Science.gov

Sample records for fine-grained duplex tial

  1. Creep of a fine-grained, fully-lamellar, two-phase TiAl alloy at 760{degree}C

    SciTech Connect

    Wang, J.N.; Schwartz, A.J.; Nieh, T.G.; Liu, C.T.; Sikka, V.K.; Clemens, D.

    1995-02-01

    Creep of a TiAl alloy, having a composition of Ti-47Al-2Cr-2Nb (in atom %) and a fine-grained, fully-lamellar structure, was carried out at 760 C and stresses between 69--723 MPa. It was found that, in addition to having good room temperature properties, the alloy exhibits higher creep resistance than other TiAl alloys with a similar composition. Both the creep data and microstructures of the alloy suggest that there exists a change in deformation mechanism from a glide-controlled process at high stresses to a recovery-controlled process at low stresses. Also, microstructural evidence indicates that the rate-controlling recovery mechanism is the climb of dislocation segments pinned by ledges at {gamma}/{alpha}{sub 2} interfacial boundaries.

  2. Dense, finely, grained composite materials

    DOEpatents

    Dunmead, Stephen D.; Holt, Joseph B.; Kingman, Donald D.; Munir, Zuhair A.

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  3. Shock Fabrics in Fine-Grained Micrometeorites

    NASA Astrophysics Data System (ADS)

    Suttle, M. D.; Genge, M. J.; Russell, S. S.

    2016-08-01

    Low grade (S1) shock fabrics are identified in unmelted fine-grained micrometeorites through the presence of aligned dehydration cracks. This study suggests hydrated micrometeorites originate predominantly from rubble-pile asteroids.

  4. Synthesis of fine-grained TATB

    DOEpatents

    Lee, Kien-Yin; Kennedy, James E.

    2003-04-15

    A method for producing fine-grained triamino-trinitrobenzene (TATB) powders having improved detonation-spreading performance and hence increased shock sensitivity when compared with that for ultrafine TATB is described. A single-step, sonochemical amination of trichloro-trinitrobenzene using ammonium hydroxide solution in a sealed vessel yields TATB having approximately 6 .mu.m median particle diameter and increased shock sensitivity.

  5. Communication Optimizations for Fine-Grained UPCApplications

    SciTech Connect

    Chen, Wei-Yu; Iancu, Costin; Yelick, Katherine

    2005-07-08

    Global address space languages like UPC exhibit high performance and portability on a broad class of shared and distributed memory parallel architectures. The most scalable applications use bulk memory copies rather than individual reads and writes to the shared space, but finer-grained sharing can be useful for scenarios such as dynamic load balancing, event signaling, and distributed hash tables. In this paper we present three optimization techniques for global address space programs with fine-grained communication: redundancy elimination, use of split-phase communication, and communication coalescing. Parallel UPC programs are analyzed using static single assignment form and a data flow graph, which are extended to handle the various shared and private pointer types that are available in UPC. The optimizations also take advantage of UPC's relaxed memory consistency model, which reduces the need for cross thread analysis. We demonstrate the effectiveness of the analysis and optimizations using several benchmarks, which were chosen to reflect the kinds of fine-grained, communication-intensive phases that exist in some larger applications. The optimizations show speedups of up to 70 percent on three parallel systems, which represent three different types of cluster network technologies.

  6. Chondrule synthesis using fine-grained precursors

    NASA Astrophysics Data System (ADS)

    Fox, George Ernest

    2002-11-01

    High temperature petrologic experiments have been used in order to reproduce the textures of chondrules, which are rounded to irregularly shaped ferromagnesion silicate objects. Such experiments shed light on the conditions that existed and mechanisms that operated in the early solar nebula, as natural chondrules are believed to have formed there due to some type of heating event. The exact nature of this heating event and the conditions that existed at the time of the formation of the solar nebula are not completely understood. Chondrules, which are believed to be composed of some of the oldest remnants of the solar system, nebular condensates, are the basic components of chondrites. Chondrites comprise ˜82% of all meteorites. Despite years of petrographic examination and experimental petrology, the thermal history of chondrules still remains uncertain. Natural chondrules exhibit a variety of different textures ranging from glassy, barred, porphyritic, microporphyritc to protoporphyritc. Petrologic experiments in a muffle tube furnace under controlled fugacity conditions using type IAB bulk composition analogs have been successful in reproducing each of these textures in the laboratory. Charges are prepared, heated, water quenched, mounted, polished and photographed using back-scattered electron imagery. Subsequent analysis provides numerical data, which can then be used to calculate the nominal grain size of the olivine crystals in each charge. Porphyritic chondrules are the most abundant in nature by far and any model for chondrule formation must be capable of producing porphyritic textures. To reproduce this texture in the laboratory, however, seems to require a very narrow range of maximum temperature and soak time parameters even when using a variety of different types of fine-grained and agglomerated olivine precursor material. Experiments undertaken in this study bring into question some of the basic assumptions of various classical models of chondrule

  7. Method of making fine-grained triaminotrinitrobenzene

    DOEpatents

    Benziger, T.M.

    1983-07-26

    A method is given for forming a fine-grained species of the insensitive high explosive sym-triaminotrinitrobenzene (TATB) without grinding. In accordance with the method, 1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB) is aminated by reaction with gaseous ammonia in an emulsion of toluene in water. The ratio of water to toluene in the emulsion is selected so that toluene is the dispersed phase in the emulsion. The size of the dispersed TCTNB-containing toluene droplets determines the particle size of the resulting TATB. The emulsion is preferably formed with an emulsifier such as ammonium oleate, which may be generated in situ from oleic acid, and stabilized with a protective colloid such as polyvinyl alcohol.

  8. Method of making fine-grained triaminotrinitrobenzene

    DOEpatents

    Benziger, Theodore M.

    1984-01-01

    A method of forming a fine-grained species of the insensitive high explosive sym-triaminotrinitrobenzene (TATB) without grinding. In accordance with the method, 1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB) is aminated by reaction with gaseous ammonia in an emulsion of toluene in water. The ratio of water to toluene in the emulsion is selected so that toluene is the dispersed phase in the emulsion. The size of the dispersed TCTNB-containing toluene droplets determines the particle size of the resulting TATB. The emulsion is preferably formed with an emulsifier such as ammonium oleate, which may be generated in situ from oleic acid, and stabilized with a protective colloid such as polyvinyl alcohol.

  9. The fine grained detector readout electronics

    NASA Astrophysics Data System (ADS)

    Retière, F.; T2K/FGD Collaboration

    2010-11-01

    The Fine Grained Detector (FGD) readout electronics was designed to record a snapshot of the detector activity before, during and after the neutrino beam spill produced by the J-PARC accelerator complex in Tokai, Japan. The FGD is a key element of T2K near detector currently being constructed. It will act as an active target detecting charged particles produced within its scintillator bars. The original feature of the FGD electronics is to readout Multi-Pixel Photon Counters by recording waveforms using Switch Capacitor Array chips (AFTER ASIC) designed for T2K Time Projection Chamber. In these proceedings, we describe the architecture of the FGD electronics. Beam results show that the physics requirements are met or exceeded. The relatively slow sampling frequency of the AFTER ASIC does not impair the timing resolution significantly. In addition, the very good efficiency of the system for detecting Michel electrons produced by pions or muons decay has been demonstrated.

  10. A generic fine-grained parallel C

    NASA Technical Reports Server (NTRS)

    Hamet, L.; Dorband, John E.

    1988-01-01

    With the present availability of parallel processors of vastly different architectures, there is a need for a common language interface to multiple types of machines. The parallel C compiler, currently under development, is intended to be such a language. This language is based on the belief that an algorithm designed around fine-grained parallelism can be mapped relatively easily to different parallel architectures, since a large percentage of the parallelism has been identified. The compiler generates a FORTH-like machine-independent intermediate code. A machine-dependent translator will reside on each machine to generate the appropriate executable code, taking advantage of the particular architectures. The goal of this project is to allow a user to run the same program on such machines as the Massively Parallel Processor, the CRAY, the Connection Machine, and the CYBER 205 as well as serial machines such as VAXes, Macintoshes and Sun workstations.

  11. Fine-grained representation learning in convolutional autoencoders

    NASA Astrophysics Data System (ADS)

    Luo, Chang; Wang, Jie

    2016-03-01

    Convolutional autoencoders (CAEs) have been widely used as unsupervised feature extractors for high-resolution images. As a key component in CAEs, pooling is a biologically inspired operation to achieve scale and shift invariances, and the pooled representation directly affects the CAEs' performance. Fine-grained pooling, which uses small and dense pooling regions, encodes fine-grained visual cues and enhances local characteristics. However, it tends to be sensitive to spatial rearrangements. In most previous works, pooled features were obtained by empirically modulating parameters in CAEs. We see the CAE as a whole and propose a fine-grained representation learning law to extract better fine-grained features. This representation learning law suggests two directions for improvement. First, we probabilistically evaluate the discrimination-invariance tradeoff with fine-grained granularity in the pooled feature maps, and suggest the proper filter scale in the convolutional layer and appropriate whitening parameters in preprocessing step. Second, pooling approaches are combined with the sparsity degree in pooling regions, and we propose the preferable pooling approach. Experimental results on two independent benchmark datasets demonstrate that our representation learning law could guide CAEs to extract better fine-grained features and performs better in multiclass classification task. This paper also provides guidance for selecting appropriate parameters to obtain better fine-grained representation in other convolutional neural networks.

  12. Process for preparing fine grain silicon carbide powder

    DOEpatents

    Wei, G.C.

    Method of producing fine-grain silicon carbide powder comprises combining methyltrimethoxysilane with a solution of phenolic resin, acetone and water or sugar and water, gelling the resulting mixture, and then drying and heating the obtained gel.

  13. Fine-grained sediment dispersal along the California coast

    USGS Publications Warehouse

    Warrick, Jonathan A.; Storlazzi, Curt D.

    2013-01-01

    Fine-grained sediment (silt and clay) enters coastal waters from rivers, eroding coastal bluffs, resuspension of seabed sediment, and human activities such as dredging and beach nourishment. The amount of sediment in coastal waters is an important factor in ocean ecosystem health, but little information exists on both the natural and human-driven magnitudes of fine-grained sediment delivery to the coastal zone, its residence time there, and its transport out of the system—information upon which to base environmental assessments. To help fill these information gaps, the U.S. Geological Survey has partnered with Federal, State, and local agencies to monitor fine-grained sediment dispersal patterns and fate in the coastal regions of California. Results of these studies suggest that the waves and currents of many of the nearshore coastal settings of California are adequately energetic to transport fine-grained sediment quickly through coastal systems. These findings will help with the management and regulation of fine-grained sediment along the U.S. west coast.

  14. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    NASA Astrophysics Data System (ADS)

    Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.

    2014-08-01

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R&D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.

  15. Phase stability of fine-grained (Mg,Y)-PSZ

    SciTech Connect

    Meschke, F.; Claussen, N.; Portu, G. De; Roedel, J.

    1995-07-01

    A fine-grained zirconia, which has been costabilized with yttria magnesia, has been prepared. Its stability during subeutectoid annealing at 1,100 C, and its hydrothermal stability during hydrothermal treatment at 180 C, have been determined and they are compared to those of Y-TZP and Mg-PSZ materials.

  16. Neutrino Induced Coherent ρ Production in a Fine Grained Tracker

    NASA Astrophysics Data System (ADS)

    Jiang, Libo; Kullenberg, Christpher; Tian, Xinchun; Mishra, Sanjib; LBNE Collaboration

    2015-04-01

    We present simulation of neutrino induced coherent ρ-meson production in charged and neutral current interactions. Sensitivity studies of this process is presented in a fine grain tracker, a near detector option for LBNE. Measurements of coherent ρ0 and ρ+ production in NOMAD are reported.

  17. Resonance interaction in LBNE fine-grained-tracker near detector

    SciTech Connect

    Duyang, Hongyue; Tian, Xinchun; Mishra, Sanjib R.

    2015-10-15

    This talk is devoted to resonance interaction (RES) in the proposed fine-grained tracker detector (FGT) for LBNE experiment. We use fast MC to study the sensitivity of FGT to RES, and use this measurement as a handle to constrain nuclear effects. Similar analysis is performed on NOMAD data for validation and better understanding. Preliminary RES measurement result using NOMAD data will be reported.

  18. Process for preparing fine-grain metal carbide powder

    DOEpatents

    Kennedy, C.R.; Jeffers, F.P.

    Fine-grain metal carbide powder suitable for use in the fabrication of heat resistant products is prepared by coating bituminous pitch on SiO/sub 2/ or Ta/sub 2/O/sub 5/ particles, heating the coated particles to convert the bituminous pitch to coke, and then heating the particles to a higher temperature to convert the particles to a carbide by reaction of said coke therewith.

  19. Resonance interaction in LBNE fine-grained-tracker near detector

    NASA Astrophysics Data System (ADS)

    Duyang, Hongyue; Tian, Xinchun; Mishra, Sanjib R.

    2015-10-01

    This talk is devoted to resonance interaction (RES) in the proposed fine-grained tracker detector (FGT) for LBNE experiment. We use fast MC to study the sensitivity of FGT to RES, and use this measurement as a handle to constrain nuclear effects. Similar analysis is performed on NOMAD data for validation and better understanding. Preliminary RES measurement result using NOMAD data will be reported.

  20. Mid frequency shallow water fine-grained sediment attenuation measurements.

    PubMed

    Holland, Charles W; Dosso, Stan E

    2013-07-01

    Attenuation is perhaps the most difficult sediment acoustic property to measure, but arguably one of the most important for predicting passive and active sonar performance. Measurement techniques can be separated into "direct" measurements (e.g., via sediment probes, sediment cores, and laboratory studies on "ideal" sediments) which are typically at high frequencies, O(10(4)-10(5)) Hz, and "indirect" measurements where attenuation is inferred from long-range propagation or reflection data, generally O(10(2)-10(3)) Hz. A frequency gap in measurements exists in the 600-4000 Hz band and also a general acknowledgement that much of the historical measurements on fine-grained sediments have been biased due to a non-negligible silt and sand component. A shallow water measurement technique using long range reverberation is critically explored. An approximate solution derived using energy flux theory shows that the reverberation is very sensitive to depth-integrated attenuation in a fine-grained sediment layer and separable from most other unknown geoacoustic parameters. Simulation using Bayesian methods confirms the theory. Reverberation measurements across a 10 m fine-grained sediment layer yield an attenuation of 0.009 dB/m/kHz with 95% confidence bounds of 0.006-0.013 dB/m/kHz. This is among the lowest values for sediment attenuation reported in shallow water.

  1. Scintillating optical fibers for fine-grained hodoscopes

    SciTech Connect

    Borenstein, S.R.; Strand, R.C.

    1981-01-01

    Fast detectors with fine spatial resolution will be needed to exploit high event rates at ISABELLE. Scintillating optical fibers for fine grained hodoscopes have been developed by the authors. A commercial manufacturer of optical fibers has drawn and clad PVT scintillator. Detection efficiencies greater than 99% have been achieved for a 1 mm fiber with a PMT over lengths up to 60 cm. Small diameter PMT's and avalanche photodiodes have been tested with the fibers. Further improvements are sought for the fiber and for the APD's sensitivity and coupling efficiency with the fiber.

  2. Fine-Grained Turbidites: Facies, Attributes and Process Implications

    NASA Astrophysics Data System (ADS)

    Stow, Dorrik; Omoniyi, Bayonle

    2016-04-01

    Within turbidite systems, fine-grained sediments are still the poor relation and sport several contrasting facies models linked to process of deposition. These are volumetrically the dominant facies in deepwater and, from a resource perspective, they form important marginal and tight reservoirs, and have great potential for unconventional shale gas, source rocks and seals. They are also significant hosts of metals and rare earth elements. Based on a large number of studies of modern, ancient and subsurface systems, including 1000s of metres of section logging, we define the principal genetic elements of fine-grained deepwater facies, present a new synthesis of facies models and their sedimentary attributes. The principal architectural elements include: non-channelised slope-aprons, channel-fill, channel levee and overbank, turbidite lobes, mass-transport deposits, contourite drifts, basin sheets and drapes. These comprise a variable intercalation of fine-grained facies - thin-bedded and very thin-bedded turbidites, contourites, hemipelagites and pelagites - and associated coarse-grained facies. Characteristic attributes used to discriminate between these different elements are: facies and facies associations; sand-shale ratio, sand and shale geometry and dimensions, sand connectivity; sediment texture and small-scale sedimentary structures; sediment fabric and microfabric; and small-scale vertical sequences of bed thickness. To some extent, we can relate facies and attribute characteristics to different depositional environments. We identify four distinct facies models: (a) silt-laminated mud turbidites, (b) siliciclastic mud turbidites, (c) carbonate mud turbidites, (d) disorganized silty-mud turbidites, and (e) hemiturbidites. Within the grainsize-velocity matrix turbidite plot, these all fall within the region of mean size < 0.063mm, maximum grainsize (one percentile) <0.2mm, and depositional velocity 0.1-0.5 m/s. Silt-laminated turbidites and many mud

  3. Physics sensitivity studies of Fine-Grained Tracker

    SciTech Connect

    Tian, Xinchun; Mishra, Sanjib R.; Petti, Roberto; Hongyue, Duyang

    2015-10-15

    The reference design of the near detector for the LBNE experiment is a high-resolution Fine-Grained Tracker (FGT). We performed sensitivity studies – critical to constraining the systematics in oscillation searches – of measurements of (1) the absolute neutrino flux, (2) neutrino-nucleon quasi-elastic (QE) and (3) resonance (Res) interactions. In QE and Res emphasis is laid in identifying in situ measurables that help constrain nuclear effects such as initial state pair wise correlations and final state interactions.

  4. Ultra fine grained Ti prepared by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Lukáč, F.; Čížek, J.; Knapp, J.; Procházka, I.; Zháňal, P.; Islamgaliev, R. K.

    2016-01-01

    The positron annihilation spectroscopy was employed for characterisation of defects in pure Ti with ultra fine grained (UFG) structure. UFG Ti samples were prepared by two techniques based on severe plastic deformation (SPD): (i) high pressure torsion (HPT) and (ii) equal channel angular pressing (ECAP). Although HPT is the most efficient technique for grain refinement, the size of HPT-deformed specimens is limited. On the other hand, ECAP is less efficient in grain refinement but enables to produce larger samples more suitable for industrial applications. Characterisation of defects by positron annihilation spectroscopy was accompanied by hardness testing in order to monitor the development of mechanical properties of UFG Ti.

  5. Dispersion and precipitation strengthened nanocrystalline and ultra fine grained copper.

    PubMed

    Stobrawa, J P; Rdzawski, Z M; Głuchowski, W J

    2012-12-01

    Dispersion and precipitation strengthened copper alloys is a group of functional and structural materials used where combination of high electrical conductivity with high strength is required. A growing trend to use new copper-based functional materials is observed recently world-wide. Within this group of materials particular attention is drawn to those with ultra fine grain size of a copper matrix. This study was aimed to investigate mechanical properties, electrical conductivity and microstructure in Cu-yttria microcomposite produced by powder metallurgy methods and in CuCr0.6 alloy strips processed by continuous repetitive corrugation and straightening (CRCS). The changes of mechanical properties (HV, ultimate tensile strength, 0.2 yield strength) electrical conductivity as well as microstructure evolution versus true strain were investigated. The microstructure was investigated using optical and electron microscopy (HRTEM and SEM). Possibility of quenching elimination during processing has been also analysed. The Cu-yttria microcomposite produced by powder metallurgy methods and CRCS process of a CuCr0.6 alloys strips effectively reduced the grain size, demonstrating the powder metallurgy and CRCS as a promising new methods for producing nano and ultra fine grained copper matrix.

  6. Occurence characteristics of hydrates in fine-grained sediments

    NASA Astrophysics Data System (ADS)

    Lee, Joo Yong; Ahn, Taewoong; Lee, Jaehyoung; Kim, Sejoon

    2016-04-01

    Hydrate occurrences in sediments are affected by the sediment characteristics in various aspects and scales. The grain-displacing hydrates form in fine-grained sediments since filling pre-existing fractures or inducing frost heaves takes less energy than overcoming capillarity induced inhibition in fine-grained sediments. The geometry of grain-displacing hydrate formed by filling pre-existing hydrates are mostly governed by the geometry of fracture, whereas those formed by heaving mechanisms are governed by in-situ stress conditions and geomechanical properties. The thickness, spacing, dip angle, and number of grain-displacing hydrates have been extracted using X-ray CT images of pressure cores recovered from Ulleug Basin, East Sea, Korea. The thickness of both horizontal and vertical grain-displacing hydrates, and the number of horizontal hydrates decreases with depth (i.e. with the increase of the overburden stress) while the number of vertical hydrates does not decrease with depth, implying that the formation mechanisms of horizontal and vertical hydrates differ while growth mechanisms are similar to each other in different growth directions.

  7. Genetic Effects on Fine-Grained Human Cortical Regionalization.

    PubMed

    Cui, Yue; Liu, Bing; Zhou, Yuan; Fan, Lingzhong; Li, Jin; Zhang, Yun; Wu, Huawang; Hou, Bing; Wang, Chao; Zheng, Fanfan; Qiu, Chengxiang; Rao, Li-Lin; Ning, Yuping; Li, Shu; Jiang, Tianzi

    2016-09-01

    Various brain structural and functional features such as cytoarchitecture, topographic mapping, gyral/sulcal anatomy, and anatomical and functional connectivity have been used in human brain parcellation. However, the fine-grained intrinsic genetic architecture of the cortex remains unknown. In the present study, we parcellated specific regions of the cortex into subregions based on genetic correlations (i.e., shared genetic influences) between the surface area of each pair of cortical locations within the seed region. The genetic correlations were estimated by comparing the correlations of the surface area between monozygotic and dizygotic twins using bivariate twin models. Our genetic subdivisions of diverse brain regions were reproducible across 2 independent datasets and corresponded closely to fine-grained functional specializations. Furthermore, subregional genetic correlation profiles were generally consistent with functional connectivity patterns. Our findings indicate that the magnitude of the genetic covariance in brain anatomy could be used to delineate the boundaries of functional subregions of the brain and may be of value in the next generation human brain atlas.

  8. Primitive Fine-Grained Matrix in the Unequilbrated Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Weisberg, M. K.; Zolensky, M. E.; Kimura, M.; Ebel, D. S.

    2014-01-01

    Enstatite chondrites (EC) have important implications for constraining conditions in the early solar system and for understanding the evolution of the Earth and other inner planets. They are among the most reduced solar system materials as reflected in their mineral compositions and assemblage. They are the only chondrites with oxygen as well as Cr, Ti, Ni and Zn stable isotope compositions similar to the earth and moon and most are completely dry, lacking any evidence of hydrous alteration; the only exception are EC clasts in the Kaidun breccia which have hydrous minerals. Thus, ECs likely formed within the snow line and are good candidates to be building blocks of the inner planets. Our goals are to provide a more detailed characterization the fine-grained matrix in E3 chondrites, understand its origin and relationship to chondrules, decipher the relationship between EH and EL chondrites and compare E3 matrix to matrices in C and O chondrites as well as other fine-grained solar system materials. Is E3 matrix the dust remaining from chondrule formation or a product of parent body processing or both?

  9. Separability conditions based on local fine-grained uncertainty relations

    NASA Astrophysics Data System (ADS)

    Rastegin, Alexey E.

    2016-06-01

    Many protocols of quantum information processing use entangled states. Hence, separability criteria are of great importance. We propose new separability conditions for a bipartite finite-dimensional system. They are derived by using fine-grained uncertainty relations. Fine-grained uncertainty relations can be obtained by consideration of the spectral norms of certain positive matrices. One of possible approaches to separability conditions is connected with upper bounds on the sum of maximal probabilities. Separability conditions are often formulated for measurements that have a special structure. For instance, mutually unbiased bases and mutually unbiased measurements can be utilized for such purposes. Using resolution of the identity for each subsystem of a bipartite system, we construct some resolution of the identity in the product of Hilbert spaces. Separability conditions are then formulated in terms of maximal probabilities for a collection of specific outcomes. The presented conditions are compared with some previous formulations. Our results are exemplified with entangled states of a two-qutrit system.

  10. Congenital amusia: a disorder of fine-grained pitch discrimination.

    PubMed

    Peretz, Isabelle; Ayotte, Julie; Zatorre, Robert J; Mehler, Jacques; Ahad, Pierre; Penhune, Virginia B; Jutras, Benoît

    2002-01-17

    We report the first documented case of congenital amusia. This disorder refers to a musical disability that cannot be explained by prior brain lesion, hearing loss, cognitive deficits, socioaffective disturbance, or lack of environmental stimulation. This musical impairment is diagnosed in a middle-aged woman, hereafter referred to as Monica, who lacks most basic musical abilities, including melodic discrimination and recognition, despite normal audiometry and above-average intellectual, memory, and language skills. The results of psychophysical tests show that Monica has severe difficulties with detecting pitch changes. The data suggest that music-processing difficulties may result from problems in fine-grained discrimination of pitch, much in the same way as many language-processing difficulties arise from deficiencies in auditory temporal resolution.

  11. Synthesis and characterization of fine grain diamond films

    NASA Technical Reports Server (NTRS)

    Wu, Richard L. C.; Rai, A. K.; Garscadden, Alan; Kee, Patrick; Desai, Hemant D.; Miyoshi, Kazuhisa

    1992-01-01

    A fine grain diamond film has been developed by microwave plasma assisted chemical vapor deposition. Various analytical techniques, including Rutherford backscattering, proton recoil analysis, Raman spectroscopy, and X-ray diffraction, were utilized to characterize the diamond films. The grain size of the film was determined from bright and dark field electron micrographs, and found to be 200-1000 A. The films exhibited good optical transmission between 2.5 and 10 microns, with a calculated absorption coefficient of 490/cm. The friction coefficients of this film were found to be 0.035 and 0.030 at dry nitrogen and humid air environments, respectively, and the films had low wear rates.

  12. Olivine and Pyroxene Compositions in Fine-Grained Chondritic Materials

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Frank, D.

    2011-01-01

    Our analyses of the Wild-2 samples returned by the Stardust Mission have illuminated critical gaps in our understanding of related astromaterials. There is a very large database of olivine and low-calcium pyroxene compositions for coarse-grained components of chondrites, but a sparse database for anhydrous silicate matrix phases. In an accompanying figure, we present comparisons of Wild-2 olivine with the available chondrite matrix olivine major element data. We thus have begun a long-term project measuring minor as well as major element compositions for chondrite matrix and chondritic IDPs, and Wild 2 grains. Finally, we wish to re-investigate the changes to fine-grained olivine and low-Ca pyroxene composition with progressive thermal metamorphism. We have examined the LL3-4 chondrites which because of the Hayabusa Mission have become very interesting.

  13. Stabilizing soft fine-grained soils with fly ash

    SciTech Connect

    Edil, T.B.; Acosta, H.A.; Benson, C.H.

    2006-03-15

    The objective of this study was to evaluate the effectiveness of self-cementing fly ashes derived from combustion of subbituminous coal at electric power plants for stabilization of soft fine-grained soils. California bearing ratio (CBR) and resilient modulus (M{sub r}) tests were conducted on mixtures prepared with seven soft fine-grained soils (six inorganic soils and one organic soil) and four fly ashes. The soils were selected to represent a relatively broad range of plasticity, with plasticity indices ranging between 15 and 38. Two of the fly ashes are high quality Class C ashes (per ASTM C 618) that are normally used in Portland cement concrete. The other ashes are off-specification ashes, meaning they do not meet the Class C or Class F criteria in ASTM C 618. Tests were conducted on soils and soil-fly ash mixtures prepared at optimum water content (a standardized condition), 7% wet of optimum water content (representative of the typical in situ condition in Wisconsin), and 9-18% wet of optimum water content (representative of a very wet in situ condition). Addition of fly ash resulted in appreciable increases in the CBR and M{sub r} of the inorganic soils. For water contents 7% wet of optimum, CBRs of the soils alone ranged between 1 and 5. Addition of 10% fly ash resulted in CBRs ranging between 8 and 17, and 18% fly ash resulted in CBRs between 15 and 31. Similarly, M{sub r} of the soil alone ranged between 3 and 15 MPa at 7% wet of optimum, whereas addition of 10% fly ash resulted in M{sub r} between 12 and 60 MPa and 18% fly ash resulted in M{sub r} between 51 and 106 MPa. In contrast, except for one fly ash, addition of fly ash generally had little effect on CBR or M{sub r} of the organic soil.

  14. Comparing Wild 2 Fine-Grained Material to Matrix of Primitive Meteorites

    NASA Astrophysics Data System (ADS)

    Stodolna, J.; Jacob, D.; Leroux, H.

    2011-03-01

    We report a TEM examination of the fine-grained material from track 80. It compares well with main characteristics of the matrix of primitive chondrites. This fine-grained Wild 2 material could constitute the very primitive part expected of the comet.

  15. Electro-Osmotic Remediation of Fine-Grained Sediments

    SciTech Connect

    Cherepy, N.J.; McNab, W.W.; Wildenschild, D.; Ruiz, R.; Elsholz, A.

    1999-11-22

    The coupled-flow phenomenon, electro-osmosis, whereby water flow results from an applied electrical potential gradient, is being used at Lawrence Livermore National Laboratory to induce water flow through deep (25-40 meters below surface) fine-grained sediments. The scoping work described here lays the groundwork for implementation of this technology to remediate solvent-contaminated clayey zones at the LLNL site. The electro-osmotic conductivity (k{sub e}) measured in-situ between two 37 m deep wells, 3 m apart of 2.3 x 10{sup -9} m{sup 2}/s-V is in good agreement with the value determined from bench-top studies on the core extracted from one of the wells of 0.94 {+-} 0.29 x 10{sup -9} m{sup 2}/s-V. Hydraulic conductivity (k{sub h}) of the same core is measured to be 2.03 {+-} 0.36 x 10{sup -10} m/s. Thus, a voltage gradient of 1 V/cm produces an effective hydraulic conductivity of {approx}1 x 10{sup -7} m/s; an increase in conductivity of nearly three orders of magnitude.

  16. Fine-grained nociceptive maps in primary somatosensory cortex

    PubMed Central

    Mancini, Flavia; Haggard, Patrick; Iannetti, Gian Domenico; Longo, Matthew R.; Sereno, Martin I.

    2012-01-01

    Topographic maps of the receptive surface are a fundamental feature of neural organization in many sensory systems. While touch is finely mapped in the cerebral cortex, it remains controversial how precise any cortical nociceptive map may be. Given that nociceptive innervation density is relatively low on distal skin regions such as the digits, one might conclude that the nociceptive system lacks fine representation of these regions. Indeed, only gross spatial organization of nociceptive maps has been reported so far. However, here we reveal the existence of fine-grained somatotopy for nociceptive inputs to the digits in human primary somatosensory cortex (SI). Using painful nociceptive-selective laser stimuli to the hand, and phase-encoded fMRI analysis methods, we observed somatotopic maps of the digits in contralateral SI. These nociceptive maps were highly aligned with maps of non-painful tactile stimuli, suggesting comparable cortical representations for, and possible interactions between, mechanoreceptive and nociceptive signals. Our findings may also be valuable for future studies tracking the timecourse and the spatial pattern of plastic changes in cortical organization involved in chronic pain. PMID:23197708

  17. Gas generator for fine-grained coal fuels

    SciTech Connect

    Waldhofer, R.

    1981-10-20

    A gas generator is described which uses fine-grained coal and includes a steam boiler, a combustion boiler and a stack leading from the combustion chamber to the steam boiler. The steam boiler is provided with a slanting bottom portion for the discharge of fly ash and slag. The stack from the combustion chamber to the boiler is composed of a gas outlet pipe attached to the combustion chamber and a gas inlet pipe leading to the boiler. The gas outlet and gas inlet pipes are connected by attaching means. The gas inlet pipe has a double wall of which the inner wall with its top extends freely into the slanting bottom portion of the boiler and thus is adapted for axial heat expansion. The outer wall is provided with a heat expansion compensator and is connected with its top end to the said slanting bottom of the boiler and with its bottom end to the connecting means between the gas inlet and gas outlet pipes. The inner wall of the gas inlet pipe may be in the form of a jacket for holding a cooling water.

  18. Fine-Grained Access Control for Electronic Health Record Systems

    NASA Astrophysics Data System (ADS)

    Hue, Pham Thi Bach; Wohlgemuth, Sven; Echizen, Isao; Thuy, Dong Thi Bich; Thuc, Nguyen Dinh

    There needs to be a strategy for securing the privacy of patients when exchanging health records between various entities over the Internet. Despite the fact that health care providers such as Google Health and Microsoft Corp.'s Health Vault comply with the U.S Health Insurance Portability and Accountability Act (HIPAA), the privacy of patients is still at risk. Several encryption schemes and access control mechanisms have been suggested to protect the disclosure of a patient's health record especially from unauthorized entities. However, by implementing these approaches, data owners are not capable of controlling and protecting the disclosure of the individual sensitive attributes of their health records. This raises the need to adopt a secure mechanism to protect personal information against unauthorized disclosure. Therefore, we propose a new Fine-grained Access Control (FGAC) mechanism that is based on subkeys, which would allow a data owner to further control the access to his data at the column-level. We also propose a new mechanism to efficiently reduce the number of keys maintained by a data owner in cases when the users have different access privileges to different columns of the data being shared.

  19. Operating System Support for Fine-Grained Task Migration

    SciTech Connect

    Gioiosa, Roberto; Krishnamoorthy, Sriram

    2012-09-19

    With the end of clock scaling and the limited power budget available (20-30MW), future supercomputers will meet exascale performance primarily through a higher level of parallelism. Current operating (OS) and runtime (RT) systems are designed for the classical SMP model and based on the static and coarse-grained process/thread paradigm. They do not provide the required level of flexibility, especially within a single compute node, to meet the requirements imposed by exascale systems in terms of power/energy efficiency, resilience, managing concurrency and performance portability. The high level of concurrency poses new challenges specific to exascale systems that need to be addressed by novel solutions. In particular, requiring the user to manage billions of concurrent threads could easily result in poor data locality, clogged interconnection networks, unchecked propagation of soft errors, and lack of control over power/energy consumption. Equally important, managing such level of concurrency interferes with the user’s focus on the application and the algorithm. We envision that the computation will be encapsulated into fine-grained tasks that can be isolated and protected from the other tasks running in the system. Whenever a task needs to work on some data that is not stored on the local node, the OS/RT allows the task to be migrated to the node that owns the data. Each task is associated with a contained state (set or architectural registers, stack frame, running node, etc.) that describes the progress of the task and that should be moved together with the task’s code. We believe system support for task migration is a fundamental function that can ease the job of tackling several of the exascale challenges.

  20. Geochemistry of Fine-grained Sediments and Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Sageman, B. B.; Lyons, T. W.

    2003-12-01

    paleosalinity). Authors of a single chapter can hope, at best, to present a cursory glance at the many biogeochemical proxies currently used and under development in sedimentary studies. Our goal, instead, is to focus on a selected suite of tools of particular value in the reconstruction of paleo-environments preserved in fine-grained siliciclastic sedimentary rocks.Fine-grained, mixed siliciclastic-biogenic sedimentary facies - commonly termed hemipelagic (mainly calcareous or siliceous mudrocks containing preserved organic matter (OM)) - are ideal for unraveling the geological past and are thus the focus of this chapter. These strata accumulate in predominantly low-energy basinal environments where the magnitude (and frequency) of lacunae is diminished, resulting in relatively continuous, though generally condensed sequences. Fortunately, condensation tends to benefit geochemical analysis as it helps to amplify some subtle environmental signals. Because hemipelagic facies include contributions from both terrigenous detrital and pelagic biogenic systems, as well as from authigenic components reflecting the burial environment (Figure 1), they are rich archives of geochemical information. In this chapter we present a conceptual model linking the major processes of detrital, biogenic, and authigenic accumulation in fine-grained hemipelagic settings. This model is intended to be a fresh synthesis of decades of prior research on the geochemistry of modern and ancient mudrocks, including our own work.

  1. A unique, (almost) unaltered spinel-rich fine-grained inclusion in Kainsaz

    NASA Technical Reports Server (NTRS)

    Holmberg, B. B.; Hashimoto, A.

    1992-01-01

    A unique, spinel-rich, extremely porous fine-grained inclusion in the Kainsaz (CO3) meteorite is reported. This inclusion is the least altered fine-grained inclusion yet discovered, having escaped almost entirely the secondary alterations experienced by Allende fine-grained inclusions. The inclusion is comprised of loosely packed 5-30 microns spinel grains mantled by thin layers of melilite, anorthite, and diopsidic pyroxene. The inclusion, which has over 30 vol pct void space, is one of the most spinel-rich, most porous fine-grained inclusions seen to date. The mineralogy of the inclusion matches that which has been predicted for a precursor of the altered mineral assemblages of Allende fine-grained inclusions, though a lack of interstitial material in the Kainsaz inclusion reduces the likelihood of a direct genetic relationship between the two (Allende fine-grained inclusions contain abundant interstitial material). Its mineralogical composition confirms that the precursors of other, more altered, fine-grained inclusions were assemblages of refractory minerals exclusively.

  2. I/O Router Placement and Fine-Grained Routing on Titan to Support Spider II

    SciTech Connect

    Ezell, Matthew A; Dillow, David; Oral, H Sarp; Wang, Feiyi; Tiwari, Devesh; Maxwell, Don E; Leverman, Dustin B; Hill, Jason J

    2014-01-01

    The Oak Ridge Leadership Computing Facility (OLCF) introduced the concept of Fine-Grained Routing in 2008 to improve I/O performance between the Jaguar supercomputer and Spider, OLCF s center-wide Lustre file system. Fine-grained routing organizes I/O paths to minimize congestion. Jaguar has since been upgraded to Titan, providing more than a ten-fold improvement in peak performance. To support the center s increased computational capacity and I/O demand, the Spider file system has been replaced with Spider II. Building on the lessons learned from Spider, an improved method for placing LNET routers was developed and implemented for Spider II. The fine-grained routing scripts and configuration have been updated to provide additional optimizations and better match the system setup. This paper presents a brief history of fine-grained routing at OLCF, an introduction to the architectures of Titan and Spider II, methods for placing routers in Titan, and details about the fine-grained routing configuration.

  3. A TEM Investigation of the Fine-Grained Matrix of the Martian Basaltic Breccia NWA 7034

    NASA Technical Reports Server (NTRS)

    Muttik, N.; Keller, L. P.; Agee, C. B.; McCubbin, F. M.; Santos, A. R.; Rahman, Z.

    2014-01-01

    The martian basaltic breccia NWA 7034 is characterized by fine-grained groundmass containing several different types of mineral grains and lithologic clasts. The matrix composition closely resembles Martian crustal rock and soil composition measured by recent rover and orbiter missions. The first results of NWA 7034 suggest that the brecciation of this martian meteorite may have formed due to eruptive volcanic processes; however, impact related brecciation processes have been proposed for paired meteorites NWA 7533 and NWA 7475]. Due to the very fine grain size of matrix, its textural details are difficult to resolve by optical and microprobe observations. In order to examine the potential nature of brecciation, transmission electron microscopy (TEM) studies combined with focused ion-beam technique (FIB) has been undertaken. Here we present the preliminary observations of fine-grained groundmass of NWA 7034 from different matrix areas by describing its textural and mineralogical variations and micro-structural characteristics.

  4. An action-based fine-grained access control mechanism for structured documents and its application.

    PubMed

    Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo

    2014-01-01

    This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical.

  5. An Action-Based Fine-Grained Access Control Mechanism for Structured Documents and Its Application

    PubMed Central

    Su, Mang; Li, Fenghua; Tang, Zhi; Yu, Yinyan; Zhou, Bo

    2014-01-01

    This paper presents an action-based fine-grained access control mechanism for structured documents. Firstly, we define a describing model for structured documents and analyze the application scenarios. The describing model could support the permission management on chapters, pages, sections, words, and pictures of structured documents. Secondly, based on the action-based access control (ABAC) model, we propose a fine-grained control protocol for structured documents by introducing temporal state and environmental state. The protocol covering different stages from document creation, to permission specification and usage control are given by using the Z-notation. Finally, we give the implementation of our mechanism and make the comparisons between the existing methods and our mechanism. The result shows that our mechanism could provide the better solution of fine-grained access control for structured documents in complicated networks. Moreover, it is more flexible and practical. PMID:25136651

  6. Learning Category-Specific Dictionary and Shared Dictionary for Fine-Grained Image Categorization.

    PubMed

    Gao, Shenghua; Tsang, Ivor Wai-Hung; Ma, Yi

    2014-02-01

    This paper targets fine-grained image categorization by learning a category-specific dictionary for each category and a shared dictionary for all the categories. Such category-specific dictionaries encode subtle visual differences among different categories, while the shared dictionary encodes common visual patterns among all the categories. To this end, we impose incoherence constraints among the different dictionaries in the objective of feature coding. In addition, to make the learnt dictionary stable, we also impose the constraint that each dictionary should be self-incoherent. Our proposed dictionary learning formulation not only applies to fine-grained classification, but also improves conventional basic-level object categorization and other tasks such as event recognition. Experimental results on five data sets show that our method can outperform the state-of-the-art fine-grained image categorization frameworks as well as sparse coding based dictionary learning frameworks. All these results demonstrate the effectiveness of our method.

  7. Origin of zoned fine-grained inclusions in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Mcgurie, Anne V.; Hashimoto, Akihiko

    1989-01-01

    The mineral and bulk compositions in the three zones of the fine-grained Ca-Al-rich inclusion in the Allende meteorite are studied. Mineral analyses for the inclusions are presented and the principle mineral composition for the three zones of the inclusions are described. The nature of the alteration and the physical and chemical environment which caused the three-fold zonation are examined. An alteration and origin of zonation for the Allende inclusions are proposed. It is noted that the fine-grained inclusions display alteration processes such as Ca-Fe-silicate condensation and characteristics of the primary inclusion such as different rim type.

  8. Homotypic and Heterotypic Continuity of Fine-Grained Temperament during Infancy, Toddlerhood, and Early Childhood

    ERIC Educational Resources Information Center

    Putnam, Samuel P.; Rothbart, Mary K.; Gartstein, Maria A.

    2008-01-01

    Longitudinal continuity was investigated for fine-grained and factor-level aspects of temperament measured with the Infant Behaviour Questionnaire-Revised (IBQ-R), Early Childhood Behaviour Questionnaire (ECBQ), and Children's Behaviour Questionnaire (CBQ). Considerable homotypic continuity was found. Convergent and discriminant validity of the…

  9. Importance of Pore Size Distribution of Fine-grained Sediments on Gas Hydrate Equilibrium

    NASA Astrophysics Data System (ADS)

    Kwon, T. H.; Kim, H. S.; Cho, G. C.; Park, T. H.

    2015-12-01

    Gas hydrates have been considered as a new source of natural gases. For the gas hydrate production, the gas hydrate reservoir should be depressurized below the equilibrium pressure of gas hydrates. Therefore, it is important to predict the equilibrium of gas hydrates in the reservoir conditions because it can be affected by the pore size of the host sediments due to the capillary effect. In this study, gas hydrates were synthesized in fine-grained sediment samples including a pure silt sample and a natural clayey silt sample cored from a hydrate occurrence region in Ulleung Basin, East Sea, offshore Korea. Pore size distributions of the samples were obtained by the nitrogen adsorption and desorption test and the mercury intrusion porosimetry. The equilibrium curve of gas hydrates in the fine-grained sediments were found to be significantly influenced by the clay fraction and the corresponding small pores (>50 nm in diameter). For the clayey silt sample, the equilibrium pressure was higher by ~1.4 MPa than the bulk equilibrium pressure. In most cases of oceanic gas hydrate reservoirs, sandy layers are found interbedded with fine-grained sediment layers while gas hydrates are intensively accumulated in the sandy layers. Our experiment results reveal the inhibition effect of fine-grained sediments against gas hydrate formation, in which greater driving forces (e.g., higher pressure or lower temperature) are required during natural gas migration. Therefore, gas hydrate distribution in interbedded layers of sandy and fine-grained sediments can be explained by such capillary effect induced by the pore size distribution of host sediments.

  10. Fine-grained pitch processing of music and speech in congenital amusia.

    PubMed

    Tillmann, Barbara; Rusconi, Elena; Traube, Caroline; Butterworth, Brian; Umiltà, Carlo; Peretz, Isabelle

    2011-12-01

    Congenital amusia is a lifelong disorder of music processing that has been ascribed to impaired pitch perception and memory. The present study tested a large group of amusics (n=17) and provided evidence that their pitch deficit affects pitch processing in speech to a lesser extent: Fine-grained pitch discrimination was better in spoken syllables than in acoustically matched tones. Unlike amusics, control participants performed fine-grained pitch discrimination better for musical material than for verbal material. These findings suggest that pitch extraction can be influenced by the nature of the material (music vs speech), and that amusics' pitch deficit is not restricted to musical material, but extends to segmented speech events.

  11. Synthesis of Dense, Fine-Grained YIG Ceramics by Two-Step Sintering

    NASA Astrophysics Data System (ADS)

    Li, X. X.; Zhou, J. J.; Deng, J. X.; Zheng, H.; Zheng, L.; Zheng, P.; Qin, H. B.

    2016-10-01

    A two-step sintering (TSS) process has been used to fabricate yttrium iron garnet (YIG) ceramics with high density and fine grain size. The densification, microstructure, and magnetic properties were investigated. The sample prepared by the TSS process with first-step sintering temperature ( T 1) of 1350°C, second-step sintering temperature ( T 2) of 1300°C, and holding time of 18 h had density above 99% of theoretical and exhibited uniform microstructure with small average grain size (2.4 μm). The saturation magnetization ( M S) of this sample reached 27.4 emu/g. These results indicate that the TSS process can effectively suppress grain-boundary migration while maintaining active grain-boundary diffusion to obtain dense, fine-grained YIG ceramics with appropriate magnetic properties.

  12. Synthesis of Dense, Fine-Grained YIG Ceramics by Two-Step Sintering

    NASA Astrophysics Data System (ADS)

    Li, X. X.; Zhou, J. J.; Deng, J. X.; Zheng, H.; Zheng, L.; Zheng, P.; Qin, H. B.

    2016-06-01

    A two-step sintering (TSS) process has been used to fabricate yttrium iron garnet (YIG) ceramics with high density and fine grain size. The densification, microstructure, and magnetic properties were investigated. The sample prepared by the TSS process with first-step sintering temperature (T 1) of 1350°C, second-step sintering temperature (T 2) of 1300°C, and holding time of 18 h had density above 99% of theoretical and exhibited uniform microstructure with small average grain size (2.4 μm). The saturation magnetization (M S) of this sample reached 27.4 emu/g. These results indicate that the TSS process can effectively suppress grain-boundary migration while maintaining active grain-boundary diffusion to obtain dense, fine-grained YIG ceramics with appropriate magnetic properties.

  13. The dynamics of fine-grain sediment dredged from Santa Cruz Harbor

    USGS Publications Warehouse

    Storlazzi, Curt D.; Conaway, Christopher H.; Presto, M. Katherine; Logan, Joshua B.; Cronin, Katherine; van Ormondt, Maarten; Lescinski, Jamie; Harden, E. Lynne; Lacy, Jessica R.; Tonnon, Pieter K.

    2011-01-01

    In the fall and early winter of 2009, a demonstration project was done at Santa Cruz Harbor, California, to determine if 450 m3/day of predominantly (71 percent) mud-sized sediment could be dredged from the inner portion of the harbor and discharged to the coastal ocean without significant impacts to the beach and inner shelf. During the project, more than 7600 m3 of sediment (~5400 m3 of fine-grain material) was dredged during 17 days and discharged approximately 60 m offshore of the harbor at a depth of 2 m on the inner shelf. The U.S. Geological Survey's Pacific Coastal and Marine Science Center was funded by the U.S. Army Corps of Engineers and the Santa Cruz Port District to do an integrated mapping and process study to investigate the fate of the mud-sized sediment dredged from the inner portion of Santa Cruz Harbor and to determine if any of the fine-grain material settled out on the shoreline and/or inner shelf during the fall and early winter of 2009. This was done by collecting highresolution oceanographic and sediment geochemical measurements along the shoreline and on the continental shelf of northern Monterey Bay to monitor the fine-grain sediment dredged from Santa Cruz Harbor and discharged onto the inner shelf. These in place measurements, in conjunction with beach, water column, and seabed surveys, were used as boundary and calibration information for a three-dimensional numerical circulation and sediment dynamics model to better understand the fate of the fine-grain sediment dredged from Santa Cruz Harbor and the potential consequences of disposing this type of material on the beach and on the northern Monterey Bay continental shelf.

  14. Fine-grained variation in caregivers' /s/ predicts their infants' /s/ category.

    PubMed

    Cristià, Alejandrina

    2011-05-01

    Within the debate on the mechanisms underlying infants' perceptual acquisition, one hypothesis proposes that infants' perception is directly affected by the acoustic implementation of sound categories in the speech they hear. In consonance with this view, the present study shows that individual variation in fine-grained, subphonemic aspects of the acoustic realization of /s/ in caregivers' speech predicts infants' discrimination of this sound from the highly similar /∫/, suggesting that learning based on acoustic cue distributions may indeed drive natural phonological acquisition.

  15. Generation and emplacement of fine-grained ejecta in planetary impacts

    USGS Publications Warehouse

    Ghent, R.R.; Gupta, V.; Campbell, B.A.; Ferguson, S.A.; Brown, J.C.W.; Fergason, R.L.; Carter, L.M.

    2010-01-01

    We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are depleted in rocks 1cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from ???10??m to 10mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete nearside radar map for the Moon, we establish statistically robust scaling relationships between crater radius R and fine-grained ejecta run-out r for all three planets. On the Moon, ???R-0.18 for craters 5-640km in diameter. For Venus, radar-dark haloes are larger than those on the Moon, but scale as ???R-0.49, consistent with ejecta entrainment in Venus' dense atmosphere. On Mars, fine-ejecta haloes are larger than lunar haloes for a given crater size, indicating entrainment of ejecta by the atmosphere or vaporized subsurface volatiles, but scale as R-0.13, similar to the ballistic lunar scaling. Ejecta suspension in vortices generated by passage of the ejecta curtain is predicted to result in ejecta run-out that scales with crater size as R1/2, and the wind speeds so generated may be insufficient to transport particles at the larger end of the calculated range. The observed scaling and morphology of the low-temperature haloes leads us rather to favor winds generated by early-stage vapor plume expansion as the emplacement mechanism for low-temperature halo materials. ?? 2010 Elsevier Inc.

  16. Models of compacted fine-grained soils used as mineral liner for solid waste

    NASA Astrophysics Data System (ADS)

    Sivrikaya, Osman

    2008-02-01

    To prevent the leakage of pollutant liquids into groundwater and sublayers, the compacted fine-grained soils are commonly utilized as mineral liners or a sealing system constructed under municipal solid waste and other containment hazardous materials. This study presents the correlation equations of the compaction parameters required for construction of a mineral liner system. The determination of the characteristic compaction parameters, maximum dry unit weight ( γ dmax) and optimum water content ( w opt) requires considerable time and great effort. In this study, empirical models are described and examined to find which of the index properties correlate well with the compaction characteristics for estimating γ dmax and w opt of fine-grained soils at the standard compactive effort. The compaction data are correlated with different combinations of gravel content ( G), sand content ( S), fine-grained content (FC = clay + silt), plasticity index ( I p), liquid limit ( w L) and plastic limit ( w P) by performing multilinear regression (MLR) analyses. The obtained correlations with statistical parameters are presented and compared with the previous studies. It is found that the maximum dry unit weight and optimum water content have a considerably good correlation with plastic limit in comparison with liquid limit and plasticity index.

  17. Fine-grained linings of leveed channels facilitate runout of granular flows

    NASA Astrophysics Data System (ADS)

    Kokelaar, B. P.; Graham, R. L.; Gray, J. M. N. T.; Vallance, J. W.

    2014-01-01

    Catastrophic dense granular flows, such as occur in rock avalanches, debris flows and pyroclastic flows, move as fully shearing mixtures that have approximately 60 vol.% solids and tend to segregate to form coarse-grained fronts and leveed channels. Levees restrict spreading of unconfined flows and form as coarse particles that become concentrated in the top of the flow are transported to the front and then advect to the sides in the flow head. Channels from which most material has drained away down slope are commonly lined with fine-grained deposit, widely thought to remain from the tail of the waning flow. We show how segregation in experimental dense flows of carborundum or sand (300-425 μm) mixed with spherical fine ballotini (150-250 μm), on rough slopes of 27-29°, produces fine-grained channel linings that are deposited with the levees, into which they grade laterally. Maximum runout distance is attained with mixtures containing 30-40% sand, just sufficient to segregate and form levees that are adequately robust to restrict the spreading attributable to the low-friction fines. Resin impregnation and serial sectioning of deliberately arrested experimental flows shows how fines-lined levees form from the flow head; the flows create their own stable ‘conduit’ entirely from the front, which in a geophysical context can play an important mechanistic role in facilitating runout. The flow self-organization ensures that low-friction fines at the base of the segregated channel flow shear over fine-grained substrate in the channel, thus reducing frictional energy losses. We propose that in pyroclastic flows and debris flows, which have considerable mobility attributable to pore-fluid pressures, such fine-grained flow-contact zones form similarly and not only reduce frictional energy losses but also reduce flow-substrate permeability so as to enhance pore-fluid pressure retention. Thus the granular flow self-organization that produces fine-grained channel linings

  18. Friction and Wear of Ion-Beam-Deposited Diamondlike Carbon on Chemical-Vapor-Deposited, Fine-Grain Diamond

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.

    1996-01-01

    Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.

  19. PRAM C:a new programming environment for fine-grain and coarse-grain parallelism.

    SciTech Connect

    Brown, Jonathan Leighton; Wen, Zhaofang.

    2004-11-01

    In the search for ''good'' parallel programming environments for Sandia's current and future parallel architectures, they revisit a long-standing open question. Can the PRAM parallel algorithms designed by theoretical computer scientists over the last two decades be implemented efficiently? This open question has co-existed with ongoing efforts in the HPC community to develop practical parallel programming models that can simultaneously provide ease of use, expressiveness, performance, and scalability. Unfortunately, no single model has met all these competing requirements. Here they propose a parallel programming environment, PRAM C, to bridge the gap between theory and practice. This is an attempt to provide an affirmative answer to the PRAM question, and to satisfy these competing practical requirements. This environment consists of a new thin runtime layer and an ANSI C extension. The C extension has two control constructs and one additional data type concept, ''shared''. This C extension should enable easy translation from PRAM algorithms to real parallel programs, much like the translation from sequential algorithms to C programs. The thin runtime layer bundles fine-grained communication requests into coarse-grained communication to be served by message-passing. Although the PRAM represents SIMD-style fine-grained parallelism, a stand-alone PRAM C environment can support both fine-grained and coarse-grained parallel programming in either a MIMD or SPMD style, interoperate with existing MPI libraries, and use existing hardware. The PRAM C model can also be integrated easily with existing models. Unlike related efforts proposing innovative hardware with the goal to realize the PRAM, ours can be a pure software solution with the purpose to provide a practical programming environment for existing parallel machines; it also has the potential to perform well on future parallel architectures.

  20. Fabrication of ultra-fine grained aluminium tubes by RTES technique

    SciTech Connect

    Jafarzadeh, H. Abrinia, K.

    2015-04-15

    Recently, repetitive tube expansion and shrinking have been exploited as a means for producing ultra-fine grained and nano-crystalline microstructures for magnesium alloy tubes. This method includes two different half-cycles and was based on pressing a tubular part through an angular channel die with two shear zones. Since the aluminium alloys are the most widely used materials in industries, in this study, repetitive tube expansion and shrinking as a new severe plastic deformation technique was applied to commercially pure aluminium for fabricating ultra-fine grained aluminium tubes for the first time and the ability of this process in significant grain refinement is determined even after single cycle. Transmission electron microscopy and X-ray diffraction were used to evaluate the microstructure of the repetitive tube expansion and shrinking processed materials and the examinations showed ultra-fine grains with the average grain size of 320 nm after one cycle of repetitive tube expansion and shrinking. The yield strength, ultimate tensile strength increased notably by the factor of 2.17 and 1.27 respectively, after one cycle of repetitive tube expansion and shrinking, whereas the elongation to failure as well as the uniform elongation decreased. Furthermore, micro-hardness distribution through the part's section proposed the hardness increasing to ~ 55 HV from the initial value of ~ 28 HV after one cycle of repetitive tube expansion and shrinking. - Highlights: • RTES was introduced for fabricating the UFGed AA1050 tubes for the first time. • Nano-grained AA1050 tube was obtained by RTES process. • Grain size of ~ 320 nm was obtained after two half-cycles of RTES process. • Yield and ultimate strength increased by the factor of 2.17 and 1.27 respectively. • The microhardness increased to ~ 55 HV from the initial value of ~ 28 HV.

  1. Controlling fine-grain non-numeric parallelism on a combinator-based multiprocessor system

    SciTech Connect

    Chu, Pong Ping.

    1989-01-01

    The author has developed a scheme to extend the SASL programming language and its run-time system for fine grain parallel processing. The proposed scheme provides a mechanism that can override the original lazy semantics by augmenting proper eager information. This information is first annotated in SASL programs and then translated to the combinator control tags by a new set of optimization rules. The effectiveness of this scheme has been evaluated through the simulation of a set of symbolic-oriented programs on an idealized shared-memory system. The results show that a considerable amount of parallelism can be extracted from a wide variety of application programs.

  2. Plasma Processed Nanosized-Powders of Refractory Compounds for Obtaining Fine-Grained Advanced Ceramics

    NASA Astrophysics Data System (ADS)

    I, Zalite; J, Grabis; E, Palcevskis; M, Herrmann

    2011-10-01

    One of the ways for the production of ceramic materials with a fine-grained structure is the use of nanopowders. Different methods are used for the production of nanopowders. One of them is the method of plasmachemical synthesis. Different nanopowders of refractory materials can be obtained by this method. The preparation of nanosized powders of nitrides and oxides and their composites by the method of plasmachemical synthesis, the possibilities to receive nanopowders with different particle size and the potential advantages of nanopowders were investigated.

  3. Thermal and microstructural properties of fine-grained material at the Viking Lander 1 site

    NASA Astrophysics Data System (ADS)

    Paton, M. D.; Harri, A.-M.; Savijärvi, H.; Mäkinen, T.; Hagermann, A.; Kemppinen, O.; Johnston, A.

    2016-06-01

    As Viking Lander 1 touched down on Mars one of its footpads fully penetrated a patch of loose fine-grained drift material. The surrounding landing site, as observed by VL-1, was found to exhibit a complex terrain consisting of a crusted surface with an assortment of rocks, large dune-like drifts and smaller patches of drift material. We use a temperature sensor attached to the buried footpad and covered in fine-grained material to determine the thermal properties of drift material at the VL-1 site. The thermal properties are used to investigate the microstructure of the drift material and understand its relevance to surface-atmosphere interactions. We obtained a thermal inertia value of 103 ± 22 tiu. This value is in the upper range of previous thermal inertia estimates of martian dust as measured from orbit and is significantly lower than the regional thermal inertia of the VL-1 site, of around 283 tiu, obtained from orbit. We estimate a thermal inertia of around 263 ± 29 tiu for the duricrust at the VL-1 site. It was noted the patch of fine-grained regolith around the footpad was about 20-30 K warmer compared to similar material beyond the thermal influence of the lander. An effective diameter of 8 ± 5 μm was calculated for the particles in the drift material. This is larger than atmospheric dust and large compared to previous estimates of the drift material particle diameter. We interpret our results as the presence of a range of particle sizes, <8 μm, in the drift material with the thermal properties being controlled by a small amount of large particles (˜8 μm) and its cohesion being controlled by a large amount of smaller particles. The bulk of the particles in the drift material are therefore likely comparable in size to that of atmospheric dust. The possibility of larger particles being locked into a fine-grained material has implications for understanding the mobilisation of wind blown materials on Mars.

  4. Near-Threshold Fatigue Crack Growth Behavior of Fine-Grain Nickel-Based Alloys

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Piascik, Robert S.

    2003-01-01

    Constant-Kmax fatigue crack growth tests were performed on two finegrain nickel-base alloys Inconel 718 (DA) and Ren 95 to determine if these alloys exhibit near-threshold time-dependent crack growth behavior observed for fine-grain aluminum alloys in room-temperature laboratory air. Test results showed that increases in K(sub max) values resulted in increased crack growth rates, but no evidence of time-dependent crack growth was observed for either nickel-base alloy at room temperature.

  5. Process for gasifying fine grained and dust-like solid fuels

    SciTech Connect

    Dutz, K.; Goeke, E.; Preusser, G.

    1980-06-10

    Fine grained fuel such as coal dust is gasified at an elevated pressure by passing the fuel from a supply tank which is at atmospheric pressure by pump means into a pressurized lock basin and therefrom into the gasifier, the fuel during such movement retaining its loose consistency. This can be accomplished for instance by a solid piston pump which is only partially filled with the fuel. Thus, agglomerations are avoided and the fuel is directly conveyed into the gasifier in flowable and fluidizable form without the necessity of being reconverted into a finely divided form.

  6. Mechanism of superplastic flow in a fine-grained ceramic containing some liquid phase

    SciTech Connect

    Wang, J.G.; Raj, R.

    1984-06-01

    Several results pertaining to large deformations at fast strain rates in a fine-grained ceramic material are described. Results for strain-rate, grain size, and temperature dependence of the flow stress are presented. They show that ultrafine-grained ceramics are capable of high rates of deformation. The ceramic is almost infinitely ductile in compression, whereas in tension elongations as large as 135% in one material, and more than 400% in another, were obtained. A model material, B-spodumene glass-ceramic, was used for this study but the results are likely to hold for other materials with equivalent microstructures.

  7. Analysis of Grain Boundary Character in a Fine-Grained Nickel-Based Superalloy 718

    NASA Astrophysics Data System (ADS)

    Araujo, L. S.; dos Santos, D. S.; Godet, S.; Dille, J.; Pinto, A. L.; de Almeida, L. H.

    2014-11-01

    In the current work, sheets of superalloy 718 were processed via thermomechanical route by hot and cold rolling, followed by annealing below the δ phase solvus temperature and precipitation hardening to optimum strength. Grain boundary character distribution throughout the processing was mapped via EBSD and its evolution discussed. The results show that it is possible to process the alloy to a fine grain size obtaining concomitantly a considerably high proportion of special boundaries Σ3, Σ9, and Σ27. The precipitation of δ phase presented a strong grain refining role, without significantly impairing the twinning mechanism and, consequently, the Σ3, Σ9, and Σ27 boundary formations.

  8. Leveraging the Wisdom of the Crowd for Fine-Grained Recognition.

    PubMed

    Deng, Jia; Krause, Jonathan; Stark, Michael; Fei-Fei, Li

    2016-04-01

    Fine-grained recognition concerns categorization at sub-ordinate levels, where the distinction between object classes is highly local. Compared to basic level recognition, fine-grained categorization can be more challenging as there are in general less data and fewer discriminative features. This necessitates the use of a stronger prior for feature selection. In this work, we include humans in the loop to help computers select discriminative features. We introduce a novel online game called "Bubbles" that reveals discriminative features humans use. The player's goal is to identify the category of a heavily blurred image. During the game, the player can choose to reveal full details of circular regions ("bubbles"), with a certain penalty. With proper setup the game generates discriminative bubbles with assured quality. We next propose the "BubbleBank" representation that uses the human selected bubbles to improve machine recognition performance. Finally, we demonstrate how to extend BubbleBank to a view-invariant 3D representation. Experiments demonstrate that our approach yields large improvements over the previous state of the art on challenging benchmarks.

  9. Visual classification of very fine-grained sediments: Evaluation through univariate and multivariate statistics

    USGS Publications Warehouse

    Hohn, M. Ed; Nuhfer, E.B.; Vinopal, R.J.; Klanderman, D.S.

    1980-01-01

    Classifying very fine-grained rocks through fabric elements provides information about depositional environments, but is subject to the biases of visual taxonomy. To evaluate the statistical significance of an empirical classification of very fine-grained rocks, samples from Devonian shales in four cored wells in West Virginia and Virginia were measured for 15 variables: quartz, illite, pyrite and expandable clays determined by X-ray diffraction; total sulfur, organic content, inorganic carbon, matrix density, bulk density, porosity, silt, as well as density, sonic travel time, resistivity, and ??-ray response measured from well logs. The four lithologic types comprised: (1) sharply banded shale, (2) thinly laminated shale, (3) lenticularly laminated shale, and (4) nonbanded shale. Univariate and multivariate analyses of variance showed that the lithologic classification reflects significant differences for the variables measured, difference that can be detected independently of stratigraphic effects. Little-known statistical methods found useful in this work included: the multivariate analysis of variance with more than one effect, simultaneous plotting of samples and variables on canonical variates, and the use of parametric ANOVA and MANOVA on ranked data. ?? 1980 Plenum Publishing Corporation.

  10. In-situ Phase transformation study in fine grained heat affected zone of Grade 91 steels

    SciTech Connect

    Babu, Sudarsanam Suresh; Yamamoto, Yukinori; Santella, Michael L; Yu, Xinghua; Komizo, Prof. Y; Terasaki, Prof. H

    2014-01-01

    Creep strength-enhanced ferritic (CSEF) steels such as the 9 Cr steel [ASTM A387 Grade 91] are widely used as tubing and piping in the new generation of fossil fired power plants. Microstructures in the fine-grained heat affected zone (FGHAZ) may significantly reduce creep strength leading Type IV failures. Current research suggest that reducing pre-weld tempering temperature from 760 C (HTT) to 650 C (LTT) has the potential to double the creep life of these welds. To understand this improvement, time-resolved X-ray diffraction (TRXRD) measurement with synchrotron radiation was used to characterize the microstructure evolution during fine grained heat-affected zone (HAZ) thermal cycling of grade 91 steel. The measurements showed both M23C6 (M=Fe, Cr) and MX (M=Nb, V; X=C,N) are present in the sample after the HTT condition. Near equilibrium fraction of M23C6 was measured in high temperature tempering condition (HTT, 760 C). However, the amount of M23C6 in LTT condition was very low since the diffraction peaks are close to the background. During simulated FGHAZ thermal cycling, the M23C6 partially dissolved in HTT sample. Interestingly, MX did not dissolve in both LTT and HTT samples. Hypothesis for correlation of M23C6 carbide distribution and pre-mature creep failure in FGHAZ will be made.

  11. Hydrogeology and hydrogeochemistry of fine-grained glacial till, northeastern Indiana

    SciTech Connect

    Ferguson, V.R. . Geosciences Dept.); Fleming, A.H. ); Krothe, N.C.; Steen, W.J. )

    1992-01-01

    Ground water chemistry, including environmental isotopes, indicate that significant recharge is occurring through a thick sequence of fine-grained glacial till. [delta]D and [delta] O-18 values correspond well with the current mean average annual values for precipitation at the site, and suggest that the entire glacial sequence, as well as the bedrock aquifer, has been completely recharged since the end of the Pleistocene. Bomb tritiated water is present to a depth of 20 feet, and possibly below 80 feet as well. This strongly suggests that macropore flow, perhaps via fractures, may be occurring. Nitrogen isotope analysis suggest that the nitrates at a depth of 37 feet have animal waste as their source. The age of the water in the upper 37 feet of the profile is therefore between 40 and 140 years, based on historical farming practices. In addition, major ion chemistry suggests that the upper clay rich till unit is acting as a semipermeable membrane and retarding the downward migration of most of the major ions. When compared to similar studies conducted in slightly different geologic settings, it can be concluded that recharge through fine-grained glacial materials may greatly vary.

  12. Optimizing Fine-grained Communication in a Biomolecular Simulation Application on Cray XK6

    SciTech Connect

    Sun, Yanhua; Zheng, Gengbin; Mei, Chao; Phillips, James C.; Kale, Laxmikant V; Jones, Terry R

    2012-01-01

    Achieving good scaling for fine-grained communication intensive applications on modern supercomputers remains challenging. In our previous work, we have shown that such an application NAMD scales well on the full Jaguar XT5 without long-range interactions; Yet, with them, the speedup falters beyond 64K cores. Although the new Gemini interconnect on Cray XK6 has improved network performance, the challenges remain, and are likely to remain for other such networks as well. We analyze communication bottlenecks in NAMD and its CHARM++ runtime, using the Projections performance analysis tool. Based on the analysis, we optimize the runtime, built on the uGNI library for Gemini. We present several techniques to improve the fine-grained communication. Consequently, the performance of running 92224-atom Apoa1 with GPUs on TitanDev is improved by 36%. For 100-million-atom STMV, we improve upon the prior Jaguar XT5 result of 26 ms/step to 13 ms/step using 298,992 cores on Jaguar XK6.

  13. Method for manufacturing metal from fine-grain metal-oxide material

    SciTech Connect

    Edstrom, J.O.; Gorling, K.G.

    1984-02-28

    A method for producing fine-grain iron-containing metal oxide material, the method comprising a first reduction stage wherein the oxide material is at least partially reduced in a fluidized state at a temperature of approximately 1025/sup 0/-1275/sup 0/ K. by a reducing gas which is carbon monoxide or carbon monoxide mixed with hydrogen, followed by a smelting and final reduction stage to form a metal melt, the reducing gas used for the first reduction stage obtained from the smelting and final reduction stage. Prior to the first reduction stage, relatively large cakes or shaped pieces are formed from the fine-grain metal-oxide material in the presence of moisture and a hydraulic binder and the cakes or pieces caused to harden. The hardened oxide material is disintegrated and classified to form the starting material for the first reduction stage and is given a particle size distribution such that the material forms a fluidized bed which is substantially stationary at the considerable gas velocity required to carrying out the reduction process without bogging at the temperature selected for the first reduction stage.

  14. Fabrication of fine-grain tantalum diffusion barrier tube for Nb{sub 3}Sn conductors

    SciTech Connect

    Hartwig, K. T.; Balachandran, S.; Mezyenski, R.; Seymour, N.; Robinson, J.; Barber, R. E.

    2014-01-27

    Diffusion barriers used in Nb{sub 3}Sn wire are often fabricated by wrapping Ta sheet into a tube with an overlap seam. A common result of such practice is non-uniform deformation in the Ta sheet as it thins by wire drawing because of non-uniform grain size and texture in the original Ta sheet. Seamless Ta tube with a fine-grain and uniform microstructure would be much better for the diffusion barrier application, but such material is expensive and difficult to manufacture. This report presents results on a new fabrication strategy for Ta tube that shows promise for manufacture of less costly tube with an improved microstructure. The fabrication method begins with seam-welded tube but gives a fine-grain uniform microstructure with little difference between the longitudinal seam weld region and the parent metal after post-weld processing. Severe plastic deformation processing (SPD) applied by area reduction extrusion and tube equal channel angular extrusion (tECAE) are used to refine and homogenize the microstructure. Microstructure and mechanical property results are presented for Ta tubes fabricated by this new processing strategy.

  15. Visual classification of very fine-grained sediments: evaluation through univariate and multivariate statistics

    SciTech Connect

    Hohn, M.E.; Nuhfer, E.B.; Vinopal, R.J.; Klanderman, D.S.

    1980-01-01

    Classifying very fine-grained rocks through fabric elements provides information about depositional environments, but is subject to the biases of visual taxonomy. To evaluate the statistical significance of an empirical classification of very fine-grained rocks, samples from Devonian shales in four cored wells in West Virginia and Virginia were measured for 15 variables: quartz, illite, pyrite and expandable clays determined by X-ray diffraction; total sulfur, organic content, inorganic carbon, matrix density, bulk density, porosity, silt, as well as density, sonic travel time, resistivity, and ..gamma..-ray response measured from well logs. The four lithologic types comprised: (1) sharply banded shale, (2) thinly laminated shale, (3) lenticularly laminated shale, and (4) nonbanded shale. Univariate and multivariate analyses of variance showed that the lithologic classification reflects significant differences for the variables measured, difference that can be detected independently of stratigraphic effects. Little-known statistical methods found useful in this work included: the multivariate analysis of variance with more than one effect, simultaneous plotting of samples and variables on canonical variates, and the use of parametric ANOVA and MANOVA on ranked data.

  16. Mechanical properties and structural evolution during deformation of fine grain magnesium and aluminum alloys

    NASA Astrophysics Data System (ADS)

    Yang, Qi

    Grain refinement improves the formability and the strength of wrought Mg and Al alloys. Ultrafine grain Mg is produced by a new process for severe plastic deformation, called Alternate Biaxial Reverse Corrugation (ABRC). Fine grain structure in Al is produced by creating a new composition capable of precipitating dispersed intermetallics in the alloy. Slip and twinning subdivide an initial bimodal grain structure of Mg alloy during processing. Dynamic recovery and recrystallization lead to the formation of nearly uniform ultrafine microstructure of average grain size 1.4mum, containing many submicron grains. In Mg, twinning causes grain refinement in the early stages, but it is inhibited when grain size becomes finer. A strong basal texture is created after several corrugation and flattening steps, but eventually weakened as grain size becomes finer. Grain rotation and possible dynamic recrystallization are believed to cause a drop in the intensity of basal texture. At room temperature, grain refinement causes a considerable increase in strain rate sensitivity of flow stress (m) leading to the enhancement of post-uniform elongation. Yield strength increases, and becomes more isotropic due to the inhibition of twinning in fine grain Mg alloy, compared to coarse grain alloy. Normal anisotropy ratio (R value) for fine grain Mg at room temperature is higher than that for coarse grain alloy. At warm temperatures, formability is significantly increased due to an increase in strain rate sensitivity of flow stress and diffuse quasistable flow in fine grain Mg, as compared with coarse grain alloy. At 200°C and strain rates below 2x10-4s-1, the fine grain alloy demonstrates a high rate of strain hardening up to a true strain of 0.6 in addition to its high strain rate sensitivity (m ˜ 0.4-0.5), leading to a high elongation of 300-400%. There is competition between dynamic grain growth and grain refinement during straining at warm temperature. Mg exhibits isotropic

  17. Nontoxic chemical process for in situ permeability enhancement and accelerated decontamination of fine-grain subsurface sediments

    DOEpatents

    Kansa, Edward J.; Wijesinghe, Ananda M.; Viani, Brian E.

    1997-01-01

    The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculents and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude.

  18. Nontoxic chemical process for in situ permeability enhancement and accelerated decontamination of fine-grain subsurface sediments

    DOEpatents

    Kansa, E.J.; Wijesinghe, A.M.; Viani, B.E.

    1997-01-14

    The remediation of heterogeneous subsurfaces is extremely time consuming and expensive with current and developing technologies. Although such technologies can adequately remove contaminants in the high hydraulic conductivity, coarse-grained sediments, they cannot access the contaminated low hydraulic conductivity fine-grained sediments. The slow bleed of contaminants from the fine-grained sediments is the primary reason why subsurface remediation is so time-consuming and expensive. This invention addresses the problem of remediating contaminated fine-grained sediments. It is intended that, in the future, a heterogeneous site be treated by a hybrid process that first remediates the high hydraulic conductivity, coarse-grained sediments, to be followed by the process, described in this invention, to treat the contaminated low hydraulic conductivity fine-grained sediments. The invention uses cationic flocculants and organic solvents to collapse the swelling negative double layer surrounding water saturated clay particles, causing a flocculated, cracked clay structure. The modification of the clay fabric in fine-grained sediments dramatically increases the hydraulic conductivity of previously very tight clays many orders of magnitude. 8 figs.

  19. Multispectral Properties of Fine-grained Materials at Gusev and Meridiani from MER/Pancam Observations

    NASA Astrophysics Data System (ADS)

    Bell, J. F.

    2005-12-01

    The Mars Exploration Rover Panoramic Camera (Pancam) instruments have acquired more than 41,000 and 37,000 multispectral images, respectively, from the rovers' landing sites and traverse paths within Gusev crater and Meridiani Planum as of early September 2005. The images have a resolution of from a few millimeters per pixel near the rover to a few meters per pixel for features near the horizon, and provide detailed information on the geology and morphology of the locations visited by the rovers. The 400 to 1000 nm spectral range of the color data also provides a limited amount of mineralogic information about iron-bearing phases, for selection of in situ analysis targets and comparison to and augmentation of more detailed compositional and mineralogic results from other rover instruments. These images include ten 360 degree panoramas acquired at Gusev and five 360 degree panoramas acquired at Meridiani. These panoramas were acquired using a subset of Pancam filters chosen to allow spectral parameterizations to be generated that provide maximal color unit discrimination within the available downlinked data volume and power constraints at the time of each observation. The images also include more than sixty limited color panoramas spanning at least 90 degrees of azimuth, and hundreds of 11-color multispectral spot observations of specific targets using all of the Pancam geology filters. Analysis of the large panoramas provides an assessment of the local-scale spectral diversity of each rover study site. Here we assess the nature of fine-grained materials at each site with results from the geographically-broad but spectrally-limited large panoramic color surveys, including the most recent data, augmented by much more narrowly-targeted full-color multispectral spot results. Fine-grained color units at Gusev include bright dust, bright and dark soils on planar surfaces (e.g., hollows) and in aeolian bedforms, dark dust created during Rock Abrasion Tool (RAT) grinding

  20. Nearshore disposal of fine-grained sediment in a high-energy environment: Santa Cruz Harbor case study

    USGS Publications Warehouse

    Cronin, Katherine; van Ormondt, Maarten; Storlazzi, Curt D.; Presto, Katherine; Tonnon, Pieter K.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.

    2011-01-01

    Current regulations in California prohibit the disposal of more than 20% fine-grained sediment in the coastal zone; this threshold is currently being investigated to determine if this environmental regulation can be improved upon. A field monitoring and numerical modeling experiment took place late 2 009 to determine the fate of fine-grained dredge disposal material from Santa Cruz Harbor, California, U.S.A. A multi-nested, hydrodynamic-sediment transport modeling approach was used to simulate the direction and dispersal of the dredge plume. Result s show that the direction and dispersal of the plume was influenced by the wave  climate, a large proportion of which moved in a easterly direction during wave events. Therefore it is vitally important to accurately simulate the tides, waves, currents, temperature and salinity when modeling the dispersal of the fine-grained dredge plume. 

  1. Memory for pitch in congenital amusia: beyond a fine-grained pitch discrimination problem.

    PubMed

    Williamson, Victoria Jane; Stewart, Lauren

    2010-08-01

    Congenital amusia is a disorder that affects the perception and production of music. While amusia has been associated with deficits in pitch discrimination, several reports suggest that memory deficits also play a role. The present study investigated short-term memory span for pitch-based and verbal information in 14 individuals with amusia and matched controls. Analogous adaptive-tracking procedures were used to generate tone and digit spans using stimuli that exceeded psychophysically measured pitch perception thresholds. Individuals with amusia had significantly smaller tone spans, whereas their digits spans were a similar size to those of controls. An automated operation span task was used to determine working memory capacity. Working memory deficits were seen in only a small subgroup of individuals with amusia. These findings support the existence of a pitch-specific component within short-term memory and suggest that congenital amusia is more than a disorder of fine-grained pitch discrimination.

  2. A Microanalytical (TEM) Study of Fine-grained Chondrule Rims in NWA 5717

    NASA Technical Reports Server (NTRS)

    Bigolski, J. N.; Frank, D. R.; Zolensky, Michael E.; Weisberg, M. K.; Ebel, D. S.; Rahman, Z.

    2013-01-01

    Northwest Africa (NWA) 5717 is a highly primitive ordinary chondrite of petrologic type 3.05 with ubiquitous fine-grained chondrule rims [1, 2]. Rims appear around approximately 60% of chondrules and are comprised of micron-sized mineral and lithic fragments and microchondrules that are embdedded in an FeO-rich submicron groundmass that compositionally resembles fayalitic olivine. Some rim clasts appear overprinted with FeO-rich material, suggesting secondary alteration that postdates rim formation. Here we present a microanalytical (TEM) study of the submicron component (i.e. the groundmass) of the rims in order to determine the crystal structures and compositions of their constituent phases and decipher the accretion and alteration history recorded in rims.

  3. Fine Grained Silicon-Tungsten Calorimetry for a Linear Collider Detector

    SciTech Connect

    Strom, D.; Frey, R.; Breidenbach, M.; Freytag, D.; Graf, N.; Haller, G.; Milgrome, O.; Radeka, V.; /Brookhaven

    2006-02-08

    A fine grained silicon-tungsten calorimeter is ideal for use as the electromagnetic calorimeter in a linear collider detector optimized for particle-flow reconstruction. We are designing a calorimeter that is based on readout chips which are bump bonded to the silicon wafers that serve as the active medium in the calorimeter. By using integrated electronics we plan to demonstrate that fine granularity can be achieved at a reasonable price. Our design minimizes the gap between tungsten layers leading to a small Moliere radius, an important figure of merit for particle-flow detectors. Tests of the silicon detectors to be used in a test beam prototype as well as timing measurements based on similar silicon detectors are discussed.

  4. Correlative multi-scale characterization of a fine grained Nd-Fe-B sintered magnet.

    PubMed

    Sasaki, T T; Ohkubo, T; Hono, K; Une, Y; Sagawa, M

    2013-09-01

    The Nd-rich phases in pressless processed fine grained Nd-Fe-B sintered magnets have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and three dimensional atom probe tomography (3DAP). The combination of the backscattered electron (BSE) and in-lens secondary electron (IL-SE) images in SEM led to an unambiguous identification of four types of Nd-rich phases, NdOx, Ia3 type phase, which is isostructural to Nd₂O₃, dhcp-Nd and Nd₁Fe₄B₄. In addition, the 3DAP analysis of thin Nd-rich grain boundary layer indicate that the coercivity has a close correlation with the chemistry of the grain boundary phase.

  5. Fine-grained lower limit of entropic uncertainty in the presence of quantum memory.

    PubMed

    Pramanik, T; Chowdhury, P; Majumdar, A S

    2013-01-11

    The limitation on obtaining precise outcomes of measurements performed on two noncommuting observables of a particle as set by the uncertainty principle in its entropic form can be reduced in the presence of quantum memory. We derive a new entropic uncertainty relation based on fine graining, which leads to an ultimate limit on the precision achievable in measurements performed on two incompatible observables in the presence of quantum memory. We show that our derived uncertainty relation tightens the lower bound set by entropic uncertainty for members of the class of two-qubit states with maximally mixed marginals, while accounting for the recent experimental results using maximally entangled pure states and mixed Bell-diagonal states. An implication of our uncertainty relation on the security of quantum key generation protocols is pointed out.

  6. GENERAL: Fine-grained permutation entropy as a measure of natural complexity for time series

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Feng; Wang, Yue

    2009-07-01

    In a recent paper [2002 Phys. Rev. Lett. 88 174102], Bandt and Pompe propose permutation entropy (PE) as a natural complexity measure for arbitrary time series which may be stationary or nonstationary, deterministic or stochastic. Their method is based on a comparison of neighbouring values. This paper further develops PE, and proposes the concept of fine-grained PE (FGPE) defined by the order pattern and magnitude of the difference between neighbouring values. This measure excludes the case where vectors with a distinct appearance are mistakenly mapped onto the same permutation type, and consequently FGPE becomes more sensitive to the dynamical change of time series than does PE, according to our simulation and experimental results.

  7. Geoacoustic Characterisation of Fine-grained Sediments using Single and Multiple Reflection Data

    NASA Astrophysics Data System (ADS)

    Hermand, J.-P.; Holland, C. W.

    2005-06-01

    Fine-grained sediments commonly occur in areas of the continental shelf where wave and current energy are weak. Bulk density, compressional wave speed and attenuation are fundamental physical properties of these sediments required for predicting the response of the seabed for diverse branches of marine science. The traditional coring approach is time and labor-intensive, with large uncertainties associated with sediment disturbance in the sampling phase. Acoustic methods offer the advantages of remote sensing, i.e., sampling the sediment structure without mechanical disturbance and a significantly larger seabed coverage rate per unit time. Two different acoustic methods are described: one using short-range single-bounce interactions with the seabed, and the second using long-range modal propagation to infer the sediment properties. The relative strengths and sensitivities of each approach are explored through simulations guided by experience with measured data.

  8. Origin of zoned fine-grained inclusions in the Allende meteorite

    SciTech Connect

    McGuire, A.V.; Hashimoto, Akihiko )

    1989-05-01

    Many fine-grained Ca-Al-rich inclusions in the Allende meteorite show a consistent pattern of mineralogic and textural zonation. The center, zone A, consists mostly of spinel, nepheline, Al-diopside and salite, with minor amounts of olivine, sodalite, grossular, anorthite, perovskite, and ilmenite. In most inclusions, these minerals occur as loosely packed, discrete anhedral to subhedral grains with only minor intergrowth between phases. The textural and mineralogical similarity of zone A, except for the rimmed spinel objects, to altered areas of coarse-grained melilite-rich CaIs suggests that a similar open system alteration affected the fine-grained inclusions and that zone A's contained melilite before being completely altered to anorthite, grossular, nepheline and sodalite. Under conditions of low temperatures (< 1,000 K) and/or at H/O ratios lower than the cosmic abundance, Ca is more volatile than Si due to the formation of gaseous Ca-hydroxides. The thermodynamic stability of minerals in zones A and B also indicates alteration at temperatures less than 1,000 K. The mode of occurrence of hedenbergite and andradite in zone B implies that they are condensates deposited on the edge of zone A. It is likely that the Ca migrating out of the center of the inclusions and the Si and Fe migrating inward from the surrounding nebular gas coprecipitated according to the thermodynamic stability of these minerals. Zone C, on the other hand most likely existed even before alteration, surrounding what is now zone A. However, the mineralogy of zone C appears to have changed by alteration: the zone C consisting of olivine, nepheline and ilmenite was probably a spinel-rich belt mantling the illusion.

  9. The role of temporally varying erodibility in hysteresis in fine-grained coastal systems

    NASA Astrophysics Data System (ADS)

    Wiberg, P.; Carr, J. A.

    2013-12-01

    Sediment transport rates are typically expressed as some function of excess shear stress, the difference between the fluid shear stress at the sediment surface and the shear stress needed to initiate transport of the sediment comprising the surface. While a great deal of research has addressed questions related to temporal and spatial variations in the fluid stresses driving transport and deposition, considerably less has focused on temporal and spatial variations in sediment erodibility. Most sediment transport relationships involved a critical shear stress that is at most a function of grain size and density for non-cohesive sediment or a function of depth for cohesive sediment. Such simple characterizations of erodibility are frequently inadequate for representing sediment dynamics in fine-grained coastal and shallow marine environments where a wide range of processes, including consolidation, biofilm production and bioturbation can cause dramatic temporal and spatial (horizontal and vertical) variations in erodibility. For example, flood deposits of mud on the continental shelf can initially be highly erodible, facilitating the formation of wave-supported gravity flows, but quickly (days-weeks) consolidate to the point where they can become relatively resistant to resuspension by large storm waves - well above traditional notions of 'storm wave base'. On the other hand, loss of protection by primary producers - such as a die off of seagrasses or biofilms - can release large quantities of previously stable sediment into a coastal system. In this talk we explore the importance of temporal variations in erodibility on coastal and shallow marine systems in producing path-dependence and hysteresis in fine-grained coastal systems.

  10. The effects of grain size composition on the efficiency of fine-grained coal separation

    SciTech Connect

    Blahova, O.; Rezek, K.; Novacek, J.

    1994-12-31

    One factor that favorably affects the economics of exploitation and preparation of coal is reducing the loss of coal matter in the tailings from washeries. Thus, it is necessary to modify existing technologies for the preparation of coking coal. This study of the effects of grain size composition for run-of-mine coal on the efficiency of coal separation, as well as on the quality of the products, was performed on the following equipment used for fine-grained coal separation: fine coal jigs (0.5 to 10/15 mm); jigs (0.5 to 40 mm); heavy medium cyclones (0.5 to 10 mm); slurry hydrocyclones (0.0 to 0.5 mm); HIRST hydrocyclones (0.0 to 0.5 mm); and spiral concentrators (0.0 to 3.0 mm). The results of the study lead to the following conclusions. (1) It is impossible to attain efficient separation in a wide range of fine grain sizes processed simultaneously in a single piece of equipment. (2) Among the equipment available for separation, one type can be found with the highest efficiency for a given grain size of fine coal. (3) The newly introduced spiral concentrators have attained such an efficiency of separation and are so economical that they could be included with advantage between the jigs and the lotion process. This would favorably affect the output and the efficiency of separation of all the equipment involved in the process. (4) All measures to be taken in the flow sheet of coal preparation plants and designed to increase the efficiency of separation should be documented with data that show the expected economic benefits of any change for both the mine and the preparation plant.

  11. Fine-Grained Semantic Categorization across the Abstract and Concrete Domains

    PubMed Central

    Tettamanti, Marco

    2013-01-01

    A consolidated approach to the study of the mental representation of word meanings has consisted in contrasting different domains of knowledge, broadly reflecting the abstract-concrete dichotomy. More fine-grained semantic distinctions have emerged in neuropsychological and cognitive neuroscience work, reflecting semantic category specificity, but almost exclusively within the concrete domain. Theoretical advances, particularly within the area of embodied cognition, have more recently put forward the idea that distributed neural representations tied to the kinds of experience maintained with the concepts' referents might distinguish conceptual meanings with a high degree of specificity, including those within the abstract domain. Here we report the results of two psycholinguistic rating studies incorporating such theoretical advances with two main objectives: first, to provide empirical evidence of fine-grained distinctions within both the abstract and the concrete semantic domains with respect to relevant psycholinguistic dimensions; second, to develop a carefully controlled linguistic stimulus set that may be used for auditory as well as visual neuroimaging studies focusing on the parametrization of the semantic space beyond the abstract-concrete dichotomy. Ninety-six participants rated a set of 210 sentences across pre-selected concrete (mouth, hand, or leg action-related) and abstract (mental state-, emotion-, mathematics-related) categories, with respect either to different semantic domain-related scales (rating study 1), or to concreteness, familiarity, and context availability (rating study 2). Inferential statistics and correspondence analyses highlighted distinguishing semantic and psycholinguistic traits for each of the pre-selected categories, indicating that a simple abstract-concrete dichotomy is not sufficient to account for the entire semantic variability within either domains. PMID:23825625

  12. Fine-grained semantic categorization across the abstract and concrete domains.

    PubMed

    Ghio, Marta; Vaghi, Matilde Maria Serena; Tettamanti, Marco

    2013-01-01

    A consolidated approach to the study of the mental representation of word meanings has consisted in contrasting different domains of knowledge, broadly reflecting the abstract-concrete dichotomy. More fine-grained semantic distinctions have emerged in neuropsychological and cognitive neuroscience work, reflecting semantic category specificity, but almost exclusively within the concrete domain. Theoretical advances, particularly within the area of embodied cognition, have more recently put forward the idea that distributed neural representations tied to the kinds of experience maintained with the concepts' referents might distinguish conceptual meanings with a high degree of specificity, including those within the abstract domain. Here we report the results of two psycholinguistic rating studies incorporating such theoretical advances with two main objectives: first, to provide empirical evidence of fine-grained distinctions within both the abstract and the concrete semantic domains with respect to relevant psycholinguistic dimensions; second, to develop a carefully controlled linguistic stimulus set that may be used for auditory as well as visual neuroimaging studies focusing on the parametrization of the semantic space beyond the abstract-concrete dichotomy. Ninety-six participants rated a set of 210 sentences across pre-selected concrete (mouth, hand, or leg action-related) and abstract (mental state-, emotion-, mathematics-related) categories, with respect either to different semantic domain-related scales (rating study 1), or to concreteness, familiarity, and context availability (rating study 2). Inferential statistics and correspondence analyses highlighted distinguishing semantic and psycholinguistic traits for each of the pre-selected categories, indicating that a simple abstract-concrete dichotomy is not sufficient to account for the entire semantic variability within either domains.

  13. Resistance spot welding of ultra-fine grained steel sheets produced by constrained groove pressing: Optimization and characterization

    SciTech Connect

    Khodabakhshi, F.; Kazeminezhad, M. Kokabi, A.H.

    2012-07-15

    Constrained groove pressing as a severe plastic deformation method is utilized to produce ultra-fine grained low carbon steel sheets. The ultra-fine grained sheets are joined via resistance spot welding process and the characteristics of spot welds are investigated. Resistance spot welding process is optimized for welding of the sheets with different severe deformations and their results are compared with those of as-received samples. The effects of failure mode and expulsion on the performance of ultra-fine grained sheet spot welds have been investigated in the present paper and the welding current and time of resistance spot welding process according to these subjects are optimized. Failure mode and failure load obtained in tensile-shear test, microhardness, X-ray diffraction, transmission electron microscope and scanning electron microscope images have been used to describe the performance of spot welds. The region between interfacial to pullout mode transition and expulsion limit is defined as the optimum welding condition. The results show that optimum welding parameters (welding current and welding time) for ultra-fine grained sheets are shifted to lower values with respect to those for as-received specimens. In ultra-fine grained sheets, one new region is formed named recrystallized zone in addition to fusion zone, heat affected zone and base metal. It is shown that microstructures of different zones in ultra-fine grained sheets are finer than those of as-received sheets. - Highlights: Black-Right-Pointing-Pointer Resistance spot welding process is optimized for joining of UFG steel sheets. Black-Right-Pointing-Pointer Optimum welding current and time are decreased with increasing the CGP pass number. Black-Right-Pointing-Pointer Microhardness at BM, HAZ, FZ and recrystallized zone is enhanced due to CGP.

  14. O-Isotope Mapping of Fine-Grained Material Collected from Comet 81P/Wild 2

    NASA Astrophysics Data System (ADS)

    Frank, D. R.; Huss, G. R.; Nagashima, K.; Westphal, A. J.; Jilly-Rehak, C. E.

    2016-08-01

    We are measuring FeO, MgO, and three O-isotopes from fine-grained/amorphous material in upper track walls to continue previous characterization of Wild 2 fines. We use the University of Hawai'i Cameca ims 1280 in scanning ion imaging mode.

  15. Fine-grained suspended sediment source identification for the Kharaa River basin, northern Mongolia

    NASA Astrophysics Data System (ADS)

    Rode, Michael; Theuring, Philipp; Collins, Adrian L.

    2015-04-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on the water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (<10 microns) sediment in the 15 000 km2 Kharaa River basin in northern Mongolia. Five field sampling campaigns in late summer 2009, and spring and late summer in both 2010 and 2011, were conducted directly after high water flows, to collect an overall total of 900 sediment samples. The work used a statistical approach for sediment source discrimination with geochemical composite fingerprints based on a new Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal-Wallis H-test and Principal Component Analysis. The composite fingerprints were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin) with the pattern generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of riverbank erosion was shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the general applicability and associated uncertainties of an approach for fine-grained sediment source investigation in large scale semi-arid catchments. The combined application of source fingerprinting and catchment modelling approaches can be used to assess whether tracing estimates are

  16. Incorporation of Fine-Grained Sediment Erodibility Measurements into Sediment Transport Modeling, Capitol Lake, Washington

    USGS Publications Warehouse

    Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig

    2008-01-01

    Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the

  17. Fine grain separation for the production of biomass fuel from mixed municipal solid waste.

    PubMed

    Giani, H; Borchers, B; Kaufeld, S; Feil, A; Pretz, T

    2016-01-01

    The main goal of the project MARSS (Material Advanced Sustainable Systems) is to build a demonstration plant in order to recover a renewable biomass fuel suitable for the use in biomass power plants out of mixed municipal solid waste (MMSW). The demonstration plant was constructed in Mertesdorf (Germany), working alongside an existing mechanical-biological treatment plant, where the MMSW is biological dried under aerobe conditions in rotting boxes. The focus of the presented sorting campaign was set on the processing of fine grain particles minor than 11.5mm which have the highest mass content and biogenic energy potential of the utilized grain size fractions. The objective was to produce a biomass fuel with a high calorific value and a low content of fossil (plastic, synthetic) materials while maximizing the mass recovery. Therefore, the biogenic components of the dried MMSW are separated from inert and fossil components through various classification and sifting processes. In three experimental process setups of different processing depths, the grain size fraction 4-11.5mm was sifted by the use of air sifters and air tables.

  18. Digital Photograph Analysis to Quantify Fine-grained Sediment Composition of Riverbed Surfaces

    NASA Astrophysics Data System (ADS)

    Vernon, C. R.; Hanrahan, T. P.

    2010-12-01

    Recent evaluations of stream habitat monitoring methods suggest the need for developing approaches that increase the robustness of riverbed substrate grain-size measurements. As part of a river restoration monitoring program, the objective of this study was to quantify the percentage of the riverbed surface that was comprised of material smaller than 2.0 mm. Digital photographs of the riverbed surface were taken near exposed bar surfaces close to the wetted channel. The analysis was performed by constructing a computer-generated grid of equally distributed sampling points that was overlain by each digital photograph in image editing software. At each sampling point on the grid, the intersecting grain was measured in the image to determine whether the b-axis length was less than 2.0 mm. The method allowed b-axis lengths as small as 1.0 mm to be accurately measured, and provided flexibility to set any lower truncation point equal to or larger than 1.0 mm. The monitoring approach developed for this study provides a quantitative, accurate, precise, repeatable, and compatible means for determining fine-grained sediment composition of riverbed surfaces.

  19. Modeling methane bubble growth in fine-grained muddy aquatic sediments: correlation with sediment properties

    NASA Astrophysics Data System (ADS)

    Katsman, Regina

    2015-04-01

    Gassy sediments contribute to destabilization of aquatic infrastructure, air pollution, and global warming. In the current study a precise shape and size of the buoyant mature methane bubble in fine-grained muddy aquatic sediment is defined by numerical and analytical modeling, their results are in a good agreement. A closed-form analytical solution defining the bubble parameters is developed. It is found that the buoyant mature bubble is elliptical in its front view and resembles an inverted tear drop in its cross-section. The size and shape of the mature bubble strongly correlate with sediment fracture toughness. Bubbles formed in the weaker sediments are smaller and characterized by a larger surface-to volume ratio that induces their faster growth and may lead to their faster dissolution below the sediment-water interface. This may prevent their release to the water column and to the atmosphere. Shapes of the bubbles in the weaker sediments deviate further from the spherical configuration, than those in the stronger sediments. Modeled bubble characteristics, important for the acoustic applications, are in a good agreement with field observations and lab experiments.

  20. Developing a Fine-Grained Learning Progression Framework for Carbon-Transforming Processes

    NASA Astrophysics Data System (ADS)

    Jin, Hui; Zhan, Li; Anderson, Charles W.

    2013-07-01

    Science educators have called for using the learning progression approach to align curriculum, instruction, and assessment. In line with this trend, we conducted both assessments and teaching experiments with students from grades 4 to 12 (717 students participated in the pre-assessments and 682 students participated in the post-assessments). The goal of the study is to develop a learning progression framework that provides effective guidance for curriculum and instruction on carbon-transforming processes in socio-ecological systems. We conducted the study in three research cycles. We developed a matter-and-energy learning progression framework during the first two cycles. This learning progression framework was used to guide the teaching intervention in the third research cycle. Clinical interviews and written assessments were implemented before and after the teaching intervention. In the process of data analysis, we found that the matter-and-energy learning progression framework did not provide a fine-grained depiction of students' reasoning. Therefore, we developed the five-practice learning progression framework, and used it to re-analyze data. Results indicate that the teaching intervention has helped students to achieve significant learning gains, but it was not effective enough in helping students achieve the upper anchor of the learning progression framework-constructing sophisticated scientific explanations. The results also indicate that students tended to rely on coherent and consistent reasoning to construct explanations. Based on the findings, we provide instructional suggestions and discuss the implications for climate change education and learning progression research.

  1. Fine-grained parallelism accelerating for RNA secondary structure prediction with pseudoknots based on FPGA.

    PubMed

    Xia, Fei; Jin, Guoqing

    2014-06-01

    PKNOTS is a most famous benchmark program and has been widely used to predict RNA secondary structure including pseudoknots. It adopts the standard four-dimensional (4D) dynamic programming (DP) method and is the basis of many variants and improved algorithms. Unfortunately, the O(N(6)) computing requirements and complicated data dependency greatly limits the usefulness of PKNOTS package with the explosion in gene database size. In this paper, we present a fine-grained parallel PKNOTS package and prototype system for accelerating RNA folding application based on FPGA chip. We adopted a series of storage optimization strategies to resolve the "Memory Wall" problem. We aggressively exploit parallel computing strategies to improve computational efficiency. We also propose several methods that collectively reduce the storage requirements for FPGA on-chip memory. To the best of our knowledge, our design is the first FPGA implementation for accelerating 4D DP problem for RNA folding application including pseudoknots. The experimental results show a factor of more than 50x average speedup over the PKNOTS-1.08 software running on a PC platform with Intel Core2 Q9400 Quad CPU for input RNA sequences. However, the power consumption of our FPGA accelerator is only about 50% of the general-purpose micro-processors.

  2. Fine-grained material of 81P/Wild 2 in interaction with the Stardust aerogel

    NASA Astrophysics Data System (ADS)

    Leroux, Hugues

    2012-04-01

    The deceleration tracks in the Stardust aerogel display a wide range of morphologies, which reveal a large diversity of incoming particles from comet 81P/Wild 2. If the large and dense mineral grains survived the extreme conditions of hypervelocity capture, this was not the case for the fine-grained material that is found strongly damaged within the aerogel. Due to their low mechanical strength, these assemblages were disaggregated, dispersed, and flash melted in the aerogel in walls of bulbous deceleration tracks. Their petrologic and mineralogical properties are found significantly modified by the flash heating of the capture. Originating from a quenched melt mixture of comet material and aerogel, the representative microstructure consists of silica-rich glassy clumps containing Fe-Ni-S inclusions, vesicles and "dust-rich" patches, the latter being remnants of individual silicate components of the impacting aggregate. The average composition of these melted particle fragments is close to the chondritic CI composition. They might originate from ultrafine-grained primitive components comparable to those found in chondritic porous IDPs. Capture effects in aerogel and associated sample biases are discussed in terms of size, chemical and mineralogical properties of the grains. These properties are essential for the grain survival in the extremely hot environment of hypervelocity impact capture in aerogel, and thus for inferring the correct properties of Wild 2 material.

  3. MROrchestrator: A Fine-Grained Resource Orchestration Framework for MapReduce Clusters

    SciTech Connect

    Sharma, Bikash; Prabhakar, Ramya; Kandemir, Mahmut; Das, Chita; Lim, Seung-Hwan

    2012-01-01

    Efficient resource management in data centers and clouds running large distributed data processing frameworks like MapReduce is crucial for enhancing the performance of hosted applications and boosting resource utilization. However, existing resource scheduling schemes in Hadoop MapReduce allocate resources at the granularity of fixed-size, static portions of nodes, called slots. In this work, we show that MapReduce jobs have widely varying demands for multiple resources, making the static and fixed-size slot-level resource allocation a poor choice both from the performance and resource utilization standpoints. Furthermore, lack of co-ordination in the management of mul- tiple resources across nodes prevents dynamic slot reconfigura- tion, and leads to resource contention. Motivated by this, we propose MROrchestrator, a MapReduce resource Orchestrator framework, which can dynamically identify resource bottlenecks, and resolve them through fine-grained, co-ordinated, and on- demand resource allocations. We have implemented MROrches- trator on two 24-node native and virtualized Hadoop clusters. Experimental results with a suite of representative MapReduce benchmarks demonstrate up to 38% reduction in job completion times, and up to 25% increase in resource utilization. We further show how popular resource managers like NGM and Mesos when augmented with MROrchestrator can hike up their performance.

  4. Modeling sediment resuspension-induced DO variation in fine-grained streams.

    PubMed

    Zahraeifard, Vahid; Deng, Zhiqiang

    2012-12-15

    Dissolved Oxygen (DO) levels in streams with nutrient enriched fine-grained sediment are highly affected by sediment resuspension. This paper presents a new model, called VART-DOS model, for simulation of instream DO transport, DO exchanges across water-sediment and water-air interfaces, and DO variation in response to sediment resuspension. The sediment resuspension effect is described by introducing a lumped term as a product of DO concentration and a rate of sediment resuspension-induced DO consumption (Λ). The rate parameter Λ is defined as a nonlinear function of average summer temperature of water and several sediment erosion-related parameters. This is a novel and unique feature of the VART-DOS model. Based on sensitivity analysis, effects of BOD and Sediment Oxygen Demand (SOD) on DO consumption are not so important as compared to sediment resuspension which can cause up to 83% reduction in DO level during high flow. The VART-DOS model was applied to the Lower Amite River in Louisiana, USA to perform continuous simulations of DO fluctuations in the winter month January and the summer month July involving several flood-induced sediment resuspension events. Simulation results indicate that the VART-DOS model is capable of capturing overall variation trends in DO concentration. The Normalized Root Mean Square Error (RMSE) between VART-DOS simulated and observed DO levels was 0. 42 for January and 0.23 for July, demonstrating the efficacy of the VART-DOS model. PMID:23137983

  5. Fine grained event processing on HPCs with the ATLAS Yoda system

    NASA Astrophysics Data System (ADS)

    Calafiura, Paolo; De, Kaushik; Guan, Wen; Maeno, Tadashi; Nilsson, Paul; Oleynik, Danila; Panitkin, Sergey; Tsulaia, Vakhtang; Van Gemmeren, Peter; Wenaus, Torre

    2015-12-01

    High performance computing facilities present unique challenges and opportunities for HEP event processing. The massive scale of many HPC systems means that fractionally small utilization can yield large returns in processing throughput. Parallel applications which can dynamically and efficiently fill any scheduling opportunities the resource presents benefit both the facility (maximal utilization) and the (compute-limited) science. The ATLAS Yoda system provides this capability to HEP-like event processing applications by implementing event-level processing in an MPI-based master-client model that integrates seamlessly with the more broadly scoped ATLAS Event Service. Fine grained, event level work assignments are intelligently dispatched to parallel workers to sustain full utilization on all cores, with outputs streamed off to destination object stores in near real time with similarly fine granularity, such that processing can proceed until termination with full utilization. The system offers the efficiency and scheduling flexibility of preemption without requiring the application actually support or employ check-pointing. We will present the new Yoda system, its motivations, architecture, implementation, and applications in ATLAS data processing at several US HPC centers.

  6. The Temperature Influence On The Properties Of The Fine - Grained Suspension Used In Underground Workings

    NASA Astrophysics Data System (ADS)

    Pomykała, Radosław; Kępys, Waldemar; Piotrowski, Zbigniew; Łyko, Paulina; Grzywa, Aleksandra

    2015-12-01

    Underground hard coal exploitation is often done under conditions of spontaneous fire hazard. The primary way to combat this threat is advanced, active or passive fire prevention. An important activity is the isolation of gobs using aqueous suspensions of fly ash as well as mineral binders. Therefore, the fine-grained suspension are often used in conditions of elevated temperature. The paper presents results of research on the effect of temperature (up to 80°C) on the properties of suspensions in a liquid state, including their rheological parameters and setting time. Suspensions prepared using the ashes from the hard coal combustion in fluidized bed boilers, and with the addition of Portland cement CEM I 42.5. During the research it was noted that the increased temperature significantly affect the acceleration of solidification processes of suspensions. In the case of rheological properties, the effect of temperature is ambiguous, among others, due to the phenomenon of sedimentation. However, in most cases, particularly for suspensions of higher solids content a marked increase in shear stress and viscosity of the suspensions with increasing temperature were observed.

  7. Fine grain separation for the production of biomass fuel from mixed municipal solid waste.

    PubMed

    Giani, H; Borchers, B; Kaufeld, S; Feil, A; Pretz, T

    2016-01-01

    The main goal of the project MARSS (Material Advanced Sustainable Systems) is to build a demonstration plant in order to recover a renewable biomass fuel suitable for the use in biomass power plants out of mixed municipal solid waste (MMSW). The demonstration plant was constructed in Mertesdorf (Germany), working alongside an existing mechanical-biological treatment plant, where the MMSW is biological dried under aerobe conditions in rotting boxes. The focus of the presented sorting campaign was set on the processing of fine grain particles minor than 11.5mm which have the highest mass content and biogenic energy potential of the utilized grain size fractions. The objective was to produce a biomass fuel with a high calorific value and a low content of fossil (plastic, synthetic) materials while maximizing the mass recovery. Therefore, the biogenic components of the dried MMSW are separated from inert and fossil components through various classification and sifting processes. In three experimental process setups of different processing depths, the grain size fraction 4-11.5mm was sifted by the use of air sifters and air tables. PMID:26272710

  8. Storage media pipelining: Making good use of fine-grained media

    NASA Technical Reports Server (NTRS)

    Vanmeter, Rodney

    1993-01-01

    This paper proposes a new high-performance paradigm for accessing removable media such as tapes and especially magneto-optical disks. In high-performance computing the striping of data across multiple devices is a common means of improving data transfer rates. Striping has been used very successfully for fixed magnetic disks improving overall system reliability as well as throughput. It has also been proposed as a solution for providing improved bandwidth for tape and magneto-optical subsystems. However, striping of removable media has shortcomings, particularly in the areas of latency to data and restricted system configurations, and is suitable primarily for very large I/Os. We propose that for fine-grained media, an alternative access method, media pipelining, may be used to provide high bandwidth for large requests while retaining the flexibility to support concurrent small requests and different system configurations. Its principal drawback is high buffering requirements in the host computer or file server. This paper discusses the possible organization of such a system including the hardware conditions under which it may be effective, and the flexibility of configuration. Its expected performance is discussed under varying workloads including large single I/O's and numerous smaller ones. Finally, a specific system incorporating a high-transfer-rate magneto-optical disk drive and autochanger is discussed.

  9. Fabrication and thermoelectric properties of fine-grained TiNiSn compounds

    SciTech Connect

    Zou Minmin; Li Jingfeng; Du Bing; Liu Dawei; Kita, Takuji

    2009-11-15

    Nearly single-phased TiNiSn half-Heusler compound thermoelectric materials were synthesized by combining mechanical alloying (MA) and spark plasma sintering (SPS) in order to reduce its thermal conductivity by refining the grain sizes. Although TiNiSn compound powders were not synthesized directly via MA, dense bulk samples of TiNiSn compound were obtained by the subsequent SPS treatment. It was found that an excessive Ti addition relative to the TiNiSn stoichiometry is effective in increasing the phase purity of TiNiSn half-Heusler phase in the bulk samples, by compensating for the Ti loss caused by the oxidation of Ti powders and MA processing. The maximum power factor value obtained in the Ti-compensated sample is 1720 muW m{sup -1} K{sup -2} at 685 K. A relatively high ZT value of 0.32 is achieved at 785 K for the present undoped TiNiSn compound polycrystals. - Graphical abstract: Nearly single-phased TiNiSn-based half-Heusler compound polycrystalline materials with fine grains were fabricated by combining mechanical alloying (MA) and spark plasma sintering (SPS). A high ZT value for undoped TiNiSn was obtained because of the reduced thermal conductivity.

  10. Explosive Fabrication of Intermetallics In Ti-Al System from Nano-Al and Coarse-Ti Powders

    NASA Astrophysics Data System (ADS)

    Chikhradze, Mikheil; Gigineishvili, Akaki; Cikhradze, Nikoloz

    2011-12-01

    Theoretical and experimental Investigations of shock wave consolidation processes of Ti-Al nano sized and ultra-disperse powder compositions are discussed. For theoretical calculations of the shock wave loaded materials were used the hydrodynamic theory and experimental adiabatics of Ti and Al. The normal and tangential stresses in the cylindrical steel tube (containers of Ti-Al reaction mixtures) were estimated using the partial solutions of elasticity theory. The mixtures of ultra-disperse Ti and nano sized (max≤50 nm) Al powder compositions were consolidated to full or near-full density by explosive-compaction technology. The ammonium nitride based industrial explosives were used for generation of shock waves. To form ultra-fine grained bulk TiAl intermetallides with different compositions, ultra-disperse Ti particles were mixed with nano-crystalline Al. Each reaction mixture was placed in a sealed container and explosively compacted using a normal and cylindrical detonation set-up. Explosive compaction experiments were performed in range of pressure impulse (5-20 GPA) at elevated temperatures. X-ray diffraction (XRD), structural investigations (SEM) and micro-hardness measurements were used to characterize the intermetallides phase composition and mechanical properties. The results of analysis revealing the effects of the compacting conditions and precursor particles sizes, affecting the consolidation and the properties of this new ultra high performance alloys are discussed.

  11. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Mechanism for Intermediate Depth Earthquakes

    NASA Astrophysics Data System (ADS)

    Coon, E.; Kelemen, P.; Hirth, G.; Spiegelman, M.

    2005-12-01

    Kelemen and Hirth (Fall 2004 AGU) presented a model for periodic, viscous shear heating instabilities along pre-existing, fine grained shear zones. This provides an attractive alternative to dehydration embrittlement for explaining intermediate-depth earthquakes, especially those in a narrow thermal window within the mantle section of subducting oceanic plates (Hacker et al JGR03). Ductile shear zones with widths of cm to m are common in shallow mantle massifs and peridotite along oceanic fracture zones. Pseudotachylites in a mantle shear zone show that shear heating temperatures exceeded the mantle solidus (Obata & Karato Tectonophys95). Olivine grain growth in shear zones is pinned by closely spaced pyroxenes; thus, once formed, these features do not `heal' on geological time scales in the absence of melt or fluid (Warren & Hirth EPSL05). Grain-size sensitive creep will be localized within these shear zones, in preference to host rocks with olivine grain size from 1 to 10 mm. Inspired by the work of Whitehead & Gans (GJRAS74), we proposed that such pre-existing shear zones might undergo repeated shear heating instabilities. This is not a new concept; what is new is that viscous deformation is limited to a narrow shear zone, because grain boundary sliding, sensitive to both stress and grain size, may accommodate creep even at high stress and high temperature. These new ideas yield a new result: simple models for a periodic shear heating instability. Last year, we presented a 1D numerical model using olivine flow laws, assuming that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. Stress evolves due to elastic strain and drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control T. A maximum of 1400 C (substantial melting of peridotite ) was imposed. Grain size evolves due to recrystallization and diffusion. For strain rates of E-13 to E-14 per sec and

  12. Permeability Enhancement in Fine-Grained Sediments by Chemically Induced Clay Fabric Shrinkage

    SciTech Connect

    Wijesinghe, A M; Kansa, E J; Viani, B E; Blake, R G; Roberts, J J; Huber, R D

    2004-02-26

    The National Research Council [1] identified the entrapment of contaminants in fine-grained clay-bearing soils as a major impediment to the timely and cost-effective remediation of groundwater to regulatory standards. Contaminants trapped in low-permeability, low-diffusivity, high-sorptivity clays are not accessible to advective flushing by treatment fluids from permeable zones, and slowly diffuse out to recontaminate previously cleaned permeable strata. We propose to overcome this barrier to effective remediation by exploiting the ability of certain nontoxic EPA-approved chemicals (e.g., ethanol) to shrink and alter the fabric of clays, and thereby create macro-porosity and crack networks in fine-grained sediments. This would significantly reduce the distance and time scales of diffusive mass transport to advectively flushed boundaries, to yield orders of magnitude reduction in the time required to complete remediation. Given that effective solutions to this central problem of subsurface remediation do not yet exist, the cost and time benefits of successful deployment of this novel concept, both as a stand-alone technology and as an enabling pre-treatment for other remedial technologies that rely on advective delivery, is likely to be very large. This project, funded as a 1-year feasibility study by LLNL's LDRD Program, is a multi-directorate, multi-disciplinary effort that leverages expertise from the Energy & Environment Directorate, the Environmental Restoration Division, and the Manufacturing & Materials Evaluation Division of Mechanical Engineering. In this feasibility study, a ''proof-of-principle'' experiment was performed to answer the central question: ''Can clay shrinkage induced by ethanol in clay-bearing sediments overcome realistic confining stresses, crack clay, and increase its effective permeability by orders of magnitude within a time that is much smaller than the time required for diffusive mass transport of ethanol in the unaltered sediment

  13. Laboratory Investigation of Electro-Osmotic Remediation of Fine-Grained Sediments

    SciTech Connect

    Cherepy, N.; Wildenschild, D.; Elsholz, A.

    2000-02-23

    Electro-osmosis, a coupled-flow phenomenon in which an applied electrical potential gradient drives water flow, may be used to induce water flow through fine-grained sediments. We plan to use this technology to remediate chlorinated solvent-contaminated clayey zones at the LLNL site. The electro-osmotic conductivity (k{sub e}) determined from bench-top studies for a core extracted from a sediment zone 36.4-36.6 m below surface was initially 7.37 x 10{sup -10} m{sup 2}/s-V, decreasing to 3.44 x 10{sup -10} m{sup 2}/s-V, after electro-osmotically transporting 0.70 pore volumes of water through it (195 ml). Hydraulic conductivity (k{sub h}) of the same core was initially measured to be 5.00 x 10{sup -10} m/s, decreasing to 4.08 x 10{sup -10} m/s at the end of processing. This decline in permeability is likely due to formation of a chemical precipitation zone within the core. Water splitting products and ions electromigrate and precipitate within the core; H{sup +} and metal cations migrate toward the cathode, and OH{sup -} from the cathode moves toward the anode. We are now exploring how to minimize this effect using pH control. The significance of this technology is that for this core, a 3 V/cm voltage gradient produced an initial effective hydraulic conductivity of 2.21 x 10{sup -7} m/s, >400x greater than the initial hydraulic conductivity.

  14. Supercooled interfacial water in fine-grained soils probed by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Lorek, A.; Wagner, N.

    2013-12-01

    Water substantially affects nearly all physical, chemical and biological processes on the Earth. Recent Mars observations as well as laboratory investigations suggest that water is a key factor of current physical and chemical processes on the Martian surface, e.g. rheological phenomena. Therefore it is of particular interest to get information about the liquid-like state of water on Martian analogue soils for temperatures below 0 °C. To this end, a parallel plate capacitor has been developed to obtain isothermal dielectric spectra of fine-grained soils in the frequency range from 10 Hz to 1.1 MHz at Martian-like temperatures down to -70 °C. Two Martian analogue soils have been investigated: a Ca-bentonite (specific surface of 237 m2 g-1, up to 9.4% w / w gravimetric water content) and JSC Mars 1, a volcanic ash (specific surface of 146 m2 g-1, up to 7.4% w / w). Three soil-specific relaxation processes are observed in the investigated frequency-temperature range: two weak high-frequency processes (bound or hydrated water as well as ice) and a strong low-frequency process due to counter-ion relaxation and the Maxwell-Wagner effect. To characterize the dielectric relaxation behaviour, a generalized fractional dielectric relaxation model was applied assuming three active relaxation processes with relaxation time of the ith process modelled with an Eyring equation. The real part of effective complex soil permittivity at 350 kHz was used to determine ice and liquid-like water content by means of the Birchak or CRIM equation. There are evidence that bentonite down to -70 °C has a liquid-like water content of 1.17 monolayers and JSC Mars 1 a liquid-like water content of 1.96 monolayers.

  15. Supercooled interfacial water in fine grained soils probed by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Lorek, A.; Wagner, N.

    2013-04-01

    Water as thermodynamic state parameter affects nearly all physical, chemical and biological processes on the earth. Recent Mars observations as well as laboratory investigations suggest that water is also a key factor of current physical and chemical processes on the martian surface, e.g. rheological phenomena. Therefore it is of particular interest to get information about the liquid like state of water on martian analog soils in the temperature range below 0 °C. In this context, a parallel plate capacitor has been developed to obtain isothermal dielectric spectra of fine grained soils in the frequency range from 10 Hz to 1.1 MHz at martian like temperatures down to -70 °C. Two martian analogue soils have been investigated: a Ca-Bentonite (specific surface of 237 m2 g-1, up to 9.4% w/w gravimetric water content) and JSC Mars 1, a volcanic ash (specific surface of 146 m2 g-1, up to 7.4% w/w). Three soil-specific relaxation processes are observed in the investigated frequency-temperature range: two weak high frequency processes (bound or hydrated water as well as ice) and a strong low frequency process due to counter ion relaxation and the Maxwell-Wagner effect. To characterize the dielectric relaxation behavior, a generalized fractional dielectric relaxation model is applied assuming three active relaxation processes with relaxation time of the ith process according to an Eyring equation. The real part of effective complex soil permittivity at 350 kHz was used to determine ice and liquid like water content by means of the Birchak or CRIM equation. There are evidence that Bentonite down to -70 °C has a liquid like water content of 1.17 monolayers and JSC Mars 1 a liquid like water content of 1.96 mono layers.

  16. Fine-grained mapping of mouse brain functional connectivity with resting-state fMRI.

    PubMed

    Mechling, Anna E; Hübner, Neele S; Lee, Hsu-Lei; Hennig, Jürgen; von Elverfeldt, Dominik; Harsan, Laura-Adela

    2014-08-01

    Understanding the intrinsic circuit-level functional organization of the brain has benefited tremendously from the advent of resting-state fMRI (rsfMRI). In humans, resting-state functional network has been consistently mapped and its alterations have been shown to correlate with symptomatology of various neurological or psychiatric disorders. To date, deciphering the mouse brain functional connectivity (MBFC) with rsfMRI remains a largely underexplored research area, despite the plethora of human brain disorders that can be modeled in this specie. To pave the way from pre-clinical to clinical investigations we characterized here the intrinsic architecture of mouse brain functional circuitry, based on rsfMRI data acquired at 7T using the Cryoprobe technology. High-dimensional spatial group independent component analysis demonstrated fine-grained segregation of cortical and subcortical networks into functional clusters, overlapping with high specificity onto anatomical structures, down to single gray matter nuclei. These clusters, showing a high level of stability and reliability in their patterning, formed the input elements for computing the MBFC network using partial correlation and graph theory. Its topological architecture conserved the fundamental characteristics described for the human and rat brain, such as small-worldness and partitioning into functional modules. Our results additionally showed inter-modular interactions via "network hubs". Each major functional system (motor, somatosensory, limbic, visual, autonomic) was found to have representative hubs that might play an important input/output role and form a functional core for information integration. Moreover, the rostro-dorsal hippocampus formed the highest number of relevant connections with other brain areas, highlighting its importance as core structure for MBFC.

  17. Irradiation creep properties and strength of a fine-grained isotropic graphite

    NASA Astrophysics Data System (ADS)

    Oku, T.; Eto, M.; Ishiyama, S.

    1990-06-01

    An irradiation creep test was conducted on a fine-grained isotropic graphite, IG-110, for the high temperature gas-cooled reactor under development in Japan Atomic Energy Research Institute (JAERI). The dimensions, Young's modulus, tensile and bending strengths of specimens were measured before and after the irradiation creep test. Irradiation creep coefficients were obtained on the basis of the difference of dimensions of the unstressed and creeped specimens before and after the irradiation creep test. As a result, the irradiation creep coefficient was determined to be 3.4 × 10 -29 -4.8 × 10 -29 (MPa· {n}/{m 2}) -1 at 756-984°C up to 1.8 × 10 25{n}/{m 2} (E > 29 fJ) . The average value was ( 4.22 ± 0.65) ×10 -29 (MPa· {n}/{m 2}) -1, provided that the difference in irradiation temperature is neglected. Young's modulus increased 38-48% after irradiation. The increase in tensile strength of irradiation creeped specimen was 23-45% smaller than the bending strength. This suggests that the applied stress to the creep specimens under neutron irradiation gives rise to recovery of irradiation damage, compared with the case of unstressed specimens. The relation between the Young'a modulus ratio (E/E 0) and the bending strength ratio ( σb/ σ0) can be expressed by the equation: σ b/σ o = ( {E}/{E 0}) z, where z is a constant.

  18. Groundwater flow, velocity, and age in a thick, fine-grained till unit in southeastern Wisconsin

    NASA Astrophysics Data System (ADS)

    Simpkins, W. W.; Bradbury, K. R.

    1992-03-01

    Piezometer nests were installed at study sites in each of five north-south-trending end moraines of the late Pleistocene Oak Creek Formation in southeastern Wisconsin. The formation is composed primarily of a fine-grained glacial diamicton (till) and laterally continuous and discontinuous, coarse-grained lake and meltwater stream sediment. It overlies the Silurian dolomite aquifer, which is a source of drinking water to rural areas. The average vertical linear velocity and age of ground water in the Oak Creek Formation were estimated by three methods: Darcy's Law, environmental isotopes including 3H, δ2H, δ18O, and 14C (dissolved inorganic carbon), and solute transport modeling of 18O. The F-1 and Metro sites in the Tinley moraine showed excellent agreement among the three estimates of vertical velocity and showed the lowest velocity values (0.3-0.5 cm year -1 downward), which suggests that diffusion controls vertical mass transport at these sites. Although the extrapolated maximum age of ground water is 35 000 years, ground water below 75 m at these sites is probably not older than 15 000 years, which is the maximum age of the formation. Estimates of velocity showed less agreement at study sites in the Lake Border moraine system to the east and ranged from about 0.2 to 20.7 cm year -1; maximum groundwater age could range from 213 to 6000 years. Higher and more variable velocities, perhaps owing to thinner and more heterogeneous sediment in these areas, suggest that diffusion may not dominate vertical mass transport. Heterogeneity and fractures may also promote the development of groundwater flow systems dominated by lateral flow. Because of the uncertainty about the nature of groundwater flow, velocity, and age in the formation east of the Tinley moraine, future waste-disposal activity in southeastern Wisconsin should be confined to the thickest parts of the Tinley moraine near the present F-1 and Metro sites.

  19. Sources of fine-grained sediment to streams using fallout radionuclides in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Gellis, A.; Fuller, C. C.; Van Metre, P. C.

    2014-12-01

    Fluvial sediment is a major factor in aquatic habitat degradation. Understanding the sources of this sediment is a necessary component of management plans and policies aimed at reducing sediment inputs. Because of the time intensive framework of most sediment-source studies, spatial interpretations are often limited to the study watershed. To address sediment sources on a larger scale, the U.S. Geological Survey- National Water Quality Assessment (NAWQA) Program as part of the Midwest Stream Quality Assessment, used fallout radioisotopes (excess lead-210, cesium-137, and beryllium-7) to determine the source ((upland (surface runoff) or channel derived)) of fine-grained (<0.063 mm) bed sediment in the Cornbelt Ecoregion. The study area encompassed parts of 11 states in the Midwestern United States covering 648,239 km2 of the United States. Sampling occurred in July and August of 2013, in conjunction with water chemistry, aquatic-habitat and ecological community assessments. Ninety-nine watersheds were sampled, the majority of which were predominately agricultural, with contributing areas ranging between 6.7 to 5,893 km2. Using the ratio of beryllium-7 to excess lead-210, the percent of upland to channel-derived sediment was estimated. Results indicate that sediment sources vary among the 99 watersheds. Channel sediment is an important source presumably from bank erosion. Upland sediment was not the dominant source of sediment in many of these agricultural watersheds. Suspended-sediment samples collected over an 8-week period for 3 watersheds also show that the percent of upland versus channel sediment varies spatially and temporally.

  20. Fine-grained policy control in U.S. Army Research Laboratory (ARL) multimodal signatures database

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly; Grueneberg, Keith; Wood, David; Calo, Seraphin

    2014-06-01

    The U.S. Army Research Laboratory (ARL) Multimodal Signatures Database (MMSDB) consists of a number of colocated relational databases representing a collection of data from various sensors. Role-based access to this data is granted to external organizations such as DoD contractors and other government agencies through a client Web portal. In the current MMSDB system, access control is only at the database and firewall level. In order to offer finer grained security, changes to existing user profile schemas and authentication mechanisms are usually needed. In this paper, we describe a software middleware architecture and implementation that allows fine-grained access control to the MMSDB at a dataset, table, and row level. Result sets from MMSDB queries issued in the client portal are filtered with the use of a policy enforcement proxy, with minimal changes to the existing client software and database. Before resulting data is returned to the client, policies are evaluated to determine if the user or role is authorized to access the data. Policies can be authored to filter data at the row, table or column level of a result set. The system uses various technologies developed in the International Technology Alliance in Network and Information Science (ITA) for policy-controlled information sharing and dissemination1. Use of the Policy Management Library provides a mechanism for the management and evaluation of policies to support finer grained access to the data in the MMSDB system. The GaianDB is a policy-enabled, federated database that acts as a proxy between the client application and the MMSDB system.

  1. Fine-grained, local maps and coarse, global representations support human spatial working memory.

    PubMed

    Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni

    2014-01-01

    While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall.

  2. Assessing the Sources and Age of Fine-grained Channel and Suspended Sediment using Radionuclides

    NASA Astrophysics Data System (ADS)

    Gellis, A.; Fuller, C.; Van Metre, P. C.

    2015-12-01

    Understanding the sources and ages of stream sediment is important in developing conceptual models of landscape evolution, as well as in developing management strategies to reduce sediment flux. Atmospheric derived cosmogenic radionuclides (7Be and 210Pbex), along with bomb-fallout 137Cs, have been shown to differentiate between surface and non-surface derived sediment. Non-surface derived sediment includes streambanks and in-channel sediment storage. Two techniques were used: (1) Presence or absence of 210Pbex and 137Cs indicated surface and non-surface sources and (2) 7Be to 210Pbex ratios were used to date recent (surface) sediment. We have tested the use of 7Be, 210Pbex, and 137Cs to source and age fine-grained sediment (<0.063 mm) in small streams (<250 km2) draining regional areas of the United States (Midwest, Southeast, and Pacific Northwest) and in a small watershed of the Chesapeake Bay, Smith Creek (242 km2), Virginia, U.S.A. Land uses in the watersheds vary between agriculture, forest, and urban, and sampling included both suspended-sediment and bed material. Results indicate that non-surface derived sediment (e.g. streambanks) is an important source of sediment in all settings. For example, in 80% of 114 Midwest streams, non-surface derived sediment contributed greater than 70% of sediment. Age determination results indicate that many of the samples include a component of sediment that is 200 days old or younger. We discuss the assumptions associated with using radionuclides and whether rainfall or surface soil should be used as boundary conditions to date sediment. Management implications of these results are also discussed.

  3. Fine-grained, local maps and coarse, global representations support human spatial working memory.

    PubMed

    Katshu, Mohammad Zia Ul Haq; d'Avossa, Giovanni

    2014-01-01

    While sensory processes are tuned to particular features, such as an object's specific location, color or orientation, visual working memory (vWM) is assumed to store information using representations, which generalize over a feature dimension. Additionally, current vWM models presume that different features or objects are stored independently. On the other hand, configurational effects, when observed, are supposed to mainly reflect encoding strategies. We show that the location of the target, relative to the display center and boundaries, and overall memory load influenced recall precision, indicating that, like sensory processes, capacity limited vWM resources are spatially tuned. When recalling one of three memory items the target distance from the display center was overestimated, similar to the error when only one item was memorized, but its distance from the memory items' average position was underestimated, showing that not only individual memory items' position, but also the global configuration of the memory array may be stored. Finally, presenting the non-target items at recall, consequently providing landmarks and configurational information, improved precision and accuracy of target recall. Similarly, when the non-target items were translated at recall, relative to their position in the initial display, a parallel displacement of the recalled target was observed. These findings suggest that fine-grained spatial information in vWM is represented in local maps whose resolution varies with distance from landmarks, such as the display center, while coarse representations are used to store the memory array configuration. Both these representations are updated at the time of recall. PMID:25259601

  4. Geochemical and petrographical characterization of fine-grained carbonate particles along proximal to distal transects

    NASA Astrophysics Data System (ADS)

    Turpin, Mélanie; Emmanuel, Laurent; Immenhauser, Adrian; Renard, Maurice

    2012-12-01

    The origin of carbonate ooze particles is often poorly understood. This is due to their polygenic origin and potential post-depositional alteration. Here, the outcome of a physical separation study with regard to different component classes of micritic carbonates is shown. The focus is on grain size and morphology, mineralogy and isotope signatures. Two contrasting proximal-to-distal transects were investigated: (1) the Miocene leeward margin of Great Bahama Bank (ODP Leg 166) and (2) the transition between the Maiella platform and the Umbria-Marche basin in central Italy near the Cenomanian-Turonian boundary. In both case settings, carbonate particles of biogenic origin include at least three groups of organisms: (i) planktonic foraminifera, (ii) calcareous nannofossils and (iii) fragments of unspecified neritic skeletal material. Two further particle types lack diagnostic structures, and based on particle size and mineralogy, are here referred to as (iv) macroparticles (5-20 μm, mainly xenomorphic) and (v) microparticles (< 12 μm, mainly automorphic to sub-automorphic). Macro- and microparticles represent 50 to 80% of the carbonate phase in slope and toe-of-slope domains and share characteristic carbon and oxygen isotope signatures. Macro- and microparticles are considered shallow-water precipitation products subsequently exported into the slope and toe-of-slope domains. Macroparticles are probably related to the fragmentation of neritic skeletal components while microparticles point to inorganic and/or bioinduced precipitation in the water column. In some cases, macro- and microparticles may have an early diagenetic origin. The identification of the origin of fine-grained particles allows for a quantitative assessment of exported, in situ and diagenetic carbonate materials in periplatform environments. The data shown here represent an important step towards a more complete characterization of carbonate ooze and micrite.

  5. Fine-grained rutile in the Gulf of Maine - diagenetic origin, source rocks, and sedimentary environment of deposition

    USGS Publications Warehouse

    Valentine, P.C.; Commeau, J.A.

    1990-01-01

    The Gulf of Maine, an embayment of the New England margin, is floored by shallow, glacially scoured basins that are partly filled with late Pleistocene and Holocene silt and clay containing 0.7 to 1.0 wt percent TiO2 chiefly in the form of silt-size rutile. Much of the rutile in the Gulf of Maine mud probably formed diagenetically in poorly cemented Carboniferous and Triassic coarse-grained sedimentary rocks of Nova Scotia and New Brunswick after the dissolution of titanium-rich detrital minerals (ilmenite, ilmenomagnetite). The diagenesis of rutile in coarse sedimentary rocks (especially arkose and graywacke) followed by erosion, segregation, and deposition (and including recycling of fine-grained rutile from shales) can serve as a model for predicting and prospecting for unconsolidated deposits of fine-grained TiO2. -from Authors

  6. The anterior hippocampus supports a coarse, global environmental representation and the posterior hippocampus supports fine-grained, local environmental representations.

    PubMed

    Evensmoen, Hallvard Røe; Lehn, Hanne; Xu, Jian; Witter, Menno P; Nadel, Lynn; Håberg, Asta K

    2013-11-01

    Representing an environment globally, in a coarse way, and locally, in a fine-grained way, are two fundamental aspects of how our brain interprets the world that surrounds us. The neural correlates of these representations have not been explicated in humans. In this study we used fMRI to investigate these correlates and to explore a possible functional segregation in the hippocampus and parietal cortex. We hypothesized that processing a coarse, global environmental representation engages anterior parts of these regions, whereas processing fine-grained, local environmental information engages posterior parts. Participants learned a virtual environment and then had to find their way during fMRI. After scanning, we assessed strategies used and representations stored. Activation in the hippocampal head (anterior) was related to the multiple distance and global direction judgments and to the use of a coarse, global environmental representation during navigation. Activation in the hippocampal tail (posterior) was related to both local and global direction judgments and to using strategies like number of turns. A structural shape analysis showed that the use of a coarse, global environmental representation was related to larger right hippocampal head volume and smaller right hippocampal tail volume. In the inferior parietal cortex, a similar functional segregation was observed, with global routes represented anteriorly and fine-grained route information such as number of turns represented posteriorly. In conclusion, moving from the anterior to the posterior hippocampus and inferior parietal cortex reflects a shift from processing coarse global environmental representations to processing fine-grained, local environmental representations.

  7. Influence of Carbide Precipitation and Dissolution on the Microstructure of Ultra-Fine-Grained Intercritically Annealed Medium Manganese Steel

    NASA Astrophysics Data System (ADS)

    Lee, Sangwon; De Cooman, Bruno C.

    2016-07-01

    The influence of cementite precipitation and dissolution on the formation of the carbide-free, ultra-fine-grained, ferrite + austenite microstructure of medium manganese steel was analyzed. During heating to the intercritical temperature, cementite nucleates at low-angle lath martensite boundaries, austenite subsequently nucleates at ferrite/cementite boundaries, and the cementite is gradually replaced by the growing austenite grains. The intercritical austenite carbon is therefore due to cementite dissolution, rather than carbon partitioning between ferrite and austenite.

  8. Estimating suspended sediment using acoustics in a fine-grained riverine system, Kickapoo Creek at Bloomington, Illinois

    USGS Publications Warehouse

    Manaster, Amanda D.; Domanski, Marian M.; Straub, Timothy D.; Boldt, Justin A.

    2016-08-18

    Acoustic technologies have the potential to be used as a surrogate for measuring suspended-sediment concentration (SSC). This potential was examined in a fine-grained (97-100 percent fines) riverine system in central Illinois by way of installation of an acoustic instrument. Acoustic data were collected continuously over the span of 5.5 years. Acoustic parameters were regressed against SSC data to determine the accuracy of using acoustic technology as a surrogate for measuring SSC in a fine-grained riverine system. The resulting regressions for SSC and sediment acoustic parameters had coefficients of determination ranging from 0.75 to 0.97 for various events and configurations. The overall Nash-Sutcliffe model-fit efficiency was 0.95 for the 132 observed and predicted SSC values determined using the sediment acoustic parameter regressions. The study of using acoustic technologies as a surrogate for measuring SSC in fine-grained riverine systems is ongoing. The results at this site are promising in the realm of surrogate technology.

  9. Sealing shales versus brittle shales: A threshold in the properties and uses of fine-grained sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Bourg, I. C.

    2015-12-01

    Fine-grained sedimentary rocks (shale, mudstone) play important roles in global CO2 abatement efforts through their importance in carbon capture and storage (CCS), radioactive waste storage, and shale gas extraction. These different technologies rely on seemingly conflicting premises regarding the sealing properties of shale and mudstone, suggesting that fine-grained rocks that lend themselves to hydrocarbon extraction may not be optimal seals for CCS or radioactive waste storage, and vice versa. In this paper, a compilation of experimental data on the properties of well-characterized shale and mudstone formations is used to demonstrate that clay mineral mass fraction, Xclay, is a master variable that controls key material properties of these formations and that a remarkably sharp threshold at Xclay ~ 1/3 separates fine-grained rocks with very different properties. This threshold coincides with the predictions of a simple conceptual model of the microstructure of sedimentary rocks and is reflected in the applications of shale and mudstone formations for CCS, radioactive waste storage, and shale gas extraction.

  10. Numerical simulations of heavily polluted fine-grained sediment remobilization using 1D, 1D+, and 2D channel schematization.

    PubMed

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2015-03-01

    This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259

  11. Matrix and fine-grained rims in the unequilibrated CO3 chondrite, ALHA77307 - Origins and evidence for diverse, primitive nebular dust components

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.

    1993-01-01

    SEM, TEM, and electron microprobe analysis were used to investigate in detail the mineralogical and chemical characteristics of dark matrix and fine-grained rims in the unequilibrated CO3 chondrite ALHA77307. Data obtained revealed that there was a remarkable diversity of distinct mineralogical components, which can be identified using their chemical and textural characteristics. The matrix and rim components in ALHA77307 formed by disequilibrium condensation process as fine-grained amorphous dust that is represented by the abundant amorphous component in the matrix. Subsequent thermal processing of this condensate material, in a variety of environments in the nebula, caused partial or complete recrystallization of the fine-grained dust.

  12. From bird to sparrow: Learning-induced modulations in fine-grained semantic discrimination.

    PubMed

    De Meo, Rosanna; Bourquin, Nathalie M-P; Knebel, Jean-François; Murray, Micah M; Clarke, Stephanie

    2015-09-01

    Recognition of environmental sounds is believed to proceed through discrimination steps from broad to more narrow categories. Very little is known about the neural processes that underlie fine-grained discrimination within narrow categories or about their plasticity in relation to newly acquired expertise. We investigated how the cortical representation of birdsongs is modulated by brief training to recognize individual species. During a 60-minute session, participants learned to recognize a set of birdsongs; they improved significantly their performance for trained (T) but not control species (C), which were counterbalanced across participants. Auditory evoked potentials (AEPs) were recorded during pre- and post-training sessions. Pre vs. post changes in AEPs were significantly different between T and C i) at 206-232ms post stimulus onset within a cluster on the anterior part of the left superior temporal gyrus; ii) at 246-291ms in the left middle frontal gyrus; and iii) 512-545ms in the left middle temporal gyrus as well as bilaterally in the cingulate cortex. All effects were driven by weaker activity for T than C species. Thus, expertise in discriminating T species modulated early stages of semantic processing, during and immediately after the time window that sustains the discrimination between human vs. animal vocalizations. Moreover, the training-induced plasticity is reflected by the sharpening of a left lateralized semantic network, including the anterior part of the temporal convexity and the frontal cortex. Training to identify birdsongs influenced, however, also the processing of C species, but at a much later stage. Correct discrimination of untrained sounds seems to require an additional step which results from lower-level features analysis such as apperception. We therefore suggest that the access to objects within an auditory semantic category is different and depends on subject's level of expertise. More specifically, correct intra

  13. High-flux plasma exposure of ultra-fine grain tungsten

    DOE PAGESBeta

    Kolasinski, R. D.; Buchenauer, D. A.; Doerner, R. P.; Fang, Z. Z.; Ren, C.; Oya, Y.; Michibayashi, K.; Friddle, R. W.; Mills, B. E.

    2016-05-12

    Here we examine the response of an ultra-fine grained (UFG) tungsten material to high-flux deuterium plasma exposure. UFG tungsten has received considerable interest as a possible plasma-facing material in magnetic confinement fusion devices, in large part because of its improved resistance to neutron damage. However, optimization of the material in this manner may lead to trade-offs in other properties. Moreover, we address two aspects of the problem in this work: (a) how high-flux plasmas modify the structure of the exposed surface, and (b) how hydrogen isotopes become trapped within the material. The specific UFG tungsten considered here contains 100 nm-widthmore » Ti dispersoids (1 wt%) that limit the growth of the W grains to a median size of 960 nm. Metal impurities (Fe, Cr) as well as O were identified within the dispersoids; these species were absent from the W matrix. To simulate relevant particle bombardment conditions, we exposed specimens of the W-Ti material to low energy (100 eV), high-flux (> 1022 m-2 s-1) deuterium plasmas in the PISCES-A facility at the University of California, San Diego. To explore different temperature-dependent trapping mechanisms, we considered a range of exposure temperatures between 200 °C and 500 °C. For comparison, we also exposed reference specimens of conventional powder metallurgy warm-rolled and ITER-grade tungsten at 300 °C. Post-mortem focused ion beam profiling and atomic force microscopy of the UFG tungsten revealed no evidence of near-surface bubbles containing high pressure D2 gas, a common surface degradation mechanism associated with plasma exposure. Thermal desorption spectrometry indicated moderately higher trapping of D in the material compared with the reference specimens, though still within the spread of values for different tungsten grades found in the literature database. Finally, for the criteria considered here, these results do not indicate any significant obstacles to the potential use of UFG

  14. Experimentally Derived Mechanical and Flow Properties of Fine-grained Soil Mixtures

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Peets, C. S.; Flemings, P. B.; Day-Stirrat, R. J.; Germaine, J. T.

    2009-12-01

    As silt content in mudrocks increases, compressibility linearly decreases and permeability exponentially increases. We prepared mixtures of natural Boston Blue Clay (BBC) and synthetic silt in the ratios of 100:0, 86:14, 68:32, and 50:50, respectively. To recreate natural conditions yet remove variability and soil disturbance, we resedimented all mixtures to a total stress of 100 kPa. We then loaded them to approximately 2.3 MPa in a CRS (constant-rate-of-strain) uniaxial consolidation device. The analyses show that the higher the silt content in the mixture, the stiffer the material is. Compression index as well as liquid and plastic limits linearly decrease with increasing silt content. Vertical permeability increases exponentially with porosity as well as with silt content. Fabric alignment determined through High Resolution X-ray Texture Goniometry (HRXTG) expressed as maximum pole density (m.r.d.) decreases with silt content at a given stress. However, this relationship is not linear instead there are two clusters: the mixtures with higher clay contents (100:0, 84:16) have m.r.d. around 3.9 and mixtures with higher silt contents (68:32, 50:50) have m.r.d. around 2.5. Specific surface area (SSA) measurements show a positive correlation to the total clay content. The amount of silt added to the clay reduces specific surface area, grain orientation, and fabric alignment; thus, it affects compression and fluid flow behavior on a micro- and macroscale. Our results are comparable with previous studies such as kaolinite / silt mixtures (Konrad & Samson [2000], Wagg & Konrad [1990]). We are studying this behavior to understand how fine-grained rocks consolidate. This problem is important to practical and fundamental programs. For example, these sediments can potentially act as either a tight gas reservoir or a seal for hydrocarbons or geologic storage of CO2. This study also provides a systematic approach for developing models of permeability and compressibility

  15. From bird to sparrow: Learning-induced modulations in fine-grained semantic discrimination.

    PubMed

    De Meo, Rosanna; Bourquin, Nathalie M-P; Knebel, Jean-François; Murray, Micah M; Clarke, Stephanie

    2015-09-01

    Recognition of environmental sounds is believed to proceed through discrimination steps from broad to more narrow categories. Very little is known about the neural processes that underlie fine-grained discrimination within narrow categories or about their plasticity in relation to newly acquired expertise. We investigated how the cortical representation of birdsongs is modulated by brief training to recognize individual species. During a 60-minute session, participants learned to recognize a set of birdsongs; they improved significantly their performance for trained (T) but not control species (C), which were counterbalanced across participants. Auditory evoked potentials (AEPs) were recorded during pre- and post-training sessions. Pre vs. post changes in AEPs were significantly different between T and C i) at 206-232ms post stimulus onset within a cluster on the anterior part of the left superior temporal gyrus; ii) at 246-291ms in the left middle frontal gyrus; and iii) 512-545ms in the left middle temporal gyrus as well as bilaterally in the cingulate cortex. All effects were driven by weaker activity for T than C species. Thus, expertise in discriminating T species modulated early stages of semantic processing, during and immediately after the time window that sustains the discrimination between human vs. animal vocalizations. Moreover, the training-induced plasticity is reflected by the sharpening of a left lateralized semantic network, including the anterior part of the temporal convexity and the frontal cortex. Training to identify birdsongs influenced, however, also the processing of C species, but at a much later stage. Correct discrimination of untrained sounds seems to require an additional step which results from lower-level features analysis such as apperception. We therefore suggest that the access to objects within an auditory semantic category is different and depends on subject's level of expertise. More specifically, correct intra

  16. Variational fine-grained data assimilation schemes for atmospheric chemistry transport and transformation models

    NASA Astrophysics Data System (ADS)

    Penenko, Alexey; Penenko, Vladimir; Tsvetova, Elena

    2015-04-01

    The paper concerns data assimilation problem for an atmospheric chemistry transport and transformation models. Data assimilation is carried out within variation approach on a single time step of the approximated model. A control function is introduced into the model source term (emission rate) to provide flexibility to adjust to data. This function is evaluated as the minimum of the target functional combining control function norm to a misfit between measured and model-simulated analog of data. This provides a flow-dependent and physically-plausible structure of the resulting analysis and reduces the need to calculate model error covariance matrices that are sought within conventional approach to data assimilation. Extension of the atmospheric transport model with a chemical transformations module influences data assimilation algorithms performance. This influence is investigated with numerical experiments for different meteorological conditions altering convection-diffusion processes characteristics, namely strong, medium and low wind conditions. To study the impact of transformation and data assimilation, we compare results for a convection-diffusion model (without data assimilation), convection-diffusion with assimilation, convection-diffusion-reaction (without data assimilation) and convection-diffusion-reaction-assimilation models. Both high dimensionalities of the atmospheric chemistry models and a real-time mode of operation demand for computational efficiency of the algorithms. Computational issues with complicated models can be solved by using a splitting technique. As the result a model is presented as a set of relatively independent simple models equipped with a kind of coupling procedure. With regard to data assimilation two approaches can be identified. In a fine-grained approach data assimilation is carried out on the separate splitting stages [1,2] independently on shared measurement data. The same situation arises when constructing a hybrid model

  17. Morphology and processes associated with the accumulation of the fine-grained sediment deposit on the southern New England shelf

    USGS Publications Warehouse

    Twichell, David C.; McClennen, Charles E.; Butman, Bradford

    1981-01-01

    A 13,000 km2 area of the southern New England Continental Shelf which is covered by anomalously fine-grained sediment has been surveyed by means of high-resolution, seismic-reflection and side-scan sonar techniques to map its morphology and structure, and a near-bottom instrument system contributed to understanding present activity of the deposit. Seismic-reflection profiles show that the fine-grained deposit, which is as much as 13 m thick, has accumulated during the last transgression because it rests on a reflector that is geomorphically similar to and continuous with the Holocene transgressive sand sheet still exposed on the shelf to the west. The ridge and swale topography comprising the sand sheet on the shelf off New Jersey and Long Island are relict in origin as these same features are found buried under the fine sediment deposit. Southwestward migrating megaripples observed on the sonographs in the eastern part of the deposit are evidence that sediment is still actively accumulating in this area. In the western part of the deposit, where surface sediment is composed of silt plus clay, evidence of present sediment mobility consists of changes in the near-bottom, suspended-matter concentrations primarily associated with storms. Nantucket Shoals and Georges Bank are thought to be the sources for the fine-textured sediment. Storms and strong tidal currents in these shoal areas may still erode available fine-grained material, which then is transported westward by the mean drift to the southern New England Shelf, where a comparatively tranquil environment permits deposition of the fine material.

  18. In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing.

    PubMed

    Ratna Sunil, B; Sampath Kumar, T S; Chakkingal, Uday; Nandakumar, V; Doble, Mukesh; Devi Prasad, V; Raghunath, M

    2016-02-01

    The objective of the present work is to investigate the role of different grain sizes produced by equal channel angular pressing (ECAP) on the degradation behavior of magnesium alloy using in vitro and in vivo studies. Commercially available AZ31 magnesium alloy was selected and processed by ECAP at 300°C for up to four passes using route Bc. Grain refinement from a starting size of 46μm to a grain size distribution of 1-5μm was successfully achieved after the 4th pass. Wettability of ECAPed samples assessed by contact angle measurements was found to increase due to the fine grain structure. In vitro degradation and bioactivity of the samples studied by immersing in super saturated simulated body fluid (SBF 5×) showed rapid mineralization within 24h due to the increased wettability in fine grained AZ31 Mg alloy. Corrosion behavior of the samples assessed by weight loss and electrochemical tests conducted in SBF 5× clearly showed the prominent role of enhanced mineral deposition on ECAPed AZ31 Mg in controlling the abnormal degradation. Cytotoxicity studies by MTT colorimetric assay showed that all the samples are viable. Additionally, cell adhesion was excellent for ECAPed samples particularly for the 3rd and 4th pass samples. In vivo experiments conducted using New Zealand White rabbits clearly showed lower degradation rate for ECAPed sample compared with annealed AZ31 Mg alloy and all the samples showed biocompatibility and no health abnormalities were noticed in the animals after 60days of in vivo studies. These results suggest that the grain size plays an important role in degradation management of magnesium alloys and ECAP technique can be adopted to achieve fine grain structures for developing degradable magnesium alloys for biomedical applications.

  19. Evolution of Fine-Grained Channel Margin Deposits behind Large Woody Debris in an Experimental Gravel-Bed Flume

    NASA Astrophysics Data System (ADS)

    ONeill, B.; Marks, S.; Skalak, K.; Puleo, J. A.; Wilcock, P. R.; Pizzuto, J. E.

    2014-12-01

    Fine grained channel margin (FGCM) deposits of the South River, Virginia sequester a substantial volume of fine-grained sediment behind large woody debris (LWD). FGCM deposits were created in a laboratory setting meant to simulate the South River environment using a recirculating flume (15m long by 0.6m wide) with a fixed gravel bed and adjustable slope (set to 0.0067) to determine how fine sediment is transported and deposited behind LWD. Two model LWD structures were placed 3.7 m apart on opposite sides of the flume. A wire mesh screen with attached wooden dowels simulated LWD with an upstream facing rootwad. Six experiments with three different discharge rates, each with low and high sediment concentrations, were run. Suspended sediment was very fine grained (median grain size of 3 phi) and well sorted (0.45 phi) sand. Upstream of the wood, water depths averaged about 0.08m, velocities averaged about 0.3 m/s, and Froude numbers averaged around 0.3. Downstream of the first LWD structure, velocities were reduced tenfold. Small amounts of sediment passed through the rootwad and fell out of suspension in the area of reduced flow behind LWD, but most of the sediment was carried around the LWD by the main flow and then behind the LWD by a recirculating eddy current. Upstream migrating dunes formed behind LWD due to recirculating flow, similar to reattachment bars documented in bedrock canyon rivers partially obstructed by debouching debris fans. These upstream migrating dunes began at the reattachment point and merged with deposits formed from sediment transported through the rootwad. Downstream migrating dunes formed along the channel margin behind the LWD, downstream of the reattachment point. FGCM deposits were about 3 m long, with average widths of about 0.8 m. Greater sediment concentration created thicker FGCM deposits, and higher flows eroded the sides of the deposits, reducing their widths.

  20. A comparison of the deformation behavior of ultra fine grained copper produced by particulate processing and bulk deformation processing

    SciTech Connect

    Sastry, S.M.L.; Iyer, R.S.; Provenzano, V.; Kurihara, L.

    1999-07-01

    Mechanical properties of ultra fine grained copper prepared by particulate processing and bulk deformation processing were studied. Specimens were prepared by (i) consolidation of nanocrystalline particles produced by solution phase synthesis (SPS) and POLYOL processes and (ii) severe plastic deformation (SPD) by equal channel angular extrusion (ECAE). The mechanical properties were determined by micro hardness measurements, compression testing, and three-point bend testing. Whereas the particulate processed copper exhibited high hardness values, the specimens failed without exhibiting any plastic deformation in 3-point bend tests.

  1. Experimental approaches to marine and meteoric dissolution-to-repreciptiation cycles of fine-grained marine carbonate sediments

    NASA Astrophysics Data System (ADS)

    Immenhauser, Adrian; Buhl, Dieter; Riechelmann, Sylvia; Kwiecien, Ola; Lokier, Stephen; Neuser, Rolf

    2016-04-01

    Fine-grained carbonate (carbonate ooze), or microcrystalline carbonate (micrite), its lithified counterpart, forms a main constituent of limestones throughout much of Earth's history. Fine-grained carbonates are deposited below the permanent fair-weather wave base in neritic lagoonal environments or below the storm-wave base in basinal settings. The origin of components forming these fine-grained carbonates often remains poorly understood and represents a major challenge in carbonate sedimentology, particularly when these materials are used as carbonate archives (bulk micrite geochemistry). Here we present a novel experimental approach exposing natural, fine-grained carbonate sediments to dissolution-reprecipitation cycles under non-sterile conditions that mimick earth-surface conditions. In a first stage, the experiment simulated subaerial exposure of an ooid (aragonite) shoal and leaching and carbonate dissolution under meteoric phreatic conditions. In a second stage, CO2 was added to the experimental fluid (natural rainwater) representing soil-zone activity. In a third stage, partly dissolved (micro-karstified) sediments were exposed to marine phreatic conditions simulating renewed flooding of the shoal carbonates. During the third stage, precipitation was induced by degassing the CO2 in the fluid with N2. Degassing induced nucleation and growth of a diagenetic inorganic aragonite (and subordinate calcite) phase upon the surface of carbonate particles. The outcome of these first experiments is promising. The CO2 concentration of the fluid and the air are low under atmospheric conditions and increase as expected due to adding CO2 to the experiment resulting in a lower pH. Carbonate dissolution increases conductivity, alkalinity, and calcium concentration reaching a plateau at the end of the first experimental phase. Small surficial damages to ooids represent zones of weakness and form the preferred sites of dissolution leading to a deepening and widening of these

  2. Hot deformation behavior of uniform fine-grained GH4720Li alloy based on its processing map

    NASA Astrophysics Data System (ADS)

    Yu, Qiu-ying; Yao, Zhi-hao; Dong, Jian-xin

    2016-01-01

    The hot deformation behavior of uniform fine-grained GH4720Li alloy was studied in the temperature range from 1040 to 1130°C and the strain-rate range from 0.005 to 0.5 s-1 using hot compression testing. Processing maps were constructed on the basis of compression data and a dynamic materials model. Considerable flow softening associated with superplasticity was observed at strain rates of 0.01 s-1 or lower. According to the processing map and observations of the microstructure, the uniform fine-grained microstructure remains intact at 1100°C or lower because of easily activated dynamic recrystallization (DRX), whereas obvious grain growth is observed at 1130°C. Metallurgical instabilities in the form of non-uniform microstructures under higher and lower Zener-Hollomon parameters are induced by local plastic flow and primary γ' local faster dissolution, respectively. The optimum processing conditions at all of the investigated strains are proposed as 1090-1130°C with 0.08-0.5 s-1 and 0.005-0.008 s-1 and 1040-1085°C with 0.005-0.06 s-1.

  3. Rate and Orientation Dependence of Formability in Fine-Grained AZ31B-O Mg Alloy Thin Sheet

    NASA Astrophysics Data System (ADS)

    Wu, Horng-Yu; Sun, Pin-Hou; Chen, Hung-Wei; Chiu, Chui-Hung

    2012-10-01

    Uniaxial tension and press forming tests were carried out at two different strain rates and temperatures to investigate the formability of fine-grained AZ31B-O Mg alloy thin sheet. Formability parameters were determined by tensile test results. The tensile properties and formability parameters were correlated with the forming limit diagrams. The present work focused on the effects of loading orientation and deformation rate on formability. Anisotropic behaviors were observed in the mechanical properties. Maximum strengths were obtained in the direction perpendicular to the rolling direction (RD). It can be concluded that the formability of the rolled fine-grained AZ31B-O Mg alloy sheet can be influenced by loading orientation and deformation rate. Stretch formability can be enhanced at a higher deformation rate, resulting from a lower anisotropy and a higher work hardening effect. In contrast, the drawing processes can be performed at a lower deformation rate to take advantage of a higher anisotropic behavior. Specimens with the RD parallel to the major strain in the press forming tests can enhance stretch formability, whereas specimens with the RD perpendicular to the major strain can improve deep-drawability.

  4. A high-speed multiplexer-based fine-grain pipelined architecture for digital fuzzy logic controllers

    NASA Astrophysics Data System (ADS)

    Rashidi, Bahram; Masoud Sayedi, Sayed

    2015-12-01

    Design and implementation of a high-speed multiplexer-based fine-grain pipelined architecture for a general digital fuzzy logic controller has been presented. All the operators have been designed at gate level. For the multiplication, a multiplexer-based modified Wallace tree multiplier has been designed, and for the division and addition multiplexer-based non-restoring parallel divider and multiplexer-based Manchester adder have been used, respectively. To further increase the processing speed, fine-grain pipelining technique has been employed. By using this technique, the critical path of the circuit is broken into finer pieces. Based on the proposed architecture, and by using Quartus II 9.1, a sample two-input, one-output digital fuzzy logic controller with eight rules has been successfully synthesised and implemented on Stratix II field programmable gate array. Simulations were carried out using DSP Builder in the MATLAB/Simulink tool at a maximum clock rate of 301.84 MHz.

  5. Durability Assessment of Gamma Tial

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Lerch, Bradley A.; Pereira, J. Michael; Miyoshi, Kazuhisa; Arya, Vinod K.; Zhuang, Wyman

    2004-01-01

    Gamma TiAl was evaluated as a candidate alloy for low-pressure turbine blades in aeroengines. The durability of g-TiAl was studied by examining the effects of impact or fretting on its fatigue strength. Cast-to-size Ti-48Al-2Cr-2Nb was studied in impact testing with different size projectiles at various impact energies as the reference alloy and subsequently fatigue tested. Impacting degraded the residual fatigue life. However, under the ballistic impact conditions studied, it was concluded that the impacts expected in an aeroengine would not result in catastrophic damage, nor would the damage be severe enough to result in a fatigue failure under the anticipated design loads. In addition, other gamma alloys were investigated including another cast-to-size alloy, several cast and machined specimens, and a forged alloy. Within this Ti-48-2-2 family of alloys aluminum content was also varied. The cracking patterns as a result of impacting were documented and correlated with impact variables. The cracking type and severity was reasonably predicted using finite element models. Mean stress affects were also studied on impact-damaged fatigue samples. The fatigue strength was accurately predicted based on the flaw size using a threshold-based, fracture mechanics approach. To study the effects of wear due to potential applications in a blade-disk dovetail arrangement, the machined Ti-47-2-2 alloy was fretted against In-718 using pin-on-disk experiments. Wear mechanisms were documented and compared to those of Ti-6Al-4V. A few fatigue samples were also fretted and subsequently fatigue tested. It was found that under the conditions studied, the fretting was not severe enough to affect the fatigue strength of g-TiAl.

  6. Autonomous Information Unit for Fine-Grain Data Access Control and Information Protection in a Net-Centric System

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Woo, Simon S.; James, Mark; Paloulian, George K.

    2012-01-01

    As communication and networking technologies advance, networks will become highly complex and heterogeneous, interconnecting different network domains. There is a need to provide user authentication and data protection in order to further facilitate critical mission operations, especially in the tactical and mission-critical net-centric networking environment. The Autonomous Information Unit (AIU) technology was designed to provide the fine-grain data access and user control in a net-centric system-testing environment to meet these objectives. The AIU is a fundamental capability designed to enable fine-grain data access and user control in the cross-domain networking environments, where an AIU is composed of the mission data, metadata, and policy. An AIU provides a mechanism to establish trust among deployed AIUs based on recombining shared secrets, authentication and verify users with a username, X.509 certificate, enclave information, and classification level. AIU achieves data protection through (1) splitting data into multiple information pieces using the Shamir's secret sharing algorithm, (2) encrypting each individual information piece using military-grade AES-256 encryption, and (3) randomizing the position of the encrypted data based on the unbiased and memory efficient in-place Fisher-Yates shuffle method. Therefore, it becomes virtually impossible for attackers to compromise data since attackers need to obtain all distributed information as well as the encryption key and the random seeds to properly arrange the data. In addition, since policy can be associated with data in the AIU, different user access and data control strategies can be included. The AIU technology can greatly enhance information assurance and security management in the bandwidth-limited and ad hoc net-centric environments. In addition, AIU technology can be applicable to general complex network domains and applications where distributed user authentication and data protection are

  7. Impact Melting of Ordinary Chondrite Regoliths and the Production of Fine-grained Fe(sup 0)

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Cintala, Mark J.; See, Thomas H.

    2003-01-01

    The detailed study of individual lunar soil grains provides evidence that the major optical properties of the lunar surface are primarily related to the production of fine-grained (< 20 nm, super-paramagnetic) Fe-particles in agglutinitic impact melts and to iron-rich vapor deposits on the surfaces of individual grains. These Fe-rich materials are derived from oxidized species due to high post-shock temperatures in the presence of solar-wind derived H2; part of the Fe-rich grain surfaces may also be due to sputtering processes. Identical processes were recently suggested for the optical maturation of S-type asteroid surfaces, the parent objects of ordinary chondrites (OCs). OCs, however, do not contain impact-produced soil melts, and should thus also be devoid of impact-triggered vapor condensates. The seeming disparity can only be understood if all OCs resemble relatively immature impact debris, akin to numerous lunar highland breccias. It is possible to assess this scenario by evaluating experimentally whether impact velocities of 5- 6 km/s, typical for the present day asteroid belt, suffice to produce both impact melts and fine-grained metallic iron. We used 125-250 m powders of the L6 chondrite ALH85017. These powders were aliquots from fines that were produced by collisionally disrupting a single, large (461g) chunk of this meteorite during nine impacts and by subjecting the resulting rubble to an additional 50 impacts. As a consequence, the present shock-recovery experiments employ target materials of exceptional fidelity (i.e., a real chondrite that was impact pulverized). The target powders were packed into tungsten-alloy containers to allow for the potential investigation of freshly produced, fine-grained iron and impacted by stainless-steel and tungsten flyer plates; the packing density varied between 38 and 45% porosity. Peak pressures ranged from 14.5 to 67 GPa and were attained after multiple reverberations of the shock wave at the interface of the

  8. Explanation of Europa's Unusual Polarization Properties: The Regolith is Sub-micron, Fine-Grained, High Porosity Material

    NASA Astrophysics Data System (ADS)

    Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K. S.; Nebedum, A.; Kroner, D. O.; Shkuratov, Y.; Psarev, V.; Vanderoort, K.; Smythe, W. D.

    2015-12-01

    For several decades, unusual reflectance and polarization phase curves have been reported on Europa by experienced ground based astronomers (Rosenbush et al., 1997, 2015). The observed reflectance phase curve is consistent with the phase curves reported in the laboratory in fine grained particulate media (Nelson et al., 2000, 2002, Shkuratov et al., 2002). Shkuratov et al. (2002) also measured polarization properties of fine grained media showing that they relate to the coherent backscatter enhancement phenomenon and are consistent with the astronomical data. We have reconfigured a goniometric photopolarimeter (GPP) (Nelson et al., 2000, 2002) to measure in the laboratory the polarization phase curves of highly reflective particulate materials that simulate the Europa's predominately water ice regolith. We apply the Helmholtz Reciprocity Principle - we present our samples with linearly polarized light and measure the change in the intensity of the reflected component with phase angle from 0.05 to 15 degrees. This is physically equivalent to the astronomical polarization measurements. We report here the polarization phase curves for a suite of high albedo particulates of size 0.1fine grained and with very high porosity, perhaps with void space exceeding 90%. If a reflectance phase curve and a polarization phase curve of solar system object can be obtained (even at a very small range of phase angles), it will soon be possible to determine (or at least constrain) important regolith properties. Future missions to the Jovian

  9. GMA-laser Hybrid Welding of High-strength Fine-grain Structural Steel with an Inductive Preheating

    NASA Astrophysics Data System (ADS)

    Lahdo, Rabi; Seffer, Oliver; Springer, André; Kaierle, Stefan; Overmeyer, Ludger

    The industrial useof GMA-laser hybrid welding has increased in the last 10 years, due to the brilliant quality of the laser beam radiation, and higher laser output powers. GMA-laser hybrid welding processes operate in a common molten pool. The combination of the laser beam and the arc results in improved welding speed, penetration depth, heat affected zone and gap bridgeability. Single-layer, GMA-laser hybrid welding processes have been developed for high-strength fine-grain structural steels with a grade of S690QL and a thickness of 15 mm and 20 mm. In addition, the welding process is assisted by an integrated, inductive preheating process to improve the mechanical properties of the welding seam. By using the determined parameters regarding the energy per unit length, and the preheating temperature, welding seams with high quality can be achieved.

  10. Anomalous D-Log E curve with high contrast developer Kodak D8 on ultra fine grain emulsion BB640.

    PubMed

    Ulibarrena, M; Mendez, M; Blaya, S; Fimia, A

    2001-12-01

    D-Log E curves, also known as H-D curves, are used since the XIX century as a tool for describing the characteristics of silver halide emulsions. This curve has a very standard shape, with a linear region, a toe, a shoulder and a solarization region. In this work we present a distortion of the usual curve due to the action of a high contrast developer, Kodak D8, on an ultra fine grain emulsion, BB640\\cite{ov04}. The solarization effect is replaced by a linear zone where developed densities increase with increasing exposures, until all silver halide present in the emulsion is reduced by developer D8 to metallic silver. Densities higher than 11 have been obtained.

  11. Sources of fine-grained sediment in the Linganore Creek watershed, Frederick and Carroll Counties, Maryland, 2008-10

    USGS Publications Warehouse

    Gellis, Allen C.; Noe, Gregory B.; Clune, John W.; Myers, Michael K.; Hupp, Cliff R.; Schenk, Edward R.; Schwarz, Gregory E.

    2015-01-01

    Management implications of this study indicate that both agriculture and streambanks are important sources of sediment in Linganore Creek where the delivery of agriculture sediment was 4 percent and the delivery of streambank sediment was 44 percent. Fourth order streambanks, on average, had the highest rates of bank erosion. Combining the sediment fingerprinting and sediment budget results indicates that 96 percent of the eroded fine-grained sediment from agriculture went into storage. Flood plains and ponds are effective storage sites of sediment in the Linganore Creek watershed. Flood plains stored 8 percent of all eroded sediment with 4th and 5th order flood plains, on average, storing the most sediment. Small ponds in the Linganore Creek watershed, which drained 16 percent of the total watershed area, stored 15 percent of all eroded sediment. Channel beds were relatively stable with the greatest erosion generally occurring in 4th and 5th order streams.

  12. Thermal shock behavior of fine grained W-Y2O3 materials fabricated via two different manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Zhao, Mingyue; Zhou, Zhangjian; Zhong, Ming; Tan, Jun; Lian, Youyun; Liu, Xiang

    2016-03-01

    Thermal shock resistance of fine grained W-Y2O3 materials fabricated by two different manufacturing technologies (i.e. spark plasma sintering and high temperature sintering in combination with hot rolling deformation) was examined under transient high heat loads below and slightly above the melting threshold of pure tungsten. The tests were performed with the electron beam test facility EMS-60 at Southwestern Institute of Physics, China. The comparison of the thermal shock response in this work showed that the deformed W-Y2O3 performed a superior behavior to spark plasma sintered W-Y2O3 in suppressing the crack formation, melting resistance and recrystallization resistance. The thermo-physical properties and mechanical characterizations necessary for understanding the thermal shock response of these materials were also presented and discussed.

  13. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.

    PubMed

    Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina

    2016-02-15

    To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material. PMID:26790603

  14. Microbial colonization and degradation of polyethylene and biodegradable plastic bags in temperate fine-grained organic-rich marine sediments.

    PubMed

    Nauendorf, Alice; Krause, Stefan; Bigalke, Nikolaus K; Gorb, Elena V; Gorb, Stanislav N; Haeckel, Matthias; Wahl, Martin; Treude, Tina

    2016-02-15

    To date, the longevity of plastic litter at the sea floor is poorly constrained. The present study compares colonization and biodegradation of plastic bags by aerobic and anaerobic benthic microbes in temperate fine-grained organic-rich marine sediments. Samples of polyethylene and biodegradable plastic carrier bags were incubated in natural oxic and anoxic sediments from Eckernförde Bay (Western Baltic Sea) for 98 days. Analyses included (1) microbial colonization rates on the bags, (2) examination of the surface structure, wettability, and chemistry, and (3) mass loss of the samples during incubation. On average, biodegradable plastic bags were colonized five times higher by aerobic and eight times higher by anaerobic microbes than polyethylene bags. Both types of bags showed no sign of biodegradation during this study. Therefore, marine sediment in temperate coastal zones may represent a long-term sink for plastic litter and also supposedly compostable material.

  15. The production of fine grained magnesium alloys through thermomechanical processing for the optimization of microstructural and mechanical properties

    NASA Astrophysics Data System (ADS)

    Young, John Paul

    The low density and high strength to weight ratio of magnesium alloys makes them ideal candidates to replace many of the heavier steel and aluminum alloys currently used in the automotive and other industries. Although cast magnesium alloys components have a long history of use in the automotive industry, the integration of wrought magnesium alloys components has been hindered by a number of factors. Grain refinement through thermomechanical processing offers a possible solution to many of the inherent problems associated with magnesium alloys. This work explores the development of several thermomechanical processing techniques and investigates their impact on the microstructural and mechanical properties of magnesium alloys. In addition to traditional thermomechanical processing, this work includes the development of new severe plastic deformation techniques for the production of fine grain magnesium plate and pipe and develops a procedure by which the thermal microstructural stability of severely plastically deformed microstructures can be assessed.

  16. Durability Assessment of TiAl Alloys

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Lerch, Bradley A.

    2008-01-01

    The durability of TiAl is a prime concern for the implementation of TiAl into aerospace engines. Two durability issues, the effect of high temperature exposure on mechanical properties and impact resistance, have been investigated and the results are summarized in this paper. Exposure to elevated temperatures has been shown to be detrimental to the room temperature ductility of gamma alloys with the most likely mechanisms being the ingress of interstitials from the surface. Fluorine ion implantation has been shown to improve the oxidation resistance of gamma alloys, and ideally it could also improve the environmental embrittlement of high Nb content TiAl alloys. The effect of F ion implantation on the surface oxidation and embrittlement of a third generation, high Nb content TiAl alloy (Ti-45Al-5Nb-B-C) were investigated. Additionally, the ballistic impact resistance of a variety of gamma alloys, including Ti-48Al-2Cr- 2Nb, Ti-47Al-2Cr-2Nb, ABB-2, ABB-23, NCG359E, 95A and Ti-45Al-5Nb-B-C was accessed. Differences in the ballistic impact properties of the various alloys will be discussed, particularly with respect to their manufacturing process, microstructure, and tensile properties.

  17. Microstructure and Mechanical Properties of Oxide-Dispersion Strengthened Al6063 Alloy with Ultra-Fine Grain Structure

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, H.; Simchi, A.; Kim, H. S.

    2011-03-01

    The microstructure and mechanical properties of the ultra-fine grained (UFG) Al6063 alloy reinforced with nanometric aluminum oxide nanoparticles (25 nm) were investigated and compared with the coarse-grained (CG) Al6063 alloy (~2 μm). The UFG materials were prepared by mechanical alloying (MA) under high-purity Ar and Ar-5 vol pct O2 atmospheres followed by hot powder extrusion (HPE). The CG alloy was produced by HPE of the gas-atomized Al6063 powder without applying MA. Electron backscatter diffraction under scanning electron microscopy together with transmission electron microscopy studies revealed that the microstructure of the milled powders after HPE consisted of ultra-fine grains (>100 nm) surrounded by nanostructured grains (<100 nm), revealing the formation of a bimodal grain structure. The grain size distribution was in the range of 20 to 850 nm with an average of 360 and 300 nm for Ar and Ar-5 pct O2 atmospheres, respectively. The amount of oxide particles formed by reactive mechanical alloying under the Ar/O2 atmosphere was ~0.8 vol pct, whereas the particles were almost uniformly distributed throughout the aluminum matrix. The UFG materials exhibited significant improvement in the hardness and yield strength with an absence of strain hardening behavior compared with CG material. The fracture surfaces showed a ductile fracture mode for both CG and UFG Al6063, in which the dimple size was related to the grain structure. A mixture of ductile-brittle fracture mode was observed for the UFG alloy containing 0.8 vol pct Al2O3 particles. The tensile behavior was described based on the formation of nonequilibrium grain boundaries with high internal stress and dislocation-based models.

  18. Evaluation of rock powdering methods to obtain fine-grained samples for CHEMIN, a combined XRD/XRF instrument

    SciTech Connect

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D.; Bearman, G. H.; Bar-Cohen, Yoseph

    2004-01-01

    A miniature XRD/XRD (X-ray diffraction/X-ray fluorescence) instrument, CHEMIN, is currently being developed for definite mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument produces good results even with poorly prepared powder, the quality of the data improves and the time required for data collection is reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD reuslts from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, they compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRD instrument such as CHEMIN.

  19. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  20. Coarse-grained and fine-grained parallel optimization for real-time en-face OCT imaging

    NASA Astrophysics Data System (ADS)

    Kapinchev, Konstantin; Bradu, Adrian; Barnes, Frederick; Podoleanu, Adrian

    2016-03-01

    This paper presents parallel optimizations in the en-face (C-scan) optical coherence tomography (OCT) display. Compared with the cross-sectional (B-scan) imagery, the production of en-face images is more computationally demanding, due to the increased size of the data handled by the digital signal processing (DSP) algorithms. A sequential implementation of the DSP leads to a limited number of real-time generated en-face images. There are OCT applications, where simultaneous production of large number of en-face images from multiple depths is required, such as real-time diagnostics and monitoring of surgery and ablation. In sequential computing, this requirement leads to a significant increase of the time to process the data and to generate the images. As a result, the processing time exceeds the acquisition time and the image generation is not in real-time. In these cases, not producing en-face images in real-time makes the OCT system ineffective. Parallel optimization of the DSP algorithms provides a solution to this problem. Coarse-grained central processing unit (CPU) based and fine-grained graphics processing unit (GPU) based parallel implementations of the conventional Fourier domain (CFD) OCT method and the Master-Slave Interferometry (MSI) OCT method are studied. In the coarse-grained CPU implementation, each parallel thread processes the whole OCT frame and generates a single en-face image. The corresponding fine-grained GPU implementation launches one parallel thread for every data point from the OCT frame and thus achieves maximum parallelism. The performance and scalability of the CPU-based and GPU-based parallel approaches are analyzed and compared. The quality and the resolution of the images generated by the CFD method and the MSI method are also discussed and compared.

  1. Si-bearing metal and niningerite in Almahata Sitta fine-grained ureilites and insights into the diversity of metal on the ureilite parent body

    NASA Astrophysics Data System (ADS)

    Horstmann, Marian; Humayun, Munir; Fischer-Gödde, Mario; Bischoff, Addi; Weyrauch, Mona

    2014-10-01

    A detailed mineralogical and chemical study of Almahata Sitta fine-grained ureilites (MS-20, MS-165, MS-168) was performed to shed light on the origin of these lithologies and their sulfide and metal. The Almahata Sitta fine-grained ureilites (silicates <30 μm grain size) show textural and chemical evidence for severe impact smelting as described for other fine-grained ureilites. Highly reduced areas in Almahata Sitta fine-grained ureilites show large (up to ˜1 mm) Si-bearing metal grains (up to ˜4.5 wt% Si) and niningerite [Mg>0.5,(Mn,Fe)<0.5S] with some similarities to the mineralogy of enstatite (E) chondrites. Overall, metal grains show a large compositional variability in Ni and Si concentrations. Niningerite grains probably formed as a by-product of smelting via sulfidation. The large Si-Ni variation in fine-grained ureilite metal could be the result of variable degrees of reduction during impact smelting, inherited from coarse-grained ureilite precursors, or a combination of both. Large Si-bearing metal grains probably formed via coalescence of existing and newly formed metal during impact smelting. Bulk and in situ siderophile trace element abundances indicate three distinct populations of (1) metal crystallized from partial melts in MS-20, (2) metal resembling bulk chondritic compositions in MS-165, and (3) residual metal in MS-168. Almahata Sitta fine-grained ureilites developed their distinctive mineralogy due to severe reduction during smelting. Despite the presence of E chondrite and ureilite stones in the Almahata Sitta fall, a mixing relation of E chondrites or their constituents and ureilite material in Almahata Sitta can be ruled out based on isotopic, textural, and mineral-chemical reasons.

  2. Distribution, thickness, and volume of fine-grained sediment from precipitation of metals from acid-mine waters in Keswick Reservoir, Shasta County, California

    USGS Publications Warehouse

    Bruns, Terry R.; Alpers, Charles N.; Carlson, Paul

    2006-01-01

    In February 1993, the U.S. Geological Survey (USGS) acquired high-resolution seismic-reflection data to map the distribution and thickness of fine-grained sediments associated with acid-mine drainage in Keswick Reservoir on the Sacramento River, near Redding, California. In the Spring Creek Arm of Keswick Reservoir, the sediments occurred in three distinct accumulations; thicknesses are greater than 2 meters (m) in the western accumulation, greater than 5 m in the central accumulation, and up to 8 m in the eastern accumulation. In Keswick Reservoir, fine-grained sediments related to acid-mine drainage were present from slightly north of the Spring Creek Arm downstream to the Keswick Dam. Sediment thickness varies from about 3 m opposite the mouth of the Spring Creek Arm to less than 1 m near Keswick Dam. Our estimate for the total volume of fine-grained sediments in the Spring Creek Arm at the time of the geophysical survey in February 1993 is about 152,000 cubic meters in three sediment accumulations, with about 14,000, 32,000, and 105,000 cubic meters respectively in the western, central, and eastern accumulations. We interpreted that an additional 110, 000 cubic meters of material was present in the main part of Keswick Reservoir. At the time of data collection, we therefore estimate that the total volume of fine-grained sediment was 260,000 cubic meters. In the main part of Keswick Reservoir, 42% to 50% of the reservoir area contiguous to Spring Creek Arm had mappable fine-grained sediments. Decreasing sediment supply down-reservoir meant that mappable sediment covered only about 35% of the reservoir in the area to the south, decreasing to about 12% near Keswick Dam. Much of the reservoir bottom below the Spring Creek Arm could have had a thin (less than 20-30 cm) cover of fine-grained sediment that was not mappable using the seismic-reflection data.

  3. Determination of the effects of fine-grained sediment and other limiting variables on trout habitat for selected streams in Wisconsin

    USGS Publications Warehouse

    Scudder, Barbara C.; Selbig, J.W.; Waschbusch, R.J.

    2000-01-01

    Two Habitat Suitability Index (HSI) models, developed by the U.S. Fish and Wildlife Service, were used to evaluate the effects of fine-grained (less than 2 millimeters) sediment on brook trout (Salvelinusfontinalis, Mitchill) and brown trout (Salmo trutta, Linnaeus) in 11 streams in west-central and southwestern Wisconsin. Our results indicated that fine-grained sediment limited brook trout habitat in 8 of 11 streams and brown trout habitat in only one stream. Lack of winter and escape cover for fry was the primary limiting variable for brown trout at 61 percent of the sites, and this factor also limited brook trout at several stations. Pool area or quality, in stream cover, streambank vegetation for erosion control, minimum flow, thalweg depth maximum, water temperature, spawning substrate, riffle dominant substrate, and dissolved oxygen also were limiting to trout in the study streams. Brook trout appeared to be more sensitive to the effects of fine-grained sediment than brown trout. The models for brook trout and brown trout appeared to be useful and objective screening tools for identifying variables limiting trout habitat in these streams. The models predicted that reduction in the amount of fine-grained sediment would improve brook trout habitat. These models may be valuable for establishing instream sediment-reduction goals; however, the decrease in sediment delivery needed to meet these goals cannot be estimated without quantitative data on land use practices and their effects on sediment delivery and retention by streams.

  4. Petrographic Studies of Fine-grained Rims in the Yamato 791198 cm Carbonaceous Chondrite and Comparison to Murchison and ALH81002

    NASA Technical Reports Server (NTRS)

    Chizmadia, L. J.; Brearley, A. J.

    2001-01-01

    Fine-grained rims in Y791198 (CM2) have been studied in detail using SEM and EPMA techniques. In comparison with the more highly altered CM chondrite, ALH 81002, the rims are texturally and compositionally more heterogeneous. Additional information is contained in the original extended abstract.

  5. Origin and depositional environment of fine-grained sediments since the last glacial maximum in the southeastern Yellow Sea: evidence from rare earth elements

    NASA Astrophysics Data System (ADS)

    Um, In Kwon; Choi, Man Sik; Lee, Gwang Soo; Chang, Tae Soo

    2015-12-01

    Despite the well-reconstructed seismic stratigraphy of the Holocene mud deposit in the southeastern Yellow Sea, known as the Heuksan mud belt (HMB), the provenances of these sediments and their depositional environments are unclear, especially for the fine-grained sediments. According to seismic data (extracted from another article in this special issue), the HMB comprises several sedimentary units deposited since the last glacial maximum. Based on analytical results on rare earth elements, fine-grained sediments in all sedimentary units can be interpreted as mixtures of sediments discharged from Chinese and Korean rivers. The proportions of fine-grained sediments from Chinese rivers (74.5 to 80.0%) were constant and higher than those from Korean rivers in all units. This fact demonstrates that all units have the same fine-grained sediment provenance: units III-b and III-a, located in the middle and northern parts of the HMB and directly deposited from Chinese rivers during the sea-level lowstand, could be the sediment source for units II-b and II-a. Unit I, while ambiguous, is of mixed origin combining reworked sediments from nearby mud deposits and Changjiang River-borne material with those of the Keum River. The results of this study indicate that at least 18.6% of bulk sediments in the HMB clearly originate from Chinese rivers, despite its location close to the southwestern coast of Korea.

  6. Process for determining the fuel flow into the gasifier of a partial oxidation installation for solid, fine-grain or dust-like fuels

    SciTech Connect

    Forster, M.; Geidis, U.

    1980-01-08

    The fuel flow into the gasifier of a partial oxidation installation using solid fine-grain or dust-like fuel is determined by a radiometric density measurement of the fuel immediately prior to its entry into the gasifier and while the fuel particles are suspended in a gaseous or vaporous medium.

  7. A Comprehensive Study of Pristine, Fine-grained, Spinel-rich Inclusions from the Leoville and Efremovka CV3 Chondrites. 1; Petrology

    NASA Technical Reports Server (NTRS)

    MacPherson, G. J.; Krot, A. N.; Ulyanov, A. A.; Hicks, T.

    2002-01-01

    Fine-grained spinel-rich CAI from Efremovka and Leoville lack the overprint of Na and Fe metasomatism seen in Allende. They contain spinel, pyroxene, anorthite, and melilite; most have a zoned structure with spinel-rich cores, melilite-rich mantles. Additional information is contained in the original extended abstract.

  8. Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model.

    PubMed

    Keeley, Jon E; Zedler, Paul H

    2009-01-01

    We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10,000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (> or = 50,000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of

  9. Large, high-intensity fire events in Southern California shrublands: Debunking the fine-grain age patch model

    USGS Publications Warehouse

    Keeley, J.E.; Zedler, P.H.

    2009-01-01

    We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (???50 000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of fine

  10. Dynamics of deposited fly-ash and fine grained magnetite in sandy material of different porosity (column experiments)

    NASA Astrophysics Data System (ADS)

    Kapicka, Ales; Kodesova, Radka; Petrovsky, Eduard; Grison, Hana

    2010-05-01

    Several studies confirm that soil magnetometry can serve as proxy of industrial immisions as well as heavy-metal contamination. The important assumption for magnetic mapping of contaminated soils is that atmospherically deposited particulate matter, including the ferrimagnetic phase, accumulates in the top soil horizons and remains there over long period. Only if this is true, large areas can be reliably mapped using soil magnetometry, and, moreover, this method can be used also for long-term monitoring. However, in soil types such as sandy soils with different porosity or soils with substantial variability of water regime, translocation of the deposited anthropogenic particles may result in biased (underestimated) values of the measured topsoil magnetic susceptibility. From the physical point of view, this process may be considered as colloid transport through porous medium. In our column experiments in laboratory we used three technical sands with different particle sizes (0,63 - 1.25mm, 0,315-0,80mm, 0,10-0,63mm). Sands in cylinders were contaminated on the surface by fly-ashes from coal-burning power plant (mean grain size 10μm) and fine grained Fe3O4 (grain size < 20 μm). Soil moisture sensors were used to monitor water regime within the sand columns after controlled rain simulation and temperature distribution in sand column was measured as well. Vertical migration of ferrimagnetic particles-tracers presented in the fly-ash was measured by SM 400 Kappameter. By means of magnetic susceptibility distribution we studied two parameters: gradual shift of peak concentration of contaminants (relative to surface layer) and maximum penetration depth. Results indicated that after rain simulation (pulls infiltration of defined water volume) the positions of peak values moved downwards compared to the initial state and gradual decrease of susceptibility peak values were detected in all studied sand formations. Fly-ash migrated more or less freely in coarse sand

  11. Quantitative compositional analysis of sedimentary materials using thermal emission spectroscopy: 2. Application to compacted fine-grained mineral mixtures and assessment of applicability of partial least squares methods

    NASA Astrophysics Data System (ADS)

    Pan, C.; Rogers, A. D.; Thorpe, M. T.

    2015-11-01

    Fine-grained sedimentary deposits on planetary surfaces require quantitative assessment of mineral abundances in order to better understand the environments in which they formed. One way that planetary surface mineralogy is commonly assessed is through thermal emission (~6-50 µm) spectroscopy. To that end, we characterized the TIR spectral properties of compacted, very fine-grained mineral mixtures of oligoclase, augite, calcite, montmorillonite, and gypsum. Nonnegative linear least squares minimization (NNLS) is used to assess the linearity of spectral combination. A partial least squares (PLS) method is also applied to emission spectra of fine-grained synthetic mixtures and natural mudstones to assess its applicability to fine-grained rocks. The NNLS modeled abundances for all five minerals investigated are within ±10% of the known abundances for 39% of the mixtures, showing the relationships between known and modeled abundance follow nonlinear curves. The poor performance of NNLS is due to photon transmission through small grains over portions of the wavelength range and multiple reflections in the volume. The PLS method was able to accurately recover the known abundances (to within ±10%) for 78-90% of synthetic mixtures and for 85% of the mudstone samples chosen for this study. The excellent agreement between known and modeled abundances is likely due to high absorption coefficients over portions of the thermal infrared (TIR) spectral range, and thus, combinations are linear over portions of the range. PLS can be used to recover abundances from very fine-grained rocks from TIR measurements and could potentially be applied to landed or orbital TIR observations.

  12. Design of a Fine-Grained Knowledge Model for the Formalization of Clinical Practice Guidelines: Comparison with GEM.

    PubMed

    Bouaud, Jacques; Galopin, Alexandre; Oulad Kouider, Assia; Seroussi, Brigitte

    2016-01-01

    Published as textual documents, clinical practice guidelines (CPGs) didn't demonstrate to impact physician practices when disseminated in their original format. However, when computerized and embedded in clinical decision support systems, they appeared to be more effective. In order to ease the translation from textual to computerized CPGs, we have elaborated a fine-grained knowledge model of CPGs (FGKM) to be used when authoring CPGs. The work has been conducted on VIDALRecos® CPGs. The building of the model has followed a bottom-up iterative process starting with 15 different CPGs. The first version of the FGKM has been assessed on two new complex CPGs, and was enriched by comparison with the Guideline Elements Model (GEM). The final version of the FGKM has been tested on the 2014 Hypertension CPGs. We compared the rules automatically derived from FGKM instances to those manually extracted from textual CPGs for decision support. Results showed that difficulties such as text normalization have to be solved. The FGKM is intended to be used upstream of the process of CPGs authoring in order to ease the implementation and the update of both textual and computerized CPGs. PMID:27577430

  13. Effect of Film Formation Potential on Passive Behavior of Ultra-Fine-Grained 1050 Al Alloy Fabricated via ARB Process

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, A.; Gashti, S. O.; Keshavarz, M. K.

    2016-04-01

    In this work, the effect of film formation potential on the passive behavior of ultra-fine-grained 1050 Al alloy in a borate buffer solution is investigated. For this purpose, the specimens were fabricated via accumulative roll bonding (ARB) process up to 1, 3, 5, and 7 passes. To determine the evolution of microstructure as a function of ARB process, atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used. AFM images revealed that the grain size values decreased as the number of ARB passes increased. Moreover, TEM micrograph showed that mean grain size of the sample reached to about 340 nm after applying 7 passes of ARB. Potentiodynamic polarization plots indicated that, as the number of ARB passes increased, the corrosion and passive current densities decreased. Also, electrochemical impedance spectroscopy measurements showed that at selected applied potential above open circuit potential, the corrosion resistance of the 1050 Al alloy was systematically increased by applying further ARB passes. It was found that passive behavior of the ARBed 1050 Al alloy specimens were improved by reducing the grain size.

  14. Surface modifications on toughened, fine-grained, recrystallized tungsten with repetitive ELM-like pulsed plasma irradiation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; Sakuma, I.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.; Ueda, Y.; Kurishita, H.

    2015-08-01

    Surface modifications of toughened, fine-grained, recrystallized tungsten (TFGR W) materials with 1.1 wt.% TiC and 3.3 wt.% TaC dispersoids due to repetitive ELM-like pulsed (∼0.15 ms) helium plasma irradiation have been investigated by using a magnetized coaxial plasma gun. No surface cracking at the center part of the TFGR W samples exposed to 20 plasma pulses of ∼0.3 MJ m-2 was observed. The suppression of surface crack formation due to the increase of the grain boundary strength by addition of TiC and TaC dispersoids was confirmed in comparison with a pure W material. On the other hand, surface cracks and small pits appeared at the edge part of the TFGR W sample after the pulsed plasma irradiation. Erosion of the TiC and TaC dispersoids due to the pulsed plasma irradiation could cause the small pits on the surface, resulting in the surface crack formation.

  15. Oxygen isotopic composition of coarse- and fine-grained material from comet 81P/Wild 2

    NASA Astrophysics Data System (ADS)

    Ogliore, Ryan C.; Nagashima, Kazuhide; Huss, Gary R.; Westphal, Andrew J.; Gainsforth, Zack; Butterworth, Anna L.

    2015-10-01

    Individual particles from comet 81P/Wild 2 collected by NASA's Stardust mission vary in size from small sub-μm fragments found in the walls of the aerogel tracks, to large fragments up to tens of μm in size found towards the termini of tracks. The comet, in an orbit beyond Neptune since its formation, retains an intact a record of early-Solar-System processes that was compromised in asteroidal samples by heating and aqueous alteration. We measured the O isotopic composition of seven Stardust fragments larger than ∼2 μm extracted from five different Stardust aerogel tracks, and 63 particles smaller than ∼2 μm from the wall of a Stardust track. The larger particles show a relatively narrow range of O isotopic compositions that is consistent with 16O-poor phases commonly seen in meteorites. Many of the larger Stardust fragments studied so far have chondrule-like mineralogy which is consistent with formation in the inner Solar System. The fine-grained material shows a very broad range of O isotopic compositions (-70‰ < Δ17O < +60‰) suggesting that Wild 2 fines are either primitive outer-nebula dust or a very diverse sampling of inner Solar System compositional reservoirs that accreted along with a large number of inner-Solar-System rocks to form comet Wild 2.

  16. Corrosion Behavior of Ultra-fine Grained 1050 Aluminum Alloy Fabricated by ARB Process in a Buffer Borate Solution

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, A.; Gashti, S. O.

    2015-09-01

    Accumulative roll bonding (ARB) has been used as a severe plastic deformation process for the industrial production of ultra-fine grained (UFG) and nano-crystalline sheets with excellent mechanical properties. In the present study, the effect of the ARB process on the corrosion behavior of UFG and nano-crystalline 1050 aluminum alloy in a buffer borate solution (pH 5.5) has been investigated. The result of microhardness tests revealed that microhardness values increase with an increasing number of ARB cycles. A sharp increase in microhardness is seen after three ARB cycles, whereas moderate additional increases are observed afterward for up to nine cycles. Also, the XRD results showed that the mean crystallite size decreased to about 91 nm after nine cycles. The potentiodynamic plots show that as a result of ARB, the corrosion behavior of the UFG and nano-crystalline specimens improves, compared to the annealed 1050 aluminum alloy. Moreover, electrochemical impedance spectroscopy measurements showed that the polarization resistance increases with an increasing number of ARB cycles.

  17. Fabrication, tribological and corrosion behaviors of ultra-fine grained Co-28Cr-6Mo alloy for biomedical applications.

    PubMed

    Ren, Fuzeng; Zhu, Weiwei; Chu, Kangjie

    2016-07-01

    Nickel and carbides free Co-28Cr-6Mo alloy was fabricated by combination of mechanical alloying and warm pressing. The microstructure, mechanical properties, pin-on-disk dry sliding wear and corrosion behavior in simulated physiological solution were investigated. The produced Co-28Cr-6Mo alloy has elongated ultra-fine grained (UFG) structure of ε-phase with average grain size of 600nm in length and 150nm in thickness. The hardness and modulus were determined to be 8.87±0.56GPa and 198.27±7.02GPa, respectively. The coefficient of friction upon dry sliding against alumina is pretty close to that of the forged Co-29Cr-6Mo alloy. The initial ε-phase and UFG microstructure contribute to reduce the depth of severe plastic deformation region during wear and enable the alloy with excellent wear resistance. The corrosion potential of such UFG Co-Cr-Mo alloy has more positive corrosion potential and much lower corrosion current density than those of ASTM alloy. PMID:26807770

  18. Current status of ultra-fine grained W TiC development for use in irradiation environments

    NASA Astrophysics Data System (ADS)

    Kurishita, H.; Kobayashi, S.; Nakai, K.; Arakawa, H.; Matsuo, S.; Takida, T.; Takebe, K.; Kawai, M.

    2007-03-01

    Ultra-fine grained (UFG) W-TiC with a high purity matrix of low dislocation density is expected to exhibit improve resistance to irradiation with neutrons and helium ions and the room temperature mechanical properties. Aiming at such UFG W-TiC with the desired microstructure, powders of W with 0.25-0.8 wt% TiC additions were subjected to mechanical alloying (MA) and hot isostatic pressing (HIP), where purified H2 and Ar were used as the MA atmosphere. Microstructural observations and room- and high-temperature mechanical tests were performed for UFG W-TiC before and after neutron irradiation to a fluence of 2×1024 n m-2 at 873 K. It is shown that the MA atmosphere significantly affects grain refinement, room-temperature strength and high-temperature tensile plasticity of UFG W-TiC. W-0.5TiC with H2 in MA (W-0.5TiC-H2) shows a larger strain rate sensitivity of flow stress, m, of 0.5~0.6 at temperatures from 1673 to 1973 K, which is a feature of superplastic materials. Whereas W-0.5TiC-Ar shows a smaller m value of approximately 0.2. No radiation hardening is recognized in UFG W-0.5TiC-H2 and W-0.5TiC-Ar.

  19. Correlation of shape and size of methane bubbles in fine-grained muddy aquatic sediments with sediment fracture toughness

    NASA Astrophysics Data System (ADS)

    Katsman, Regina

    2015-01-01

    Gassy sediments contribute to destabilization of aquatic infrastructure, air pollution, and global warming. In the current study a precise shape and size of the buoyant mature methane bubble in fine-grained muddy aquatic sediment is defined by numerical and analytical modeling, their results are in a good agreement. A closed-form analytical solution defining the bubble parameters is developed. It is found that the buoyant mature bubble is elliptical in its front view and resembles an inverted tear drop in its cross-section. The size and shape of the mature bubble strongly correlate with sediment fracture toughness. Bubbles formed in the weaker sediments are smaller and characterized by a larger surface-to-volume ratio that induces their faster growth and may lead to their faster dissolution below the sediment-water interface. This may prevent their release to the water column and to the atmosphere. Shapes of the bubbles in the weaker sediments deviate further from the spherical configuration, than those in the stronger sediments. Modeled bubble characteristics, important for the acoustic applications, are in a good agreement with field observations and lab experiments.

  20. The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite

    NASA Astrophysics Data System (ADS)

    Ishiyama, S.; Burchell, T. D.; Strizak, J. P.; Eto, M.

    1996-05-01

    A fine-grained isotropic nuclear graphite (IG-110), manufactured from a petroleum coke, was irradiated to a total neutron dose of 3.8 × 10 26 n/m 2 or 25 displacements per atom (dpa) at 600°C in the high flux isotope reactor (HFIR) at Oak Ridge: National Laboratory (ORNL). The effect of irradiation and the influence of post-irradiation thermal annealing on the properties of the graphite were evaluated. Volume change turnaround was clearly observed at 15—20 dpa and the return to original volume ( {ΔV}/{V 0} = 0 ) can be estimated to occur at ˜ 30 dpa. Strength and elastic moduli of the irradiated graphite increased by a factor of 2-3, and maximums in the {δ}/{δ 0}, and {E}/{E o} curves were at ˜20 dpa at 600°C. Recovery of volume, fracture strength and thermal conductivity by thermal annealing were found., and thermal conductivity returned to better than about 30% of the unirradiated value after 1200°C thermal annealing.

  1. Fabrication, tribological and corrosion behaviors of ultra-fine grained Co-28Cr-6Mo alloy for biomedical applications.

    PubMed

    Ren, Fuzeng; Zhu, Weiwei; Chu, Kangjie

    2016-07-01

    Nickel and carbides free Co-28Cr-6Mo alloy was fabricated by combination of mechanical alloying and warm pressing. The microstructure, mechanical properties, pin-on-disk dry sliding wear and corrosion behavior in simulated physiological solution were investigated. The produced Co-28Cr-6Mo alloy has elongated ultra-fine grained (UFG) structure of ε-phase with average grain size of 600nm in length and 150nm in thickness. The hardness and modulus were determined to be 8.87±0.56GPa and 198.27±7.02GPa, respectively. The coefficient of friction upon dry sliding against alumina is pretty close to that of the forged Co-29Cr-6Mo alloy. The initial ε-phase and UFG microstructure contribute to reduce the depth of severe plastic deformation region during wear and enable the alloy with excellent wear resistance. The corrosion potential of such UFG Co-Cr-Mo alloy has more positive corrosion potential and much lower corrosion current density than those of ASTM alloy.

  2. Estimation of the phenolic waste attenuation capacity of some fine-grained soils with the help of ANN modeling.

    PubMed

    Pal, Supriya; Mukherjee, Somnath; Ghosh, Sudipta

    2014-03-01

    In the present investigation, batch experiments were undertaken in the laboratory for different initial phenol concentration ranging from 10 to 40 mg/L using various types of fine-grained soils namely types A, B, C, D, and E based on physical compositions. The batch kinetic data were statistically analyzed with a three-layered feed-forward artificial neural network (ANN) model for predicting the phenol removal efficiency from the water environment. The input parameters considered were the adsorbent dose, initial phenol concentration, contact time, and percentage of clay and silt content in soils. The response output of the ANN model was considered as the phenol removal efficiency. The predicted results of phenol removal efficiency were compared with the experimental values as obtained from batch tests and also tests for goodness of fitting in ANN model with experimental results. The estimated values of coefficient of correlation (R = 0.99) and mean squared error (MSE = 0.006) reveals a reasonable closeness of experimental and predicted values. Out of five different types of soil, type E exhibited the highest removal efficiency (31.6 %) corresponding to 20 mg/L of initial phenol concentration. A sensitivity analysis was also carried out on the ANN model to ascertain the degree of effectiveness of various input variables. PMID:24271727

  3. Solvating atomic level fine-grained proteins in supra-molecular level coarse-grained water for molecular dynamics simulations.

    PubMed

    Riniker, Sereina; Eichenberger, Andreas P; van Gunsteren, Wilfred F

    2012-08-01

    Simulation of the dynamics of a protein in aqueous solution using an atomic model for both the protein and the many water molecules is still computationally extremely demanding considering the time scale of protein motions. The use of supra-atomic or supra-molecular coarse-grained (CG) models may enhance the computational efficiency, but inevitably at the cost of reduced accuracy. Coarse-graining solvent degrees of freedom is likely to yield a favourable balance between reduced accuracy and enhanced computational speed. Here, the use of a supra-molecular coarse-grained water model that largely preserves the thermodynamic and dielectric properties of atomic level fine-grained (FG) water in molecular dynamics simulations of an atomic model for four proteins is investigated. The results of using an FG, a CG, an implicit, or a vacuum solvent environment of the four proteins are compared, and for hen egg-white lysozyme a comparison to NMR data is made. The mixed-grained simulations do not show large differences compared to the FG atomic level simulations, apart from an increased tendency to form hydrogen bonds between long side chains, which is due to the reduced ability of the supra-molecular CG beads that represent five FG water molecules to make solvent-protein hydrogen bonds. But, the mixed-grained simulations are at least an order of magnitude faster than the atomic level ones.

  4. AraPPISite: a database of fine-grained protein-protein interaction site annotations for Arabidopsis thaliana.

    PubMed

    Li, Hong; Yang, Shiping; Wang, Chuan; Zhou, Yuan; Zhang, Ziding

    2016-09-01

    Knowledge about protein interaction sites provides detailed information of protein-protein interactions (PPIs). To date, nearly 20,000 of PPIs from Arabidopsis thaliana have been identified. Nevertheless, the interaction site information has been largely missed by previously published PPI databases. Here, AraPPISite, a database that presents fine-grained interaction details for A. thaliana PPIs is established. First, the experimentally determined 3D structures of 27 A. thaliana PPIs are collected from the Protein Data Bank database and the predicted 3D structures of 3023 A. thaliana PPIs are modeled by using two well-established template-based docking methods. For each experimental/predicted complex structure, AraPPISite not only provides an interactive user interface for browsing interaction sites, but also lists detailed evolutionary and physicochemical properties of these sites. Second, AraPPISite assigns domain-domain interactions or domain-motif interactions to 4286 PPIs whose 3D structures cannot be modeled. In this case, users can easily query protein interaction regions at the sequence level. AraPPISite is a free and user-friendly database, which does not require user registration or any configuration on local machines. We anticipate AraPPISite can serve as a helpful database resource for the users with less experience in structural biology or protein bioinformatics to probe the details of PPIs, and thus accelerate the studies of plant genetics and functional genomics. AraPPISite is available at http://systbio.cau.edu.cn/arappisite/index.html .

  5. AraPPISite: a database of fine-grained protein-protein interaction site annotations for Arabidopsis thaliana.

    PubMed

    Li, Hong; Yang, Shiping; Wang, Chuan; Zhou, Yuan; Zhang, Ziding

    2016-09-01

    Knowledge about protein interaction sites provides detailed information of protein-protein interactions (PPIs). To date, nearly 20,000 of PPIs from Arabidopsis thaliana have been identified. Nevertheless, the interaction site information has been largely missed by previously published PPI databases. Here, AraPPISite, a database that presents fine-grained interaction details for A. thaliana PPIs is established. First, the experimentally determined 3D structures of 27 A. thaliana PPIs are collected from the Protein Data Bank database and the predicted 3D structures of 3023 A. thaliana PPIs are modeled by using two well-established template-based docking methods. For each experimental/predicted complex structure, AraPPISite not only provides an interactive user interface for browsing interaction sites, but also lists detailed evolutionary and physicochemical properties of these sites. Second, AraPPISite assigns domain-domain interactions or domain-motif interactions to 4286 PPIs whose 3D structures cannot be modeled. In this case, users can easily query protein interaction regions at the sequence level. AraPPISite is a free and user-friendly database, which does not require user registration or any configuration on local machines. We anticipate AraPPISite can serve as a helpful database resource for the users with less experience in structural biology or protein bioinformatics to probe the details of PPIs, and thus accelerate the studies of plant genetics and functional genomics. AraPPISite is available at http://systbio.cau.edu.cn/arappisite/index.html . PMID:27338257

  6. Fine-Grained Rims in the Allan Hills 81002 and Lewis Cliff 90500 CM2 Meteorites: Their Origin and Modification

    NASA Technical Reports Server (NTRS)

    Hua, X.; Wang, J.; Buseck, P. R.

    2002-01-01

    Antarctic CM meteorites Allan Hills (ALH) 8 1002 and Lewis Cliff (LEW) 90500 contain abundant fine-grained rims (FGRs) that surround a variety of coarse-grained objects. FGRs from both meteorites have similar compositions and petrographic features, independent of their enclosed objects. The FGRs are chemically homogeneous at the 10 m scale for major and minor elements and at the 25 m scale for trace elements. They display accretionary features and contain large amounts of volatiles, presumably water. They are depleted in Ca, Mn, and S but enriched in P. All FGRs show a slightly fractionated rare earth element (REE) pattern, with enrichments of Gd and Yb and depletion of Er. Gd is twice as abundant as Er. Our results indicate that those FGRs are not genetically related to their enclosed cores. They were sampled from a reservoir of homogeneously mixed dust, prior to accretion to their parent body. The rim materials subsequently experienced aqueous alteration under identical conditions. Based on their mineral, textural, and especially chemical similarities, we conclude that ALH 8 1002 and LEW 90500 likely have a similar or identical source.

  7. FINE GRAIN NUCLEAR EMULSION

    DOEpatents

    Oliver, A.J.

    1962-04-24

    A method of preparing nuclear track emulsions having mean grain sizes less than 0.1 microns is described. The method comprises adding silver nitrate to potassium bromide at a rate at which there is always a constant, critical excess of silver ions. For minimum size grains, the silver ion concentration is maintained at the critical level of about pAg 2.0 to 5.0 during prectpitation, pAg being defined as the negative logarithm of the silver ion concentration. It is preferred to eliminate the excess silver at the conclusion of the precipitation steps. The emulsion is processed by methods in all other respects generally similar to the methods of the prior art. (AEC)

  8. Transition in magnetic fabric types in progressively deformed, fine-grained sedimentary rocks of Central Armorica (Brittany, France)

    NASA Astrophysics Data System (ADS)

    Haerinck, Tom; Hirt, Ann M.; Debacker, Timothy N.; Sintubin, Manuel

    2014-05-01

    The anisotropy of magnetic susceptibility (AMS) of progressively deformed, fine-grained sedimentary rocks is determined for different tectonometamorphic settings in Central Armorica (Brittany, France). Low-temperature AMS and high-field torque magnetometry on a representative selection of samples indicate that the magnetic fabric is dominantly paramagnetic and the ferromagnetic (s.l.) contribution can be neglected. The AMS documents a progressive transition of intermediate fabrics to tectonic fabrics and increasingly stronger developed tectonic fabrics. An integrated magnetic-mineralogical approach is performed in order to assess whether we can use this evolution as a quantitative indicator for the intensity of cleavage development in Central Armorica. During the magnetic fabric transition, the maximum susceptibility axis (K1) remains stationary oriented parallel to the bedding - cleavage intersection, whereas the minimum susceptibility axis (K3) orientation distribution changes from a moderate girdle distribution in the intermediate fabric types, to a strongly clustered distribution parallel to the cleavage pole for the tectonic fabric types. A Woodcock two-axis ratio plot is used to evaluate this change in K3 distribution. This shows a regional pattern with intermediate fabrics in the southern part of Central Armorica and tectonic fabrics in the northern part of Central Armorica. Quantitative analysis of the observed magnetic fabrics shows that the fabric transition described above is accompanied by an evolution from prolate susceptibility ellipsoids with a relatively low degree of anisotropy to oblate ellipsoid with an increasingly higher degree of anisotropy. In a graph of the shape parameter T against the corrected degree of anisotropy PJ, this evolution has a hockey-stick shaped pattern with the vertical branch reflecting the actual transition from intermediate to tectonic fabric type and the horizontal branch reflecting progressively stronger developed

  9. Fine-Grained Distribution of a Non-Native Resource Can Alter the Population Dynamics of a Native Consumer

    PubMed Central

    2015-01-01

    New interactions with non-native species can alter selection pressures on native species. Here, we examined the effect of the spatial distribution of a non-native species, a factor that determines ecological and evolutionary outcomes but that is poorly understood, particularly on a fine scale. Specifically, we explored a native butterfly population and a non-native plant on which the butterfly oviposits despite the plant’s toxicity to larvae. We developed an individual-based model to describe movement and oviposition behaviors of each butterfly, which were determined by plant distribution and the butterfly's host preference genotype. We estimated the parameter values of the model from rich field data. We simulated various patterns of plant distributions and compared the rates of butterfly population growth and changes in the allele frequency of oviposition preference. Neither the number nor mean area of patches of non-native species affected the butterfly population, whereas plant abundance, patch shape, and distance to the nearest native and non-native patches altered both the population dynamics and genetics. Furthermore, we found a dramatic decrease in population growth rates when we reduced the distance to the nearest native patch from 147 m to 136 m. Thus changes in the non-native resource distribution that are critical to the fate of the native herbivore could only be detected at a fine-grained scale that matched the scale of a female butterfly’s movement. In addition, we found that the native butterfly population was unlikely to be rescued by the exclusion of the allele for acceptance of the non-native plant as a host. This study thus highlights the importance of including both ecological and evolutionary dynamics in analyses of the outcome of species interactions and provides insights into habitat management for non-native species. PMID:26575843

  10. Geochemical imprint of depositional conditions on organic matter in laminated-Bioturbated interbeds from fine-grained marine sequences

    USGS Publications Warehouse

    Pratt, L.M.; Claypool, G.E.; King, J.D.

    1986-01-01

    Laminated organic-rich shales are interbedded at a scale of centimeters to a few meters with bioturbated organic-poor mudstones or limestones in some fine-grained marine sequences. We have analyzed the organic matter in pairs of laminated/bioturbated interbeds from Cretaceous and Devonian rocks deposited in epicontinental and oceanic settings for the purpose of studying the influence of depositional and early diagenetic environment on the organic geochemical properties of marine shales. Results of these analyses indicate that for rocks that are still in a diagenetic stage of thermal alteration, the relative abundance of biomarker compounds and specific biomarker indices can be useful indicators of depositional and early diagenetic conditions. Pristane/phytane ratios are generally highest for laminated rocks from epicontinental basins and appear to reflect the input of isoprenoid precursors more than oxygenated versus anoxic depositional conditions. The thermally immature laminated rocks are characterized by relatively high contents of 17??(H), 21??(H)-hopanes, hopenes, sterenes and diasterenes, and by strong predominance of the 22R over 22S homohopane isomers. Thermally immature bioturbated samples are characterized by absence of the ??,??-hopanes, by low contents of both saturated and unsaturated polycyclic hydrocarbons, and by slight or no predominance of the 22R over 22S homohopane isomers. There are less obvious compositional differences between the saturated hydrocarbons in the laminated and bioturbated units from the thermally mature sequences. For both the thermally mature and immature laminated samples, the degree of isomerization at the 22C position for hopanes and at the 20C position for steranes is generally consistent with the degree of thermal maturity interpreted from other properties of the organic matter. The bioturbated samples, however, exhibit inconsistent and anomalously high degrees of isomerization for the homohopanes, resulting either from

  11. Mars Exploration Rover Pancam Observations of Spectral Diversity in Fine-Grained Materials at the Gusev and Meridiani Landing Sites

    NASA Astrophysics Data System (ADS)

    Bell, James F.; Fraeman, A.; Grossman, L. I.; Athena Science Team

    2006-09-01

    During 900 sols on Mars, the Mars Exploration Rover Spirit and Opportunity Pancam instruments have acquired more than 1500 "13 filter" single-pointing multispectral image cubes of targets of interest along each rover's traverse. These image cubes sample 11 distinct narrowband wavelengths between 432 nm and 1009 nm, and have been calibrated to absolute radiance and I/F using pre-flight calibration data and in-flight observations of the Pancam calibration target. The data were acquired in order to help constrain the iron-bearing mineralogy of martian materials, to help choose targets for in situ chemical and mineralogic measurements, and to provide context and visible to near-IR color data to augment chemical, Microscopic Imager, and Mini-TES observations. Our analysis here focuses on the Pancam spectral properties of the fine-grained components: mostly soil and dust materials but also sand, cobbles, spherules, RAT grindings, and some rock/outcrop surfaces. We analyzed about 900 and 600 Pancam image cubes acquired through Spirit sol 831 and Opportunity sol 754, respectively. Distinctive potential spectral units were identified in a subset of these cubes first through visual inspection of false-color composite images. Spectra from these units were then examined in detail and average unit spectra were extracted using manually defined regions of interest. Our final data set consisted of about 1200 spectra from Spirit and 350 spectra from Opportunity. These were then grouped into spectral classes using a combination of band parameterizations, spectral similarity algorithms, and visual inspection. Our 20 current Spirit classes include 4 bright, 3 dark, and 8 white/yellow soil classes, 4 rock/rock dust classes, and a sky class. Our 19 current Opportunity classes include 7 for soils, 3 for spherules, 3 for small rocks/cobbles, 3 for rocks/rock dust, and 3 sky/other classes. Here we show examples of these spectral classes and discuss their distribution and mineralogic

  12. Morphobathymetric analysis of the large fine-grained sediment waves over the Gulf of Valencia continental slope (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Ribó, Marta; Puig, Pere; Muñoz, Araceli; Lo Iacono, Claudio; Masqué, Pere; Palanques, Albert; Acosta, Juan; Guillén, Jorge; Gómez Ballesteros, María

    2016-01-01

    Detailed analysis of recently acquired swath bathymetry, together with high-resolution seismic profiles and bottom sediment samples, revealed the presence of large-scale fine-grained sediment waves over the Gulf of Valencia continental slope. As many other deep-water sediment waves, these features were previously attributed to gravitational slope failure, related to creep-like deformation, and are here reinterpreted as sediment wave fields extending from 250 m depth to the continental rise, at ~ 850 m depth. Geometric parameters were computed from the high-resolution multibeam dataset. Sediment wave lengths range between 500 and 1000 m, and maximum wave heights of up to 50 m are found on the upper slope, decreasing downslope to minimum values of 2 m high. Sediment waves on the lower part of the slope are quasi-stationary vertically accreting, whereas they show an upslope migrating pattern from the mid-slope to the upper part of the continental slope. High-resolution seismic profiles show continuous internal reflectors, with sediment waves merging down-section and sediment wave packages decreasing in thickness downslope. These sediment packages are thicker on the crest of each individual sediment wave and thinner on the downslope flank. 210Pb analyses conducted on sediment cores collected over the sediment wave fields also indicate slightly higher sediment accumulation rates on the wave crests. Sediment wave formation processes have been inferred from contemporary hydrodynamic observations, which reveal the presence of near-inertial internal waves interacting with the Gulf of Valencia continental slope. Internal wave activity is suggested to be the preferential mechanism for the transport and deposition of sediment, and the maintenance of the observed sediment wave fields.

  13. Fluid movement and diagenesis in fine-grained geopressured sediments of Frio Formation (Oligocene), Kaplan field, southwestern Louisiana

    SciTech Connect

    Davis, B.A.; Ferrell, R.E.

    1983-03-01

    Investigation of structure, temperature, pressure, salinity, and core samples at Kaplan field yields information on diagenesis of fine-grained sandstones deposited in an outer shelf/upper slope depositional environment The shallow occurrence of geopressure is related to structure and a high shale/sand ratio. Low isothermal surfaces in the down fault blocks accompanied by anomalous high temperatures in the upthrown blocks indicate vertical leakage of fluids along growth faults from underlying geopressured aquifers. The Frio Formation core samples from 16,700 to 19,600 ft (5090 to 5974 m) of depth, representing channel and channel-edge turbidite sandstones, were examined petrographically and by SEM. The arkosic composition of late stage diagenesis sandstones at Kaplan field suggests an original arkose or lithic arkose composition (classification of McBride). Nonferroan calcite cementation, chlorite rims and cement, and quartz overgrowths characterize early diagenesis. At a middle stage of diagenesis secondary porosity is developed by dissolution of unstable grains and calcite cement. Samples flushed by geopressured waters from greater depth show kaolinite pore-fill and quartz over-growths, chlorite (polytype IIb) and illite cement, and feldspar overgrowths in the late diagenetic stage. The low permeability of sandstones with extensive early chlorite cement (channel-edge sandstones) precludes development of extensive secondary porosity. In contrast, sandstones with little early chlorite cement develop and maintain secondary porosity through the late diagenetic stage. Restriction of fluid movement by early chlorite cement has ramifications for migration of hydrocarbons or geothermal waters, and for gas production at Kaplan field.

  14. Numerical simulation of a fine-grained denitrification layer for removing septic system nitrate from shallow groundwater.

    PubMed

    MacQuarrie, K T; Sudicky, E A; Robertson, W D

    2001-11-01

    One of the most common methods to dispose of domestic wastewater involves the release of septic effluent from drains located in the unsaturated zone. Nitrogen from such systems is currently of concern because of nitrate contamination of drinking water supplies and eutrophication of coastal waters. It has been proposed that adding labile carbon sources to septic distribution fields could enhance heterotrophic denitrification and thus reduce nitrate concentrations in shallow groundwater. In this study, a numerical model which solves for variably saturated flow and reactive transport of multiple species is employed to investigate the performance of a drain field design that incorporates a fine-grained denitrification layer. The hydrogeological scenario simulated is an unconfined sand aquifer. The model results suggest that the denitrification layer, supplemented with labile organic carbon, may be an effective means to eliminate nitrogen loading to shallow groundwater. It is also shown that in noncalcareous aquifers, the denitrification reaction may provide sufficient buffering capacity to maintain near neutral pH conditions beneath and down gradient of the drain field. Leaching of excess dissolved organic carbon (DOC) from the denitrification layer is problematic, and causes an anaerobic plume to develop in simulations where the water table is less than 5-6 m below ground surface; this anaerobic plume may lead to other down gradient changes in groundwater quality. A drain field and denitrification layer of smaller dimensions is shown to be just as effective for reducing nitrate, but has the benefit of reducing the excess DOC leached from the layer. This configuration will minimize the impact of wastewater disposal in areas where the water table is as shallow as 3.5 m.

  15. Removal of contaminants from fine grained soils using electrokinetic (EK) flushing. Final report, September 30, 1987--June 30, 1993

    SciTech Connect

    Reed, B.E.; Berg, M.T.

    1993-10-01

    Recently, attention has focused on developing cost effective techniques to remove inorganic contaminants from soils in-situ. For most in-situ techniques hydraulic pressure is used to disperse the chemical additives and collect the contaminated groundwater. In-situ treatment technologies have had success at sites containing sandy soils but have not shown much promise for soils with large amounts of clay and silt. This is due primarily to difficulty in transporting groundwater, contaminants, and chemical additives through the subsurface. Unfortunately, soils high in clay and silt are known to sequester large quantities of inorganic and organic contaminants. Thus, soils having low hydraulic conductivity`s are generally efficient in sequestering pollutants but are resistant to standard in-situ remediation techniques because of the difficulty in transporting groundwater and contaminants. A candidate technology for the in-situ remediation of low permeability soils is electrokinetic (EK) soil flushing. In EK soil flushing, groundwater and contaminants are transported under an a plied voltage. The transport of groundwater electroosmotically does not depend directly on the soil`s hydraulic conductivity. Thus, soils that would otherwise require excavation and treatment can be remediated in-situ if electrokinetics is used as the driving force for liquid and contaminant transport. This report details the results from work conducted on the use of EK soil flushing to remediate a fine grained soil contaminated with lead. The first portion of the experimental work entailed soil collection and characterization, soil adsorption and desorption of lead, and EK reactor construction and testing. The second phase of the research consisted of investigating the efficacy of using EK soil flushing on an actual soil using bench-scale EK reactors. For the second phase of the research the affect of initial conditions on the efficiency of EK soil flushing was studied.

  16. Predicting the Sensitivity of Multiscale Coarse-Grained Models to their Underlying Fine-Grained Model Parameters.

    PubMed

    Wagner, Jacob W; Dama, James F; Voth, Gregory A

    2015-08-11

    The sensitivity of a coarse-grained (CG) force field to changes in the underlying fine-grained (FG) model from which it was derived provides modeling insight for improving transferability across interaction parameters, transferability across temperature, and the calculation of thermodynamic derivatives. Methods in the literature, such as multi-trajectory finite differences and reweighted finite differences, are either too computationally demanding to calculate within acceptable noise tolerances or are too biased for practical accuracy. This work presents a new reweighting-free, single-simulation formula that allows for practical, high signal-to-noise calculations of CG model sensitivity with respect to FG model interaction parameters and thermodynamic state points. This formula, the self-consistent basis (SCB) single point formula, determines the many-body sensitivity in a single step by approximating the derivative of the many-body potential projected onto the same set of trial functions as the sensitivity. A related diagnostic formula also derived in this paper is the self-consistent iterative (SCI) single point formula, which is useful for identifying the importance of many-body sources of error and verifying CG representability of observables. The SCI formula determines the many-body sensitivity iteratively via a series of partially self-consistent, variational approximations to the complete many-body sensitivity. The new, computationally efficient SCB formula shows substantially less noise than previous methods when applied to single site methanol and solvent-free sodium chloride CG models, though bias can remain a problem. It represents a novel method for calculating alchemical transferability across interaction parameters at low computational cost and with high fidelity, and the results point to new understanding of the current limits of CG model transferability.

  17. Monitoring Fine-Grained Sediment in the Colorado River Ecosystem, Arizona - Control Network and Conventional Survey Techniques

    USGS Publications Warehouse

    Hazel, Joseph E.; Kaplinski, Matt; Parnell, Roderic A.; Kohl, Keith; Schmidt, John C.

    2008-01-01

    In 2002, fine-grained sediment (sand, silt, and clay) monitoring in the Colorado River downstream from Glen Canyon Dam was initiated to survey channel topography at scales previously unobtainable in this canyon setting. This report presents the methods used to establish the high-resolution global positioning system (GPS) control network required for this effort as well as the conventional surveying techniques used in the study. Using simultaneous, dual-frequency GPS vector-based methods, the network points were determined to have positioning accuracies of less than 0.03 meters (m) and ellipsoidal height accuracies of between 0.01 and 0.10 m at a 95-percent degree of confidence. We also assessed network point quality with repeated, electronic (optical) total-station observations at 39 points for a total of 362 measurements; the mean range was 0.022 m in horizontal and 0.13 in vertical at a 95-percent confidence interval. These results indicate that the control network is of sufficient spatial and vertical accuracy for collection of airborne and subaerial remote-sensing technologies and integration of these data in a geographic information system on a repeatable basis without anomalies. The monitoring methods were employed in up to 11 discrete reaches over various time intervals. The reaches varied from 1.3 to 6.4 kilometers in length. Field results from surveys in 2000, 2002, and 2004 are described, during which conventional surveying was used to collect more than 3000 points per day. Ground points were used as checkpoints and to supplement areas just below or above the water surface, where remote-sensing data are not collected or are subject to greater error. An accuracy of +or- 0.05 m was identified as the minimum precision of individual ground points. These results are important for assessing digital elevation model (DEM) quality and identifying detection limits of significant change among surfaces generated from remote-sensing technologies.

  18. TEM/AEM characterization of fine-grained clay minerals in very-low-grade rocks: Evaluation of contamination by EMPA involving celadonite family minerals

    SciTech Connect

    Li, Gejing; Peacor, D.R.; Coombs, D.S.; Kawachi, Y.

    1996-12-31

    Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very fine-grained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.

  19. A multi-disciplinary study of deformation of the basaltic cover over fine-grained valley fills: a case study from Eastern Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Deiana, Rita; Dieni, Iginio; Massari, Francesco; Perri, Maria Teresa; Rossi, Matteo; Brovelli, Alessandro

    2016-06-01

    The Pliocene to Early Pleistocene volcanic activity which generated the basaltic plateau of the Orosei-Dorgali area in Eastern Sardinia led to the disruption of the local hydrographic network by damming some tracts of the fluvial valleys incised in the granite basement. This resulted in the formation of lacustrine basins, whose fine-grained fills were partly interfingered and eventually covered by younger lava flows. In the SW part of the plateau, close to the Galtellì village, a number of unknown depressions, locally named "Paules," were formed. In order to reconstruct their subsurface structure, two electrical resistivity tomography surveys were carried out across these depressions. The geophysical results, which demonstrate the existence of a disrupted layered system, were used to build a numerical geomechanical model that suggest the depressions originated by local collapses of the basaltic cover due to the compaction of the underlying fine-grained valley fills.

  20. Effect of the Fine-Grained Structure on the Fatigue Properties of the Heat-Resistant Nickel-Iron Alloy Inconel 718

    NASA Astrophysics Data System (ADS)

    Mukhtarov, Sh. Kh.; Shakhov, R. V.

    2015-10-01

    It is well known that ultrafine-grained nickel alloys with average grain sizes d = 0.1-1 μm possess improved hot workability and can be used for superplastic forming or rolling. However, microstructure refinement can worsen some performance characteristics of the alloy, for example, heat-resistant or fatigue properties. In the present work, fatigue characteristics of the fine-grained alloy Inconel 718 are investigated. Ultrafine-grained alloys with average grain sizes d = 0.1-1 μm were manufactured by multiple forging with stage-by-stage deformation temperature decrease. During standard heat treatment of the alloy performed to obtain the desired properties, the γ-grain size was controlled by precipitations of δ-phase particles along the boundaries. Results of low-cycle fatigue tests of the fine-grained alloy at room and elevated temperatures are compared with the properties of the coarse-grained alloy.

  1. Cost-Effective TiAl based Materials

    NASA Technical Reports Server (NTRS)

    Moxson, V. S.; Sun, Fusheng; Draper, Susan L.; Froes, F. H.; Duz, V.

    2003-01-01

    Because of their inherent low ductility, TiAl-based materials are difficult to fabricate, especially thin gage titanium gamma aluminide (TiAl) sheet and foil. In this paper, an innovative powder metallurgy approach for producing cost-effective thin gage TiAl sheets (with 356 mm long and 235 mm wide, and a thickness of 0.74, 1.09, 1.55, and 2.34 mm, respectively) is presented. The microstructures and tensile properties at room and elevated temperatures of the thin gage TiAl are studied. Results show that these TiAl sheets have a relatively homogenous chemistry, uniform microstructure, and acceptable mechanical properties. This work demonstrates a cost-effective method for producing both flat products (sheet/foil) and complex chunky parts of TiAl for various advanced applications including aerospace and automotive industries.

  2. An Upper Turonian fine-grained shallow marine stromatolite bed from the Muñecas Formation, Northern Iberian Ranges, Spain

    NASA Astrophysics Data System (ADS)

    Rodríguez-Martínez, M.; Sánchez, F.; Walliser, E. O.; Reitner, J.

    2012-07-01

    A fine-grained stromatolite bed, laterally continuous on the kilometer scale and with small synoptic relief, crops out in the Muñecas Formation in the Northern Iberian Ranges. The Muñecas Fm. was deposited during the late Turonian on a shallow water platform in the Upper Cretaceous intracratonic Iberian basin. The stromatolite bed has a tabular to domed biostromal macrostructure. Its internal mesostructure consists of planar, wavy to hemispherical stromatoids that display a broad spectrum of microstructures, including dense micrite, bahamite peloids, peloidal to clotted microfabrics, irregular micritic-wall tubes, which are suggestive of algae and filamentous microframeworks, which are suggestive of filamentous cyanobacteria. Various stromatolite growth stages have been linked to the dominance of different accretion processes. The accretion of the entire fine-grained stromatolite involves a complex mosaic of processes: trapping and binding of quartz-silt grains and bahamites, which form the agglutinated parts of some laminae, and microbially induced precipitation, which forms spongiostromic and micritic laminae. Tubiform and filamentous microframeworks resembling porostromatate or skeletal stromatolitic growth were also recognized. Laser ICP-MS measurements of Al, Si, Mg, Mn, Sr, S and Fe were analyzed to detect the influence of siliciclastic inputs and major trends during stromatolite accretion. Carbon and oxygen isotopic compositions from the stromatolite and associated facies were used to identify possible microbial signatures. These data describes a unique and well-preserved example of a shallow marine Upper Turonian fine-grained stromatolite.

  3. Crystalline In-Ga-Zn-O FET-based configuration memory for multi-context field-programmable gate array realizing fine-grained power gating

    NASA Astrophysics Data System (ADS)

    Kozuma, Munehiro; Okamoto, Yuki; Nakagawa, Takashi; Aoki, Takeshi; Ikeda, Masataka; Osada, Takeshi; Kurokawa, Yoshiyuki; Ikeda, Takayuki; Yamade, Naoto; Okazaki, Yutaka; Miyairi, Hidekazu; Fujita, Masahiro; Koyama, Jun; Yamazaki, Shunpei

    2014-01-01

    A multi-context (MC) field-programmable gate array (FPGA) enabling fine-grained power gating (PG) is fabricated by a hybrid process involving a 1.0 µm c-axis aligned crystalline In-Ga-Zn-O (CAAC-IGZO) field-effect transistor (FET), which is one of CAAC oxide-semiconductor (OS) FETs, and a 0.5 µm complementary metal oxide semiconductor (CMOS) FET. The FPGA achieves a 20% layout area reduction in a routing switch and an 82.8% reduction in power required to retain data of configuration memory (CM) cells at 2.5 V driving compared to a static random access memory (SRAM)-based FPGA. A controller for fine-grained PG can be implemented at an area overhead of 7.5% per programmable logic element (PLE) compared to a PLE without PG. For each PLE, the power overhead with fine-grained PG amounts to 2.25 and 2.26 nJ for power-on and power-off, respectively, and break-even time (BET) is 19.4 µs at 2.5 V and 10 MHz driving.

  4. Tracking Fine-Grain Phenological Dynamics at a Landscape Extent Using a Network of Near-Surface Digital Repeat Photography Stations in West Greenland

    NASA Astrophysics Data System (ADS)

    Kerby, J.; Post, E.

    2014-12-01

    The phenology of vegetation emergence in the Arctic is highly sensitive to climatic fluctuations. Spring phenology drives ecological processes across local, population, and ecosystem scales. Traditional approaches to capturing spatio-temporal variation in the annual timing and pace of Arctic green-up, like satellite-derived and plot-level records, are limited by trade-offs in the grain and extent of monitoring through both space and time. Recent studies demonstrate the utility of tracking canopy phenology using near-surface digital repeat photography (phenocams) to overcome spatial and temporal grain limitations at the extent of individual plants or vegetation stands. However, our understanding of how fine-grain phenological dynamics scale to landscape extents is incomplete. Here we report on the fine-grain green-up dynamics of a low-Arctic tundra system in West Greenland at the extent of a caribou calving range (40 km2) using three years (2012-2014) of phenological records derived from a network of 50 phenocams, field observations, and high-resolution satellite imagery. Using geostatistics and multiple-regression models, we characterize spatiotemporal patterns of plant phenology, landscape controls on the timing of emergence of common shrub and graminoid species, and assess scale-dependency in patterns of vegetation green-up. We link these results with coarse-grained satellite records of plant phenology to clarify how fine-grained dynamics contribute to the widely reported broad-scale patterns of phenological and ecological change in the Arctic.

  5. Key parameters for low-grade fine-grained iron ore valorization: lower environmental impact through reduced waste.

    NASA Astrophysics Data System (ADS)

    Wagner, Christiane; Orberger, Beate; Tudryn, Alina; Baptiste, Benoît; Wirth, Richard; Morgan, Rachel; Miska, Serge

    2016-04-01

    In low-grade banded iron formations (BIFs), a large part of the iron is related to micro- and nano- metric iron-bearing inclusions within quartz and/or carbonates, mainly dolomite (~ 20 to 50 μm). Low-grade fine grained iron ore present two types of environmental risks: a) they are often stocked as tailings. For example, the recent disaster (5th of November 2015) in the Minas Gerais district, Brazil, was caused by the collapse of the Fundão tailings dam at an open cast mine; b) during beneficiation significant amounts of dust are generated also leading to metal loss. A laminated BIF studied from a drill core at Àguas Claras Mine, Quadrilátero Ferrífero, Brazil, contains 26.71 wt. % total iron, 0.2 wt. % SiO2, 0.32 wt.% MnO, 15.46 wt. % MgO, 22.32 wt.% CaO, 0.09 wt. % P2O5, < 0.05 wt. % Al2O3, 0.15 wt. % H2O and 34.08 wt. % CO2. Environmental hazardous elements are present as traces (As: 3-20 ppm, Cd: 0-0.7 ppm; Cr: 0.05-60 ppm, Pb: up to 55 ppm; U: up to 8 ppm). Dolomite and quartz bands alternate with hematite bands. Raman spectroscopy, X-ray diffraction and FIB-TEM analyses reveal that the micro- and nano- metric inclusions in dolomite are hematite and minor goethite, partly occurring as clusters in voids. Curie Balance analyses were carried out at different heating steps and temperatures on whole rock samples and a synthetic mix of decarbonated sample and pure dolomite. X-ray diffraction on the products of the heating experiments shows that that hematite is stable and new phases: magnesioferrite (MgFe2O4), lime (CaO), periclase (MgO), portlandite (Ca(OH)2) and srebrodoskite (Ca2Fe2O5) were formed between 680 °C and 920 °C. These findings promote the economic use of low grade ores rather than their stockpiling as tailings. The presence of OH-bearing goethite reduces the sintering temperature. After having separated coarse hematite from barren dolomite and quartz, a low temperature sintering of the inclusion-bearing dolomite/quartz leads to transformations

  6. Algal blooms and "Marine snow": Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments

    USGS Publications Warehouse

    Macquaker, J.H.S.; Keller, M.A.; Davies, S.J.

    2010-01-01

    Combined petographic and geochemical methods are used to investigate the microfabrics present in thin sections prepared from representative organic carbon-rich mudstones collected from three successions (the Kimmeridge Clay Formation, the Jet Rock Member of the Whitby Mudstone Formation, and the pebble shale and Hue Shale). This study was initiated to determine how organic carbon-rich materials were being delivered to the sediment-water interface, and what happened to them after deposition, prior to deep burial. Analyses of the fabrics present shows that they exhibit many common attributes. In particular they are all: (1) highly heterogeneous on the scale of a thin section, (2) organized into thin beds (< 10 mm thick) composed mainly of mineral mixtures of fine-grained siliciclastic detritus and carbonate materials, and (3) contain significant concentrations of organic carbon, much of which is organized into laminasets that contain abundant organomineralic aggregates and pellets. In addition, framboidal pyrite (range of sizes from < 20 urn to < 1 ??m) and abundant agglutinated foraminifers are present in some units. The individual beds are commonly sharp-based and overlain by thin, silt lags. The tops of many of the beds have been homogenized and some regions of the pelleted laminasets contain small horizontal burrows. The organomineralic aggregates present in these mudstones are interpreted to be ancient examples of marine snow. This marine snow likely formed in the water column, particularly during phytoplankton blooms, and was then transported rapidly to the seafloor. The existence of the thin beds with homogenized tops and an in-situ infauna indicates that between blooms there was sufficient oxygen and time for a mixed layer to develop as a result of sediment colonization by diminutive organisms using either aerobic or dysaerobic metabolic pathways. These textures suggest that the constituents of these mudstones were delivered neither as a continuous rain of

  7. Development of manufacturing systems for nanocrystalline and ultra-fine grain materials employing indexing equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Hester, Michael Wayne

    Nanotechnology offers significant opportunities in providing solutions to existing engineering problems as well as breakthroughs in new fields of science and technology. In order to fully realize benefits from such initiatives, nanomanufacturing methods must be developed to integrate enabling constructs into commercial mainstream. Even though significant advances have been made, widespread industrialization in many areas remains limited. Manufacturing methods, therefore, must continually be developed to bridge gaps between nanoscience discovery and commercialization. A promising technology for integration of top-down nanomanufacturing yet to receive full industrialization is equal channel angular pressing, a process transforming metallic materials into nanostructured or ultra-fine grained materials with significantly improved performance characteristics. To bridge the gap between process potential and actual manufacturing output, a prototype top-down nanomanufacturing system identified as indexing equal channel angular pressing (IX-ECAP) was developed. The unit was designed to capitalize on opportunities of transforming spent or scrap engineering elements into key engineering commodities. A manufacturing system was constructed to impose severe plastic deformation via simple shear in an equal channel angular pressing die on 1100 and 4043 aluminum welding rods. 1/4 fraction factorial split-plot experiments assessed significance of five predictors on the response, microhardness, for the 4043 alloy. Predictor variables included temperature, number of passes, pressing speed, back pressure, and vibration. Main effects were studied employing a resolution III design. Multiple linear regression was used for model development. Initial studies were performed using continuous processing followed by contingency designs involving discrete variable length work pieces. IX-ECAP offered a viable solution in severe plastic deformation processing. Discrete variable length work piece

  8. Production of Seamless Superconducting Radio Frequency Cavities from Ultra-fine Grained Niobium, Phase II Final Report

    SciTech Connect

    Roy Crooks, Ph.D., P.E.

    2009-10-31

    The positron and electron linacs of the International Linear Collider (ILC) will require over 14,000, nine-cell, one meter length, superconducting radio frequency (SRF) cavities [ILC Reference Design Report, 2007]. Manufacturing on this scale will benefit from more efficient fabrication methods. The current methods of fabricating SRF cavities involve deep drawing of the halves of each of the elliptical cells and joining them by high-vacuum, electron beam welding, with at least 19 circumferential welds per cavity. The welding is costly and has undesirable effects on the cavity surfaces, including grain-scale surface roughening at the weld seams. Hydroforming of seamless tubes avoids welding, but hydroforming of coarse-grained seamless tubes results in strain-induced surface roughening. Surface roughness limits accelerating fields, because asperities prematurely exceed the critical magnetic field and become normal conducting. This project explored the technical and economic feasibility of an improved processing method for seamless tubes for hydroforming. Severe deformation of bulk material was first used to produce a fine structure, followed by extrusion and flow-forming methods of tube making. Extrusion of the randomly oriented, fine-grained bulk material proceeded under largely steady-state conditions, and resulted in a uniform structure, which was found to be finer and more crystallographically random than standard (high purity) RRR niobium sheet metal. A 165 mm diameter billet of RRR grade niobium was processed into five, 150 mm I.D. tubes, each over 1.8 m in length, to meet the dimensions used by the DESY ILC hydroforming machine. Mechanical properties met specifications. Costs of prototype tube production were approximately twice the price of RRR niobium sheet, and are expected to be comparable with economies of scale. Hydroforming and superconducting testing will be pursued in subsequent collaborations with DESY and Fermilab. SRF Cavities are used to construct

  9. OSL dating as a possible tool for provenance study of fine grained quartz/polymineral from Lake Suigetsu sediments

    NASA Astrophysics Data System (ADS)

    Sugisaki, S.; Murray, A. S.; Buylaert, J.; Tada, R.; Suzuki, Y.; Nagashima, K.; Schwenninger, J.; Haraguchi, T.; Gotanda, K.; Nakagawa, T.

    2013-12-01

    m fraction was extracted from the sediments, and equivalent doses were measured using a double SAR (infrared (IR) and blue light) and post-IR IR (pIRIR 180) respectively. The results show that quartz and polyminerals from type 1 lithology give relatively low and similar equivalent doses throughout each section, whilst quartz and polyminerals in layers of type 2 and 3 give up to 6 times higher equivalent dose than those of adjacent type 1 sediments. We discuss the possible source of quartz in each type of lithology based on fine-grained quartz and polymineral OSL and identify the most suitable lithology for OSL dating for future study.

  10. Sheet gamma TiAl: Status and opportunities

    NASA Astrophysics Data System (ADS)

    Das, Gopal; Kestler, H.; Clemens, H.; Bartolotta, P. A.

    2004-11-01

    Gamma TiAl alloys have attractive properties such as low density, high-temperature strength, and high modulus, oxidation, and burn resistance. As a result, these alloys have the potential to replace heavier superalloys in aircraft engine components. Gamma TiAl alloys were investigated in the 1950s but were too brittle for thermo-mechanical processing. However, interest in this class of material rekindled with several U.S. aerospace programs: the National Aerospace Plane, the Integrated High Performance Turbine Engine Technology, and Enabling Propulsion Materials/High Speed Civil Transport, as well as German hypersonic technology programs. Intense metallurgical and metal processing research during the last two decades led to significant progress in this area. As a result, gamma TiAl alloys are now available in all conventional product forms: ingots, forgings, extrusions, and sheets. This article reviews the current status of sheet gamma TiAl technology and its future opportunities.

  11. Chemical diversity among fine-grained soils at Gale (Mars): a chemical transition as the rover is approaching the Bagnold Dunes?

    NASA Astrophysics Data System (ADS)

    Cousin, Agnès; Forni, Olivier; Meslin, Pierre-Yves; Schroeder, Susanne; Gasnault, Olivier; Bridges, Nathan; Ehlmann, Bethany; Maurice, Sylvestre; Wiens, Roger

    2016-04-01

    The ChemCam instrument has the capability to study the chemical composition of soils at a sub-millimeter scale, thus providing an unpreceedented spatial resolution for their study. More than 300 soils have been sampled so far with ChemCam and these targets are analyzed frequently in order to monitor any change in composition along the traverse. Detailed chemical analysis as a function of grain size is of great importance in order to better constrain soils formation. Curiosity is approaching the Bagnold Dunes, the first active dune field accessible for in-situ analyses. One of the main goals is to determine or constrain the dune material chemistry as well as its provenance. This study is focusing on recent soils analyzed when ap-proaching the dunes, for a comparison with previous soil targets, and with dunes specifically. Chemical composition of fine-grained soils as we approach the Bagnold Dunes has been compared with previous fine-grained soils analyzed along the traverse. These new soils have an average sum of oxides that is significantly higher than what has been previously analyzed. This would suggest that these soils are less hydrated and probably less altered than previous ones.An enrichment in SiO2, FeO and alkali is also observed in these new fine-grained soils, which could be related to a contamination by local rocks due to erosion. Some coarser grains could correspond to an olivine component. This analysis is on-going and will be detailed as the dedicated Bagnold Dunes campaign starts. We will also report in the hydratation level of the dunes.

  12. On the microstructural and magnetic properties of fine-grained CoFe2O4 ceramics produced by combining polyol process and spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Gaudisson, T.; Artus, M.; Acevedo, U.; Herbst, F.; Nowak, S.; Valenzuela, R.; Ammar, S.

    2014-12-01

    Starting from polyol-made CoFe2O4 ferrite nanoparticles of different aggregation states, high-density fine-grained ceramics were produced using Spark Plasma Sintering technique at 600 and 500 °C, under vacuum and applying a uniaxial pressure of more than 80 MPa. The grain growth of thus produced ceramics appears to be proportional to the temperature plateau and inversely proportional to the aggregation state of the initial powders. Average grain sizes ranging between about 50 and 350 nm were obtained. In all the cases, magnetic measurements evidenced a ferrimagnetic behavior at room temperature with non-zero coercivity, while their starting powders exhibited superparamagnetic features.

  13. K/Ar Dating of Fine Grained Sediments Near Prydz Bay, Antarctica: East Antarctic Ice Sheet Behavior During the Middle-Miocene Climate Transition

    NASA Astrophysics Data System (ADS)

    Duchesne, A. E.; Pierce, E. L.; Williams, T.; Hemming, S. R.; Johnson, D. L.; May, T.; Gombiner, J.; Torfstein, A.

    2012-12-01

    ¶ The Middle Miocene Climate Transition (MMCT) (~14 Ma) represents a time of major East Antarctic Ice-Sheet (EAIS) expansion, with research suggesting major global sea level fall on the order of ~60 meters (John et al., 2011, EPSL). Ocean Drilling Program (ODP) core data from Site 1165B near Prydz Bay shows an influx of cobbles deposited ~13.8-13.5 Ma, representing a sudden burst of ice-rafted detritus (IRD) during the MMCT. Based on 40Ar/39Ar dating of hornblendes and/or biotite grains, 5 of 6 dated pebbles from a companion study show Wilkes Land origins, indicating transport from over 1500 kilometers away. However, samples throughout this time interval have an anomalously low abundance of sand, thus we seek to understand the sedimentary processes that led to the deposition of these isolated dropstones in a fine matrix through provenance studies of the core's terrigenous fine fraction. Geochemical provenance studies of the terrigenous fraction of marine sediments can aid in identifying past dynamic EAIS behavior; the few outcrops available on the continent provide specific rock characterizations and age constraints from which cored marine sediments can then be matched to using established radiogenic isotope techniques. Here we apply the K/Ar dating method as a provenance tool for identifying the source area(s) of fine-grained terrigenous sediments (<63 μm) deposited during the MMCT. ¶ After source area characterization, we find that the fine-grained sediments from the mid-Miocene show a mixture of both local Prydz Bay sourcing (~400 Ma signature) and Wilkes Land provenance (~900 Ma signature). While locally-derived Prydz Bay sediments are likely to have been delivered via meltwater from ice and deposited as hemipelagic sediments (with some possible bottom current modification, as this is a drift site), sediments sourced from Wilkes Land required transport via large icebergs. Future work will involve further provenance determination on both the fine-grained

  14. Centerless grinding of TiAl using conventional grinding wheels

    SciTech Connect

    Jones, P.E.; Smits, D.; Eylon, D.; Smits, C.

    1995-12-31

    Ordered gamma titanium aluminide (TiAl) based alloys are now under consideration for automotive valves because of their light weight and high strength at temperatures up to 850 C. Finishing comprises as much as 70% of the cost of an automotive valve, therefore the grindability of TiAl valves will influence their commercial viability. This study compared the grindability of the TiAl alloy Ti-47Al-2Nb-1.75Cr (at%) to standard valve steels, nickel base superalloys, and conventional titanium alloys using the centerless grinding process. Three grinding conditions simulating stem grinding were selected. The power requirements, grinding time, and grinding wheel consumption were used to estimate the cost to grind TiAl on conventional centerless grinding equipment using vitrified bonded silicon carbide wheels. The metallurgical effects of rough and finish stem grinding cycles on the surface were determined. The grindability factor of TiAl, a measure of grinding cost, was slightly inferior to conventional valve steels, but much better than conventional titanium alloys. The high work hardening rate of the TiAl resulted in much better surface finish at high metal removal rates than that achieved in steels. No grinding cracks were observed, even under the rough grinding conditions. Microhardness profiles indicated significant work hardening of the surface under all three grinding conditions.

  15. Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP)

    SciTech Connect

    Stráská, Jitka; Janeček, Miloš; Čížek, Jakub; Stráský, Josef; Hadzima, Branislav

    2014-08-15

    Thermal stability of the ultra-fine grained (UFG) microstructure of magnesium AZ31 alloy was investigated. UFG microstructure was achieved by a combined two-step severe plastic deformation process: the extrusion (EX) and subsequent equal-channel angular pressing (ECAP). This combined process leads to refined microstructure and enhanced microhardness. Specimens with UFG microstructure were annealed isochronally at temperatures 150–500 °C for 1 h. The evolution of microstructure, mechanical properties and dislocation density was studied by electron backscatter diffraction (EBSD), microhardness measurements and positron annihilation spectroscopy (PAS). The coarsening of the fine-grained structure at higher temperatures was accompanied by a gradual decrease of the microhardness and decrease of dislocation density. Mechanism of grain growth was studied by general equation for grain growth and Arrhenius equation. Activation energies for grain growth were calculated to be 115, 33 and 164 kJ/mol in temperature ranges of 170–210 °C, 210–400 °C and 400–500 °C (443–483 K, 483–673 K and 673–773 K), respectively. - Highlights: • Microhardness of UFG AZ31 alloy decreases with increasing annealing temperature. • This fact has two reasons: dislocation annihilations and/or grain growth. • The activation energies for grain growth were calculated for all temperature ranges.

  16. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: Why fine-grained terrestrial sediment is bad for coral reef ecosystems

    NASA Astrophysics Data System (ADS)

    Storlazzi, Curt D.; Norris, Ben K.; Rosenberger, Kurt J.

    2015-09-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  17. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    NASA Astrophysics Data System (ADS)

    Ghose-Hajra, M.; McCorquodale, A.; Mattson, G.; Jerolleman, D.; Filostrat, J.

    2015-03-01

    Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana's coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana's disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  18. The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: why fine-grained terrestrial sediment is bad for coral reef ecosystems

    USGS Publications Warehouse

    Storlazzi, Curt; Norris, Benjamin; Rosenberger, Kurt

    2015-01-01

    Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.

  19. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Bai, Yueyue; Liu, Zhaojun; Sun, Pingchang; Liu, Rong; Hu, Xiaofeng; Zhao, Hanqing; Xu, Yinbo

    2015-01-01

    The Meihe Basin is a Paleogene pull-apart basin. Long-flame coal, lignite and oil shale are coexisting energy resources deposited in this basin. Ninety-seven samples, including oil shales, coals, brown to gray silt and mudstone, have been collected from the oil shale- and coal-bearing layers to discover the rare earth element geochemistry. The total REE contents of oil shales and coals are 137-256 μg/g and 64-152 μg/g respectively. The chondrite-normalized patterns of oil shales and coals show LREE enrichments, HREE deficits, negative Eu anomalies and negligible Ce anomalies. The chemical index of alteration (CIA) as well as some trace elements is often used to reflect the paleoenvironment at the time of deposition. The results show that fine-grained sediments in both layers were deposited in dysoxic to oxic conditions and in a warm and humid climate, and coals were deposited in a warmer and more humid climate than oil shales. Oil shales and coals are both in the early stage of diagenesis and of terrigenous origin. Besides, diagrams of some major, trace and rare earth elements show that the fine-grained sediments of both layers in the Meihe Basin are mainly from the felsic volcanic rocks and granite, and that their source rocks are mostly deposited in the continental inland arc setting. The analysis of major elements shows that Si, Al, K and Ti, in both layers, are found mainly in a mixed clay mineral assemblage and that Si is also found in quartz. Sodium occurs primarily in clay minerals, whereas Ca is found mainly in the organic matter. In the coal-bearing layer, iron is mainly controlled by organic matter rather than detrital minerals. In contrast, in the oil shale-bearing layer, neither detrital minerals nor organic matter exert a control on the iron content. Analyzing the relationship between rare earth elements and major elements shows that REEs in the oil shales and the coals are both of terrigenous origin and are mainly controlled by detrital minerals

  20. Duplex tab exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  1. Plasma torch production of Ti/Al nanoparticles

    SciTech Connect

    Phillips, Jonathan; Zea, Hugo; Cheng, Lily; Luhrs, Claudia; Courtney, Matthew

    2009-01-01

    Using the Aerosol-through-Plasma (A-T-P) technique high surface area bi-cationic (Ti-Al) oxide particles of a range of stoichiometries were produced that showed remarkable resistance to sintering. Specifically, we found that homogeneous nanoparticles with surface areas greater than 150 m{sup 2}/gm were produced at all stoichiometries. In particular, for particles with a Ti:Al ratio of 1:3 a surface area of just over 200 m{sup 2}/gm was measured using the BET method. The most significant characteristic of these particles was that their sinter resistance was far superior to that of TiAl particles produced using any other method. For example, A-T-P generated particles retained >70% of their surface area even after sintering at 1000 C for five hours. In contrast, particles made using all other methods lost virtually all of their surface area after an 800 C treatment.

  2. A method for the concentration of fine-grained rutile (TiO2) from sediment and sedimentary rocks by chemical leaching

    USGS Publications Warehouse

    Commeau, Judith A.; Valentine, Page C.

    1991-01-01

    Most of the sample analyzed by the method described were marine muds collected from the Gulf of Maine (Valentine and Commeau, 1990). The silt and clay fraction (up to 99 wt% of the sediment) is composed of clay minerals (chiefly illite-mica and chlorite), silt-size quartz and feldspar, and small crystals (2-12 um) of rutile and hematite. The bulk sediment samples contained an average of 2 to 3 wt percent CaCO3. Tiher samples analyzed include red and gray Carboniferous and Triassic sandstones and siltstones exposed around the Bay of Fundy region and Paleozoic sandstones, siltstones, and shales from northern Maine and New Brunswick. These rocks are probable sources for the fine-grained rutile found in the Gulf of Maine.

  3. Accumulation of selenium in benthic bivalves and fine-grained sediments of San Francisco Bay, the Sacramento-San Joaquin Delta, and selected tributaries, 1984-1986

    USGS Publications Warehouse

    Johns, C.; Luoma, S.N.

    1987-01-01

    Fine-grained, oxidized, surface sediments and two benthic bivalves (Corbicula sp., a suspension-feeding freshwater clam, and Macoma balthica, a deposit-feeding brackish water clam) were used to examine spatial distributions of selenium within San Francisco Bay and the Sacramento/San Joaquin River Delta and to compare riverine with local inputs of biologically available selenium to this large, complex, urbanized estuary. Selenium concentrations in Corbicula were elevated in the western Delta and northern reach of San Francisco Bay compared to concentrations in Corbicula from river systems not enriched in selenium. Biologically available selenium did not appear to enter the southern Delta or northern reach of the Bay from the San Joaquin River, a possible source, in levels that could measurably influence bioaccumulation by Corbicula. Selenium concentrations in Macoma balthica also were elevated in southern South San Francisco Bay and near the western edge of Suisun Bay.

  4. Upwelling-driven reworking of a MTD's fine-grained plume: an example at the Cariaco Basin/Cariaco Gulf connection.

    NASA Astrophysics Data System (ADS)

    Aguilar, Iliana; Beck, Christian; Audemard, Franck; Crouzet, Christian; Sabatier, Pierre; Develle, Anne-Lise; Boussafir, Mohammed; Campos, Corina

    2016-04-01

    The Cariaco Basin is a 1400 m-deep and 90 km-wide pull-apart basin, in the south-eastern corner of the Caribbean Sea. To the East, it is connected to the Cariaco Gulf, a 60 km-long, 15 km-wide, and 90 m-deep appendix. Both are E-W elongated and developed upon the south-eastern transform boundary of the Caribbean Plate, an active limit here mainly represented by the El Pilar Fault. The Gulf of Cariaco entrance is a 55 m-deep, and 5 km-wide sill mainly controlled by the large Manzanares River delta, which western foreset slope is facing the Basin's eastern edge. Within this connection area, two particular sedimentary processes have been previously documented: 1) strong seasonal upwelling responsible for the transfer of deep particulate organic matter from the Basin into the Gulf; 2) the recent occurrence, in the Basin, of a fine-grained suspension related to a submarine landslide; this event was detected after the 1997 Cariaco earthquake (Thunell et al., 1999; Lorenzoni et al., 2012) and was related to a slope failure of the Manzanares delta western foreset. From short gravity cores retrieved in the Gulf, we analysed the last millennium of sedimentation (components, transport and settling processes) using classical proxies and physical properties. All parameters led to underline: - a permanent mixed provenance of particulate Organic Matter in the main part of the Gulf: i) in situ and ii) allochtonous; - the occurrence of coarse siliciclastic layers related to flooding from the southern edge of the Gulf; - the occurrence of one peculiar fine-grained siliciclastic layer with a widespread distribution, dated around 1850 AD; - an abrupt increase of open marine influence just after the above-mentioned layer. Concerning the "background" permanent sedimentation, these results confirm the importance of upwelling through the connection between the Gulf and the Basin (transfer of the "allochtonous" O.M.). For the fine-grained silicilastic "event", we could discard a

  5. Quantitative measurements of small scaled grain sliding in ultra-fine grained Al-Zn alloys produced by friction stir processing

    SciTech Connect

    Hu, C.M. Lai, C.M. Kao, P.W. Ho, N.J. Huang, J.C.

    2010-11-15

    An Al-15 wt.% Zn alloy was processed by friction stir processing to produce grain sizes of {approx} 0.5 {mu}m, {approx} 1 {mu}m, and {approx} 2 {mu}m. A simple and effective method was developed to determine the true strain by scribing marker lines with scaled division using focused ion beam micromachining prior to deformation. The 'microscopic' grain boundary sliding, with displacements of adjacent grains of the order of a nanometer, can easily be detected by the proposed technique, providing a surface analysis with high accuracy that could be used to observe the changes in relief with increasing strains. Moreover, the occurrence of grain boundary sliding at room temperature was considered a major cause for higher strain rate sensitivity in fine-grained Al-Zn alloys.

  6. The impact of disposal of fine-grained sediments from maintenance dredging works on SPM concentration and fluid mud in and outside the harbor of Zeebrugge

    NASA Astrophysics Data System (ADS)

    Fettweis, Michael; Baeye, Matthias; Cardoso, Claudio; Dujardin, Arvid; Lauwaert, Brigitte; Van den Eynde, Dries; Van Hoestenberghe, Thomas; Vanlede, Joris; Van Poucke, Luc; Velez, Carlos; Martens, Chantal

    2016-11-01

    The amount of sediments to be dredged and disposed depends to a large part on the suspended particulate matter (SPM) concentration. Tidal, meteorological, climatological, and seasonal forcings have an influence on the horizontal and vertical distribution of the SPM in the water column and on the bed and control the inflow of fine-grained sediments towards harbors and navigation channels. About 3 million tons (dry matter) per year of mainly fine-grained sediments is dredged in the port of Zeebrugge and is disposed on a nearby disposal site. The disposed sediments are quickly resuspended and transported away from the site. The hypothesis is that a significant part of the disposed sediments recirculates back to the dredging places and that a relocation of the disposal site to another location at equal distance to the dredging area would reduce this recirculation. In order to validate the hypothesis, a 1-year field study was set up in 2013-2014. During 1 month, the dredged material was disposed at a new site. Variations in SPM concentration were related to tides, storms, seasonal changes, and human impacts. In the high-turbidity Belgian near-shore area, the natural forcings are responsible for the major variability in the SPM concentration signal, while disposal has only a smaller influence. The conclusion from the measurements is that the SPM concentration decreases after relocation of the disposal site but indicate stronger (first half of field experiment) or weaker (second half of field experiment) effects that are, however, supported by the environmental conditions. The results of the field study may have consequences on the management of disposal operations as the effectiveness of the disposal site depends on environmental conditions, which are inherently associated with chaotic behavior.

  7. Thermoelectric properties of fine-grained FeVSb half-Heusler alloys tuned to p-type by substituting vanadium with titanium

    SciTech Connect

    Zou, Minmin; Li, Jing-Feng; Kita, Takuji

    2013-02-15

    Fine-grained Ti-doped FeVSb half-Heusler alloys were synthesized by combining mechanical alloying and spark plasma sintering and their thermoelectric properties were investigated with an emphasis on the influences of Ti doping and phase purity. It was found that substituting V with Ti can change the electrical transport behavior from n-type to p-type due to one less valence electron of Ti than V, and the sample with nominal composition FeV{sub 0.8}Ti{sub 0.4}Sb exhibits the largest Seebeck coefficient and the maximum power factor. By optimizing the sintering temperature and applying annealing treatment, the power factor is significantly improved and the thermal conductivity is reduced simultaneously, resulting in a ZT value of 0.43 at 500 Degree-Sign C, which is relatively high as for p-type half-Heusler alloys containing earth-abundant elements. - Graphical abstract: Fine-grained Ti-doped FeVSb alloys were prepared by the MA-SPS method. The maximum ZT value reaches 0.43 at 500 Degree-Sign C, which is relatively high for p-type half-Heusler alloys. Highlights: Black-Right-Pointing-Pointer Ti-doped FeVSb half-Heusler alloys were synthesized by combining MA and SPS. Black-Right-Pointing-Pointer Substituting V with Ti changes the electrical behavior from n-type to p-type. Black-Right-Pointing-Pointer Thermoelectric properties are improved by optimizing sintering temperature. Black-Right-Pointing-Pointer Thermoelectric properties are further improved by applying annealing treatment. Black-Right-Pointing-Pointer A high ZT value of 0.43 is obtained at 500 Degree-Sign C for p-type Ti-doped FeVSb alloys.

  8. An analysis of strain in fine-grained clastic rocks of the Appalachian Mountains using a best-fit ellipse search of center-to-center data

    SciTech Connect

    Engelder, T. . Dept. of Geosciences)

    1993-03-01

    Fine-grained clastic rocks are often more poorly sorted than their coarser brethren. When viewed in thin section such sorting gives the impression that relatively coarse grains are floating in a finer matrix. Do these relatively coarse grains act as passive markers in a deforming matrix In order to answer this question samples of both very fine-grained siltstone and shale were collected from the Ordovician Reedsville shale of the Appalachian Valley and Ridge and the Devonian Catskill Delta of the Appalachian Plateau. Strain, as recorded by larger grains floating in a matrix, was evaluated using a center-to-center approach. The visual center of grains with a diameter larger than a predetermined size (usually 15 [mu]m) was used as a datum. Centers were digitized to produce Fry-type scatter plots using a version of the INSTRAIN program. Fry plots produced in this manner often have a scattering of points so sparse that a best-fit ellipse could not be identified with confidence. As a consequence, a best-fit ellipse was calculated using a search routine according to the following plan. An elliptical template of a predetermined size and shape was centered over the inner portion of the Fry plot. A goodness of fit between the selected data points and the calculated ellipse was determined using a simple root-mean-square average. A goodness of fit was calculated for data points falling inside the template for each combination of template shape and size. The best fit ellipse was then identified as that ellipse with smallest the RMS average. Preliminary work using Ordovician samples from the Valley and Ridge suggests that layer-parallel shortening strain as measured using this modified center-to-center technique is consistent with layer-parallel shortening indicated by deformed fossils within the Reedsville.

  9. Concentrations and Distribution of Slag-Related Trace Elements and Mercury in Fine-Grained Beach and Bed Sediments of Lake Roosevelt, Washington, April-May 2001

    USGS Publications Warehouse

    Majewski, Michael S.; Kahle, Sue C.; Ebbert, James C.; Josberger, Edward G.

    2003-01-01

    A series of studies have documented elevated concentrations of trace elements such as arsenic, cadmium, copper, lead, mercury, and zinc in the water, bed sediment, or fish of Lake Roosevelt and the upstream reach of the Columbia River. Elevated concentrations of some trace elements in this region are largely attributable to the transport of slag and metallurgical waste discharged into the Columbia River from a smelter in Canada. Although most recent studies have focused on contamination levels in water, bed sediment, and fish, there is growing concern in the region over the potential threat of airborne contaminants to human health. In response to these concerns, the U.S. Geological Survey conducted an assessment of trace-element concentrations in the relatively shallow fine-grained sediment along the shore of Lake Roosevelt that is exposed annually during periods of reservoir drawdown. During each winter and spring, the water level of Lake Roosevelt is lowered as much as about 80 feet to provide space to capture high river flows from spring runoff, exposing vast expanses of lake-bottom sediment for a period of several months. Upon drying, these exposed areas provide an extremely large source for wind-blown dust. This study concluded that trace elements associated with slag and metallurgical waste are present in the fine-grained fraction (less than 63 micrometers) of bed sediments along the length of Lake Roosevelt, and as such, could be components of the airborne dust resulting from exposure, drying, and wind mobilization of the sediments exposed during the annual drawdowns of the reservoir. Trace-element concentrations in the surficial bed sediment varied, but the major components in slag?arsenic, cadmium, copper, lead, and zinc?showed generally pronounced gradients of decreasing concentrations from near the International Border to the Grand Coulee Dam. The results of this study provide base-line information needed to plan and conduct air monitoring of trace

  10. Comparative analysis of dose rates in bricks determined by neutron activation analysis, alpha counting and X-ray fluorescence analysis for the thermoluminescence fine grain dating method

    NASA Astrophysics Data System (ADS)

    Bártová, H.; Kučera, J.; Musílek, L.; Trojek, T.

    2014-11-01

    In order to evaluate the age from the equivalent dose and to obtain an optimized and efficient procedure for thermoluminescence (TL) dating, it is necessary to obtain the values of both the internal and the external dose rates from dated samples and from their environment. The measurements described and compared in this paper refer to bricks from historic buildings and a fine-grain dating method. The external doses are therefore negligible, if the samples are taken from a sufficient depth in the wall. However, both the alpha dose rate and the beta and gamma dose rates must be taken into account in the internal dose. The internal dose rate to fine-grain samples is caused by the concentrations of natural radionuclides 238U, 235U, 232Th and members of their decay chains, and by 40K concentrations. Various methods can be used for determining trace concentrations of these natural radionuclides and their contributions to the dose rate. The dose rate fraction from 238U and 232Th can be calculated, e.g., from the alpha count rate, or from the concentrations of 238U and 232Th, measured by neutron activation analysis (NAA). The dose rate fraction from 40K can be calculated from the concentration of potassium measured, e.g., by X-ray fluorescence analysis (XRF) or by NAA. Alpha counting and XRF are relatively simple and are accessible for an ordinary laboratory. NAA can be considered as a more accurate method, but it is more demanding regarding time and costs, since it needs a nuclear reactor as a neutron source. A comparison of these methods allows us to decide whether the time- and cost-saving simpler techniques introduce uncertainty that is still acceptable.

  11. A Novel Powder Metallurgy Processing Approach to Prepare Fine-Grained Cu-Al-Ni Shape-Memory Alloy Strips from Elemental Powders

    NASA Astrophysics Data System (ADS)

    Vajpai, S. K.; Dube, R. K.; Chatterjee, P.; Sangal, S.

    2012-07-01

    The current work describes the experimental results related to the successful preparation of fine-grained, Cu-Al-Ni, high-temperature shape-memory alloy (SMA) strips from elemental Cu, Al, and Ni powders via a novel powder metallurgy (P/M) processing approach. This route consists of short time period ball milling of elemental powder mixture, preform preparation from milled powder, sintering of preforms, hot-densification rolling of unsheathed sintered powder preforms under protective atmosphere, and postconsolidation homogenization treatment of the hot-rolled strips. It has been shown that it is possible to prepare chemically homogeneous Cu-Al-Ni SMA strips consisting of equiaxed grains of average size approximately 6 μm via the current processing approach. It also has been shown that fine-grained microstructure in the finished Cu-Al-Ni SMA strips resulted from the pinning effect of nanosized alumina particles present on the grain boundaries. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β1^' } - and γ1^' } -type martensites. The Cu-Al-Ni SMA strips had 677 MPa average fracture strength, coupled with 13 pct average fracture strain. The fractured surfaces of the specimens exhibited primarily dimpled ductile type of fracture, together with some transgranular mode of fracture. The Cu-Al-Ni strips exhibited an almost 100 pct one-way shape recovery after bending followed by unconstrained heating at 1, 2, and 4 pct applied deformation prestrain. The two-way shape-memory strain was found approximately 0.35 pct after 15 training cycles at 4 pct applied training prestrain.

  12. Diverse Anhydrous Silicates in a Fine-Grained Rim in the Weakly Altered CM2 Chondrite Queen Elizabeth Range 97990: Evidence for the Localized Preservation of Pristine Nebular Dust in CM Chondrites.

    NASA Astrophysics Data System (ADS)

    Brearley, A. J.

    2016-08-01

    A fine-grained rim the QUE 97990 CM2 chondrite contains diverse submicron crystalline anhydrous silicates, including olivines, low-Ca and high Ca pyroxenes and represents a more pristine sample of nebular dust than is present in most CM chondrites.

  13. Nanophase, Low-Ni Metal Grains in Fine-grained Rims in the Murchison CM2 Chondrite: Insights into the Survival of Metal Grains During Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.

    2003-01-01

    Aqueous alteration has played a significant role in the geological evolution of almost all the chondrite groups and attests to the importance of water during the earliest history of the solar system. Among the chondrites that show evidence of aqueous alteration the CM chondrites, in particular, have received considerable attention, because of their primitive composition and the fact that they preserve a record of incomplete hydration. Petrologic studies of this group of meteorites have helped provide important insights into aqueous alteration processes and the nature of the alteration products. However, due to the complex history of these chondrites, important details of the alteration remain enigmatic. Among the major problems to be resolved are the location and timing of aqueous alteration as well as the relationship between alteration and brecciation. Although many authors favor aqueous alteration within a parent body environment, there is also evidence that some of the components of CM chondrites may have experienced aqueous alteration prior to accretion. One of the key lines of evidence for alteration in a pre-accretionary environment is the presence of unaltered metal grains associated with hydrated phases. Low-Ni metal (kamacite) is typically one of the first phases in CM chondrites that alters in the presence of water. However, in some CM chondrites, such as Yamato 791198, micron-sized metal grains are present within the hydrated fine-grained rim material around chondrules. In addition, nanometer-sized grains that have been interpreted as being unaltered metal particles have been reported in the relatively heavily altered CM chondrite, ALH 81002. In most cases, these occurrences have been interpreted as being the result of mixing of anhydrous and hydrous materials prior to accretion. According to this hypothesis, the metal grains remain unaltered because little or no post-accretionary alteration took place. Whilst such a scenario is plausible, no

  14. The texture of a fine-grained calcium-aluminium-rich inclusion (CAI) in three dimensions and implications for early solar system condensation

    NASA Astrophysics Data System (ADS)

    Russell, Sara S.; Howard, Lauren

    2013-09-01

    A 16 mm fine-grained spinel-rich calcium-aluminium-rich inclusion (CAI) from the Allende CV3 meteorite was analysed using nano-computed tomography and scanning electron microscopy on uncoated chips and a polished thin section. The CAI is composed of spinel nodules surrounded by anorthite and Al-rich diopside rims. Minor secondary minerals including hedenbergite and nepheline are also present. The uncoated chips contain abundant wollastonite needles that are only rarely observed in the thin section. Nano-computed tomography shows that the structure of the CAI is a branching interconnected network of nodules, most of which are attached to each other in three dimensions. However some nodules are unattached to the rest of the CAI. The texture suggests that the CAI formed by condensation from a gas, and condensation and aggregation of nodules occurred contemporaneously, implying a high density of newly-formed dust. One portion of the CAI is compact and rich in melilite, with a composition and texture dissimilar to the bulk of the inclusion. We infer that this is a melilite-rich mantle of the same CAI that has experienced melting on one side.

  15. Effects of grain size on high temperature creep of fine grained, solution and dispersion hardened V -1.6Y -8W -0.8TiC

    NASA Astrophysics Data System (ADS)

    Furuno, T.; Kurishita, H.; Nagasaka, T.; Nishimura, A.; Muroga, T.; Sakamoto, T.; Kobayashi, S.; Nakai, K.; Matsuo, S.; Arakawa, H.

    2011-10-01

    Creep resistance is the major concern of vanadium and its alloys for fusion reactor structural applications. In order to elucidate the effects of grain size on the creep behavior of solution and dispersion strengthened vanadium alloys, V-1.6Y-8W-0.8TiC specimens with fine grain sizes from 0.58 to 1.45 μm were prepared by mechanical alloying and HIP without any plastic working and tested at 1073 K and 250 MPa in vacuum. It is shown that the creep resistance of V-1.6Y-8W-0.8TiC depends strongly on grain size and increases with increasing grain size: The creep life for the grain size of 1.45 μm is almost one order longer than that of 0.58 μm, and about two orders longer than that of V-4Cr-4Ti (NIFS-Heat 2) although the grain size of V-4Cr-4Ti is as large as 17.8 μm. The observed creep behavior is discussed in terms of grain size effects on dislocation glide and grain boundary sliding.

  16. Mineralogy and Textural Characteristics of Fine-grained Rims in the Yamato 791198 CM2 Carbonaceous Chondrite: Constraints on the Location of Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Chizmadia, Lysa J.; Brearley, Adrian J.

    2003-01-01

    Carbonaceous chondrites provide important clues into the nature of physical and chemical processes in the early solar system. A question of key importance concerns the role of water in solar nebular and asteroidal processes. The effects of water on primary mineral assemblages have been widely recognized in chondritic meteorites, especially the CI and CM carbonaceous chondrites. These meteorites have undergone extensive aqueous alteration that occurred prior to their arrival on Earth. In the case of the CM chondrites, this alteration has resulted in the partial to complete replacement of the primary nebular phases with secondary alteration phases. Considerable controversy exists as to the exact location where the alteration of the CM chondrites occurred. Several textural lines of evidence have been cited in support of aqueous alteration prior to the accretion of the final parent asteroid. An important line of evidence to support this hypothesis is the dis-equilibrium nature of fine-grained rims and matrix materials. [2] also noted the juxtaposition of micron-sized Fe-Ni metal grains and apparently unaltered chondrule glass against hydrated rim silicates. Conversely, there is a large body of evidence in favor of parent body alteration such as the occurrence of undisturbed Fe-rich aureoles and the systematic redistribution of elemental components over millimeters, e.g., Mg(+2) into the matrix and Fe(+2) into chondrules etc.

  17. Production of Fine-Grained Beryllium-6 WT% Copper for Fusion Ignition Capsules by Arc Melting and Equal Channel Angular Extrusion

    SciTech Connect

    Alexander, David J.; Cooley, Jason C.; Thoma, Dan J.; Nobile, Arthur Jr.

    2004-03-15

    Beryllium doped with 6 weight % copper is the material of choice for fabrication of target capsules for the National Ignition Facility because of its combination of attractive neutronic, electronic, physical, and mechanical properties. The target capsules are 2 mm in diameter and thin-walled (150 microns) and must meet demanding dimensional specifications. The material must be fine-grained and of low inclusion content. Arc-melted Be-Cu is being produced to eliminate the oxide content that is inevitably present in conventional powdermetallurgy materials. Equal channel angular extrusion (ECAE) is being used to refine the as-cast grain structure. Be-Cu rods produced by the arc-melting process (5 mm in diameter by 30 mm in length) are enclosed in nickel cans with electron-beam welded plugs. The Be-in-Ni billets (9.5 mm in diameter by 45 mm in length) have been processed by ECAE at temperatures from 500 to 750 deg. C in tooling with a 120 deg. angle. Selected samples have been annealed for 1 hour at temperatures from 700 to 775 deg. C. The ECAE processing creates a heavily deformed and finely subdivided structure, and the annealing can produce an equiaxed microstructure with a grain size of approximately 20 {mu}m.

  18. Microstructure and Mechanical Properties of Ultra-fine-Grained Al-Mg-Si Tubes Produced by Parallel Tubular Channel Angular Pressing Process

    NASA Astrophysics Data System (ADS)

    Faraji, G.; Roostae, S.; Seyyed Nosrati, A.; Kang, J. Y.; Kim, H. S.

    2015-04-01

    In the present work, commercial Al-6061 alloy tubes were processed via multi-pass parallel tubular channel angular pressing (PTCAP). The effects of the number of passes on grain refinement and mechanical properties were investigated. The microstructural evolution was characterized using electron back-scattered diffraction (EBSD) and scanning electron microscopy. The mechanical properties were evaluated using tensile tests and hardness measurements. The EBSD analyses presented that the elongated subgrains or grains with ~800 nm in size and a high fraction of low-angle grain boundaries were formed after two PTCAP passes. After four passes, the elongated subgrains have transformed to almost equiaxed grains with ~400 nm in size and high-angle grain boundaries. Microhardness of the processed tube increased from 38.9 to 63.4 HV (~63 pct) after three PTCAP passes. An increase in the number of PTCAP passes after three passes has no more effect on the microhardness. Yield and ultimate tensile strength were increased by 2.1 and 1.6 times, respectively, after four PTCAP passes ( ɛ ~6.4) compared to the annealed sample. Ductile fracture with an extensive necking zone and many big dimples occur in the annealed sample, while fine dimples and limited ductile fracture features were observed in the ultra-fine grained PTCAP-processed samples.

  19. Effective inhibition of the early copper ion burst release with ultra-fine grained copper and single crystal copper for intrauterine device application.

    PubMed

    Xu, X X; Nie, F L; Wang, Y B; Zhang, J X; Zheng, W; Li, L; Zheng, Y F

    2012-02-01

    To solve the main problems of existing coarse grained copper (CG Cu) intrauterine devices (IUD)-namely burst release and a low transfer efficiency of the cupric ions during usage-ultra-fine grained copper (UFG Cu) and single crystal copper (SC Cu) have been investigated as potential substitutes. Their corrosion properties with CG Cu as a control have been studied in simulated uterine fluid (SUF) under different conditions using electrochemical measurement methods. Long-term immersion of UFG Cu, SC Cu and CG Cu samples in SUF at 37 °C have been studied for 300 days. A lower copper ion burst release and a higher efficiency release of cupric ions were observed for UFG Cu and SC Cu compared with CG Cu in the first month of immersion and 2 months later. The respective corrosion mechanisms for UFG Cu, SC Cu and CG Cu in SUF are proposed. In vitro biocompatibility tests show a better cellular response to UFG Cu and SC Cu than CG Cu. In terms of instantaneous corrosion behavior, long-term corrosion performance and in vitro biocompatibility, the three pure copper materials follow the order: UFG Cu>SC Cu>CG Cu, which indicates that UFG Cu could be the most suitable candidate material for intrauterine devices.

  20. Fine-grained parallelization of the Car-Parrinello ab initio molecular dynamics method on the IBM Blue Gene/L supercomputer

    SciTech Connect

    E. Bohm A. Bhatele L. V. Kale M. E. Tuckerman S. Kumar J. A. Gunnels G. J. Martyna; Bohm, E.; Bhatele, A.; Kale, L. V.; Tuckerman, M. E.; Kumar, S.; Gunnels, J. A.; Martyna, G. J.

    2008-01-01

    Important scientific problems can be treated via ab initio-based molecular modeling approaches, wherein atomic forces are derived from an energy Junction that explicitly considers the electrons. The Car-Parrinello ab initio molecular dynamics (CPAIMD) method is widely used to study small systems containing on the order of 10 to 103 atoms. However, the impact of CPAIMD has been limited until recently because of difficulties inherent to scaling the technique beyond processor numbers about equal to the number of electronic states. CPAIMD computations involve a large number of interdependent phases with high interprocessor communication overhead. These phases require the evaluation of various transforms and non-square matrix multiplications that require large interprocessor data movement when efficiently parallelized. Using the Charm++ parallel programming language and runtime system, the phases are discretized into a large number of virtual processors, which are, in turn, mapped flexibly onto physical processors, thereby allowing interleaving of work. Algorithmic and IBM Blue Gene/L(tm) system-specific optimizations are employed to scale the CPAIMD method to at least 30 times the number of electronic states in small systems consisting of 24 to 768 atoms (32 to 1,024 electronic states) in order to demonstrate fine-grained parallelism. The largest systems studied scaled well across the entire machine (20,480 nodes).

  1. A Bi-Modal Distribution of ALHA77307 Matrix Olivine: Evidence for Fine-Grained Mixing from Multiple Reservoirs in the CO Formation Zone

    NASA Technical Reports Server (NTRS)

    Frank, D.; Zolensky, Michael E.; Brearley, A.; Le, L.

    2011-01-01

    The CO 3.0 chondrite ALHA77307 is thought to be the least metamorphosed of all the CO chondrites [1]. As such, the fine-grained (<30 m) olivine found in its matrix is a valuable resource for investigating the CO formation environment since its compositions should be primary. In the CO matrix, we indeed find a wide range of major element compositions (Fa(0.5-71)). However, more importantly, we find that the olivines make up two compositionally distinct populations (Fa(0.5-5) and Fa(21-71)). Grains from both populations are found within an extremely close proximity and we see no obvious evidence of two distinct lithologies within our samples. Therefore, we conclude that the olivine grains found in the ALHA77307 matrix must have crystallized within two unique formation conditions and were later mixed at a very fine scale during the accretion epoch. Here, we propose a possible explanation based on Cr and Mn concentrations in the olivine.

  2. Development of Fine-Grained, Low-Carbon Bainitic Steels with High Strength and Toughness Produced Through the Conventional Hot-Rolling and Air-Cooling

    NASA Astrophysics Data System (ADS)

    Dhua, Sanjay Kumar; Sarkar, Partha Pratim; Saxena, Atul; Jha, Bimal Kumar

    2016-09-01

    Low-carbon bainitic steels have created enormous interest among scientists across the world in the past few decades because of their high strength, toughness, and weldability replacing the conventional quenched and tempered medium-carbon steels. Three experimental steels with varying alloy additions were made in a 100-kg laboratory induction furnace and cast into 100-mm-diameter cylindrical ingots. These ingots were hot-rolled and air-cooled to 6-mm plates in an experimental rolling mill with selected thermomechanical parameters. Steels processed through this process provided an ultrafine low-carbon bainitic microstructure with maximum yield strength (YS) and ultimate tensile strength (UTS) 575 and 705 MPa, respectively. The Charpy impact toughness of the experimental steels was excellent, and at 253 K (-20 °C), it varied from 114 to 170 Joules. Cu-B-added steel was found to give an optimum combination of strength, YS-575 MPa, and toughness, 114 J at 253 K (-20 °C). Thus, fine-grained, low-carbon bainitic steels could be developed with a proper combination of alloying elements and thermomechanical parameters even by air-cooling.

  3. Impression creep characterization of TiAl weldments

    SciTech Connect

    Gibbs, W.S.; Aikin, R.M. Sr.; Martin, P.L.; Patterson, R.A.

    1990-01-01

    The Impression Creep technique has been applied to XD{trademark} TiAl weldments to evaluate the local creep resistance of the fusion zone and the heat affected zone. The material used in this study was TiAl produced by Martin Marietta Research Laboratories, using their patented ingot processing which incorporates 1 to 10 {mu}m diameter particles of carbide, nitride or boride compounds. The impression creep technique uses a small indenter to locally evaluate the creep resistance of the heterogeneous microstructure developed during the welding process. The indenters used in this investigation were 1 mm in diameter. Results obtained from the impression creep tests are compared to results obtained from constant stress tensile creep tests on the base material. Creep resistance of the heat affected zone and the fusion zone are compared to and contrasted with the base material strength. 19 refs., 2 figs., 2 tabs.

  4. Knudsen Cell Studies of Ti-Al Thermodynamics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Copland, Evan H.; Mehrotra, Gopal M.; Auping, Judith; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    In this paper we describe the Knudsen cell technique for measurement of thermodynamic activities in alloys. Numerous experimental details must be adhered to in order to obtain useful experimental data. These include introduction of an in-situ standard, precise temperature measurement, elimination of thermal gradients, and precise cell positioning. Our first design is discussed and some sample data on Ti-Al alloys is presented. The second modification and associated improvements are also discussed.

  5. Numerical modelling of fine-grained sediments remobilization in heavily polluted streams. Case study: Elbe and Bílina River, Czech Republic.

    NASA Astrophysics Data System (ADS)

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2014-05-01

    river and the riparian sediment evaluation the 2D schematization (MIKE 21 C) was selected. It enabled to distinguish flow characteristics in the zone with complicated hydrodynamic conditions. The risk of remobilization of fine-grained sediments was evaluated in order to define a threshold discharge value after that the spreading of pollution can be expected. The major contribution of the study, realized in the framework of international iniciative ELSA was the identification of threshold values for potential remobilization of sediment burdened by old loads in different environments. These threshold values are important information for identification and mitigation of risks related with old loads and hydrological extremes. From methodological point of view the study verified validity of applied distinct approaches for fine-grained sediment remobilization assessment and identified limits for their application. Key words: sediment, remobilization, old loads, modelling, hydrodynamics, Elbe river

  6. Thermal infrared spectral analysis of compacted fine-grained mineral mixtures: implications for spectral interpretation of lithified sedimentary materials on Mars

    NASA Astrophysics Data System (ADS)

    Pan, C.; Rogers, D.

    2012-12-01

    Characterizing the thermal infrared (TIR) spectral mixing behavior of compacted fine-grained mineral assemblages is necessary for facilitating quantitative mineralogy of sedimentary surfaces from spectral measurements. Previous researchers have demonstrated that TIR spectra from igneous and metamorphic rocks as well as coarse-grained (>63 micron) sand mixtures combine in proportion to their volume abundance. However, the spectral mixing behavior of compacted, fine-grained mineral mixtures that would be characteristic of sedimentary depositional environments has received little attention. Here we characterize the spectral properties of pressed pellet samples of <10 micron mineral mixtures to 1) assess linearity of spectral combinations, 2) determine whether there are consistent over- or under-estimations of different types of minerals in spectral models and 3) determine if model accuracy can be improved by including both fine- and coarse-grained end-members. Major primary and secondary minerals found on the Martian surface including feldspar, pyroxene, smectite, sulfate and carbonate were crushed with an agate mortar and pestle and centrifuged to obtain less than 10 micron size. Pure phases and mixtures of two, three and four components were made in varying proportions by volume. All of the samples were pressed into pellets at 15000PSI to minimize volume scattering. Thermal infrared spectra of pellets were measured in the Vibrational Spectroscopy Laboratory at Stony Brook University with a Thermo Fisher Nicolet 6700 Fourier transform infrared Michelson interferometer from ~225 to 2000 cm-1. Our preliminary results indicate that some pelletized samples have contributions from volume scattering, which leads to non-linear spectral combinations. It is not clear if the transparency features (which arise from multiple surface reflections of incident photons) are due to minor clinging fines on an otherwise specular pellet surface or to partially transmitted energy through

  7. On 10 to 30 m-scale fracture networks in Gale Crater: Contraction of fine-grained sediments due to drying or of frozen sediments due to cooling?

    NASA Astrophysics Data System (ADS)

    Sletten, Ronald; Hallet, Bernard

    2014-05-01

    The area in Gale Crater north of the Curiosity landing site has been identified as an alluvial fan [1] and features diverse geological units [2], some with abundant contraction cracks that delineate polygons on the order of 10-30 meters across. These polygons are much larger than the < 1m flagstones seen in Yellowknife by Curiosity [3] and are more suggestive of polygonal patterned ground seen at higher latitudes on Mars [4] and Earth; however, current conditions indicate that ground ice is not stable in Gale Crater [4]. Nevertheless, past conditions, e.g. obliquity changes, may have allowed permafrost to develop and ground ice to form. The domains between the larger polygons are several meters wide, which is consistent with cyclic ratcheting of ice-cemented permafrost (thermal contraction with fractures opening, debris infilling the fractures, and the fractures not closing fully when the ground warms and expands). On the other hand, the large-scale crack networks often seem to be associated with certain lithologic units, including the thinly-bedded, lightly-colored mudstones exposed at Yellowknife. This suggests that the contraction cracks defining these 10 to 30-m polygons, as well as those defining the < 1m flagstones, formed in moist fine-grained sediments that contracted upon desiccation. If the fractures were due to contraction of ice-cemented permafrost, they would be insensitive to the type of sediments they formed in because the mechanical properties would be dominated by ice. The interpretation of the larger-scale crack network is limited to satellite images since Curiosity did not visit this area, and to evidence about surface materials elsewhere in the vicinity of the rover. This evidence points to the former presence of flowing water in Gale Crater and existence of shallow lakes of relatively low salinity and near-neutral pH at Yellowknife [5]. The large amount of contraction in Yellowknife deposits is consistent with a desiccation origin in these

  8. Extreme ductile deformation of fine-grained salt by coupled solution-precipitation creep and microcracking: Microstructural evidence from perennial Zechstein sequence (Neuhof salt mine, Germany)

    NASA Astrophysics Data System (ADS)

    Závada, Prokop; Desbois, Guillaume; Schwedt, Alexander; Lexa, Ondrej; Urai, Janos L.

    2012-04-01

    Microstructural study revealed that the ductile flow of intensely folded fine-grained salt exposed in an underground mine (Zechstein-Werra salt sequence, Neuhof mine, Germany) was accommodated by coupled activity of solution-precipitation (SP) creep and microcracking of the halite grains. The grain cores of the halite aggregates contain remnants of sedimentary microstructures with straight and chevron shaped fluid inclusion trails (FITs) and are surrounded by two concentric mantles reflecting different events of salt precipitation. Numerous intra-granular or transgranular microcracks originate at the tips of FITs and propagate preferentially along the interface between sedimentary cores and the surrounding mantle of reprecipitated halite. These microcracks are interpreted as tensional Griffith cracks. Microcracks starting at grain boundary triple junctions or grain boundary ledges form due to stress concentrations generated by grain boundary sliding (GBS). Solid or fluid inclusions frequently alter the course of the propagating microcracks or the cracks terminate at these inclusions. Because the inner mantle containing the microcracks is corroded and is surrounded by microcrack-free outer mantle, microcracking is interpreted to reflect transient failure of the aggregate. Microcracking is argued to play a fundamental role in the continuation and enhancement of the SP-GBS creep during halokinesis of the Werra salt, because the transgranular cracks (1) provide the ingress of additional fluid in the grain boundary network when cross-cutting the FITs and (2) decrease grain size by splitting the grains. More over, the ingress of additional fluids into grain boundaries is also provided by non-conservative grain boundary migration that advanced into FITs bearing cores of grains. Described readjustments of the microstructure and mechanical and chemical feedbacks for the grain boundary diffusion flow in halite-brine system are proposed to be comparable to other rock-fluid or

  9. Surface-water-quality assessment of the Yakima River basin in Washington; analysis of major and minor elements in fine-grained streambed sediment, 1987

    USGS Publications Warehouse

    Fuhrer, G.J.; McKenzie, S.W.; Rinella, J.F.; Sanzolone, R.F.; Skach, K.A.

    1993-01-01

    Fine-grained streambed sediment from the Yakima River Basin was sampled from 448 locations and analyzed for 45 elements. Anomalous major- and minor-element concentrations were based on baseline values established from element concentrations in streambed sediment in the basin. The largest number of anomalies occurred for antimony, arsenic, cerium, copper, and zinc; at least 10 percent of these element concentrations exceeded the threshold values of 0.7 mg/g (micrograms per gram), 8.5 mg/g, 57 mg/g, 40 mg/g, and 120 mg/g, respectively. Concentrations of arsenic as large as 31 and 61 mg/g occurred in streambed sediment formed from the pre-Tertiary metamorphic and intrusive rocks geologic unit and from the nonmarine sedimentary rocks geologic unit, respectively. These geologic units were probable sources of arsenic to smaller headwater streams; however, arsenic concentrations from these geologic sources rapidly attenuated downstream in the Yakima River. Geologic sources of arsenic were generally small in agricultural land-use areas; however, concentrations as large as 140 mg/g were found in samples of soils that were historically treated with the lead-arsenate pesticide. In addition, concentrations of lead, as large as 890 mg/g, occurred in these pesticide- treated soils. Streambed sediment formed from the pre-Tertiary metamorphic and intrusive rocks geologic unit also contained concentrations as large as 1,700 mg/g for chromium, 140 mg/g for cobalt, and 1,900 mg/g for nickel. Like arsenic, concentrations of chromium (in addition to mercury and nickel) were attenuated in the Yakima River. The application of zinc sulphate to orchards was probably responsible for concentrations of zinc as large as 150 mg/g in soils of and 180 mg/g in streambed sediment from the agricultural land-use area.

  10. Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency.

    PubMed

    Bohn, Sonja; Brunke, Paul; Gebert, Julia; Jager, Johannes

    2011-05-01

    The natural methane oxidation potential of methanotrophic bacteria in landfill top covers is a sustainable and inexpensive method to reduce methane emissions to the atmosphere. Basically, the activity of methanotrophic bacteria is limited by the availability of oxygen in the soil. A column study was carried out to determine whether and to what extent vegetation can improve soil aeration and maintain the methane oxidation process. Tested soils were clayey silt and mature compost. The first soil is critical in light of surface crusting due to vertical erosion of an integral part of fine-grained material, blocking pores required for the gas exchange. The second soil, mature compost, is known for its good methane oxidation characteristics, due to high air-filled porosity, favorable water retention capacity and high nutrient supply. The assortment of plants consisted of a grass mixture, Canadian goldenrod and a mixture of leguminous plants. The compost offered an excellent methane oxidation potential of 100% up to a CH(4)-input of 5.6l CH(4)m(-2)h(-1). Whereas the oxidation potential was strongly diminished in the bare control column filled with clayey silt even at low CH(4)-loads. By contrast the planted clayey silt showed an increased methane oxidation potential compared to the bare column. The spreading root system forms secondary macro-pores, and hence amplifies the air diffusivity and sustain the oxygen supply to the methanotrophic bacteria. Water is produced during methane oxidation, causing leachate. Vegetation reduces the leachate by evapotranspiration. Furthermore, leguminous plants support the enrichment of soil with nitrogen compounds and thus improving the methane oxidation process. In conclusion, vegetation is relevant for the increase of oxygen diffusion into the soil and subsequently enhances effective methane oxidation in landfill cover soils.

  11. Free Enthalpy Differences between α-, π-, and 310-Helices of an Atomic Level Fine-Grained Alanine Deca-Peptide Solvated in Supramolecular Coarse-Grained Water.

    PubMed

    Lin, Zhixiong; Riniker, Sereina; van Gunsteren, Wilfred F

    2013-03-12

    Atomistic molecular dynamics simulations of peptides or proteins in aqueous solution are still limited to the multi-nanosecond time scale and multi-nanometer range by computational cost. Combining atomic solutes with a supramolecular solvent model in hybrid fine-grained/coarse-grained (FG/CG) simulations allows atomic detail in the region of interest while being computationally more efficient. We used enveloping distribution sampling (EDS) to calculate the free enthalpy differences between different helical conformations, i.e., α-, π-, and 310-helices, of an atomic level FG alanine deca-peptide solvated in a supramolecular CG water solvent. The free enthalpy differences obtained show that by replacing the FG solvent by the CG solvent, the π-helix is destabilized with respect to the α-helix by about 2.5 kJ mol(-1), and the 310-helix is stabilized with respect to the α-helix by about 9 kJ mol(-1). In addition, the dynamics of the peptide becomes faster. By introducing a FG water layer of 0.8 nm around the peptide, both thermodynamic and dynamic properties are recovered, while the hybrid FG/CG simulations are still four times more efficient than the atomistic simulations, even when the cutoff radius for the nonbonded interactions is increased from 1.4 to 2.0 nm. Hence, the hybrid FG/CG model, which yields an appropriate balance between reduced accuracy and enhanced computational speed, is very suitable for molecular dynamics simulation investigations of biomolecules.

  12. Injection Seeding of Ti:Al2O3 in an unstable resonator theory and experiment

    NASA Technical Reports Server (NTRS)

    Barnes, J. C.; Wang, L. G.; Barnes, N. P.; Edwards, W. C.; Cheng, W. A.; Hess, R. V.; Lockard, G. E.; Ponsardin, P. L.

    1991-01-01

    Injection Seeding of a Ti:Al2O3 unstable resonator using both a pulsed single-mode Ti:Al2O3 laser and a continuous wave laser diode has been characterized. Results are compared with a theory which calculates injection seeding as function of seed and resonator alignment, beam profiles, and power.

  13. Increasing density leads to generalization in both coarse-grained habitat selection and fine-grained resource selection in a large mammal.

    PubMed

    van Beest, Floris M; Uzal, Antonio; Vander Wal, Eric; Laforge, Michel P; Contasti, Adrienne L; Colville, David; McLoughlin, Philip D

    2014-01-01

    Density is a fundamental driver of many ecological processes including habitat selection. Theory on density-dependent habitat selection predicts that animals should be distributed relative to profitability of habitat, resulting in reduced specialization in selection (i.e. generalization) as density increases and competition intensifies. Despite mounting empirical support for density-dependent habitat selection using isodars to describe coarse-grained (interhabitat) animal movements, we know little of how density affects fine-grained resource selection of animals within habitats [e.g. using resource selection functions (RSFs)]. Using isodars and RSFs, we tested whether density simultaneously modified habitat selection and within-habitat resource selection in a rapidly growing population of feral horses (Equus ferus caballus Linnaeus; Sable Island, Nova Scotia, Canada; 42% increase in population size from 2008 to 2012). Among three heterogeneous habitat zones on Sable Island describing population clusters distributed along a west-east resource gradient (west-central-east), isodars revealed that horses used available habitat in a density-dependent manner. Intercepts and slopes of isodars demonstrated a pattern of habitat selection that first favoured the west, which generalized to include central and east habitats with increasing population size consistent with our understanding of habitat quality on Sable Island. Resource selection functions revealed that horses selected for vegetation associations similarly at two scales of extent (total island and within-habitat zone). When densities were locally low, horses were able to select for sites of the most productive forage (grasslands) relative to those of poorer quality. However, as local carrying capacity was approached, selection for the best of available forage types weakened while selection for lower-quality vegetation increased (and eventually exceeded that of grasslands). Isodars can effectively describe coarse

  14. XRD-based 40Ar/39Ar age correction for fine-grained illite, with application to folded carbonates in the Monterrey Salient (northern Mexico)

    NASA Astrophysics Data System (ADS)

    Fitz-Díaz, Elisa; Hall, Chris M.; van der Pluijm, Ben A.

    2016-05-01

    of retention capability, degassing spectra were modeled for site XCA averages and overall XCA average. Modeling shows that local site age average best match the measured spectra, instead of a global average age, indicating that illite growth reflects local deformation, and is not the result of regional metamorphism. Modeling also shows that Ar-degassing spectra are very sensitive to grain size, such that age interpretation based on Ar-plateaus is meaningless for most fine-grained clays.

  15. An improved sample preparation method for non-destructive analyses of fine-grained subseafloor sediments using micro-focus X-ray CT and SEM

    NASA Astrophysics Data System (ADS)

    Uramoto, G.; Morono, Y.; Uematsu, K.; Inagaki, F.

    2012-12-01

    Spatial arrangement of particles in fine-grained marine subsurface sediments is a key factor for the physical property of sediments. The pore space provides micro-niches for chemical, physical, and microbiological components in the subsurface geosphere and biosphere. However, the standard techniques conventionally used for the sample preparation have some critical issues to understand accurate nature of fine-scale particle arrangement because of the possible deformation of micro-structures during the sample fixation. Here we tested the resin-embedding method for ocean drilling core samples, which technique has been applied mainly for biological samples. Using micro-focus X-ray CT-computed tomography and SEM we compared the images with the conventional t-butyl alcohol freeze-drying methods. Using the t-butyl alcohol freeze-dried sediment samples, we observed large number of micrometer-scale cracks in both SEM and X-CT image analyses, indicating the significant disturbance of sediment microstructure during sample processing. On the other hand, when we employed mini-coring, agar infiltration, and related biological sample-processing techniques for the resin-embedding method, no observable cracks were evident, most likely due to the rapid resin impregnation into sediments without sample drying. On SEM images of the flattened sample surface, we compared the porosity assessed with the resin-embedded samples to those measured onboard by the moisture and density method, showing a good agreement of the porosity values. In high-porosity surficial sediments embedded with resin, we observed structures that sediment particles are floating in the space, which may represent the results of physico-chemical interaction among sediment particles. However, almost no such particle arrangements were observed in t-butyl alcohol freeze-dried samples, indicating that drying of interstitial fluids may impact on the physico-chemical forces within particulate compounds. Conclusively, our

  16. The preparation of the Ti-Al alloys based on intermetallic phases

    NASA Astrophysics Data System (ADS)

    Kosova, N.; Sachkov, V.; Kurzina, I.; Pichugina, A.; Vladimirov, A.; Kazantseva, L.; Sachkova, A.

    2016-01-01

    This article deals with a method of obtaining materials in the Ti-Al system. Research was carried out in accordance with the phase diagram of the system state. It was established, that both single-phase and multiphase systems, containing finely dispersed intermetallic compositions of phases Ti3Al, TiAl and TiAl3, are formed. Additionally, it was found that the pure finely dispersed (coherent-scattering region (CSR) up to 100 nm) intermetallic compound TiAl3 is formed at molar ratio of Ti:Al = 1:3. Experimentally proved the possibility of produce the complex composition of alloys and intermetallic compounds and products based on them.

  17. Fretting Fatigue of Gamma TiAl Studied

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2003-01-01

    Gamma titanium-aluminum alloy (g-TiAl) is an attractive new material for aerospace applications because of its low density and high specific strength in comparison to currently used titanium and nickel-base alloys. Potential applications for this material are compressor and low-pressure turbine blades. These blades are fitted into either the compressor or turbine disks via a dovetail connection. The dovetail region experiences a complex stress state due to the alternating centrifugal force and the natural high-frequency vibration of the blade. Because of the dovetail configuration and the complex stress state, fretting is often a problem in this area. Furthermore, the local stress state becomes more complex when the influence of the metal-metal contact and the edge of the contact is evaluated. Titanium and titanium-based alloys in the clean state exhibit strong adhesive bonds when in contact with themselves and other materials (refs. 1 and 2). This adhesion causes heavy surface damage and high friction in practical cases. Although the wear produced by fretting may be mild, the reduction in fatigue life can be substantial. Thus, there is the potential for fretting problems with these TiAl applications. Since TiAl is an emerging material, there has been limited information about its fretting behavior.

  18. Room and elevated temperature mechanical properties of PM TiAl alloy Ti-47Al-2Cr-2Nb

    SciTech Connect

    Liu, C.T.; Maziasz, P.J.; Schneibel, J.H.; Sikka, V.K.; Wright, J.; Walker, L.R. |; Clemens, D.R.; Nieh, T.G.

    1995-07-01

    A TiAl alloy powder with the composition Ti-47Al-2Cr-2Nb (at. %) was prepared by rotary atomization, followed by hot-extrusion and subsequent heat treatments to produce refined lamellar structures and fine duplex structures. The mechanical properties of the TiM alloy were determined at temperatures to 1000C in air, and the microstructures were characterized by TEM, SEM, and electron microprobe analyses. The alloy with the refined lamellar structure showed excellent mechanical properties at both room and elevated temperatures. It exhibited a plastic strain of 1.4% and a yield strength of 971 MPa (140.9 ksi) at room temperature. The yield strength remained approximately constant up to 800C and decreased to 577 MPa (83.7 ksi) at 1000C. The transverse fracture toughness, estimated by three-point bend testing of chevron-notched specimens at room temperature, was 22.4 MPa {radical}m. The refined lamellar structure contained long and straight alternating {alpha}{sub 2} and {gamma} platelets with an extremely fine interlamellar spacing (0.1 {mu}m) and {alpha}{sub 2}-to-{alpha}{sub 2} spacing (0.22 {mu}m). The mechanical properties of the alloy have been correlated with the unique microstructures developed by hot extrusion.

  19. Fluid distribution in grain boundaries of natural fine-grained rock salt deformed at low shear stress: implications for rheology and transport properties

    NASA Astrophysics Data System (ADS)

    Desbois, G.; Urai, J. L.; De Bresser, J. H. P.

    2012-04-01

    We used a combination of broad ion beam (BIB) cross-sectioning and high resolution (cryogenic) SEM to image polished surfaces and corresponding pairs of fractured grain boundaries in an investigation of grain boundary (GB) microstructures and fluid distribution in naturally deformed halite from a salt glacier (Kum Quh, central Iran). At the scale of observations, four types of fluid or gas filled grain boundaries can be distinguished: (1) straight boundaries with thick (up to 10 µm) GB tubes (2) straight boundaries with narrow (about 50 nm) GB tubes (3) wavy (tens of µm wavelength) GB with isolated inclusions of a few µm, and (4) wavy (µm wavelength) GB with small (µm) isolated inclusions. Grain boundary fluid inclusions can have three types of morphologies: the inclusion of Type 1 is intruded completely in one grain, inclusion of Type 2 has its major part included in one grain with a minor part in the second grain and the inclusion of Type 3 is located in both grains. Solid second phases in GB are mainly euhedral anhydrite crystals. The mobility of the brine is shown after cutting the inclusions by BIB in vacuum and fine-grained halite forms efflorescence and precipitates on internal walls of inclusions. At cryogenic temperature, in-situ brine is seen as continuous film in GB of type (1) and (2), and in isolated inclusions in GB of type (3) and (4). The structure of halite-halite contact between isolated fluid inclusions in GB of type (3) and (4) is below the resolution of SEM. GB of type (3) and (4) are interpreted to have formed by healing of mobile fluid films. First results of deformation experiments on the same samples under shear stress corresponding to conditions of natural salt glacier, show very low strain rates (7.43x10-10 s-1 and 1x10-9 s-1), up to one order of magnitude below of expected strain rates by solution precipitation creep. Both microstructures and deformation experiments suggest interfacial energy-driven GB healing, in agreement with the

  20. PNA beacons for duplex DNA.

    PubMed

    Kuhn, H; Demidov, V V; Gildea, B D; Fiandaca, M J; Coull, J C; Frank-Kamenetskii, M D

    2001-08-01

    We report here on the hybridization of peptide nucleic acid (PNA)-based molecular beacons (MB) directly to duplex DNA sites locally exposed by PNA openers. Two stemless PNA beacons were tested, both featuring the same recognition sequence and fluorophore-quencher pair (Fluorescein and DABCYL, respectively) but differing in arrangement of these groups and net electrostatic charge. It was found that one PNA beacon rapidly hybridized, with the aid of openers, to its complementary target within duplex DNA at ambient conditions via formation of a PD-like loop. In contrast, the other PNA beacon bound more slowly to preopened duplex DNA target and only at elevated temperatures, although it readily hybridized to single-stranded (ss) DNA target. Besides a higher selectivity of hybridization provided by site-specific PNA openers, we expect this approach to be very useful in those MB applications when denaturation of the duplex DNA analytes is unfavorable or undesirable. Furthermore, we show that PNA beacons are advantageous over DNA beacons for analyzing unpurified/nondeproteinized DNA samples. This feature of PNA beacons and our innovative hybridization strategy may find applications in emerging fluorescent DNA diagnostics.

  1. Superstructure of linear duplex DNA.

    PubMed Central

    Vollenweider, H J; Koller, T; Parello, J; Sogo, J M

    1976-01-01

    The superstructure of a covalently closed circular DNA (of bacteriophage PM 2) was compared by electron microscopy with that of a linear duplex DNA (of bacteriophage T7) when ionic strength and benzyldimethylalkylammonium chloride concentration were varied. In parallel studies the sedimentation behavior of these DNAs was studied by analytical ultracentrifugation, but for technical reasons these had to be without benzyldimethylalkylammonium chloride. By combining the information from the two methods one has to conclude that with increasing ionic strength the linear duplex T7 DNA spontaneously forms a structure similar to that of the superhelical structure of closed circular PM 2 DNA. The superstructure is destroyed under premelting conditions and in the presence of an excess of ethidium bromide. Images PMID:1069302

  2. 60 Years of duplex stainless steel applications

    SciTech Connect

    Olsson, J.; Liljas, M.

    1994-12-31

    In this paper the history of wrought duplex stainless steel development and applications is described. Ferritic-austenitic stainless steels were introduced only a few decades after stainless steels were developed. The paper gives details from the first duplex stainless steels in the 1930`s to the super duplex stainless steel development during the 1980`s. During the years much effort has been devoted to production and welding metallurgy as well as corrosion research of the duplex stainless steels. Therefore, duplex stainless steels are to-day established in a wide product range. Numerous important applications are exemplified. In most cases the selection of a duplex steel has been a result of the combination high strength excellent corrosion resistance. In the pulp and paper industry the most interesting use is as vessel material in digesters. For chemical process industry, the duplex steels are currently used in heat exchangers. The largest application of duplex steels exists in the oil and gas/offshore industry. Hundreds of kms of pipelines are installed and are still being installed. An increased use of duplex steels is foreseen in areas where the strength is of prime importance.

  3. Piezoelectric Properties of Fine-Grained Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3-Bi(Zn1/2Ti1/2)O3 Quaternary Solid Solution Ceramics

    NASA Astrophysics Data System (ADS)

    Yue, Ruifang; Hou, Xianbo; He, Wenze; Yu, Jian

    2013-06-01

    On the basis of solid state reaction eutectic behavior between Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3 (PMN-PZT) and metastable perovskite-type Bi(Zn1/2Ti1/2)O3 (BZT), perovskite-structured PMN-PZT-BZT quaternary solid solution piezoceramics with various compositions were experimentally demonstrated with an intrinsic low sintering temperature in the windows of 950-1050 °C. These fine-grained densified PMN-PZT-BZT ceramics were able to be poled sufficiently at room temperature through polarization-electric field hysteresis loop measurement, different from normal poling treatment with DC bias field at high temperature, which will simplify future device processing of monolithic multilayer piezoceramic transducers. A typical piezoelectric property of dielectric constant ɛ33T/ɛ0 = 3471, piezoelectric constant d33 = 480 pC/N, planar coupling coefficient kp = 0.41, thickness coupling coefficient kt = 0.50, mechanical quality factor Qm = 68 and relaxor ferroelectric phase transition temperature Tm = 167 °C at 1 MHz was obtained for the fine-grained densified Pb0.96Sr0.04(Mg1/3Nb2/3)0.37Zr0.24Ti0.39O3+3%Bi(Zn0.5Ti0.5)O3+2%NiO ceramics sintered at 1020 °C, which is much promising to manufacture monolithic multilayer piezoelectric transducers with Ag95/Pd5 as inner electrode material.

  4. Individual and cumulative effects of agriculture, forestry and metal mining activities on the metal and phosphorus content of fluvial fine-grained sediment; Quesnel River Basin, British Columbia, Canada.

    PubMed

    Smith, Tyler B; Owens, Philip N

    2014-10-15

    The impact of agriculture, forestry and metal mining on the quality of fine-grained sediment (<63 μm) was investigated in the Quesnel River Basin (QRB) (~11,500 km(2)) in British Columbia, Canada. Samples of fine-grained sediment were collected monthly during the snow-free season in 2008 using time-integrated samplers at replicate sites representative of agriculture, forestry and mining activities in the basin (i.e. "impacted" sites). Samples were also collected from replicate reference sites and also from the main stem of the Quesnel River at the downstream confluence with the Fraser River. Generally, metal(loid) and phosphorus (P) concentrations for "impacted" sites were greater than for reference sites. Furthermore, concentrations of copper (forestry and mining sites), manganese (agriculture and forestry sites) and selenium (agriculture, forestry and mining sites) exceeded upper sediment quality guideline (SQG) thresholds. These results suggest that agriculture, forestry and metal mining activities are having an influence on the concentrations of sediment-associated metal(loid)s and P in the Quesnel basin. Metal(loid) and P concentrations of sediment collected from the downstream site were not significantly greater than values for the reference sites, and were typically lower than the values for the impacted sites. This suggests that the cumulative effects of agriculture, forestry and mining activities in the QRB are presently not having a measureable effect at the river basin-scale. The lack of a cumulative effect at the basin-scale is thought to reflect: (i) the relatively recent occurrence of land use disturbances in this basin; (ii) the dominance of sediment contributions from natural forest and agriculture; and (iii) the potential for storage of contaminants on floodplains and other storage elements between the locations of disturbance activities and the downstream sampling site, which may be attenuating the disturbance signal. PMID:25105754

  5. Individual and cumulative effects of agriculture, forestry and metal mining activities on the metal and phosphorus content of fluvial fine-grained sediment; Quesnel River Basin, British Columbia, Canada.

    PubMed

    Smith, Tyler B; Owens, Philip N

    2014-10-15

    The impact of agriculture, forestry and metal mining on the quality of fine-grained sediment (<63 μm) was investigated in the Quesnel River Basin (QRB) (~11,500 km(2)) in British Columbia, Canada. Samples of fine-grained sediment were collected monthly during the snow-free season in 2008 using time-integrated samplers at replicate sites representative of agriculture, forestry and mining activities in the basin (i.e. "impacted" sites). Samples were also collected from replicate reference sites and also from the main stem of the Quesnel River at the downstream confluence with the Fraser River. Generally, metal(loid) and phosphorus (P) concentrations for "impacted" sites were greater than for reference sites. Furthermore, concentrations of copper (forestry and mining sites), manganese (agriculture and forestry sites) and selenium (agriculture, forestry and mining sites) exceeded upper sediment quality guideline (SQG) thresholds. These results suggest that agriculture, forestry and metal mining activities are having an influence on the concentrations of sediment-associated metal(loid)s and P in the Quesnel basin. Metal(loid) and P concentrations of sediment collected from the downstream site were not significantly greater than values for the reference sites, and were typically lower than the values for the impacted sites. This suggests that the cumulative effects of agriculture, forestry and mining activities in the QRB are presently not having a measureable effect at the river basin-scale. The lack of a cumulative effect at the basin-scale is thought to reflect: (i) the relatively recent occurrence of land use disturbances in this basin; (ii) the dominance of sediment contributions from natural forest and agriculture; and (iii) the potential for storage of contaminants on floodplains and other storage elements between the locations of disturbance activities and the downstream sampling site, which may be attenuating the disturbance signal.

  6. POWDER METALLURGY TiAl ALLOYS: MICROSTRUCTURES AND PROPERTIES

    SciTech Connect

    Hsiung, L

    2006-12-11

    The microstructures and properties of powder metallurgy TiAl alloys fabricated by hot extrusion of gas-atomized powder at different elevated temperatures were investigated. Microstructure of the alloy fabricated at 1150 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains and coarse ordered B2 grains. Particles of ordered hexagonal {omega} phase were also observed in some B2 grains. The alloy containing B2 grains displayed a low-temperature superplastic behavior: a tensile elongation of 310% was measured when the alloy was tested at 800 C under a strain rate of 2 x 10{sup -5} s{sup -1}. Microstructure of the alloy fabricated at 1250 C consisted of a mixture of fine ({gamma} + {alpha}{sub 2}) equiaxed grains, coarse {alpha}{sub 2} grains, and lamellar ({gamma} + {alpha}{sub 2}) colonies. An observation of stacking faults associated with fine {gamma} lamellae in {alpha}{sub 2} grains reveals that the stacking fault of {alpha}{sub 2} phase plays an important role in the formation of lamellar ({gamma} + {alpha}{sub 2}) colonies. Unlike the alloy fabricated at 1150{sup o}, the alloy fabricated at 1250{sup o} displayed no low-temperature superplasticity, but a tensile elongation of 260% at 1000 C was measured. Microstructure of the alloy fabricated at 1400 C consisted of fully lamellar ({gamma} + {alpha}{sub 2}) colonies with the colony size ranging between 50 {micro}m and 100 {micro}m, in which the width of {gamma} lamella is in a range between 100 nm and 350 nm, and the width of {alpha}{sub 2} lamella is in a range between 10 nm and 50 nm. Creep behavior of the ultrafine lamellar alloy and the effects of alloying addition on the creep resistance of the fully lamellar alloy are also investigated.

  7. Phase transitions in the ordered compound TiAl and in alloys having it as a base

    NASA Technical Reports Server (NTRS)

    Zelenkov, I. A.; Martynchuk, E. N.

    1980-01-01

    The combined effect of alloying and heat treatment on the order-disorder transition in TiAl of stoichiometric composition was investigated. It is concluded from the data obtained that the TiAl 1 to TiAl 2 transition is a phase transition of the second kind. A phase transition was observed in TiAl of equiatomic composition in the 450-550 C temperature range. The introduction of niobium into the ordered compound TiAl of stoichiometric composition, instead of titanium or aluminum atoms, leads to partial softening. In this case, the effect of niobium atoms on softening of the alloys was greater when the niobium was introduced in place of aluminum atoms.

  8. Interfacial Control of Creep Deformation in Ultrafine Lamellar TiAl

    SciTech Connect

    Hsiung, L M

    2002-11-26

    Solute effect on the creep resistance of two-phase lamellar TiAl with an ultrafine microstructure creep-deformed in a low-stress (LS) creep regime [where a linear creep behavior was observed] has been investigated. The resulted deformation substructure and in-situ TEM experiment revealed that interface sliding by the motion of pre-existing interfacial dislocations is the predominant deformation mechanism in LS creep regime. Solute segregation at lamellar interfaces and interfacial precipitation caused by the solute segregation result in a beneficial effect on the creep resistance of ultrafine lamellar TiAl in LS creep regime.

  9. Duplex Direct Data Distribution System

    NASA Technical Reports Server (NTRS)

    Greenfield, Israel (Technical Monitor)

    2001-01-01

    The NASA Glenn Research Center (GRC) is developing and demonstrating communications and network technologies that are helping to enable the near-Earth space Internet. GRC envisions several service categories. The first of these categories is direct data distribution or D3 (pronounced "D-cubed"). Commercially provided D3 will make it possible to download a data set from a spacecraft, like the International Space Station. as easily as one can extract a file from a remote server today, using a file transfer protocol. In a second category, NASA spacecraft will make use of commercial satellite communication (SATCOM) systems. Some of those services will come from purchasing time on unused transponders that cover landmasses. While it is likely there will be gaps in service coverage, Internet services should be available using these systems. This report addresses alternative methods of implementing a full duplex enhancement of the GRC developed experimental Ka-Band Direct Data Distribution (D3) space-to-ground communication link. The resulting duplex version is called the Duplex Direct Data Distribution (D4) system. The D4 system is intended to provide high-data-rate commercial direct or internet-based communications service between the NASA spacecraft in low earth orbit (LEO) and the respective principal investigators associated with these spacecraft. Candidate commercial services were assessed regarding their near-term potential to meet NASA requirements. Candidates included Ka-band and V-band geostationary orbit and non-geostationary orbit satellite relay services and direct downlink ("LEO teleport") services. End-to-end systems concepts were examined and characterized in terms of alternative link layer architectures. Alternatives included a Direct Link, a Relay Link, a Hybrid Link, and a Dual Mode Link. The direct link assessment examined sample ground terminal placements and antenna angle issues. The SATCOM-based alternatives examined existing or proposed commercial

  10. Synchrotron X-ray CT characterization of friction-welded joints in tial turbocharger components

    NASA Astrophysics Data System (ADS)

    Sun, J. G.; Kropf, A. J.; Vissers, D. R.; Sun, W. M.; Katsoudas, J.; Yang, N.; Fei, D.

    2012-05-01

    Titanium aluminide (TiAl) is an advanced intermetallic material and is being investigated for application in turbocharger components for diesel engines. A TiAl turbocharger rotor consists of a cast TiAl turbine wheel and a Ti-alloy shaft that are joined by friction welding. Although friction welding is an established industrial process, it is still challenging to join dissimilar materials especially for brittle intermetallics. These joints are therefore required to be inspected using a nondestructive evaluation (NDE) method. In this study, synchrotron X-ray computed tomography (CT) developed at the Advanced Photon Source at Argonne National Laboratory was used for NDE characterization of friction-welded joint in three TiAl turbocharger rotors. The filtered synchrotron X-ray source has high peak energies to penetrate thick metallic materials, and the detector (imager) has high spatial resolutions to resolve small flaws. The CT inspections revealed detailed 3D crack distributions within poorly welded joints. The crack detection sensitivity and resolution was calibrated and found to be correlated well with destructive examination.

  11. Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, J. Mike

    2002-01-01

    High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.

  12. Development and Evaluation of TiAl Sheet Structures for Hypersonic Applications

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Krause, D.; Lerch, B.; Locci, I. E.; Doehnert, B.; Nigam, R.; Das, G.; Sickles, P.; Tabernig, B.; Reger, N.; Rissbacher, K.

    2007-01-01

    A cooperative program between the National Aeronautics and Space Administration (NASA), the Austrian Space Agency (ASA), Pratt & Whitney, Engineering Evaluation and Design, and Plansee AG was undertaken to determine the feasibility of achieving significant weight reduction of hypersonic propulsion system structures through the utilization of TiAl. A trade study defined the weight reduction potential of TiAl technologies as 25 to 35 percent compared to the baseline Ni-base superalloy for a stiffener structure in an inlet, combustor, and nozzle section of a hypersonic scramjet engine (ref. 1). A scramjet engine inlet cowl flap was designed, along with a representative subelement, using design practices unique to TiAl. A sub-element was fabricated and tested to assess fabricability and structural performance and validate the design system. The TiAl alloy selected was Plansee's third generation alloy Gamma Met PX (Plansee AG ), a high temperature, high strength gamma-TiAl alloy with high Nb content (refs. 2 and 3). Characterization of Gamma Met PX sheet, including tensile, creep, and fatigue testing was performed. Additionally, design-specific coupons were fabricated and tested in order to improve subelement test predictions. Based on the sheet characterization and results of the coupon tests, the subelement failure location and failure load were accurately predicted.

  13. Total immediate ancestral longevity (TIAL) score as a longevity indicator: an analysis on Einstein and three of his scientist peers.

    PubMed

    Sri Kantha, S

    2001-04-01

    The total immediate ancestral longevity (TIAL) score was first introduced by Raymond Pearl as a convenient parameter for quantitating human longevity. TIAL is the summed ages at death of the six immediate ancestors (namely parents and four grandparents) of a propositus. In this communication, I present the calculations of TIAL score for Einstein (1879--1955) and three of his scientist peers, namely Charles Darwin (1809--1882), Irene Joliot Curie (1897--1956) and Aage Bohr (1922--). The TIAL scores for Einstein, Darwin, Irene Curie and Aage Bohr were 390, 378, 372 and 436 respectively. These are markedly lower than 477 reported for Jeanne Calment, the French woman who died in 1997 at the oldest authenticated age of 122 years and 164 days. I conclude that the TIAL score is a convenient and easily quantifiable longevity parameter which anyone interested in determining his or her longevity can use to estimate a tentative number. More light could be shed on the worth of the TIAL score as a longevity indicator, if additional data on the TIAL scores of royalty and celebrities (for whom verified genealogical data are available) are reported.

  14. Field assisted sintering of fine-grained Li7-3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance

    NASA Astrophysics Data System (ADS)

    Botros, Miriam; Djenadic, Ruzica; Clemens, Oliver; Möller, Matthias; Hahn, Horst

    2016-03-01

    The synthesis and processing of fine-grained Li7-3xLa3Zr2AlxO12 (x = 0.15, 0.17, 0.20) solid electrolyte (LLZO) is performed for the first time using a combination of nebulized spray pyrolysis (NSP) and field assisted sintering technique (FAST). Using FAST, the grain growth is suppressed and highly dense ceramics with 93% of the theoretical density are obtained. A tetragonal lattice distortion is observed after the sintering process. Although this structural modification has been reported to have lower Li-ion mobility compared to the cubic modification, the total conductivity of the sample at room temperature is found to be 0.33 mS cm-1, i.e. comparable to phase-pure cubic LLZO. The activation energy of 0.38 eV is also comparable to the literature values. Galvanostatic cycling of a symmetrical cell Li|LLZO|Li shows a good cycling stability over 100 h. The interfacial resistance in contact with Li-metal is determined using alternating current impedance spectroscopy to be 76 Ω cm2 and 69 Ω cm2 before and after cycling at different current densities, respectively.

  15. Molecular duplexes with encoded sequences and stabilities.

    PubMed

    Gong, Bing

    2012-12-18

    Through specific molecular shapes and repeating polymeric sequences, biomacromolecules encode information about both structure and function. Inspired by DNA molecules, we have conceived a strategy to encode linear molecular strands with sequences that specify intermolecular association, and we and our collaborators have supported this idea through our experimental work. This Account summarizes the design and development of a class of molecular duplexes with programmable hydrogen-bonding sequences and adjustable stabilities. The specific system involves oligoamide strands synthesized from readily available monomeric modules based on standard amide (peptide) chemistry. By covalently linking three types of basic building blocks in different orders, we create oligoamide strands with various arrangements of amide O and H atoms that provide arrays of hydrogen bonding sequences. Because one of the two edges of these molecules presents the sequences of hydrogen-bond donors and acceptors, these oligoamide strands associate via their hydrogen-bonding edges into double-stranded pairs or duplexes. Systematic studies have demonstrated the strict sequence specificity and tunable stability of this system. These structurally simple duplexes exhibit many features associated with DNA sequences such as programmable sequence specificity, shape and hydrogen-bonding complementarity, and cooperativity of multipoint interactions. Capable of specifying intermolecular associations, these duplexes have formed supramolecular structures such as β-sheets and non-covalent block copolymers and have templated chemical reactions. The incorporation of dynamic covalent interactions into these H-bonded duplexes has created association units that undergo sequence-specific association and covalent ligation in both nonpolar solvents and polar media including water. These new association units may facilitate the development of new dynamic covalent structures, and new properties are emerging from these

  16. Duplex sampling apparatus and method

    DOEpatents

    Brown, Paul E.; Lloyd, Robert

    1992-01-01

    An improved apparatus is provided for sampling a gaseous mixture and for measuring mixture components. The apparatus includes two sampling containers connected in series serving as a duplex sampling apparatus. The apparatus is adapted to independently determine the amounts of condensable and noncondensable gases in admixture from a single sample. More specifically, a first container includes a first port capable of selectively connecting to and disconnecting from a sample source and a second port capable of selectively connecting to and disconnecting from a second container. A second container also includes a first port capable of selectively connecting to and disconnecting from the second port of the first container and a second port capable of either selectively connecting to and disconnecting from a differential pressure source. By cooling a mixture sample in the first container, the condensable vapors form a liquid, leaving noncondensable gases either as free gases or dissolved in the liquid. The condensed liquid is heated to drive out dissolved noncondensable gases, and all the noncondensable gases are transferred to the second container. Then the first and second containers are separated from one another in order to separately determine the amount of noncondensable gases and the amount of condensable gases in the sample.

  17. "Fine grain Nb tube for SRF cavities"

    SciTech Connect

    Robert E. Barber

    2012-07-08

    Superconducting radio frequency (SRF) cavities used in charged particle linear accelerators, are currently fabricated by deep drawing niobium sheets and welding the drawn dishes together. The Nb sheet has a non-uniform microstructure, which leads to unpredictable cavity shape and surface roughness, and inconsistent "spring-back" during forming. In addition, weld zones cause hot spots during cavity operation. These factors limit linear accelerator performance and increase cavity manufacturing cost. Equal channel angular extrusion (ECAE) can be used to refine and homogenize the microstructure of Nb tube for subsequent hydroforming into SRF cavities. Careful selection of deformation and heat treatment conditions during the processing steps can give a uniform and consistent microstructure in the tube, leading to improved deformability and lower manufacturing costs. Favorable microstructures were achieved in short test samples of RRR Nb tube, which may be particularly suitable for hydroforming into SRF cavity strings. The approach demonstrated could be applicable to microstructure engineering of other tube materials including tantalum, titanium, and zirconium.

  18. Plasticity in Ultra Fine Grained Materials

    SciTech Connect

    Koslowski, Marisol

    2015-04-15

    Understanding the mechanisms of deformation of nanocrystalline (nc) materials is critical to the design of micro and nano devices and to develop materials with superior fracture strength and wear resistance for applications in new energy technologies. In this project we focused on understanding the following plastic deformation processes described in detail in the following sections: 1. Plastic strain recovery (Section 1). 2. Effect of microstructural variability on the yield stress of nc metals (Section 2). 3. The role of partial and extended full dislocations in plastic deformation of nc metals (Section 3).

  19. Fine-grained zirconium-base material

    DOEpatents

    Van Houten, G.R.

    1974-01-01

    A method is described for making zirconium with inhibited grain growth characteristics, by the process of vacuum melting the zirconium, adding 0.3 to 0.5% carbon, stirring, homogenizing, and cooling. (Official Gazette)

  20. Fluid distribution in grain boundaries of natural fine-grained rock salt deformed at low differential stress (Qom Kuh salt fountain, central Iran): Implications for rheology and transport properties

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Urai, Janos L.; de Bresser, Johannes H. P.

    2012-10-01

    We used a combination of broad ion beam cross-sectioning and cryogenic SEM to image polished surfaces and corresponding pairs of fractured grain boundaries in an investigation of grain boundary microstructures and fluid distribution in naturally deformed halite from the Qom Kuh salt glacier (central Iran). At the scale of observations, four types of fluid-filled grain boundary can be distinguished by morphology (from straight to wavy), thickness (from 5000 to 50 nm) and the presence of fluid inclusions. The mobility of the brine is shown after cutting the inclusions by broad ion beam (BIB) in vacuum and fine-grained halite forms efflorescence and precipitates on internal walls of inclusions. At cryogenic temperature, grain boundary brine is shown either as continuous film or in isolated inclusions. The halite-halite grain boundary between isolated fluid inclusions is interpreted to have formed by fluid-assisted grain boundary healing. Preliminary experiments on the samples at shear stress conditions of natural salt glacier show very slow strain rates (7.4 × 10-10 s-1 and 1 × 10-9 s-1), which are less than expected for pressure solution creep. Both microstructures and deformation experiments suggest interfacial energy-driven grain boundary healing and therefore rendering inactive the pressure solution creep in our samples. This result disagrees with previous microstructural studies of the same sample, which showed microstructural evidence for pressure solution (and dislocation creep). Different explanations are discussed, which imply that both healing and reactivation of grain boundaries are important in salt glaciers, leading to heterogeneous distribution of deformation mechanisms and strain rates in both space and time.

  1. FACILITY 810, REAR OF DUPLEX SHOWING COURTYARD BETWEEN WINGS, OBLIQUE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 810, REAR OF DUPLEX SHOWING COURTYARD BETWEEN WINGS, OBLIQUE VIEW FACING EAST. - Schofield Barracks Military Reservation, Duplex Housing Type with Corner Entries, Between Hamilton & Tidball Streets near Williston Avenue, Wahiawa, Honolulu County, HI

  2. Microscopic Properties of Long-Period Ordering in Al-Rich TiAl Alloys

    NASA Astrophysics Data System (ADS)

    Hata, S.; Nakano, T.; Kuwano, N.; Itakura, M.; Matsumura, S.; Umakoshi, Y.

    2008-07-01

    The ordering mechanism of long-period superstructures (LPSs) in Al-rich TiAl alloys has been investigated by high-resolution transmission electron microscopy (HRTEM). The LPSs are classified in terms of arrangements of base clusters with different shapes and compositions formed in Ti-rich (002) layers of L10-TiAl matrix: square Ti4Al, fat rhombus Ti3Al, and lean rhombus Ti2Al type clusters. The HRTEM observations revealed that antiphase boundaries of long-range-ordered LPS domains and short-range-ordered microdomains are constructed by various space-filling arrangements of the base clusters. Such a microscopic property characterized by the base clusters and their arrangements is markedly analogous to that of the {left< {{text{1,1/2,0}}} rightrangle } * special-point ordering alloys such as Ni-Mo.

  3. Extensional duplex in the Purcell Mountains of southeastern British Columbia

    SciTech Connect

    Root, K.G. )

    1990-05-01

    An extensional duplex consisting of fault-bounded blocks (horses) located between how-angle normal faults is exposed in Proterozoic strata in the Purcell Mountains of British Columbia, Canada. This is one of the first documented extensional duplexes, and it is geometrically and kinematically analogous to duplexes developed in contractional and strike-slip fault systems. The duplex formed within an extensional fault with a ramp and flat geometry when horses were sliced from the ramp and transported within the fault system.

  4. Thermodynamics, Solubility, and Diffusivity of Oxygen in Titanium and Ti-Al Alloys

    NASA Technical Reports Server (NTRS)

    Mehrotra, Gopal M.

    1992-01-01

    Titanium aluminides and titanium aluminide-based composites are attractive candidate materials for high-temperature structural applications. As these materials may be exposed to oxidizing environments durine their use at elevated temperatures, it is essential that they possess a good oxidation resistance. Previous studies have shown that the oxidation resistance of Al-rich alloys in the Ti-Al system is superior to that of the Ti-rich alloys. The scales formed on the surface of the Al-rich and Ti-rich alloys have been reported to be predominantly Al2O3 and TiO2, respectively. Since the relative stabilities of the oxides of Al and Ti at various temperatures and oxygen pressures can be assessed from their thermodynamic data, it is possible, With the help of thermodynamic calculations, to determine the compositions of the alloys which would form scales of Al2O3, TiO(x) or a ternary oxide such as TiAl2O5 during oxidation at a given temperature. The thermodynamic calculations require reliable activity data for the Ti-Al system. These data have not been determined for the entire composition and temperature range of interest. Using the data available in the literature, recently performed thermodynamic calculations and concluded that the stable oxide changed from TiO to Al2O3 in the existence region of the tial phase. In the case of titanium aluminide-based composites, another major concern is the mutual chemical compatibility of the matrix material with the reinforcement phase. Fibers of SiC, TiB2 and Al2O3 are currently being investigated for reinforcement of titanium aluminide matrices.

  5. Full-duplex optical communication system

    NASA Technical Reports Server (NTRS)

    Shay, Thomas M. (Inventor); Hazzard, David A. (Inventor); Horan, Stephen (Inventor); Payne, Jason A. (Inventor)

    2004-01-01

    A method of full-duplex electromagnetic communication wherein a pair of data modulation formats are selected for the forward and return data links respectively such that the forward data electro-magnetic beam serves as a carrier for the return data. A method of encoding optical information is used wherein right-hand and left-hand circular polarizations are assigned to optical information to represent binary states. An application for an earth to low earth orbit optical communications system is presented which implements the full-duplex communication and circular polarization keying modulation format.

  6. Polysynthetic twinned TiAl single crystals for high-temperature applications.

    PubMed

    Chen, Guang; Peng, Yingbo; Zheng, Gong; Qi, Zhixiang; Wang, Minzhi; Yu, Huichen; Dong, Chengli; Liu, C T

    2016-08-01

    TiAl alloys are lightweight, show decent corrosion resistance and have good mechanical properties at elevated temperatures, making them appealing for high-temperature applications. However, polysynthetic twinned TiAl single crystals fabricated by crystal-seeding methods face substantial challenges, and their service temperatures cannot be raised further. Here we report that Ti-45Al-8Nb single crystals with controlled lamellar orientations can be fabricated by directional solidification without the use of complex seeding methods. Samples with 0° lamellar orientation exhibit an average room temperature tensile ductility of 6.9% and a yield strength of 708 MPa, with a failure strength of 978 MPa due to the formation of extensive nanotwins during plastic deformation. At 900 °C yield strength remains high at 637 MPa, with 8.1% ductility and superior creep resistance. Thus, this TiAl single-crystal alloy could provide expanded opportunities for higher-temperature applications, such as in aeronautics and aerospace. PMID:27322822

  7. Polysynthetic twinned TiAl single crystals for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Peng, Yingbo; Zheng, Gong; Qi, Zhixiang; Wang, Minzhi; Yu, Huichen; Dong, Chengli; Liu, C. T.

    2016-08-01

    TiAl alloys are lightweight, show decent corrosion resistance and have good mechanical properties at elevated temperatures, making them appealing for high-temperature applications. However, polysynthetic twinned TiAl single crystals fabricated by crystal-seeding methods face substantial challenges, and their service temperatures cannot be raised further. Here we report that Ti-45Al-8Nb single crystals with controlled lamellar orientations can be fabricated by directional solidification without the use of complex seeding methods. Samples with 0° lamellar orientation exhibit an average room temperature tensile ductility of 6.9% and a yield strength of 708 MPa, with a failure strength of 978 MPa due to the formation of extensive nanotwins during plastic deformation. At 900 °C yield strength remains high at 637 MPa, with 8.1% ductility and superior creep resistance. Thus, this TiAl single-crystal alloy could provide expanded opportunities for higher-temperature applications, such as in aeronautics and aerospace.

  8. A Porous TiAl6V4 Implant Material for Medical Application.

    PubMed

    Deing, Axel; Luthringer, Bérengère; Laipple, Daniel; Ebel, Thomas; Willumeit, Regine

    2014-01-01

    Increased durability of permanent TiAl6V4 implants still remains a requirement for the patient's well-being. One way to achieve a better bone-material connection is to enable bone "ingrowth" into the implant. Therefore, a new porous TiAl6V4 material was produced via metal injection moulding (MIM). Specimens with four different porosities were produced using gas-atomised spherical TiAl6V4 with different powder particle diameters, namely, "Small" (<45 μm), "Medium" (45-63 μm), "Mix" (90% 125-180 μm + 10% <45 μm), and "Large" (125-180 μm). Tensile tests, compression tests, and resonant ultrasound spectroscopy (RUS) were used to analyse mechanical properties. These tests revealed an increasing Young's modulus with decreasing porosity; that is, "Large" and "Mix" exhibit mechanical properties closer to bone than to bulk material. By applying X-ray tomography (3D volume) and optical metallographic methods (2D volume and dimensions) the pores were dissected. The pore analysis of the "Mix" and "Large" samples showed pore volumes between 29% and 34%, respectively, with pore diameters ranging up to 175 μm and even above 200 μm for "Large." Material cytotoxicity on bone cell lines (SaOs-2 and MG-63) and primary cells (human bone-derived cells, HBDC) was studied by MTT assays and highlighted an increasing viability with higher porosity.

  9. Polysynthetic twinned TiAl single crystals for high-temperature applications.

    PubMed

    Chen, Guang; Peng, Yingbo; Zheng, Gong; Qi, Zhixiang; Wang, Minzhi; Yu, Huichen; Dong, Chengli; Liu, C T

    2016-08-01

    TiAl alloys are lightweight, show decent corrosion resistance and have good mechanical properties at elevated temperatures, making them appealing for high-temperature applications. However, polysynthetic twinned TiAl single crystals fabricated by crystal-seeding methods face substantial challenges, and their service temperatures cannot be raised further. Here we report that Ti-45Al-8Nb single crystals with controlled lamellar orientations can be fabricated by directional solidification without the use of complex seeding methods. Samples with 0° lamellar orientation exhibit an average room temperature tensile ductility of 6.9% and a yield strength of 708 MPa, with a failure strength of 978 MPa due to the formation of extensive nanotwins during plastic deformation. At 900 °C yield strength remains high at 637 MPa, with 8.1% ductility and superior creep resistance. Thus, this TiAl single-crystal alloy could provide expanded opportunities for higher-temperature applications, such as in aeronautics and aerospace.

  10. Ultra-short silicon MMI duplexer

    NASA Astrophysics Data System (ADS)

    Yi, Huaxiang; Huang, Yawen; Wang, Xingjun; Zhou, Zhiping

    2012-11-01

    The fiber-to-the-home (FTTH) systems are growing fast these days, where two different wavelengths are used for upstream and downstream traffic, typically 1310nm and 1490nm. The duplexers are the key elements to separate these wavelengths into different path in central offices (CO) and optical network unit (ONU) in passive optical network (PON). Multimode interference (MMI) has some benefits to be a duplexer including large fabrication tolerance, low-temperature dependence, and low-polarization dependence, but its size is too large to integrate in conventional case. Based on the silicon photonics platform, ultra-short silicon MMI duplexer was demonstrated to separate the 1310nm and 1490nm lights. By studying the theory of self-image phenomena in MMI, the first order images are adopted in order to keep the device short. A cascaded MMI structure was investigated to implement the wavelength splitting, where both the light of 1310nm and 1490nm was input from the same port, and the 1490nm light was coupling cross the first MMI and output at the cross-port in the device while the 1310nm light was coupling through the first and second MMI and output at the bar-port in the device. The experiment was carried on with the SOI wafer of 340nm top silicon. The cascaded MMI was investigated to fold the length of the duplexer as short as 117μm with the extinct ratio over 10dB.

  11. A Porous TiAl6V4 Implant Material for Medical Application

    PubMed Central

    Ebel, Thomas; Willumeit, Regine

    2014-01-01

    Increased durability of permanent TiAl6V4 implants still remains a requirement for the patient's well-being. One way to achieve a better bone-material connection is to enable bone “ingrowth” into the implant. Therefore, a new porous TiAl6V4 material was produced via metal injection moulding (MIM). Specimens with four different porosities were produced using gas-atomised spherical TiAl6V4 with different powder particle diameters, namely, “Small” (<45 μm), “Medium” (45–63 μm), “Mix” (90% 125–180 μm + 10% <45 μm), and “Large” (125–180 μm). Tensile tests, compression tests, and resonant ultrasound spectroscopy (RUS) were used to analyse mechanical properties. These tests revealed an increasing Young's modulus with decreasing porosity; that is, “Large” and “Mix” exhibit mechanical properties closer to bone than to bulk material. By applying X-ray tomography (3D volume) and optical metallographic methods (2D volume and dimensions) the pores were dissected. The pore analysis of the “Mix” and “Large” samples showed pore volumes between 29% and 34%, respectively, with pore diameters ranging up to 175 μm and even above 200 μm for “Large.” Material cytotoxicity on bone cell lines (SaOs-2 and MG-63) and primary cells (human bone-derived cells, HBDC) was studied by MTT assays and highlighted an increasing viability with higher porosity. PMID:25386191

  12. Initial oxidation of TiAl: An ab-initio investigation

    SciTech Connect

    Bakulin, Alexander V. Kulkova, Svetlana E.; Hu, Qing-Miao; Yang, Rui

    2014-11-14

    We present ab-initio investigation of oxygen adsorption up to two monolayer coverage on the stoichiometric TiAl(100) surface to illustrate the initial oxidation stage. The formation of band gap near the Fermi level demonstrates the transformation from metal to oxide surface with increasing oxygen coverage. The oxidation of Ti rather than Al is observed from our electronic structure calculations. The energy barriers of oxygen diffusion between different sites on surface as well as in subsurface and bulk region are derived. It is shown that the diffusion of oxygen is much easier on the surface than that into the subsurface region.

  13. In-Situ TEM Observations of Interface Sliding and Migration in a Refined Lamellar TiAl Alloy

    SciTech Connect

    Schwartz, A J; Nieh, T G; Hsiung, L M

    2004-02-18

    The stability of lamellar interfaces in lamellar TiAl by straining at ambient temperatures has been investigated using in-situ straining techniques performed in a transmission electron microscope in order to obtain direct evidence to support the previously proposed creep mechanisms in refined lamellar TiAl based upon the interface sliding in association with the cooperative motion of interfacial dislocations. The results have revealed that both sliding and migration of lamellar interfaces can take place as a result of the cooperative motion of interfacial dislocations.

  14. Parallel thermodynamic analysis of duplexes on oligodeoxyribonucleotide microchips.

    SciTech Connect

    Fotin, A. V.; Drobyshev, A. L.; Proudnikov, D. Y.; Perov, A. N.; Mirzabekov, A. D.; Center for Mechanistic Biology and Biotechnology; Engelhardt Inst. of Molecular Biology

    1998-03-15

    A microchip method has been developed for massive and parallel thermodynamic analyses of DNA duplexes. Fluorescently labeled oligonucleotides were hybridized with oligonucleotides immobilized in the 100 x 100 x 20 mum gel pads of the microchips. The equilibrium melting curves for all microchip duplexes were measured in real time in parallel for all microchip duplexes. Thermodynamic data for perfect and mismatched duplexes that were obtained using the microchip method directly correlated with data obtained in solution. Fluorescent labels or longer linkers between the gel and the oligonucleotides appeared to have no significant effect on duplex stability. Extending the immobilized oligonucleotides with a four-base mixture from the 3'-end or one or two universal bases (5-nitroindole) from the 3'- and/or 5'- end increased the stabilities of their duplexes. These extensions were applied to increase the stabilities of the duplexes formed with short oligonucleotides in microchips, to significantly lessen the differences in melting curves of the AT- and GC-rich duplexes, and to improve discrimination of perfect duplexes from those containing poorly recognized terminal mismatches. This study explored a way to increase the efficiency of sequencing by hybridization on oligonucleotide microchips.

  15. Investigation of Ti/Al2O3 joints with intermediate tantalum and niobium layers.

    PubMed

    Gibbesch, B; Elssner, G; Petzow, G

    1992-01-01

    The microstructure of TiTa30 alloys diffusion bonded to a 99.7 wt% Al2O3 ceramic was subdivided into a reaction double layer containing the intermetallic phases TiAl and Ti3Al and the (alpha + beta) Ti microstructure. Excellent fracture toughness data of the TiTa30/Al2O3 joints of about 37 J/m2 were obtained after welding at 1200 degrees C for 1 h. The fracture energies of the joints were strongly dependent on the welding temperature which also influenced the thickness of the reaction double layer. The uptake of aluminium and oxygen into the reaction layer and the metal caused an embrittlement and decreased the yield stress and ductility of the metal. Introducing an Nb or Ta layer between pure Ti and Al2O3 before welding resulted in high fracture energies of 40 J/m2 for the Ti/Al2O3 joints. The thermal-induced stresses at the metal-ceramic interface were reduced by the occurrence of an Nb- or Ta-enriched region. The intermediate metal foils also decreased the O and Al uptake of the metal and therefore reduced the brittleness of the reaction zone and the adjacent metal. The thermal-induced stresses at the metal-ceramic interface caused a deflection of the crack into the ceramic during fracture mechanical testing in four-point bending.

  16. Development of lasers optimized for pumping Ti:Al2O3 lasers

    NASA Technical Reports Server (NTRS)

    Rines, Glen A.; Schwarz, Richard A.

    1994-01-01

    Laboratory demonstrations that were completed included: (1) an all-solid-state, broadly tunable, single-frequency, Ti:Al2O3 master oscillator, and (2) a technique for obtaining 'long' (nominally 100- to 200-ns FWHM) laser pulses from a Q-switched, Nd oscillator at energy levels commensurate with straightforward amplification to the joule level. A diode-laser-pumped, Nd:YLF laser with intracavity SHG was designed, constructed, and evaluated. With this laser greater than 0.9 W of CW, output power at 523.5 nm with 10 W of diode-laser pump power delivered to the Nd:YLF crystal was obtained. With this laser as a pump source, for the first time, to our knowledge, an all solid-state, single frequency, Ti:Al203 laser with sufficient output power to injection seed a high-energy oscillator over a 20-nm bandwidth was demonstrated. The pulsed laser work succeeded in demonstrating pulse-stretching in a Q-switched Nd:YAG oscillator. Pulse energies greater than 50-mJ were obtained in pulses with 100- to 200-ns pulsewidths (FWHM).

  17. Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V

    PubMed Central

    Mahdipoor, M.S.; Kirols, H.S.; Kevorkov, D.; Jedrzejowski, P.; Medraj, M.

    2015-01-01

    Water Droplet Erosion (WDE) as a material degradation phenomenon has been a concern in power generation industries for decades. Steam turbine blades and the compressor blades of gas turbines that use water injection usually suffer from WDE. The present work focuses on studying erosion resistance of TiAl as a potential alloy for turbine blades compared to Ti6Al4V, a frequently used blade alloy. Their erosion behaviour is investigated at different droplet impact speeds to determine the relation between erosion performance and impact speed. It is found that the relationship is governed by a power law equation, ER ~ Vn, where the speed exponent is 7–9 for Ti6Al4V and 11–13 for TiAl. There is a contrast between the observed speed exponent in this work and the ones reported in the literature for Ti6Al4V. It is attributed to the different erosion setups and impingement conditions such as different droplet sizes. To verify this, the erosion experiments were performed at two different droplet sizes, 464 and 603 μm. TiAl showed superior erosion resistance in all erosion conditions; however, its erosion performance exhibits higher sensitivity to the impact speed compared to Ti6Al4V. It means that aggressive erosion conditions decrease the WDE resistance superiority of TiAl. PMID:26391370

  18. Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V.

    PubMed

    Mahdipoor, M S; Kirols, H S; Kevorkov, D; Jedrzejowski, P; Medraj, M

    2015-09-22

    Water Droplet Erosion (WDE) as a material degradation phenomenon has been a concern in power generation industries for decades. Steam turbine blades and the compressor blades of gas turbines that use water injection usually suffer from WDE. The present work focuses on studying erosion resistance of TiAl as a potential alloy for turbine blades compared to Ti6Al4V, a frequently used blade alloy. Their erosion behaviour is investigated at different droplet impact speeds to determine the relation between erosion performance and impact speed. It is found that the relationship is governed by a power law equation, ER ~ V(n), where the speed exponent is 7-9 for Ti6Al4V and 11-13 for TiAl. There is a contrast between the observed speed exponent in this work and the ones reported in the literature for Ti6Al4V. It is attributed to the different erosion setups and impingement conditions such as different droplet sizes. To verify this, the erosion experiments were performed at two different droplet sizes, 464 and 603 μm. TiAl showed superior erosion resistance in all erosion conditions; however, its erosion performance exhibits higher sensitivity to the impact speed compared to Ti6Al4V. It means that aggressive erosion conditions decrease the WDE resistance superiority of TiAl.

  19. Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V.

    PubMed

    Mahdipoor, M S; Kirols, H S; Kevorkov, D; Jedrzejowski, P; Medraj, M

    2015-01-01

    Water Droplet Erosion (WDE) as a material degradation phenomenon has been a concern in power generation industries for decades. Steam turbine blades and the compressor blades of gas turbines that use water injection usually suffer from WDE. The present work focuses on studying erosion resistance of TiAl as a potential alloy for turbine blades compared to Ti6Al4V, a frequently used blade alloy. Their erosion behaviour is investigated at different droplet impact speeds to determine the relation between erosion performance and impact speed. It is found that the relationship is governed by a power law equation, ER ~ V(n), where the speed exponent is 7-9 for Ti6Al4V and 11-13 for TiAl. There is a contrast between the observed speed exponent in this work and the ones reported in the literature for Ti6Al4V. It is attributed to the different erosion setups and impingement conditions such as different droplet sizes. To verify this, the erosion experiments were performed at two different droplet sizes, 464 and 603 μm. TiAl showed superior erosion resistance in all erosion conditions; however, its erosion performance exhibits higher sensitivity to the impact speed compared to Ti6Al4V. It means that aggressive erosion conditions decrease the WDE resistance superiority of TiAl. PMID:26391370

  20. Influence of impact speed on water droplet erosion of TiAl compared with Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Mahdipoor, M. S.; Kirols, H. S.; Kevorkov, D.; Jedrzejowski, P.; Medraj, M.

    2015-09-01

    Water Droplet Erosion (WDE) as a material degradation phenomenon has been a concern in power generation industries for decades. Steam turbine blades and the compressor blades of gas turbines that use water injection usually suffer from WDE. The present work focuses on studying erosion resistance of TiAl as a potential alloy for turbine blades compared to Ti6Al4V, a frequently used blade alloy. Their erosion behaviour is investigated at different droplet impact speeds to determine the relation between erosion performance and impact speed. It is found that the relationship is governed by a power law equation, ER ~ Vn, where the speed exponent is 7-9 for Ti6Al4V and 11-13 for TiAl. There is a contrast between the observed speed exponent in this work and the ones reported in the literature for Ti6Al4V. It is attributed to the different erosion setups and impingement conditions such as different droplet sizes. To verify this, the erosion experiments were performed at two different droplet sizes, 464 and 603 μm. TiAl showed superior erosion resistance in all erosion conditions; however, its erosion performance exhibits higher sensitivity to the impact speed compared to Ti6Al4V. It means that aggressive erosion conditions decrease the WDE resistance superiority of TiAl.

  1. Full Duplex, Spread Spectrum Radio System

    NASA Technical Reports Server (NTRS)

    Harvey, Bruce A.

    2000-01-01

    The goal of this project was to support the development of a full duplex, spread spectrum voice communications system. The assembly and testing of a prototype system consisting of a Harris PRISM spread spectrum radio, a TMS320C54x signal processing development board and a Zilog Z80180 microprocessor was underway at the start of this project. The efforts under this project were the development of multiple access schemes, analysis of full duplex voice feedback delays, and the development and analysis of forward error correction (FEC) algorithms. The multiple access analysis involved the selection between code division multiple access (CDMA), frequency division multiple access (FDMA) and time division multiple access (TDMA). Full duplex voice feedback analysis involved the analysis of packet size and delays associated with full loop voice feedback for confirmation of radio system performance. FEC analysis included studies of the performance under the expected burst error scenario with the relatively short packet lengths, and analysis of implementation in the TMS320C54x digital signal processor. When the capabilities and the limitations of the components used were considered, the multiple access scheme chosen was a combination TDMA/FDMA scheme that will provide up to eight users on each of three separate frequencies. Packets to and from each user will consist of 16 samples at a rate of 8,000 samples per second for a total of 2 ms of voice information. The resulting voice feedback delay will therefore be 4 - 6 ms. The most practical FEC algorithm for implementation was a convolutional code with a Viterbi decoder. Interleaving of the bits of each packet will be required to offset the effects of burst errors.

  2. Methods And Devices For Characterizing Duplex Nucleic Acid Molecules

    DOEpatents

    Akeson, Mark; Vercoutere, Wenonah; Haussler, David; Winters-Hilt, Stephen

    2005-08-30

    Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.

  3. 52. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Photocopy of copy of original Officers' Duplex Quarters drawing by Copeland, 7 April 1932 (Original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Heating - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  4. 51. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Photocopy of copy of original Officers' Duplex Quarters drawing by B.S. Elliott, 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Plumbing - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  5. Scintigraphic features of duplex kidneys on DMSA renal cortical scans.

    PubMed

    Kwatra, Neha; Shalaby-Rana, Eglal; Majd, Massoud

    2013-09-01

    The spectrum of manifestations of duplex kidneys on (99m)Tc-dimercaptosuccinic acid (DMSA) renal cortical scans and correlating findings on other imaging modalities are presented. Relevant embryology of the duplex systems and technical aspects of DMSA scintigraphy are reviewed.

  6. 48. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Photocopy of copy of original Officers' Duplex Quarters drawing by Turner, 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Attic and roof, basement, first floor, and second floor plans - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  7. 50. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Photocopy of copy of original Officers' Duplex Quarters drawing by Turner, 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University. Detail of front entrance and of gable dormer - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  8. 49. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Photocopy of copy of original Officers' Duplex Quarters drawing by Turner, 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Front, rear, and side elevations, and cross-section - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  9. Acoustical and perceptual influence of duplex stringing in grand pianos.

    PubMed

    Öberg, Fredrik; Askenfelt, Anders

    2012-01-01

    This study investigates the acoustical and perceptual influence of the string parts outside the speaking length in grand pianos (front and rear duplex strings). Acoustical measurements on a grand piano in concert condition were conducted, measuring the fundamental frequencies of all main and duplex strings in the four octaves D4-C8. Considerable deviations from the nominal harmonic relations between the rear duplex and main string frequencies, as described by the manufacturer in a patent, were observed. Generally the rear duplex strings were tuned higher than the nominal harmonic relations with average and median deviations approaching +50 cent. Single keys reached +190 and -100 cent. The spread in deviation from harmonic relations within trichords was also substantial with average and median values around 25 cent, occasionally reaching 60 cent. Contributions from both front and rear duplex strings were observed in the bridge motion and sound. The audibility of the duplex strings was studied in an ABX listening test. Complete dampening of the front duplex was clearly perceptible both for an experiment group consisting of musicians and a control group with naive subjects. The contribution from the rear duplex could also be perceived, but less pronounced. PMID:22280708

  10. Duplex structures connecting fault segments in Entrada Sandstone

    NASA Astrophysics Data System (ADS)

    Cruikshank, Kenneth M.; Zhao, Guozhu; Johnson, Arvid M.

    All stages in the development of a duplex structure—from isolated, stepped fault segments, to segments joined by a single ramp, to segments joined by tens of ramps—are preserved along strike-slip and normal faults in Entrada Sandstone in Arches National Park, Utah. Bedding is either absent or at a high angle to the duplex-like structures in Entrada Sandstone, thus it had no significant role in constraining their geometry. We can reproduce the essential features of a duplex structure along a normal fault with mechanical and kinematic models previously used to simulate duplex structures along thrust faults. However the models do not account for the amount of observed thickening at the step where the structure forms. This suggests that the geometry of duplex-like structures along these strike-slip faults may be a result of interaction between the fault segments.

  11. Light impurity effects on the electronic structure in TiAl

    NASA Astrophysics Data System (ADS)

    Dang, H. L.; Wang, C. Y.; Yu, T.

    2006-10-01

    By using first-principles DMol and the discrete-variational method (DVM) based on density functional theory, we investigated the effect of some light impurities, H, B, C, N and O, on the electronic structure of their corresponding different impurity-doped systems in γ-TiAl. The impurity formation energy, Mulliken occupation, bond order and charge density difference have been calculated to study the impurity-induced changes in the energetics and electronic structure. According to the impurity formation energy, it is found that the impurities energetically prefer to occupy the Ti-rich octahedron interstitial sites in the order HTiAl, while H and O are not.

  12. Designing Gamma TiAl Alloys (K5 Based) for Use at 840 C and Above

    NASA Technical Reports Server (NTRS)

    Kim, Young-Won; Kim, Sang-Lan

    2002-01-01

    The objective of this program was to investigate how carbon additions and Al content variation affects RT tensile properties and creep performance in gamma TiAl alloys. On the basis of the results from the work four alloys were selected within the composition range of Ti-(44.7-47.0) Al-(1.0-1.7)Cr-3.0Nb-0.2W-0.2B-(0.23-0.43)C-(0, 0.2)Si. Through extensive annealing/aging experiments, detailed observations of microstructure evolution, property measurements and analyses, comprehensive understanding was made in the carbide formation process. It was found that creep properties depend on the distribution of carbide particles, which is controlled not only by the aging process but also the amount ratio fo Al and carbon. From the results and analysis, new creep-resistant alloy compositions are suggested for further development.

  13. Fragmentation of {alpha}{sub 2} plates in a fully lamellar TiAl during creep

    SciTech Connect

    Wang, J.G.; Hsiung, L.M.; Nieh, T.G.

    1999-07-01

    The fragmentation and spheroidization of {alpha}{sub 2} laths in a fully-lamellar TiAl alloy during creep were examined. Three possible mechanisms, Rayleigh's perturbation model, subgrain boundary groove mechanism and intersection of deformation twins with {alpha}{sub 2} lamellae were presented and discussed. During creep deformation, the pile-up of interfacial dislocations leads to a change of planar interface, which, in turn, causes a difference in local chemical potential, and further results in the spheroidization of {alpha}{sub 2} lamellae. On the other hand, the deformation of the {alpha}{sub 2} phase is expected to be induced by the high local stress concentration introduced by the pile up of interfacial dislocations. The dynamic recovery process may lead to the formation of subgrain boundaries in the {alpha}{sub 2} lamellae, which results in the spheroidization and termination of {alpha}{sub 2} lamellae with the aid of diffusion during creep.

  14. Statistical simulation of small fatigue crack nucleation and coalescence in a lamellar TiAl alloy

    NASA Astrophysics Data System (ADS)

    Chan, Kwais; Wittkowsky, Bettina; Pfuff, Michael

    1999-05-01

    This article examines the possibility of fatigue failure as the result of fatigue crack nucleation and coalescence at stress ranges below the fatigue limit and the large crack threshold where fatigue cracks are expected not to grow. By representing the material as a two-dimensional array of beam elements, the nucleation of nonpropagating small cracks at various material locations is modeled via a statistical approach that considers fatigue crack nucleation by accumulation of damage at randomly distributed weak regions. Once nucleated, the fatigue cracks do not propagate but extend only by linking with fatigue cracks subsequently formed in the contiguous elements. Result of the computer simulation suggests that fatigue failure by crack nucleation and coalescence is feasible, but the cycles-to-coalescence is much longer than the cycles-to-initiation for the first crack. Implications of the results in fatigue life assessment based on the Kitagawa diagram are discussed for TiAl alloys.

  15. Deformation-induced {alpha}{sub 2} {yields} {gamma} phase transformation in TiAl alloys

    SciTech Connect

    Chen, C.L.; Lu, W.; Sun Dai; He, L.L.; Ye, H.Q.

    2010-11-15

    Deformation-induced {alpha}{sub 2} {yields} {gamma} phase transformation in high Nb containing TiAl alloys was investigated using high-resolution transmission electron microscopy (HREM) and energy dispersive X-ray spectroscopy (EDS). The dislocations appearing at the tip of deformation-induced {gamma} plate (DI-{gamma}) and the stacking sequence change of the {alpha}{sub 2} matrix were two key evidences for determining the occurrence of the deformation-induced {alpha}{sub 2} {yields} {gamma} phase transformation. Compositional analysis revealed that the product phase of the room-temperature transformation was not standard {gamma} phase; on the contrary, the product phase of the high-temperature transformation was standard {gamma} phase.

  16. Time-dependent stress concentration and microcrack nucleation in TiAl

    SciTech Connect

    Yoo, M.H.

    1995-07-01

    Localized stress evolution associated with the interaction of slip or twinning with an interface is treated by means of a superposition of the {open_quotes}internal loading{close_quotes} of a crystalline subsystem by dynamic dislocation pile-up and the stress relaxation by climb of interfacial dislocations. The peak value of a stress concentration factor depends on both the angular function that includes the effect of mode mixity and the ratio of characteristic times for stress relaxation and internal loading. The available experimental data on orientation and strain-rate dependences of interfacial fracture mode in polysynthetically twinned TiAl crystals are discussed in view of the theoretical concepts presented in this paper.

  17. Nitrogen containing shielding gases for GTAW duplex stainless steels

    SciTech Connect

    Creffield, G.K.; Cole, M.H.; Paciej, R.; Huang, W.; Urmston, S.

    1993-12-31

    The duplex stainless steel are alloys characterized as consisting of two phases; austenite and ferrite. As such, they combine the benefits of both phases i.e. good ductility and general corrosion resistance of austenite, but with improved stress corrosion cracking resistance and strength associate with ferrite. Carefully controlled manufacturing techniques are employed to produce this combination in roughly equal proportions to ensure optimum properties. The range of duplex alloys studied in this work covered both the standard grade (2205) and the latest generation of super duplex (2507) alloys; typical compositions are shown in Table 1. Although the standard duplex is the most commonly available and widely used, super duplexes, which are characterized by higher chromium, nickel, molybdenum and nitrogen contents, have even better corrosion properties and are finding increasing applications in the offshore industry. To benefit from the superior properties of duplex, it is vital that these alloys can be welded effectively and that the properties of the welded joint match those of the parent weld. The objective of the current investigation was to study the effect of nitrogen, in both the shielding and purge gas, on the weld metal nitrogen content, microstructure and corrosion resistance, with the eventual aim of recommending an effective shielding gas mixture for duplex stainless steels.

  18. Streamlined analysis of duplex sequencing data with Du Novo.

    PubMed

    Stoler, Nicholas; Arbeithuber, Barbara; Guiblet, Wilfried; Makova, Kateryna D; Nekrutenko, Anton

    2016-01-01

    Duplex sequencing was originally developed to detect rare nucleotide polymorphisms normally obscured by the noise of high-throughput sequencing. Here we describe a new, streamlined, reference-free approach for the analysis of duplex sequencing data. We show the approach performs well on simulated data and precisely reproduces previously published results and apply it to a newly produced dataset, enabling us to type low-frequency variants in human mitochondrial DNA. Finally, we provide all necessary tools as stand-alone components as well as integrate them into the Galaxy platform. All analyses performed in this manuscript can be repeated exactly as described at http://usegalaxy.org/duplex . PMID:27566673

  19. Streamlined analysis of duplex sequencing data with Du Novo.

    PubMed

    Stoler, Nicholas; Arbeithuber, Barbara; Guiblet, Wilfried; Makova, Kateryna D; Nekrutenko, Anton

    2016-08-26

    Duplex sequencing was originally developed to detect rare nucleotide polymorphisms normally obscured by the noise of high-throughput sequencing. Here we describe a new, streamlined, reference-free approach for the analysis of duplex sequencing data. We show the approach performs well on simulated data and precisely reproduces previously published results and apply it to a newly produced dataset, enabling us to type low-frequency variants in human mitochondrial DNA. Finally, we provide all necessary tools as stand-alone components as well as integrate them into the Galaxy platform. All analyses performed in this manuscript can be repeated exactly as described at http://usegalaxy.org/duplex .

  20. Lubrication for high load duplex bearings

    SciTech Connect

    Steinhoff, R.G.

    1997-08-01

    Three ES and H-compatible lubricants (Environment, Safety and Health) for high load duplex bearing applications were evaluated and compared against trichlorotrifluoroethane (Freon) deposition of low molecular weight polytetrafluoroethylene (PTFE) bearing lubricant extracted from Vydax{trademark}. Vydax is a product manufactured by DuPont consisting of various molecular weights of PTFE suspended in trichlorotrifluoroethane (Freon) which is an ozone-depleting solvent. Bearings with Supercritical CO{sub 2} deposition of PTFE extracted from Vydax AR/IPA, bearings with titanium carbide coated balls, and bearings with diamond-like carbon races and retainers were evaluated. Bearings with Supercritical CO{sub 2} deposition of PTFE from Vydax AR/IPA performed as well as bearings with Freon deposition of PTFE from Freon-based Vydax.

  1. Amplified spontaneous emission measurement of a line-narrowed, tunable, Ti:Al2O3 amplifier using rubidium absorption

    NASA Technical Reports Server (NTRS)

    Barnes, James C.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1989-01-01

    Amplified spontaneous emission, ASE, generated by a Ti:Al2O3 laser amplifier has been measured as a function of pump energy, and thus gain, using the atomic absorption of rubidium, Rb, gas at 0.780 micron. By tuning the Ti:Al2O3 laser, the Rb cell could selectively absorb the narrow spectral bandwidth laser radiation while transmitting the wide spectral bandwidth ASE. Transmission of laser amplifier pulses through a Rb absorption cell, measured at various temperatures, thus allows the measurement of the weak ASE in the vicinity of the strong laser pulse. A model for the transmission of Rb as a function of temperature and wavelength has been developed. The measured transmissions are in good agreement with the transmission model predictions.

  2. Study on the Antifriction and Antiwear Mechanisms of MoO3 Tabular Crystal in TiAl Matrix Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Ao; Shi, Xiaoliang; Yang, Kang; Huang, Yuchun; Zhai, Wenzheng; Zou, Jialiang; Shen, Qiao; Zhang, Qiaoxin

    2016-10-01

    In this study, the friction and wear behaviors of TiAl matrix composites with MTC (TMSCT) and TiAl matrix composites with MoO3 powder (TMSCP) are investigated. The results reveal that TMSCT show the excellent tribologcial performance, if compared to TMSCP. The direct contact layers of TMSCP against different counterface balls obtain huge cracks overall, whereas only fine crack is generated in TMSCT against Al2O3 ball, where MTCs are distributed around the crack evenly. The finite element simulations show that only the stress of TMSCT against Al2O3 ball exceeds the yield strength of TMSCT. It reveals that MTCs in TMSCT can reduce the stress for the weak binding force of multilayer structure and make the direct contact layers be more stable by preventing the propagation of crack after the crack being produced, resulting in the excellent antifriction and antiwear properties of TMSCT against different counterface balls.

  3. Structural properties of Al and TiAl3 metallic glasses — An embedded atom method study

    NASA Astrophysics Data System (ADS)

    Tahiri, M.; Trady, S.; Hasnaoui, A.; Mazroui, M.; Saadouni, K.; Sbiaai, K.

    2016-06-01

    In this paper, we investigated the structural properties of metallic glasses (MGs). We emphasized our study on monatomic Al and binary TiAl3 systems. The calculations are performed by using the molecular dynamics (MD) simulation based on semi-empirical many-body potentials derived from the embedded atom method. The structure is analyzed using the radial distribution function (RDF), the common neighbor analysis (CNA) and the coordination numbers (CNs). Our results demonstrated that it is possible to form MGs in both systems upon fast cooling from the liquid state. This is confirmed by the fact that the system energy and/or volume during the cooling stage decrease continuously with a slight change and by atomic scale analysis using the RDF, CNA and CN analyzing techniques. Furthermore, this specific study shows that under the same conditions, the icosahedral structures appeared in TiAl3 are more abundant than in pure Al. Implications of these findings are discussed.

  4. Phase stability of fcc- and hcp-based intermetallics: The Ti-Al and Cd-Mg systems

    SciTech Connect

    Asta, M.; McCormack, R. . Dept. of Materials Science and Mineral Engineering); van Schilfgaarde, M. ); Ceder, G. . Dept. of Materials Science); de Fontaine, D. . Dept. of Materials Science and Mi

    1992-06-01

    In this paper we summarize results of first-principles phase stability studies of fcc- and hcp-based Ti-Al alloys and of the hcp-based Cd-Mg system. In particular, heats of formation for ordered alloy compounds are calculated with the linear muffin tin orbital method; effective cluster interactions are determined from the results of these calculations and are used to derive thermodynamic properties and composition-temperature phase diagrams.

  5. Effect of trace amounts of NaCl vapor on high-temperature oxidation of TiAl

    SciTech Connect

    Hara, M.; Kitagawa, Y.

    1999-08-01

    The effect of trace amounts of NaCl vapor on the high-temperature oxidation of TiAl was examined by thermogravimetry and analysis of the scale formed on TiAl. The mass gain due to oxidation at 1273 K in O{sub 2} with trace amounts of NaCl vapor was far lower than that in pure O{sub 2} without NaCl vapor. This low mass gain in the atmosphere with trace amounts of NaCl vapor resulted from the saturation behavior of mass gain during the initial period of oxidation. It was found from X-ray photoemission spectroscopy (XPS) analyses of the specimen surface that the oxide film formed during the initial period in the atmosphere with trace amounts of NaCl vapor consisted of dense Al{sub 2}O{sub 3}, thus, the low oxidation rate of TiAl was attributed to a protective oxide film of dense Al{sub 2}O{sub 3}.

  6. Thermoacoustic Duplex Technology for Cooling and Powering a Venus Lander

    NASA Astrophysics Data System (ADS)

    Walker, A. R.; Haberbusch, M. S.; Sasson, J.

    2015-04-01

    A Thermoacoustic Stirling Heat Engine (TASHE) is directly coupled to a Pulse Tube Refrigerator (PTR) in a duplex configuration, providing simultaneous cooling and electrical power, thereby suiting the needs of a long-lived Venus lander.

  7. 43. View of station from southwest side with duplex keepers' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. View of station from southwest side with duplex keepers' dwelling to the left. USLHB photo by Herbert Bamber, June 9, 1893. - Bodie Island Light Station, Off Highway 12, Nags Head, Dare County, NC

  8. Perspective view of Building No. 61 from northwest. These duplex ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of Building No. 61 from northwest. These duplex quarters were built during the 1920s on the south edge of the Northwestern Branch campus. This building is sited on a rise and shares paths and lawn with two similar structures - Buildings 56 and 79. Now located directly adjacent to the current hospital complex (background), all three duplexes are slated for demolition. - National Home for Disabled Volunteer Soldiers, Northwestern Branch, Quarters, 5000 West National Avenue, Milwaukee, Milwaukee County, WI

  9. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect

    Kim, Yoon-Jun

    2004-01-01

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as σ and χ can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase (σ + χ) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, σ was stabilized with increasing Cr addition and χ by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in DSS can be affected by

  10. Topologically non-linked circular duplex DNA.

    PubMed

    Biegeleisen, Ken

    2002-05-01

    The discovery of circular DNA, over 30 years ago, introduced an element of uneasiness in what had been, up to that point, the almost picture-perfect story of the elucidation of the molecular biology of heredity. If DNA indeed has the Watson-Crick right-handed helical secondary structure, then in circular DNA, thousands, or perhaps even millions of twists must be removed in each generation, and re-wound in the next generation. Although enzyme systems adequate for this task have long since been found and characterized, there have nevertheless arisen a number of proposals for alternative DNA structures in which the strands are topologically non-linked, so that they might separate during replication without having to be unwound. These structures have generally been put forth as theory only, and have been largely unaccompanied by experimental evidence to support their applicability to native DNA from living systems. Recently, however, a report has emerged suggesting that it might be possible to separate, intact, the individual single-stranded circular half-chromosomes which constitute the double-stranded circular chromosomes of certain plasmids. This would not be possible unless the chromosomes had one of the alternative, topologically non-linked structures. It is widely believed that after a half-century of worldwide DNA research, any significant change to the Watson-Crick structure is unlikely to stand up to scrutiny. Nevertheless, the present author has found that in many instances in which the behavior of circular duplex DNA is considered to be explicable only in terms of the topologically linked helical model, it is also possible to explain that same behavior in terms of a topologically non-linked model. It is necessary, in these instances, to make certain logical assumptions which cannot be conclusively proven at the present time. The author herein offers an example of one such instance, namely an examination of the behavior of circular duplex DNA in an alkaline

  11. Electronic and mechanical properties of Zr{sub 2}TiAl: A first principles study

    SciTech Connect

    Reddy, P. V. Sreenivasa Kanchana, V.

    2014-04-24

    First principles study of electronic and mechanical properties of ternary phase Zr{sub 2}TiAl intermetallic compound has been carried out by using full potential linear augmented plane wave (FP-LAPW) method. Our calculated lattice parameter is in good agreement with the experiment. We find the magnetic phase of the compound to be stable with a magnetic moment of 1.95 μ{sub B}. The major contribution to the total magnetic moment arises mainly from the Ti atom with the local magnetic moment of 1.22 μ{sub B}. From the density of states plots we find the Ti-d and Zr-d to dominate at the Fermi level (E{sub F}) with enhanced crystal field splitting and exchange splitting found in Ti. The mechanical stability of the compound is confirmed from the calculated elastic constants, and we find the compound to be ductile in nature from the calculated Pugh’s ratio and Cauchy’s pressure.

  12. Texture Analyses of Ti/Al2O3 Nanocomposite Produced Using Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Shafiei-Zarghani, Aziz; Kashani-Bozorg, Seyed Farshid; Gerlich, Adrian P.

    2016-11-01

    The texture evolution of Ti/Al2O3 nanocomposite fabricated using friction stir processing (FSP) was investigated at both macroscopic and microscopic levels employing X-ray diffraction and electron backscattering diffraction techniques. The developed textures were compared with ideal shear textures of hexagonal close-packed (hcp) structure, revealing that the fabricated nanocomposite is dominated by the P 1 hcp (fiber { 10bar{1}1} < 1bar{2}10rangle (and relatively weak B (fiber { 10bar{1}1} < bar{1}bar{1}23rangle ) textures. The analyses of macro- and microtextures showed that the presence of nanosized Al2O3 particles activated the pyramidal { 10bar{1}1} < bar{1}bar{1}23rangle slip system in addition to dominant { 10bar{1}0} < 1bar{2}10rangle prism, basal { {0002} }< 1bar{2}10rangle, and pyramidal { 10bar{1}1} < 1bar{2}10rangle slip systems which normally govern plastic deformation during FSP of commercially pure titanium alloy. Moreover, the presence of nanoparticles promoted the occurrence of continuous dynamic recrystallization as well as increasing the fraction of high-angle grain boundaries within the developed microstructure.

  13. Texture Analyses of Ti/Al2O3 Nanocomposite Produced Using Friction Stir Processing

    NASA Astrophysics Data System (ADS)

    Shafiei-Zarghani, Aziz; Kashani-Bozorg, Seyed Farshid; Gerlich, Adrian P.

    2016-08-01

    The texture evolution of Ti/Al2O3 nanocomposite fabricated using friction stir processing (FSP) was investigated at both macroscopic and microscopic levels employing X-ray diffraction and electron backscattering diffraction techniques. The developed textures were compared with ideal shear textures of hexagonal close-packed (hcp) structure, revealing that the fabricated nanocomposite is dominated by the P 1 hcp (fiber { 10bar{1}1} < 1bar{2}10rangle (and relatively weak B (fiber { 10bar{1}1} < bar{1}bar{1}23rangle ) textures. The analyses of macro- and microtextures showed that the presence of nanosized Al2O3 particles activated the pyramidal { 10bar{1}1} < bar{1}bar{1}23rangle slip system in addition to dominant { 10bar{1}0} < 1bar{2}10rangle prism, basal { {0002} }< 1bar{2}10rangle, and pyramidal { 10bar{1}1} < 1bar{2}10rangle slip systems which normally govern plastic deformation during FSP of commercially pure titanium alloy. Moreover, the presence of nanoparticles promoted the occurrence of continuous dynamic recrystallization as well as increasing the fraction of high-angle grain boundaries within the developed microstructure.

  14. Effect of Impact Damage on the Fatigue Response of TiAl Alloy-ABB-2

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Nazmy, M. Y.; Staubli, M.; Clemens, D. R.

    2001-01-01

    The ability of gamma-TiAl to withstand potential foreign or domestic object damage is a technical risk to the implementation of gamma-TiAl in low pressure turbine (LPT) blade applications. In the present study, the impact resistance of TiAl alloy ABB-2 was determined and compared to the impact resistance of Ti(48)Al(2)Nb(2)Cr. Specimens were impacted with four different impact conditions with impact energies ranging from 0.22 to 6.09 J. After impacting, the impact damage was characterized by crack lengths on both the front and backside of the impact. Due to the flat nature of gamma-TiAl's S-N (stress vs. cycles to failure) curve, step fatigue tests were used to determine the fatigue strength after impacting. Impact damage increased with increasing impact energy and led to a reduction in the fatigue strength of the alloy. For similar crack lengths, the fatigue strength of impacted ABB-2 was similar to the fatigue strength of impacted Ti(48)Al(2)Nb(2)Cr, even though the tensile properties of the two alloys are significantly different. Similar to Ti(48)Al(2)Nb(2)Cr, ABB-2 showed a classical mean stress dependence on fatigue strength. The fatigue strength of impacted ABB-2 could be accurately predicted using a threshold analysis.

  15. ES and H-compatible lubrication for duplex bearings

    SciTech Connect

    Steinhoff, R.G.

    1997-10-01

    Two ES and H-compatible lubricants (environment, safety, and health) for duplex bearing applications and one hybrid material duplex bearing were evaluated and compared against duplex bearings with trichlorotrifluoroethane (Freon) deposition of low molecular weight polytetrafluoroethylene (PTFE) bearing lubricant extracted from Vydax{trademark}. Vydax is a product manufactured by DuPont consisting of various molecular weights of PTFE suspended in trichlorotrifluoroethane (Freon), which is an ozone-depleting solvent. Vydax has been used as a bearing lubricant in strong link mechanisms since 1974. Hybrid duplex bearings with silicon nitride balls and molded glass-nylon-Teflon retainers, duplex bearings lubricated with sputtered MoS{sub 2} on races and retainers, and duplex bearings lubricated with electrophoretic deposited MoS{sub 2} were evaluated. Bearings with electrophoretic deposited MoS{sub 2} performed as well as bearings with Freon deposition of PTFE from Freon-based Vydax. Hybrid bearings with silicon nitride balls performed worse than bearings lubricated with Vydax, but their performance would still be acceptable for most applications. Bearings lubricated with sputtered MoS{sub 2} on the races and retainers had varying amounts of film on the bearings. This affected the performance of the bearings. Bearings with a uniform coating performed to acceptable levels, but bearings with no visible MoS{sub 2} on the races and retainers did not perform as well as bearings with the other coatings. Unless process controls are incorporated in the sputtering process or the bearings are screened, they do not appear to be acceptable for duplex bearing applications.

  16. Duplex Ultrasonography in Assessing Restenosis of Renal Artery Stents

    SciTech Connect

    Bakker, Jeannette; Beutler, Jaap J.; Elgersma, Otto E.H.; Lange, Eduard E. de; Kort, Gerard A.P. de; Beek, Frederik J. A.

    1999-11-15

    Purpose: To determine the accuracy and optimal threshold values of duplex ultrasonography (US) in assessing restenosis of renal artery stents. Methods: Twenty-four consecutive patients with 33 renal arteries that had previously been treated with placement of a Palmaz stent underwent duplex US prior to intraarterial digital subtraction angiography (DSA), which was the reference standard. Diagnostic accuracy of in-stent peak systolic velocity (PSV) and reno-aortic ratio (RAR = PSV renal stent/PSV aorta) in detecting > 50% in-stent restenosis were evaluated by the receiver operating characteristic curve. Sensitivity and specificity were determined using the optimal threshold values, and using published threshold values: RAR > 3.5 and in-stent PSV > 180 cm/sec. Results: Six examinations were technically inadequate. Nine stents had residual or restenosis > 50% at DSA. The two duplex parameters were equally accurate since areas under the curves were similar (0.943). With optimal threshold values of 226 cm/sec for PSV and 2.7 for RAR, sensitivities and specificities were 100% and 90%, and 100% and 84%, respectively. Using the published duplex criteria resulted in sensitivities and specificities of 100% and 74% for PSV, and 50% and 89% for RAR. Conclusion: Duplex US is a sensitive modality for detecting in-stent restenosis if laboratory-specific threshold values are used.

  17. Theoretical studies of d(A:T)-based parallel-stranded DNA duplexes.

    PubMed

    Cubero, E; Luque, F J; Orozco, M

    2001-12-01

    Poly d(A:T) parallel-stranded DNA duplexes based on the Hoogsteen and reverse Watson-Crick hydrogen bond pairing are studied by means of extensive molecular dynamics (MD) simulations and molecular mechanics coupled to Poisson-Boltzmann (MM-PB/SA) calculations. The structural, flexibility, and reactivity characteristics of Hoogsteen and reverse Watson-Crick parallel duplexes are described from the analysis of the trajectories. Theoretical calculations show that the two parallel duplexes are less stable than the antiparallel Watson-Crick duplex. The difference in stability between antiparallel and parallel duplexes increases steadily as the length of the duplex increases. The reverse Watson-Crick arrangement is slightly more stable than the Hoogsteen duplex, the difference being also increased linearly with the length of the duplex. A subtle balance of intramolecular and solvation terms is responsible for the preference of a given helical structure.

  18. Influence of Si content on microstructure of TiAl alloys

    SciTech Connect

    Hsu, F.Y.; Klaar, H.J.; Wang, G.X.; Dahms, M.

    1996-04-01

    A systematic study of four ternary TiAl-based alloys with constant Ti content of 52.2 at. % and variable Si content ranging from 0.3 to 2.7 at. % (Al in balance) was conducted. The alloys were prepared from elemental powders via a route including powder mixing, precompaction, cold extrusion, and reactive hot-isostatic pressing. All investigated alloys contain the intermetallic compounds {gamma}-TiAl, {alpha}{sub 2}-Ti{sub 3}Al, and {zeta}-Ti{sub 5}(Si,Al){sub 3}. The microstructure can be described as a duplex structure (i.e., lamella {gamma}/{alpha}{sub 2} regions distributed in a {gamma} matrix) containing {zeta} precipitates. With increasing Si content, the number of primary {zeta} precipitates increased and the {gamma} grain size became finer while the lamellar volume fraction decreased slightly.

  19. A first-principles study of the phase stability of fcc-based Ti-Al alloys

    SciTech Connect

    Asta, M.; de Fontaine, D. |; van Schilfgaarde, M.; Sluiter, M.; Methfessel, M.

    1992-04-01

    In this paper we present results of a first-principles phase stability study of fcc-based Ti-Al alloys. In particular the full-potential linear muffin tin orbital method has been used to determine heats of format on and other zero-temperature properties of 9 fcc ordered superstructures as well as fcc and hcp Ti, and fcc Al. From these results a set of effective cluster interactions are determined which are used in a cluster variation method calculation of the thermodynamic properties and the composition-temperature phase diagram of fcc-based alloys.

  20. Defined presentation of carbohydrates on a duplex DNA scaffold.

    PubMed

    Schlegel, Mark K; Hütter, Julia; Eriksson, Magdalena; Lepenies, Bernd; Seeberger, Peter H

    2011-12-16

    A new method for the spatially defined alignment of carbohydrates on a duplex DNA scaffold is presented. The use of an N-hydroxysuccinimide (NHS)-ester phosphoramidite along with carbohydrates containing an alkylamine linker allows for on-column labeling during solid-phase oligonucleotide synthesis. This modification method during solid-phase synthesis only requires the use of minimal amounts of complex carbohydrates. The covalently attached carbohydrates are presented in the major groove of the B-form duplex DNA as potential substrates for murine type II C-type lectin receptors mMGL1 and mMGL2. CD spectroscopy and thermal melting revealed only minimal disturbance of the overall helical structure. Surface plasmon resonance and cellular uptake studies with bone-marrow-derived dendritic cells were used to assess the capability of these carbohydrate-modified duplexes to bind to mMGL receptors.

  1. Cavitation Erosion of Sensitized UNS S31803 Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Mitelea, Ion; Micu, Lavinia Mădălina; Bordeaşu, Ilare; Crăciunescu, Corneliu Marius

    2016-05-01

    During processing or use, duplex steels can be subjected to heating at high temperatures that can affect their behavior. This work aims to correlate the influence of the sensitization treatment on the ultrasonic cavitation erosion behavior of a UNS S31803 (X2CrNiMoN22-5-3) duplex stainless steel. Duplex stainless steels, formed as a result of rapid cooling after solution annealing, are sensitized at temperatures of 475 and 850 °C, respectively, leading to hardening and embrittlement due to the spinodal decomposition of the ferrite and the precipitation of secondary phases. The ultrasonic cavitation erosion experiments showed that the sensitization at 850 °C reduced the mean depth of erosion by about 11% and the mean depth of erosion rate by 28%. By contrast, the sensitization at 475 °C deteriorates the cavitation erosion resistance, increasing the erosion parameters by up to 22%, compared to the solution annealed state.

  2. Corrosion induced by cathodic hydrogen in 2205 duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Michalska, J.

    2011-05-01

    In this work new results about the influence of cathodic hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel are described. The results were discussed by taking into account hydrogen charged samples and without hydrogen. The corrosion resistance to pitting was qualified with the polarization curves. The conclusion is that, hydrogen deteriorated the passive film stability and corrosion resistance to pitting of 2205 duplex stainless steel. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen action was dependent on the hydrogen charging conditions.

  3. Unique Dynamic Properties of DNA Duplexes Containing Interstrand Crosslinks†

    PubMed Central

    Friedman, Joshua I.; Jiang, Yu Lin; Miller, Paul S.; Stivers, James T.

    2010-01-01

    Bifunctional DNA alkylating agents form a diverse assortment of covalent DNA interstrand crosslinked (ICL) structures that are potent cytotoxins. Since it is implausible that cells could possess distinct DNA repair systems for each individual ICL, it is believed that common structural and dynamic features of ICL damage are recognized, rather than specific structural characteristics of each cross-linking agent. Investigation of the structural and dynamic properties of ICLs that might be important for recognition has been complicated by heterogeneous incorporation of these lesions into DNA. To address this problem we have synthesized and characterized several homogenous ICL-DNAs containing site–specific staggered N4-cytosine-ethyl-N4-cytosine crosslinks. Staggered crosslinks were introduced in two ways: in a manner that preserves the overall structure of B-form duplex DNA, and in a manner that highly distorts the DNA structure, with the goal of understanding how structural and dynamic properties of diverse ICL duplexes might flag these sites for repair. Measurements of base pair opening dynamics in the B-form ICL duplex by 1H NMR linewidth or imino proton solvent exchange showed that the guanine base opposite to the crosslinked cytosine opened at least an order of magnitude more slowly than when in a control matched normal duplex. To a lesser degree, the B-form ICL also induced a decrease in base pair opening dynamics that extended from the site of the crosslink to adjacent base pairs. In contrast, the non-B-form ICL showed extensive conformational dynamics at the site of the cross link, which extended over the entire DNA sequence. Since DNA duplexes containing the B-form and non-B-form ICL crosslinks have both been shown to be incised when incubated in mammalian whole cell extracts, while a matched normal duplex is not, we conclude that intrinsic DNA dynamics is not a requirement for specific damage incision of these ICLs. Instead, we propose a general model where

  4. Renal cell carcinoma arising in ipsilateral duplex system.

    PubMed

    Mohan, Harsh; Kundu, Reetu; Dalal, Usha

    2014-09-01

    Congenital anomalies of the kidney and urinary tract are common and include a wide anatomic spectrum. Duplex systems are one of the more common renal anomalies, with the majority being asymptomatic. Little is known about the molecular pathogenesis of these anomalies; however, certain causative genes have been implicated. The finding of renal cell carcinoma arising in a kidney with the duplication of pelvicalyceal system and ureters, as in the present case, is uncommon. The association between a duplex system and renal cell carcinoma may be more than a coincidence, requiring a deeper insight and further elucidation. PMID:26328175

  5. Fine-grained multiferroic BaTiO{sub 3}/(Ni{sub 0.5}Zn{sub 0.5})Fe{sub 2}O{sub 4} composite ceramics synthesized by novel powder-in-sol precursor hybrid processing route

    SciTech Connect

    Zhang Hongfang; Or, Siu Wing; Chan, Helen Lai Wa

    2009-06-03

    Dense, homogeneous, and fine-grained multiferroic BaTiO{sub 3}/(Ni{sub 0.5}Zn{sub 0.5})Fe{sub 2}O{sub 4} composite ceramics are synthesized by a novel powder-in-sol precursor hybrid processing route. This route includes the dispersion of nanosized BaTiO{sub 3} ferroelectric powders prepared via conventional sold-state ceramic process into (Ni{sub 0.5}Zn{sub 0.5})Fe{sub 2}O{sub 4} ferromagnetic sol-gel precursor prepared via sol-gel wet chemistry process. Uniformly distributed slurry is obtained after ball milling and used in the fabrication of the ceramics with low sintering temperatures. The ceramics show coexistence of ferromagnetic and ferroelectric phases with obvious ferromagnetic and ferroelectric hysteresis loops at room temperature, besides exhibiting excellent magnetic and dielectric properties in a wide range of frequency. The combination of high permeability and permittivity with low losses in the ceramics enables significant miniaturization of electronic devices based on the ceramics.

  6. Effects of MoS2 and Multiwalled Carbon Nanotubes on Tribological Behavior of TiAl Matrix Composite

    NASA Astrophysics Data System (ADS)

    Yang, Kang; Shi, Xiaoliang; Zhai, Wenzheng

    2016-03-01

    The sliding velocities and applied loads are often varied to minimize friction and decrease mechanical energy dissipation in moving mechanical assemblies. In this study, TiAl matrix composites containing MoS2 and multiwalled carbon nanotubes (MWCNTs) are fabricated using spark plasma sintering. The testing conditions are chosen as 0.3 m/s-6.5 N; 0.5 m/s-11.4 N; and 0.7 m/s-16.3 N. The sliding tribological property of TiAl matrix composite containing MoS2 and MWCNTs (TMC-MM) is evaluated based on a ball-on-disk tribometer. The results show that the tribological performance of TMC-MM is excellent for the lower friction coefficient and less wear rate at 0.7 m/s-16.3 N. Massive MWCNTs are pulled out from TMC-MM at 0.7 m/s-16.3 N, and made to adhere to wear surface due to the existence of MoS2 with high adhesion property, resulting in the formation of smooth isolated island-like layer. It could protect the lubrication film formed on the worn surface, and be beneficial to the excellent tribological behavior of TMC-MM.

  7. A Standard Duplex Fiber Optic Receptacle/Connector: Requirements And Test Methods

    NASA Astrophysics Data System (ADS)

    Barrett, Mike; Khalil, Ragai

    1988-12-01

    The concept for using a duplex connector for the Fiber Distributed Data Interface (FDDI) was formalized in late 1983. The duplex requirements were driven by both the token ring topology and by the need to simplify connectivity between stations. Though most users speak in terms of a duplex connector or Medium Interface Connector (MIC), the FDDI Physical Medium Dependent (PMD) document only defines the physical parameters for a duplex receptacle. The receptacle is the boundary between the station and the cable plant of an FDDI network and hence the only location at which station conformance can be verified. The duplex connector or plug is therefore part of the FDDI cable plant.

  8. Computer Maintenance Operations Center (CMOC), showing duplexed cyber 170174 computers ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Computer Maintenance Operations Center (CMOC), showing duplexed cyber 170-174 computers - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  9. FRONT VIEW OF FACILITY 561, WHICH WAS ORIGINALLY A DUPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT VIEW OF FACILITY 561, WHICH WAS ORIGINALLY A DUPLEX. PHOTO SHOWS THE ONLY UNIT REMAINING, UNIT B (UNIT A WAS DEMOLISHED AFTER A FIRE). VIEW FACING NORTH - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  10. Renal pelvis urothelial carcinoma of the upper moiety in complete right renal duplex: a case report

    PubMed Central

    Zhang, Yiran; Yu, Quanfeng; Zhang, Zhihong; Liu, Ranlu; Xu, Yong

    2015-01-01

    Urothelial carcinoma (UC) originated from renal pelvis is the common tumor of the urinary system, however, neoplasia of the renal pelvis in duplex kidneys is extremely rare, especially in the complete renal and ureteral duplex cases. We present the first case of renal pelvis UC of the upper moiety in a complete right renal duplex. This male patient has bilateral complete renal and ureteral duplex. To the best of our knowledge, this is the first reported case of renal pelvis UC in a complete renal duplex system. After this experience we feel that the diagnosis of renal pelvis UC in duplex kidneys is not so easy, and once the diagnosis is determined, the whole renal duplex units and bladder cuff or ectopic orifice should be excised radically. PMID:26823906

  11. Ion mobility spectrometry reveals duplex DNA dissociation intermediates.

    PubMed

    Burmistrova, Anastasia; Gabelica, Valérie; Duwez, Anne-Sophie; De Pauw, Edwin

    2013-11-01

    Electrospray ionization (ESI) soft desolvation is widely used to investigate fragile species such as nucleic acids. Tandem mass spectrometry (MS/MS) gives access to the gas phase energetics of the intermolecular interactions in the absence of solvent, by following the dissociation of mass-selected ions. Ion mobility mass spectrometry (IMS) provides indications on the tridimensional oligonucleotide structure by attributing a collision cross section (CCS) to the studied ion. Electrosprayed duplexes longer than eight bases pairs retain their helical structure in a solvent-free environment. However, the question of conformational changes under activation in MS/MS studies remains open. The objective of this study is to probe binding energetics and characterize the unfolding steps occurring prior to oligonucleotide duplex dissociation. Comparing the evolution of CCS with collision energy and breakdown curves, we characterize dissociation pathways involved in CID-activated DNA duplex separation into single strands, and we demonstrate here the existence of stable dissociation intermediates. At fixed duplex length, dissociation pathways were found to depend on the percentage of GC base pairs and on their position in the duplex. Our results show that pure GC sequences undergo a gradual compaction until reaching the dissociation intermediate: A-helix. Mixed AT-GC sequences were found to present at least two conformers: a classic B-helix and an extended structure where the GC tract is a B-helix and the AT tract(s) fray. The dissociation in single strands takes place from both conformers when the AT base pairs are enclosed between two GC tracts or only from the extended conformer when the AT tract is situated at the end(s) of the sequence.

  12. Cisplatin-induced duplex dissociation of complementary and destabilized short GG-containing duplex RNAs.

    PubMed

    Polonyi, Christopher; Alshiekh, Alak; Sarsam, Lamya A; Clausén, Maria; Elmroth, Sofi K C

    2014-08-21

    The ability of the anticancer active drug cisplatin to exert biological activity through interference with nucleic acid function is well documented. Since kinetics play a key role in determining product distributions in these systems, methods for accurate documentation of reactivity serve the purpose to identify preferential metal binding sites. In the present study, the aim has been to further explore a recently communicated approach (C. Polonyi and S. K. C. Elmroth, J. Chem. Soc., Dalton Trans., 2013, 42, 14959-14962) utilizing UV/vis spectroscopy and metal induced duplex RNA melting for monitoring of kinetics. More specifically, the sensitivity of the UV/vis-methodology has been evaluated by investigation of how overall length and changes of base-pairing in the close vicinity of a centrally located GG-site affect the rate of cisplatin binding, using the intracellularly active mono-aquated form of cisplatin (cis-Pt(NH3)2Cl(OH2)(+), ()) as the platination reagent. For this purpose, the reactivity of five different 13- to 17 base-pair duplex RNAs was monitored at 38 °C. A common trend of a ca. 10-fold reduction in reactivity was found to accompany an increase of bulk sodium concentration from CNa+ = 122 mM to 1.0 M. Typical half-lives are exemplified by the interaction of with the fully complementary 15-mer RNA-1 with t1/2 = ca. 0.5 and 4.8 hours, at CNa+ = 122 mM and 1.0 M respectively, and C = 45 μM. Lowering of melting temperature (Tm) was found to promote reactivity regardless of whether the change involved a decrease or increase of the RNA length. For example, at CNa+ = 1.0 M, truncation of the fully complementary and GG-containing 15-mer RNA-1 (Tm = 68.9 °C) to the 13-mer RNA-1-1-S (Tm = 63.9 °C) resulted in an increase of k2,app from ca. 0.9 M(-1) s(-1) to 2.0 M(-1) s(-1). Further, the 17-mer RNA-1-4 (Tm = 42.0 °C) with a central U4 bulge exhibited the highest reactivity of the sequences studied with k2,app = 4.0 M(-1) s(-1). The study shows that the

  13. Microstructure and properties of the Ti/Al2O3/NiCr composites fabricated by explosive compaction/cladding.

    PubMed

    Wang, Bingfeng; Xie, Fangyu; Wang, Bin; Luo, Xiaozhou

    2015-05-01

    Titanium/aluminum oxide/nickel chromium (Ti/Al2O3/NiCr) composite bar prepared by explosive compaction/cladding technique represents a new kind of sandwich-structural composites for medical application. Formation of the interfaces of Ti/Al2O3 and Al2O3/NiCr govern the properties of the composite material. The electrical resistivity and microstructure of the intermediate layer and the interfaces of the Ti/Al2O3/NiCr explosive compaction/cladding bar are investigated by means of four-point probe analysis, optical microscopy, scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The Ti/Al2O3/NiCr composite bar is characterized by the consolidated ceramic intermediate layer and the metallurgical bonding interfaces. The intermediate ceramic layer plays a role of insulation and thermal conductance in this composite. The average shear strength of the composite bar is about 9.36 MPa. The heat affected zone characterized by relatively larger sizes of grains is distinguished from the other part of the Ti tube. The intermetallics AlTi3 and Al0.9Ni4.22 are generated at the intermediate ceramic layer. Formation mechanism of the interfaces of the explosive compaction/cladding bar are described.

  14. Impact of Ti/Al atomic ratio on the formation mechanism of non-recessed Au-free Ohmic contacts on AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Constant, A.; Baele, J.; Coppens, P.; Qin, W.; Ziad, H.; De Backer, E.; Moens, P.; Tack, M.

    2016-09-01

    The formation mechanism of non-recessed Au-free Ohmic contacts on the AlGaN/GaN heterostructures is investigated for various Ti/Al atomic ratios (Al-rich versus Ti-rich) and annealing temperatures ranging from 500 to 950 °C. It is shown that Ti/Al atomic ratio is the key parameter defining the optimum annealing temperature for Ohmic contact formation. Ti-rich contacts processed at high temperature result in low contact resistance ˜0.7 Ω mm, better to those obtained at low temperature or with Al-rich metal stacks. The variation of the contact resistance with Ti/Al atomic ratio and annealing temperature is correlated with the intermetallic phase changes and interfacial reaction. Depending on the Ti/Al atomic ratio, two distinct mechanisms can be distinguished. For a small quantity of Ti (e.g., Al-rich contacts), Ohmic contact formation is done through a weak interfacial reaction which is nonexistent at high temperature due to the degradation of the metal morphology. However, for a quantity of Ti higher than 25 at. % (e.g., Ti-rich contacts), the agglomeration is delayed by 200 °C as compared to Al-rich contacts, and optimal contacts are formed at high temperature through a strong interfacial reaction.

  15. Microstructure and properties of the Ti/Al2O3/NiCr composites fabricated by explosive compaction/cladding.

    PubMed

    Wang, Bingfeng; Xie, Fangyu; Wang, Bin; Luo, Xiaozhou

    2015-05-01

    Titanium/aluminum oxide/nickel chromium (Ti/Al2O3/NiCr) composite bar prepared by explosive compaction/cladding technique represents a new kind of sandwich-structural composites for medical application. Formation of the interfaces of Ti/Al2O3 and Al2O3/NiCr govern the properties of the composite material. The electrical resistivity and microstructure of the intermediate layer and the interfaces of the Ti/Al2O3/NiCr explosive compaction/cladding bar are investigated by means of four-point probe analysis, optical microscopy, scanning electron microscopy, electron microprobe analysis, and X-ray diffraction. The Ti/Al2O3/NiCr composite bar is characterized by the consolidated ceramic intermediate layer and the metallurgical bonding interfaces. The intermediate ceramic layer plays a role of insulation and thermal conductance in this composite. The average shear strength of the composite bar is about 9.36 MPa. The heat affected zone characterized by relatively larger sizes of grains is distinguished from the other part of the Ti tube. The intermetallics AlTi3 and Al0.9Ni4.22 are generated at the intermediate ceramic layer. Formation mechanism of the interfaces of the explosive compaction/cladding bar are described. PMID:25746277

  16. Process for preparing fine grain titanium carbide powder

    DOEpatents

    Janey, Mark A.

    1986-01-01

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular-level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  17. Fine Grained nb for Internal Tin NB3SN Conductors

    NASA Astrophysics Data System (ADS)

    Balachandran, S.; Barber, R. E.; Huang, Y.; Miao, H.; Parrell, J. A.; Hong, S.; Griffin, R. B.; Hartwig, K. T.

    2010-04-01

    The push to drive superconductor strand technology to reach higher critical current density (Jc) values and reduce production costs has led to innovative approaches in manufacturing technology. The Restacked Rod Process (RRP®) by Oxford Instruments is one such process which involves Nb bar extrusions in a Cu sheath. Commercially available Nb used in the initial RRP extrusion leads to nonuniform deformations of the Nb bar which in turn leads to a jagged Cu-Nb interface. This report presents a feasible methodology to remedy the problem of nonuniform deformation of Nb through severe plastic deformation (SPD) of precursor Nb to obtain smaller grains in starting Nb. Cu-Nb monocore extrusion and drawing experiments were accomplished at Oxford Instruments using Nb bars of nominal dimensions 45 mm diameter by and 78 mm long and with grain sizes in the range of μm to mm. Results of Cu-Nb interface roughness measurements show that a finer starting grain size gives a significantly lower roughness and better Nb core conformance to initial shape. Our experiments indicate that refinement of the initial Nb grain size to below ˜50μm could enable fabrication of RRP conductor with improved wire yield.

  18. Discovering Fine-grained Sentiment in Suicide Notes.

    PubMed

    Wang, Wenbo; Chen, Lu; Tan, Ming; Wang, Shaojun; Sheth, Amit P

    2012-01-01

    This paper presents our solution for the i2b2 sentiment classification challenge. Our hybrid system consists of machine learning and rule-based classifiers. For the machine learning classifier, we investigate a variety of lexical, syntactic and knowledge-based features, and show how much these features contribute to the performance of the classifier through experiments. For the rule-based classifier, we propose an algorithm to automatically extract effective syntactic and lexical patterns from training examples. The experimental results show that the rule-based classifier outperforms the baseline machine learning classifier using unigram features. By combining the machine learning classifier and the rule-based classifier, the hybrid system gains a better trade-off between precision and recall, and yields the highest micro-averaged F-measure (0.5038), which is better than the mean (0.4875) and median (0.5027) micro-average F-measures among all participating teams.

  19. A fine grained electromagnetic lead-liquid scintillator calorimeter

    NASA Astrophysics Data System (ADS)

    Bachman, L.; Bonesini, M.; Cavalli, D.; Costa, G.; Fischer, J.; Fluri, L.; Kienzle-Focacci, M. N.; Mandelli, L.; Martin, M.; Mazzanti, M.; Mermod, R.; Pensotti-Rancoita, S.; Perrin, D.; Rosselet, L.; Rutschmann, J.; Tamborini, M.; Vuilleumier, J. M.; Werlen, M.

    1983-02-01

    A new technique using liquid scintillator contained in teflon tubes to build a low cost high spatial resolution electromagnetic sampling calorimeter is described. Test results and comparison with a Monte Carlo simulation are presented.

  20. Friction stir weld tools having fine grain structure

    DOEpatents

    Grant, Glenn J.; Frye, John G.; Kim, Jin Yong; Lavender, Curt A.; Weil, Kenneth Scott

    2016-03-15

    Tools for friction stir welding can be made with fewer process steps, lower cost techniques, and/or lower cost ingredients than other state-of-the-art processes by utilizing improved compositions and processes of fabrication. Furthermore, the tools resulting from the improved compositions and processes of fabrication can exhibit better distribution and homogeneity of chemical constituents, greater strength, and/or increased durability. In one example, a friction stir weld tool includes tungsten and rhenium and is characterized by carbide and oxide dispersoids, by carbide particulates, and by grains that comprise a solid solution of the tungsten and rhenium. The grains do not exceed 10 micrometers in diameter.

  1. Deformation behavior of ultra-fine-grained copper

    SciTech Connect

    Valiev, R.Z.; Lian, J.; Nazarov, A.A.; Baudelet, B. . Genie Physique et Mecanique des Materiaux); Kozlov, E.V.; Ivanov, Yu.F. . Dept. of Physics)

    1994-07-01

    Mechanical behavior and structural changes, such as the evolution of grain and dislocation structures and the formation of slip lines and grain-boundary-sliding traces, of a submicron-grained (SMG) copper during room-temperature compression have been studies. It is suggested that the absorption of dislocations into grain boundaries (GBs) is due to the migration and sliding of some highly non-equilibrium GBs during the deformation process and is influenced by high level internal stresses. From this point of view, the unusual behavior of SMG copper, in particular, the high yielding and flow stresses, the absence of strain hardening, high plasticity and low strain rate sensitivity, are explained. Analogies of the mechanical behavior of SMG copper with mechanical properties of metallic materials at large plastic strains in stage 4 are discussed.

  2. Casting fine grained, fully dense, strong inorganic materials

    DOEpatents

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  3. Process for preparing fine grain silicon carbide powder

    DOEpatents

    Wei, G.C.

    Finely divided silicon carbide powder is obtained by mixing colloidal silica and unreacted phenolic resin in either acetone or methanol, evaporating solvent from the obtained solution to form a gel, drying and calcining the gel to polymerize the phenolic resin therein, pyrolyzing the dried and calcined gel at a temperature in the range of 500 to 1000/sup 0/C, and reacting silicon and carbon in the pyrolyzed gel at a temperature in the range of 1550 to 1700/sup 0/C to form the powder.

  4. Process for preparing fine grain titanium carbide powder

    DOEpatents

    Janney, M.A.

    1985-03-12

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  5. Fine-grained dengue forecasting using telephone triage services.

    PubMed

    Abdur Rehman, Nabeel; Kalyanaraman, Shankar; Ahmad, Talal; Pervaiz, Fahad; Saif, Umar; Subramanian, Lakshminarayanan

    2016-07-01

    Thousands of lives are lost every year in developing countries for failing to detect epidemics early because of the lack of real-time disease surveillance data. We present results from a large-scale deployment of a telephone triage service as a basis for dengue forecasting in Pakistan. Our system uses statistical analysis of dengue-related phone calls to accurately forecast suspected dengue cases 2 to 3 weeks ahead of time at a subcity level (correlation of up to 0.93). Our system has been operational at scale in Pakistan for the past 3 years and has received more than 300,000 phone calls. The predictions from our system are widely disseminated to public health officials and form a critical part of active government strategies for dengue containment. Our work is the first to demonstrate, with significant empirical evidence, that an accurate, location-specific disease forecasting system can be built using analysis of call volume data from a public health hotline. PMID:27419226

  6. Geochemistry of Fine-grained Sediments and Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Sageman, B. B.; Lyons, T. W.

    2003-12-01

    The nature of detrital sedimentary (siliciclastic) rocks is determined by geological processes that occur in the four main Earth surface environments encountered over the sediment's history from source to final sink: (i) the site of sediment production (provenance), where interactions among bedrock geology, tectonic uplift, and climate control weathering and erosion processes; (ii) the transport path, where the medium of transport, gradient, and distance to the depositional basin may modify the texture and composition of weathered material; (iii) the site of deposition, where a suite of physical, chemical, and biological processes control the nature of sediment accumulation and early burial modification; and (iv) the conditions of later burial, where diagenetic processes may further alter the texture and composition of buried sediments. Many of these geological processes leave characteristic geochemical signatures, making detrital sedimentary rocks one of the most important archives of geochemical data available for reconstructions of ancient Earth surface environments. Although documentation of geochemical data has long been a part of the study of sedimentation (e.g., Twenhofel, 1926, 1950; Pettijohn, 1949; Trask, 1955), the development and application of geochemical methods specific to sedimentary geological problems blossomed in the period following the Second World War ( Degens, 1965; Garrels and Mackenzie, 1971) and culminated in recent years, as reflected by the publication of various texts on marine geochemistry (e.g., Chester, 1990, 2000), biogeochemistry (e.g., Schlesinger, 1991; Libes, 1992), and organic geochemistry (e.g., Tissot and Welte, 1984; Engel and Macko, 1993).Coincident with the growth of these subdisciplines a new focus has emerged in the geological sciences broadly represented under the title of "Earth System Science" (e.g., Kump et al., 1999). Geochemistry has played the central role in this revolution (e.g., Berner, 1980; Garrels and Lerman, 1981; Berner et al., 1983; Kump et al., 2000), with a shifting emphasis toward sophisticated characterization of the linkages among solid Earth, oceans, biosphere, cryosphere, atmosphere, and climate, mediated by short- and long-term biogeochemical cycles. As a result, one of the primary objectives of current geological inquiry is improved understanding of the interconnectedness and associated feedback among the cycles of carbon, nitrogen, phosphorous, oxygen, and sulfur, and their relationship to the history of Earth's climate. This "Earth System" approach involves uniformitarian extrapolations of knowledge gained from modern environments to proxy-based interpretations of environmental change recorded in ancient strata. The strength of modern data lies with direct observations of pathways and products of physical, chemical, and biological processes, but available time-series are short relative to the response times of many of the biogeochemical systems under study. By contrast, stratigraphically constrained geological data offer time-series that encompass a much fuller range of system response. But with the enhanced breadth of temporal resolution and signal amplitude provided by ancient sedimentary records comes a caveat - we must account for the blurring of primary paleo-environmental signals by preservational artifacts and understand that proxy calibrations are extended from the modern world into a nonsubstantively uniformitarian geological past.Fortunately, detrital sedimentary rocks preserve records of multiple proxies (dependent and independent) that illuminate the processes and conditions of sediment formation, transport, deposition, and burial. An integrated multiproxy approach offers an effective tool for deconvolving the history of biogeochemical cycling of, among other things, carbon and sulfur, and for understanding the range of associated paleo-environmental conditions (e.g., levels of atmospheric oxygen and carbon dioxide, oceanic paleoredox, and paleosalinity). Authors of a single chapter can hope, at best, to present a curs

  7. Fine-Grained Targets for Laser Synthesis of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Park, Cheol (Inventor)

    2015-01-01

    A mechanically robust, binder-free, inexpensive target for laser synthesis of carbon nanotubes and a method for making same, comprising the steps of mixing prismatic edge natural flake graphite with a metal powder catalyst and pressing the graphite and metal powder mixture into a mold having a desired target shape.

  8. Fine-grained dengue forecasting using telephone triage services

    PubMed Central

    Abdur Rehman, Nabeel; Kalyanaraman, Shankar; Ahmad, Talal; Pervaiz, Fahad; Saif, Umar; Subramanian, Lakshminarayanan

    2016-01-01

    Thousands of lives are lost every year in developing countries for failing to detect epidemics early because of the lack of real-time disease surveillance data. We present results from a large-scale deployment of a telephone triage service as a basis for dengue forecasting in Pakistan. Our system uses statistical analysis of dengue-related phone calls to accurately forecast suspected dengue cases 2 to 3 weeks ahead of time at a subcity level (correlation of up to 0.93). Our system has been operational at scale in Pakistan for the past 3 years and has received more than 300,000 phone calls. The predictions from our system are widely disseminated to public health officials and form a critical part of active government strategies for dengue containment. Our work is the first to demonstrate, with significant empirical evidence, that an accurate, location-specific disease forecasting system can be built using analysis of call volume data from a public health hotline. PMID:27419226

  9. Dynamics of H2 dissociation on the 1/2 ML c(2 × 2)-Ti/Al(100) surface.

    PubMed

    Chen, Jian-Cheng; Ramos, Maxi; Arasa, Carina; Juanes-Marcos, Juan Carlos; Somers, Mark F; Martínez, Alejandra E; Díaz, Cristina; Olsen, Roar A; Kroes, Geert-Jan

    2012-03-01

    The dissociation of H(2) on Ti-covered Al surfaces is relevant to the rehydrogenation and dehydrogenation of the NaAlH(4) hydrogen storage material. The energetically most stable structure for a 1/2 monolayer of Ti deposited on the Al(100) surface has the Ti atoms in the second layer with a c(2 × 2) structure, as has been confirmed by both low-energy electron diffraction and low-energy ion scattering experiments and density functional theory studies. In this work, we investigate the dynamics of H(2) dissociation on a slab model of this Ti/Al(100) surface. Two six-dimensional potential energy surfaces (PESs) have been built for this H(2) + Ti/Al(100) system, based on the density functional theory PW91 and RPBE exchange-correlation functionals. In the PW91 (RPBE) PES, the lowest H(2) dissociation barrier is found to be 0.65 (0.84) eV, with the minimum energy path occurring for H(2) dissociating above the bridge to top sites. Using both PESs, H(2) dissociation probabilities are calculated using the classical trajectory (CT), the quasi-classical trajectory (QCT), and the time-dependent wave-packet methods. We find that the QCT H(2) dissociation probabilities are in good agreement with the quantum dynamics results in the collision energy range studied up to 1.0 eV. We have also performed molecular beam simulations and present predictions for molecular beam experiments. Our molecular beam simulations show that H(2) dissociation on the 1/2 ML Ti/Al(100) surface is an activated process, and the reaction probability is found to be 6.9% for the PW91 functional and 1.8% for the RPBE at a nozzle temperature of 1700 K. Finally, we have also calculated H(2) dissociation rate constants by applying transition state theory and the QCT method, which could be relevant to modeling Ti-catalyzed rehydrogenation and dehydrogenation of NaAlH(4).

  10. Deformation behaviour and 6H-LPSO structure formation at nanoindentation in lamellar high Nb containing TiAl alloy

    NASA Astrophysics Data System (ADS)

    Song, L.; Xu, X. J.; Peng, C.; Wang, Y. L.; Liang, Y. F.; Shang, S. L.; Liu, Z. K.; Lin, J. P.

    2015-02-01

    Microstructure and deformation mechanisms at a nanoindentation in the lamellar colony of high Nb containing TiAl alloy have been studied using the focused ion beam and the transmission electron microscopy. Considerable deformation twins are observed around the nanoindentation, and a strain gradient is generated. A continuous change in the bending angle of the lamellar structure can be derived, and a strain-induced grain refinement process is observed as various active deformations split the γ grains into subgrains. In addition to all possible deformation mechanisms (ordinary dislocation, super-dislocation and deformation twining) activated due to the heavy plastic deformation, a 6-layer hexagonal (6H) long-period stacking ordered structure is identified for the first time near the contact zone and is thought to be closely related to the glide of partial dislocations.

  11. Oxide formation on NbAl{sub 3} and TiAl due to ion implantation of {sup 18}O

    SciTech Connect

    Hanrahan, R.J. Jr.; Verink, E.D. Jr.; Withrow, S.P.; Ristolainen, E.O.

    1993-12-31

    Surface modification by ion implantation of {sup 18}O ions was investigated as a technique for altering the high-temperature oxidation of aluminide intermetallic compounds and related alloys. Specimens of NbAl{sub 3} and TiAl were implanted to a dose of 1 {times} 10{sup 18} ions/cm{sup 2} at 168 keV. Doses and accelerating energies were calculated to obtain near-stoichiometric concentrations of oxygen. Use of {sup 18}O allowed the implanted oxygen profiles to be measured using secondary ion mass spectroscopy (SIMS). The near surface oxides formed were studied using x-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy. Specimens were also examined using x-ray diffraction and SEM. This paper presents results for specimens examined in the as-implanted state. The oxide formed due to implantation is a layer containing a mixture of Nb or Ti and amorphous Al oxides.

  12. AFM study of the plastic deformation of polysynthetically-twinned (PST) TiAl crystals in soft orientation.

    PubMed

    Chen, Yali; Pope, David P

    2006-05-01

    PST TiAl samples with a nominal composition of Ti52Al48 were deformed at room temperature with compression axis inclined to the lamellar interfaces by 45 degrees and one of the side surface normal directions set to be (112). The deformation structures on the free surfaces of the deformed samples were investigated using Atomic Force Microscope (AFM). It was found that in-plane shear (shear in planes parallel to lamellar interfaces) is the dominant deformation mode in all gamma domains and most of the deformation traces on the free surfaces are parallel to lamellar interfaces. Out-of-plane shear (shear in planes inclined to lamellar interfaces) also occurs but contributes much less to the macroscopic strain. This selective activation of deformation modes leads to a highly anisotropic deformation behavior in PST crystals with this orientation. PMID:16646014

  13. Phase Transformations During Solidification of a Laser-Beam-Welded TiAl Alloy—An In Situ Synchrotron Study

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Staron, Peter; Riekehr, Stefan; Stark, Andreas; Schell, Norbert; Huber, Norbert; Schreyer, Andreas; Müller, Martin; Kashaev, Nikolai

    2016-09-01

    An in situ highly time-resolved, high-energy X-ray diffraction investigation was carried out to observe the phase transformations of a TiAl alloy during laser beam welding. The diffraction patterns are recorded every 0.1 seconds by a fast area two-dimensional detector and plotted according to time, yielding the solidification pathway, the solid phase volume fraction, and the lattice parameter variation of different phases during the solidification and cooling process. Moreover, it is the first study that can demonstrate that the α phase without any Burgers orientation relationship, the so-called non-Burgers α, precipitates appear earlier than the Burgers α. The non-Burgers α grains are found to nucleate on the primary borides.

  14. Laser Safety Method For Duplex Open Loop Parallel Optical Link

    DOEpatents

    Baumgartner, Steven John; Hedin, Daniel Scott; Paschal, Matthew James

    2003-12-02

    A method and apparatus are provided to ensure that laser optical power does not exceed a "safe" level in an open loop parallel optical link in the event that a fiber optic ribbon cable is broken or otherwise severed. A duplex parallel optical link includes a transmitter and receiver pair and a fiber optic ribbon that includes a designated number of channels that cannot be split. The duplex transceiver includes a corresponding transmitter and receiver that are physically attached to each other and cannot be detached therefrom, so as to ensure safe, laser optical power in the event that the fiber optic ribbon cable is broken or severed. Safe optical power is ensured by redundant current and voltage safety checks.

  15. Hangingwall strain: A function of duplex shape and footwall topography

    NASA Astrophysics Data System (ADS)

    Butler, Robert W. H.

    1982-10-01

    The concept of piggy-back thrust tectonics implies that foreland is progressively accreted onto a developing thrust sheet during duplex formation. Lateral shape changes in duplexes in the hangingwall of a thrust and corrugations in the footwall will fold higher thrust sheets to give culminations and depressions. Balancing of parts of high level thrust sheets with lower sheets and foreland requires a sequence of extensional and compressional strains orientated normal to the thrust transport direction. Culmination walls will be sites of strike-parallel extension. Subsequent adjacent culminations will compress early culmination walls which will result in a sequence of irrotational strains. Examples of this geometry are given from the Moine Thrust zone of Northwest Scotland. The model allows a re-examination of strains and hangingwall evolution in some thrust sheets in the Helvetic and external zones of the Alps.

  16. Duplex stainless steels for the pulp and paper industry

    SciTech Connect

    Alfonsson, E.; Olsson, J.

    1999-07-01

    The metallurgy and corrosion resistance of duplex stainless steel, particularly with regards to applications in the pulp and paper industry, are described. Practical experiences from pressure vessel installations in cooking plants and bleach plants as well as from non-pressurized items in different parts along the fiber line, are given. The paper also reviews corrosion test results presented previously and compares these with recent test data and the practical experiences. Though most of the installations have been successful, some cases of corrosion attacks on duplex stainless steel have been reported, although these are very limited in number: one digester, one calorifier, two pulp storage towers, and two bleach plant filter washers, of a total of more than 700 identified installations.

  17. Investigation of plastic deformation heterogeneities in duplex steel by EBSD

    SciTech Connect

    Wronski, S.; Tarasiuk, J.; Bacroix, B.; Baczmanski, A.; Braham, C.

    2012-11-15

    An EBSD analysis of a duplex steel (austeno-ferritic) deformed in tension up to fracture is presented. The main purpose of the paper is to describe, qualitatively and quantitatively, the differences in the behavior of the two phases during plastic deformation. In order to do so, several topological maps are measured on the deformed state using the electron backscatter diffraction technique. Distributions of grain size, misorientation, image quality factor and texture are then analyzed in detail. - Highlights: Black-Right-Pointing-Pointer Heterogeneities in duplex steel is studied. Black-Right-Pointing-Pointer The behavior of the two phases during plastic deformation is studied. Black-Right-Pointing-Pointer IQ factor distribution and misorientation characteristics are examined using EBSD.

  18. Investigation of hot cracking resistance of 2205 duplex steel

    NASA Astrophysics Data System (ADS)

    Adamiec, J.; Ścibisz, B.

    2010-02-01

    Austenitic duplex steel of the brand 2205 according to Avesta Sheffield is used for welded constructions (pipelines, tanks) in the petrol industry, chemical industry and food industry. It is important to know the range of high-temperature brittleness in designing welding technology for constructions made of this steel type. There is no data in literature concerning this issue. High-temperature brittleness tests using the simulator of heat flow device Gleeble 3800 were performed. The tests results allowed the evaluation of the characteristic temperatures in the brittleness temperature range during the joining of duplex steels, specifically the nil-strength temperature (NST) and nil-ductility temperatures (NDT) during heating, the strength and ductility recovery temperatures (DRT) during cooling, the Rfparameter (Rf = (Tliquidus - NDT)/NDT) describing the duplex steel inclination for hot cracking, and the brittleness temperature range (BTR). It has been stated that, for the examined steel, this range is wide and amounts to ca. 90 °C. The joining of duplex steels with the help of welding techniques creates a significant risk of hot cracks. After analysis of the DTA curves a liquidus temperature of TL = 1465 °C and a solidus temperature of TS = 1454 °C were observed. For NST a mean value was assumed, in which the cracks appeared for six samples; the temperature was 1381 °C. As the value of the NDT temperature 1367 °C was applied while for DRT the assumed temperature was 1375 °C. The microstructure of the fractures was observed using a Hitachi S-3400N scanning electron microscope (SEM). The analyses of the chemical composition were performed using an energy-dispersive X-ray spectrometer (EDS), Noran System Six of Thermo Fisher Scientific. Essential differences of fracture morphology type over the brittle temperature range were observed and described.

  19. View from east to west of family housing unit (duplex; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from east to west of family housing unit (duplex; either #27 or #87, as only the 7 is visible). Unit #27 was three-bedroom and located on 9th Street south. Unit #87 was a two-bedroom located on 4th Street north. These housing units have been removed - Stanley R. Mickelsen Safeguard Complex, Family Housing Units, In area bounded by Tenth Street North, Avenue A, & Avenue J, Nekoma, Cavalier County, ND

  20. All-atom crystal simulations of DNA and RNA duplexes

    PubMed Central

    Liu, Chunmei; Janowski, Pawel A.; Case, David A.

    2014-01-01

    Background Molecular dynamics simulations can complement experimental measures of structure and dynamics of biomolecules. The quality of such simulations can be tested by comparisons to models refined against experimental crystallographic data. Methods We report simulations of a DNA and RNA duplex in their crystalline environment. The calculations mimic the conditions for PDB entries 1D23 [d(CGATCGATCG)2] and 1RNA [(UUAUAUAUAUAUAA)2], and contain 8 unit cells, each with 4 copies of the Watson-Crick duplex; this yields in aggregate 64 µs of duplex sampling for DNA and 16 µs for RNA. Results The duplex structures conform much more closely to the average structure seen in the crystal than do structures extracted from a solution simulation with the same force field. Sequence-dependent variations in helical parameters, and in groove widths, are largely maintained in the crystal structure, but are smoothed out in solution. However, the integrity of the crystal lattice is slowly degraded in both simulations, with the result that the interfaces between chains become heterogeneous. This problem is more severe for the DNA crystal, which has fewer inter-chain hydrogen bond contacts than does the RNA crystal. Conclusions Crystal simulations using current force fields reproduce many features of observed crystal structures, but suffer from a gradual degradation of the integrity of the crystal lattice. General significance The results offer insights into force-field simulations that tests their ability to preserve weak interactions between chains, which will be of importance also in non-crystalline applications that involve binding and recognition. PMID:25255706

  1. Rapid commutation duplexer with phase-related outputs

    NASA Astrophysics Data System (ADS)

    Roveda, R.; Cattarin, G.; Digregorio, C.; Parrucci, U.

    Design criteria and the realization of an X-band waveguide rapid commutation duplexer, in production, are presented. By means of a digital TTL command it is capable of operating in three different conditions: all the power is conveyed to a single output; the poweer is equally divided between two in-phase outputs; and it is equally divided between two counter-phase outputs. In a monopulse radar this permits the electronic scanning of the antenna beam.

  2. Effect of 6-thioguanine on the stability of duplex DNA

    PubMed Central

    Bohon, Jen; de los Santos, Carlos R.

    2005-01-01

    The incorporation of 6-thioguanine (S6G) into DNA is a prerequisite for its cytotoxic action, but duplex structure is not significantly perturbed by the presence of the lesion [J. Bohon and C. R. de los Santos (2003) Nucleic Acids Res., 31, 1331–1338]. It is therefore possible that the mechanism of cytotoxicity relies on a loss of stability rather than a pathway involving direct structural recognition. The research described here focuses on the changes in thermodynamic properties of duplex DNA owing to the introduction of S6G as well as the kinetic properties of base pairs involving S6G. Replacement of a guanine in a G•C pair by S6G results in ∼1 kcal/mol less favorable Gibbs free energy of duplex formation at 37°C. S6G•T and G•T mismatch-containing duplexes have almost identical Gibbs free energy at 37°C, with values ∼3 kcal/mol less favorable than that of the control. Base pair stability is affected by S6G. The lifetime of the normal G•C base pair is ∼125 ms, whereas that of the G•T mismatch is below the detection limit. The lifetimes of S6G•C and S6G•T pairs are ∼7 and 2 ms, respectively, demonstrating that, although S6G significantly decreases the stability of the pairing with cytosine, it slightly increases that of a mismatch. PMID:15905476

  3. Duplex-Selective Ruthenium-based DNA Intercalators

    PubMed Central

    Shade, Chad M.; Kennedy, Robert D.; Rouge, Jessica L.; Rosen, Mari S.; Wang, Mary X.; Seo, Soyoung E.; Clingerman, Daniel J.

    2016-01-01

    We report the design and synthesis of small molecules that exhibit enhanced luminescence in the presence of duplex rather than single-stranded DNA. The local environment presented by a well-known [Ru(dipyrido[2,3-a:3',2'-c]phenazine)L2]2+-based DNA intercalator was modified by functionalizing the bipyridine ligands with esters and carboxylic acids. By systematically varying the number and charge of the pendant groups, it was determined that decreasing the electrostatic interaction between the intercalator and the anionic DNA backbone reduced single-strand interactions and translated to better duplex specificity. In studying this class of complexes, a single RuII complex emerged that selectively luminesces in the presence of duplex DNA with little to no background from interacting with single stranded DNA. This complex shows promise as a new dye capable of selectively staining double versus single-stranded DNA in gel electrophoresis, which cannot be done with conventional SYBR dyes. PMID:26119581

  4. Antisense properties of duplex- and triplex-forming PNAs.

    PubMed Central

    Knudsen, H; Nielsen, P E

    1996-01-01

    The potential of peptide nucleic acids (PNAs) as specific inhibitors of translation has been studied. PNAs with a mixed purine/pyrimidine sequence form duplexes, while homopyrimidine PNAs form (PNA)2/RNA triplexes with complementary sequences on RNA. We show here that neither of these PNA/RNA structures are substrates for RNase H. Translation experiments in cell-free extracts showed that a 15mer duplex-forming PNA blocked translation in a dose-dependent manner when the target was 5'-proximal to the AUG start codon on the RNA, whereas similar 10-, 15- or 20mer PNAs had no effect when targeted towards sequences in the coding region. Triplex-forming 10mer PNAs were efficient and specific antisense agents with a target overlapping the AUG start codon and caused arrest of ribosome elongation with a target positioned in the coding region of the mRNA. Furthermore, translation could be blocked with a 6mer bisPNA or with a clamp PNA, forming partly a triplex, partly a duplex, with its target sequence in the coding region of the mRNA. PMID:8602363

  5. Transpressive duplex and flower structure: Dent Fault System, NW England

    NASA Astrophysics Data System (ADS)

    Woodcock, Nigel H.; Rickards, Barrie

    2003-12-01

    Revised mapping along the Dent Fault (northwest England) has improved the resolution of folds and faults formed during Variscan (late Carboniferous) sinistral transpression. A NNE-trending east-down monocline, comprising the Fell End Syncline and Taythes Anticline, was forced in Carboniferous cover above a reactivated precursor to the Dent Fault within the Lower Palaeozoic basement. The Taythes Anticline is periclinal due to interference with earlier Acadian folds. The steep limb of the monocline was eventually cut by the west-dipping Dent Fault. The hangingwall of the Dent Fault was dissected by sub-vertical or east dipping faults, together forming a positive flower structure in cross-section and a contractional duplex in plan view. The footwall to the Dent Fault preserves evidence of mostly dip-slip displacements, whereas strike-slip was preferentially partitioned into the hangingwall faults. This pattern of displacement partitioning may be typical of transpressive structures in general. The faults of the Taythes duplex formed in a restraining overlap zone between the Dent Fault and the Rawthey Fault to the west. The orientations of the duplex faults were a response to kinematic boundary conditions rather than to the regional stress field directly. Kinematic constraints provided by the Dent and neighbouring Variscan faults yield a NNW-SSE regional shortening direction in this part of the Variscan foreland.

  6. Deformable nature of various damaged DNA duplexes estimated by an electrochemical analysis on electrodes.

    PubMed

    Chiba, J; Aoki, S; Yamamoto, J; Iwai, S; Inouye, M

    2014-10-01

    We report bending flexibility of damaged duplexes possessing an apurinic/apyrimidinic (AP) site analogue, a cyclobutane pyrimidine dimer (CPD), and a pyrimidine(6-4)pyrimidone photoproduct (6-4PP). Based on the electrochemical evaluation on electrodes, the duplex flexibilities of the lesions increased in the following order: CPD < AP < 6-4PP. We discussed the possibility that the emerging local flexibility might be a good sign for UV-damaged DNA-binding proteins on duplexes.

  7. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  8. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. PMID:26952459

  9. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution.

  10. A novel TiAl3/Al2O3 composite coating on γ-TiAl alloy and evaluating the oxidation performance

    NASA Astrophysics Data System (ADS)

    Wang, Jiqiang; Kong, Lingyan; Li, Tiefan; Xiong, Tianying

    2016-01-01

    A novel TiAl3/Al2O3 composite coating was prepared on γ-TiAl alloy. The process included two steps: (1) TiAl3/Al2O3 composite powders were prepared by high energy ball milling of pure Al and nano-TiO2 powders, followed by a heat-treatment; (2) the as-prepared composite powders were deposited on γ-TiAl substrate by cold spray. The cyclic oxidation was conducted at 900 °C to test the performance of the composite coating. The results showed that the composite coating had good crack resistance and effectively decreased the oxidation rate of the substrate.

  11. Three dimensional analysis of the pore space in fine-grained Boom Clay, using BIB-SEM (broad-ion beam scanning electron microscopy), combined with FIB (focused ion-beam) serial cross-sectioning, pore network modeling and Wood's metal injection

    NASA Astrophysics Data System (ADS)

    Hemes, Susanne; Klaver, Jop; Desbois, Guillaume; Urai, Janos

    2014-05-01

    The Boom Clay is, besides the Ypresian clays, one of the potential host rock materials for radioactive waste disposal in Belgium (Gens et al., 2003; Van Marcke & Laenen, 2005; Verhoef et al., 2011). To access parameters, which are relevant for the diffusion controlled transport of radionuclides in the material, such as porosity, pore connectivity and permeability, it is crucial to characterize the pore space at high resolution (nm-scale) and in 3D. Focused-ion-beam (FIB) serial cross-sectioning in combination with high resolution scanning electron microscopy (SEM), pore network modeling, Wood's metal injection and broad-ion-beam (BIB) milling, constitute a superior set of methods to characterize the 3D pore space in fine-grained, clayey materials, down to the nm-scale resolution. In the present study, we identified characteristic 3D pore space morphologies, determined the 3D volume porosity of the material and applied pore network extraction modeling (Dong and Blunt, 2009), to access the connectivity of the pore space and to discriminate between pore bodies and pore throats. Moreover, we used Wood's metal injection (WMI) in combination with BIB-SEM imaging to assess the pore connectivity at a larger scale and even higher resolution. The FIB-SEM results show a highly (~ 90 %) interconnected pore space in Boom Clay, down to the resolution of ~ 3E+03 nm³ (voxel-size), with a total volume porosity of ~ 20 %. Pore morphologies of large (> 5E+08 nm³), highly interconnected pores are complex, with high surface area to volume ratios (shape factors G ~ 0.01), whereas small (< 1E+06 nm³), often isolated pores are much more compact and show higher shape factors (G) up to 0.03. WMI in combination with BIB-SEM, down to a resolution of ~ 50 nm² pixel-size, indicates an interconnected porosity fraction of ~ 80 %, of a total measured 2D porosity of ~ 20 %. Determining and distinguishing between pore bodies and pore throats enables us to compare 3D FIB-SEM pore

  12. Force-Induced Rupture of a DNA Duplex: From Fundamentals to Force Sensors.

    PubMed

    Mosayebi, Majid; Louis, Ard A; Doye, Jonathan P K; Ouldridge, Thomas E

    2015-12-22

    The rupture of double-stranded DNA under stress is a key process in biophysics and nanotechnology. In this article, we consider the shear-induced rupture of short DNA duplexes, a system that has been given new importance by recently designed force sensors and nanotechnological devices. We argue that rupture must be understood as an activated process, where the duplex state is metastable and the strands will separate in a finite time that depends on the duplex length and the force applied. Thus, the critical shearing force required to rupture a duplex depends strongly on the time scale of observation. We use simple models of DNA to show that this approach naturally captures the observed dependence of the force required to rupture a duplex within a given time on duplex length. In particular, this critical force is zero for the shortest duplexes, before rising sharply and then plateauing in the long length limit. The prevailing approach, based on identifying when the presence of each additional base pair within the duplex is thermodynamically unfavorable rather than allowing for metastability, does not predict a time-scale-dependent critical force and does not naturally incorporate a critical force of zero for the shortest duplexes. We demonstrate that our findings have important consequences for the behavior of a new force-sensing nanodevice, which operates in a mixed mode that interpolates between shearing and unzipping. At a fixed time scale and duplex length, the critical force exhibits a sigmoidal dependence on the fraction of the duplex that is subject to shearing.

  13. Ultrasonic Attenuation Measurements in Thermally Degraded 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Ortiz, N.; Carreón, H.; Sánchez, A.

    2009-03-01

    Ultrasonic attenuation plays an important role in materials characterization of metal components. This paper present data and discuss ultrasonic attenuation variations in a 2205 duplex stainless steel aged isothermally at 700° C and 900° C for different time intervals. Attenuation measurements as function of frequency where performed using pulse-echo immersion method and broad band planar transducers. Evidence is found of changes in the attenuation coefficient as aging time increases. The corresponding microstructure of aged specimens was observed and impact toughness was measured. Comparison is made with measurements of ferrite content for the two temperatures and different aging times.

  14. Use of duplex stainless steel castings in control valves

    SciTech Connect

    Gossett, J.L.

    1996-07-01

    Duplex stainless steels have enjoyed rapidly increasing popularity in recent years. For numerous reasons the availability of these alloys in the cast form has lagged behind the availability of the wrought form. Commercial demand for control valves in these alloys has driven development of needed information to move into production. A systematic approach was used to develop specifications, suppliers and weld procedures. Corrosion, stress corrosion cracking (SCC), sulfide stress cracking (SSC) and hardness results are also presented for several alloys including; CD3MN (UNS J92205), CD4MCu (UNS J93370) and CD7MCuN (cast UNS S32550).

  15. Strain rate sensitivity of the flow stress in a Ti-Al alloy: Analysis of the anomalous strengthening effect

    SciTech Connect

    Morris, M.A.; Lipe, T. . Inst. of Structural Metallurgy)

    1994-09-15

    An analysis has been made of the mechanisms controlling the strain rate dependence of the flow stress as a function of temperature in a Ti-Al alloy, based on the dislocation configurations observed together with the activation volumes measured at each temperature. At low temperatures (20--200 C), the low values of activation volume measured and their independence on strain have confirmed that a Peierls lattice friction mechanism controls the mobility of screw segments of either ordinary or superdislocations. At the higher temperatures (500--700 C) a climbing process of ordinary 1/2<110> dislocation segments with variable length is responsible for the slightly strain dependent activation volumes measured. The strongly strain dependent activation volumes obtained between 400--450 C has confirmed that the mechanism responsible for the anomalous peak in flow stress is produced by a jog dragging process as an increased density of jogs is created with increasing temperature, due to the increasing number of forest cutting events between ordinary 1/2<110> dislocations.

  16. Fatigue Strength Prediction for Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Leuders, Stefan; Vollmer, Malte; Brenne, Florian; Tröster, Thomas; Niendorf, Thomas

    2015-09-01

    Selective laser melting (SLM), as a metalworking additive manufacturing technique, received considerable attention from industry and academia due to unprecedented design freedom and overall balanced material properties. However, the fatigue behavior of SLM-processed materials often suffers from local imperfections such as micron-sized pores. In order to enable robust designs of SLM components used in an industrial environment, further research regarding process-induced porosity and its impact on the fatigue behavior is required. Hence, this study aims at a transfer of fatigue prediction models, established for conventional process-routes, to the field of SLM materials. By using high-resolution computed tomography, load increase tests, and electron microscopy, it is shown that pore-based fatigue strength predictions for a titanium alloy TiAl6V4 have become feasible. However, the obtained accuracies are subjected to scatter, which is probably caused by the high defect density even present in SLM materials manufactured following optimized processing routes. Based on thorough examination of crack surfaces and crack initiation sites, respectively, implications for optimization of prediction accuracy of the models in focus are deduced.

  17. Compact Process for the Preparation of Microfine Spherical High-Niobium-Containing TiAl Alloy Powders

    NASA Astrophysics Data System (ADS)

    Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.

    2015-03-01

    High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.

  18. Duplex development and abandonment during evolution of the Lewis thrust system, southern Glacier National Park, Montana

    NASA Astrophysics Data System (ADS)

    Yin, An; Kelty, Thomas K.; Davis, Gregory A.

    1989-09-01

    Geologic mapping in southern Glacier National Park, Montana, reveals the presence of two duplexes sharing the same floor thrust fault, the Lewis thrust. The westernmost duplex (Brave Dog Mountain) includes the low-angle Brave Dog roof fault and Elk Mountain imbricate system, and the easternmost (Rising Wolf Mountain) duplex includes the low-angle Rockwell roof fault and Mt. Henry imbricate system. The geometry of these duplexes suggests that they differ from previously described geometric-kinematic models for duplex development. Their low-angle roof faults were preexisting structures that were locally utilized as roof faults during the formation of the imbricate systems. Crosscutting of the Brave Dog fault by the Mt. Henry imbricate system indicates that the two duplexes formed at different times. The younger Rockwell-Mt. Henry duplex developed 20 km east of the older Brave Dog-Elk Mountain duplex; the roof fault of the former is at a higher structural level. Field relations confirm that the low-angle Rockwell fault existed across the southern Glacier Park area prior to localized formation of the Mt. Henry imbricate thrusts beneath it. These thrusts kinematically link the Rockwell and Lewis faults and may be analogous to P shears that form between two synchronously active faults bounding a simple shear system. The abandonment of one duplex and its replacement by another with a new and higher roof fault may have been caused by (1) warping of the older and lower Brave Dog roof fault during the formation of the imbricate system (Elk Mountain) beneath it, (2) an upward shifting of the highest level of a simple shear system in the Lewis plate to a new decollement level in subhorizontal belt strata (= the Rockwell fault) that lay above inclined strata within the first duplex, and (3) a reinitiation of P-shear development (= Mt. Henry imbricate faults) between the Lewis thrust and the subparallel, synkinematic Rockwell fault.

  19. Water-evaporation reduction by duplex films: application to the human tear film.

    PubMed

    Cerretani, Colin F; Ho, Nghia H; Radke, C J

    2013-09-01

    Water-evaporation reduction by duplex-oil films is especially important to understand the physiology of the human tear film. Secreted lipids, called meibum, form a duplex film that coats the aqueous tear film and purportedly reduces tear evaporation. Lipid-layer deficiency is correlated with the occurrence of dry-eye disease; however, in-vitro experiments fail to show water-evaporation reduction by tear-lipid duplex films. We review the available literature on water-evaporation reduction by duplex-oil films and outline the theoretical underpinnings of spreading and evaporation kinetics that govern behavior of these systems. A dissolution-diffusion model unifies the data reported in the literature and identifies dewetting of duplex films into lenses as a key challenge to obtaining significant evaporation reduction. We develop an improved apparatus for measuring evaporation reduction by duplex-oil films including simultaneous assessment of film coverage, stability, and temperature, all under controlled external mass transfer. New data reported in this study fit into the larger body of work conducted on water-evaporation reduction by duplex-oil films. Duplex-oil films of oxidized mineral oil/mucin (MOx/BSM), human meibum (HM), and bovine meibum (BM) reduce water evaporation by a dissolution-diffusion mechanism, as confirmed by agreement between measurement and theory. The water permeability of oxidized-mineral-oil duplex films agrees with those reported in the literature, after correction for the presence of mucin. We find that duplex-oil films of bovine and human meibum at physiologic temperature reduce water evaporation only 6-8% for a 100-nm film thickness pertinent to the human tear film. Comparison to in-vivo human tear-evaporation measurements is inconclusive because evaporation from a clean-water surface is not measured and because the mass-transfer resistance is not characterized.

  20. Duplex Identification of Staphylococcus aureus by Aptamer and Gold Nanoparticles.

    PubMed

    Chang, Tianjun; Wang, Libo; Zhao, Kexu; Ge, Yu; He, Meng; Li, Gang

    2016-06-01

    Staphylococcus aureus is the top common pathogen causing infections and food poisoning. Identification of S. aureus is crucial for the disease diagnosis and regulation of food hygiene. Herein, we report an aptamer-AuNPs based method for duplex identification of S. aureus. Using AuNPs as an indicator, SA23, an aptamer against S. aureus, can well identify its target from Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa. Furthermore, we find citrate-coated AuNPs can strongly bind to S. aureus, but not bind to Salmonella enterica and Proteus mirabilis, which leads to different color changes in salt solution. This colorimetric response is capable of distinguishing S. aureus from S. enteritidis and P. mirabilis. Thus, using the aptasensor and AuNPs together, S. aureus can be accurately identified from the common pathogens. This duplex identification system is a promising platform for simple visual identification of S. aureus. Additionally, in the aptasensing process, bacteria are incubated with aptamers and then be removed before the aptamers adding to AuNPs, which may avoid the interactions between bacteria and AuNPs. This strategy can be potentially applied in principle to detect other cells by AuNPs-based aptasensors.

  1. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2016-02-01

    Cast stainless steels (CASSs) have been extensively used for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich α'-phase by Spinodal decomposition of δ-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. An approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. These results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  2. Cosmetic leg veins: evaluation using duplex venous imaging.

    PubMed

    Thibault, P; Bray, A; Wlodarczyk, J; Lewis, W

    1990-07-01

    The records of 305 consecutive patients who had presented with cosmetic symptoms related to varicose and/or spider veins over a 12-month period were studied. Following clinical assessment, 250 (82%) patients were referred for duplex venous imaging. A total of 500 lower limbs were evaluated; 236 (47%) were documented to have incompetence in the superficial venous system (long or short saphenous veins). Only 6 (1%) limbs had deep venous incompetence and 45 (9%) limbs were found to have perforator incompetence. Short saphenous vein incompetence was found in 59 (12%) limbs. In the long saphenous vein there was a consistent pattern of an increasing incidence of incompetence from the saphenofemoral junction down to the below-knee segment. The duplex imaging findings were applied to determine the optimal treatment, ie, whether surgery, sclerotherapy, or a combination of both would provide the best short- and long-term results. The possible etiology and pathophysiology of spider and varicose veins are discussed in relation to these results.

  3. Resonance energy transfer in DNA duplexes labeled with localized dyes.

    PubMed

    Cunningham, Paul D; Khachatrian, Ani; Buckhout-White, Susan; Deschamps, Jeffrey R; Goldman, Ellen R; Medintz, Igor L; Melinger, Joseph S

    2014-12-18

    The growing maturity of DNA-based architectures has raised considerable interest in applying them to create photoactive light harvesting and sensing devices. Toward optimizing efficiency in such structures, resonant energy transfer was systematically examined in a series of dye-labeled DNA duplexes where donor-acceptor separation was incrementally changed from 0 to 16 base pairs. Cyanine dyes were localized on the DNA using double phosphoramidite attachment chemistry. Steady state spectroscopy, single-pair fluorescence, time-resolved fluorescence, and ultrafast two-color pump-probe methods were utilized to examine the energy transfer processes. Energy transfer rates were found to be more sensitive to the distance between the Cy3 donor and Cy5 acceptor dye molecules than efficiency measurements. Picosecond energy transfer and near-unity efficiencies were observed for the closest separations. Comparison between our measurements and the predictions of Förster theory based on structural modeling of the dye-labeled DNA duplex suggest that the double phosphoramidite linkage leads to a distribution of intercalated and nonintercalated dye orientations. Deviations from the predictions of Förster theory point to a failure of the point dipole approximation for separations of less than 10 base pairs. Interactions between the dyes that alter their optical properties and violate the weak-coupling assumption of Förster theory were observed for separations of less than four base pairs, suggesting the removal of nucleobases causes DNA deformation and leads to enhanced dye-dye interaction. PMID:25397906

  4. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    SciTech Connect

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to provide an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.

  5. Duplex carburetor and intake system for internal combustion engines

    SciTech Connect

    Yokoyama, H.; Ishida, T.

    1984-06-05

    A duplex carburetor for an internal combustion engine has a primary barrel having a primary venturi for supplying an air-fuel mixture to an intake manifold under a full range of engine loads and a secondary barrel having a secondary venturi for supplying an air-fuel mixture to the manifold under higher engine loads. The primary venturi has a cross section which ranges from 20% to 30% of that of the secondary venturi. The secondary barrel has a flattened cross-sectional shape such as of a segment of a circle of an ellipse, and is located adjacent to the primary barrel. The intake manifold is of a duplex construction having primary and secondary common passages connected to the primary and secondary barrels, respectively, of the carburetor. The secondary passage of the manifold has a flattened cross-sectional shape such as of a segment of a circle or an ellipse, and is positioned adjacent to the primary passage. The primary passage extends through a region where the secondary passage is divided into a plurality of secondary branches, and is located immediately in front of the shortest one of the secondary branch. The primary passage is also branched into a plurality of primary branches, the shortest of which is displaced out of axial alignment with a central axis of the intake manifold.

  6. Duplex Identification of Staphylococcus aureus by Aptamer and Gold Nanoparticles.

    PubMed

    Chang, Tianjun; Wang, Libo; Zhao, Kexu; Ge, Yu; He, Meng; Li, Gang

    2016-06-01

    Staphylococcus aureus is the top common pathogen causing infections and food poisoning. Identification of S. aureus is crucial for the disease diagnosis and regulation of food hygiene. Herein, we report an aptamer-AuNPs based method for duplex identification of S. aureus. Using AuNPs as an indicator, SA23, an aptamer against S. aureus, can well identify its target from Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa. Furthermore, we find citrate-coated AuNPs can strongly bind to S. aureus, but not bind to Salmonella enterica and Proteus mirabilis, which leads to different color changes in salt solution. This colorimetric response is capable of distinguishing S. aureus from S. enteritidis and P. mirabilis. Thus, using the aptasensor and AuNPs together, S. aureus can be accurately identified from the common pathogens. This duplex identification system is a promising platform for simple visual identification of S. aureus. Additionally, in the aptasensing process, bacteria are incubated with aptamers and then be removed before the aptamers adding to AuNPs, which may avoid the interactions between bacteria and AuNPs. This strategy can be potentially applied in principle to detect other cells by AuNPs-based aptasensors. PMID:27427591

  7. Thermal treatment effects on laser surface remelting duplex stainless steel

    NASA Astrophysics Data System (ADS)

    do Nascimento, Alex M.; Ierardi, Maria Clara F.; Aparecida Pinto, M.; Tavares, Sérgio S. M.

    2008-10-01

    In this paper the microstructural changes and effects on corrosion resistance of duplex stainless steels UNS S32304 and UNS S32205, commonly used by the petroleum industry, were studied, following the execution of laser surface remelting (LSM) and post-thermal treatments (TT). In this way, data was obtained, which could then be compared with the starting condition of the alloys. In order to analyze the corrosion behaviour of the alloys in the as-received conditions, treated with laser and after post-thermal treatments, cyclic polarization tests were carried out. A solution of 3.5% NaCl (artificial sea water) was used, as duplex stainless steels are regularly used by the petroleum industry in offshore locations. The results obtained showed that when laser surface treated, due to rapid resolidification, the alloys became almost ferritic, and since the level of nitrogen in the composition of both alloys is superior to their solubility limit in ferrite, a precipitation of Cr2N (chromium nitrides) occurred in the ferritic matrix, causing loss of corrosion resistance, thus resulting in an increase in surface hardness. However, after the post-thermal treatment the alloys corrosion resistance was restored to values close to those of the as-received condition.

  8. Stress corrosion cracking of duplex stainless steels in caustic solutions

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC

  9. Preparation and property of duplex Ni-B-TiO2/Ni nano-composite coatings

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Jen; Wang, Yuxin; Shu, Xin; Tay, Seeleng; Gao, Wei; Shakoor, R. A.; Kahraman, Ramazan

    2015-03-01

    The duplex Nickel-Boron-Titania/Nickel (Ni-B-TiO2/Ni) coatings were deposited on mild steel by using two baths with Ni as the inner layer. TiO2 nanoparticles were incorporated into the Ni-B coatings as the outer layer by using solid particle mixing method. The microstructure, morphology and corrosion resistance of the duplex Ni-B-TiO2/Ni nanocomposite coatings were systemically investigated. The results show that the duplex interface was uniform and the adhesion between two layers was very good. The microhardness of duplex Ni-B-TiO2/Ni coating was much higher than the Ni coating due to the outer layer of Ni-B-TiO2 coating. The corrosion resistance of the duplex Ni-B-TiO2/Ni coating was also significantly improved comparing with single Ni-B coating. The Ni-B-10 g/L TiO2/Ni coating was found to have the best corrosion resistance among these duplex coatings. This type of duplex Ni-B-TiO2/Ni coating, with high hardness and good corrosion resistance properties, should be able to find broad applications under adverse environmental conditions.

  10. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    PubMed

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application. PMID:27498231

  11. The Crystal Structure of Non-Modified and Bipyridine-Modified PNA Duplexes

    SciTech Connect

    Yeh, Joanne I.; Pohl, Ehmke; Truan, Daphne; He, Wei; Sheldrick, George M.; Du, Shoucheng; Achim, Catalina

    2011-09-28

    Peptide nucleic acid (PNA) is a synthetic analogue of DNA that commonly has an N-aminoethyl glycine backbone. The crystal structures of two PNA duplexes, one containing eight standard nucleobase pairs (GGCATGCC)2, and the other containing the same nucleobase pairs and a central pair of bipyridine ligands, have been solved with a resolution of 1.22 and 1.10 {angstrom}, respectively. The non-modified PNA duplex adopts a P-type helical structure similar to that of previously characterized PNAs. The atomic-level resolution of the structures allowed us to observe for the first time specific modes of interaction between the terminal lysines of the PNA and the backbone and the nucleobases situated in the vicinity of the lysines, which are considered an important factor in the induction of a preferred handedness in PNA duplexes. Our results support the notion that whereas PNA typically adopts a P-type helical structure, its flexibility is relatively high. For example, the base-pair rise in the bipyridine-containing PNA is the largest measured to date in a PNA homoduplex. The two bipyridines bulge out of the duplex and are aligned parallel to the major groove of the PNA. In addition, two bipyridines from adjacent PNA duplexes form a p-stacked pair that relates the duplexes within the crystal. The bulging out of the bipyridines causes bending of the PNA duplex, which is in contrast to the structure previously reported for biphenyl-modified DNA duplexes in solution, where the biphenyls are p stacked with adjacent nucleobase pairs and adopt an intrahelical geometry. This difference shows that relatively small perturbations can significantly impact the relative position of nucleobase analogues in nucleic acid duplexes.

  12. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    PubMed

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application.

  13. Duplex development and abandonment during evolution of the Lewis thrust system, southern Glacier National Park, Montana

    SciTech Connect

    Yin, An; Kelty, T.K.; Davis, G.A. )

    1989-09-01

    The westernmost duplex (Brave Dog Mountain) includes the low-angle Brave Dog roof fault and Elk Mountain imbricate system, and the easternmost (Rising Wolf Mountain) duplex includes the low-angle Rockwell roof fault and Mt. Henry imbricate system. The geometry of these duplexes suggests that they differ from previously described geometric-kinematic models for duplex development. Their low-angle roof faults were preexisting structures that were locally utilized as roof faults during the formation of the imbricate systems. Crosscutting of the Brave Dog fault by the Mt. Henry imbricate system indicates that the two duplexes formed at different times. The younger Rockwell-Mt. Henry duplex developed 20 km east of the older Brave Dog-Elk Mountain duplex; the roof fault of the former is at a higher structural level. Field relations confirm that the low-angle Rockwell fault existed across the southern Glacier Park area prior to localized formation of the Mt. Henry imbricate thrusts beneath it. These thrusts kinematically link the Rockwell and Lewis faults and may be analogous to P shears that form between two synchronously active faults bounding a simple shear system. The abandonment of one duplex and its replacement by another with a new and higher roof fault may have been caused by (1) warping of the older and lower Brave Dog roof fault during the formation of the imbricate system (Elk Mountain) beneath it, (2) an upward shifting of the highest level of a simple shear system in the Lewis plate to a new decollement level in subhorizontal belt strata (= the Rockwell fault) that lay above inclined strata within the first duplex, and (3) a reinitiation of P-shear development (= Mt. Henry imbricate faults) between the Lewis thrust and the subparallel, synkinematic Rockwell fault.

  14. The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds

    NASA Astrophysics Data System (ADS)

    Pekkarinen, J.; Kujanpää, V.

    This study is focused to determine empirically, which microstructural changes occur in ferritic and duplex stainless steels when heat input is controlled by welding parameters. Test welds were done autogenously bead-on-plate without shielding gas using 5 kW fiber laser. For comparison, some gas tungsten arc welds were made. Used test material were 1.4016 (AISI 430) and 1.4003 (low-carbon ferritic) type steels in ferritic steels group and 1.4162 (low-alloyed duplex, LDX2101) and 1.4462 (AISI 2205) type steels in duplex steels group. Microstructural changes in welds were identified and examined using optical metallographic methods.

  15. Geometry of an outcrop-scale duplex in Devonian flysch, Maine

    USGS Publications Warehouse

    Bradley, D.C.; Bradley, L.M.

    1994-01-01

    We describe an outcrop-scale duplex consisting of 211 exposed repetitions of a single bed. The duplex marks an early Acadian (Middle Devonian) oblique thrust zone in the Lower Devonian flysch of northern Maine. Detailed mapping at a scale of 1:8 has enabled us to measure accurately parameters such as horse length and thickness, ramp angles and displacements; we compare these and derivative values with those of published descriptions of duplexes, and with theoretical models. Shortening estimates based on line balancing are consistently smaller than two methods of area balancing, suggesting that layer-parallel shortening preceded thrusting. ?? 1994.

  16. Hydrogen effects in duplex stainless steel welded joints - electrochemical studies

    NASA Astrophysics Data System (ADS)

    Michalska, J.; Łabanowski, J.; Ćwiek, J.

    2012-05-01

    In this work results on the influence of hydrogen on passivity and corrosion resistance of 2205 duplex stainless steel (DSS) welded joints are described. The results were discussed by taking into account three different areas on the welded joint: weld metal (WM), heat-affected zone (HAZ) and parent metal. The corrosion resistance was qualified with the polarization curves registered in a synthetic sea water. The conclusion is that, hydrogen may seriously deteriorate the passive film stability and corrosion resistance to pitting of 2205 DSS welded joints. The presence of hydrogen in passive films increases corrosion current density and decreases the potential of the film breakdown. It was also found that degree of susceptibility to hydrogen degradation was dependent on the hydrogen charging conditions. WM region has been revealed as the most sensitive to hydrogen action.

  17. Researches upon cavitation erosion behavior of some duplex steels

    NASA Astrophysics Data System (ADS)

    Bordeasu, I.; Popoviciu, M. O.; Mitelea, I.; Micu, L. M.; Bordeasu, C.; Ghera, C.; Iosif, A.

    2016-02-01

    This paper presents the cavitation erosion behavior of two stainless steels having a duplex structure formed by austenite and ferrite. The conclusions were obtained by using both the cavitation erosion characteristic curves and the pictures of the eroded surfaces obtained with performing optic microscopes. The researches were focused upon the optimal correlation between the cavitation erosion resistance and the rate of the two structural constituents. The tests were done with T2 facility, with ceramic crystals, which integrally respects the ASTM G32-2010 Standard. The obtained results present the cumulative effect upon cavitation erosion of the chemical composition, mechanical properties and the structural constituents. The results of the researches are of importance for the specialists which establishes the composition of the stainless steels used for manufacturing hydraulic machineries or other devices subjected to cavitation erosion.

  18. Nucleic acid duplexes incorporating a dissociable covalent base pair

    NASA Technical Reports Server (NTRS)

    Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1999-01-01

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.

  19. The sequence dependence of circular dichroism spectra of DNA duplexes.

    PubMed

    Arnott, S; Arnott, S

    1975-09-01

    The three satellite DNAs of Drosophila virilis, that approximate to poly d(CAAACTA)-poly d(TAGTTTG), poly d(TAAACTA)-poly d(TAGTTTA), poly d(CAAATTA)-poly d(TAATTTG), the satellite DNA of Drosophila melanogaster that approximates to poly d(AATAT)-poly d(ATATT), the synthetic DNA duplexes, poly dG-poly dC, poly d(AT)-poly d(AT), poly d(AAT)-poly d(ATT), poly d(AAC)-poly d(GTT), poly d(TAC)-poly d(GTA) and the block copolymer d(C15A15)-d(T15G15) all have circular dichroism spectra consistent with the propositions that they have the same molecular geometry in solution and that it is the kind and frequency of nucleotide triplet sequences that determines their spectral characteristics. Poly dA-poly dT is apparently an exception.

  20. Pyrazinetetracarboxamide: A Duplex Ligand for Palladium(II).

    PubMed

    Lohrman, Jessica; Telikepalli, Hanumaiah; Johnson, Thomas S; Jackson, Timothy A; Day, Victor W; Bowman-James, Kristin

    2016-06-01

    Tetraethylpyrazine-2,3,5,6-tetracarboxamide forms a dipalladium(II) complex with acetates occupying the fourth coordination sites of the two bound metal ions. Crystallographic results indicate that the "duplex" dipincer has captured two protons that serve as the counterions. The protons lie between adjacent amide carbonyl groups with very short O···O distances of 2.435(5) Å. In the free base, the adjacent carbonyl groups are farther apart, averaging 3.196(3) Å. While the dipalladium(II) complexes stack in an ordered stepwise fashion along the a axis, the free base molecules stack on top of each other, with each pincer rotated by about 60° from the one below. PMID:27187158

  1. Electromagnetic non-destructive technique for duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    Duplex stainless steel (DSS) is a two-phase (ferrite and austenite) material, which exhibits an attractive combination of mechanical properties and high corrosion resistance, being commonly employed for equipment of petrochemical plants, refining units and oil & gas platforms. The best properties of DSS are achieved when the phases are in equal proportions. However, exposition to high temperatures (e.g. welding process) may entail undesired consequences, such as deleterious phases precipitation (e.g. sigma, chi) and different proportion of the original phases, impairing dramatically the mechanical and corrosion properties of the material. A detailed study of the magnetic behavior of DSS microstructure with different ferrite austenite ratios and deleterious phases content was accomplished. The non destructive method evaluates the electromagnetic properties changes in the material and is capable to identify the presence of deleterious phases into DSS microstructure.

  2. Isothermal DNA amplification strategies for duplex microorganism detection.

    PubMed

    Santiago-Felipe, Sara; Tortajada-Genaro, Luis Antonio; Morais, Sergi; Puchades, Rosa; Maquieira, Ángel

    2015-05-01

    A valid solution for micro-analytical systems is the selection of a compatible amplification reaction with a simple, highly-integrated efficient design that allows the detection of multiple genomic targets. Two approaches under isothermal conditions are presented: recombinase polymerase amplification (RPA) and multiple displacement amplification (MDA). Both methods were applied to a duplex assay specific for Salmonella spp. and Cronobacter spp., with excellent amplification yields (0.2-8.6 · 10(8) fold). The proposed approaches were successfully compared to conventional PCR and tested for the milk sample analysis as a microarray format on a compact disc (support and driver). Satisfactory results were obtained in terms of resistance to inhibition, selectivity, sensitivity (10(1)-10(2)CFU/mL) and reproducibility (below 12.5%). The methods studied are efficient and cost-effective, with a high potential to automate microorganisms detection by integrated analytical systems working at a constant low temperature.

  3. Nucleic acid duplexes incorporating a dissociable covalent base pair.

    PubMed

    Gao, K; Orgel, L E

    1999-12-21

    We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure. PMID:10611299

  4. Duplex Doppler ultrasound study of the temporomandibular joint.

    PubMed

    Stagnitti, A; Marini, A; Impara, L; Drudi, F M; Lo Mele, L; Lillo Odoardi, G

    2012-06-01

    Sommario INTRODUZIONE: La fisiologia articolare dell’articolazione temporo-mandibolare (ATM) può essere esaminata sia dal punto di vista clinico che strumentale. La diagnostica per immagini ha da tempo contribuito con la risonanza magnetica (RM) e anche con la radiografia (Rx) e la tomografia computerizzata (TC) all’analisi della morfologia dei capi articolari e della cinetica condilare. L’esame duplex-ecodoppler è una metodica di largo impiego nello studio delle strutture in movimento in particolar modo a livello delle strutture del sistema vascolare. MATERIALI E METODI: È stata utilizzata un’apparecchiatura Toshiba APLIO SSA-770A, con l’uso di tecnica duplex-ecodoppler multi display, che consente la visualizzazione contemporanea dell’immagine ecografica e dei segnali Doppler utilizzando una sonda lineare del tipo phased array con cristalli trasduttori funzionanti ad una frequenza fondamentale di 6 MHz per gli spettri Doppler pulsati e 7.5 MHz per l’imaging ecografico. Sono stati esaminati nel Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo-patologiche dell’Università “Sapienza” di Roma, 30 pazienti del reparto di Ortognatodonzia dell’Istituto di Odontoiatria della stessa Università. RISULTATI: Nei pazienti normali si è ottenuta un’alternanza regolare degli spettri Doppler, mentre nei soggetti con disfunzioni del complesso condilo-meniscale, si è persa la regolarità della sommatoria degli spettri di Fourier, con altezze incostanti in relazione a spostamenti irregolari del complesso condilo-meniscale. CONCLUSIONI: L’esame ecodoppler si è dimostrato, in tutti i pazienti, capace di discriminare quelli normali dai patologici e tra questi ultimi ha permesso di identificare gli aspetti più significativi delle patologie disfunzionali.

  5. Thermal Aging Phenomena in Cast Duplex Stainless Steels

    DOE PAGESBeta

    Byun, T. S.; Yang, Y.; Overman, N. R.; Busby, J. T.

    2015-11-12

    We used cast stainless steels (CASSs)for the large components of light water reactor (LWR) power plants such as primary coolant piping and pump casing. The thermal embrittlement of CASS components is one of the most serious concerns related to the extended-term operation of nuclear power plants. Many past researches have concluded that the formation of Cr-rich alpha-phase by Spinodal decomposition of delta-ferrite phase is the primary mechanism for the thermal embrittlement. Cracking mechanism in the thermally-embrittled duplex stainless steels consists of the formation of cleavage at ferrite and its propagation via separation of ferrite-austenite interphase. This article intends to providemore » an introductory overview on the thermal aging phenomena in LWR-relevant conditions. Firstly, the thermal aging effect on toughness is discussed in terms of the cause of embrittlement and influential parameters. Moreover, an approximate analysis of thermal reaction using Arrhenius equation was carried out to scope the aging temperatures for the accelerated aging experiments to simulate the 60 and 80 years of services. Further, an equilibrium precipitation calculation was performed for model CASS alloys using the CALPHAD program, and the results are used to describe the precipitation behaviors in duplex stainless steels. Our results are also to be used to guide an on-going research aiming to provide knowledge-based conclusive prediction for the integrity of the CASS components of LWR power plants during the service life extended up to and beyond 60 years.« less

  6. Necking and spheroidization of {alpha}{sub 2} plates in lamellar microstructure of a hot-deformed two-phase TiAl alloy during annealing

    SciTech Connect

    Zhang, L.C. |; Chen, G.L.; Wang, J.G.; Ye, H.Q.

    1998-03-13

    It is well known that two-phase TiAl alloys exhibit better mechanical properties than single phase {gamma}-TiAl alloys. Recently Kim reported that the thermomechanical treatments (TMT) or thermomechanical processing (TMP) for TiAl alloys can significantly change the microstructures resulting in an improved balanced mechanical properties. Besides changes in grain size, lamellar spacing and the ratio of {gamma} to {alpha}{sub 2} lamellae, TMT or TMP may also lead to the formation of numerous dislocations and deformation twins, and various nonequilibrium structures of lamellar interfaces. Chen et al. have observed by high-resolution transmission electron microscopy (HRTEM) that hot-deformation results in {alpha}{sub 2}/{gamma} and {gamma}/{gamma} interfaces with numerous ledges, so the boundary plane is no longer parallel to the (111){sub {gamma}} or (0001){sub {alpha}{sub 2}} plane, and some interfacial ledges correspond to 1/3 [111] Frank partial dislocations in {gamma} plate, as consistent with the deviation of (111){sub {gamma}} from being parallel to (0001){sub {alpha}{sub 2}} plane near the {alpha}{sub 2}/{gamma} interface. The thermal instability of the deformed {alpha}{sub 2}/{gamma} lamellar microstructure, such as necking and spheroidization of {alpha}{sub 2} plates, formation of subgrains in plates and recrystallization, has been recently studied. However, no report has been made on the detailed evolution of deformed microstructure during annealing. This paper reports some TEM observations on necking and spheroidization of {alpha}{sub 2} plates in a hot-deformed two-phase TiAl alloy upon subsequent short-time annealing.

  7. Rapid method to detect duplex formation in sequencing by hybridization methods

    DOEpatents

    Mirzabekov, A.D.; Timofeev, E.N.; Florentiev, V.L.; Kirillov, E.V.

    1999-01-19

    A method for determining the existence of duplexes of oligonucleotide complementary molecules is provided. A plurality of immobilized oligonucleotide molecules, each of a specific length and each having a specific base sequence, is contacted with complementary, single stranded oligonucleotide molecules to form a duplex. Each duplex facilitates intercalation of a fluorescent dye between the base planes of the duplex. The invention also provides for a method for constructing oligonucleotide matrices comprising confining light sensitive fluid to a surface and exposing the light-sensitive fluid to a light pattern. This causes the fluid exposed to the light to coalesce into discrete units and adhere to the surface. This places each of the units in contact with a set of different oligonucleotide molecules so as to allow the molecules to disperse into the units. 13 figs.

  8. Applications and experiences with super duplex stainless steel in wet FGD scrubber systems

    SciTech Connect

    Francis, R.; Byrne, G.; Warburton, G.; Hebdon, S.

    1998-12-31

    The paper presents the properties of the author`s company`s proprietary super duplex stainless steel. Work is presented showing the development of a more realistic laboratory solution representing typical limestone slurries found in real flue gas desulfurization (FGD) systems. The importance of additions of metal ions such as Fe{sup 3+} and Mn{sup 2+} as well as partially oxidized sulfur species is demonstrated. Results are presented comparing the crevice corrosion resistance of super duplex stainless steel in these slurries with other commonly used wrought and cast stainless steels, for both simulated anthracite and lignite type slurries. Data from loop tests on the erosion resistance of a range of alloys in simulated FGD slurries is presented. The results clearly show the superior resistance of super duplex stainless steel to both crevice corrosion and erosion in FGD slurries. Finally the experiences in UK FGD systems with both cast and wrought super duplex stainless steel are presented.

  9. Electrochemical Investigation of Interaction between a Bifunctional Probe and GG Mismatch Duplex.

    PubMed

    Li, Jiao; He, Hanping; Peng, Xiaoqian; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-01-01

    A bifunctional probe (FecNC), containing a recognition part and an electrochemical active center, was applied to electrochemical detection of GG mismatch duplexes. The preparation of gold electrodes modified by mismatch and complementatry duplexes was characterized by electrochemical impedance spectroscopy (EIS) and optimized for better detection in terms of self-assembly time, hybridization time, and incubation time. The interaction between FecNC and DNA duplexes modified on the surface of a gold electrode was explored by square wave voltammetry (SWV) and EIS. The results showed that the DNA duplexes with GG mismatch on the surface of a gold electrode was easily detected by the largest electrochemical signal of the bifunctional probe because of its selective binding to GG mismatches. The bifunctional probe could offer a simple, effective electrochemical detection of GG mismatches, and theoretical bases for development of electrochemical biosensors. Further, the method would be favorable for diagnosis of genetic diseases. PMID:26165289

  10. Electrochemical Investigation of Interaction between a Bifunctional Probe and GG Mismatch Duplex.

    PubMed

    Li, Jiao; He, Hanping; Peng, Xiaoqian; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-01-01

    A bifunctional probe (FecNC), containing a recognition part and an electrochemical active center, was applied to electrochemical detection of GG mismatch duplexes. The preparation of gold electrodes modified by mismatch and complementatry duplexes was characterized by electrochemical impedance spectroscopy (EIS) and optimized for better detection in terms of self-assembly time, hybridization time, and incubation time. The interaction between FecNC and DNA duplexes modified on the surface of a gold electrode was explored by square wave voltammetry (SWV) and EIS. The results showed that the DNA duplexes with GG mismatch on the surface of a gold electrode was easily detected by the largest electrochemical signal of the bifunctional probe because of its selective binding to GG mismatches. The bifunctional probe could offer a simple, effective electrochemical detection of GG mismatches, and theoretical bases for development of electrochemical biosensors. Further, the method would be favorable for diagnosis of genetic diseases.

  11. Replication of linear duplex DNA in vitro with bacteriophage T5 DNA polymerase

    SciTech Connect

    Fujimura, R. K.; Das, S. K.; Allison, D. P.; Roop, B. C.

    1980-01-01

    Two sets of experiments are presented that attempt to contribute to understanding the mechanisms of DNA replication. The specific areas discussed are fidelity of DNA replication and initiation of replication of duplex DNA. (ACR)

  12. Two-flux transfer matrix model for predicting the reflectance and transmittance of duplex halftone prints.

    PubMed

    Mazauric, Serge; Hébert, Mathieu; Simonot, Lionel; Fournel, Thierry

    2014-12-01

    We introduce a model allowing convenient calculation of the spectral reflectance and transmittance of duplex prints. It is based on flux transfer matrices and enables retrieving classical Kubelka-Munk formulas, as well as extended formulas for nonsymmetric layers. By making different assumptions on the flux transfers, we obtain two predictive models for the duplex halftone prints: the "duplex Clapper-Yule model," which is an extension of the classical Clapper-Yule model, and the "duplex primary reflectance-transmittance model." The two models can be calibrated from either reflectance or transmittance measurements; only the second model can be calibrated from both measurements, thus giving optimal accuracy for both reflectance and transmittance predictions. The conceptual differences between the two models are deeply analyzed, as well as their advantages and drawbacks in terms of calibration. According to the test carried out in this study with paper printed in inkjet, their predictive performances are good provided appropriate calibration options are selected.

  13. The first crystal structures of RNA–PNA duplexes and a PNA-PNA duplex containing mismatches—toward anti-sense therapy against TREDs

    PubMed Central

    Kiliszek, Agnieszka; Banaszak, Katarzyna; Dauter, Zbigniew; Rypniewski, Wojciech

    2016-01-01

    PNA is a promising molecule for antisense therapy of trinucleotide repeat disorders. We present the first crystal structures of RNA–PNA duplexes. They contain CUG repeats, relevant to myotonic dystrophy type I, and CAG repeats associated with poly-glutamine diseases. We also report the first PNA–PNA duplex containing mismatches. A comparison of the PNA homoduplex and the PNA–RNA heteroduplexes reveals PNA's intrinsic structural properties, shedding light on its reported sequence selectivity or intolerance of mismatches when it interacts with nucleic acids. PNA has a much lower helical twist than RNA and the resulting duplex has an intermediate conformation. PNA retains its overall conformation while locally there is much disorder, especially peptide bond flipping. In addition to the Watson–Crick pairing, the structures contain interesting interactions between the RNA's phosphate groups and the Π electrons of the peptide bonds in PNA. PMID:26717983

  14. Comparison of intraoperative completion flowmeter versus duplex ultrasonography and contrast arteriography for carotid endarterectomy.

    PubMed

    Winkler, Gabor A; Calligaro, Keith D; Kolakowski, Steven; Doerr, Kevin J; McAffee-Bennett, Sandy; Muller, Kathy; Dougherty, Matthew J

    Intraoperative completion studies of the internal carotid artery following carotid endarterectomy are recommended to ensure technical perfection of the repair. Transit time ultrasound flowmeter does not require trained technicians, requires less time than other completion studies such as duplex ultrasonography and contrast arteriography, and is noninvasive. Flowmetry was compared with duplex ultrasonography and contrast arteriography to determine if the relatively simpler flowmetry could replace these two more widely accepted completion studies in the intraoperative assessment of carotid endarterectomy. Comparative intraoperative assessment was performed in 116 carotid endarterectomies using all three techniques between December 1, 2000 and November 30, 2003. Eversion endarterectomy was performed in 51 cases and standard endarterectomy with prosthetic patching in 65 cases. Patients underwent completion flowmetry, duplex ultrasonography, and contrast arteriography studies of the exposed arteries, which were performed by vascular fellows or senior surgical residents under direct supervision of board-certified vascular surgeons. Duplex ultrasonography surveillance was performed 1 and 6 months postoperatively and annually thereafter. Mean follow-up was 18 months (range, 6-42 months). The combined ipsilateral stroke and death rate was 0%. The mean internal carotid artery flow using flowmetry was 249 mL/min (range, 60-750 mL/min). Five (4.3%) patients had flow < 100 mL/min as measured with flowmetry, but completion contrast arteriography and duplex ultrasonography were normal and none of the arteries were re-explored. One carotid endarterectomy was re-explored based on completion duplex ultrasonography that showed markedly elevated internal carotid artery peak systolic velocity (> 500 cm/sec); however, exploration was normal and completion flowmetry and contrast arteriography were normal. Duplex ultrasonography studies revealed internal carotid artery peak systolic

  15. Heat Capacity Changes Associated with DNA Duplex Formation: Salt- and Sequence-Dependent Effects†

    PubMed Central

    Mikulecky, Peter J.; Feig, Andrew L.

    2008-01-01

    Duplexes are the most fundamental elements of nucleic acid folding. Although it has become increasingly clear that duplex formation can be associated with a significant change in heat capacity (ΔCp), this parameter is typically overlooked in thermodynamic studies of nucleic acid folding. Analogy to protein folding suggests that base stacking events coupled to duplex formation should give rise to a ΔCp due to the release of waters solvating aromatic surfaces of nucleotide bases. In previous work, we showed that the ΔCp observed by isothermal titration calorimetry (ITC) for RNA duplex formation depended on salt and sequence. In the present work, we apply calorimetric and spectroscopic techniques to a series of designed DNA duplexes to demonstrate that both the salt dependence and sequence dependence of ΔCps observed by ITC reflect perturbations to the same fundamental phenomenon: stacking in the single-stranded state. By measuring the thermodynamics of single strand melting, one can accurately predict the ΔCps observed for duplex formation by ITC at high and low ionic strength. We discuss our results in light of the larger issue of contributions to ΔCp from coupled equilibria and conclude that observed ΔCps can be useful indicators of intermediate states in nucleic acid folding phenomena. PMID:16401089

  16. X-mas trees: A new application for duplex stainless steels

    SciTech Connect

    Hochoertler, G.; Zeiler, G.; Haberfellner, K.

    1995-12-31

    The development of fields in severe areas (subsea installations, deserts) necessitates the use of materials which can operate maintenance free in these conditions. Depending on production route and aggressivity of relevant media, the materials used until now, such as AISI 4130, are being superseded by higher alloyed materials such as F6NM, Duplex and Super Duplex Steels. Extensive investigation of metallurgical, mechanical, technological and stress aspects as well as research into the influence of melting, forging and heat treatment processes on high alloyed materials enables ``High Tech`` forgings to be manufactured. Based on investigations and experience gained by previously produced forgings (WYE-piece, Gate Valve components, Swivel forgings, line pipes made of Super Duplex Stainless Steels and Duplex Stainless Steels), the first X-mas trees made of solid Duplex Stainless Steel has been produced. Due to the excellent mechanical and corrosion properties of Duplex Stainless Steel, the expensive and time consuming cladding can be eliminated for most environments, which results in good economy and significantly reduced production time. To obtain information about the quality of such a large forging, samples were taken from one of these X-mas trees and the mechanical and corrosion properties were investigated.

  17. ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis

    PubMed Central

    Zhang, Xiaoming; Niu, DongDong; Carbonell, Alberto; Wang, Airong; Lee, Angel; Tun, Vinnary; Wang, Zonghua; Carrington, James C.; Chang, Chia-en A.; Jin, Hailing

    2014-01-01

    Small RNAs (sRNAs) are loaded into ARGONAUTE (AGO) proteins to induce gene silencing. In plants, the 5′-terminal nucleotide is important for sRNA sorting into different AGOs. Here, we show that miRNA duplex structure also contributes to miRNA sorting. Base-pairing at the 15th nucleotide of a miRNA duplex is important for miRNA sorting in both Arabidopsis AGO1 and AGO2. AGO2 favors miRNA duplexes with no middle mismatches, whereas AGO1 tolerates, or prefers, duplexes with central mismatches. AGO structure modeling and mutational analyses reveal that the QF-V motif within the conserved PIWI domain contributes to recognition of base-pairing at the 15th nucleotide of a duplex, while the DDDE catalytic core of AtAGO2 is important for recognition of the central nucleotides. Finally, we rescued the adaxialized phenotype of ago1-12, which is largely due to miR165 loss-of-function, by changing miR165 duplex structure which we predict redirects it to AGO2. PMID:25406978

  18. A photoelectron spectroscopy and thermal desorption study of CO on FeAl(110) and polycrystalline TiAl and NiAl

    NASA Astrophysics Data System (ADS)

    Gleason, N. R.; Strongin, D. R.

    1993-10-01

    Research presented in this paper investigates the electronic properties and surface reactivity of FeAl(110) and polycrystalline TiAl and NiAl toward carbon monoxide. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) have been used to characterize the electronic structure of the clean and CO-exposed surfaces. Temperature programmed desorption (TPD) shows CO desorption states below 470 K on all the aluminide surfaces. UPS shows that CO adsorption is molecular on FeAl(110) and NiAl at 130 and 200 K, respectively. The majority of CO is found to be dissociated on TiAl at 200 K. Adsorption of CO on FeAl(110) at 315 K results in both molecular and dissociated species, as determined by XPS. Heating this CO/FeAl(110) system results in further dissociation and CO desorption near 430 K. XPS data suggests that surface oxygen, resulting from CO dissociation, preferentially binds to the aluminum component.

  19. Metal-Intermetallic Laminate Ti-Al3Ti Composites Produced by Spark Plasma Sintering of Titanium and Aluminum Foils Enclosed in Titanium Shells

    NASA Astrophysics Data System (ADS)

    Lazurenko, Daria V.; Mali, Vyacheslav I.; Bataev, Ivan A.; Thoemmes, Alexander; Bataev, Anatoly A.; Popelukh, Albert I.; Anisimov, Alexander G.; Belousova, Natalia S.

    2015-09-01

    Metal-intermetallic laminate composites are considered as promising materials for application in the aerospace industry. In this study, Ti-Al3Ti composites enclosed in titanium cases were produced by reactive spark plasma sintering. Sintering was carried out at 1103 K and 1323 K (830 °C and 1050 °C) for 10 minutes. In both cases, high-quality Ti-Al3Ti composites containing thin transition layers at the interfaces were obtained. Al2Ti, AlTi, and AlTi3 intermetallic phases and a solid solution of aluminum in titanium were observed in the transition layers by scanning and transmission electron microscopy. The material sintered at 1323 K (1050 °C) had higher strength in comparison with the composite obtained at 1103 K (830 °C). However, the hardness of the intermetallic component in the sample sintered at higher temperature decreased due to the grain growth. The impact toughness values of both materials were approximately identical.

  20. Tribological behavior of UHMWPE against TiAl6V4 and CoCr28Mo alloys under dry and lubricated conditions.

    PubMed

    Guezmil, M; Bensalah, W; Mezlini, S

    2016-10-01

    This work is focused on the study of the tribological behavior of TiAl6V4 and CoCr28Mo against UHMWPE. Wear tests were achieved on a reciprocating pin-on-disc tribometer under dry and lubricated conditions. Four bio-lubricants were retained namely: saline solution (NaCl 0.9%), sesame oil, nigella sativa oil and Hyalgan® which is a pharmaceutical intra-articular injection containing sodium hyaluronate active agent (20mg/2mL). The coefficient of friction and wear volume of UHMWPE were evaluated after tribological tests. It is found that, the friction and wear behaviors of CoCr28Mo/UHMWPE pair under dry and bio-lubrication were the best. Results show that the use of natural oils improved significantly the tribological behavior of CoCr28Mo/UHMWPE and TiAl6V4/UHMWPE pairs. Microscopic and chemical analyses of wear tracks on UHMWPE were carried out and wear mechanisms were proposed for each materials pair. The tribological performance of the used oils was linked to their chemical composition and to their adsorption ability on the metallic surfaces.

  1. Tribological behavior of UHMWPE against TiAl6V4 and CoCr28Mo alloys under dry and lubricated conditions.

    PubMed

    Guezmil, M; Bensalah, W; Mezlini, S

    2016-10-01

    This work is focused on the study of the tribological behavior of TiAl6V4 and CoCr28Mo against UHMWPE. Wear tests were achieved on a reciprocating pin-on-disc tribometer under dry and lubricated conditions. Four bio-lubricants were retained namely: saline solution (NaCl 0.9%), sesame oil, nigella sativa oil and Hyalgan® which is a pharmaceutical intra-articular injection containing sodium hyaluronate active agent (20mg/2mL). The coefficient of friction and wear volume of UHMWPE were evaluated after tribological tests. It is found that, the friction and wear behaviors of CoCr28Mo/UHMWPE pair under dry and bio-lubrication were the best. Results show that the use of natural oils improved significantly the tribological behavior of CoCr28Mo/UHMWPE and TiAl6V4/UHMWPE pairs. Microscopic and chemical analyses of wear tracks on UHMWPE were carried out and wear mechanisms were proposed for each materials pair. The tribological performance of the used oils was linked to their chemical composition and to their adsorption ability on the metallic surfaces. PMID:27454523

  2. Mechanical Properties and High Temperature Oxidation Behavior of Ti-Al Coating Reinforced by Nitrides on Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Dai, Jingjie; Yu, Huijun; Zhu, Jiyun; Weng, Fei; Chen, Chuanzhong

    2016-05-01

    Ti-Al alloyed coating reinforced by nitrides was fabricated by laser surface alloying technique to improve mechanical properties and high temperature oxidation resistance of Ti-6Al-4V titanium alloy. Microstructures, mechanical properties and high temperature oxidation behavior of the alloyed coating were analyzed. The results show that the alloyed coating consisted of Ti3Al, TiAl2, TiN and Ti2AlN phases. Nitrides with different morphologies were dispersed in the alloyed coating. The maximum microhardness of the alloyed coating was 906HV. The friction coefficients of the alloyed coating at room temperature and high temperature were both one-fourth of the substrate. Mass gain of the alloyed coating oxidized at 800∘C for 1000h in static air was 5.16×10-3mg/mm2, which was 1/35th of the substrate. No obvious spallation was observed for the alloyed coating after oxidation. The alloyed coating exhibited excellent mechanical properties and long-term high temperature oxidation resistance, which improved surface properties of Ti-6Al-4V titanium alloy significantly.

  3. On the preparation of TiAl alloy by direct reduction of the oxide mixtures in calcium chloride melt

    SciTech Connect

    Prabhat K. Tripathy; Derek J. Fray

    2011-11-01

    In recent years, TiAl-based intermetallic alloys are being increasingly considered for application in areas such as (i) automobile/transport sector (passenger cars, trucks and ships) (ii) aerospace industry (jet engines and High Speed Civil Transport propulsion system) and (iii) industrial gas turbines. These materials offer excellent (i) high temperature properties (at higher than 6000C) (ii) mechanical strength and (iii) resistance to corrosion and as a result have raised renewed interest. The combination of these properties make them possible replacement materials for traditional nickel-based super-alloys, which are nearly as twice as dense (than TiAl based alloys). Since the microstructures of these intermetallic alloys affect, to a significant extent, their ultimate performance, further improvements (by way of alteration/modification of these microstructures), have been the subject matter of intense research investigations. It has now been established that the presence of alloy additives, such as niobium, tantalum, manganese, boron, chromium, silicon, nickel and yttrium etc, in specific quantities, impart marked improvement to the properties, viz. fatigue strength, fracture toughness, oxidation resistance and room temperature ductility, of these alloys. From a number of possible alloy compositions, {gamma}-TiAl and Ti-Al-Nb-Cr have, of late, emerged as two promising engineering alloys/materials. . The conventional fabrication process of these alloys include steps such as melting, forging and heat treatment/annealing of the alloy compositions. However, an electrochemical process offers an attractive proposition to prepare these alloys, directly from the mixture of the respective oxides, in just one step. The experimental approach, in this new process, was, therefore, to try to electrochemically reduce the (mixed) oxide pellet to an alloy phase. The removal of oxygen, from the (mixed) oxide pellet, was effected by polarizing the oxide pellet against a graphite

  4. Ultrasensitive Detection of RNA and DNA Viruses Simultaneously Using Duplex UNDP-PCR Assay.

    PubMed

    Huang, Yong; Xing, Na; Wang, Zengguo; Zhang, Xiujuan; Zhao, Xiaomin; Du, Qian; Chang, Lingling; Tong, Dewen

    2015-01-01

    Mixed infection of multiple viruses is common in modern intensive pig rearing. However, there are no methods available to detect DNA and RNA viruses in the same reaction system in preclinical level. In this study, we aimed to develop a duplex ultrasensitive nanoparticle DNA probe-based PCR assay (duplex UNDP-PCR) that was able to simultaneously detect DNA and RNA viruses in the same reaction system. PCV2 and TGEV are selected as representatives of the two different types of viruses. PCV2 DNA and TGEV RNA were simultaneously released from the serum sample by boiling with lysis buffer, then magnetic beads and gold nanoparticles coated with single and/or duplex specific probes for TGEV and PCV2 were added to form a sandwich-like complex with nucleic acids released from viruses. After magnetic separation, DNA barcodes specific for PCV2 and TGEV were eluted using DTT and characterized by specific PCR assay for specific DNA barcodes subsequently. The duplex UNDP-PCR showed similar sensitivity as that of single UNDP-PCR and was able to detect 20 copies each of PCV2 and TGEV in the serum, showing approximately 250-fold more sensitivity than conventional duplex PCR/RT-PCR assays. No cross-reaction was observed with other viruses. The positive detection rate of single MMPs- and duplex MMPs-based duplex UNDP-PCR was identical, with 29.6% for PCV2, 9.3% for TGEV and 3.7% for PCV2 and TGEV mixed infection. This duplex UNDP-PCR assay could detect TGEV (RNA virus) and PCV2 (DNA virus) from large-scale serum samples simultaneously without the need for DNA/RNA extraction, purification and reverse transcription of RNA, and showed a significantly increased positive detection rate for PCV2 (29%) and TGEV (11.7%) preclinical infection than conventional duplex PCR/RT-PCR. Therefore, the established duplex UNDP-PCR is a rapid and economical detection method, exhibiting high sensitivity, specificity and reproducibility.

  5. Beamforming Based Full-Duplex for Millimeter-Wave Communication.

    PubMed

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-01-01

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors. PMID:27455256

  6. Beamforming Based Full-Duplex for Millimeter-Wave Communication.

    PubMed

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-01-01

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors.

  7. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    SciTech Connect

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-22

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 deg. C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  8. Superplastic Forming of Duplex Stainless Steel for Aerospace Part

    NASA Astrophysics Data System (ADS)

    Lee, Ho-Sung; Yoon, Jong-Hoon; Yoo, Joon-Tae; Yi, Young-Moo

    2011-08-01

    In this study, the high temperature forming behavior of duplex stainless steel has been characterized and the outer shell of a combustion chamber was fabricated with pressure difference of hot gas. It consists of two parts which are the outer skin made of stainless steel to sustain the internal pressure and the inner shell made of copper alloy for regenerative cooling channels. Two outer skins partitioned to half with respect to the symmetric axis was prepared by hot gas forming process with a maximum pressure of 7 MPa following to FEM analysis. For inner layer, copper alloy was machined for cooling channels and then placed in the gas pressure welding fixture. It is shown that the optimum condition of gas pressure welding is 7 MPa at 890 °C, for one hour. EDX analysis and scanning electron microscope micrograph confirm the atomic diffusion process is observed at the interface and copper atoms diffuse into steel, while iron and chrome atoms diffuse into copper. The result shows that the manufacturing method with superplastic forming and gas pressure welding of steel and copper alloy has been successful for near net shape manufacturing of scaled combustion chamber of launch vehicle.

  9. Phase Separation in Lean Grade Duplex Stainless Steel 2101

    SciTech Connect

    Garfinkel, D.; Poplawsky, Jonathan D.; Guo, Wei; Young, Jr., George A.; Tucker, Julie

    2015-08-19

    The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C - 538°C. New lean grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1-10,000 hours). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α-α’ separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205 were used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard grade DSS alloy, 2205, but inferior to the lean grade alloy, 2003, in mechanical testing. APT data demonstrates that the degree of α-α’ separation found in alloy 2101 closely resembles that of 2205, and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, though precipitates were not as abundant as was observed in 2205.

  10. Electron beam welding produces improved duplex crack arrest specimens

    SciTech Connect

    King, J.F.; Hudson, J.D.

    1988-01-01

    The crack arrest toughness, K/sub Ia/, is generally determined using a monolithic compact type specimen which contains a brittle weld bead to act as a crack initiation site. To test at higher temperatures and toughnesses, electron beam (EB) welded duplex specimens were fabricated. These specimens required the joining of hardened 4340 steel, which acts as the crack initiator, to A533 grade B class 1 steel base material and submerged arc welds in this base metal. The successful fabrication of these specimens required the development of an EB welding procedure with a very narrow heat-affected zone (HAZ). A technique was also developed to eliminate the porosity which was always present in the EB welds through the submerged arc weld deposit region of the joint. The technique involved remelting the joint surface of the A533 steel containing the submerged arc weld to a controlled depth using an oscillated electron beam. This remelt in vacuum reduced the gaseous constituents to low levels and prevented porosity from forming in the deep penetration EB welds between this surface and the 4340 steel.

  11. JAEA Fatigue Analysis of EBR-II Duplex Tubing

    SciTech Connect

    J. H. Jackson; D. L. Porter; W. R. Lloyd

    2009-07-01

    This work addresses questions brought up concerning the mechanisms associated with fatigue crack growth retardation and/or arrest within the nickel bond layer in duplex 2¼ Cr-1Mo steel superheater tubes. Previous work performed at the Idaho National Laboratory (INL) indicated that the nickel bond layer did not function as a crack arrestor during fatigue crack propagation with the exception of one, isolated case involving an exceptionally low fatigue load and a high temperature (400 0C) environment. Since it is atypical for a fatigue crack to propagate from a relatively soft material (the nickel bond layer) to a harder material (the 2¼ Cr-1Mo steel) there has been speculation that the nickel bond layer was hardened in service. Additionally, there are questions surrounding the nature of the fatigue crack propagation within the nickel bond layer; specifically with regard to the presence of voids seen on micrographs of the bond layer and oxidation within the steel along the edge of the nickel bond layer. There is uncertainty as to the effect of these voids and/or oxide barriers with respect to potential fatigue crack arrest.

  12. JAEA Fatigue Analysis of EBR-II Duplex Tubing

    SciTech Connect

    J. H. Jackson; D. L. Porter; W. R. Lloyd; N. Kisohara

    2011-03-01

    Small, notched three-point bend specimens machined from duplex tubes, which were extracted from an EBR-II superheater, were fatigued through the nickel interlayer to determine propensity for crack arrest within this interlayer. Several of these specimens were fatigued in the near threshold, and steady state regimes of Paris Law behavior. Additionally, two specimens were fatigued to the edge of the nickel interlayer and then monotonically loaded. Micro-hardness profiles of the nickel interlayer were also measured. Fatigue behavior was found to be similar to previous studies in that arrest was only noted in the near threshold Paris regime (attributed to the presence of voids) and in the steady state regime exhibited an acceleration of crack growth rate through the nickel interlayer followed by a slight retardation. Monotonic loading resulted in crack branching or delamination along the interlayer. Although archival material was not available for this study, the hardness of the nickel interlayer was determined to have been lowered slightly during service by comparison to the expected hardness of a similar nickel braze prepared as specified for fabrication of these tubes.

  13. Reaction-diffusion processes and metapopulation models on duplex networks

    NASA Astrophysics Data System (ADS)

    Xuan, Qi; Du, Fang; Yu, Li; Chen, Guanrong

    2013-03-01

    Reaction-diffusion processes, used to model various spatially distributed dynamics such as epidemics, have been studied mostly on regular lattices or complex networks with simplex links that are identical and invariant in transferring different kinds of particles. However, in many self-organized systems, different particles may have their own private channels to keep their purities. Such division of links often significantly influences the underlying reaction-diffusion dynamics and thus needs to be carefully investigated. This article studies a special reaction-diffusion process, named susceptible-infected-susceptible (SIS) dynamics, given by the reaction steps β→α and α+β→2β, on duplex networks where links are classified into two groups: α and β links used to transfer α and β particles, which, along with the corresponding nodes, consist of an α subnetwork and a β subnetwork, respectively. It is found that the critical point of particle density to sustain reaction activity is independent of the network topology if there is no correlation between the degree sequences of the two subnetworks, and this critical value is suppressed or extended if the two degree sequences are positively or negatively correlated, respectively. Based on the obtained results, it is predicted that epidemic spreading may be promoted on positive correlated traffic networks but may be suppressed on networks with modules composed of different types of diffusion links.

  14. Eddy current techniques for super duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Camerini, C.; Sacramento, R.; Areiza, M. C.; Rocha, A.; Santos, R.; Rebello, J. M.; Pereira, G.

    2015-08-01

    Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content.

  15. Phase Separation in Lean-Grade Duplex Stainless Steel 2101

    NASA Astrophysics Data System (ADS)

    Garfinkel, David A.; Poplawsky, Jonathan D.; Guo, Wei; Young, George A.; Tucker, Julie D.

    2015-08-01

    The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C to 538°C. New lean-grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1-10,000 h). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α-α' separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205, were used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard-grade DSS alloy 2205 but inferior to the lean-grade alloy 2003 in mechanical testing. APT data demonstrate that the degree of α-α' separation found in alloy 2101 closely resembles that of 2205 and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, although precipitates were not as abundant as was observed in 2205.

  16. Phase Separation in Lean Grade Duplex Stainless Steel 2101

    DOE PAGESBeta

    Garfinkel, D.; Poplawsky, Jonathan D.; Guo, Wei; Young, Jr., George A.; Tucker, Julie

    2015-08-19

    The use of duplex stainless steels (DSS) in nuclear power generation systems is limited by thermal instability that leads to embrittlement in the temperature range of 204°C - 538°C. New lean grade alloys, such as 2101, offer the potential to mitigate these effects. Thermal embrittlement was quantified through impact toughness and hardness testing on samples of alloy 2101 after aging at 427°C for various durations (1-10,000 hours). Additionally, atom probe tomography (APT) was utilized in order to observe the kinetics of α-α’ separation and G-phase formation. Mechanical testing and APT data for two other DSS alloys, 2003 and 2205 weremore » used as a reference to 2101. The results show that alloy 2101 exhibits superior performance compared to the standard grade DSS alloy, 2205, but inferior to the lean grade alloy, 2003, in mechanical testing. APT data demonstrates that the degree of α-α’ separation found in alloy 2101 closely resembles that of 2205, and greatly exceeds 2003. Additionally, contrary to what was observed in 2003, 2101 demonstrated G-phase like precipitates after long aging times, though precipitates were not as abundant as was observed in 2205.« less

  17. Detecting ultralow-frequency mutations by Duplex Sequencing

    PubMed Central

    Kennedy, Scott R; Schmitt, Michael W; Fox, Edward J; Kohrn, Brendan F; Salk, Jesse J; Ahn, Eun Hyun; Prindle, Marc J; Kuong, Kawai J; Shen, Jiang-Cheng; Risques, Rosa-Ana; Loeb, Lawrence A

    2014-01-01

    Duplex Sequencing (DS) is a next-generation sequencing methodology capable of detecting a single mutation among >1 × 107 wild-type nucleotides, thereby enabling the study of heterogeneous populations and very-low-frequency genetic alterations. DS can be applied to any double-stranded DNA sample, but it is ideal for small genomic regions of <1 Mb in size. The method relies on the ligation of sequencing adapters harboring random yet complementary double-stranded nucleotide sequences to the sample DNA of interest. Individually labeled strands are then PCR-amplified, creating sequence ‘families’ that share a common tag sequence derived from the two original complementary strands. Mutations are scored only if the variant is present in the PCR families arising from both of the two DNA strands. Here we provide a detailed protocol for efficient DS adapter synthesis, library preparation and target enrichment, as well as an overview of the data analysis workflow. The protocol typically takes 1–3 d. PMID:25299156

  18. Beamforming Based Full-Duplex for Millimeter-Wave Communication

    PubMed Central

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-01-01

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors. PMID:27455256

  19. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study.

    PubMed

    Suresh, Gorle; Priyakumar, U Deva

    2015-09-01

    Modified nucleic acids have found profound applications in nucleic acid based technologies such as antisense and antiviral therapies. Previous studies on chemically modified nucleic acids have suggested that modifications incorporated in furanose sugar especially at 2'-position attribute special properties to nucleic acids when compared to other modifications. 2'-O-methyl modification to deoxyribose sugars of DNA-RNA hybrids is one such modification that increases nucleic acid stability and has become an attractive class of compounds for potential antisense applications. It has been reported that modification of DNA strands with 2'-O-methyl group reverses the thermodynamic stability of DNA-RNA hybrid duplexes. Molecular dynamics simulations have been performed on two hybrid duplexes (DR and RD) which differ from each other and 2'-O-methyl modified counterparts to investigate the effect of 2'-O-methyl modification on their duplex stability. The results obtained suggest that the modification drives the conformations of both the hybrid duplexes towards A-RNA like conformation. The modified hybrid duplexes exhibit significantly contrasting dynamics and hydration patterns compared to respective parent duplexes. In line with the experimental results, the relative binding free energies suggest that the introduced modifications stabilize the less stable DR hybrid, but destabilize the more stable RD duplex. Binding free energy calculations suggest that the increased hydrophobicity is primarily responsible for the reversal of thermodynamic stability of hybrid duplexes. Free energy component analysis further provides insights into the stability of modified duplexes.

  20. Thermodynamic Profiles and NMR Studies of Oligonucleotide Duplexes Containing Single Diastereomeric Spiroiminodihydantoin Lesions

    PubMed Central

    Khutsishvili, Irine; Zhang, Na; Marky, Luis A.; Crean, Conor; Patel, Dinshaw J.; Geacintov, Nicholas E.; Shafirovich, Vladimir

    2013-01-01

    The spiroiminodihydantoins (Sp) are highly mutagenic oxidation products of guanine and 8-oxo-7,8-dihydroguanine in DNA. The Sp lesions have been recently detected in the liver and colon of mice infected with H. hepaticus that induces inflammation and development of liver and colon cancers in murine model systems [Mangerich, A., et al. (2012) Proc. Natl. Acad. Sci. U.S.A. 109, E1820–E1829]. The impact of Sp lesions on the thermodynamic characteristics and the effects of the diastereomeric Sp-R and Sp-S lesions on the conformational features of double-stranded 11-mer oligonucleotide duplexes have been studied by a combination of microcalorimetric, analysis of DNA melting curves, and two-dimensional NMR methods. The non-planar, propeller-like shapes of the Sp residues strongly diminish the local base stacking interactions that destabilize the DNA duplexes characterized by unfavorable enthalpy contributions. Relative to an unmodified duplex, the thermally induced unfolding of the duplexes with centrally positioned Sp-R and Sp-S lesions into single strands is accompanied by a smaller release of cationic counterions (ΔnNa+ = 0.6 mol Na+ per mol duplex) and water molecules (Δnw = 17 mol H2O per mol duplex). The unfolding parameters are similar for the Sp-R and Sp-S lesions although their orientations in the duplexes are different. The structural disturbances radiate one base pair beyond the flanking C:G pair, although Watson-Crick hydrogen bonding is maintained at all flanking base pairs. The observed relatively strong destabilization of B-form DNA by the physically small Sp lesions are expected to have a significant impact on the processing of these lesions in biological environments. PMID:23360616

  1. Solution structure of a highly stable DNA duplex conjugated to a minor groove binder.

    PubMed

    Kumar, S; Reed, M W; Gamper, H B; Gorn, V V; Lukhtanov, E A; Foti, M; West, J; Meyer, R B; Schweitzer, B I

    1998-02-01

    The tripeptide 1,2-dihydro-(3 H )-pyrrolo[3,2- e ]indole-7-carboxylate (CDPI3) binds to the minor groove of DNA with high affinity. When this minor groove binder is conjugated to the 5'-end of short oligonucleotides the conjugates form unusually stable hybrids with complementary DNA and thus may have useful diagnostic and/or therapeutic applications. In order to gain an understanding of the structural interactions between the CDPI3minor groove binding moiety and the DNA, we have determined and compared the solution structure of a duplex consisting of oligodeoxyribonucleotide 5'-TGATTATCTG-3' conjugated at the 5'-end to CDPI3 and its complementary strand to an unmodified control duplex of the same sequence using nuclear magnetic resonance techniques. Thermal denaturation studies indicated that the hybrid of this conjugate with its complementary strand had a melting temperature that was 30 degrees C higher compared with the unmodified control duplex. Following restrained molecular dynamics and relaxation matrix refinement, the solution structure of the CDPI3-conjugated DNA duplex demonstrated that the overall shape of the duplex was that of a straight B-type helix and that the CDPI3moiety was bound snugly in the minor groove, where it was stabilized by extensive van der Waal's interactions.

  2. The Contribution of DNA Single-Stranded Order to the Thermodynamics of Duplex Formation

    NASA Astrophysics Data System (ADS)

    Vesnaver, Gorazd; Breslauer, Kenneth J.

    1991-05-01

    We report a direct determination of the thermodynamic contribution that DNA single-stranded order makes to DNA duplex formation. By using differential scanning calorimetry (DSC) and temperature-dependent UV absorbance spectroscopy, we have characterized thermodynamically the thermally induced disruption of the 13-mer duplex [d(CGCATGAGTACGC)]\\cdot[d(GCGTACTCATGCG)] (henceforth called S_1\\cdotS_2) and its component single strands,[d(CGCATGAGTACGC)] (henceforth called S_1) and ]d(GCGTACTCATGCG)] (henceforth called S_2). These spectroscopic and calorimetric measurements yield the following thermodynamic profiles at 25^circC: Δ G^circ = 20.0 kcal/mol, Δ H^circ = 117.0 kcal/mol, and Δ S^circ = 325.4 cal\\cdotdegree-1\\cdotmol-1 for duplex melting of S_1\\cdotS_2; Δ G^circ = 0.45 kcal/mol, Δ H^circ = 29.1 kcal/mol, and Δ S^circ = 96.1 cal\\cdotdegree-1\\cdotmol-1 for single-strand melting of S_1; Δ G^circ = 1.44 kcal/mol, Δ H^circ = 27.2 kcal/mol, and Δ S^circ = 86.4 cal\\cdotdegree-1\\cdotmol-1 for single-strand melting of S_2 (1 cal = 4.184 J). These data reveal that the two single-stranded structures S_1 and S_2 are only marginally stable at 25^circC, despite exhibiting rather substantial transition enthalpies. This behavior results from enthalpy and entropy contributions of similar magnitudes that compensate each other, thereby giving rise to relatively small free energies of stabilization for the single strands at 25^circC. By contrast, the S_1\\cdotS_2 duplex state is very stable at 25^circC since the favorable transition entropy associated with duplex disruption (325.4 cal\\cdotdegree-1\\cdotmol-1) is more than compensated for by the extremely large duplex transition enthalpy (117.0 kcal/mol). We also measured directly an enthalpy change (Δ H^circ) of -56.4 kcal/mol for duplex formation at 25^circC using isothermal batch-mixing calorimetry. This duplex formation enthalpy of -56.4 kcal/mol at 25^circC is very different in magnitude from the duplex

  3. Detection of base pair mismatches in duplex DNA and RNA oligonucleotides using electrospray mass spectrometry

    NASA Astrophysics Data System (ADS)

    Griffey, Richard H.; Greig, Michael J.

    1997-05-01

    The identify and location of base pair mismatches in non- covalent DNA:RNA duplexes are established using MS and MS-MS on a quadruple ion trap with electrospray ionization (ESI). MS-MS experiments on a 14mer duplex (D) with a single C:A base pair mismatch using lower activation energy results in selective cleavage of the mismatched A nucleobase, even in the presence of the wild-type duplex. The location of the mismatch base pair can be discerned via presence of the wild-type duplex. The location of the mismatch base pair can be discerned via selection of the (D-5H)5- ion and fragmentation of the backbone at that location in a n additional MS-MS experiment. Selective fragmentation is observed for C in a C-C mismatched base pair, which is very difficult to detect using chemical cleavage or E. coli mismatch binding protein. In an RNA:DNA duplex with a single base pair mismatch, the DNA base is removed without fragmentation of the RNA strand, greatly simplifying the interpretation of the resulting MS spectrum. A method is presented for detecting two DNA strands, for example a point mutation which generates an oncogenic phenotype, and the wild-type message. The results suggest that ESI-MS-MS may provide a rapid and selective method to identify and locate genetic mutations without the need for chemical degradation or protein binding followed by gel electrophoresis.

  4. Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure

    SciTech Connect

    Martins, Marcelo; E-mail: marcelo.martins@sulzer.com; Casteletti, Luiz Carlos

    2005-09-15

    Duplex and super duplex stainless steels are ferrous alloys with up to 26% chromium, 8% nickel, 5% molybdenum and 0.3% nitrogen, which are largely used in applications in media containing ions from the halogen family, mainly the chloride ion (Cl{sup -}). The emergence of this material aimed at substituting Copper-Nickel alloys (Cupro-Nickel) that despite presenting good corrosion resistance, has mechanical properties quite inferior to steel properties. The metallurgy of duplex and super duplex stainless steel is complex due to high sensitiveness to sigma phase precipitation that becomes apparent, due to the temperatures they are exposed on cooling from solidification as well as from heat treatment processes. The objective of this study was to verify the influence of heat treating temperatures on the microstructure and hardness of ASTM A890/A890M Gr 6A super duplex stainless steel type. Microstructure control is of extreme importance for castings, as the chemical composition and cooling during solidification inevitably provide conditions for precipitation of sigma phase. Higher hardness in these materials is directly associated to high sigma phase concentration in the microstructure, precipitated in the ferrite/austenite interface. While heat treatment temperature during solution treatment increases, the sigma phase content in the microstructure decreases and consequently, the material hardness diminishes. When the sigma phase was completely dissolved by the heat treatment, the material hardness was influenced only due to ferrite and austenite contents in the microstructure.

  5. Effect of loop length variation on quadruplex-Watson Crick duplex competition

    PubMed Central

    Kumar, Niti; Sahoo, Bankanidhi; Varun, K. A. S.; Maiti, Sudipta; Maiti, Souvik

    2008-01-01

    The effect of loop length on quadruplex stability has been studied when the G-rich strand is present along with its complementary C-rich strand, thereby resulting in competition between quadruplex and duplex structures. Using model sequences with loop lengths varying from T to T5, we carried out extensive FRET to discover the influence of loop length on the quadruplex-Watson Crick duplex competition. The binding data show an increase in the binding affinity of quadruplexes towards their complementary strands upon increasing the loop length. Our kinetic data reveal that unfolding of the quadruplex in presence of a complementary strand involves a contribution from a predominant slow and a small population of fast opening conformer. The contribution from the fast opening conformer increases upon increasing the loop length leading to faster duplex formation. FCS data show an increase in the interconversion between the quadruplex conformers in presence of the complementary strand, which shifts the equilibrium towards the fast opening conformer with an increase in loop length. The relative free-energy difference (ΔΔG°) between the duplex and quadruplex indicates that an increase in loop length favors duplex formation and out competes the quadruplex. PMID:18599514

  6. Solution structure of a highly stable DNA duplex conjugated to a minor groove binder.

    PubMed

    Kumar, S; Reed, M W; Gamper, H B; Gorn, V V; Lukhtanov, E A; Foti, M; West, J; Meyer, R B; Schweitzer, B I

    1998-02-01

    The tripeptide 1,2-dihydro-(3 H )-pyrrolo[3,2- e ]indole-7-carboxylate (CDPI3) binds to the minor groove of DNA with high affinity. When this minor groove binder is conjugated to the 5'-end of short oligonucleotides the conjugates form unusually stable hybrids with complementary DNA and thus may have useful diagnostic and/or therapeutic applications. In order to gain an understanding of the structural interactions between the CDPI3minor groove binding moiety and the DNA, we have determined and compared the solution structure of a duplex consisting of oligodeoxyribonucleotide 5'-TGATTATCTG-3' conjugated at the 5'-end to CDPI3 and its complementary strand to an unmodified control duplex of the same sequence using nuclear magnetic resonance techniques. Thermal denaturation studies indicated that the hybrid of this conjugate with its complementary strand had a melting temperature that was 30 degrees C higher compared with the unmodified control duplex. Following restrained molecular dynamics and relaxation matrix refinement, the solution structure of the CDPI3-conjugated DNA duplex demonstrated that the overall shape of the duplex was that of a straight B-type helix and that the CDPI3moiety was bound snugly in the minor groove, where it was stabilized by extensive van der Waal's interactions. PMID:9443977

  7. Sequence effects of aminofluorene-modified DNA duplexes: thermodynamic and circular dichroism properties

    PubMed Central

    Meneni, Srinivasa Rao; D'Mello, Rhijuta; Norigian, Gregory; Baker, Gregory; Gao, Lan; Chiarelli, M. Paul; Cho, Bongsup P.

    2006-01-01

    Circular dichroism (CD) and UV-melting experiments were conducted with 16 oligodeoxynucleotides modified by the carcinogen 2-aminofluorene, whose sequence around the lesion was varied systematically [d(CTTCTNG[AF]NCCTC), N = G, A, C, T], to gain insight into the factors that determine the equilibrium between base-displaced stacked (S) and external B-type (B) duplex conformers. Differing stabilities among the duplexes can be attributed to different populations of S and B conformers. The AF modification always resulted in sequence-dependent thermal (Tm) and thermodynamic (−ΔG°) destabilization. The population of B-type conformers derived from eight selected duplexes (i.e. -AG*N- and -CG*N-) was inversely proportional to the −ΔG° and Tm values, which highlights the importance of carcinogen/base stacking in duplex stabilization even in the face of disrupted Watson–Crick base pairing in S-conformation. CD studies showed that the extent of the adduct-induced negative ellipticities in the 290–350 nm range is correlated linearly with −ΔG° and Tm, but inversely with the population of B-type conformations. Taken together, these results revealed a unique interplay between the extent of carcinogenic interaction with neighboring base pairs and the thermodynamic properties of the AF-modified duplexes. The sequence-dependent S/B heterogeneities have important implications in understanding how arylamine–DNA adducts are recognized in nucleotide excision repair. PMID:16449208

  8. Localization of duplex thrust-ramps by buckling: analog and numerical modelling

    NASA Astrophysics Data System (ADS)

    Liu, Shumin; Dixon, John M.

    1995-06-01

    Duplex structures in natural fold-thrust belts occur over a wide range of geometric scales. Duplex thrust ramps exhibit a regular spacing linearly related to the thickness of strata involved in the duplex. We suggest that buckling instability in layered systems can produce local stress concentrations which localize thrust ramps with regular spacing. This mechanism is demonstrated through analog (centrifuge) and numerical (finite element) modelling. Centrifuge models containing finely-laminated multilayers composed of plasticine and silicone putty (simulating rocks such as limestone and shale) are compressed from one edge; folds propagate from hinterland to foreland. As shortening continues, the lowest competent unit is thrust into a blind duplex structure by breakthrusting. The duplex develops by serial nucleation of faults from hinterland to foreland; the ramp locations are inherited from the initial buckling instability. Finite-element models based on the analog models and their natural prototypes demonstrate that stress concentrations develop in fore-limbs of anticlines within competent stratigraphie units. Models containing thrust discontinuities (at sites of calculated stress concentration) display additional stress concentrations in the forelimbs of unfaulted folds closer to the foreland. The locus of stress concentration thus propagates towards the foreland, consistent with foreland thrust propagation in nature. The location and regular spacing of ramps are inherited from early (possibly even incipient) buckle folds.

  9. Full-Duplex Digital Communication on a Single Laser Beam

    NASA Technical Reports Server (NTRS)

    Hazzard, D. A.; MacCannell, J. A.; Lee, G.; Selves, E. R.; Moore, D.; Payne, J. A.; Garrett, C. D.; Dahlstrom, N.; Shay, T. M.

    2006-01-01

    A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end.

  10. Use of Symmetry in Calibration of Looped Duplex DTS Measurements

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; van der Spek, A.

    2014-12-01

    A looped duplex Distributed Temperature Sensing (DTS) deployment uses a bifilar arrangement of two optical fibres in the same cable or conduit. On one end of the cable the ends of the fibres are spliced together. The other ends are connected to a (double ended) DTS system or one end is connected to a (single ended) DTS system. A light pulse shot from one end will eventually emerge from the other end and vice versa. Back scattered Raman-shifted photons will thus be detected twice for each posistion along the cable or conduit but delayed in time by twice the distance from the symmetry point (turn around sub) divided by the speed of light in the fibre.Calibration of a DTS system requires, first and foremost that differential loss; i.e. the difference in optical attenuation between Stokes and anti-Stokes backscattered signals, is compensated for. It will be shown that residual errors due to uncompensated differential loss can only be due to the uneven part of the (non-uniform) differential loss distribution. A bifilar deployment is therefore highly insensitive to uncompensated differential loss because ageing, chemical or mechanical damage to the cable as well as thermal or mechanical strain may vary over the length of the cable but remain symmetrical and therefore even with respect to the turn around sub.By writing the (non-)uniform differential loss as the sum of an even and an uneven part it is possible to derive an equation for the residual error of a DTS temperature measurement expressed as an integral over the uneven part of the differential loss distribution only. Thus it is possible to estimate any residual temperature error under field conditions. Such a capability is especially useful where no access to one end of the cable is possible, such as is the case in borehole applications.

  11. Preoperative duplex ultrasound parameters predicting male fertility after successful varicocelectomy

    PubMed Central

    Alshehri, Fahad M.; Akbar, Mahboob H.; Altwairgi, Adel K.; AlThaqufi, Omar J.

    2015-01-01

    Objectives: To assess duplex ultrasound (DUS) parameters, and predicti the outcome of varicocele ligation in male infertility. Methods: This retrospective and follow up study was conducted at Dr. Sulaiman Al Habib Hospital, AlQassim, Saudi Arabia between January 2011 and December 2012. Eighty-two patients were selected, who presented with clinical/subclinical varicocele and male infertility. All these patients had DUS of the scrotum and underwent for low ligation varicocelectomy. These patients were followed for a period of 12-24 months after surgery for the occurrence of paternity. We reviewed pre-operative scrotal DUS of these 82 patients for the testicular size and volume, pampiniform veins caliber and duration of reflux in the dilated veins at rest, and after valsalva maneuver. These DUS parameters were correlated with the postoperative paternity rate. Results: Postoperative paternity was achieved in 18 patients (31.6%) with normal-sized testes, and in 3 patients (12%) with small size testes. The positive paternity rate was higher (38.5%) in patients with clinically detected varicocele, compared with only 16.7% of patients with subclinical varicocele (detected by ultrasound only). In addition, postoperative paternity was significantly higher in patients with bilateral varicocele (70.6%), with shunt-type varicocele (71.4%), and patients with a permanent grade of venous reflux (62.5%). Conclusion: Selection of patients for the successful paternity after varicocele repair depends mainly on DUS parameters, which includes normal size testicles with shunt type of bilateral varicocele and continuous reflux. PMID:26620986

  12. Effect of TiB2 on Tribological Properties of TiAl Self-lubricating Composites Containing Ag at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Yao, Jie; Shi, Xiaoliang; Zhai, Wenzheng; Ibrahim, Ahmed Mohamed Mahmoud; Xu, Zengshi; Song, Siyuan; Chen, Long; Zhu, Qingshuai; Xiao, Yecheng; Zhang, Qiaoxin

    2015-01-01

    TiB2 was chosen to further improve the tribological properties of TiAl matrix self-lubricating composites containing Ag. The possible synergetic action of a combination of TiB2 and Ag was investigated using a pin-on-disk high temperature tribometer from room temperature to 600 °C. The tribological test results indicated that the addition of TiB2 obviously enhanced the wear resistance of the composites over a wide temperature range. Moreover, the composites containing TiB2 had a low friction coefficient at 600 °C. The subsurface analysis of cross sections of worn surfaces showed that TiB2 played the role in wear-resistant skeleton and restricted the plastic flow of Ag during dry friction process. The investigation showed that TiB2 and Ag could exhibit good synergistic effect on improving the tribological properties of composites.

  13. Factors affecting the microstructure and mechanical properties of Ti-Al3Ti core-shell-structured particle-reinforced Al matrix composites

    NASA Astrophysics Data System (ADS)

    Guo, Baisong; Yi, Jianhong; Ni, Song; Shen, Rujuan; Song, Min

    2016-04-01

    This work studied the effects of matrix powder and sintering temperature on the microstructure and mechanical properties of in situ formed Ti-Al3Ti core-shell-structured particle-reinforced pure Al-based composites. It has been shown that both factors have significant effects on the morphology of the reinforcements and densification behaviour of the composites. Due to the strong interfacial bonding and the limitation of the crack propagation in the intermetallic shell during deformation by soft Al matrix and Ti core, the composite fabricated using fine spherical-shaped Al powder and sintered at 570 °C for 5 h has the optimal combination of the overall mechanical properties. The study provides a direction for the optimum combination of high strength and ductility of the composites by adjusting the fabrication parameters.

  14. Rapid method to detect duplex formation in sequencing by hybridization methods

    DOEpatents

    Mirzabekov, Andrei Darievich; Timofeev, Edward Nikolaevich; Florentiev, Vladimer Leonidovich; Kirillov, Eugene Vladislavovich

    1999-01-01

    A method for determining the existence of duplexes of oligonucleotide complementary molecules is provided whereby a plurality of immobilized oligonucleotide molecules, each of a specific length and each having a specific base sequence, is contacted with complementary, single stranded oligonucleotide molecules to form a duplex so as to facilitate intercalation of a fluorescent dye between the base planes of the duplex. The invention also provides for a method for constructing oligonucleotide matrices comprising confining light sensitive fluid to a surface, exposing said light-sensitive fluid to a light pattern so as to cause the fluid exposed to the light to coalesce into discrete units and adhere to the surface; and contacting each of the units with a set of different oligonucleotide molecules so as to allow the molecules to disperse into the units.

  15. Duplex in the assessment of the free radial forearm flaps: Is it time to change practice?

    PubMed

    Ganesan, K; Stead, L; Smith, A B; Ong, T K; Mitchell, D A; Kanatas, A N

    2010-09-01

    Radial forearm free flaps (RFFFs) are safe, but critical ischaemia of the hand has been described and is catastrophic. Every effort should therefore be made to improve the safety margin even further. Colour flow duplex ultrasound (US) is a simple, non-invasive and effective assessment tool. We compared it with Allen's test to identify serious vascular anomalies. We studied 121 patients who were listed to have a RFFF harvested, all of whom had both duplex US assessment and Allen's testing of the selected arm. The significance of differences in proportions was assessed using McNemar's test. Five of the 121 patients had an alternative flap selected as a consequence of the duplex assessment. A single flap failed. There were no ischaemic vascular complications that affected the hand.

  16. Experimental Analysis and Modelling of Fe-Mn-Al-C Duplex Steel Mechanical Behaviour

    SciTech Connect

    Shiekhelsouk, M. N.; Favier, V.; Cherkaoui, M.; Inal, K.; Bouaziz, O.

    2007-04-07

    A new variety of duplex steels with high content of manganese and aluminum has been elaborated in Arcelor Research. These steels contain two phases: austenite and ferrite combining the best features of austenitic and ferritic steels. In this work, four duplex steels with different chemical composition and phase volume fraction are studied. The evolution of internal stresses for the two phases has been determined by X-ray diffraction during an in situ tensile test. These measurements results were used to determine the mechanical behaviour of the duplex steel using a micromechanical approach by scale transition for tensile tests. Though a good agreement between experiments and simulations is found at the macroscopic level, the calculated internal stresses of the austenitic phase do not match experimental results. These discrepancies are attributed to (i) a bad estimation of the austenite yield stress or (ii) the presence of kinematic hardening in the austenitic phase. A new step is then proposed to test these two hypotheses.

  17. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes.

    PubMed

    Iwasaki, Shintaro; Kobayashi, Maki; Yoda, Mayuko; Sakaguchi, Yuriko; Katsuma, Susumu; Suzuki, Tsutomu; Tomari, Yukihide

    2010-07-30

    Small silencing RNAs--small interfering RNAs (siRNAs) or microRNAs (miRNAs)--direct posttranscriptional gene silencing of their mRNA targets as guides for the RNA-induced silencing complex (RISC). Both siRNAs and miRNAs are born double stranded. Surprisingly, loading these small RNA duplexes into Argonaute proteins, the core components of RISC, requires ATP, whereas separating the two small RNA strands within Argonaute does not. Here we show that the Hsc70/Hsp90 chaperone machinery is required to load small RNA duplexes into Argonaute proteins, but not for subsequent strand separation or target cleavage. We envision that the chaperone machinery uses ATP and mediates a conformational opening of Ago proteins so that they can receive bulky small RNA duplexes. Our data suggest that the chaperone machinery may serve as the driving force for the RISC assembly pathway.

  18. Structure of the tetradecanucleotide d(CCCCGGTACCGGGG)2 as an A-DNA duplex

    PubMed Central

    Mandal, Pradeep Kumar; Venkadesh, Sarkarai; Gautham, Namasivayam

    2012-01-01

    The crystal structure of the tetradecanucleotide sequence d(CCCCGGTACC­GGGG)2 has been determined at 2.5 Å resolution in the tetragonal space group P41. This sequence was designed with the expectation of a four-way junction. However, the sequence crystallized as an A-DNA duplex and represents more than one full turn of the A-helix. The crystallographic asymmetric unit consists of one tetradecanucleotide duplex. The structural parameters of the A-type DNA duplex structure and the crystal-packing arrangement are described. One Mn2+ ion was identified with direct coordination to the N7 position of G13 and a water molecule at the major-groove side of the C2·G13 base pair. PMID:22505405

  19. Sequential and spatial organization of metal complexes inside a peptide duplex.

    PubMed

    Yamada, Yasuyuki; Kubota, Takayuki; Nishio, Motoki; Tanaka, Kentaro

    2014-04-30

    To generate integrated organized molecular properties, multiple molecular components are required to be assembled into the molecular system with sequential and spatial accuracy in accordance with the design of the molecular assembly. Herein, we present a novel programmable synthesis of a cofacially stacked porphyrin array via repetitive construction of a peptide duplex. We designed and synthesized a novel porphyrin having two artificial amino acid moieties at the trans meso-positions. The amino acid moieties can be connected with another porphyrin unit by repetitive doubly coupling reactions to afford the peptide duplex bridged by the porphyrins. In the duplex, the porphyrin units are stacked cofacially, and the efficient electronic communication among the arrayed porphyrin units was characterized by split redox waves in the cyclic voltammograms. We also demonstrated the three different square-planar metal ions, namely Cu(2+), Ni(2+), and Pd(2+), were arranged inside the ladder-type porphyrin array in a programmable fashion. PMID:24735178

  20. Final Report, Volume 3, Guidance Document for the Evaluation of Cast Super Duplex Stainless Steel

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, D.

    2005-09-30

    Volume 3 comprises of the Development of Qualification Standards for Cast Super Duplex Stainless Steel (A890-5A) which is equivalent to wrought 2507. The objective of this work was to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). The various tests which were carried out were ASTM A923 Test Method A, B and C (Sodium Hydroxide Etch Test, Charpy Impact Test and Ferric Chloride Corrosion Test), ferrite measurement using Feritscope{reg_sign}, ASTM E562 Manual Point Count Method and X-Ray Diffraction, hardness measurement using Rockwell B and C and microstructural analysis using SEM and EDS.

  1. Final Report, Volume 3, Guidance Document for the Evaluation of Cast Super Duplex Stainless Steel

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30

    Volume 3 is comprised of the Development of Qualification Standards for Cast Super Duplex Stainless Steel (A890-5A) which is equivalent to wrought 2507. The objective of this work was to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). The various tests which were carried out were ASTM A923 Test Method A, B and C (Sodium Hydroxide Etch Test, Charpy Impact Test and Ferric Chloride Corrosion Test), ferrite measurement using Feritscope®, ASTM E562 Manual Point Count Method and X-Ray Diffraction, hardness measurement using Rockwell B and C and microstructural analysis using SEM and EDS.

  2. A Commentary on "Updating the Duplex Design for Test-Based Accountability in the Twenty-First Century"

    ERIC Educational Resources Information Center

    Brandt, Steffen

    2010-01-01

    This article presents the author's commentary on "Updating the Duplex Design for Test-Based Accountability in the Twenty-First Century," in which Isaac I. Bejar and E. Aurora Graf propose the application of a test design--the duplex design (which was proposed in 1988 by Bock and Mislevy) for application in current accountability assessments.…

  3. Structure and thermodynamic insights on acetylaminofluorene-modified deletion DNA duplexes as models for frameshift mutagenesis

    PubMed Central

    Sandineni, Anusha; Lin, Bin; MacKerell, Alexander D.; Cho, Bongsup P.

    2013-01-01

    2-Acetylaminofluorene (AAF) is a prototype arylamine carcinogen that forms C8-substituted dG-AAF and dG-AF as the major DNA lesions. The bulky N-acetylated dG-AAF lesion can induce various frameshift mutations depending on the base sequence around the lesion. We hypothesized that the thermodynamic stability of bulged-out slipped mutagenic intermediates (SMIs) is directly related to deletion mutations. The objective of the present study was to probe the structural/conformational basis of various dG-AAF–induced SMIs formed during a translesion synthesis. We performed spectroscopic, thermodynamic, and molecular dynamics studies of several AAF-modified 16-mer model DNA duplexes, including fully paired and −1, −2, and −3 deletion duplexes of the 5′-CTCTCGATG[FAAF]CCATCAC-3′ sequence and an additional −1 deletion duplex of the 5′-CTCTCGGCG[FAAF]CCATCAC-3′ NarI sequence. Modified deletion duplexes existed in a mixture of external B and stacked S conformers, with the population of the S conformer being ‘GC’ −1 (73%) > ‘AT’ −1 (72%) > full (60%) > −2 (55%) > −3 (37%). Thermodynamic stability was in the order of −1 deletion > −2 deletion > fully paired > −3 deletion duplexes. These results indicate that the stacked S-type conformer of SMIs are thermodynamically more stable than the conformationally flexible external B conformer. Results from the molecular dynamics simulations indicate perturbation of base stacking dominate the relative stability along with contributions from bending, duplex dynamics, solvation effects that are important in specific cases. Taken together, these results support a hypothesis that the conformational and thermodynamic stabilities of the SMIs are critical determinants for the induction of frameshift mutations. PMID:23688347

  4. Structural, Dynamical and Electronic Transport Properties of Modified DNA Duplexes Containing Size-Expanded Nucleobases

    SciTech Connect

    Sumpter, Bobby G; Fuentes-Cabrera, Miguel A

    2011-01-01

    Among the distinct strategies proposed to expand the genetic alphabet, size-expanded nucleobases are promising for the development of modified DNA duplexes with improved biotechnological properties. In particular, duplexes built up by replacing canonical bases with the corresponding benzo-fused counterparts could be valuable as molecular nanowires. In this context, this study reports the results of classical molecular dynamics simulations carried out to examine the structural and dynamical features of size-expanded DNAs, including both hybrid duplexes containing mixed pairs of natural and benzo-fused bases (xDNA) and pure size-expanded (xxDNA) duplexes. Furthermore, the electronic structure of both natural and size-expanded duplexes is examined by means of density functional computations. The results confirm that the structural and flexibility properties of the canonical DNA are globally little affected by the presence of benzo-fused bases. The most relevant differences are found in the enhanced size of the grooves, and the reduction in the twist. However, the analysis also reveals subtle structural effects related to the nature and sequence of benzo-fused bases in the duplex. On the other hand, electronic structure calculations performed for xxDNAs confirm the reduction in the HOMO-LUMO gap predicted from the analysis of the natural bases and their size-expanded counterparts, which suggests that pure size-expanded DNAs can be good conductors. A more complex situation is found for xDNAs, where fluctuations in the electrostatic interaction between base pairs exerts a decisive influence on the modulation of the energy gap.

  5. Structural, Dynamical, and Electronic Transport Properties of Modified DNA Duplexes Containing Size-Expanded Nucleobases

    SciTech Connect

    Fuentes-Cabrera, Miguel A; Orozco, Modesto; Luque, Javier; Sumpter, Bobby G; Blas, Jose; Ordejon, Pablo J; Huertas, Oscar; Tabares, Carolina

    2011-01-01

    Among the distinct strategies proposed to expand the genetic alphabet, sizeexpanded nucleobases are promising for the development of modified DNA duplexes with improved biotechnological properties. In particular, duplexes built up by replacing canonical bases with the corresponding benzo-fused counterparts could be valuable as molecular nanowires. In this context, this study reports the results of classical molecular dynamics simulations carried out to examine the structural and dynamical features of size-expanded DNAs, including both hybrid duplexes containing mixed pairs of natural and benzo-fused bases (xDNA) and pure size-expanded (xxDNA) duplexes. Furthermore, the electronic structure of both natural and size-expanded duplexes is examined by means of density functional computations. The results confirm that the structural and flexibility properties of the canonical DNA are globally little affected by the presence of benzo-fused bases. Themost relevant differences are found in the enhanced size of the grooves, and the reduction in the twist. However, the analysis also reveals subtle structural effects related to the nature and sequence of benzo-fused bases in the duplex. On the other hand, electronic structure calculations performed for xxDNAs confirm the reduction in the HOMOLUMO gap predicted from the analysis of the natural bases and their size-expanded counterparts, which suggests that pure size-expanded DNAs can be good conductors. A more complex situation is found for xDNAs, where fluctuations in the electrostatic interaction between base pairs exerts a decisive influence on the modulation of the energy gap.

  6. Conformational Variants of Duplex DNA Correlated with Cytosine-rich Chromosomal Fragile Sites*S⃞

    PubMed Central

    Tsai, Albert G.; Engelhart, Aaron E.; Hatmal, Ma'mon M.; Houston, Sabrina I.; Hud, Nicholas V.; Haworth, Ian S.; Lieber, Michael R.

    2009-01-01

    We found that several major chromosomal fragile sites in human lymphomas, including the bcl-2 major breakpoint region, bcl-1 major translocation cluster, and c-Myc exon 1-intron 1 boundary, contain distinctive sequences of consecutive cytosines exhibiting a high degree of reactivity with the structure-specific chemical probe bisulfite. To assess the inherent structural variability of duplex DNA in these regions and to determine the range of structures reactive to bisulfite, we have performed bisulfite probing on genomic DNA in vitro and in situ; on duplex DNA in supercoiled and linearized plasmids; and on oligonucleotide DNA/DNA and DNA/2′-O-methyl RNA duplexes. Bisulfite is significantly more reactive at the frayed ends of DNA duplexes, which is expected given that bisulfite is an established probe of single-stranded DNA. We observed that bisulfite also distinguishes between more subtle sequence/structural differences in duplex DNA. Supercoiled plasmids are more reactive than linear DNA; and sequences containing consecutive cytosines, namely GGGCCC, are more reactive than those with alternating guanine and cytosine, namely GCGCGC. Circular dichroism and x-ray crystallography show that the GGGCCC sequence forms an intermediate B/A structure. Molecular dynamics simulations also predict an intermediate B/A structure for this sequence, and probe calculations suggest greater bisulfite accessibility of cytosine bases in the intermediate B/A structure over canonical B- or A-form DNA. Electrostatic calculations reveal that consecutive cytosine bases create electropositive patches in the major groove, predicting enhanced localization of the bisulfite anion at homo-C tracts over alternating G/C sequences. These characteristics of homo-C tracts in duplex DNA may be associated with DNA-protein interactions in vivo that predispose certain genomic regions to chromosomal fragility. PMID:19106104

  7. Characterizing the bending and flexibility induced by bulges in DNA duplexes

    NASA Astrophysics Data System (ADS)

    Schreck, John S.; Ouldridge, Thomas E.; Romano, Flavio; Louis, Ard A.; Doye, Jonathan P. K.

    2015-04-01

    Advances in DNA nanotechnology have stimulated the search for simple motifs that can be used to control the properties of DNA nanostructures. One such motif, which has been used extensively in structures such as polyhedral cages, two-dimensional arrays, and ribbons, is a bulged duplex, that is, two helical segments that connect at a bulge loop. We use a coarse-grained model of DNA to characterize such bulged duplexes. We find that this motif can adopt structures belonging to two main classes: one where the stacking of the helices at the center of the system is preserved, the geometry is roughly straight, and the bulge is on one side of the duplex and the other where the stacking at the center is broken, thus allowing this junction to act as a hinge and increasing flexibility. Small loops favor states where stacking at the center of the duplex is preserved, with loop bases either flipped out or incorporated into the duplex. Duplexes with longer loops show more of a tendency to unstack at the bulge and adopt an open structure. The unstacking probability, however, is highest for loops of intermediate lengths, when the rigidity of single-stranded DNA is significant and the loop resists compression. The properties of this basic structural motif clearly correlate with the structural behavior of certain nano-scale objects, where the enhanced flexibility associated with larger bulges has been used to tune the self-assembly product as well as the detailed geometry of the resulting nanostructures. We further demonstrate the role of bulges in determining the structure of a "Z-tile," a basic building block for nanostructures.

  8. Effect of thiazole orange doubly labeled thymidine on DNA duplex formation.

    PubMed

    Kimura, Yasumasa; Hanami, Takeshi; Tanaka, Yuki; de Hoon, Michiel J L; Soma, Takahiro; Harbers, Matthias; Lezhava, Alexander; Hayashizaki, Yoshihide; Usui, Kengo

    2012-08-01

    Nucleic acid oligonucleotides are widely used in hybridization experiments for specific detection of complementary nucleic acid sequences. For design and application of oligonucleotides, an understanding of their thermodynamic properties is essential. Recently, exciton-controlled hybridization-sensitive fluorescent oligonucleotides (ECHOs) were developed as uniquely labeled DNA oligomers containing commonly one thymidine having two covalently linked thiazole orange dye moieties. The fluorescent signal of an ECHO is strictly hybridization-controlled, where the dye moieties have to intercalate into double-stranded DNA for signal generation. Here we analyzed the hybridization thermodynamics of ECHO/DNA duplexes, and thermodynamic parameters were obtained from melting curves of 64 ECHO/DNA duplexes measured by ultraviolet absorbance and fluorescence. Both methods demonstrated a substantial increase in duplex stability (ΔΔG°(37) ~ -2.6 ± 0.7 kcal mol(-1)) compared to that of DNA/DNA duplexes of the same sequence. With the exception of T·G mismatches, this increased stability was mostly unaffected by other mismatches in the position opposite the labeled nucleotide. A nearest neighbor model was constructed for predicting thermodynamic parameters for duplex stability. Evaluation of the nearest neighbor parameters by cross validation tests showed higher predictive reliability for the fluorescence-based than the absorbance-based parameters. Using our experimental data, a tool for predicting the thermodynamics of formation of ECHO/DNA duplexes was developed that is freely available at http://genome.gsc.riken.jp/echo/thermodynamics/. It provides reliable thermodynamic data for using the unique features of ECHOs in fluorescence-based experiments.

  9. Electrochemical properties of interstrand cross-linked DNA duplexes labeled with Nile blue.

    PubMed

    Mie, Yasuhiro; Kowata, Keiko; Kojima, Naoshi; Komatsu, Yasuo

    2012-12-11

    DNA molecules have attracted considerable attention as functional materials in various fields such as electrochemical sensors with redox-labeled DNA. However, the recently developed interstrand cross-link (ICL) technique for double-stranded DNA can adequately modify the electronic properties inside the duplex. Hence, the electrochemical investigation of ICL-DNA helps us to understand the electron transfer of redox-labeled DNA at an electrode surface, which would develop useful sensors. In this study, the first insight into this matter is presented. We prepared 17-mer DNA duplexes incorporating Nile blue (NB-DNA) at one end as a redox marker and a disulfide tether at the other end for immobilization onto an electrode. The duplexes were covalently cross-linked by bifunctional cross-linkers that utilize either a propyl or naphthalene residue to replace a base pair. Their electrochemical responses at the electrode surface were compared to evaluate the effect of the ICL on the electron-transfer reactions of the redox-labeled DNA duplexes. A direct transfer of electrons between NB and the electrode was observed for a standard DNA, as previously reported, whereas interstrand cross-linked DNA (CL-DNA) strands showed a decrease in the direct electron-transfer pathway. This is expected to result from constraining the elastic bending/flexibility of the duplex caused by the covalent cross-links. Interestingly, the CL-DNA incorporating naphthalene residues exhibited additional voltammetric peaks derived from DNA-mediated electron transfer (through base π stacking), which was not observed in the mismatched CL-DNA. The present results indicate that the ICL significantly affects electron transfer in the redox-labeled DNA at the electrode and can be an important determinant for electrochemical signaling in addition to its role in stabilizing the duplex structure. PMID:23153070

  10. 'Passive-roof' duplex geometry in the frontal structures of the Kirthar and Sulaiman mountain belts, Pakistan

    NASA Astrophysics Data System (ADS)

    Banks, C. J.; Warburton, J.

    Exploration for hydrocarbons over the past few years has greatly improved our understanding of the geometry of frontal mountain belt structures. In this study we introduce and discuss the concept of the 'Passive-roof duplex', using as the main example the Kirthar and Sulaiman Ranges in the Baluchistan Province of Pakistan. Structures similar to those described here have been recognized previously in other mountain belts, and they appear to exist as a common feature in many more frontal regions of mountain belts. Our example of a Passive-roof duplex which we describe from Pakistan is compared briefly with similar structures reported by others. The Passive-roof duplex is here defined as a duplex whose roof thrust has backthrust sense ( Passive-roof thrust) and whose roof sequence (those rocks lying above the roof thrust) remains relatively 'stationary' during foreland directed piggy-back style propagation of horses within the duplex.

  11. A case report of laparoscopic ipsilateral ureteroureterostomy in children with renal duplex

    PubMed Central

    Wong, Yuen Shan; Tam, Yuk Him; Pang, Kristine Kit Yi

    2016-01-01

    We report on two children aged 2 and 6 years, who underwent laparoscopic ipsilateral ureteroureterostomy for their renal duplex anomalies. Both patients had complete duplex and were investigated by ultrasound, micturating cystourethrogram, magnetic resonance urography, and radioisotope scan. One patient had high-grade vesicoureteral reflux to lower moiety complicated with recurrent urinary tract infections, while the other had obstruction to upper moiety due to ectopic ureter. The pathological moieties of both patients were functional. Both patients underwent laparoscopic ipsilateral ureteroureterostomy uneventfully without any intraoperative complications. Postoperative imagings confirmed successful outcomes after surgery. PMID:27014651

  12. 2'-O-[2-(guanidinium)ethyl]-modified oligonucleotides: stabilizing effect on duplex and triplex structures

    SciTech Connect

    Prakash, T.P.; Puschl, A.; Lesnik, E.; Mohan, V.; Tereshko, V.; Egli, M.; Manoharan, M.

    2010-03-08

    Oligonucleotides with a novel 2'-O-[2-(guanidinium)ethyl] (2'-O-GE) modification have been synthesized using a novel protecting group strategy for the guanidinium group. This modification enhances the binding affinity of oligonucleotides to RNA as well as duplex DNA ({Delta}T{sub m} 3.2 C per modification). The 2'-O-GE modified oligonucleotides exhibited exceptional resistance to nuclease degradation. The crystal structure of a palindromic duplex formed by a DNA oligonucleotide with a single 2'-O-GE modification was solved at 1.16 {angstrom} resolution.

  13. Importance of minor groove functional groups for the stability of DNA duplexes.

    PubMed

    Sun, Zhenhua; Chen, Dongli; Lan, Tao; McLaughlin, Larry W

    2002-11-01

    Eight oligonucleotide duplexes have been prepared with four pairs of selected complementary pairs of native/analogue heterocyclic bases incorporated at a selected test site. The base pairs vary in the nature of their functionality in the minor groove. Each pair has a minor groove purine amino group present or absent, and correspondingly has a minor grove pyrimidine carbonyl present or absent. Loss of duplex stability is most notable when the minor groove pyrimidine carbonyl is absent although in other respects normal Watson-Crick hydrogen bonding is maintained in these sequences. These differences in stability are discussed in terms of possible variations in minor groove hydration.

  14. Microstructure, Mechanical Properties, Hot-Die Forming, and Joining of 47XD Gamma TiAl Rolled Sheets

    NASA Technical Reports Server (NTRS)

    Das, G.; Draper, S.; Whittenberger, J. D.; Bartolotta, P. A.

    2001-01-01

    The microstructure and mechanical properties, along with the hot-die forming and joining of Ti-47Al-2Nb-2Mn-0.8 vol% TiB, sheets (known as 47XD), produced by a low-cost rolling process, were evaluated. A near-gamma microstructure was obtained in the as-rolled condition. The microstructures of heat-treated sheets ranged from a recrystallized equiaxed near-gamma microstructure at 1,200 to 1,310 C, to a duplex microstructure at 1,350 C, to a fully lamellar microstructure at 1,376 C. Tensile behavior was determined for unidirectionally rolled and cross-rolled sheets for room temperature (RT) to 816 C. Yield stress decreased gradually with increasing deformation temperature up to 704 C; above 704 C, it declined rapidly. Ultimate tensile strength exhibited a gradual decrease up to 537 C before peaking at 704 C, followed by a rapid decline at 816 C. The modulus showed a gradual decrease with temperature, reaching approximately 72% of the RT value at 816 C. Strain to failure increased slowly from RT to 537 C; between 537 C and 704 C it exhibited a phenomenal increase, suggesting that the ductile-brittle transition temperature was below 704 C. Fracture mode changed from transgranular fracture at low temperature, to a mixture of transgranular and intergranular fracture at intermediate temperature, to ductile fracture at 816 C, coupled with dynamic recrystallization at large strains. Creep rupture response was evaluated between 649 and 816 C over the stress range of 69 to 276 MPa. Deformation parameters for steady-state creep rate and time-to-rupture were similar: activation energies of approximately 350 kJ/mol and stress exponents of approximately 4.5. Hot-die forming of sheets into corrugations was done at elevated temperatures in vacuum. The process parameters to join sheets by diffusion bonding and brazing with TiCuNi 70 filler alloy were optimized for test coupons and successfully used to fabricate large truss-core and honeycomb structures. Nondestructive evaluation

  15. The {sigma} phase formation in annealed UNS S31803 duplex stainless steel: Texture aspects

    SciTech Connect

    Souza, C.M. Abreu, H.F.G.; Tavares, S.S.M.; Rebello, J.M.A.

    2008-09-15

    The influence of sigma phase precipitation on the texture of austenite in a duplex stainless steel UNS S31803 was investigated. Sigma phase quantification was precisely performed by electron backscattered scanning diffraction (EBSD) for some conditions. It was found that the increase of the sigma phase precipitation enhances the amount of Brass texture in the austenite phase.

  16. Real-Time Duplex Applications of Loop-Mediated AMPlification (LAMP) by Assimilating Probes

    PubMed Central

    Kubota, Ryo; Jenkins, Daniel M.

    2015-01-01

    Isothermal nucleic-acid amplification methods such as Loop-Mediated isothermal AMPlification (LAMP) are increasingly appealing alternatives to PCR for use in portable diagnostic system due to the low cost, weight, and power requirements of the instrumentation. As such, interest in developing new probes and other functionality based on the LAMP reaction has been intense. Here, we report on the development of duplexed LAMP assays for pathogen detection using spectrally unique Assimilating Probes. As proof of principle, we used a reaction for Salmonella enterica as a model coupled with a reaction for λ-phage DNA as an internal control, as well as a duplexed assay to sub-type specific quarantine strains of the bacterial wilt pathogen Ralstonia solanacearum. Detection limits for bacterial DNA analyzed in individual reactions was less than 100 genomic equivalents in all cases, and increased by one to two orders of magnitude when reactions were coupled in duplexed formats. Even so, due to the more robust activity of newly available strand-displacing polymerases, the duplexed assays reported here were more powerful than analogous individual reactions reported only a few years ago, and represent a significant advance for incorporation of internal controls to validate assay results in the field. PMID:25741765

  17. Base pairing and structural insights into the 5-formylcytosine in RNA duplex.

    PubMed

    Wang, Rui; Luo, Zhipu; He, Kaizhang; Delaney, Michael O; Chen, Doris; Sheng, Jia

    2016-06-01

    5-Formylcytidine (f(5)C), a previously discovered natural nucleotide in the mitochondrial tRNA of many species including human, has been recently detected as the oxidative product of 5-methylcytidine (m(5)C) through 5-hydroxymethylcytidine (hm(5)C) in total RNA of mammalian cells. The discovery indicated that these cytosine derivatives in RNA might also play important epigenetic roles similar as in DNA, which has been intensively investigated in the past few years. In this paper, we studied the base pairing specificity of f(5)C in different RNA duplex contexts. We found that the 5-formyl group could increase duplex thermal stability and enhance base pairing specificity. We present three high-resolution crystal structures of an octamer RNA duplex [5'-GUA(f(5)C)GUAC-3']2 that have been solved under three crystallization conditions with different buffers and pH values. Our results showed that the 5-formyl group is located in the same plane as the cytosine base and forms an intra-residue hydrogen bond with the amino group in the N4 position. In addition, this modification increases the base stacking between the f(5)C and the neighboring bases while not causing significant global and local structure perturbations. This work provides insights into the effects of 5-formylcytosine on RNA duplex. PMID:27079978

  18. Duplex PCR for detection of Salmonella and Shigella spp in cockle samples.

    PubMed

    Senachai, Pachara; Chomvarin, Chariya; Wongboot, Warawan; Boonyanugomol, Wongwarut; Tangkanakul, Waraluk

    2013-09-01

    Salmonella and Shigella spp are important causative agents of foodborne diseases. A sensitive, specific and rapid method is essential for detection of these pathogens. In this study, a duplex PCR method was developed for simultaneous detection of Salmonella and Shigella spp in cockle samples and compared with the traditional culture method. Enrichment broths for Salmonella spp recovery were also compared. Sensitivity of the duplex PCR for simultaneous detection of Salmonella and Shigella spp from pure culture was 10(3) CFU/ml (40 CFU/PCR reaction), and that of sterile cockle samples spiked with these two pathogens was 1 CFU/10 g of cockle tissue after 9 hours enrichment [3 hours in buffered peptone water (BPW), followed by 6 hours in Rappaport Vasiliadis (RV) broth or tetrathionate (TT) broth for Salmonella spp and 6 hours enrichment in Shigella broth (SB) for Shigella spp]. There was no significant difference in detection sensitivity between enrichment in RV and TT broths. Salmonella spp detected in cockles in Khon Kaen, Thailand by duplex PCR and culture method was 17% and 13%, respectively but Shigella spp was not detected. The duplex PCR technique developed for simultaneous detection of Salmonella and Shigella spp in cockle samples was highly sensitive, specific and rapid and could serve as a suitable method for food safety assessment.

  19. Duplex stabilities of phosphorothioate, methylphosphonate, and RNA analogs of two DNA 14-mers.

    PubMed Central

    Kibler-Herzog, L; Zon, G; Uznanski, B; Whittier, G; Wilson, W D

    1991-01-01

    The duplex stabilities of various phosphorothioate, methylphosphonate, RNA and 2'-OCH3 RNA analogs of two self-complementary DNA 14-mers are compared. Phosphorothioate and/or methylphosphonate analogs of the two sequences d(TAATTAATTAATTA) [D1] and d(TAGCTAATTAGCTA) [D2] differ in the number, position, or chirality (at the 5' terminal linkage) of the modified phosphates. Phosphorothioate derivatives of D1 are found to be less destabilized when the linkage modified is between adenines rather than between thymines. Surprisingly, no base sequence effect on duplex stabilization is observed for any methylphosphonate derivatives of D1 or D2. Highly modified phosphorothioates or methylphosphonates are less stable than their partially modified counterparts which are less stable than the unmodified parent compounds. The 'normal' (2'-OH) RNA analog of duplex D1 is slightly destabilized, whereas the 2'-OCH3 RNA derivative is significantly stabilized relative to the unmodified DNA. For the D1 sequence, at approximately physiological salt concentration, the order of duplex stability is 2'-OCH3 RNA greater than unmodified DNA greater than 'normal' RNA greater than methylphosphonate DNA greater than phosphorothioate DNA. D2 and the various D2 methylphosphonate analogs investigated all formed hairpin conformations at low salt concentrations. PMID:1711677

  20. Effects of a Protecting Osmolyte on The Ion Atmosphere Surrounding DNA Duplexes

    PubMed Central

    Blose, Joshua M.; Pabit, Suzette A.; Meisburger, Steve P.; Li, Li; Jones, Christopher D.; Pollack, Lois

    2012-01-01

    Osmolytes are small, chemically diverse, organic solutes that function as an essential component of cellular stress response. Protecting osmolytes enhance protein stability via preferential exclusion, and non-protecting osmolytes, such as urea, destabilize protein structures. Although much is known about osmolyte effects on proteins, less is understood about osmolyte effects on nucleic acids and their counterion atmospheres. Non-protecting osmolytes destabilize nucleic acid structures, but effects of protecting osmolytes depend on numerous factors including the type of nucleic acid and the complexity of the functional fold. To begin quantifying protecting osmolyte effects on nucleic acid interactions we used small angle x-ray scattering (SAXS) techniques to monitor DNA duplexes in the presence of sucrose. This protecting osmolyte is a commonly used contrast matching agent in SAXS studies of protein-nucleic acid complexes, thus it is important to characterize interaction changes induced by sucrose. Measurements of interactions between duplexes showed no dependence on the presence of up to 30% sucrose except under high Mg2+ conditions where stacking interactions were disfavored. The number of excess ions associated with DNA duplexes, reported by anomalous small angle x-ray scattering (ASAXS) experiments, was sucrose independent. Although protecting osmolytes can destabilize secondary structures, our results suggest that ion atmospheres of individual duplexes remain unperturbed by sucrose. PMID:21882885