions regarding stimulated emission and effects associated with the finite length of a string that forms the particle surface, the fine structure constant is calculated to be {approx}1/137.04. The corresponding calculated fundamental unit of charge is 1.6021 x 10{sup -19} C.
Ansmann, Ina C; Parra, Guido J; Lanyon, Janet M; Seddon, Jennifer M
2012-09-01
Highly mobile marine species in areas with no obvious geographic barriers are expected to show low levels of genetic differentiation. However, small-scale variation in habitat may lead to resource polymorphisms and drive local differentiation by adaptive divergence. Using nuclear microsatellite genotyping at 20 loci, and mitochondrial control region sequencing, we investigated fine-scale population structuring of inshore bottlenose dolphins (Tursiops aduncus) inhabiting a range of habitats in and around Moreton Bay, Australia. Bayesian structure analysis identified two genetic clusters within Moreton Bay, with evidence of admixture between them (F(ST) = 0.05, P = 0.001). There was only weak isolation by distance but one cluster of dolphins was more likely to be found in shallow southern areas and the other in the deeper waters of the central northern bay. In further analysis removing admixed individuals, southern dolphins appeared genetically restricted with lower levels of variation (AR = 3.252, π = 0.003) and high mean relatedness (r = 0.239) between individuals. In contrast, northern dolphins were more diverse (AR = 4.850, π = 0.009) and were mixing with a group of dolphins outside the bay (microsatellite-based STRUCTURE analysis), which appears to have historically been distinct from the bay dolphins (mtDNA Φ(ST) = 0.272, P < 0.001). This study demonstrates the ability of genetic techniques to expose fine-scale patterns of population structure and explore their origins and mechanisms. A complex variety of inter-related factors including local habitat variation, differential resource use, social behaviour and learning, and anthropogenic disturbances are likely to have played a role in driving fine-scale population structure among bottlenose dolphins in Moreton Bay. © 2012 Blackwell Publishing Ltd.
Dispersal, mating events and fine-scale genetic structure in the lesser flat-headed bats.
Hua, Panyu; Zhang, Libiao; Guo, Tingting; Flanders, Jon; Zhang, Shuyi
2013-01-01
Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus) is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F(ST) estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F(ST) values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.
The final word. OSHA's final ruling offers firm deadlines for infection control.
West, K
1992-03-01
Departments that have put off program development while waiting for the final ruling to be published have a lot of work to do. Many departments have been cited and fined by OSHA in the past year for failure to begin infection-control programs or provide hepatitis-B vaccines to personnel. Under the new budget, OSHA was granted permission to up its fine structure sevenfold--thus, a small fine is $7,000, and the highest fine for a single violation is $70,000. Fines can have a greater impact on a department's budget than implementation of the program over time. A key point to remember is that a strong infection-control program will reduce exposure follow-up costs and worker-compensation claims. Infection control is a win-win situation.
Regina, Ahmed; Blazek, Jaroslav; Gilbert, Elliot; Flanagan, Bernadine M; Gidley, Michael J; Cavanagh, Colin; Ral, Jean-Philippe; Larroque, Oscar; Bird, Anthony R; Li, Zhongyi; Morell, Matthew K
2012-07-01
The relationships between starch structure and functionality are important in underpinning the industrial and nutritional utilisation of starches. In this work, the relationships between the biosynthesis, structure, molecular organisation and functionality have been examined using a series of defined genotypes in barley with low (<20%), standard (20-30%), elevated (30-50%) and high (>50%) amylose starches. A range of techniques have been employed to determine starch physical features, higher order structure and functionality. The two genetic mechanisms for generating high amylose contents (down-regulation of branching enzymes and starch synthases, respectively) yielded starches with very different amylopectin structures but similar gelatinisation and viscosity properties driven by reduced granular order and increased amylose content. Principal components analysis (PCA) was used to elucidate the relationships between genotypes and starch molecular structure and functionality. Parameters associated with granule order (PC1) accounted for a large percentage of the variance (57%) and were closely related to amylose content. Parameters associated with amylopectin fine structure accounted for 18% of the variance but were less closely aligned to functionality parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fine-scale features in the far-field of a turbulent jet
NASA Astrophysics Data System (ADS)
Buxton, Oliver; Ganapathisubramani, Bharathram
2008-11-01
The structure of a fully turbulent axisymmetric jet, at Reynolds number based on jet exit conditions of 5000, is investigated with cinematographic (1 kHz) stereoscopic PIV in a plane normal to the jet axis. Taylor's hypothesis is employed to calculate all three velocity gradients in the axial direction. The technique's resolution allows all terms of the velocity gradient tensor, hence strain rate tensor and kinetic energy dissipation, to be computed at each point within the plane. The data reveals that the vorticity field is dominated by high enstrophy tube-like structures. Conversely, the dissipation field appears to consist of sheet-like structures. Several criteria for isolating these strongly swirling vortical structures from the background turbulence were employed. One such technique involves isolating points in which the velocity gradient tensor has a real and a pair of complex conjugate eigenvectors. Once identified, the alignment of the various structures with relation to the vorticity vector and the real velocity gradient tensor eigenvector is investigated. The effect of the strain field on the geometry of the structures is also examined.
Neal, Allison T; Ross, Max S; Schall, Jos J; Vardo-Zalik, Anne M
2016-10-18
The geographic scale and degree of genetic differentiation for arthropod vectors that transmit parasites play an important role in the distribution, prevalence and coevolution of pathogens of human and wildlife significance. We determined the genetic diversity and population structure of the sand fly Lutzomyia vexator over spatial scales from 0.56 to 3.79 km at a study region in northern California. The study was provoked by observations of differentiation at fine spatial scales of a lizard malaria parasite vectored by Lu. vexator. A microsatellite enrichment/next-generation sequencing protocol was used to identify variable microsatellite loci within the genome of Lu. vexator. Alleles present at these loci were examined in four populations of Lu. vexator in Hopland, CA. Population differentiation was assessed using Fst and D (of Cavalli-Sforza and Edwards), and the program Structure was used to determine the degree of subdivision present. The effective population size for the sand fly populations was also calculated. Eight microsatellite markers were characterized and revealed high genetic diversity (uHe = 0.79-0.92, Na = 12-24) and slight but significant differentiation across the fine spatial scale examined (average pairwise D = 0.327; F ST = 0.0185 (95 % bootstrapped CI: 0.0102-0.0264). Even though the insects are difficult to capture using standard methods, the estimated population size was thousands per local site. The results argue that Lu. vexator at the study sites are abundant and not highly mobile, which may influence the overall transmission dynamics of the lizard malaria parasite, Plasmodium mexicanum, and other parasites transmitted by this species.
Fine-scale genetic response to landscape change in a gliding mammal.
Goldingay, Ross L; Harrisson, Katherine A; Taylor, Andrea C; Ball, Tina M; Sharpe, David J; Taylor, Brendan D
2013-01-01
Understanding how populations respond to habitat loss is central to conserving biodiversity. Population genetic approaches enable the identification of the symptoms of population disruption in advance of population collapse. However, the spatio-temporal scales at which population disruption occurs are still too poorly known to effectively conserve biodiversity in the face of human-induced landscape change. We employed microsatellite analysis to examine genetic structure and diversity over small spatial (mostly 1-50 km) and temporal scales (20-50 years) in the squirrel glider (Petaurus norfolcensis), a gliding mammal that is commonly subjected to a loss of habitat connectivity. We identified genetically differentiated local populations over distances as little as 3 km and within 30 years of landscape change. Genetically isolated local populations experienced the loss of genetic diversity, and significantly increased mean relatedness, which suggests increased inbreeding. Where tree cover remained, genetic differentiation was less evident. This pattern was repeated in two landscapes located 750 km apart. These results lend support to other recent studies that suggest the loss of habitat connectivity can produce fine-scale population genetic change in a range of taxa. This gives rise to the prediction that many other vertebrates will experience similar genetic changes. Our results suggest the future collapse of local populations of this gliding mammal is likely unless habitat connectivity is maintained or restored. Landscape management must occur on a fine-scale to avert the erosion of biodiversity.
Wingfield, Jenna L.; Ruane, Lauren G.; Patterson, Joshua D.
2017-01-01
Premise of the study: The three-dimensional structure of tree canopies creates environmental heterogeneity, which can differentially influence the chemistry, morphology, physiology, and/or phenology of leaves. Previous studies that subdivide canopy leaves into broad categories (i.e., “upper/lower”) fail to capture the differences in microenvironments experienced by leaves throughout the three-dimensional space of a canopy. Methods: We use a three-dimensional spatial mapping approach based on spherical polar coordinates to examine the fine-scale spatial distributions of photosynthetically active radiation (PAR) and the concentration of ultraviolet (UV)-absorbing compounds (A300) among leaves within the canopies of black mangroves (Avicennia germinans). Results: Linear regressions revealed that interior leaves received less PAR and produced fewer UV-absorbing compounds than leaves on the exterior of the canopy. By allocating more UV-absorbing compounds to the leaves on the exterior of the canopy, black mangroves may be maximizing UV-protection while minimizing biosynthesis of UV-absorbing compounds. Discussion: Three-dimensional spatial mapping provides an inexpensive and portable method to detect fine-scale differences in environmental and biological traits within canopies. We used it to understand the relationship between PAR and A300, but the same approach can also be used to identify traits associated with the spatial distribution of herbivores, pollinators, and pathogens. PMID:29188145
Thelwell, Craig; Williams, Stella C.; Silva, Marta M. C. G.; Szabó, László; Kolev, Krasimir
2011-01-01
Regulation of tissue-type plasminogen activator (tPA) depends on fibrin binding and fibrin structure. tPA structure/function relationships were investigated in fibrin formed by high or low thrombin concentrations to produce a fine mesh and small pores, or thick fibers and coarse structure, respectively. Kinetics studies were performed to investigate plasminogen activation and fibrinolysis in the 2 types of fibrin, using wild-type tPA (F-G-K1-K2-P, F and K2 binding), K1K1-tPA (F-G-K1-K1-P, F binding), and delF-tPA (G-K1-K2-P, K2 binding). There was a trend of enzyme potency of tPA > K1K1-tPA > delF-tPA, highlighting the importance of the finger domain in regulating activity, but the differences were less apparent in fine fibrin. Fine fibrin was a better surface for plasminogen activation but more resistant to lysis. Scanning electron and confocal microscopy using orange fluorescent fibrin with green fluorescent protein-labeled tPA variants showed that tPA was strongly associated with agglomerates in coarse but not in fine fibrin. In later lytic stages, delF-tPA-green fluorescent protein diffused more rapidly through fibrin in contrast to full-length tPA, highlighting the importance of finger domain-agglomerate interactions. Thus, the regulation of fibrinolysis depends on the starting nature of fibrin fibers and complex dynamic interaction between tPA and fibrin structures that vary over time. PMID:20966169
Assessing polar bear (Ursus maritimus) population structure in the Hudson Bay region using SNPs.
Viengkone, Michelle; Derocher, Andrew Edward; Richardson, Evan Shaun; Malenfant, René Michael; Miller, Joshua Moses; Obbard, Martyn E; Dyck, Markus G; Lunn, Nick J; Sahanatien, Vicki; Davis, Corey S
2016-12-01
Defining subpopulations using genetics has traditionally used data from microsatellite markers to investigate population structure; however, single-nucleotide polymorphisms (SNPs) have emerged as a tool for detection of fine-scale structure. In Hudson Bay, Canada, three polar bear ( Ursus maritimus ) subpopulations (Foxe Basin (FB), Southern Hudson Bay (SH), and Western Hudson Bay (WH)) have been delineated based on mark-recapture studies, radiotelemetry and satellite telemetry, return of marked animals in the subsistence harvest, and population genetics using microsatellites. We used SNPs to detect fine-scale population structure in polar bears from the Hudson Bay region and compared our results to the current designations using 414 individuals genotyped at 2,603 SNPs. Analyses based on discriminant analysis of principal components (DAPC) and STRUCTURE support the presence of four genetic clusters: (i) Western-including individuals sampled in WH, SH (excluding Akimiski Island in James Bay), and southern FB (south of Southampton Island); (ii) Northern-individuals sampled in northern FB (Baffin Island) and Davis Strait (DS) (Labrador coast); (iii) Southeast-individuals from SH (Akimiski Island in James Bay); and (iv) Northeast-individuals from DS (Baffin Island). Population structure differed from microsatellite studies and current management designations demonstrating the value of using SNPs for fine-scale population delineation in polar bears.
NASA Astrophysics Data System (ADS)
Tanabe, Hiroshi; Koike, Hideya; Hatano, Hironori; Hayashi, Takumi; Cao, Qinghong; Himeno, Shunichi; Kaneda, Taishi; Akimitsu, Moe; Sawada, Asuka; Ono, Yasushi
2017-10-01
A new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics has been developed using ``multi-slit'' spectroscopy technique for detailed investigation of fine structure formation during high guide field magnetic reconnection. In the last three years, high field merging experiment in MAST pioneered new frontiers of reconnection heating: formation of highly peaked structure around X-point in high guide field condition (Bt > 0.3 T), outflow dissipation under the influence of better plasma confinement to form high temperature ring structure which aligns with closed flux surface of toroidal plasma, and interaction between ion and electron temperature profile during transport/confinement phase to form triple peak structure (τeiE 4 ms). To investigate more detailed mechanism with in-situ magnetic measurement, the university of Tokyo starts the upgrade of plasma parameters and spatial resolution of optical diagnostics as in MAST. Now, a new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics system construction has been completed and it successfully resolved fine structure of ion heating downstream, aligned with closed flux surface formed by reconnected field. This work was supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.
Tactile Imaging of an Imbedded Palpable Structure for Breast Cancer Screening
2015-01-01
Apart from texture, the human finger can sense palpation. The detection of an imbedded structure is a fine balance between the relative stiffness of the matrix, the object, and the device. If the device is too soft, its high responsiveness will limit the depth to which the imbedded structure can be detected. The sensation of palpation is an effective procedure for a physician to examine irregularities. In a clinical breast examination (CBE), by pressing over 1 cm2 area, at a contact pressure in the 70–90 kPa range, the physician feels cancerous lumps that are 8- to 18-fold stiffer than surrounding tissue. Early detection of a lump in the 5–10 mm range leads to an excellent prognosis. We describe a thin-film tactile device that emulates human touch to quantify CBE by imaging the size and shape of 5–10 mm objects at 20 mm depth in a breast model using ∼80 kPa pressure. The linear response of the device allows quantification where the greyscale corresponds to the relative local stiffness. The (background) signal from <2.5-fold stiffer objects at a size below 2 mm is minimal. PMID:25148477
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
..., including, but not limited to, changes to corporate structure, acquisitions of new companies or facilities... Furniture Co., (PTE) Ltd.* Ever Spring Furniture Company Ltd. Evershine Enterprise Co. Fine Furniture (Shanghai) Ltd.* Fleetwood Fine Furniture LP. Foshan Guanqiu Furniture Co., Ltd.* Fujian Putian Jinggong...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... have subsequently made changes, including, but not limited to, changes to corporate structure...., (Pte) Ltd.* Ever Spring Furniture Co., Ltd. Evershine Enterprise Co. Fairmont Designs Fine Furniture (Shanghai) Ltd.* Fleetwood Fine Furniture Lp. Foliot Furniture Inc. Foliot Furniture Corporation Foliot...
CFD MODELING OF FINE SCALE FLOW AND TRANSPORT IN THE HOUSTON METROPOLITAN AREA, TEXAS
Fine scale modeling of flows and air quality in Houston, Texas is being performed; the use of computational fluid dynamics (CFD) modeling is being applied to investigate the influence of morphologic structures on the within-grid transport and dispersion of sources in grid models ...
NASA Astrophysics Data System (ADS)
Gauthier, N.; Claud, C.; Funatsu, B. M.; Chaboureau, J.-P.; Argence, S.; Lambert, D.; Richard, E.; Hauchecorne, A.; Arbogast, P.; Maynard, K.
2009-09-01
Heavy precipitation events over the Mediterranean Sea are generally associated with upper-level troughs. The mesoscale structures of such troughs are however not well reproduced by the atmospheric analyses due to inappropriate spatial resolution. We propose here to use a semi-Lagrangian advection model called MIMOSA (Modélisation Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection) initially developed to describe stratospheric filaments, to calculate fine-scale Potential Vorticity (PV) fields on isentropic surfaces near the tropopause. After a description of MIMOSA, we will focus on the model-generated PV fields for several high impact weather cases that occurred over the Western Mediterreanean Sea. We will demonstrate the ability of MIMOSA to resolve fine scale structures of upper-level troughs considering the Algiers' flash flood, which occurred on November 2001, and then a heavy precipitation event over southeast France on the 5-6 September 2005. Finally, with a PV inversion method, we will show the impact of the fine scales PV structures as depicted by MIMOSA to improve the numerical simulation of a « hurricane » that hit Italy in September 2006, both in terms of surface pressure and precipitation forecasts.
Unprecedented Fine Structure of a Solar Flare Revealed by the 1.6 m New Solar Telescope
Jing, Ju; Xu, Yan; Cao, Wenda; Liu, Chang; Gary, Dale; Wang, Haimin
2016-01-01
Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1.6 m New Solar Telescope (NST) equipped with high order adaptive optics at Big Bear Solar Observatory (BBSO). The observation reveals the process of the flare in unprecedented detail, including the flare ribbon propagating across the sunspots, coronal rain (made of condensing plasma) streaming down along the post-flare loops, and the chromosphere’s response to the impact of coronal rain, showing fine-scale brightenings at the footpoints of the falling plasma. Taking advantage of the resolving power of the NST, we measure the cross-sectional widths of flare ribbons, post-flare loops and footpoint brighenings, which generally lie in the range of 80–200 km, well below the resolution of most current instruments used for flare studies. Confining the scale of such fine structure provides an essential piece of information in modeling the energy transport mechanism of flares, which is an important issue in solar and plasma physics. PMID:27071459
Infrared fine-structure line diagnostics of shrouded active galactic nuclei
NASA Technical Reports Server (NTRS)
Voit, G. M.
1993-01-01
Far-infrared spectroscopy of celestial objects will improve dramatically in the coming decade, allowing astronomers to use fine-structure line emission to probe photoionized regions obscured in the optical band by thick clouds of dust. The ultraluminous far-IR galaxies revealed by IRAS, quasar-like in luminosity but smothered in molecular gas, probably conceal either immense starbursts or luminous active nuclei. In both scenarios, these objects ought to produce copious infrared fine-structure emission with several lines comparable to H(beta) in luminosity. This paper shows how these lines, if detected, can be used to determine the electron densities and far-IR obscurations of shrouded photoionized regions and to constrain the shape and ionization parameter of the ionizing spectra. The presence of (Ne V) emission in particular will distinguish shrouded AGN's from shrouded starbursts. Since all active galaxies photoionize at least some surrounding material, these diagnostics can also be applied to active galaxies in general and will aid in studying how an active nucleus interacts with the interstellar medium of its host galaxy.
Fine structure of the red luminescence band in undoped GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reshchikov, M. A., E-mail: mreshchi@vcu.edu; Usikov, A.; Saint-Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverkskiy Ave., 197101 Saint Petersburg
2014-01-20
Many point defects in GaN responsible for broad photoluminescence (PL) bands remain unidentified. Their presence in thick GaN layers grown by hydride vapor phase epitaxy (HVPE) detrimentally affects the material quality and may hinder the use of GaN in high-power electronic devices. One of the main PL bands in HVPE-grown GaN is the red luminescence (RL) band with a maximum at 1.8 eV. We observed the fine structure of this band with a zero-phonon line (ZPL) at 2.36 eV, which may help to identify the related defect. The shift of the ZPL with excitation intensity and the temperature-related transformation of the RLmore » band fine structure indicate that the RL band is caused by transitions from a shallow donor (at low temperature) or from the conduction band (above 50 K) to an unknown deep acceptor having an energy level 1.130 eV above the valence band.« less
Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data
NASA Technical Reports Server (NTRS)
Scargle, Jeff; Keil, Steve; Worden, Pete
2011-01-01
Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.
Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo
2012-02-07
Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.
Fine motor skills and executive function both contribute to kindergarten achievement.
Cameron, Claire E; Brock, Laura L; Murrah, William M; Bell, Lindsay H; Worzalla, Samantha L; Grissmer, David; Morrison, Frederick J
2012-01-01
This study examined the contribution of executive function (EF) and multiple aspects of fine motor skills to achievement on 6 standardized assessments in a sample of middle-socioeconomic status kindergarteners. Three- and 4-year-olds' (n=213) fine and gross motor skills were assessed in a home visit before kindergarten, EF was measured at fall of kindergarten, and Woodcock-Johnson III Tests of Academic Achievement were administered at fall and spring. Correlations indicated that EF and fine motor skills appeared distinct. Further, controlling for background variables, higher levels of both EF and fine motor skills, specifically design copy, predicted higher achievement on multiple subtests at kindergarten entry, as well as improvement from fall to spring. Implications for research on school readiness are discussed. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.
Casnar, Christy L; Janke, Kelly M; van der Fluit, Faye; Brei, Natalie G; Klein-Tasman, Bonita P
2014-01-01
Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders presenting in approximately 1 in 3,500 live births. NF1 is a highly variable condition with a large number of complications. A common complication is neuropsychological problems, including developmental delays and learning difficulties that affect as many as 60% of patients. Research has suggested that school-aged children with NF1 often have poorer fine motor skills and are at greater risk for attention difficulties than the general population. Thirty-eight children with NF1 and 23 unaffected children between the ages of 4 and 6 years, who are enrolled in a study of early development in NF1, were included in the present study. Varying levels of fine motor functioning were examined (simple to complex fine motor tasks). For children with NF1, significant difficulties were demonstrated on lab-based mid-level and complex fine motor tasks, even after controlling for nonverbal reasoning abilities, but not on simple fine motor tasks. Parental report also indicated difficulties in everyday adaptive fine motor functioning. No significant correlations were found between complex fine motor ability and attention difficulties. This study provides much needed descriptive data on the early emergence of fine motor difficulties and attention difficulties in young children with NF1.
Fine motor skill proficiency in typically developing children: On or off the maturation track?
Gaul, David; Issartel, Johann
2016-04-01
Fine motor skill proficiency is an essential component of numerous daily living activities such as dressing, feeding or playing. Poor fine motor skills can lead to difficulties in academic achievement, increased anxiety and poor self-esteem. Recent findings have shown that children's gross motor skill proficiency tends to fall below established developmental norms. A question remains: do fine motor skill proficiency levels also fall below developmental norms? The aim of this study was to examine the current level of fine motor skill in Irish children. Children (N=253) from 2nd, 4th and 6th grades (mean age=7.12, 9.11 and 11.02 respectively) completed the Fine Motor Composite of the Bruininks Oseretsky Test of Motor Proficiency 2nd Edition (BOT-2). Analysis revealed that only 2nd grade children met the expected level of fine motor skill proficiency. It was also found that despite children's raw scores improving with age, children's fine motor skill proficiency was not progressing at the expected rate given by normative data. This leads us to question the role and impact of modern society on fine motor skills development over the past number of decades. Copyright © 2015 Elsevier B.V. All rights reserved.
Sexuality Education and Desire: Still Missing after All These Years
ERIC Educational Resources Information Center
Fine, Michelle; McClelland, Sara
2006-01-01
Nearly twenty years after the publication of Michelle Fine's essay "Sexuality, Schooling, and Adolescent Females: The Missing Discourse of Desire," the question of how sexuality education influences the development and health of adolescents remains just as relevant as it was in 1988. In this article, Michelle Fine and Sara McClelland examine the…
Language Acquisition and Categorical Perception with Particular Reference to /r/ and /1/.
ERIC Educational Resources Information Center
Perecman, Ellen; Kellar, Lucia A.
1983-01-01
Examines the relationship between the development of fine motor control for articulation and the development of fine motor control in other muscle systems. Discusses whether the late appearance of /r/ and /1/ is due to the fact that their articulation requires finer motor coordination than other classes of sounds. (EKN)
Strategies to increase seat belt use : an analysis of levels of fines and the type of law.
DOT National Transportation Integrated Search
2010-11-01
The main objectives of this study were to determine the relationships between seat belt use in the States and (1) the : type of seat belt law enforcement (primary versus secondary), and (2) seat belt fine levels. : The study examined law type and lev...
Fine-scale habitat characteristics related to occupancy of the Yosemite Toad, Anaxyrus canorus
Christina T. Liang; Robert L. Grasso; Julie J. Nelson-Paul; Kim E. Vincent; Amy J. Lind
2017-01-01
Fine-scale habitat information can provide insight into species occupancy and persistence that is not apparent at the landscape-scale. Such information is particularly important for rare species that are experiencing population declines, such as the threatened Yosemite Toad (Anaxyrus canorus). Our study examined differences in physical...
SEASONAL PATTERNS OF FINE ROOT PRODUCTION AND TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES
Root minirhizotron tubes were installed in two ponderosa pine (Pinus ponderosa Laws.) stands around three different tree age classes (16, 45, and > 250 yr old) to examine root spatial distribution in relation to canopy size and tree distribution, and to determine if rates of fine...
We examined the relationship of aquatic vertebrate taxa abundances and an index of biotic integrity (IBI) to reachwide measures of areal percent streambed surficial fines (≤ 0.06 mm) and sand and fines (≤ 2 mm), based on data collected from 557 wadeable streams in the Western Mou...
Development of XAFS Into a Structure Determination Technique
NASA Astrophysics Data System (ADS)
Stern, E. A.
After the detection of diffraction of x-rays by M. Laue in 1912, the technique was soon applied to structure determination by Bragg within a year. On the other hand, although the edge steps in X-Ray absorption were discovered even earlier by Barkla and both the near edge (XANES) and extended X-Ray fine structure (EXAFS) past the edge were detected by 1929, it still took over 40 years to realize the structure information contained in this X-Ray absorption fine structure (XAFS). To understand this delay a brief historical review of the development of the scientific ideas that transformed XAFS into the premiere technique for local structure determination is given. The development includes both advances in theoretical understanding and calculational capabilities, and in experimental facilities, especially synchrotron radiation sources. The present state of the XAFS technique and its capabilities are summarized.
NASA Astrophysics Data System (ADS)
Isomura, Noritake; Kosaka, Satoru; Kataoka, Keita; Watanabe, Yukihiko; Kimoto, Yasuji
2018-06-01
Extended X-ray absorption fine structure (EXAFS) spectroscopy is demonstrated to measure the fine atomic structure of SiO2–SiC interfaces. The SiC-side of the interface can be measured by fabricating thin SiO2 films and using SiC-selective EXAFS measurements. Fourier transforms of the oscillations of the EXAFS spectra correspond to radial-structure functions and reveal a new peak of the first nearest neighbor of Si for m-face SiC, which does not appear in measurements of the Si-face. This finding suggests that the m-face interface could include a structure with shorter Si–C distances. Numerical calculations provide additional support for this finding.
Case-Smith, J
2000-01-01
This study examined how performance components and variables in intervention influenced fine motor and functional outcomes in preschool children. In a sample of 44 preschool-aged children with fine motor delays who received occupational therapy services, eight fine motor and functional performance assessments were administered at the beginning and end of the academic year. Data on the format and intervention activities of each occupational therapy session were recorded for 8 months. The children received a mean of 23 sessions, in both individual and group format. Most of the sessions (81%) used fine motor activities; 29% addressed peer interaction, and 16% addressed play skills. Visual motor outcomes were influenced by the number of intervention sessions and percent of sessions with play goals. Fine motor outcomes were most influenced by the therapists' emphasis on play and peer interaction goals; functional outcomes were influenced by number of sessions and percent of sessions that specifically addressed self-care goals. The influence of play on therapy outcomes suggests that a focus on play in intervention activities can enhance fine motor and visual motor performance.
Recovering the fine structures in solar images
NASA Technical Reports Server (NTRS)
Karovska, Margarita; Habbal, S. R.; Golub, L.; Deluca, E.; Hudson, Hugh S.
1994-01-01
Several examples of the capability of the blind iterative deconvolution (BID) technique to recover the real point spread function, when limited a priori information is available about its characteristics. To demonstrate the potential of image post-processing for probing the fine scale and temporal variability of the solar atmosphere, the BID technique is applied to different samples of solar observations from space. The BID technique was originally proposed for correction of the effects of atmospheric turbulence on optical images. The processed images provide a detailed view of the spatial structure of the solar atmosphere at different heights in regions with different large-scale magnetic field structures.
Mechanical Properties of a Superalloy Disk with a Dual Grain Structure
NASA Technical Reports Server (NTRS)
Gayda, John; Gabb, Timothy; Kantzos, Peter
2003-01-01
Mechanical properties from an advanced, nickel-base superalloy disk, with a dual grain structure consisting of a fine grain bore and coarse grain rim, were evaluated. The dual grain structure was produced using NASA's low cost Dual Microstructure Heat Treatment (DMHT) process. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to a subsolvus (fine grain) heat treated disk, and a creep resistant rim comparable to a supersolvus (coarse grain) heat treated disk. Additional work on subsolvus solutioning before or after the DMHT conversion appears to be a viable avenue for further improvement in disk properties.
Rocket measurements of mesospheric ionization irregularities
NASA Technical Reports Server (NTRS)
Stoltzfus, R. B.; Bowhill, S. A.
1985-01-01
The Langmuir probe technique for measurement of electron concentration in the mesosphere is capable of excellent altitude resolution, of order 1 m. Measurements from nine daytime rocket flights carrying an electron density fine structure experiment frequently show small scale ionization structures in the altitude region 70 to 90 km. The irregularities are believed to be the result of turbulent advection of ions and electrons. The fine structure experiment flown by the University of Illinois is described and methods of analyzing the collected data is presented. Theories of homogeneous, isotropic turbulence are reviewed. Power spectra of the measured irregularities are calculated and compared to spectra predicted by turbulence theories.
Fine structure of 25 extragalactic radio sources. [interferometric observations of quasars
NASA Technical Reports Server (NTRS)
Wittels, J. J.; Knight, C. A.; Shapiro, I. I.; Hinteregger, H. F.; Rogers, A. E. E.; Whitney, A. R.; Clark, T. A.; Hutton, L. K.; Marandino, G. E.; Niell, A. E.
1975-01-01
Interferometric observations taken at 7.8 GHz (gamma approximately = 3.8 cm) with five pairings of antennae of 25 extragalactic radio sources between April, 1972 and May, 1973 are reported. These sources exhibit a broad variety of fine structure from very simple to complex. The total flux and the correlated flux of some of the sources underwent large changes in a few weeks, while the structure and total power of others remained constant during the entire period of observation. Some aspects of the data processing and a discussion of errors are presented. Numerous figures are provided and explained. The individual radio sources are described in detail.
[Examinations and exercises in medical technology utilizing a personal computer and the web].
Niwa, Toshifumi
2006-03-01
The practice of e-learning in our department utilizing freeware without additional cost has been introduced: 1) Examinations and exercises are performed on the Web. Using the form-filling format of HTML, multiple-choice questions are asked. When the examinee submits the answers, the server will process the data using active server pages and send the result to the examinee with the score and explanations. So far, the students have given the Web examination (exercise) system a good evaluation. Concerning the effect of the explanations given in the Web exercises on the written test, some improvements were observed in the enumeration-type questions. On the other hand, no such improvements were clearly observed in the explanation-type questions, which require essential understanding of the principle. This suggests that effective utilization of the materials strongly depends on the students' eagerness to study. 2) To understand the chemical structures of body constituents, an exercise to draw structural formulae on the personal computer (PC) is performed. The students had difficulty in the fine control of arranging the whole shape of the formula, in addition to setting the format of characters such as super- and subscripts. In respect of understanding, they had significant difficulty in finding the structures and in distinguishing stereoisomers; however, the students had fun with the structure-drawing software and found it convenient to draw structures. These findings suggest that PC exercises will be attractive to students of the "PC generation", and thus helpful for the understanding of and training in data analysis in medical technology.
Singh, Manpreet; Jiang, Ruibin; Coia, Heidi; Choi, Daniel S.; Alabanza, Anginelle; Chang, Jae Young; Wang, Jianfang; Hahm, Jong-in
2014-01-01
We have carried out a combined experimental and simulation study identifying the key physical and optical parameters affecting the presence and degree of fluorescence intensification measured on zinc oxide nanorod (ZnO NR) ends. Previously, we reported on the highly localized, intensified, and prolonged fluorescence signal measured on the NR ends, termed as fluorescence intensification on NR ends (FINE). As a step towards understanding the mechanism of FINE, the present study aims to provide an insight into the unique optical phenomenon of FINE through experimental and simulation approaches and to elucidate the key factors affecting the occurrence, degree, and temporal stability of FINE. Specifically, we examined the effect of the length, width, and growth orientation of single ZnO NRs on the NR-enhanced biomolecular emission profile after decorating the NR surfaces with different amounts and types of fluorophore-coupled protein molecules. We quantitatively and qualitatively profiled the biomolecular fluorescence signal from individual ZnO NRs as a function of both position along the NR long axis and time. Regardless of the physical dimensions and growth orientations of the NRs, we confirmed the presence of FINE from all ZnO NRs tested by using a range of protein concentrations. We also showed that the manifestation of FINE is not dependent on the spectroscopic signatures of the fluorophores employed. We further observed that the degree of FINE is dependent on the length of the NR with longer NRs showing increased levels of FINE. We also demonstrated that vertically oriented NRs exhibit much stronger fluorescence intensity at the NR ends and a higher level of FINE than the laterally oriented NRs. Additionally, we employed finite-difference time-domain (FDTD) methods to understand the experimental outcomes and to promote our understanding of the mechanism of FINE. Particularly, we utilized the electrodynamic simulations to examine both near-field and far-field emission characteristics when considering various scenarios of fluorophore locations, polarizations, spectroscopic characteristics, and NR dimensions. Our efforts may provide a deeper insight into the unique optical phenomenon of FINE and further be beneficial to highly miniaturized biodetection favoring the use of single ZnO NRs in low-volume and high-throughput protein assays. PMID:25504319
NASA Astrophysics Data System (ADS)
Ferkinhoff, Carl; Higdon, Sarah; Higdon, James L.; Tidwell, Hannah; Rangel, Miguel; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.; Brisbin, Drew
2017-01-01
The present day Universe is rich in metals that enable efficient cooling of gas in the ISM in order to form stars, create planets and make the building blocks of life as we know it. The Universe did not start in this state - we know that metals had to build up over time with successive generations of stars. Revealing the details of this evolution, however, is challenging and requires probes of metallicity that are not susceptible to dust extinction nor exhibit the degeneracies common to tracers in the visible regime. One possible indicator combines the far-IR fine structure lines with the radio continuum. Recently we have undertaken a multi-band radio continuum survey with the JVLA of high-z galaxies from ZINGRS. These observations will constrain the galaxies’ thermal and nonthermal radio emissions and demonstrate the use of far-IR lines together with radio continuum as a metallicity indicator. ZINGRS, the ZEUS 1 and 2 INvestigated Galaxy Reference Sample, includes ~30 galaxies from z ~ 1 - 4.5 for which the far-IR fine-structure lines (e.g. [CII] 158, [NII] 122, [OIII] 88) have been observed with the ZEUS-1 and 2 instruments. This is the largest collection of far-IR fine-structure line detections at high-z and is ideal for demonstrating the use of this new indicator. Here we describe the theory behind the new indicator, give an overview of ZINGRS, and report on the status of our radio survey.
Liao, Fei; Yuan, Hong; Du, Ke-Jie; You, Yong; Gao, Shu-Qin; Wen, Ge-Bo; Lin, Ying-Wu; Tan, Xiangshi
2016-10-20
A hydrogen-bond (H-bond) network, specifically a Tyr-associated H-bond network, plays key roles in regulating the structure and function of proteins, as exemplified by abundant heme proteins in nature. To explore an approach for fine-tuning the structure and function of artificial heme proteins, we herein used myoglobin (Mb) as a model protein and introduced a Tyr residue in the secondary sphere of the heme active site at two different positions (107 and 138). We performed X-ray crystallography, UV-Vis spectroscopy, stopped-flow kinetics, and electron paramagnetic resonance (EPR) studies for the two single mutants, I107Y Mb and F138Y Mb, and compared to that of wild-type Mb under the same conditions. The results showed that both Tyr107 and Tyr138 form a distinct H-bond network involving water molecules and neighboring residues, which fine-tunes ligand binding to the heme iron and enhances the protein stability, respectively. Moreover, the Tyr107-associated H-bond network was shown to fine-tune both H2O2 binding and activation. With two cases demonstrated for Mb, this study suggests that the Tyr-associated H-bond network has distinct roles in regulating the protein structure, properties and functions, depending on its location in the protein scaffold. Therefore, it is possible to design a Tyr-associated H-bond network in general to create other artificial heme proteins with improved properties and functions.
NASA Astrophysics Data System (ADS)
Lamarche, C.; Stacey, G.; Brisbin, D.; Ferkinhoff, C.; Hailey-Dunsheath, S.; Nikola, T.; Riechers, D.; Sharon, C. E.; Spoon, H.; Vishwas, A.
2017-02-01
We present the detection of four far-infrared fine-structure oxygen lines, as well as strong upper limits for the CO(2-1) and [N II] 205 μm lines, in 3C 368, a well-studied radio-loud galaxy at z = 1.131. These new oxygen lines, taken in conjunction with previously observed neon and carbon fine-structure lines, suggest a powerful active galactic nucleus (AGN), accompanied by vigorous and extended star formation. A starburst dominated by O8 stars, with an age of ˜6.5 Myr, provides a good fit to the fine-structure line data. This estimated age of the starburst makes it nearly concurrent with the latest episode of AGN activity, suggesting a link between the growth of the supermassive black hole and stellar population in this source. We do not detect the CO(2-1) line, down to a level twelve times lower than the expected value for star-forming galaxies. This lack of CO line emission is consistent with recent star formation activity if the star-forming molecular gas has low metallicity, is highly fractionated (such that CO is photodissociated throughout much of the clouds), or is chemically very young (such that CO has not yet had time to form). It is also possible, although we argue it is unlikely, that the ensemble of fine-structure lines is emitted from the region heated by the AGN.
Atomistic theory of excitonic fine structure in InAs/InP nanowire quantum dot molecules
NASA Astrophysics Data System (ADS)
Świderski, M.; Zieliński, M.
2017-03-01
Nanowire quantum dots have peculiar electronic and optical properties. In this work we use atomistic tight binding to study excitonic spectra of artificial molecules formed by a double nanowire quantum dot. We demonstrate a key role of atomistic symmetry and nanowire substrate orientation rather than cylindrical shape symmetry of a nanowire and a molecule. In particular for [001 ] nanowire orientation we observe a nonvanishing bright exciton splitting for a quasimolecule formed by two cylindrical quantum dots of different heights. This effect is due to interdot coupling that effectively reduces the overall symmetry, whereas single uncoupled [001 ] quantum dots have zero fine structure splitting. We found that the same double quantum dot system grown on [111 ] nanowire reveals no excitonic fine structure for all considered quantum dot distances and individual quantum dot heights. Further we demonstrate a pronounced, by several orders of magnitude, increase of the dark exciton optical activity in a quantum dot molecule as compared to a single quantum dot. For [111 ] systems we also show spontaneous localization of single particle states in one of nominally identical quantum dots forming a molecule, which is mediated by strain and origins from the lack of the vertical inversion symmetry in [111 ] nanostructures of overall C3 v symmetry. Finally, we study lowering of symmetry due to alloy randomness that triggers nonzero excitonic fine structure and the dark exciton optical activity in realistic nanowire quantum dot molecules of intermixed composition.
[DPOAE in tinnitus patients with cochlear hearing loss considering hyperacusis and misophonia].
Sztuka, Aleksandra; Pośpiech, Lucyna; Gawron, Wojciech; Dudek, Krzysztof
2006-01-01
The most probable place generating tinnitus in auditory pathway are outer hair cells (OHC) inside cochlea. To asses their activity otoacoustic emission is used. The goal of the investigation was estimation the features of otoemission DPOAE in groups with tinnitus patients with cochlear hearing loss, estimation of diagnostic value of DPOAE parameters for analysis of function of the cochlea in investigated patients emphasizing DPOAE parameters most useful in localizing tinnitus generators and estimation of hypothetic influence of hyperacusis and misophony on parameters of DPOAE in tinnitus patients with cochlear hearing loss. The material of the study were 42 tinnitus patients with cochlear hearing loss. In the control group there were 21 patients without tinnitus with the same type of hearing loss. Then tinnitus patients were divided into three subgroups--with hyperacusis, misophony and without both of them, based on audiologic findings. after taking view on tinnitus and physical examination in all the patients pure tone and impedance audiometry, supratreshold tests, ABR and audiometric average and discomfort level were evaluated. Then otoemission DPOAE was measured in three procedures. First the amplitudes of two points per octave were assessed, in second--"fine structure" method-- 16-20 points per octave (f2/f1 = 1.2, L1 = L2 = 70 dB). Third procedure included recording of growth rate function in three series for input tones of value f2 = 2002, 4004, 6006 Hz (f2/f1= 1.22) and levels L1=L2, growing by degrees of 5dB in each series. DPOAE amplitudes in recording of 2 points per octave and fine structure method are very valuable parameters for estimation of cochlear function in tinnitus patients with cochlear hearing loss. Decreasing of DPOAE amplitudes in patients with cochlear hearing loss and tinnitus suggests significant role of OHC pathology, unbalanced by IHC injury in generation of tinnitus in patients with hearing loss of cochlear localization. DPOAE fine structure provides us the additional information about DPOAE amplitude recorded in two points per octave, spreading the amount of frequencies f2, where differences are noticed in comparison of two groups--tinnitus patients and control. Function growth rate cannot be the only parameter in estimation of DPOAE in tinnitus patients with cochlear hearing loss, also including subjects with hyperacusis and misophony. Hyperacusis has important influence on DPOAE amplitude, increases essentially amplitude of DPOAE in the examined group of tinnitus patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuilier, M.-H.; Pac, M.-J.; Girleanu, M.
2008-04-15
Ti and Al K-edge x-ray absorption spectroscopy is used to investigate the electronic structure of Ti{sub 1-x}Al{sub x}N thin films deposited by reactive magnetron sputtering. The experimental near edge spectra of TiN and AlN are interpreted in the light of unoccupied density of state band structure calculations. The comparison of the structural parameters derived from x-ray absorption fine structure and x-ray diffraction reveals segregation between Al-rich and Ti-rich domains within the Ti{sub 1-x}Al{sub x}N films. Whereas x-ray diffraction probes only the crystallized domains, the structural information derived from extended x-ray absorption fine structure analysis turns on both crystalline and grainmore » boundaries. The results are discussed by considering the damage behavior of the films depending on the composition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, J.G.; Dokken, K.; Peralta-Videa, J.R.
For the first time a method has been developed for the extended X-ray absorption fine structure (EXAFS) data analyses of biological samples containing multiple oxidation states of chromium. In this study, the first shell coordination and interatomic distances based on the data analysis of known standards of potassium chromate (Cr(VI)) and chromium nitrate hexahydrate (Cr(III)) were investigated. The standards examined were mixtures of the following molar ratios of Cr(VI):Cr(III), 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0. It was determined from the calibration data that the fitting error associated with linear combination X-ray absorption near edge structure (LC-XANES) fittings was approximately {+-}10%more » of the total fitting. The peak height of the Cr(VI) pre-edge feature after normalization of the X-ray absorption (XAS) spectra was used to prepare a calibration curve. The EXAFS fittings of the standards were also investigated and fittings to lechuguilla biomass samples laden with different ratios of Cr(III) and Cr(VI) were performed as well. An excellent agreement between the XANES data and the data presented in the EXAFS spectra was observed. The EXFAS data also presented mean coordination numbers directly related to the ratios of the different chromium oxidation states in the sample. The chromium oxygen interactions had two different bond lengths at approximately 1.68 and 1.98 {angstrom} for the Cr(VI) and Cr(III) in the sample, respectively.« less
NASA Astrophysics Data System (ADS)
Maeno, Mamiko Yamashita; Ohashi, Hironori; Yonezu, Kotaro; Miyazaki, Akane; Okaue, Yoshihiro; Watanabe, Koichiro; Ishida, Tamao; Tokunaga, Makoto; Yokoyama, Takushi
2016-02-01
It is difficult to directly investigate the chemical state of Pt in marine ferromanganese crusts (a mixture of hydrous iron(III) oxide and manganese dioxide (δ-MnO2)) because it is present at extremely low concentration levels. This paper attempts to elucidate the mechanism by which Pt is concentrated into marine ferromanganese crust from the Earth's continental crust through ocean water. In this investigation, the sorption behavior of the Pt(II) complex ions on the surface of the δ-MnO2 that is a host of Pt was examined as a model reaction. The δ-MnO2 sorbing Pt was characterized by X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) to determine the chemical state of the Pt. Hydrolytic Pt(II) complex ions were specifically sorbed above pH 6 by the formation of a Mn-O-Pt bond. XPS spectra and XANES spectra for δ-MnO2 sorbing Pt showed that the sorbed Pt(II) was oxidized to Pt(IV) on δ-MnO2. The extended X-ray absorption fine structure (EXAFS) analysis showed that the coordination structure of Pt sorbed on δ-MnO2 is almost the same as that of the [Pt(OH)6]2- complex ion used as a standard. Therefore, the mechanism for the concentration of Pt in marine ferromanganese crust may be an oxidative substitution (penetration of Pt(IV) into structure of δ-MnO2) by a reduction-oxidation reaction between Pt(II) in [PtCl4-n(OH)n]2- and Mn(IV) in δ-MnO2 through a Mn-O-Pt bond.
Sprehn, C Grace; Blum, Michael J; Quinn, Thomas P; Heins, David C
2015-01-01
The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for 1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at 8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite genotype variation recovered evidence of significant population genetic structure within S. solidus. Host, location, and year were factors in structuring observed genetic variation. Pairwise measures revealed significant differentiation among lakes, including a pattern of isolation-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study region, little admixture within hosts and lakes, and a shift in genotype frequencies over time. Evidence of fine-scale population structure in S. solidus indicates that movement of its vagile, definitive avian hosts has less influence on gene flow than expected based solely on movement potential. Observed patterns of genetic variation may reflect genetic drift, behaviors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adaptive specificity of S. solidus to intermediate host genotype.
Implications for New Physics from Fine-Tuning Arguments: II. Little Higgs Models
NASA Astrophysics Data System (ADS)
Casas, J. A.; Espinosa, J. R.; Hidalgo, I.
2005-03-01
We examine the fine-tuning associated to electroweak breaking in Little Higgs scenarios and find it to be always substantial and, generically, much higher than suggested by the rough estimates usually made. This is due to implicit tunings between parameters that can be overlooked at first glance but show up in a more systematic analysis. Focusing on four popular and representative Little Higgs scenarios, we find that the fine-tuning is essentially comparable to that of the Little Hierarchy problem of the Standard Model (which these scenarios attempt to solve) and higher than in supersymmetric models. This does not demonstrate that all Little Higgs models are fine-tuned, but stresses the need of a careful analysis of this issue in model-building before claiming that a particular model is not fine-tuned. In this respect we identify the main sources of potential fine-tuning that should be watched out for, in order to construct a successful Little Higgs model, which seems to be a non-trivial goal.
Cortical Correlates of Binaural Temporal Processing Deficits in Older Adults.
Eddins, Ann Clock; Eddins, David A
This study was designed to evaluate binaural temporal processing in young and older adults using a binaural masking level difference (BMLD) paradigm. Using behavioral and electrophysiological measures within the same listeners, a series of stimulus manipulations was used to evaluate the relative contribution of binaural temporal fine-structure and temporal envelope cues. We evaluated the hypotheses that age-related declines in the BMLD task would be more strongly associated with temporal fine-structure than envelope cues and that age-related declines in behavioral measures would be correlated with cortical auditory evoked potential (CAEP) measures. Thirty adults participated in the study, including 10 young normal-hearing, 10 older normal-hearing, and 10 older hearing-impaired adults with bilaterally symmetric, mild-to-moderate sensorineural hearing loss. Behavioral and CAEP thresholds were measured for diotic (So) and dichotic (Sπ) tonal signals presented in continuous diotic (No) narrowband noise (50-Hz wide) maskers. Temporal envelope cues were manipulated by using two different narrowband maskers; Gaussian noise (GN) with robust envelope fluctuations and low-noise noise (LNN) with minimal envelope fluctuations. The potential to use temporal fine-structure cues was controlled by varying the signal frequency (500 or 4000 Hz), thereby relying on the natural decline in phase-locking with increasing frequency. Behavioral and CAEP thresholds were similar across groups for diotic conditions, while the masking release in dichotic conditions was larger for younger than for older participants. Across all participants, BMLDs were larger for GN than LNN and for 500-Hz than for 4000-Hz conditions, where envelope and fine-structure cues were most salient, respectively. Specific age-related differences were demonstrated for 500-Hz dichotic conditions in GN and LNN, reflecting reduced binaural temporal fine-structure coding. No significant age effects were observed for 4000-Hz dichotic conditions, consistent with similar use of binaural temporal envelope cues across age in these conditions. For all groups, thresholds and derived BMLD values obtained using the behavioral and CAEP methods were strongly correlated, supporting the notion that CAEP measures may be useful as an objective index of age-related changes in binaural temporal processing. These results demonstrate an age-related decline in the processing of binaural temporal fine-structure cues with preserved temporal envelope coding that was similar with and without mild-to-moderate peripheral hearing loss. Such age-related changes can be reliably indexed by both behavioral and CAEP measures in young and older adults.
Lyapunov exponents for one-dimensional aperiodic photonic bandgap structures
NASA Astrophysics Data System (ADS)
Kissel, Glen J.
2011-10-01
Existing in the "gray area" between perfectly periodic and purely randomized photonic bandgap structures are the socalled aperoidic structures whose layers are chosen according to some deterministic rule. We consider here a onedimensional photonic bandgap structure, a quarter-wave stack, with the layer thickness of one of the bilayers subject to being either thin or thick according to five deterministic sequence rules and binary random selection. To produce these aperiodic structures we examine the following sequences: Fibonacci, Thue-Morse, Period doubling, Rudin-Shapiro, as well as the triadic Cantor sequence. We model these structures numerically with a long chain (approximately 5,000,000) of transfer matrices, and then use the reliable algorithm of Wolf to calculate the (upper) Lyapunov exponent for the long product of matrices. The Lyapunov exponent is the statistically well-behaved variable used to characterize the Anderson localization effect (exponential confinement) when the layers are randomized, so its calculation allows us to more precisely compare the purely randomized structure with its aperiodic counterparts. It is found that the aperiodic photonic systems show much fine structure in their Lyapunov exponents as a function of frequency, and, in a number of cases, the exponents are quite obviously fractal.
Synthesis of TiO2 Nanoparticle and its phase Transition
NASA Astrophysics Data System (ADS)
Mangrola, M. H.; Joshi, V. G.; Parmar, B. H.
2011-12-01
Here we report the synthesis of titanium dioxide (TiO2) nanoparticles and study of its phase transition from anataze to rutile. Titanium dioxide (TiO2) nanoparticles have been prepared by hydrolysis of Titanium isopropoxide an aqueous solution with constant value of pH 2 and peptizing the resultant suspension gel(white-Blue) and calcinate gel at different temperature. Structures of synthetic samples of TiO2 have been examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The anatase-rutile transition has been a popular topic due to its interest to scientific and engineering fields. . Here we have seen that the 100 °C calcinate powder consist of anatase fine crystalline phase with a particle size 14 to 15 nm. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks. The phase transform occurred from anatase to rutile at calcinate temperature up to 600 °C. A very fine network texture made from uniform nanoparticles was revealed by scanning electron microscopy (SEM) analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abidin, Diana Atiqah Zainal, E-mail: diana.atiqah@gmail.com; Hashim, Marina; Ghaffar, Mazlan Abd., E-mail: magfish05@yahoo.com
2015-09-25
Information on the feeding mechanism and diet of halfbeak fish species in harsh estuarine environment ecosystem is still lacking. The present study investigates the fine structure of pharyngeal jaw apparatus and diets of halfbeak fish Zenarchopterus buffonis. A total of 84 halfbeak fish samples have been collected from the coastal water of Peninsular Malaysia using fishing rod. Scanning electron microscopy was used to examine the micrographs of fine microstructure of the pharyngeal teeth. The fundamental anatomy of pharyngeal jaw apparatus displayed that the upper pharyngeal jaw (third pharyngobranchials) displays larger size of hook-like or tricuspid teeth which was analogous tomore » tricuspid morphology. The lower pharyngeal jaw (fifth ceratobranchial) bears mainly conical teeth and appears triangular shape with two, short projections. The estimated TROPH values (1 − 3.2±0.55) denoted that halfbeak fish were omnivores in nature. The findings of this study was found to be useful as a baseline information for a better representation of the trophic flows associated with large medium and small surface water fishes.« less
NASA Astrophysics Data System (ADS)
Abidin, Diana Atiqah Zainal; Hashim, Marina; Das, Simon K.; Ghaffar, Mazlan Abd.
2015-09-01
Information on the feeding mechanism and diet of halfbeak fish species in harsh estuarine environment ecosystem is still lacking. The present study investigates the fine structure of pharyngeal jaw apparatus and diets of halfbeak fish Zenarchopterus buffonis. A total of 84 halfbeak fish samples have been collected from the coastal water of Peninsular Malaysia using fishing rod. Scanning electron microscopy was used to examine the micrographs of fine microstructure of the pharyngeal teeth. The fundamental anatomy of pharyngeal jaw apparatus displayed that the upper pharyngeal jaw (third pharyngobranchials) displays larger size of hook-like or tricuspid teeth which was analogous to tricuspid morphology. The lower pharyngeal jaw (fifth ceratobranchial) bears mainly conical teeth and appears triangular shape with two, short projections. The estimated TROPH values (1 - 3.2±0.55) denoted that halfbeak fish were omnivores in nature. The findings of this study was found to be useful as a baseline information for a better representation of the trophic flows associated with large medium and small surface water fishes.
Effects of neutron irradiation on deformation behavior of nickel-base fastener alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajaj, R.; Mills, W.J.; Kammenzind, B.F.
1999-07-01
This paper presents the effects of neutron irradiation on the fracture behavior and deformation microstructure of high-strength nickel-base alloy fastener materials, Alloy X-750 and Alloy 625. Alloy X-750 in the HTH condition, and Alloy 625 in the direct aged condition were irradiated to a fluence of 2.4x10{sup 20} n/cm{sup 2} at 264 C in the Advanced Test Reactor. Deformation structures at low strains were examined. It was previously shown that Alloy X-750 undergoes hardening, a significant degradation in ductility and an increase in intergranular fracture. In contrast, Alloy 625 had shown softening with a concomitant increase in ductility and transgranularmore » failure after irradiation. The deformation microstructures of the two alloys were also different. Alloy X-750 deformed by a planar slip mechanism with fine microcracks forming at the intersections of slip bands with grain boundaries. Alloy 625 showed much more homogeneous deformation with fine, closely spaced slip bands and an absence of microcracks. The mechanism(s) of irradiation assisted stress corrosion cracking (IASCC) are discussed.« less
NASA Astrophysics Data System (ADS)
Arulmurugan, B.; Manikandan, M.
2018-02-01
In the present study, microstructure and the corrosion behavior of Nickel based superalloy 686 and its weld joints has been investigated by synthetic sea water environment. The weldments were fabricated by Gas Tungsten Arc Welding (GTAW) and Pulsed Current Gas Tungsten Arc Welding (PCGTAW) techniques with autogenous mode and three different filler wires (ERNiCrMo-4, ERNiCrMo-10 and ERNiCrMo-14). Microstructure and Scanning electron microscope examination was carried out to evaluate the structural changes in the fusion zones of different weldments. Energy Dispersive X-ray Spectroscopy (EDS) analysis was carried out to evaluate the microsegregation of alloying elements in the different weld joints. Potentiodynamic polarization study was experimented on the base metal and weld joints in the synthetic sea water environment to evaluate the corrosion rate. Tafel’s interpolation technique was used to obtain the corrosion rate. The microstructure examination revealed that the fine equiaxed dendrites were observed in the pulsed current mode. EDS analysis shows the absence of microsegregation in the current pulsing technique. The corrosion rates of weldments are compared with the base metal. The results show that the fine microstructure with the absence of microsegregation in the PCGTA weldments shows improved corrosion resistance compared to the GTAW. Autogenous PCGTAW shows higher corrosion resistance irrespective of all weldments employed in the present study.
Microstructural characterization of a Zr-Ti-Ni-Mn-V-Cr based AB 2-type battery alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Zhan
1999-01-01
Transmission Electron Microscopy (TEM), combined with X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) was employed to investigate a proprietary and multicomponent AB 2 type Nickel-Metal Hydride (Ni-MH) battery alloy. This material was prepared by High Pressure Gas Atomization (HPGA) and examined in both the as-atomized and heat treated condition. TEM examination showed a heavily faulted dendritic growth structure in as-atomized powder. Selected Area Diffraction (SAD) showed that this region consisted of both a cubic C15 structure with lattice constant a=7.03 and a hexagonal C14 structure with lattice parameter a=4.97 Å, c=8.11 Å. The Orientation Relationship (OR) between the C14 and C15 structures was determined to be (111)[1more » $$\\bar{1}$$0] C15//(0001)[11$$\\bar{2}$$0] C14. An interdendritic phase possessing the C14 structure was also seen. There was also a very fine grain region consisting of the C14 structure. Upon heat treatment, the faulted structure became more defined and appeared as intercalation layers within the grains. Spherical particles rich in Zr and Ni appeared scattered at the grain boundaries instead of the C14 interdendritic phase. The polycrystalline region also changed to a mixture of C14 and C15 structures. These results as well as phase stability of the C15 and C14 structures based on a consideration of atomic size factor and the average electron concentration are discussed.« less
Molecular Mapping of the ROSY Locus in DROSOPHILA MELANOGASTER
Coté, Babette; Bender, Welcome; Curtis, Daniel; Chovnick, Arthur
1986-01-01
The DNA from the chromosomal region of the Drosophila rosy locus has been examined in 83 rosy mutant strains. Several spontaneous and radiation-induced alleles were associated with insertions and deletions, respectively. The lesions are clustered in a 4-kb region. Some of the alleles identified on the DNA map have been located on the genetic map by fine-structure recombination experiments. The genetic and molecular maps are collinear, and the alignment identifies the DNA location of the rosy control region. A rosy RNA of 4.5 kb has been identified; its 5' end lies in or near the control region. PMID:2420682
Tatsumi, Kazuyoshi; Muto, Shunsuke; Ikeda, Kazutaka; Orimo, Shin-Ichi
2012-01-01
In a previous study, we used transmission electron microscopy and electron energy-loss (EEL) spectroscopy to investigate dehydrogenation of AlH3 particles. In the present study, we systematically examine differences in the chemical bonding states of Al-containing compounds (including AlH3) by comparing their Al-L2,3 EEL spectra. The spectral chemical shift and the fine peak structure of the spectra were consistent with the degree of covalent bonding of Al. This finding will be useful for future nanoscale analysis of AlH3 dehydrogenation toward the cell. PMID:28816996
Ultra-Fine Scale Spatially-Integrated Mapping of Habitat and Occupancy Using Structure-From-Motion
McDowall, Philip; Lynch, Heather J.
2017-01-01
Organisms respond to and often simultaneously modify their environment. While these interactions are apparent at the landscape extent, the driving mechanisms often occur at very fine spatial scales. Structure-from-Motion (SfM), a computer vision technique, allows the simultaneous mapping of organisms and fine scale habitat, and will greatly improve our understanding of habitat suitability, ecophysiology, and the bi-directional relationship between geomorphology and habitat use. SfM can be used to create high-resolution (centimeter-scale) three-dimensional (3D) habitat models at low cost. These models can capture the abiotic conditions formed by terrain and simultaneously record the position of individual organisms within that terrain. While coloniality is common in seabird species, we have a poor understanding of the extent to which dense breeding aggregations are driven by fine-scale active aggregation or limited suitable habitat. We demonstrate the use of SfM for fine-scale habitat suitability by reconstructing the locations of nests in a gentoo penguin colony and fitting models that explicitly account for conspecific attraction. The resulting digital elevation models (DEMs) are used as covariates in an inhomogeneous hybrid point process model. We find that gentoo penguin nest site selection is a function of the topography of the landscape, but that nests are far more aggregated than would be expected based on terrain alone, suggesting a strong role of behavioral aggregation in driving coloniality in this species. This integrated mapping of organisms and fine scale habitat will greatly improve our understanding of fine-scale habitat suitability, ecophysiology, and the complex bi-directional relationship between geomorphology and habitat use. PMID:28076351
USDA-ARS?s Scientific Manuscript database
Water deficits are known to alter fine root structure and function, but little is known about how these responses contribute to differences in drought resistance across grapevine rootstocks. We studied how water deficit affects root anatomical and physiological characteristics in two grapevine root...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... proceeding that have subsequently made changes, including, but not limited to, changes to corporate structure...) * Evershine Enterprise Co. Fine Furniture (Shanghai) Ltd.* Fleetwood Fine Furniture LP Fortune Glory... of Yangchun * Yeh Brothers World Trade Inc.* Yuexing Group Co., Ltd. Zhang Zhou Sanlong Wood Product...
USDA-ARS?s Scientific Manuscript database
To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine fine roots- from the tip to secondary growth zones. Our characterization included localization of suberized structures an...
NASA Astrophysics Data System (ADS)
Sun, Zhengquan; Zeng, Zuoxun; Wu, Linbo; Xu, Shaopeng; Yang, Shuang; Chen, Deli; Wang, Jianxiu
2017-05-01
New results, in combination with previously published ones, reveal that when the Stress Exponent of the Competent layer (SEC) ranges from 1 to 10 (1 < n < 10), Pinch-and-Swell structure Rheology Gauge (PSRG) can only be available under the condition that the Viscosity ratio between the Competent layer and its corresponding Matrix layer (VCM) is larger than 10. Therefore, we made the attempt to calculate the viscosity ratio of pinch-and-swell structure of competent layer to the related matrix and stress exponent. Based on this knowledge, we applied this gauge to calculate SECs and VCMs of eight types of pinch-and-swell structures, which are widely developed in the Taili area of the west Liaoning Province in China. Statistical analysis of the SEC resulted in intervals of four types of competent layers, that is, Medium-scale Granitic coarse-to-pegmatitic Veins, Small-scale Augen Granite aplite Veins, Small-scale Granite aplite Veins, and Small-scale Augen Quartz-K-feldspar veins, with intervals of [3.50, 4.63], [2.64, 4.29], [2.70, 3.51], and [2.50, 3.36] respectively. The preferred intervals of VCM of the five types of pinch-and-swell structures, Small-scale Augen Granite aplite Veins + Fine-grained Biotite-Hornblende-plagioclase Gneiss, Medium-scale Granitic coarse-to-pegmatitic Veins + Fine-grained Biotite-Hornblende-plagioclase Gneiss, Small-scale Augen Granite aplite Veins + medium-to-fine-grained granitic gneiss, Medium-scale Granitic coarse-to-pegmatitic Veins + medium-to-fine-grained granitic gneiss, and Small-scale Augen Granite aplite Veins + fine-grained biotite-plagioclase gneiss, are [19.98, 62.51], [15.90, 61.17], [26.72, 93.27], [22.21, 107.26], and [76.33, 309.39] respectively. The similarities between these calculated SEC statistical preferred intervals and the physical experimental results verify the validity of the PSRG. The competent layers of the pinch-and-swell structures were presented in this study as power-law flow with SEC values that increased with the thickness of the layer. Grain-size plays an important role in the rheology of pinch-and-swell structures. The results offer a case for the application of PSRG and determine the key rock rheological parameters of North China Craton for future related studies.
Variation Principles and Applications in the Study of Cell Structure and Aging
NASA Technical Reports Server (NTRS)
Economos, Angelos C.; Miquel, Jaime; Ballard, Ralph C.; Johnson, John E., Jr.
1981-01-01
In this report we have attempted to show that "some reality lies concealed in biological variation". This "reality" has its principles, laws, mechanisms, and rules, only a few of which we have sketched. A related idea we pursued was that important information may be lost in the process of ignoring frequency distributions of physiological variables (as is customary in experimental physiology and gerontology). We suggested that it may be advantageous to expand one's "statistical field of vision" beyond simple averages +/- standard deviations. Indeed, frequency distribution analysis may make visible some hidden information not evident from a simple qualitative analysis, particularly when the effect of some external factor or condition (e.g., aging, dietary chemicals) is being investigated. This was clearly illustrated by the application of distribution analysis in the study of variation in mouse liver cellular and fine structure, and may be true of fine structural studies in general. In living systems, structure and function interact in a dynamic way; they are "inseparable," unlike in technological systems or machines. Changes in fine structure therefore reflect changes in function. If such changes do not exceed a certain physiologic range, a quantitative analysis of structure will provide valuable information on quantitative changes in function that may not be possible or easy to measure directly. Because there is a large inherent variation in fine structure of cells in a given organ of an individual and among individuals, changes in fine structure can be analyzed only by studying frequency distribution curves of various structural characteristics (dimensions). Simple averages +/- S.D. do not in general reveal all information on the effect of a certain factor, because often this effect is not uniform; on the contrary, this will be apparent from distribution analysis because the form of the curves will be affected. We have also attempted to show in this chapter that similar general statistical principles and mechanisms may be operative in biological and technological systems. Despite the common belief that most biological and technological characteristics of interest have a symmetric bell-shaped (normal or Gaussian) distribution, we have shown that more often than not, distributions tend to be asymmetric and often resemble a so-called log-normal distribution. We saw that at least three general mechanisms may be operative, i.e., nonadditivity of influencing factors, competition among individuals for a common resource, and existence of an "optimum" value for a studied characteristic; more such mechanisms could exist.
Vortex Filaments in Grids for Scalable, Fine Smoke Simulation.
Meng, Zhang; Weixin, Si; Yinling, Qian; Hanqiu, Sun; Jing, Qin; Heng, Pheng-Ann
2015-01-01
Vortex modeling can produce attractive visual effects of dynamic fluids, which are widely applicable for dynamic media, computer games, special effects, and virtual reality systems. However, it is challenging to effectively simulate intensive and fine detailed fluids such as smoke with fast increasing vortex filaments and smoke particles. The authors propose a novel vortex filaments in grids scheme in which the uniform grids dynamically bridge the vortex filaments and smoke particles for scalable, fine smoke simulation with macroscopic vortex structures. Using the vortex model, their approach supports the trade-off between simulation speed and scale of details. After computing the whole velocity, external control can be easily exerted on the embedded grid to guide the vortex-based smoke motion. The experimental results demonstrate the efficiency of using the proposed scheme for a visually plausible smoke simulation with macroscopic vortex structures.
Oberer, Nicole; Gashaj, Venera; Roebers, Claudia M
2017-04-01
The present study aimed to contribute to the discussion about the relation between motor coordination and executive functions in preschool children. Specifically, the relation between gross and fine motor skills and executive functions as well as the relation to possible background variables (SES, physical activity) were investigated. Based on the data of N=156 kindergarten children the internal structure of motor skills was investigated and confirmed the theoretically assumed subdivision of gross and fine motor skills. Both, gross and fine motor skills correlated significantly with executive functions, whereas the background variables seemed to have no significant impact on the executive functions and motor skills. Higher order control processes are discussed as an explanation of the relation between executive functions and motor skills. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Chi; Shen, Wenfei; Zhang, Liwen; Xia, Yingnan; Li, Ruiqin
2017-04-01
A gamma prime ( γ') precipitation ( 35% in volume)-hardened powder metallurgy (P/M) superalloy FGH96 was welded using inertia friction welding (IFW). The microstructure and γ' distributions in the joints in two conditions, hot isostatic pressed state and solution-treated and aged state, were characterized. The recrystallization of grains, the dissolution and re-precipitation of γ' in the joints were discussed in terms of the temperature evolutions which were calculated by finite element model analysis. Regardless of the initial states, fully recrystallized fine grain structure formed at welded zone. Meanwhile, very fine γ' precipitations were re-precipitated at the welded zone. These recrystallized grain structure and fine re-precipitated γ' resulted in increasing hardness of IFW joint while making the hardness dependent on the microstructure and γ' precipitation.
Urban, Forest, and Agricultural AIS Data: Fine Spectral Structure
NASA Technical Reports Server (NTRS)
Vanderbilt, V. C.
1985-01-01
Spectra acquired by the Airborne Imaging Spectrometer (AIS) near Lafayette, IN, Ely, MN, and over the Stanford University campus, CA were analyzed for fine spectral structure using two techniques: the ratio of radiance of a ground target to the radiance of a standard and also the correlation coefficient of radiances at adjacent wavelengths. The results show ramp like features in the ratios. These features are due to the biochemical composition of the leaf and to the optical scattering properties of its cuticle. The size and shape of the ramps vary with ground cover.
Ware, M E; Stinaff, E A; Gammon, D; Doty, M F; Bracker, A S; Gershoni, D; Korenev, V L; Bădescu, S C; Lyanda-Geller, Y; Reinecke, T L
2005-10-21
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.
g Factor of Light Ions for an Improved Determination of the Fine-Structure Constant.
Yerokhin, V A; Berseneva, E; Harman, Z; Tupitsyn, I I; Keitel, C H
2016-03-11
A weighted difference of the g factors of the H- and Li-like ions of the same element is theoretically studied and optimized in order to maximize the cancellation of nuclear effects between the two charge states. We show that this weighted difference and its combination for two different elements can be used to extract a value for the fine-structure constant from near-future bound-electron g factor experiments with an accuracy competitive with or better than the present literature value.
Berengut, J C; Dzuba, V A; Flambaum, V V
2010-09-17
We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.
Fine structure of transient waves in a random medium: The correlation and spectral density functions
NASA Technical Reports Server (NTRS)
Wenzel, Alan R.
1994-01-01
This is essentially a progress report on a theoretical investigation of the propagation of transient waves in a random medium. The emphasis in this study is on applications to sonic-boom propagation, particularly as regards the effect of atmospheric turbulence on the sonic-boom waveform. The analysis is general, however, and is applicable to other types of waves besides sonic-boom waves. The phenomenon of primary concern in this investigation is the fine structure of the wave. A figure is used to illustrate what is meant by finestructure.
New Tests for Variations of the Fine Structure Constant
NASA Technical Reports Server (NTRS)
Prestage, John D.
1995-01-01
We describe a new test for possible variations of the fine structure constant, by comparisons of rates between clocks based on hyperfine transitions in alkali atomos with different atomic number Z. H- maser, Cs and Hg+ clocks have a different dependence on ia relativistic contributions of order (Z. Recent H-maser vs Hg+ clock comparison data improves laboratory limits on a time variation by 100-fold to giveFuture laser cooled clocks (Be+, Rb, Cs, Hg+, etc.), when compared, will yield the most senstive of all tests for.
NASA Technical Reports Server (NTRS)
Luo, D.; Pradhan, A. K.
1990-01-01
The new R-matrix package for comprehensive close-coupling calculations for electron scattering with the first three ions in the boron isoelectronic sequence, the astrophysically significant C(+), N(2+), and O(3+), is presented. The collision strengths are calculated in the LS coupling approximation, as well as in pair-coupling scheme, for the transitions among the fine-structure sublevels. Calculations are carried out at a large number of energies in order to study the detailed effects of autoionizing resonances.
Elbow Angle during a Simulated Task Requiring Fine Psychomotor Control.
ERIC Educational Resources Information Center
Colangelo, Gary A.; And Others
1991-01-01
This study examined elbow angle during a fine motor task (threading a needle), in the context of positions used in preclinical training exercises and assumed by practitioners performing dental procedures. The 101 subjects tended to choose an obtuse angle (mean of 125 degrees) and to vary this angle only slightly in repeated trials. (DB)
Eric C. Merten; Nathaniel A. Hemstad; Randall K. Kolka; Raymond M. Newman; Elon S. Verry; Bruce Vondracek
2010-01-01
We investigated the recovery of sediment characteristics in four moraine, headwater streams in north-central Minnesota after forest harvest. We examined changes in fine sediment levels from 1997 (preharvest) to 2007 (10 years postharvest) at study plots with upland clear felling and riparian thinning, using canopy cover, proportion of unstable banks, surficial fine...
The Effect of Occupational Growth on Labor Force Task Characteristics.
ERIC Educational Resources Information Center
Szafran, Robert F.
1996-01-01
Examination of changes in 495 occupations from 1950-1990 shows an increased likelihood of tasks with high levels of complexity and social interaction, decreased likelihood of fine or gross motor skills or harsh climatic conditions. There is evidence that jobs have become polarized on the need for fine motor skills and level of social interaction.…
Punishment and Sympathy Judgments: Is the Quality of Mercy Strained in Asperger's Syndrome?
ERIC Educational Resources Information Center
Channon, Shelley; Fitzpatrick, Sian; Drury, Helena; Taylor, Isabelle; Lagnado, David
2010-01-01
This study examined reasoning about wrongdoing in people with Asperger's syndrome (AS) and matched healthy controls in relation to car accident scenarios. The two groups made similar judgments with respect to degree of driver negligence for both fines imposed and sympathy ratings. They also made similar judgments of fines in relation to the type…
ERIC Educational Resources Information Center
Khumaeni, A.; Tanaka, S.; Kobayashi, A.; Lee, Y. I.; Kurniawan, K. H.; Ishii, K.; Kagawa, K.
2008-01-01
Equipment for demonstrating Newton's third law and the energy conservation law in mechanics have successfully been constructed utilizing fine spherical plastic beads in place of metal ball bearings. To demonstrate Newton's third law, special magnetized Petri dishes were employed as objects, while to examine the energy conservation law, a…
NASA Astrophysics Data System (ADS)
Firk, Frank W. K.
2014-03-01
It is shown that the R-matrix theory of nuclear reactions is a viable mathematical theory for the description of the fine, intermediate and gross structure observed in the time-dependence of economic indices in general, and the daily Dow Jones Industrial Average in particular. A Lorentzian approximation to R-matrix theory is used to analyze the complex structures observed in the Dow Jones Industrial Average on a typical trading day. Resonant structures in excited nuclei are characterized by the values of their fundamental strength function, (average total width of the states)/(average spacing between adjacent states). Here, values of the ratios (average lifetime of individual states of a given component of the daily Dow Jones Industrial Average)/(average interval between the adjacent states) are determined. The ratios for the observed fine and intermediate structure of the index are found to be essentially constant throughout the trading day. These quantitative findings are characteristic of the highly statistical nature of many-body, strongly interacting systems, typified by daily trading. It is therefore proposed that the values of these ratios, determined in the first hour-or-so of trading, be used to provide valuable information concerning the likely performance of the fine and intermediate components of the index for the remainder of the trading day.
Bobbio, Tatiana Godoy; Morcillo, André Moreno; Barros Filho, Antonio de Azevedo; Concalves, Vanda Maria Gimenes
2007-12-01
The objective of this study was to evaluate and compare the motor coordination of Brazilian schoolchildren of different socioeconomic status in their first year of primary education. Factors associated with inadequate fine motor skills were identified. A total of 238 schoolchildren, 118 from a public school and 120 from a private school, were evaluated on fine motor skills using the Evolutional Neurological Examination. Statistical analysis was performed using univariate logistic regression followed by multivariate analysis. Children attending public school had a 5.5-fold greater risk of having inadequate fine motor skills for their age compared to children attending private school, while children who started school after four years of age had a 2.8-fold greater risk of having inadequate motor coordination compared to children who began school earlier. Data for this sample suggest socioeconomic factors and later entry of children to school may be associated with their fine motor skills.
Tortella, Patrizia; Haga, Monika; Loras, Håvard; Sigmundsson, Hermundur; Fumagalli, Guido
2016-01-01
This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens.
NASA Astrophysics Data System (ADS)
Jang, Jae-Myung; Kim, Seung-Dai; Park, Tae-Eon; Choe, Han-Cheol
2018-02-01
The biocompatibility structure of an implant surface is of great importance to the formation of new bone tissue around the dental implant and also has a significant chemical reaction in the osseointegration process. Thus, ultra-fine Pd-Ag-HAp nanoparticles have been electrodeposited on protruded TiO2 barrier layer in mixed electrolyte solutions. Unusual protrusions patterns, which are assigned to Pd-Ag-HAp nanoparticles, can be clearly differentiated from a TiO2 nanotube oxide layer formed by an anodizing process. In the chemical bonding state, the surface characteristics of Pd/Ag/HAp compounds have been investigated by FE-SEM, EDS mapping analysis, and XPS analysis. The mapping dots of the elements including Ti, Ca, Pd, Ag, and P showed a homogeneous distribution throughout the entire surface when deposited onto the protruded TiO2 barrier layer. The XPS spectra of Ti-2p, O-1S, Pd-3d, and Ag-3d have been investigated, with the major XPS peak indicating Pd-3d. The Ag-3d level was clearly observed with further scanning of the Ca-2p region. Based on the results of the chemical states, the structural properties of the protrusion patterns were also examined after being deposited onto the barrier oxide film, resulting in the representative protrusion patterns being mainly composed of Pd-Ag-HAp compounds. The results of the soaking evaluation showed that the protrusion patterns and the protruded TiO2 barrier layer were all effective in regards to biocompatibility.
EEG resolutions in detecting and decoding finger movements from spectral analysis
Xiao, Ran; Ding, Lei
2015-01-01
Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as individual fingers from one hand. Several studies have reported spatial and temporal couplings of rhythmic activities at different frequency bands, suggesting the existence of well-defined spectral structures across multiple frequency bands. In the present study, spectral principal component analysis (PCA) was applied on EEG data, obtained from a finger movement task, to identify cross-frequency spectral structures. Features from identified spectral structures were examined in their spatial patterns, cross-condition pattern changes, detection capability of finger movements from resting, and decoding performance of individual finger movements in comparison to classic mu/beta rhythms. These new features reveal some similar, but more different spatial and spectral patterns as compared with classic mu/beta rhythms. Decoding results further indicate that these new features (91%) can detect finger movements much better than classic mu/beta rhythms (75.6%). More importantly, these new features reveal discriminative information about movements of different fingers (fine body-part movements), which is not available in classic mu/beta rhythms. The capability in decoding fingers (and hand gestures in the future) from EEG will contribute significantly to the development of non-invasive BCI and neuroprosthesis with intuitive and flexible controls. PMID:26388720
A Quasi-Experimental Analysis of Elementary School Absences and Fine Particulate Air Pollution
Hales, Nicholas M.; Barton, Caleb C.; Ransom, Michael R.; Allen, Ryan T.; Pope, C. Arden
2016-01-01
Abstract Fine particulate air pollution (PM2.5) has been associated with many adverse health outcomes including school absences. Specifically, a previous study in the Utah Valley area, conducted during a time with relatively high air pollution exposure, found significant positive correlations between school absences and air pollution. We examined the hypothesis that ambient PM2.5 exposures are associated with elementary school absences using a quasi-natural experiment to help control for observed and unobserved structural factors that influence school absences. The Alpine, Provo, and Salt Lake City school districts are located in valleys subject to daily mean PM2.5 concentrations almost twice as high as those in the Park City School District. We used seminonparametric generalized additive Poisson regression models to evaluate associations between absences and daily PM2.5 levels in the 3 districts that were exposed to the most pollution while using Park City absences as a quasi-control. The study covered 3 school years (2011/12-2013/14). School absences were most strongly associated with observed structural factors such as seasonal trends across school years, day-of-week effects, holiday effects, weather, etc. However, after controlling for these structural factors directly and using a control district, a 10 μg/m3 increase in PM2.5 was associated with an approximately 1.7% increase in daily elementary school absences. Exposure to ambient air pollution can contribute to elementary school absences, although this effect is difficult to disentangle from various other factors. PMID:26945391
Tortella, Patrizia; Haga, Monika; Loras, Håvard
2016-01-01
This study examined the effects and specificity of structured and unstructured activities played at the playground Primo Sport 0246 in Northern Italy on motor skill competence in five years old children. The playground was specifically designed to promote gross motor skills in preschool children; in this study 71 children from local kindergartens came to the park once a week for ten consecutive weeks and were exposed to 30 minutes of free play and 30 minutes of structured activities. Before and after the ten visits, each child completed nine tests to assess levels of motor skills, three for fine-motor skills and six for gross-motor skills. As control, motor skills were also assessed on 39 children from different kindergartens who did not come to the park. The results show that the experimental group who practiced gross-motor activities in the playground for 1 hour a week for 10 weeks improved significantly in 4 out of the 6 gross motor tasks and in none of the fine motor tasks. The data indicate that limited transfer occurred between tasks referring to different domains of motor competences while suggesting cross feeding for improvement of gross-motor skills between different exercises when domains related to physical fitness and strength of specific muscle groups are involved. These results are relevant to the issue of condition(s) appropriate for maintaining and developing motor skills in this age group as well as for the planning, organization and implementation of play and physical activities in kindergartens. PMID:27462985
Spatial, temporal, and interspecies patterns in fine particulate matter in Texas.
Gebhart, Kristi A; Malm, William C; Ashbaugh, Lowell L
2005-11-01
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) field study was conducted from July to October 1999 and was followed by several years of modeling and data analyses to examine the causes of haze at Big Bend National Park TX (BBNP). During BRAVO, daily speciated fine (diameter <2.5 microm) particulate concentrations were measured at 37 sites throughout Texas. At the primary receptor site, K-Bar Ranch, there were many additional measurements including a "high-sensitivity" version of the 24-hr fine particulate elemental data. The spatial, temporal, and interspecies patterns in these data are examined here to qualitatively investigate source regions and source types influencing the fine particulate concentrations in Texas with an emphasis on sources of sulfates, the largest contributor to fine mass and light extinction. Peak values of particulate sulfur (S) varied spatially and seasonally. Maximum S was in Northeast Texas during the summer, whereas peak S at BBNP was in the fall. Sulfate acidity at BBNP also varied by month. Sources of Se were evident in Northeast Texas and from the Carbón I and II plants. High S episodes at BBNP during BRAVO had several different trace element characteristics. Carbon concentrations at BBNP during BRAVO were probably mostly urban-related, with arrival from the Houston area likely. The Houston artificial tracer released during the second half of BRAVO was highly correlated with some carbon fractions. There was evidence of the influence of African dust at sites throughout Texas during the summer. Patterns in several trace elements were also examined. Vanadium was associated with air masses from Mexico. Lead concentrations in southern Texas have dropped dramatically over the past several years.
Molecular Eigensolution Symmetry Analysis and Fine Structure
Harter, William G.; Mitchell, Justin C.
2013-01-01
Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES) used in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v), then applied to families of Oh clusters in SF6 spectra and to extreme clusters. PMID:23344041
Yamamoto, H; Kojima, Y; Okuyama, T; Abasolo, W P; Gril, J
2002-08-01
In this study, a basic model is introduced to describe the biomechanical properties of the wood from the viewpoint of the composite structure of its cell wall. First, the mechanical interaction between the cellulose microfibril (CMF) as a bundle framework and the lignin-hemicellulose as a matrix (MT) skeleton in the secondary wall is formulated based on "the two phase approximation." Thereafter, the origins of (1) tree growth stress, (2) shrinkage or swelling anisotropy of the wood, and (3) moisture dependency of the Young's modulus of wood along the grain were simulated using the newly introduced model. Through the model formulation; (1) the behavior of the cellulose microfibril (CMF) and the matrix substance (MT) during cell wall maturation was estimated; (2) the moisture reactivity of each cell wall constituent was investigated; and (3) a realistic model of the fine composite structure of the matured cell wall was proposed. Thus, it is expected that the fine structure and internal property of each cell wall constituent can be estimated through the analyses of the macroscopic behaviors of wood based on the two phase approximation.
Fine Structure and Host-Virus Relationship of a Marine Bacterium and Its Bacteriophage
Valentine, Artrice F.; Chapman, George B.
1966-01-01
Valentine, Artrice F. (Georgetown University, Washington, D.C.), and George B. Chapman. Fine structure and host-virus relationship of a marine bacterium and its bacteriophage. J. Bacteriol. 92:1535–1554. 1966.—The fine structure of a gram-negative marine bacterium, Cytophaga marinoflava sp. n., has been revealed by ultrathin sectioning and electron microscopy. Stages in the morphogenesis of the bacterial virus NCMB 385, which has been shown to be highly specific for this organism, were also demonstrated in bacterial cells fixed according to the Kellenberger technique. The bacterium possessed a cell wall, cytoplasmic membrane, and nuclear and cytoplasmic regions typical of bacterial cells. Both the cell wall and the cytoplasmic membrane showed a tripartite structure, i.e., each was composed of two dense layers separated by a low-density zone. Intracytoplasmic membrane systems were also observed, especially in dividing cells and in cells in which new viruses were being formed. As many as 18 hexagonally shaped, empty phage heads (membranes only) were observed in untreated, infected bacterial cells. Phage heads, intermediate in density to empty heads and fully condensed ones, possibly representing stages in the morphological development of the virus, were also seen. Images PMID:5924277
Xyloglucan-cellulose interaction depends on the sidechains and molecular weight of xyloglucan.
Lima, Denis U; Loh, Watson; Buckeridge, Marcos S
2004-05-01
Recent papers have brought evidence against the hypothesis that the fucosyl branching of primary wall xyloglucans (Xg) are responsible for their higher capacity of binding to cellulose. Reinforcement of this questioning has been obtained in this work where we show that the binding capacity was improved when the molecular weight (MW) of the Xg polymers is decreased by enzymatic hydrolysis. Moreover, the enthalpy changes associated with the adsorption process between Xg and cellulose is similar for Xgs with similar MW (but differing in the fine structure such as the presence/absence of fucose). On the basis of these results, we suggest that the fine structure and MW of Xg determines the energy and amount of binding to cellulose, respectively. Thus, the occurrence of different fine structural domains of Xg (e.g. the presence of fucose and the distribution of galactoses) might have several different functions in the wall. Besides the structural function in primary wall, these results might have impact on the packing features of storage Xg in seed cotyledons, since the MW and absence of fucose could also be associated with the self-association capacity. Copyright 2004 Elsevier SAS
Exploring the fine structure at the limb in coronal holes
NASA Technical Reports Server (NTRS)
Karovska, Magarita; Blundell, Solon F.; Habbal, Shadia Rifai
1994-01-01
The fine structure of the solar limb in coronal holes is explored at temperatures ranging from 10(exp 4) to 10(exp 6) K. An image enhancement algorithm orignally developed for solar eclipse observations is applied to a number of simultaneous multiwavelength observations made with the Harvard Extreme Ultraviolet Spectrometer experiment on Skylab. The enhanced images reveal the presence of filamentary structures above the limb with a characteristic separation of approximately 10 to 15 sec . Some of the structures extend from the solar limb into the corona to at least 4 min above the solar limb. The brightness of these structures changes as a function of height above the limb. The brightest emission is associated with spiculelike structures in the proximity of the limb. The emission characteristic of high-temperature plasma is not cospatial with the emission at lower temperatures, indicating the presence of different temperature plasmas in the field of view.
NASA Astrophysics Data System (ADS)
Araki, Katsuya; Yagi, Naoto; Ikemoto, Yuka; Yagi, Hisashi; Choong, Chi-Jing; Hayakawa, Hideki; Beck, Goichi; Sumi, Hisae; Fujimura, Harutoshi; Moriwaki, Taro; Nagai, Yoshitaka; Goto, Yuji; Mochizuki, Hideki
2015-12-01
Lewy bodies (LBs), which mainly consist of α-synuclein (α-syn), are neuropathological hallmarks of patients with Parkinson’s disease (PD). The fine structure of LBs is unknown, and LBs cannot be made artificially. Nevertheless, many studies have described fibrillisation using recombinant α-syn purified from E. coli. An extremely fundamental problem is whether the structure of LBs is the same as that of recombinant amyloid fibrils. Thus, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to analyse the fine structure of LBs in the brain of PD patients. Our results showed a shift in the infrared spectrum that indicates abundance of a β-sheet-rich structure in LBs. Also, 2D infrared mapping of LBs revealed that the content of the β-sheet structure is higher in the halo than in the core, and the core contains a large amount of proteins and lipids.
Uo, Motohiro; Wada, Takahiro; Asakura, Kiyotaka
2017-03-31
The bioactive effects of strontium released from surface pre-reacted glass-ionomer (S-PRG) fillers may aid in caries prevention. In this study, the local structure of strontium taken up by teeth was estimated by extended X-ray absorption fine structure analysis. Immersing teeth into S-PRG filler eluate increased the strontium content in enamel and dentin by more than 100 times. The local structure of strontium in enamel and dentin stored in distilled water was the same as that in synthetic strontium-containing hydroxyapatite (SrHAP). Moreover, the local structure of strontium in enamel and dentin after immersion in the S-PRG filler eluate was also similar to that of SrHAP. After immersion in the S-PRG filler eluate, strontium was suggested to be incorporated into the hydroxyapatite (HAP) of enamel and dentin at the calcium site in HAP.
Fine needle aspiration cytology versus frozen section in branchial cleft cysts.
Begbie, F; Visvanathan, V; Clark, L J
2015-02-01
Branchial cleft cysts occur because of a failure of involution of the second branchial cleft. However, as well-differentiated squamous cell carcinoma can mimic branchial cleft cysts, there is a lack of consensus on the appropriate management of cystic neck lumps. To report our experience of fine needle aspiration cytology and frozen section examination in the management of cystic neck lumps. Retrospective case note review of patients managed in the Southern General Hospital, Scotland, UK. The sensitivity of fine needle aspiration cytology and frozen section for detecting branchial cleft cysts was 75 per cent and 100 per cent respectively. Two patients who did not undergo intra-operative frozen section examination were either over- or under-treated, which is discussed. Adult patients subjected to surgical excision of a suspected branchial cyst should undergo intra-operative frozen section analysis regardless of clinical suspicion for malignancy. This part of management is critical to ensure patients are offered appropriate treatment.
Kim, Helyn; Carlson, Abby G; Curby, Timothy W; Winsler, Adam
2016-01-01
Despite the comorbidity between motor difficulties and certain disabilities, limited research has examined links between early motor, cognitive, and social skills in preschool-aged children with developmental disabilities. The present study examined the relative contributions of gross motor and fine motor skills to the prediction of improvements in children's cognitive and social skills among 2,027 pre-kindergarten children with developmental disabilities, including specific learning disorder, speech/language impairment, intellectual disability, and autism spectrum disorder. Results indicated that for pre-kindergarten children with developmental disabilities, fine motor skills, but not gross motor skills, were predictive of improvements in cognitive and social skills, even after controlling for demographic information and initial skill levels. Moreover, depending on the type of developmental disability, the pattern of prediction of gross motor and fine motor skills to improvements in children's cognitive and social skills differed. Implications are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hockenberry, Marilyn J; Krull, Kevin R; Insel, Kathleen C; Harris, Lynnette L; Gundy, Patricia M; Adkins, Kristin B; Pasvogel, Alice E; Taylor, Olga A; Koerner, Kari M; Montgomery, David W; Ross, Adam K; Hill, Adam; Moore, Ida M
2015-09-01
To examine associations among oxidative stress, fine and visual-motor abilities, and behavioral adjustment in children receiving chemotherapy for acute lymphoblastic leukemia (ALL) . A prospective, repeated-measures design . Two pediatric oncology settings in the southwestern United States. 89 children with ALL were followed from diagnosis to the end of chemotherapy. Serial cerebrospinal fluid samples were collected during scheduled lumbar punctures and analyzed for oxidative stress biomarkers. Children completed fine motor dexterity, visual processing speed, and visual-motor integration measures at three time points. Parents completed child behavior ratings at the same times. Oxidative stress, fine motor dexterity, visual processing, visual-motor integration, and behavioral adjustment . Children with ALL had below-average fine motor dexterity, visual processing speed, and visual-motor integration following the induction phase of ALL therapy. By end of therapy, visual processing speed normalized, and fine motor dexterity and visual-motor integration remained below average. Oxidative stress measures correlated with fine motor dexterity and visual-motor integration. Decreased motor functioning was associated with increased hyperactivity and anxiety . Oxidative stress occurs following chemo-therapy for childhood ALL and is related to impaired fine motor skills and visual symptoms . Early intervention should be considered to prevent fine motor and visual-spatial deficits, as well as behavioral problems.
NASA Technical Reports Server (NTRS)
Asnin, V. M.; Krainsky, I. L.
1998-01-01
A fine structure was discovered in the low-energy peak of the secondary electron emission spectra of the diamond surface with negative electron affinity. We studied this structure for the (100) surface of the natural type-IIb diamond crystal. We have found that the low-energy peak consists of a total of four maxima. The relative energy positions of three of them could be related to the electron energy minima near the bottom of the conduction band. The fourth peak, having the lowest energy, was attributed to the breakup of the bulk exciton at the surface during the process of secondary electron emission.
NASA Astrophysics Data System (ADS)
Chashechkin, Yu. D.; Bardakov, R. N.
2018-02-01
By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.
NASA Astrophysics Data System (ADS)
Hung, L. S.; Zheng, L. R.
1992-05-01
Fine line structures of ceramic thin films were fabricated by patterning of metalorganic precursors using photolithography and ion beams. A trilevel structure was developed with an outer resist layer to transfer patterns, a silver delineated layer as an implantation mask, and a planar resist layer protecting the precursor film from chemical attacking and sputtering. Ion irradiation through the Ag stencil rendered metal carboxylates insoluble in 2-ethylhexanoic acid, permitting patterning of the precursor film with patterning features on micron scales. The potential of this technique was demonstrated in patterning of Bi2Sr2CaCu2O(8+x) and Pb(Zr(0.53)Ti(0.47) thin films.
Water and solute transport in agricultural soils predicted by volumetric clay and silt contents
NASA Astrophysics Data System (ADS)
Karup, Dan; Moldrup, Per; Paradelo, Marcos; Katuwal, Sheela; Norgaard, Trine; Greve, Mogens H.; de Jonge, Lis W.
2016-09-01
Solute transport through the soil matrix is non-uniform and greatly affected by soil texture, soil structure, and macropore networks. Attempts have been made in previous studies to use infiltration experiments to identify the degree of preferential flow, but these attempts have often been based on small datasets or data collected from literature with differing initial and boundary conditions. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. From six agricultural fields in Denmark, 193 intact surface soil columns 20 cm in height and 20 cm in diameter were collected. The soils exhibited a wide range in texture, with clay and organic carbon (OC) contents ranging from 0.03 to 0.41 and 0.01 to 0.08 kg kg- 1, respectively. All experiments were carried out under the same initial and boundary conditions using tritium as a conservative tracer. The breakthrough characteristics ranged from being near normally distributed to gradually skewed to the right along with an increase in the content of the mineral fines (particles ≤ 50 μm). The results showed that the mineral fines content was strongly correlated to functional soil structure and the derived tracer breakthrough curves (BTCs), whereas the OC content appeared less important for the shape of the BTC. Organic carbon was believed to support the stability of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5% and up to 50% of the tracer mass were found to be strongly correlated with volumetric fines content. Predicted tracer concentration breakthrough points as a function of time up to 50% of applied tracer mass could be well fitted to an analytical solution to the classical advection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer mass. The new concept seems promising as a platform towards more accurate proxy functions for dissolved contaminant transport in intact soil.
Effect of physicochemical factors on transport and retention of graphene oxide in saturated media.
Chen, Chong; Shang, Jianying; Zheng, Xiaoli; Zhao, Kang; Yan, Chaorui; Sharma, Prabhakar; Liu, Kesi
2018-05-01
Fate and transport of graphene oxide (GO) have received much attention recently with the increase of GO applications. This study investigated the effect of salt concentration on the transport and retention behavior of GO particles in heterogeneous saturated porous media. Transport experiments were conducted in NaCl solutions with three concentrations (1, 20, and 50 mM) using six structurally packed columns (two homogeneous and four heterogeneous) which were made of fine and coarse grains. The results showed that GO particles had high mobility in all the homogeneous and heterogeneous columns when solution ionic strength (IS) was low. When IS was high, GO particles showed distinct transport ability in six structurally heterogeneous porous media. In homogeneous columns, decreasing ionic strength and increasing grain size increased the mobility of GO. For the column containing coarse-grained channel, the preferential flow path resulted in an early breakthrough of GO, and further larger contact area between coarse and fine grains caused a lower breakthrough peak and a stronger tailing at different IS. In the layered column, there was significant GO retention at coarse-fine grain interface where water flowed from coarse grain to fine grain. Our results indicated that the fate and transport of GO particles in the natural heterogeneous porous media was highly related to the coupled effect of medium structure and salt solution concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.
Development of solar flares and features of the fine structure of solar radio emission
NASA Astrophysics Data System (ADS)
Chernov, G. P.; Fomichev, V. V.; Yan, Y.; Tan, B.; Tan, Ch.; Fu, Q.
2017-11-01
The reason for the occurrence of different elements of the fine structure of solar radio bursts in the decimeter and centimeter wavelength ranges has been determined based on all available data from terrestrial and satellite observations. In some phenomena, fast pulsations, a zebra structre, fiber bursts, and spikes have been observed almost simultaneously. Two phenomena have been selected to show that the pulsations of radio emission are caused by particles accelerated in the magnetic reconnection region and that the zebra structure is excited in a source, such as a magnetic trap for fast particles. The complex combination of unusual fiber bursts, zebra structure, and spikes in the phenomenon on December 1, 2004, is associated with a single source, a magnetic island formed after a coronal mass ejection.
USDA-ARS?s Scientific Manuscript database
Scab (caused by Venturia effusa) is the major disease of pecan in the southeastern USA. There is no information available on the fine scale population genetic diversity. Four cv. Wichita trees (populations) were sampled hierarchically. Within each tree canopy, 4 approximately evenly spaced terminals...
Dänicke, Sven; Beineke, Andreas; Berk, Andreas; Kersten, Susanne
2017-01-01
The common feed contaminant deoxynivalenol (DON) was reported to influence the morphology of the pars nonglandularis (PN) of porcine stomach. Moreover, finely ground feed is known to trigger the development of ulcers and other pathologies of PN while coarsely ground feed protects from such lesions. The interactions between grinding fineness and DON contamination of feed were not examined so far. Therefore, both finely and coarsely ground feeds were tested either in the absence or presence of a DON contaminated wheat on growth performance and health of rearing piglets, including stomach integrity. DON contamination significantly reduced feed intake and serum albumin concentration with this effect being more pronounced after feeding the coarsely ground feed. Albeit at a higher level, albumin concentration was also reduced after feeding the finely ground and uncontaminated feed. Finely ground and DON-contaminated feed caused a significantly more pronounced lymphoplasmacytic infiltration both of PN and pars glandularis , partly paralleled by lymph follicle formation and detritus filled foveolae and tubes suggesting a local immune response probably triggered by epithelial lesions. It is concluded that DON contamination of feed exacerbates the adverse effects of finely ground feed on stomach mucosal integrity.
Dänicke, Sven; Beineke, Andreas; Berk, Andreas; Kersten, Susanne
2017-01-01
The common feed contaminant deoxynivalenol (DON) was reported to influence the morphology of the pars nonglandularis (PN) of porcine stomach. Moreover, finely ground feed is known to trigger the development of ulcers and other pathologies of PN while coarsely ground feed protects from such lesions. The interactions between grinding fineness and DON contamination of feed were not examined so far. Therefore, both finely and coarsely ground feeds were tested either in the absence or presence of a DON contaminated wheat on growth performance and health of rearing piglets, including stomach integrity. DON contamination significantly reduced feed intake and serum albumin concentration with this effect being more pronounced after feeding the coarsely ground feed. Albeit at a higher level, albumin concentration was also reduced after feeding the finely ground and uncontaminated feed. Finely ground and DON-contaminated feed caused a significantly more pronounced lymphoplasmacytic infiltration both of PN and pars glandularis, partly paralleled by lymph follicle formation and detritus filled foveolae and tubes suggesting a local immune response probably triggered by epithelial lesions. It is concluded that DON contamination of feed exacerbates the adverse effects of finely ground feed on stomach mucosal integrity. PMID:28045426
3D WHOLE-PROMINENCE FINE STRUCTURE MODELING. II. PROMINENCE EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunár, Stanislav; Mackay, Duncan H.
2015-10-20
We use the new three-dimensional (3D) whole-prominence fine structure model to study the evolution of prominences and their fine structures in response to changes in the underlying photospheric magnetic flux distribution. The applied model combines a detailed 3D prominence magnetic field configuration with a realistic description of the prominence plasma distributed along multiple fine structures. In addition, we utilize an approximate Hα visualization technique to study the evolution of the visible cool prominence plasma both in emission (prominence) and absorption (filament). We show that the initial magnetic field configuration of the modeled prominence is significantly disturbed by the changing positionmore » of a single polarity of a magnetic bipole as the bipole is advected toward the main body of the filament. This leads to the creation of a barb, which becomes the dominant feature visible in the synthetic Hα images of both the prominence and filament views. The evolution of the bipole also creates conditions that lead to the disappearance and reappearance of large portions of the main body. We also show that an arch-like region containing a dark void (a bubble) can be naturally produced in the synthetic prominence Hα images. While not visible in terms of the magnetic field lines, it is due to a lack of Hα emission from low-pressure, low-density plasma located in shallow magnetic dips lying along the lines of sight intersecting the dark void. In addition, a quasi-vertical small-scale feature consisting of short and deep dips, piled one above the other, is produced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamarche, C.; Stacey, G.; Riechers, D.
We present the detection of four far-infrared fine-structure oxygen lines, as well as strong upper limits for the CO(2–1) and [N ii] 205 μ m lines, in 3C 368, a well-studied radio-loud galaxy at z = 1.131. These new oxygen lines, taken in conjunction with previously observed neon and carbon fine-structure lines, suggest a powerful active galactic nucleus (AGN), accompanied by vigorous and extended star formation. A starburst dominated by O8 stars, with an age of ∼6.5 Myr, provides a good fit to the fine-structure line data. This estimated age of the starburst makes it nearly concurrent with the latestmore » episode of AGN activity, suggesting a link between the growth of the supermassive black hole and stellar population in this source. We do not detect the CO(2–1) line, down to a level twelve times lower than the expected value for star-forming galaxies. This lack of CO line emission is consistent with recent star formation activity if the star-forming molecular gas has low metallicity, is highly fractionated (such that CO is photodissociated throughout much of the clouds), or is chemically very young (such that CO has not yet had time to form). It is also possible, although we argue it is unlikely, that the ensemble of fine-structure lines is emitted from the region heated by the AGN.« less
Dreier, Stephanie; Redhead, John W; Warren, Ian A; Bourke, Andrew F G; Heard, Matthew S; Jordan, William C; Sumner, Seirian; Wang, Jinliang; Carvell, Claire
2014-07-01
Land-use changes have threatened populations of many insect pollinators, including bumble bees. Patterns of dispersal and gene flow are key determinants of species' ability to respond to land-use change, but have been little investigated at a fine scale (<10 km) in bumble bees. Using microsatellite markers, we determined the fine-scale spatial genetic structure of populations of four common Bombus species (B. terrestris, B. lapidarius, B. pascuorum and B. hortorum) and one declining species (B. ruderatus) in an agricultural landscape in Southern England, UK. The study landscape contained sown flower patches representing agri-environment options for pollinators. We found that, as expected, the B. ruderatus population was characterized by relatively low heterozygosity, number of alleles and colony density. Across all species, inbreeding was absent or present but weak (FIS = 0.01-0.02). Using queen genotypes reconstructed from worker sibships and colony locations estimated from the positions of workers within these sibships, we found that significant isolation by distance was absent in B. lapidarius, B. hortorum and B. ruderatus. In B. terrestris and B. pascuorum, it was present but weak; for example, in these two species, expected relatedness of queens founding colonies 1 m apart was 0.02. These results show that bumble bee populations exhibit low levels of spatial genetic structure at fine spatial scales, most likely because of ongoing gene flow via widespread queen dispersal. In addition, the results demonstrate the potential for agri-environment scheme conservation measures to facilitate fine-scale gene flow by creating a more even distribution of suitable habitats across landscapes. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong
2014-01-01
The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure. PMID:24824996
Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong
2014-01-01
The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure.
ERIC Educational Resources Information Center
Connell, Mary
2012-01-01
Cross, Fine, Jones, and Walsh (2012) provided a thoughtful review and critique of a book chapter describing the interview process at Child Advocacy Centers. They observed some of the ways that concerns raised in that chapter are being addressed and described revised guidelines that further clarify issues. Ongoing research and examination of the…
ERIC Educational Resources Information Center
Faust, Miriam; Ben-Artzi, Elisheva; Vardi, Nili
2012-01-01
Previous studies suggest that whereas the left hemisphere (LH) is involved in fine semantic processing, the right hemisphere (RH) is uniquely engaged in coarse semantic coding including the comprehension of distinct types of language such as figurative language, lexical ambiguity and verbal humor (e.g., and ). The present study examined the…
ERIC Educational Resources Information Center
Luo, Zupei; Jose, Paul E.; Huntsinger, Carol S.; Pigott, Therese D.
2007-01-01
This study examined whether fine motor skills were related to the initial scores and growth rate of mathematics achievement in American kindergartners and first graders. Participants were 244 East Asian American and 9,816 European American children from the US-based Early Childhood Longitudinal Study (ECLS-K). To control sampling bias, two…
Doubly stochastic Poisson process models for precipitation at fine time-scales
NASA Astrophysics Data System (ADS)
Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao
2012-09-01
This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.
NASA Astrophysics Data System (ADS)
McGrath, R.; MacDowell, A. A.; Hashizume, T.; Sette, F.; Citrin, P. H.
1989-11-01
The adsorption of H2S on Ni(001) has been studied with surface-extended x-ray-absorption fine structure and near-edge x-ray-absorption fine structure (NEXAFS) using the AT&T Bell Laboratories X15B beamline at the National Synchrotron Light Source. At 95 K and full saturation coverage, ~0.45 monolayer (ML) of S atoms in fourfold-hollow sites are produced, characteristic of room-temperature adsorption, accompanied by ~0.05 ML of oriented molecular H2S. Both these atomic and molecular chemisorbed species are buried under ~0.9 ML of disordered physisorbed H2S. No evidence for HS is found. Above 190 K the two molecular H2S phases desorb, leaving only dissociated S. These findings differ from previously reported interpretations of data obtained with high-resolution electron-energy-loss spectroscopy. They also exemplify the utility of NEXAFS for identifying and quantifying atomic and molecular surface species even when their difference involves only H and the two species coexist.
THE FINE STRUCTURE OF THE NUCLEOLUS DURING MITOSIS IN THE GRASSHOPPER NEUROBLAST CELL
Stevens, Barbara J.
1965-01-01
The behavior of the nucleolus during mitosis was studied by electron microscopy in neuroblast cells of the grasshopper embryo, Chortophaga viridifasciata. Living neuroblast cells were observed in the light microscope, and their mitotic stages were identified and recorded. The cells were fixed and embedded; alternate thick and thin sections were made for light and electron microscopy. The interphase nucleolus consists of two fine structural components arranged in separate zones. Concentrations of 150 A granules form a dense peripheral zone, while the central regions are composed of a homogeneous background substance. Observations show that nucleolar dissolution in prophase occurs in two steps with a preliminary loss of the background substance followed by a dispersal of the granules. Nucleolar material reappears at anaphase as small clumps or layers at the chromosome surfaces. These later form into definite bodies, which disappear as the nucleolus grows in telophase. Evidence suggests both a collecting and a synthesizing role for the nucleolus-associated chromatin. The final, mature nucleolar form is produced by a rearrangement of the fine structural components and an increase in their mass. PMID:14326121
Measurement of the fine-structure constant as a test of the Standard Model
NASA Astrophysics Data System (ADS)
Parker, Richard H.; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger
2018-04-01
Measurements of the fine-structure constant α require methods from across subfields and are thus powerful tests of the consistency of theory and experiment in physics. Using the recoil frequency of cesium-133 atoms in a matter-wave interferometer, we recorded the most accurate measurement of the fine-structure constant to date: α = 1/137.035999046(27) at 2.0 × 10‑10 accuracy. Using multiphoton interactions (Bragg diffraction and Bloch oscillations), we demonstrate the largest phase (12 million radians) of any Ramsey-Bordé interferometer and control systematic effects at a level of 0.12 part per billion. Comparison with Penning trap measurements of the electron gyromagnetic anomaly ge ‑ 2 via the Standard Model of particle physics is now limited by the uncertainty in ge ‑ 2; a 2.5σ tension rejects dark photons as the reason for the unexplained part of the muon’s magnetic moment at a 99% confidence level. Implications for dark-sector candidates and electron substructure may be a sign of physics beyond the Standard Model that warrants further investigation.
Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo
2012-01-01
Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton–exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72±0.05. PMID:22314357
Kulkarni, H R; Kamal, M M; Arjune, D G
1999-12-01
The scoring system developed by Mair et al. (Acta Cytol 1989;33:809-813) is frequently used to grade the quality of cytology smears. Using a one-factor analytic structural equations model, we demonstrate that the errors in measurement of the parameters used in the Mair scoring system are highly and significantly correlated. We recommend the use of either a multiplicative scoring system, using linear scores, or an additive scoring system, using exponential scores, to correct for the correlated errors. We suggest that the 0, 1, and 2 points used in the Mair scoring system be replaced by 1, 2, and 4, respectively. Using data on fine-needle biopsies of 200 thyroid lesions by both fine-needle aspiration (FNA) and fine-needle capillary sampling (FNC), we demonstrate that our modification of the Mair scoring system is more sensitive and more consistent with the structural equations model. Therefore, we recommend that the modified Mair scoring system be used for classifying the diagnostic adequacy of cytology smears. Diagn. Cytopathol. 1999;21:387-393. Copyright 1999 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Lerch, B. A.
1982-01-01
Longitudinal specimens of Waspaloy containing either coarse grains with small gamma or fine grains with large gamma were tested in air at a frequency of 0.33 Hz or 0.50 Hz. The coarse grained structures exhibited planar slip on (III) planes and precipitate shearing at all temperatures. Cracks initiated by a Stage 1 mechanism and propagated by a striation forming mechanism. At 700 C and 800 C, cleavage and intergranular cracking were observed. Testing at 500 C, 700 C, and 800 C caused precipitation of grain boundary carbides. At 700 C, carbides precipitated on slip bands. The fine grained structures exhibited planar slip on (111) planes. Dislocations looped the large gamma precipitates. This structure led to stress saturation and propagation was observed. Increasing temperatures resulted in increased specimen oxidation for both heat treatments. Slip band and grain boundary oxidation were observed. At 800 C, oxidized grain boundaries were cracked by intersecting slip bands which resulted in intergranular failure. The fine specimens had crack initiation later in the fatigue life, but with more rapid propagation crack propagation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bambi, Cosimo, E-mail: bambi@fudan.edu.cn
2014-03-01
In extensions of general relativity and in theories aiming at unifying gravity with the forces of the Standard Model, the value of the ''fundamental constants'' is often determined by the vacuum expectation value of new fields, which may thus change in different backgrounds. Variations of fundamental constants with respect to the values measured today in laboratories on Earth are expected to be more evident on cosmological timescales and/or in strong gravitational fields. In this paper, I show that the analysis of the Kα iron line observed in the X-ray spectrum of black holes can potentially be used to probe themore » fine structure constant α in gravitational potentials relative to Earth of Δφ ≈ 0.1. At present, systematic effects not fully under control prevent to get robust and stringent bounds on possible variations of the value of α with this technique, but the fact that current data can be fitted with models based on standard physics already rules out variations of the fine structure constant larger than some percent.« less
QED Based Calculation of the Fine Structure Constant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lestone, John Paul
2016-10-13
Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a reduced wavelength of λ, are assumed to interact with isolated electrons with a cross section of πλ 2. This interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and interacting with other electrons. Thismore » exchange of virtual photons between particles is assumed to generate and define the strength of electromagnetism. With the inclusion of near-field effects the model presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to understanding the numerical value of the dimensionless fine structure constant.« less
NASA Astrophysics Data System (ADS)
Kaneda, K.; Misawa, H.; Iwai, K.; Masuda, S.; Tsuchiya, F.; Katoh, Y.; Obara, T.
2018-03-01
Various magnetohydrodynamic (MHD) waves have recently been detected in the solar corona and investigated intensively in the context of coronal heating and coronal seismology. In this Letter, we report the first detection of short-period propagating fast sausage mode waves in a metric radio spectral fine structure observed with the Assembly of Metric-band Aperture Telescope and Real-time Analysis System. Analysis of Zebra patterns (ZPs) in a type-IV burst revealed a quasi-periodic modulation in the frequency separation between the adjacent stripes of the ZPs (Δf ). The observed quasi-periodic modulation had a period of 1–2 s and exhibited a characteristic negative frequency drift with a rate of 3–8 MHz s‑1. Based on the double plasma resonance model, the most accepted generation model of ZPs, the observed quasi-periodic modulation of the ZP can be interpreted in terms of fast sausage mode waves propagating upward at phase speeds of 3000–8000 km s‑1. These results provide us with new insights for probing the fine structure of coronal loops.
Rouillé, J; Bonny, J-M; Della Valle, G; Devaux, M F; Renou, J P
2005-05-18
Fermentation of dough made from standard flour for French breadmaking was followed by nuclear magnetic resonance imaging at 9.4 T. The growth of bubbles (size > 117 microm) was observed for dough density between 0.8 and 0.22 g cm(-3). Cellular structure was assessed by digital image analysis, leading to the definition of fineness and rate of bubble growth. Influence of composition was studied through fractionation by extraction of soluble fractions (6% db), by defatting (< 1% db) and by puroindolines (Pin) addition (< or = 0.1%). Addition of the soluble fraction increased the dough specific volume and bubble growth rate but decreased fineness, whereas defatting and Pin addition only increased fineness. The role of molecular components of each fraction could be related to dough elongational properties. A final comparison with baking results confirmed that the crumb cellular structure was largely defined after fermentation.
Nano Polymeric Carrier Fabrication Technologies for Advanced Antitumor Therapy
Li, Wei; Zhao, Mengxin; Ke, Changhong; Zhang, Ge; Zhang, Li; Li, Huafei; Zhang, Fulei; Sun, Yun; Dai, Jianxin; Wang, Hao; Guo, Yajun
2013-01-01
Comparing with the traditional therapeutic methods, newly developed cancer therapy based on the nanoparticulates attracted extensively interest due to its unique advantages. However, there are still some drawbacks such as the unfavorable in vivo performance for nanomedicine and undesirable tumor escape from the immunotherapy. While as we know that the in vivo performance strongly depended on the nanocarrier structural properties, thus, the big gap between in vitro and in vivo can be overcome by nanocarrier's structural tailoring by fine chemical design and microstructural tuning. In addition, this fine nanocarrier's engineering can also provide practical solution to solve the problems in traditional cancer immunotherapy. In this paper, we review the latest development in nanomedicine, cancer therapy, and nanoimmunotherapy. We then give an explanation why fine nanocanrrie's engineering with special focus on the unique pathology of tumor microenvironments and properties of immunocells can obviously promote the in vivo performance and improve the therapeutic index of nanoimmunotherapy. PMID:24369011
Nano polymeric carrier fabrication technologies for advanced antitumor therapy.
Li, Wei; Zhao, Mengxin; Ke, Changhong; Zhang, Ge; Zhang, Li; Li, Huafei; Zhang, Fulei; Sun, Yun; Dai, Jianxin; Wang, Hao; Guo, Yajun
2013-01-01
Comparing with the traditional therapeutic methods, newly developed cancer therapy based on the nanoparticulates attracted extensively interest due to its unique advantages. However, there are still some drawbacks such as the unfavorable in vivo performance for nanomedicine and undesirable tumor escape from the immunotherapy. While as we know that the in vivo performance strongly depended on the nanocarrier structural properties, thus, the big gap between in vitro and in vivo can be overcome by nanocarrier's structural tailoring by fine chemical design and microstructural tuning. In addition, this fine nanocarrier's engineering can also provide practical solution to solve the problems in traditional cancer immunotherapy. In this paper, we review the latest development in nanomedicine, cancer therapy, and nanoimmunotherapy. We then give an explanation why fine nanocanrrie's engineering with special focus on the unique pathology of tumor microenvironments and properties of immunocells can obviously promote the in vivo performance and improve the therapeutic index of nanoimmunotherapy.
Sim, Jongsung; Park, Cheolwoo
2011-11-01
Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members. Copyright © 2011 Elsevier Ltd. All rights reserved.
Huang, Chien-Yu; Tung, Li-Chen; Chou, Yeh-Tai; Chou, Willy; Chen, Kuan-Lin; Hsieh, Ching-Lin
2017-07-27
This study aimed at improving the utility of the fine motor subscale of the comprehensive developmental inventory for infants and toddlers (CDIIT) by developing a computerized adaptive test of fine motor skills. We built an item bank for the computerized adaptive test of fine motor skills using the fine motor subscale of the CDIIT items fitting the Rasch model. We also examined the psychometric properties and efficiency of the computerized adaptive test of fine motor skills with simulated computerized adaptive tests. Data from 1742 children with suspected developmental delays were retrieved. The mean scores of the fine motor subscale of the CDIIT increased along with age groups (mean scores = 1.36-36.97). The computerized adaptive test of fine motor skills contains 31 items meeting the Rasch model's assumptions (infit mean square = 0.57-1.21, outfit mean square = 0.11-1.17). For children of 6-71 months, the computerized adaptive test of fine motor skills had high Rasch person reliability (average reliability >0.90), high concurrent validity (rs = 0.67-0.99), adequate to excellent diagnostic accuracy (area under receiver operating characteristic = 0.71-1.00), and large responsiveness (effect size = 1.05-3.93). The computerized adaptive test of fine motor skills used 48-84% fewer items than the fine motor subscale of the CDIIT. The computerized adaptive test of fine motor skills used fewer items for assessment but was as reliable and valid as the fine motor subscale of the CDIIT. Implications for Rehabilitation We developed a computerized adaptive test based on the comprehensive developmental inventory for infants and toddlers (CDIIT) for assessing fine motor skills. The computerized adaptive test has been shown to be efficient because it uses fewer items than the original measure and automatically presents the results right after the test is completed. The computerized adaptive test is as reliable and valid as the CDIIT.
Fedy, B.; Martin, K.
2011-01-01
It is often assumed (explicitly or implicitly) that animals select habitat features to maximize fitness. However, there is often a mismatch between preferred habitats and indices of individual and population measures of performance. We examined the influence of fine-scale habitat selection on the overall population performance of the White-tailed Ptarmigan (Lagopus leucura), an alpine specialist, in two subdivided populations whose habitat patches are configured differently. The central region of Vancouver Island, Canada, has more continuous and larger habitat patches than the southern region. In 2003 and 2004, using paired logistic regression between used (n = 176) and available (n = 324) sites, we identified food availability, distance to standing water, and predator cover as preferred habitat components . We then quantified variation in population performance in the two regions in terms of sex ratio, age structure (n = 182 adults and yearlings), and reproductive success (n = 98 females) on the basis of 8 years of data (1995-1999, 2002-2004). Region strongly influenced females' breeding success, which, unsuccessful hens included, was consistently higher in the central region (n = 77 females) of the island than in the south (n = 21 females, P = 0.01). The central region also had a much higher proportion of successful hens (87%) than did the south (55%, P < 0.001). In light of our findings, we suggest that population performance is influenced by a combination of fine-scale habitat features and coarse-scale habitat configuration. ?? The Cooper Ornithological Society 2011.
NASA Astrophysics Data System (ADS)
Chappell, N. A.; Jones, T.; Young, P.; Krishnaswamy, J.
2015-12-01
There is increasing awareness that under-sampling may have resulted in the omission of important physicochemical information present in water quality signatures of surface waters - thereby affecting interpretation of biogeochemical processes. For dissolved organic carbon (DOC) and nitrogen this under-sampling can now be avoided using UV-visible spectroscopy measured in-situ and continuously at a fine-resolution e.g. 15 minutes ("real time"). Few methods are available to extract biogeochemical process information directly from such high-frequency data. Jones, Chappell & Tych (2014 Environ Sci Technol: 13289-97) developed one such method using optically-derived DOC data based upon a sophisticated time-series modelling tool. Within this presentation we extend the methodology to quantify the minimum sampling interval required to avoid distortion of model structures and parameters that describe fundamental biogeochemical processes. This shifting of parameters which results from under-sampling is called "aliasing". We demonstrate that storm dynamics at a variety of sites dominate over diurnal and seasonal changes and that these must be characterised by sampling that may be sub-hourly to avoid aliasing. This is considerably shorter than that used by other water quality studies examining aliasing (e.g. Kirchner 2005 Phys Rev: 069902). The modelling approach presented is being developed into a generic tool to calculate the minimum sampling for water quality monitoring in systems driven primarily by hydrology. This is illustrated with fine-resolution, optical data from watersheds in temperate Europe through to the humid tropics.
Fine-Scale Genetic Response to Landscape Change in a Gliding Mammal
Goldingay, Ross L.; Harrisson, Katherine A.; Taylor, Andrea C.; Ball, Tina M.; Sharpe, David J.; Taylor, Brendan D.
2013-01-01
Understanding how populations respond to habitat loss is central to conserving biodiversity. Population genetic approaches enable the identification of the symptoms of population disruption in advance of population collapse. However, the spatio-temporal scales at which population disruption occurs are still too poorly known to effectively conserve biodiversity in the face of human-induced landscape change. We employed microsatellite analysis to examine genetic structure and diversity over small spatial (mostly 1-50 km) and temporal scales (20-50 years) in the squirrel glider (Petaurus norfolcensis), a gliding mammal that is commonly subjected to a loss of habitat connectivity. We identified genetically differentiated local populations over distances as little as 3 km and within 30 years of landscape change. Genetically isolated local populations experienced the loss of genetic diversity, and significantly increased mean relatedness, which suggests increased inbreeding. Where tree cover remained, genetic differentiation was less evident. This pattern was repeated in two landscapes located 750 km apart. These results lend support to other recent studies that suggest the loss of habitat connectivity can produce fine-scale population genetic change in a range of taxa. This gives rise to the prediction that many other vertebrates will experience similar genetic changes. Our results suggest the future collapse of local populations of this gliding mammal is likely unless habitat connectivity is maintained or restored. Landscape management must occur on a fine-scale to avert the erosion of biodiversity. PMID:24386079
Inhibition and Regulation of the Ergothioneine Biosynthetic Methyltransferase EgtD.
Misson, Laëtitia; Burn, Reto; Vit, Allegra; Hildesheim, Julia; Beliaeva, Mariia A; Blankenfeldt, Wulf; Seebeck, Florian P
2018-05-18
Ergothioneine is an emerging factor in cellular redox homeostasis in bacteria, fungi, plants, and animals. Reports that ergothioneine biosynthesis may be important for the pathogenicity of bacteria and fungi raise the question as to how this pathway is regulated and whether the corresponding enzymes may be therapeutic targets. The first step in ergothioneine biosynthesis is catalyzed by the methyltransferase EgtD that converts histidine into N-α-trimethylhistidine. This report examines the kinetic, thermodynamic and structural basis for substrate, product, and inhibitor binding by EgtD from Mycobacterium smegmatis. This study reveals an unprecedented substrate binding mechanism and a fine-tuned affinity landscape as determinants for product specificity and product inhibition. Both properties are evolved features that optimize the function of EgtD in the context of cellular ergothioneine production. On the basis of these findings, we developed a series of simple histidine derivatives that inhibit methyltransferase activity at low micromolar concentrations. Crystal structures of inhibited complexes validate this structure- and mechanism-based design strategy.
Stevens, Joanna S; Gainar, Adrian; Suljoti, Edlira; Xiao, Jie; Golnak, Ronny; Aziz, Emad F; Schroeder, Sven L M
2015-05-04
Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO-LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute-solvent interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stevens, Joanna S.; Gainar, Adrian; Suljoti, Edlira; ...
2015-03-18
Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO–LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs andmore » σ* shape resonances in the NEXAFS spectra. Finally, this provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute–solvent interactions.« less
NASA Astrophysics Data System (ADS)
Logu, T.; Soundarrajan, P.; Sankarasubramanian, K.; Sethuraman, K.
2018-04-01
In this work, a high crystalline and mesoporous nanostructured cadmium sulfide (CdS) thin film was successfully grown on the FTO substrates using facile Electrospray Aerosol Deposition (ESAD) technique. The structural, optical, morphological and electrical properties of CdS thin film have been systematically examined. CdS thin film exhibits the hexagonal wurtzite crystal structure with polycrystalline nature. The optical band gap energy of the prepared film was estimated from the Tauc plot and is 2.43 eV. The SEM and AFM images show that the well-interconnected CdS nanoparticles gives mesoporous like morphology. The fine aerosol generated from the ESAD process induces the alteration in the surface morphological structure of deposited CdS film that consequences in enhanced electrical and photo-physical properties. The photoconductivity of the sample has been studied which demonstrates significant photo current. The present study predicts that mesoporous nanostructured CdS thin film would be given a special interest for optoelectronic applications.
Divergent Synthesis of Heparan Sulfate Oligosaccharides
2015-01-01
Heparan sulfates are implicated in a wide range of biological processes. A major challenge in deciphering their structure and activity relationship is the synthetic difficulties to access diverse heparan sulfate oligosaccharides with well-defined sulfation patterns. In order to expedite the synthesis, a divergent synthetic strategy was developed. By integrating chemical synthesis and two types of O-sulfo transferases, seven different hexasaccharides were obtained from a single hexasaccharide precursor. This approach combined the flexibility of chemical synthesis with the selectivity of enzyme-catalyzed sulfations, thus simplifying the overall synthetic operations. In an attempt to establish structure activity relationships of heparan sulfate binding with its receptor, the synthesized oligosaccharides were incorporated onto a glycan microarray, and their bindings with a growth factor FGF-2 were examined. The unique combination of chemical and enzymatic approaches expanded the capability of oligosaccharide synthesis. In addition, the well-defined heparan sulfate structures helped shine light on the fine substrate specificities of biosynthetic enzymes and confirm the potential sequence of enzymatic reactions in biosynthesis. PMID:26574650
The effect of fine motor skills on handwriting legibility in preschool age children
Seo, Sang-Min
2018-01-01
[Purpose] The purpose of this study was to examine the effect that fine motor skills have on handwriting legibility in children of preschool age. [Subjects and Methods] The subjects of this study were 52 children of normal growth and development. In order to ascertain handwriting legibility, a Korean alphabet writing assessment was used; to measure fine motor skills, fine motor precision and manual dexterity, sub-items of BOT-2 were measured. Furthermore, in order to measure in-hand manipulation skills, a Functional Dexterity Test was conducted. [Results] The results of the study showed a high level of correlation between fine motor skills and handwriting legibility. The study revealed that the accuracy of hand and in-hand manipulation skills is factors that have an effect on handwriting legibility. [Conclusion] Through the current research, occupational therapists can provide activities that aid the development of fine motor precision and in-hand manipulation skills for children during the instruction and treatment of handwriting to preschool age children, which helps to conduct better legibility in their handwriting. PMID:29545705
The effect of fine motor skills on handwriting legibility in preschool age children.
Seo, Sang-Min
2018-02-01
[Purpose] The purpose of this study was to examine the effect that fine motor skills have on handwriting legibility in children of preschool age. [Subjects and Methods] The subjects of this study were 52 children of normal growth and development. In order to ascertain handwriting legibility, a Korean alphabet writing assessment was used; to measure fine motor skills, fine motor precision and manual dexterity, sub-items of BOT-2 were measured. Furthermore, in order to measure in-hand manipulation skills, a Functional Dexterity Test was conducted. [Results] The results of the study showed a high level of correlation between fine motor skills and handwriting legibility. The study revealed that the accuracy of hand and in-hand manipulation skills is factors that have an effect on handwriting legibility. [Conclusion] Through the current research, occupational therapists can provide activities that aid the development of fine motor precision and in-hand manipulation skills for children during the instruction and treatment of handwriting to preschool age children, which helps to conduct better legibility in their handwriting.
Imaging of Fine Shallow Structure Beneath the Longmenshan Fault Zone from Ambient Noise Tomography
NASA Astrophysics Data System (ADS)
Zhao, P.; Campillo, M.; Chen, J.; Liu, Q.
2016-12-01
Short period seismic ambient noise group velocity dispersion curve, obtained from cross correlation of vertical component of 57 stations around the Longmenshan fault zone deployed after the Wenchuan earthquake and continuously observed for 1 year, is used to inverse the S wave velocity structure of the top 25 km of the central to northern part of Longmenshan fault zone. A iterative correction method based on 3-D simulation is proposed to reduce the influence of elevation. After 7 times of correction, a fine shllow S-wave velocity structure comes out. The results show that (1) Velocity structure above 10 km keeps good consistency with the surface fault system around Longmenshan, and controls the deep extension features of most major faults. Below the depth of 15 km, the velocity structure presents cross tectonic frame work along both Longmenshan and Minshan. The complex structure may have affected the rupture process of the Wenchuan earthquake. (2) The depth velocity structure profiles give good constraint for the deep geometry of main faults. The characteristics of the high angle, listric, reverse structure of the Longmenshan faults is further confirmed by our results.(3) At southern part of the study area, low-velocity structure is found at about 20km depth beneath the Pengguan massif, which is related to the low velocity layer in the middle crust of Songpan-Ganzi block. This may be an evidence for the existence of brittle-ductile transition zone in southern part of the rupture zone of the Wenchuan earthquake at the depth around 22km. Our results show the great potential of short period ambient noise tomography with data from densepassive seismic array in the study of fine velocity structure and fault zone imaging.
Excitation energies, oscillator strengths and lifetimes in Mg-like vanadium
NASA Astrophysics Data System (ADS)
Gupta, G. P.; Msezane, A. Z.
2013-08-01
Excitation energies from the ground state for 86 fine-structure levels as well as oscillator strengths and radiative decay rates for all fine-structure transitions among the levels of the terms (1s22s22p6)3s2(1S), 3s3p(1,3Po), 3s3d(1,3D), 3s4s(1,3S), 3s4p(1,3Po), 3s4d(1,3D), 3s4f(1,3Fo), 3p2(1S, 3P, 1D), 3p3d(1,3Po, 1,3Do, 1,3Fo), 3p4s(1,3Po), 3p4p(1,3S, 1,3P, 1,3D), 3p4d(1,3Po, 1,3Do, 1,3Fo), 3p4f(1,3D, 1,3F, 1,3G) and 3d2(1S, 3P, 1D,3F,1G) of V XII are calculated using extensive configuration-interaction wave functions obtained with the configuration-interaction version 3 computer code of Hibbert. The important relativistic effects in intermediate coupling are included through the Breit-Pauli approximation. In order to keep our calculated energy splittings as close as possible to the corresponding experimental values, we have made small adjustments to the diagonal elements of the Hamiltonian matrices. The mixing among several fine-structure levels is found to be very strong. Our fine-tuned excitation energies, including their ordering, are in excellent agreement (better than 0.25%) with the available experimental results. From our calculated radiative decay rates, we have also calculated the radiative lifetimes of fine-structure levels. Generally, our calculated data for the excitation energies and radiative decay rates are found to agree reasonably well with other available calculations. However, significant differences between our calculated lifetimes and those from the calculation of Froese Fischer et al (2006 At. Data Nucl. Data Tables 92 607) for a few fine-structure levels, mainly those belonging to the 3p4d configuration, are noted and discussed. Also, our calculated lifetime for the longer-lived level 3s3p(3P1) is found to be in excellent agreement with the corresponding value of Curtis (1991 Phys. Scr. 43 137). ) for all 1108 transitions in V XII are available with the first author (
Understanding the structure of Exmoor's peatland ecosystems using laser-scanning technologies
NASA Astrophysics Data System (ADS)
Luscombe, D. J.; Anderson, K.; Wetherelt, A.; Grand-Clement, E.; Le-Feuvre, N.; Smith, D.; Brazier, R. E.
2012-04-01
Upland blanket peatlands in the UK are of high conservation value and in an intact state, provide important landscape services, such as carbon sequestration and flood attenuation. The drainage of many such wetlands for agricultural reclamation has resulted in changes to upland blanket mire topography, ecology, hydrological processes and carbon fluxes. There is a need for spatially explicit monitoring approaches at peatland sites in the UK as although there has been a national effort to restore drained peat uplands, baseline and post restoration monitoring of changes to ecosystem structure and function is largely absent. Climate change policy and the emerging carbon markets also necessitate the need for enhanced system understanding to inform carbon targets and understand the impacts of restoration. Exmoor is the focus of this research because many areas of upland peat have, in the past, been extensively drained through government "moorland reclamation" programs. A large restoration project funded by South West Water is currently underway in association with Exmoor National Park, The Environment Agency and Natural England. Exmoor also provides an analogue for other westerly peatlands in the British Isles in terms of its climate, ecology and drainage characteristics. Our approach employed airborne LiDAR data gathered by the Environment Agency Geomatics Group coupled with Terrestrial Laser Scanning (TLS) surveys. LiDAR data were processed to produce digital surface models (DSM) of the peatland surface at a 0.5m resolution. These data were further interrogated to separate vegetation structures and geomorphic features such as man-made drainage channels which have damaged the peatland. Over small extents the LiDAR derived DSM surface was then compared to a TLS derived DSM to examine the ability of these models to describe fine scale vegetation and geomorphic structure, which could then be extrapolated to larger spatial extents. Exploration of the data has shown that ecosystem structure can be described at a fine resolution (>10 million measurements, resolution