Sample records for fine-structure constant variation

  1. CONSTRAINTS ON SPATIAL VARIATIONS IN THE FINE-STRUCTURE CONSTANT FROM PLANCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Bryan, Jon; Smidt, Joseph; De Bernardis, Francesco

    2015-01-01

    We use the cosmic microwave background (CMB) anisotropy data from Planck to constrain the spatial fluctuations of the fine-structure constant α at a redshift of 1100. We use a quadratic estimator to measure the four-point correlation function of the CMB temperature anisotropies and extract the angular power spectrum fine-structure constant spatial variations projected along the line of sight at the last scattering surface. At tens of degree angular scales and above, we constrain the fractional rms fluctuations of the fine-structure constant to be (δα/α){sub rms} < 3.4 × 10{sup –3} at the 68% confidence level. We find no evidence formore » a spatially varying α at a redshift of 10{sup 3}.« less

  2. Simple Model with Time-Varying Fine-Structure ``Constant''

    NASA Astrophysics Data System (ADS)

    Berman, M. S.

    2009-10-01

    Extending the original version written in colaboration with L.A. Trevisan, we study the generalisation of Dirac's LNH, so that time-variation of the fine-structure constant, due to varying electrical and magnetic permittivities is included along with other variations (cosmological and gravitational ``constants''), etc. We consider the present Universe, and also an inflationary scenario. Rotation of the Universe is a given possibility in this model.

  3. 21-cm radiation: a new probe of variation in the fine-structure constant.

    PubMed

    Khatri, Rishi; Wandelt, Benjamin D

    2007-03-16

    We investigate the effect of variation in the value of the fine-structure constant (alpha) at high redshifts (recombination > z > 30) on the absorption of the cosmic microwave background (CMB) at 21 cm hyperfine transition of the neutral atomic hydrogen. We find that the 21 cm signal is very sensitive to the variations in alpha and it is so far the only probe of the fine-structure constant in this redshift range. A change in the value of alpha by 1% changes the mean brightness temperature decrement of the CMB due to 21 cm absorption by >5% over the redshift range z < 50. There is an effect of similar magnitude on the amplitude of the fluctuations in the brightness temperature. The redshift of maximum absorption also changes by approximately 5%.

  4. Constraining possible variations of the fine structure constant in strong gravitational fields with the Kα iron line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambi, Cosimo, E-mail: bambi@fudan.edu.cn

    2014-03-01

    In extensions of general relativity and in theories aiming at unifying gravity with the forces of the Standard Model, the value of the ''fundamental constants'' is often determined by the vacuum expectation value of new fields, which may thus change in different backgrounds. Variations of fundamental constants with respect to the values measured today in laboratories on Earth are expected to be more evident on cosmological timescales and/or in strong gravitational fields. In this paper, I show that the analysis of the Kα iron line observed in the X-ray spectrum of black holes can potentially be used to probe themore » fine structure constant α in gravitational potentials relative to Earth of Δφ ≈ 0.1. At present, systematic effects not fully under control prevent to get robust and stringent bounds on possible variations of the value of α with this technique, but the fact that current data can be fitted with models based on standard physics already rules out variations of the fine structure constant larger than some percent.« less

  5. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th.

    PubMed

    Flambaum, V V

    2006-09-01

    The relative effects of the variation of the fine structure constant alpha = e2/variant Planck's over 2pi c and the dimensionless strong interaction parameter m(q)/LambdaQCD are enhanced by 5-6 orders of magnitude in a very narrow ultraviolet transition between the ground and the first excited states in the 229Th nucleus. It may be possible to investigate this transition with laser spectroscopy. Such an experiment would have the potential of improving the sensitivity to temporal variation of the fundamental constants by many orders of magnitude.

  6. A simple cosmology with a varying fine structure constant.

    PubMed

    Sandvik, Håvard Bunes; Barrow, John D; Magueijo, João

    2002-01-21

    We investigate the cosmological consequences of a theory in which the electric charge e can vary. In this theory the fine structure "constant," alpha, remains almost constant in the radiation era, undergoes a small increase in the matter era, but approaches a constant value when the universe starts accelerating because of a positive cosmological constant. This model satisfies geonuclear, nucleosynthesis, and cosmic microwave background constraints on time variation in alpha, while fitting the observed accelerating Universe and evidence for small alpha variations in quasar spectra. It also places specific restrictions on the nature of the dark matter. Further tests, involving stellar spectra and Eötvös experiments, are proposed.

  7. New Tests for Variations of the Fine Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    1995-01-01

    We describe a new test for possible variations of the fine structure constant, by comparisons of rates between clocks based on hyperfine transitions in alkali atomos with different atomic number Z. H- maser, Cs and Hg+ clocks have a different dependence on ia relativistic contributions of order (Z. Recent H-maser vs Hg+ clock comparison data improves laboratory limits on a time variation by 100-fold to giveFuture laser cooled clocks (Be+, Rb, Cs, Hg+, etc.), when compared, will yield the most senstive of all tests for.

  8. FAST TRACK COMMUNICATION Accurate estimate of α variation and isotope shift parameters in Na and Mg+

    NASA Astrophysics Data System (ADS)

    Sahoo, B. K.

    2010-12-01

    We present accurate calculations of fine-structure constant variation coefficients and isotope shifts in Na and Mg+ using the relativistic coupled-cluster method. In our approach, we are able to discover the roles of various correlation effects explicitly to all orders in these calculations. Most of the results, especially for the excited states, are reported for the first time. It is possible to ascertain suitable anchor and probe lines for the studies of possible variation in the fine-structure constant by using the above results in the considered systems.

  9. Variations in the fine-structure constant constraining gravity theories

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Cunha, M. S.; Muniz, C. R.; Tahim, M. O.; Vieira, H. S.

    2016-08-01

    In this paper, we investigate how the fine-structure constant, α, locally varies in the presence of a static and spherically symmetric gravitational source. The procedure consists in calculating the solution and the energy eigenvalues of a massive scalar field around that source, considering the weak-field regime. From this result, we obtain expressions for a spatially variable fine-structure constant by considering suitable modifications in the involved parameters admitting some scenarios of semi-classical and quantum gravities. Constraints on free parameters of the approached theories are calculated from astrophysical observations of the emission spectra of a white dwarf. Such constraints are finally compared with those obtained in the literature.

  10. Enhanced laboratory sensitivity to variation of the fine-structure constant using highly charged ions.

    PubMed

    Berengut, J C; Dzuba, V A; Flambaum, V V

    2010-09-17

    We study atomic systems that are in the frequency range of optical atomic clocks and have enhanced sensitivity to potential time variation of the fine-structure constant α. The high sensitivity is due to coherent contributions from three factors: high nuclear charge Z, high ionization degree, and significant differences in the configuration composition of the states involved. Configuration crossing keeps the frequencies in the optical range despite the large ionization energies. We discuss a few promising examples that have the largest α sensitivities seen in atomic systems.

  11. Atomic Clocks and Variations of the FIne Structure Constant

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    1995-01-01

    We describe a new test for possible variations of the fine structure constant alpha by comparisons of rates between clocks based on hyperfine transitions in alkali atoms with different atomic number Z. H-maser, Cs, and Hg(+) clocks have a different dependence on alpha via relativistic contributions of order (Z-alpha)(sup 2). Recent H-maser vs Hg(+) clock comparison data improve laboratory limits on a time variation by 100-fold to give dot-alpha less than or equal to 3.7 x 10(exp -14)/yr. Future laser cooled clocks (Be(+), Rb, Cs, Hg(+), etc.), when compared, will yield the most sensitive of all tests for dot-alpha/alpha.

  12. Chemical evolution of Mg isotopes versus the time variation of the fine structure constant.

    PubMed

    Ashenfelter, T; Mathews, Grant J; Olive, Keith A

    2004-01-30

    We show that the synthesis of (25,26)Mg at the base of the convective envelope in low-metallicity asymptotic giant branch stars can produce the isotopic ratios needed to explain the low-z subset (with z<1.8) of the many-multiplet data from quasar absorption systems without invoking a time variation of the fine structure constant. This is supported by observations of high abundances of the neutron-rich Mg isotopes in metal-poor globular-cluster stars. We conclude that the quasar absorption spectra may be providing interesting information on the nucleosynthetic history of such systems.

  13. Quark mass variations of nuclear forces, BBN, and all that

    NASA Astrophysics Data System (ADS)

    Meissner, Ulf-G.

    2014-03-01

    In this talk, I discuss the modifications of the nuclear forces due to variations of the light quark masses and of the fine structure constant. This is based on the chiral nuclear effective field theory, that successfully describes a large body of data. The generation of the light elements in the Big Bang Nucleosynthesis provides important constraints on these modifications. In addition, I discuss the role of the anthropic principle in the triple-alpha process that underlies carbon and oxygen generation in hot stars. It appears that a fine-tuning of the quark masses and the fine structure constant within 2 to 3 per cent is required to make life on Earth viable. Supported in part by DFG, HGF and the BMBF.

  14. Limit on the temporal variation of the fine-structure constant using atomic dysprosium.

    PubMed

    Cingöz, A; Lapierre, A; Nguyen, A-T; Leefer, N; Budker, D; Lamoreaux, S K; Torgerson, J R

    2007-01-26

    Over 8 months, we monitored transition frequencies between nearly degenerate, opposite-parity levels in two isotopes of atomic dysprosium (Dy). These frequencies are sensitive to variation of the fine-structure constant (alpha) due to relativistic corrections of opposite sign for the opposite-parity levels. In this unique system, in contrast to atomic-clock comparisons, the difference of the electronic energies of the opposite-parity levels can be monitored directly utilizing a rf electric-dipole transition between them. Our measurements show that the frequency variation of the 3.1-MHz transition in (163)Dy and the 235-MHz transition in (162)Dy are 9.0+/-6.7 Hz/yr and -0.6+/-6.5 Hz/yr, respectively. These results provide a rate of fractional variation of alpha of (-2.7+/-2.6) x 10(-15) yr(-1) (1 sigma) without assumptions on constancy of other fundamental constants, indicating absence of significant variation at the present level of sensitivity.

  15. Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance.

    PubMed

    Fortier, T M; Ashby, N; Bergquist, J C; Delaney, M J; Diddams, S A; Heavner, T P; Hollberg, L; Itano, W M; Jefferts, S R; Kim, K; Levi, F; Lorini, L; Oskay, W H; Parker, T E; Shirley, J; Stalnaker, J E

    2007-02-16

    We report tests of local position invariance and the variation of fundamental constants from measurements of the frequency ratio of the 282-nm 199Hg+ optical clock transition to the ground state hyperfine splitting in 133Cs. Analysis of the frequency ratio of the two clocks, extending over 6 yr at NIST, is used to place a limit on its fractional variation of <5.8x10(-6) per change in normalized solar gravitational potential. The same frequency ratio is also used to obtain 20-fold improvement over previous limits on the fractional variation of the fine structure constant of |alpha/alpha|<1.3x10(-16) yr-1, assuming invariance of other fundamental constants. Comparisons of our results with those previously reported for the absolute optical frequency measurements in H and 171Yb+ vs other 133Cs standards yield a coupled constraint of -1.5x10(-15)

  16. The variation of the fine-structure constant from disformal couplings

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Mifsud, Jurgen; Nunes, Nelson J.

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with the current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.

  17. The variation of the fine-structure constant from disformal couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Bruck, Carsten van; Mifsud, Jurgen; Nunes, Nelson J., E-mail: c.vandebruck@sheffield.ac.uk, E-mail: jmifsud1@sheffield.ac.uk, E-mail: njnunes@fc.ul.pt

    2015-12-01

    We study a theory in which the electromagnetic field is disformally coupled to a scalar field, in addition to a usual non-minimal electromagnetic coupling. We show that disformal couplings modify the expression for the fine-structure constant, α. As a result, the theory we consider can explain the non-zero reported variation in the evolution of α by purely considering disformal couplings. We also find that if matter and photons are coupled in the same way to the scalar field, disformal couplings itself do not lead to a variation of the fine-structure constant. A number of scenarios are discussed consistent with themore » current astrophysical, geochemical, laboratory and the cosmic microwave background radiation constraints on the cosmological evolution of α. The models presented are also consistent with the current type Ia supernovae constraints on the effective dark energy equation of state. We find that the Oklo bound in particular puts strong constraints on the model parameters. From our numerical results, we find that the introduction of a non-minimal electromagnetic coupling enhances the cosmological variation in α. Better constrained data is expected to be reported by ALMA and with the forthcoming generation of high-resolution ultra-stable spectrographs such as PEPSI, ESPRESSO, and ELT-HIRES. Furthermore, an expected increase in the sensitivity of molecular and nuclear clocks will put a more stringent constraint on the theory.« less

  18. Constraints on a possible variation of the fine structure constant from galaxy cluster data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holanda, R.F.L.; Landau, S.J.; Sánchez G, I.E.

    2016-05-01

    We propose a new method to probe a possible time evolution of the fine structure constant α from X-ray and Sunyaev-Zel'dovich measurements of the gas mass fraction ( f {sub gas}) in galaxy clusters. Taking into account a direct relation between variations of α and violations of the distance-duality relation, we discuss constraints on α for a class of dilaton runaway models. Although not yet competitive with bounds from high- z quasar absorption systems, our constraints, considering a sample of 29 measurements of f {sub gas}, in the redshift interval 0.14 < z < 0.89, provide an independent estimate ofmore » α variation at low and intermediate redshifts. Furthermore, current and planned surveys will provide a larger amount of data and thus allow to improve the limits on α variation obtained in the present analysis.« less

  19. Time variation of fundamental constants in nonstandard cosmological models

    NASA Astrophysics Data System (ADS)

    Mosquera, M. E.; Civitarese, O.

    2017-10-01

    In this work we have studied the lithium problem in nonstandard cosmological models. In particular, by using the public code alterbbn, we have included in the computation of the primordial light nuclei abundances, the effects of the inclusion of dark energy and dark entropy, along with the variation of the fine structure constant and the Higgs vacuum expectation value. In order to set constrains on the variation of the fundamental constants we have compared our theoretical results with the available observational data. We have found that the lithium abundance is reduced for not-null variation at the 3 σ -level of both constants.

  20. Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant.

    PubMed

    Berengut, J C; Dzuba, V A; Flambaum, V V; Ong, A

    2012-08-17

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf(16+) is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf(16+) has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  1. Enhanced sensitivity to the time variation of the fine-structure constant and m{p}/m{e} in diatomic molecules.

    PubMed

    Flambaum, V V; Kozlov, M G

    2007-10-12

    Sensitivity to temporal variation of the fundamental constants may be strongly enhanced in transitions between narrow close levels of different nature. This enhancement may be realized in a large number of molecules due to cancellation between the ground state fine-structure omega{f} and vibrational interval omega{v} [omega=omega{f}-nomega{v} approximately 0, delta omega/omega=K(2delta alpha/alpha+0.5 delta mu/mu), K>1, mu=m{p}/m{e}]. The intervals between the levels are conveniently located in microwave frequency range and the level widths are very small. Required accuracy of the shift measurements is about 0.01-1 Hz. As examples, we consider molecules Cl(+)(2), CuS, IrC, SiBr, and HfF(+).

  2. Assessing the dependency of the fine structure constant on gravity using hot DA white dwarfs

    NASA Astrophysics Data System (ADS)

    Barstow, Martin

    2016-10-01

    Variation of fundamental constants is a common theme of many theories of quantum gravity and Grand Unification. Using spectra obtained with the Hubble Space Telescope, it has been shown by Berengut et al. (2013), and Bagdonaite et al. (2014), that it is possible to place strong constraints on gravitational variations of the fine structure constant (alpha), and the proton to electron mass ratio (mu) in white dwarf stars.As part of the UV initiative, we propose to observe four hot DA white dwarf stars using STIS with the E140H grating, totalling 12 orbits. These four stars have been chosen so as to have a wide range of masses, allowing a full exploration of the compactness parameter space (M/R). We will measure several absorption features of Fe V and Ni V, and extract any potential variation in alpha in a manner similar to Berengut et al. (2013).This proposal will be a significant advance in the effort to detect gravitational variations in alpha. A confirmed detection of alpha variation would have extensive consequences for fundamental physics, cosmology, and would also signal the breakdown of Einstein's Equivalence principle, and hence, general relativity. Furthermore, a null detection would also allow strong limits to be placed on any potential alpha variation in a strong gravitational field.

  3. New Quasar Studies Keep Fundamental Physical Constant Constant

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold atoms together and the way light interacts with atoms. But are these fundamental physical constants really constant? Are those numbers always the same, everywhere in the Universe and at all times? This is not as naive a question as it may seem. Contemporary theories of fundamental interactions, such as the Grand Unification Theory or super-string theories that treat gravity and quantum mechanics in a consistent way, not only predict a dependence of fundamental physical constants with energy - particle physics experiments have shown the fine structure constant to grow to a value of about 1/128 at high collision energies - but allow for their cosmological time and space variations. A time dependence of the fundamental constants could also easily arise if, besides the three space dimensions, there exist more hidden dimensions. Already in 1955, the Russian physicist Lev Landau considered the possibility of a time dependence of alpha. In the late 1960s, George Gamow in the United States suggested that the charge of the electron, and therefore also alpha, may vary. It is clear however that such changes, if any, cannot be large or they would already have been detected in comparatively simple experiments. Tracking these possible changes thus requires the most sophisticated and precise techniques. Looking back in time In fact, quite strong constraints are already known to exist for the possible variation of the fine structure constant alpha. One such constraint is of geological nature. It is based on measures taken in the ancient natural fission reactor located near Oklo (Gabon, West Africa) and which was active roughly 2,000 million years ago. By studying the distribution of a given set of elements - isotopes of the rare earths, for example of samarium - which were produced by the fission of uranium, one can estimate whether the physical process happened at a faster or slower pace than we would expect it nowadays. Thus we can measure a possible change of the value of the fundamental constant at play here, alpha. However, the observed distribution of the elements is consistent with calculations assuming that the value of alpha at that time was precisely the same as the value today. Over the 2 billion years, the change of alpha has therefore to be smaller than about 2 parts per 100 millions. If present at all, this is a rather small change indeed. But what about changes much earlier in the history of the Universe? To measure this we must find means to probe still further into the past. And this is where astronomy can help. Because, even though astronomers can't generally do experiments, the Universe itself is a huge atomic physics laboratory. By studying very remote objects, astronomers can look back over a long time span. In this way it becomes possible to test the values of the physical constants when the Universe had only 25% of is present age, that is, about 10,000 million years ago. Very far beacons To do so, astronomers rely on spectroscopy - the measurement of the properties of light emitted or absorbed by matter. When the light from a flame is observed through a prism, a rainbow is visible. When sprinkling salt on the flame, distinct yellow lines are superimposed on the usual colours of the rainbow, so-called emission lines. Putting a gas cell between the flame and the prism, one sees however dark lines onto the rainbow: these are absorption lines. The wavelength of these emission and absorption lines is directly related to the energy levels of the atoms in the salt or in the gas. Spectroscopy thus allows us to study atomic structure. The fine structure of atoms can be observed spectroscopically as the splitting of certain energy levels in those atoms. So if alpha were to change over time, the emission and absorption spectra of these atoms would change as well. One way to look for any changes in the value of alpha over the history of the Universe is therefore to measure the spectra of distant quasars, and compare the wavelengths of certain spectral lines with present-day values. Quasars are here only used as a beacon - the flame - in the very distant Universe. Interstellar clouds of gas in galaxies, located between the quasars and us on the same line of sight and at distances varying from six to eleven thousand of million light years, absorb parts of the light emitted by the quasars. The resulting spectrum consequently presents dark "valleys" that can be attributed to well-known elements. If the fine-structure constant happens to change over the duration of the light's journey, the energy levels in the atoms would be affected and the wavelengths of the absorption lines would be shifted by different amounts. By comparing the relative gaps between the valleys with the laboratory values, it is possible to calculate alpha as a function of distance from us, that is, as a function of the age of the Universe. These measures are however extremely delicate and require a very good modelling of the absorption lines. They also put exceedingly strong requirements on the quality of the astronomical spectra. They must have enough resolution to allow very precise measurement of minuscule shifts in the spectra. And a sufficient number of photons must be captured in order to provide a statistically unambiguous result. For this, astronomers have to turn to the most advanced spectral instruments on the largest telescopes. This is where the Ultra-violet and Visible Echelle Spectrograph (UVES) and ESO's Kueyen 8.2-m telescope at the Paranal Observatory is unbeatable, thanks to the unequalled spectral quality and large collecting mirror area of this combination. Constant or not? ESO PR Photo 07/04 ESO PR Photo 07/04 Relative Changes with Redshift of the Fine Structure Constant [Preview - JPEG: 496 x 400 pix - 36k] [Normal - JPEG: 991 x 800 pix - 320k] Captions: ESO PR Photo 07/04 shows measured values of the relative change of alpha from the sample of absorption systems studied by Hum Chand and his colleagues, plotted as a function of the redshift and the corresponding look-back time. The open circle is the measurement from the Oklo natural reactor. The horizontal long dashed lines show the area of the previous claim of variation of the fine structure constant. Clearly, the new UVES data are inconsistent with this range. A team of astronomers [1], led by Patrick Petitjean (Institut d'Astrophysique de Paris and Observatoire de Paris, France) and Raghunathan Srianand (IUCAA Pune, India) very carefully studied a homogeneous sample of 50 absorption systems observed with UVES and Kueyen along 18 distant quasars lines of sight. They recorded the spectra of quasars over a total of 34 nights to achieve the highest possible spectral resolution and the best signal-to-noise ratio. Sophisticated automatic procedures specially designed for this programme were applied. In addition, the astronomers used extensive simulations to show that they can correctly model the line profiles to recover a possible variation of alpha. The result of this extensive study is that over the last 10,000 million years, the relative variation of alpha must be less than 0.6 part per million. This is the strongest constraint from quasar absorption lines studies to date. More importantly, this new result does not support previous claims of a statistically significant change of alpha with time. Interestingly, this result is supported by another - less extensive - analysis, also conducted with the UVES spectrometer on the VLT [2]. Even though those observations were only concerned with one of the brightest known quasar HE 0515-4414, this independent study lends further support to the hypothesis of no variation of alpha. Even though these new results represent a significant improvement in our knowledge of the possible (non-) variation of one of the fundamental physical constants, the present set of data would in principle still allow variations that are comparatively large compared to those resulting from the measurements from the Oklo natural reactor. Nevertheless, further progress in this field is expected with the new very-high-accuracy radial velocity spectrometer HARPS on ESO's 3.6-m telescope at the La Silla Observatory (Chile). This spectrograph works at the limit of modern technology and is mostly used to detect new planets around stars other than the Sun - it may provide an order of magnitude improvement on the determination of the variation of alpha. Other fundamental constants can be probed using quasars. In particular, by studying the wavelengths of molecular hydrogen in the remote Universe, one can probe the variations of the ratio between the masses of the proton and the electron. The same team is now engaged in such a large survey with the Very Large Telescope that should lead to unprecedented constraints on this ratio. More Information The research presented in this Press Release is based on papers published in Physical Review Letters ("Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars" by Raghunathan Srianand, Hum Chand, Patrick Petitjean, and Bastien Aracil) and in the leading European astronomy journal Astronomy & Astrophysics ("Probing the cosmological variation of the fine-structure constant: Results based on VLT-UVES sample" by Hum Chand, Raghunathan Srianand, Patrick Petitjean, and Bastien Aracil).

  4. Magnetic contributions in Bekenstein type models

    NASA Astrophysics Data System (ADS)

    Kraiselburd, Lucila; Castillo, Florencia L.; Mosquera, Mercedes E.; Vucetich, Héctor

    2018-02-01

    In this work, we analyze the spatial and time variation of the fine structure constant (α ) upon the theoretical framework developed by Bekenstein (Phys. Rev. D 66, 123514 (2002), 10.1103/PhysRevD.66.123514). We have computed the field ψ related to α at first order of the weak-field approximation and have also improved the estimation of the nuclear magnetic energy and, therefore, their contributions to the source term in the equation of motion of ψ . We obtained that the results are similar to the ones published in L. Kraiselburd and H. Vucetich, Int. J. Mod. Phys. E 20, 101 (2011) which were computed using the zero order of the approximation, showing that one can neglect the first order contribution to the variation of the fine structure constant. Through the comparison between our theoretical results and the observational data of the Eötvös-type experiments or the time variation of α over the cosmological time scale, we set constraints on the free parameter of the Bekenstein model, namely the Bekenstein length.

  5. Limit on the present temporal variation of the fine structure constant.

    PubMed

    Peik, E; Lipphardt, B; Schnatz, H; Schneider, T; Tamm, Chr; Karshenboim, S G

    2004-10-22

    The comparison of different atomic transition frequencies over time can be used to determine the present value of the temporal derivative of the fine structure constant alpha in a model-independent way without assumptions on constancy or variability of other parameters, allowing tests of the consequences of unification theories. We have measured an optical transition frequency at 688 THz in 171Yb+ with a cesium atomic clock at 2 times separated by 2.8 yr and find a value for the fractional variation of the frequency ratio f(Yb)/f(Cs) of (-1.2+/-4.4)x10(-15) yr(-1), consistent with zero. Combined with recently published values for the constancy of other transition frequencies this measurement sets an upper limit on the present variability of alpha at the level of 2.0x10(-15) yr(-1) (1sigma), corresponding so far to the most stringent limit from laboratory experiments.

  6. Rate Constants for Fine-Structure Excitations in O - H Collisions with Error Bars Obtained by Machine Learning

    NASA Astrophysics Data System (ADS)

    Vieira, Daniel; Krems, Roman

    2017-04-01

    Fine-structure transitions in collisions of O(3Pj) with atomic hydrogen are an important cooling mechanism in the interstellar medium; knowledge of the rate coefficients for these transitions has a wide range of astrophysical applications. The accuracy of the theoretical calculation is limited by inaccuracy in the ab initio interaction potentials used in the coupled-channel quantum scattering calculations from which the rate coefficients can be obtained. In this work we use the latest ab initio results for the O(3Pj) + H interaction potentials to improve on previous calculations of the rate coefficients. We further present a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate coefficients to variations of the underlying adiabatic interaction potentials. To account for the inaccuracy inherent in the ab initio calculations we compute error bars for the rate coefficients corresponding to 20% variation in each of the interaction potentials. We obtain these error bars by fitting a Gaussian Process model to a data set of potential curves and rate constants. We use the fitted model to do sensitivity analysis, determining the relative importance of individual adiabatic potential curves to a given fine-structure transition. NSERC.

  7. Two Clock Transitions in Neutral Yb for the Highest Sensitivity to Variations of the Fine-Structure Constant.

    PubMed

    Safronova, Marianna S; Porsev, Sergey G; Sanner, Christian; Ye, Jun

    2018-04-27

    We propose a new frequency standard based on a 4f^{14}6s6p ^{3}P_{0}-4f^{13}6s^{2}5d (J=2) transition in neutral Yb. This transition has a potential for high stability and accuracy and the advantage of the highest sensitivity among atomic clocks to variation of the fine-structure constant α. We find its dimensionless α-variation enhancement factor to be K=-15, in comparison to the most sensitive current clock (Yb^{+}  E3, K=-6), and it is 18 times larger than in any neutral-atomic clocks (Hg, K=0.8). Combined with the unprecedented stability of an optical lattice clock for neutral atoms, this high sensitivity opens new perspectives for searches for ultralight dark matter and for tests of theories beyond the standard model of elementary particles. Moreover, together with the well-established ^{1}S_{0}-^{3}P_{0} transition, one will have two clock transitions operating in neutral Yb, whose interleaved interrogations may further reduce systematic uncertainties of such clock-comparison experiments.

  8. Two Clock Transitions in Neutral Yb for the Highest Sensitivity to Variations of the Fine-Structure Constant

    NASA Astrophysics Data System (ADS)

    Safronova, Marianna S.; Porsev, Sergey G.; Sanner, Christian; Ye, Jun

    2018-04-01

    We propose a new frequency standard based on a 4 f146 s 6 p P0 3 -4 f136 s25 d (J =2 ) transition in neutral Yb. This transition has a potential for high stability and accuracy and the advantage of the highest sensitivity among atomic clocks to variation of the fine-structure constant α . We find its dimensionless α -variation enhancement factor to be K =-15 , in comparison to the most sensitive current clock (Yb+ E 3 , K =-6 ), and it is 18 times larger than in any neutral-atomic clocks (Hg, K =0.8 ). Combined with the unprecedented stability of an optical lattice clock for neutral atoms, this high sensitivity opens new perspectives for searches for ultralight dark matter and for tests of theories beyond the standard model of elementary particles. Moreover, together with the well-established 1S0-3P0 transition, one will have two clock transitions operating in neutral Yb, whose interleaved interrogations may further reduce systematic uncertainties of such clock-comparison experiments.

  9. New limits on variation of the fine-structure constant using atomic dysprosium.

    PubMed

    Leefer, N; Weber, C T M; Cingöz, A; Torgerson, J R; Budker, D

    2013-08-09

    We report on the spectroscopy of radio-frequency transitions between nearly degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant α owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of α, competitive with results obtained from the best atomic clocks in the world. Additionally, the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress common-mode systematic errors. The frequencies of the 754-MHz transition in 164Dy and 235-MHz transition in 162Dy are measured over the span of two years. The linear variation of α is α·/α=(-5.8±6.9([1σ]))×10(-17)  yr(-1), consistent with zero. The same data are used to constrain the dimensionless parameter kα characterizing a possible coupling of α to a changing gravitational potential. We find that kα=(-5.5±5.2([1σ]))×10(-7), essentially consistent with zero and the best constraint to date.

  10. Galaxy clusters, type Ia supernovae and the fine structure constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holanda, R.F.L.; Busti, V.C.; Colaço, L.R.

    2016-08-01

    As is well known, measurements of the Sunyaev-Zeldovich effect can be combined with observations of the X-ray surface brightness of galaxy clusters to estimate the angular diameter distance to these structures. In this paper, we show that this technique depends on the fine structure constant, α. Therefore, if α is a time-dependent quantity, e.g., α = α{sub 0}φ( z ), where φ is a function of redshift, we argue that current data do not provide the real angular diameter distance, D {sub A}( z ), to the cluster, but instead D {sub A}{sup data}( z ) = φ( z ){supmore » 2} D {sub A}( z ). We use this result to derive constraints on a possible variation of α for a class of dilaton runaway models considering a sample of 25 measurements of D {sub A}{sup data}( z ) in redshift range 0.023 < z < 0.784 and estimates of D {sub A}( z ) from current type Ia supernovae observations. We find no significant indication of variation of α with the present data.« less

  11. Indications of a spatial variation of the fine structure constant.

    PubMed

    Webb, J K; King, J A; Murphy, M T; Flambaum, V V; Carswell, R F; Bainbridge, M B

    2011-11-04

    We previously reported Keck telescope observations suggesting a smaller value of the fine structure constant α at high redshift. New Very Large Telescope (VLT) data, probing a different direction in the Universe, shows an inverse evolution; α increases at high redshift. Although the pattern could be due to as yet undetected systematic effects, with the systematics as presently understood the combined data set fits a spatial dipole, significant at the 4.2 σ level, in the direction right ascension 17.5 ± 0.9 h, declination -58 ± 9 deg. The independent VLT and Keck samples give consistent dipole directions and amplitudes, as do high and low redshift samples. A search for systematics, using observations duplicated at both telescopes, reveals none so far which emulate this result.

  12. g-Factor of heavy ions: a new access to the fine structure constant.

    PubMed

    Shabaev, V M; Glazov, D A; Oreshkina, N S; Volotka, A V; Plunien, G; Kluge, H-J; Quint, W

    2006-06-30

    A possibility for a determination of the fine structure constant in experiments on the bound-electron g-factor is examined. It is found that studying a specific difference of the g-factors of B- and H-like ions of the same spinless isotope in the Pb region to the currently accessible experimental accuracy of 7 x 10(-10) would lead to a determination of the fine structure constant to an accuracy which is better than that of the currently accepted value. Further improvements of the experimental and theoretical accuracy could provide a value of the fine structure constant which is several times more precise than the currently accepted one.

  13. Running vacuum in the Universe and the time variation of the fundamental constants of Nature

    NASA Astrophysics Data System (ADS)

    Fritzsch, Harald; Solà, Joan; Nunes, Rafael C.

    2017-03-01

    We compute the time variation of the fundamental constants (such as the ratio of the proton mass to the electron mass, the strong coupling constant, the fine-structure constant and Newton's constant) within the context of the so-called running vacuum models (RVMs) of the cosmic evolution. Recently, compelling evidence has been provided that these models are able to fit the main cosmological data (SNIa+BAO+H(z)+LSS+BBN+CMB) significantly better than the concordance Λ CDM model. Specifically, the vacuum parameters of the RVM (i.e. those responsible for the dynamics of the vacuum energy) prove to be nonzero at a confidence level ≳ 3σ . Here we use such remarkable status of the RVMs to make definite predictions on the cosmic time variation of the fundamental constants. It turns out that the predicted variations are close to the present observational limits. Furthermore, we find that the time evolution of the dark matter particle masses should be crucially involved in the total mass variation of our Universe. A positive measurement of this kind of effects could be interpreted as strong support to the "micro-macro connection" (viz. the dynamical feedback between the evolution of the cosmological parameters and the time variation of the fundamental constants of the microscopic world), previously proposed by two of us (HF and JS).

  14. Wall of fundamental constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olive, Keith A.; School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota, 55455; Peloso, Marco

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of themore » constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.« less

  15. Fine structure of heliumlike ions and determination of the fine structure constant.

    PubMed

    Pachucki, Krzysztof; Yerokhin, Vladimir A

    2010-02-19

    We report a calculation of the fine-structure splitting in light heliumlike atoms, which accounts for all quantum electrodynamical effects up to order alpha{5} Ry. For the helium atom, we resolve the previously reported disagreement between theory and experiment and determine the fine-structure constant with an accuracy of 31 ppb. The calculational results are extensively checked by comparison with the experimental data for different nuclear charges and by evaluation of the hydrogenic limit of individual corrections.

  16. Design of Far-Red Sensitizing Squaraine Dyes Aiming Towards the Fine Tuning of Dye Molecular Structure.

    PubMed

    Morimoto, Takuya; Fujikawa, Naotaka; Ogomi, Yuhei; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi

    2016-04-01

    Model squaraine dyes having sharp and narrow absorptions mainly in the far-red wavelength region has been logically designed, synthesized and used for their application as sensitizer in the dyesensitized solar cells (DSSC). In order to have fine control on energetics, dyes having same mother core and alkyl chain length varying only in molecular symmetry and position of substituent were designed. It has been found that even keeping all other structural factor constant, only positional variation of substituent leads to not only in the variation of energetics by 0.1 eV but affects the photovoltaic characteristics also. Optimum concentration of dye de-aggregating agent was found to be 100 times with respect to the sensitizing dye concentration. Amongst dyes utilized in this work best performance was obtained for unsymmetrical dye SQ-40 giving a photoconversion efficiency of 4.01% under simulated solar irradiation at global AM 1.5.

  17. Spatial and temporal variations of the fine-structure constant in the Finslerian universe

    NASA Astrophysics Data System (ADS)

    Li, Xin; Lin, Hai-Nan

    2017-06-01

    Recent observations show that the electromagnetic fine-structure constant, α e , may vary with space and time. In the framework of Finsler spacetime, we propose here an anisotropic cosmological model, in which both spatial and temporal variations of α e are allowed. Our model naturally leads to the dipole structure of α e , and predicts that the dipole amplitude increases with time. We fit our model to the most up-to-date measurements of α e from the quasar absorption lines. It is found that the dipole direction points towards (l,b) = (330.2°±7.3°,-13.0°±5.6°) in galactic coordinates, and the anisotropic parameter is b 0 = (0.47±0.09) × 10-5, which corresponds to a dipole amplitude (7.2±1.4)×10-8 at redshift z = 0.015. This is consistent with the upper limit of the variation of α e measured in the Milky Way. We also fit our model to Union2.1 type Ia supernovae, and find that the preferred direction of Union2.1 is consistent with the dipole direction of α e . Supported by Fundamental Research Funds for Central Universities (106112016CDJCR301206), National Natural Science Fund of China (11305181, 11547035, 11603005), and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1).

  18. Subaru Telescope limits on cosmological variations in the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Murphy, Michael T.; Cooksey, Kathy L.

    2017-11-01

    Previous, large samples of quasar absorption spectra have indicated some evidence for relative variations in the fine-structure constant (Δα/α) across the sky. However, they were likely affected by long-range distortions of the wavelength calibration, so it is important to establish a statistical sample of more reliable results from multiple telescopes. Here we triple the sample of Δα/α measurements from the Subaru Telescope which have been `supercalibrated' to correct for long-range distortions. A blinded analysis of the metallic ions in six intervening absorption systems in two Subaru quasar spectra provides no evidence for α variation, with a weighted mean of Δα/α = 3.0 ± 2.8stat ± 2.0sys parts per million (1σ statistical and systematic uncertainties). The main remaining systematic effects are uncertainties in the long-range distortion corrections, absorption profile models, and errors from redispersing multiple quasar exposures on to a common wavelength grid. The results also assume that terrestrial isotopic abundances prevail in the absorbers; assuming only the dominant terrestrial isotope is present significantly lowers Δα/α, though it is still consistent with zero. Given the location of the two quasars on the sky, our results do not support the evidence for spatial α variation, especially when combined with the 21 other recent measurements which were corrected for, or resistant to, long-range distortions. Our spectra and absorption profile fits are publicly available.

  19. Fundamental Physics from Observations of White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Bainbridge, M. B.; Barstow, M. A.; Reindl, N.; Barrow, J. D.; Webb, J. K.; Hu, J.; Preval, S. P.; Holberg, J. B.; Nave, G.; Tchang-Brillet, L.; Ayres, T. R.

    2017-03-01

    Variation in fundamental constants provide an important test of theories of grand unification. Potentially, white dwarf spectra allow us to directly observe variation in fundamental constants at locations of high gravitational potential. We study hot, metal polluted white dwarf stars, combining far-UV spectroscopic observations, atomic physics, atmospheric modelling and fundamental physics, in the search for variation in the fine structure constant. This registers as small but measurable shifts in the observed wavelengths of highly ionized Fe and Ni lines when compared to laboratory wavelengths. Measurements of these shifts were performed by Berengut et al (2013) using high-resolution STIS spectra of G191-B2B, demonstrating the validity of the method. We have extended this work by; (a) using new (high precision) laboratory wavelengths, (b) refining the analysis methodology (incorporating robust techniques from previous studies towards quasars), and (c) enlarging the sample of white dwarf spectra. A successful detection would be the first direct measurement of a gravitational field effect on a bare constant of nature. We describe our approach and present preliminary results.

  20. How fundamental are fundamental constants?

    NASA Astrophysics Data System (ADS)

    Duff, M. J.

    2015-01-01

    I argue that the laws of physics should be independent of one's choice of units or measuring apparatus. This is the case if they are framed in terms of dimensionless numbers such as the fine structure constant, ?. For example, the standard model of particle physics has 19 such dimensionless parameters whose values all observers can agree on, irrespective of what clock, rulers or scales? they use to measure them. Dimensional constants, on the other hand, such as ?, c, G, e and k ?, are merely human constructs whose number and values differ from one choice of units to the next. In this sense, only dimensionless constants are 'fundamental'. Similarly, the possible time variation of dimensionless fundamental 'constants' of nature is operationally well defined and a legitimate subject of physical enquiry. By contrast, the time variation of dimensional constants such as ? or ? on which a good many (in my opinion, confusing) papers have been written, is a unit-dependent phenomenon on which different observers might disagree depending on their apparatus. All these confusions disappear if one asks only unit-independent questions. We provide a selection of opposing opinions in the literature and respond accordingly.

  1. Analysis of Fe V and Ni V Wavelength Standards in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Ward, Jacob Wolfgang; Nave, Gillian

    2015-01-01

    The recent publication[1] by J.C. Berengut et al. tests for a potential variation in the fine-structure constant in the presence of high gravitational potentials through spectral analysis of white-dwarf stars.The spectrum of the white-dwarf star studied in the paper, G191-B2B, has prominent Fe V and Ni V lines, which were used to determine any variation in the fine-structure constant via observed shifts in the wavelengths of Fe V and Ni V in the vacuum ultraviolet region. The results of the paper indicate no such variation, but suggest that refined laboratory values for the observed wavelengths could greatly reduce the uncertainty associated with the paper's findings.An investigation of Fe V and Ni V spectra in the vacuum ultraviolet region has been conducted to reduce wavelength uncertainties currently limiting modern astrophysical studies of this nature. The analyzed spectra were produced by a sliding spark light source with electrodes made of invar, an iron nickel alloy, at peak currents of 750-2000 A. The use of invar ensures that systematic errors in the calibration are common to both species. The spectra were recorded with the NIST Normal Incidence Vacuum Spectrograph on phosphor image plate and photographic plate detectors. Calibration was done with a Pt II spectrum produced by a Platinum Neon Hollow Cathode lamp.[1] J. C. Berengut, V. V. Flambaum, A. Ong, et al Phys. Rev. Lett. 111, 010801 (2013)

  2. a Measurement of the Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Hensley, Joel M.; Wicht, Andreas; Sarajlic, Edina; Chu, Steven

    2002-06-01

    Using an atom interferometer method, we measure the recoil velocity of cesium due to the coherent scattering of a photon. This measurement is used to obtain a preliminary value of ħ/MCs and the fine structure constant, α, with an uncertainty Δα/α = 7.3 × 10-9.

  3. Distinguishing modified gravity models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Davis, Anne-Christine, E-mail: philippe.brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk

    2015-10-01

    Modified gravity models with screening in local environments appear in three different guises: chameleon, K-mouflage and Vainshtein mechanisms. We propose to look for differences between these classes of models by considering cosmological observations at low redshift. In particular, we analyse the redshift dependence of the fine structure constant and the proton to electron mass ratio in each of these scenarios. When the absorption lines belong to unscreened regions of space such as dwarf galaxies, a time variation would be present for chameleons. For both K-mouflage and Vainshtein mechanisms, the cosmological time variation of the scalar field is not suppressed inmore » both unscreened and screened environments, therefore enhancing the variation of constants and their detection prospect. We also consider the time variation of the redshift of distant objects using their spectrocopic velocities. We find that models of the K-mouflage and Vainshtein types have very different spectroscopic velocities as a function of redshift and that their differences with the Λ-CDM template should be within reach of the future ELT-HIRES observations.« less

  4. Determination of the fine structure constant using helium fine structure.

    PubMed

    Smiciklas, Marc; Shiner, David

    2010-09-17

    We measure 31,908,131.25(30) kHz for the 2(3)}P J=0 to 2 fine structure interval in helium. The difference between this and theory to order mα7 (20 Hz numerical uncertainty) implies 0.22(30) kHz for uncalculated terms. The measurement is performed by using atomic beam and electro-optic laser techniques. Various checks include a 3He 2{3}S hyperfine measurement. We can obtain an independent value for the fine structure constant α with a 5 ppb experimental uncertainty. However, dominant mα8 terms (potentially 1.2 kHz) limit the overall uncertainty to a less competitive 20 ppb in α.

  5. Quantum-gravity predictions for the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Held, Aaron; Wetterich, Christof

    2018-07-01

    Asymptotically safe quantum fluctuations of gravity can uniquely determine the value of the gauge coupling for a large class of grand unified models. In turn, this makes the electromagnetic fine-structure constant calculable. The balance of gravity and matter fluctuations results in a fixed point for the running of the gauge coupling. It is approached as the momentum scale is lowered in the transplanckian regime, leading to a uniquely predicted value of the gauge coupling at the Planck scale. The precise value of the predicted fine-structure constant depends on the matter content of the grand unified model. It is proportional to the gravitational fluctuation effects for which computational uncertainties remain to be settled.

  6. Dark energy and equivalence principle constraints from astrophysical tests of the stability of the fine-structure constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins, C.J.A.P.; Pinho, A.M.M.; Alves, R.F.C.

    2015-08-01

    Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α, are becoming an increasingly powerful probe of new physics. Here we discuss how these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ, to the electromagnetic sector) the α variation. Specifically, current data tightly constrains a combination of ζ and the present dark energy equation of state w{sub 0}. Moreover, inmore » these models the new degree of freedom inevitably couples to nucleons (through the α dependence of their masses) and leads to violations of the Weak Equivalence Principle. We obtain indirect bounds on the Eötvös parameter η that are typically stronger than the current direct ones. We discuss the model-dependence of our results and briefly comment on how the forthcoming generation of high-resolution ultra-stable spectrographs will enable significantly tighter constraints.« less

  7. Theoretical aspects of the equivalence principle

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    2012-09-01

    We review several theoretical aspects of the equivalence principle (EP). We emphasize the unsatisfactory fact that the EP maintains the absolute character of the coupling constants of physics, while general relativity and its generalizations (Kaluza-Klein, …, string theory) suggest that all absolute structures should be replaced by dynamical entities. We discuss the EP-violation phenomenology of dilaton-like models, which is likely to be dominated by the linear superposition of two effects: a signal proportional to the nuclear Coulomb energy, related to the variation of the fine-structure constant, and a signal proportional to the surface nuclear binding energy, related to the variation of the light quark masses. We recall various theoretical arguments (including a recently proposed anthropic argument) suggesting that the EP be violated at a small, but not unmeasurably small level. This motivates the need for improved tests of the EP. These tests are probing new territories in physics that are related to deep, and mysterious, issues in fundamental physics.

  8. Variation of fundamental constants on sub- and super-Hubble scales: From the equivalence principle to the multiverse

    NASA Astrophysics Data System (ADS)

    Uzan, Jean-Philippe

    2013-02-01

    Fundamental constants play a central role in many modern developments in gravitation and cosmology. Most extensions of general relativity lead to the conclusion that dimensionless constants are actually dynamical fields. Any detection of their variation on sub-Hubble scales would signal a violation of the Einstein equivalence principle and hence a lead to gravity beyond general relativity. On super-Hubble scales, or maybe should we say on super-universe scales, such variations are invoked as a solution to the fine-tuning problem, in connection with an anthropic approach.

  9. Measuring the fine structure constant with Bragg diffraction and Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Parker, Richard; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger

    2017-04-01

    We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δÎ+/-/Î+/-=0.25ppb in the fine structure constant measurement, which gives over 10 million radians of phase difference between freely evolving matter waves. We have suppressed many systematic effects known in most atom interferometers with Raman beam splitters such as light shift, Zeeman effect shift as well as vibration. We have also simulated multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implemented spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.

  10. New constraints on time-dependent variations of fundamental constants using Planck data

    NASA Astrophysics Data System (ADS)

    Hart, Luke; Chluba, Jens

    2018-02-01

    Observations of the cosmic microwave background (CMB) today allow us to answer detailed questions about the properties of our Universe, targeting both standard and non-standard physics. In this paper, we study the effects of varying fundamental constants (i.e. the fine-structure constant, αEM, and electron rest mass, me) around last scattering using the recombination codes COSMOREC and RECFAST++. We approach the problem in a pedagogical manner, illustrating the importance of various effects on the free electron fraction, Thomson visibility function and CMB power spectra, highlighting various degeneracies. We demonstrate that the simpler RECFAST++ treatment (based on a three-level atom approach) can be used to accurately represent the full computation of COSMOREC. We also include explicit time-dependent variations using a phenomenological power-law description. We reproduce previous Planck 2013 results in our analysis. Assuming constant variations relative to the standard values, we find the improved constraints αEM/αEM, 0 = 0.9993 ± 0.0025 (CMB only) and me/me, 0 = 1.0039 ± 0.0074 (including BAO) using Planck 2015 data. For a redshift-dependent variation, αEM(z) = αEM(z0) [(1 + z)/1100]p with αEM(z0) ≡ αEM, 0 at z0 = 1100, we obtain p = 0.0008 ± 0.0025. Allowing simultaneous variations of αEM(z0) and p yields αEM(z0)/αEM, 0 = 0.9998 ± 0.0036 and p = 0.0006 ± 0.0036. We also discuss combined limits on αEM and me. Our analysis shows that existing data are not only sensitive to the value of the fundamental constants around recombination but also its first time derivative. This suggests that a wider class of varying fundamental constant models can be probed using the CMB.

  11. Limits on variations in fundamental constants from 21-cm and ultraviolet Quasar absorption lines.

    PubMed

    Tzanavaris, P; Webb, J K; Murphy, M T; Flambaum, V V; Curran, S J

    2005-07-22

    Quasar absorption spectra at 21-cm and UV rest wavelengths are used to estimate the time variation of x [triple-bond] alpha(2)g(p)mu, where alpha is the fine structure constant, g(p) the proton g factor, and m(e)/m(p) [triple-bond] mu the electron/proton mass ratio. Over a redshift range 0.24 < or = zeta(abs) < or = 2.04, (Deltax/x)(weighted)(total) = (1.17 +/- 1.01) x 10(-5). A linear fit gives x/x = (-1.43 +/- 1.27) x 10(-15) yr(-1). Two previous results on varying alpha yield the strong limits Deltamu/mu = (2.31 +/- 1.03) x 10(-5) and Deltamu/mu=(1.29 +/- 1.01) x10(-5). Our sample, 8 x larger than any previous, provides the first direct estimate of the intrinsic 21-cm and UV velocity differences 6 km s(-1).

  12. Measuring h /mCs and the Fine Structure Constant with Bragg Diffraction and Bloch Oscillations

    NASA Astrophysics Data System (ADS)

    Parker, Richard

    2016-05-01

    We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δα / α =0.25ppb in the fine structure constant measurement, which gives up to 4.4 million radians of phase difference between freely evolving matter waves. We suppress many systematic effects, e.g., Zeeman shifts and effects from Earth's gravity and vibrations, use Bloch oscillations to increase the signal and reduce the diffraction phase, simulate multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implement spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.

  13. Fine structure in the transition region: reaction force analyses of water-assisted proton transfers.

    PubMed

    Yepes, Diana; Murray, Jane S; Santos, Juan C; Toro-Labbé, Alejandro; Politzer, Peter; Jaque, Pablo

    2013-07-01

    We have analyzed the variation of the reaction force F(ξ) and the reaction force constant κ(ξ) along the intrinsic reaction coordinates ξ of the water-assisted proton transfer reactions of HX-N = Y (X,Y = O,S). The profile of the force constant of the vibration associated with the reactive mode, k ξ (ξ), was also determined. We compare our results to the corresponding intramolecular proton transfers in the absence of a water molecule. The presence of water promotes the proton transfers, decreasing the energy barriers by about 12 - 15 kcal mol(-1). This is due in part to much smaller bond angle changes being needed than when water is absent. The κ(ξ) profiles along the intrinsic reaction coordinates for the water-assisted processes show striking and intriguing differences in the transition regions. For the HS-N = S and HO-N = S systems, two κ(ξ) minima are obtained, whereas for HO-N = O only one minimum is found. The k ξ (ξ) show similar behavior in the transition regions. We propose that this fine structure reflects the degree of synchronicity of the two proton migrations in each case.

  14. Do the Constants of Nature Couple to Strong Gravitational Fields?

    NASA Astrophysics Data System (ADS)

    Preval, Simon P.; Barstow, Martin A.; Holberg, Jay B.; Barrow, John; Berengut, Julian; Webb, John; Dougan, Darren; Hu, Jiting

    2015-06-01

    Recently, white dwarf stars have found a new use in the fundamental physics community. Many prospective theories of the fundamental interactions of Nature allow traditional constants, like the fine structure constant α, to vary in some way. A study by Berengut et al. (2013) used the Fe/Ni v line measurements made by Preval et al. (2013) from the hot DA white dwarf G191-B2B, in an attempt to detect any variation in α. It was found that the Fe v lines indicated an increasing alpha, whereas the Ni v lines indicated a decreasing alpha. Possible explanations for this could be misidentification of the lines, inaccurate atomic data, or wavelength dependent distortion in the spectrum. We examine the first two cases by using a high S/N reference spectrum from the hot sdO BD+28°4211 to calibrate the Fe/Ni v atomic data. With this new data, we re-evaluate the work of Berengut et al. (2013) to derive a new constraint on the variation of alpha in a gravitational field.

  15. Fine Structure of Dark Energy and New Physics

    DOE PAGES

    Jejjala, Vishnu; Kavic, Michael; Minic, Djordje

    2007-01-01

    Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of darkmore » energy and constrain the distribution function.« less

  16. One Electron Atom in Special Relativity with de Sitter Space-Time Symmetry

    NASA Astrophysics Data System (ADS)

    Yan, Mu-Lin

    2012-06-01

    The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ΛCDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that: (i) The fundamental physics constants me, ℏ, e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α ≡ e2/(ℏc) keeps to be invariant; (ii) (2s1/2-2p1/2)-splitting due to dS-SR QM effects: By means of perturbation theory, that splitting ΔE(z) are calculated analytically, which belongs to Script O(1/R2)-physics of dS-SR QM. Numerically, we find that when |R| ≃ {103 Gly, 104 Gly, 105 Gly}, and z ≃ {1, or 2}, the ΔE(z) ≫ 1 (Lamb shift). This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR.

  17. Fine structure constant and quantized optical transparency of plasmonic nanoarrays.

    PubMed

    Kravets, V G; Schedin, F; Grigorenko, A N

    2012-01-24

    Optics is renowned for displaying quantum phenomena. Indeed, studies of emission and absorption lines, the photoelectric effect and blackbody radiation helped to build the foundations of quantum mechanics. Nevertheless, it came as a surprise that the visible transparency of suspended graphene is determined solely by the fine structure constant, as this kind of universality had been previously reserved only for quantized resistance and flux quanta in superconductors. Here we describe a plasmonic system in which relative optical transparency is determined solely by the fine structure constant. The system consists of a regular array of gold nanoparticles fabricated on a thin metallic sublayer. We show that its relative transparency can be quantized in the near-infrared, which we attribute to the quantized contact resistance between the nanoparticles and the metallic sublayer. Our results open new possibilities in the exploration of universal dynamic conductance in plasmonic nanooptics.

  18. Topological quantization in units of the fine structure constant.

    PubMed

    Maciejko, Joseph; Qi, Xiao-Liang; Drew, H Dennis; Zhang, Shou-Cheng

    2010-10-15

    Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant α=e²/ℏc. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.

  19. Constraining the variation of the fine-structure constant with observations of narrow quasar absorption lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Songaila, A.; Cowie, L. L., E-mail: acowie@ifa.hawaii.edu

    2014-10-01

    The unequivocal demonstration of temporal or spatial variability in a fundamental constant of nature would be of enormous significance. Recent attempts to measure the variability of the fine-structure constant α over cosmological time, using high-resolution spectra of high-redshift quasars observed with 10 m class telescopes, have produced conflicting results. We use the many multiplet (MM) method with Mg II and Fe II lines on very high signal-to-noise, high-resolution (R = 72, 000) Keck HIRES spectra of eight narrow quasar absorption systems. We consider both systematic uncertainties in spectrograph wavelength calibration and also velocity offsets introduced by complex velocity structure inmore » even apparently simple and weak narrow lines and analyze their effect on claimed variations in α. We find no significant change in α, Δα/α = (0.43 ± 0.34) × 10{sup –5}, in the redshift range z = 0.7-1.5, where this includes both statistical and systematic errors. We also show that the scatter in measurements of Δα/α arising from absorption line structure can be considerably larger than assigned statistical errors even for apparently simple and narrow absorption systems. We find a null result of Δα/α = (– 0.59 ± 0.55) × 10{sup –5} in a system at z = 1.7382 using lines of Cr II, Zn II, and Mn II, whereas using Cr II and Zn II lines in a system at z = 1.6614 we find a systematic velocity trend that, if interpreted as a shift in α, would correspond to Δα/α = (1.88 ± 0.47) × 10{sup –5}, where both results include both statistical and systematic errors. This latter result is almost certainly caused by varying ionic abundances in subcomponents of the line: using Mn II, Ni II, and Cr II in the analysis changes the result to Δα/α = (– 0.47 ± 0.53) × 10{sup –5}. Combining the Mg II and Fe II results with estimates based on Mn II, Ni II, and Cr II gives Δα/α = (– 0.01 ± 0.26) × 10{sup –5}. We conclude that spectroscopic measurements of quasar absorption lines are not yet capable of unambiguously detecting variation in α using the MM method.« less

  20. Re/Os constraint on the time variability of the fine-structure constant.

    PubMed

    Fujii, Yasunori; Iwamoto, Akira

    2003-12-31

    We argue that the accuracy by which the isochron parameters of the decay 187Re-->187Os are determined by dating iron meteorites may constrain the possible time dependence of the decay rate and hence of the fine-structure constant alpha, not directly but only in a model-dependent manner. From this point of view, some of the attempts to analyze the Oklo constraint and the results of the quasistellar-object absorption lines are reexamined.

  1. New determination of the fine structure constant from the electron value and QED.

    PubMed

    Gabrielse, G; Hanneke, D; Kinoshita, T; Nio, M; Odom, B

    2006-07-21

    Quantum electrodynamics (QED) predicts a relationship between the dimensionless magnetic moment of the electron (g) and the fine structure constant (alpha). A new measurement of g using a one-electron quantum cyclotron, together with a QED calculation involving 891 eighth-order Feynman diagrams, determine alpha(-1)=137.035 999 710 (96) [0.70 ppb]. The uncertainties are 10 times smaller than those of nearest rival methods that include atom-recoil measurements. Comparisons of measured and calculated g test QED most stringently, and set a limit on internal electron structure.

  2. Precision microwave measurement of the 2(3)P(1)-2(3)P(0) interval in atomic helium: a determination of the fine-structure constant.

    PubMed

    George, M C; Lombardi, L D; Hessels, E A

    2001-10-22

    The 2(3)P(1)-to- 2(3)P(0) interval in atomic helium is measured using a thermal beam of metastable helium atoms excited to the 2(3)P state using a 1.08-microm diode laser. The 2(3)P(1)-to- 2(3)P(0) transition is driven by 29.6-GHz microwaves in a rectangular waveguide cavity. Our result of 29,616,950.9+/-0.9 kHz is the most precise measurement of helium 2(3)P fine structure. When compared to precise theory for this interval, this measurement leads to a determination of the fine-structure constant of 1/137.0359864(31).

  3. Effect of diurnal photosynthetic activity on the fine structure of amylopectin from normal and waxy barley starch.

    PubMed

    Goldstein, Avi; Annor, George; Blennow, Andreas; Bertoft, Eric

    2017-09-01

    The impact of diurnal photosynthetic activity on the fine structure of the amylopectin fraction of starch synthesized by normal barley (NBS) and waxy barley (WBS), the latter completely devoid of amylose biosynthesis, was determined following the cultivation under normal diurnal or constant light growing conditions. The amylopectin fine structures were analysed by characterizing its unit chain length profiles after enzymatic debranching as well as its φ,β-limit dextrins and its clusters and building blocks after their partial and complete hydrolysis with α-amylase from Bacillus amyloliquefaciens, respectively. Regardless of lighting conditions, no structural effects were found when comparing both the amylopectin side-chain distribution and the internal chain fragments of these amylopectins. However, the diurnally grown NBS and WBS both showed larger amylopectin clusters and these had lower branching density and longer average chain lengths than clusters derived from plants grown under constant light conditions. Amylopectin clusters from diurnally grown plants also consisted of a greater number of building blocks, and shorter inter-block chain lengths compared to clusters derived from plants grown under constant light. Our data demonstrate that the diurnal light regime influences the fine structure of the amylopectin component both in amylose and non-amylose starch granules. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Physics based calculation of the fine structure constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestone, John Paul

    2009-01-01

    We assume that the coupling between particles and photons is defined by a surface area and a temperature, and that the square of the temperature is the inverse of the surface area ({Dirac_h}=c= 1). By making assumptions regarding stimulated emission and effects associated with the finite length of a string that forms the particle surface, the fine structure constant is calculated to be {approx}1/137.04. The corresponding calculated fundamental unit of charge is 1.6021 x 10{sup -19} C.

  5. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant

    NASA Astrophysics Data System (ADS)

    Bainbridge, Matthew B.; Webb, John K.

    2017-06-01

    A new and automated method is presented for the analysis of high-resolution absorption spectra. Three established numerical methods are unified into one `artificial intelligence' process: a genetic algorithm (Genetic Voigt Profile FIT, gvpfit); non-linear least-squares with parameter constraints (vpfit); and Bayesian model averaging (BMA). The method has broad application but here we apply it specifically to the problem of measuring the fine structure constant at high redshift. For this we need objectivity and reproducibility. gvpfit is also motivated by the importance of obtaining a large statistical sample of measurements of Δα/α. Interactive analyses are both time consuming and complex and automation makes obtaining a large sample feasible. In contrast to previous methodologies, we use BMA to derive results using a large set of models and show that this procedure is more robust than a human picking a single preferred model since BMA avoids the systematic uncertainties associated with model choice. Numerical simulations provide stringent tests of the whole process and we show using both real and simulated spectra that the unified automated fitting procedure out-performs a human interactive analysis. The method should be invaluable in the context of future instrumentation like ESPRESSO on the VLT and indeed future ELTs. We apply the method to the zabs = 1.8389 absorber towards the zem = 2.145 quasar J110325-264515. The derived constraint of Δα/α = 3.3 ± 2.9 × 10-6 is consistent with no variation and also consistent with the tentative spatial variation reported in Webb et al. and King et al.

  6. Fine-structure constant constraints on dark energy. II. Extending the parameter space

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Pinho, A. M. M.; Carreira, P.; Gusart, A.; López, J.; Rocha, C. I. S. A.

    2016-01-01

    Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α , are a powerful probe of new physics. Recently these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, were used to constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ , to the electromagnetic sector) the α variation. One caveat of these analyses was that it was based on fiducial models where the dark energy equation of state was described by a single parameter (effectively its present day value, w0). Here we relax this assumption and study broader dark energy model classes, including the Chevallier-Polarski-Linder and early dark energy parametrizations. Even in these extended cases we find that the current data constrains the coupling ζ at the 1 0-6 level and w0 to a few percent (marginalizing over other parameters), thus confirming the robustness of earlier analyses. On the other hand, the additional parameters are typically not well constrained. We also highlight the implications of our results for constraints on violations of the weak equivalence principle and improvements to be expected from forthcoming measurements with high-resolution ultrastable spectrographs.

  7. Frequency metrology using highly charged ions

    NASA Astrophysics Data System (ADS)

    Crespo López-Urrutia, J. R.

    2016-06-01

    Due to the scaling laws of relativistic fine structure splitting, many forbidden optical transitions appear within the ground state configurations of highly charged ions (HCI). In some hydrogen-like ions, even the hyperfine splitting of the 1s ground state gives rise to optical transitions. Given the very low polarizability of HCI, such laser-accessible transitions are extremely impervious to external perturbations and systematics that limit optical clock performance and arise from AC and DC Stark effects, such as black-body radiation and light shifts. Moreover, AC and DC Zeeman splitting are symmetric due to the much larger relativistic spin-orbit coupling and corresponding fine-structure splitting. Appropriate choice of states or magnetic sub-states with suitable total angular momentum and magnetic quantum numbers can lead to a cancellation of residual quadrupolar shifts. All these properties are very advantageous for the proposed use of HCI forbidden lines as optical frequency standards. Extremely magnified relativistic, quantum electrodynamic, and nuclear size contributions to the binding energies of the optically active electrons make HCI ideal tools for fundamental research, as in proposed studies of a possible time variation of the fine structure constant. Beyond this, HCI that cannot be photoionized by vacuum-ultraviolet photons could also provide frequency standards for future lasers operating in that range.

  8. Dark energy with fine redshift sampling

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.

    2007-03-01

    The cosmological constant and many other possible origins for acceleration of the cosmic expansion possess variations in the dark energy properties slow on the Hubble time scale. Given that models with more rapid variation, or even phase transitions, are possible though, we examine the fineness in redshift with which cosmological probes can realistically be employed, and what constraints this could impose on dark energy behavior. In particular, we discuss various aspects of baryon acoustic oscillations, and their use to measure the Hubble parameter H(z). We find that currently considered cosmological probes have an innate resolution no finer than Δz≈0.2 0.3.

  9. g Factor of Light Ions for an Improved Determination of the Fine-Structure Constant.

    PubMed

    Yerokhin, V A; Berseneva, E; Harman, Z; Tupitsyn, I I; Keitel, C H

    2016-03-11

    A weighted difference of the g factors of the H- and Li-like ions of the same element is theoretically studied and optimized in order to maximize the cancellation of nuclear effects between the two charge states. We show that this weighted difference and its combination for two different elements can be used to extract a value for the fine-structure constant from near-future bound-electron g factor experiments with an accuracy competitive with or better than the present literature value.

  10. Variations in Grain-Scale Sediment Structure in a Gravel-Bed Channel as a Function of Fine Sediment Content and Morphological Location

    NASA Astrophysics Data System (ADS)

    Voepel, H.; Ahmed, S. I.; Hodge, R. A.; Leyland, J.; Sear, D. A.

    2016-12-01

    One of the major causes of uncertainty in estimates of bedload transport rates in gravel bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on bed stability. Furthermore, grain-scale structure varies throughout a channel and over time in ways that have not been fully quantified. Our research aims to quantify variations in sediment structure caused by two key variables; morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel bed with a riffle-pool morphology. The fine sediment content of the bed was incrementally increased over a series of runs from gravel only, to coarse sand, fine sand and two concentrations of clay. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure through metrics including measurement of grain pivot angles, grain exposure and protrusion, and vertical variation in bed porosity and fine sediment content. Metrics derived from the CT data were verified using data from grain counts and tilt-table measurements on co-located samples. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure. These results have implications for the development of sediment entrainment models for gravel bed rivers.

  11. Velocity structure of the shallow lunar crust

    NASA Technical Reports Server (NTRS)

    Gangi, A. F.; Yen, T. E.

    1979-01-01

    Data from the thumper shots of the Apollo 14 and Apollo 16 active seismic experiments, testing whether the velocity variation in the shallow lunar crust (depths less than or equal to 10 m) can be represented by a self-compacting-power-layer or by a constant-velocity-layer model, are analyzed. Although filtering and stacking improved the S/N ratios, it was found that measuring the arrival times or amplitudes of arrivals beyond 32 m was not possible. The data quality precluded a definitive distinction between the power-law velocity variation and the layered-velocity model. Furthermore, it was found that the shallow lunar regolith is made up of fine particles, which supports the idea of a 1/6 power-velocity model. Analysis of the amplitudes of first arrivals revealed large errors in the data due to variations in the geophone sensitivities and shot strengths; a least-squares method, that uses data redundancy was employed to eliminate them.

  12. Thermodynamics in variable speed of light theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Racker, Juan; Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque S/N; Sisterna, Pablo

    2009-10-15

    The perfect fluid in the context of a covariant variable speed of light theory proposed by J. Magueijo is studied. On the one hand the modified first law of thermodynamics together with a recipe to obtain equations of state are obtained. On the other hand the Newtonian limit is performed to obtain the nonrelativistic hydrostatic equilibrium equation for the theory. The results obtained are used to determine the time variation of the radius of Mercury induced by the variability of the speed of light (c), and the scalar contribution to the luminosity of white dwarfs. Using a bound for themore » change of that radius and combining it with an upper limit for the variation of the fine structure constant, a bound on the time variation of c is set. An independent bound is obtained from luminosity estimates for Stein 2015B.« less

  13. Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars.

    PubMed

    Srianand, R; Chand, H; Petitjean, P; Aracil, B

    2004-03-26

    We present the results of a detailed many-multiplet analysis performed on a new sample of Mg ii systems observed in high quality quasar spectra obtained using the Very Large Telescope. The weighted mean value of the variation in alpha derived from our analysis over the redshift range 0.4

  14. Laser Spectroscopy of the Fine-Structure Splitting in the 2^{3}P_{J} Levels of ^{4}He.

    PubMed

    Zheng, X; Sun, Y R; Chen, J-J; Jiang, W; Pachucki, K; Hu, S-M

    2017-02-10

    The fine-structure splitting in the 2^{3}P_{J} (J=0, 1, 2) levels of ^{4}He is of great interest for tests of quantum electrodynamics and for the determination of the fine-structure constant α. The 2^{3}P_{0}-2^{3}P_{2} and 2^{3}P_{1}-2^{3}P_{2} intervals are measured by laser spectroscopy of the ^{3}P_{J}-2^{3}S_{1} transitions at 1083 nm in an atomic beam, and are determined to be 31 908 130.98±0.13  kHz and 2 291 177.56±0.19  kHz, respectively. Compared with calculations, which include terms up to α^{5}Ry, the deviation for the α-sensitive interval 2^{3}P_{0}-2^{3}P_{2} is only 0.22 kHz. It opens the window for further improvement of theoretical predictions and an independent determination of the fine-structure constant α with a precision of 2×10^{-9}.

  15. Electronic structure study of Ce1-xAxO2 (A = Zr & Hf) nanoparticles: NEXAFS and EXAFS investigations.

    PubMed

    Sharma, Aditya; Varshney, Mayora; Shin, Hyun-Joon; Park, Yong Jun; Kim, Min-Gyu; Ha, Tae-Kyun; Chae, Keun Hwa; Gautam, Sanjeev

    2014-10-07

    Single phase nanoparticles (NPs) of CeO2, Ce0.5Zr0.5O2, Ce0.5Hf0.5O2 and Ce0.5Hf0.25Zr0.25O2 were successfully synthesized by co-precipitation method at constant pH and temperature. The X-ray diffraction results revealed that the additive atoms did not segregate to form secondary phases but led to grain size variation in the NPs. The 10 Dq values in the near edge X-ray absorption fine structure (NEXAFS) spectra at the O K-edge did not vary in the same way as the average grain size was changed for the doped CeO2 NPs. The deconvolution of Ce M5-edge and detailed analysis of O K pre-edge peak have shown the higher Ce(+3)/(Ce(+3) + Ce(+4)) ratio in the Zr- and Hf-doped samples. The local atomic structure around the Ce, Zr and Hf atoms was investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy at Ce K-edge, Zr K-edge and Hf L3-edge, respectively, and the EXAFS data were fitted with the theoretical calculations. The 4f occupancy, Ce(+3)/(Ce(+3) + Ce(+4)) ratio of Ce ions, coordination number of Ce and Ce-Ce/Ce-O bond distances were sensitive to the additive atoms but not explicitly changed according to the grain size variation in the NPs.

  16. Recovering fine details from under-resolved electron tomography data using higher order total variation ℓ 1 regularization

    DOE PAGES

    Sanders, Toby; Gelb, Anne; Platte, Rodrigo B.; ...

    2017-01-03

    Over the last decade or so, reconstruction methods using ℓ 1 regularization, often categorized as compressed sensing (CS) algorithms, have significantly improved the capabilities of high fidelity imaging in electron tomography. The most popular ℓ 1 regularization approach within electron tomography has been total variation (TV) regularization. In addition to reducing unwanted noise, TV regularization encourages a piecewise constant solution with sparse boundary regions. In this paper we propose an alternative ℓ 1 regularization approach for electron tomography based on higher order total variation (HOTV). Like TV, the HOTV approach promotes solutions with sparse boundary regions. In smooth regions however,more » the solution is not limited to piecewise constant behavior. We demonstrate that this allows for more accurate reconstruction of a broader class of images – even those for which TV was designed for – particularly when dealing with pragmatic tomographic sampling patterns and very fine image features. In conclusion, we develop results for an electron tomography data set as well as a phantom example, and we also make comparisons with discrete tomography approaches.« less

  17. Measurement of the fine-structure constant as a test of the Standard Model

    NASA Astrophysics Data System (ADS)

    Parker, Richard H.; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger

    2018-04-01

    Measurements of the fine-structure constant α require methods from across subfields and are thus powerful tests of the consistency of theory and experiment in physics. Using the recoil frequency of cesium-133 atoms in a matter-wave interferometer, we recorded the most accurate measurement of the fine-structure constant to date: α = 1/137.035999046(27) at 2.0 × 10‑10 accuracy. Using multiphoton interactions (Bragg diffraction and Bloch oscillations), we demonstrate the largest phase (12 million radians) of any Ramsey-Bordé interferometer and control systematic effects at a level of 0.12 part per billion. Comparison with Penning trap measurements of the electron gyromagnetic anomaly ge ‑ 2 via the Standard Model of particle physics is now limited by the uncertainty in ge ‑ 2; a 2.5σ tension rejects dark photons as the reason for the unexplained part of the muon’s magnetic moment at a 99% confidence level. Implications for dark-sector candidates and electron substructure may be a sign of physics beyond the Standard Model that warrants further investigation.

  18. QED Based Calculation of the Fine Structure Constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestone, John Paul

    2016-10-13

    Quantum electrodynamics is complex and its associated mathematics can appear overwhelming for those not trained in this field. Here, semi-classical approaches are used to obtain a more intuitive feel for what causes electrostatics, and the anomalous magnetic moment of the electron. These intuitive arguments lead to a possible answer to the question of the nature of charge. Virtual photons, with a reduced wavelength of λ, are assumed to interact with isolated electrons with a cross section of πλ 2. This interaction is assumed to generate time-reversed virtual photons that are capable of seeking out and interacting with other electrons. Thismore » exchange of virtual photons between particles is assumed to generate and define the strength of electromagnetism. With the inclusion of near-field effects the model presented here gives a fine structure constant of ~1/137 and an anomalous magnetic moment of the electron of ~0.00116. These calculations support the possibility that near-field corrections are the key to understanding the numerical value of the dimensionless fine structure constant.« less

  19. New determination of the fine structure constant and test of the quantum electrodynamics.

    PubMed

    Bouchendira, Rym; Cladé, Pierre; Guellati-Khélifa, Saïda; Nez, François; Biraben, François

    2011-02-25

    We report a new measurement of the ratio h/m(Rb) between the Planck constant and the mass of (87)Rb atom. A new value of the fine structure constant is deduced, α(-1)=137.035999037(91) with a relative uncertainty of 6.6×10(-10). Using this determination, we obtain a theoretical value of the electron anomaly a(e)=0.00115965218113(84), which is in agreement with the experimental measurement of Gabrielse [a(e)=0.00115965218073(28)]. The comparison of these values provides the most stringent test of the QED. Moreover, the precision is large enough to verify for the first time the muonic and hadronic contributions to this anomaly. © 2011 American Physical Society

  20. Simultaneous Speciation, Structure, and Equilibrium Constant Determination in the Ni2+-EDTA-CN- Ternary System via High-Resolution Laboratory X-ray Absorption Fine Structure Spectroscopy and Theoretical Calculations.

    PubMed

    Bajnóczi, Éva G; Németh, Zoltán; Vankó, György

    2017-11-20

    Even quite simple chemical systems can involve many components and chemical states, and sometimes it can be very difficult to differentiate them by their hardly separable physical-chemical properties. The Ni II -EDTA-CN - (EDTA = ethylenediaminetetraacetic acid) ternary system is a good example for this problem where, in spite of its fairly simple components and numerous investigations, several molecular combinations can exist, all of them not having been identified unambiguously yet. In order to achieve a detailed understanding of the reaction steps and chemical equilibria, methods are required in which the structural transitions in the different reaction steps can be followed via element-selective complex spectral feature sets. With the help of our recently developed von Hámos type high-resolution laboratory X-ray absorption spectrometer, both the structural variations and stability constants of the forming complexes were determined from the same measurement series, proving that X-ray absorption spectroscopy can be considered as a multifaced, table-top tool in coordination chemistry. Furthermore, with the help of theoretical calculations, independent structural evidence was also given for the formation of the [NiEDTA(CN)] 3- mixed complex.

  1. Measuring the Electron’s Charge and the Fine-Structure Constant by Counting Electrons on a Capacitor

    PubMed Central

    Williams, E. R.; Ghosh, Ruby N.; Martinis, John M.

    1992-01-01

    The charge of the electron can be determined by simply placing a known number of electrons on one electrode of a capacitor and measuring the voltage, Vs, across the capacitor. If Vs is measured in terms of the Josephson volt and the capacitor is measured in SI units then the fine-structure constant is the quantity determined. Recent developments involving single electron tunneling, SET, have shown bow to count the electrons as well as how to make an electrometer with sufficient sensitivity to measure the charge. PMID:28053434

  2. How changing physical constants and violation of local position invariance may occur?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flambaum, V. V.; Shuryak, E. V.

    2008-04-04

    Light scalar fields very naturally appear in modern cosmological models, affecting such parameters of Standard Model as electromagnetic fine structure constant {alpha}, dimensionless ratios of electron or quark mass to the QCD scale, m{sub e,q}/{lambda}{sub QCD}. Cosmological variations of these scalar fields should occur because of drastic changes of matter composition in Universe: the latest such event is rather recent (redshift z{approx}0.5), from matter to dark energy domination. In a two-brane model (we use as a pedagogical example) these modifications are due to changing distance to 'the second brane', a massive companion of 'our brane'. Back from extra dimensions, massivemore » bodies (stars or galaxies) can also affect physical constants. They have large scalar charge Q{sub d} proportional to number of particles which produces a Coulomb-like scalar field {phi} = Q{sub d}/r. This leads to a variation of the fundamental constants proportional to the gravitational potential, e.g. {delta}{alpha}/{alpha} = k{sub {alpha}}{delta}(GM/rc{sup 2}). We compare different manifestations of this effect, which is usually called violation of local position invariance. The strongest limits k{sub {alpha}}+0.17k{sub e} (-3.5{+-}6)*10{sup -7} are obtained from the measurements of dependence of atomic frequencies on the distance from Sun (the distance varies due to the ellipticity of the Earth's orbit)« less

  3. Fine structure constant defines visual transparency of graphene.

    PubMed

    Nair, R R; Blake, P; Grigorenko, A N; Novoselov, K S; Booth, T J; Stauber, T; Peres, N M R; Geim, A K

    2008-06-06

    There are few phenomena in condensed matter physics that are defined only by the fundamental constants and do not depend on material parameters. Examples are the resistivity quantum, h/e2 (h is Planck's constant and e the electron charge), that appears in a variety of transport experiments and the magnetic flux quantum, h/e, playing an important role in the physics of superconductivity. By and large, sophisticated facilities and special measurement conditions are required to observe any of these phenomena. We show that the opacity of suspended graphene is defined solely by the fine structure constant, a = e2/hc feminine 1/137 (where c is the speed of light), the parameter that describes coupling between light and relativistic electrons and that is traditionally associated with quantum electrodynamics rather than materials science. Despite being only one atom thick, graphene is found to absorb a significant (pa = 2.3%) fraction of incident white light, a consequence of graphene's unique electronic structure.

  4. Julius Edgar Lilienfeld Prize Talk: Measuring the Electron Magnetic Moment and the Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Gabrielse, Gerald

    2011-05-01

    The electron magnetic moment in Bohr magnetons has been measured to a precision of 3 parts in 1013. This measurement, with quantum electrodynamics (AED) theory, provides the most precise value of the fine structure constant. This measurement, with a value of the fine structure from other measurements, also tests QED and sets a limit on the internal structure of the electron. A one-electron quantum cyclotron is at the heart of the measurement -- an electron suspended in a magnetic field and cooled enough that its lowest cyclotron and spin quantum states can be deduced with quantum nondemolition (QND) measurements. A cylindrical Penning trap cavity inhibits spontaneous emission and feedback methods make the electron excite and sustain its own motion for detection. A new apparatus is being commissioned in pursuit of more precise measurements. Adapted methods are promising for observing a proton spin flip, which should make it possible to compare the antiproton and proton magnetic moments a million times more accurately than is currently possible.

  5. Rare variation facilitates inferences of fine-scale population structure in humans.

    PubMed

    O'Connor, Timothy D; Fu, Wenqing; Mychaleckyj, Josyf C; Logsdon, Benjamin; Auer, Paul; Carlson, Christopher S; Leal, Suzanne M; Smith, Joshua D; Rieder, Mark J; Bamshad, Michael J; Nickerson, Deborah A; Akey, Joshua M

    2015-03-01

    Understanding the genetic structure of human populations has important implications for the design and interpretation of disease mapping studies and reconstructing human evolutionary history. To date, inferences of human population structure have primarily been made with common variants. However, recent large-scale resequencing studies have shown an abundance of rare variation in humans, which may be particularly useful for making inferences of fine-scale population structure. To this end, we used an information theory framework and extensive coalescent simulations to rigorously quantify the informativeness of rare and common variation to detect signatures of fine-scale population structure. We show that rare variation affords unique insights into patterns of recent population structure. Furthermore, to empirically assess our theoretical findings, we analyzed high-coverage exome sequences in 6,515 European and African American individuals. As predicted, rare variants are more informative than common polymorphisms in revealing a distinct cluster of European-American individuals, and subsequent analyses demonstrate that these individuals are likely of Ashkenazi Jewish ancestry. Our results provide new insights into the population structure using rare variation, which will be an important factor to account for in rare variant association studies. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Relaxation of the structure of simple metal ion complexes in aqueous solutions at up to supercritical conditions

    USGS Publications Warehouse

    Mayanovic, Robert A.; Jayanetti, Sumedha; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2003-01-01

    Recently x-ray absorption fine structure (XAFS) studies of various ions in aqueous solutions showed a variation of cation-ligand bond lengths, often coupled with other structure changes, with increasing temperatures. Thus, the variations of the structure of several metal ion complexes with temperature based on observations from the X-ray absorption fine structure (XAFS) studies in the hope that it will stimulate the development of either first- principles theory or molecular dynamics simulations that might adequately describes these results are discussed.

  7. Rotational and fine structure of open-shell molecules in nearly degenerate electronic states

    NASA Astrophysics Data System (ADS)

    Liu, Jinjun

    2018-03-01

    An effective Hamiltonian without symmetry restriction has been developed to model the rotational and fine structure of two nearly degenerate electronic states of an open-shell molecule. In addition to the rotational Hamiltonian for an asymmetric top, this spectroscopic model includes the energy separation between the two states due to difference potential and zero-point energy difference, as well as the spin-orbit (SO), Coriolis, and electron spin-molecular rotation (SR) interactions. Hamiltonian matrices are computed using orbitally and fully symmetrized case (a) and case (b) basis sets. Intensity formulae and selection rules for rotational transitions between a pair of nearly degenerate states and a nondegenerate state have also been derived using all four basis sets. It is demonstrated using real examples of free radicals that the fine structure of a single electronic state can be simulated with either a SR tensor or a combination of SO and Coriolis constants. The related molecular constants can be determined precisely only when all interacting levels are simulated simultaneously. The present study suggests that analysis of rotational and fine structure can provide quantitative insights into vibronic interactions and related effects.

  8. Measurement of the fine-structure constant as a test of the Standard Model.

    PubMed

    Parker, Richard H; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger

    2018-04-13

    Measurements of the fine-structure constant α require methods from across subfields and are thus powerful tests of the consistency of theory and experiment in physics. Using the recoil frequency of cesium-133 atoms in a matter-wave interferometer, we recorded the most accurate measurement of the fine-structure constant to date: α = 1/137.035999046(27) at 2.0 × 10 -10 accuracy. Using multiphoton interactions (Bragg diffraction and Bloch oscillations), we demonstrate the largest phase (12 million radians) of any Ramsey-Bordé interferometer and control systematic effects at a level of 0.12 part per billion. Comparison with Penning trap measurements of the electron gyromagnetic anomaly g e - 2 via the Standard Model of particle physics is now limited by the uncertainty in g e - 2; a 2.5σ tension rejects dark photons as the reason for the unexplained part of the muon's magnetic moment at a 99% confidence level. Implications for dark-sector candidates and electron substructure may be a sign of physics beyond the Standard Model that warrants further investigation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Precision measurement of the three 2(3)P(J) helium fine structure intervals.

    PubMed

    Zelevinsky, T; Farkas, D; Gabrielse, G

    2005-11-11

    The three 2(3)P fine structure intervals of 4H are measured at an improved accuracy that is sufficient to test two-electron QED theory and to determine the fine structure constant alpha to 14 parts in 10(9). The more accurate determination of alpha, to a precision higher than attained with the quantum Hall and Josephson effects, awaits the reconciliation of two inconsistent theoretical calculations now being compared term by term. A low pressure helium discharge presents experimental uncertainties quite different than for earlier measurements and allows direct measurements of light pressure shifts.

  10. Acoustic fine structure may encode biologically relevant information for zebra finches.

    PubMed

    Prior, Nora H; Smith, Edward; Lawson, Shelby; Ball, Gregory F; Dooling, Robert J

    2018-04-18

    The ability to discriminate changes in the fine structure of complex sounds is well developed in birds. However, the precise limit of this discrimination ability and how it is used in the context of natural communication remains unclear. Here we describe natural variability in acoustic fine structure of male and female zebra finch calls. Results from psychoacoustic experiments demonstrate that zebra finches are able to discriminate extremely small differences in fine structure, which are on the order of the variation in acoustic fine structure that is present in their vocal signals. Results from signal analysis methods also suggest that acoustic fine structure may carry information that distinguishes between biologically relevant categories including sex, call type and individual identity. Combined, our results are consistent with the hypothesis that zebra finches can encode biologically relevant information within the fine structure of their calls. This study provides a foundation for our understanding of how acoustic fine structure may be involved in animal communication.

  11. Analyzing the Magnetopause Internal Structure: New Possibilities Offered by MMS Tested in a Case Study

    NASA Astrophysics Data System (ADS)

    Rezeau, L.; Belmont, G.; Manuzzo, R.; Aunai, N.; Dargent, J.

    2018-01-01

    We explore the structure of the magnetopause using a crossing observed by the Magnetospheric Multiscale (MMS) spacecraft on 16 October 2015. Several methods (minimum variance analysis, BV method, and constant velocity analysis) are first applied to compute the normal to the magnetopause considered as a whole. The different results obtained are not identical, and we show that the whole boundary is not stationary and not planar, so that basic assumptions of these methods are not well satisfied. We then analyze more finely the internal structure for investigating the departures from planarity. Using the basic mathematical definition of what is a one-dimensional physical problem, we introduce a new single spacecraft method, called LNA (local normal analysis) for determining the varying normal, and we compare the results so obtained with those coming from the multispacecraft minimum directional derivative (MDD) tool developed by Shi et al. (2005). This last method gives the dimensionality of the magnetic variations from multipoint measurements and also allows estimating the direction of the local normal when the variations are locally 1-D. This study shows that the magnetopause does include approximate one-dimensional substructures but also two- and three-dimensional structures. It also shows that the dimensionality of the magnetic variations can differ from the variations of other fields so that, at some places, the magnetic field can have a 1-D structure although all the plasma variations do not verify the properties of a global one-dimensional problem. A generalization of the MDD tool is proposed.

  12. The Effect of Quantum-Mechanical Interference on Precise Measurements of the n = 2 Triplet P Fine Structure of Helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsman, A.; Horbatsch, M.; Hessels, E. A., E-mail: hessels@yorku.ca

    2015-09-15

    For many decades, improvements in both theory and experiment of the fine structure of the n = 2 triplet P levels of helium have allowed for an increasingly precise determination of the fine-structure constant. Recently, it has been observed that quantum-mechanical interference between neighboring resonances can cause significant shifts, even if such neighboring resonances are separated by thousands of natural widths. The shifts depend in detail on the experimental method used for the measurement, as well as the specific experimental parameters employed. Here, we review how these shifts apply for the most precise measurements of the helium 2{sup 3}P fine-structuremore » intervals.« less

  13. Effects of interaural time differences in fine structure and envelope on lateral discrimination in electric hearing.

    PubMed

    Majdak, Piotr; Laback, Bernhard; Baumgartner, Wolf-Dieter

    2006-10-01

    Bilateral cochlear implant (CI) listeners currently use stimulation strategies which encode interaural time differences (ITD) in the temporal envelope but which do not transmit ITD in the fine structure, due to the constant phase in the electric pulse train. To determine the utility of encoding ITD in the fine structure, ITD-based lateralization was investigated with four CI listeners and four normal hearing (NH) subjects listening to a simulation of electric stimulation. Lateralization discrimination was tested at different pulse rates for various combinations of independently controlled fine structure ITD and envelope ITD. Results for electric hearing show that the fine structure ITD had the strongest impact on lateralization at lower pulse rates, with significant effects for pulse rates up to 800 pulses per second. At higher pulse rates, lateralization discrimination depended solely on the envelope ITD. The data suggest that bilateral CI listeners benefit from transmitting fine structure ITD at lower pulse rates. However, there were strong interindividual differences: the better performing CI listeners performed comparably to the NH listeners.

  14. Chemical composition of Martian fines

    NASA Technical Reports Server (NTRS)

    Clark, B. C.; Baird, A. K.; Weldon, R. J.; Tsusaki, D. M.; Schnabel, L.; Candelaria, M. P.

    1982-01-01

    Of the 21 samples acquired for the Viking X-ray fluorescence spectrometer, 17 were analyzed to high precision. Compared to typical terrestrial continental soils and lunar mare fines, the Martian fines are lower in Al, higher in Fe, and much higher in S and Cl concentrations. Protected fines at the two lander sites are almost indistinguishable, but concentration of the element S is somewhat higher at Utopia. Duricrust fragments, successfully acquired only at the Chryse site, invariably contained about 50% higher S than fines. No elements correlate positively with S, except Cl and possibly Mg. A sympathetic variation is found among the triad Si, Al, Ca; positive correlation occurs between Ti and Fe. Sample variabilities are as great within a few meters as between lander locations (4500 km apart), implying the existence of a universal Martian regolith component of constant average composition. The nature of the source materials for the regolith fines must be mafic to ultramafic.

  15. On the fine-structure constant in a plasma model of the fluctuating vacuum substratum

    NASA Technical Reports Server (NTRS)

    Cragin, B. L.

    1986-01-01

    The existence of an intimate connection between the quivering motion of electrons and positrons (Zitterbewegung), predicted by the Dirac equation, and the zero-point fluctuations of the vacuum is suggested. The nature of the proposed connection is discussed quantitatively, and an approximate self-consistency relation is derived, supplying a purely mathematical expression that relates the dimensionless coupling strengths (fine-structure constants) alpha sub e and alpha sub g of electromagnetism and gravity. These considerations provide a tentative explanation for the heretofore puzzling number 1/alpha sub e of about 137.036 and suggest that attempts to unify gravity with the electroweak and strong interactions will ultimately prove successful.

  16. Determination of the fine structure constant based on BLOCH oscillations of ultracold atoms in a vertical optical lattice.

    PubMed

    Cladé, Pierre; de Mirandes, Estefania; Cadoret, Malo; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François

    2006-01-27

    We report an accurate measurement of the recoil velocity of 87Rb atoms based on Bloch oscillations in a vertical accelerated optical lattice. We transfer about 900 recoil momenta with an efficiency of 99.97% per recoil. A set of 72 measurements of the recoil velocity, each one with a relative uncertainty of about 33 ppb in 20 min integration time, leads to a determination of the fine structure constant with a statistical relative uncertainty of 4.4 ppb. The detailed analysis of the different systematic errors yields to a relative uncertainty of 6.7 ppb. The deduced value of alpha-1 is 137.035 998 78(91).

  17. New measurement of the electron magnetic moment and the fine structure constant.

    PubMed

    Hanneke, D; Fogwell, S; Gabrielse, G

    2008-03-28

    A measurement using a one-electron quantum cyclotron gives the electron magnetic moment in Bohr magnetons, g/2=1.001 159 652 180 73 (28) [0.28 ppt], with an uncertainty 2.7 and 15 times smaller than for previous measurements in 2006 and 1987. The electron is used as a magnetometer to allow line shape statistics to accumulate, and its spontaneous emission rate determines the correction for its interaction with a cylindrical trap cavity. The new measurement and QED theory determine the fine structure constant, with alpha{-1}=137.035 999 084 (51) [0.37 ppb], and an uncertainty 20 times smaller than for any independent determination of alpha.

  18. Combination of BLOCH oscillations with a Ramsey-Bordé interferometer: new determination of the fine structure constant.

    PubMed

    Cadoret, Malo; de Mirandes, Estefania; Cladé, Pierre; Guellati-Khélifa, Saïda; Schwob, Catherine; Nez, François; Julien, Lucile; Biraben, François

    2008-12-05

    We report a new experimental scheme which combines atom interferometry with Bloch oscillations to provide a new measurement of the ratio h/mRb. By using Bloch oscillations, we impart to the atoms up to 1600 recoil momenta and thus we improve the accuracy on the recoil velocity measurement. The deduced value of h/mRb leads to a new determination of the fine structure constant alpha(-1) =137.03599945 (62) with a relative uncertainty of 4.6 x 10(-9). The comparison of this result with the value deduced from the measurement of the electron anomaly provides the most stringent test of QED.

  19. Cosmologies with varying speed of light: kinematic tests

    NASA Astrophysics Data System (ADS)

    Câmara, C. S.; Carvalho, J. C.; de Garcia Maia, M. R.

    2003-08-01

    In the last few years, there have appeared in the literature several models with variation of the fundamental constants of Nature, such as the speed of light (c), the elementary electric charge (e) and the Planck constant (h). The two main motivations for such interest are: (i) observations related to quasars that seem to indicate the fine structure constant is changing with time and (ii) the possibility that these models may solve some long standing problems of the standard cosmological model, without the need for inflation. In the present work, we obtain the expressions for lookback time, age of the universe, luminosity distance, angular diameter, and galaxy number counts versus redshift for the cosmological models with a power law dependence of the speed of light on the scale factor and the Hubble parameter. The Lorentz invariance and the principle of the general covariance are violated and the gravitational field equations have the same form as Einstein field equations with cosmological constant in a preferred reference frame postulated by the theory. We analyse the closed, open and flat Friedmann-Robertson-Walker (FRW) geometries. We have also obtained the limits imposed by the kinematic tests for the exponents m and n of the power laws of these models.

  20. Determinants of fish assemblage structure in Northwestern Great Plains streams

    USGS Publications Warehouse

    Mullen, J.A.; Bramblett, R.G.; Guy, C.S.; Zale, A.V.; Roberts, D.W.

    2011-01-01

    Prairie streams are known for their harsh and stochastic physical conditions, and the fish assemblages therein have been shown to be temporally variable. We assessed the spatial and temporal variation in fish assemblage structure in five intermittent, adventitious northwestern Great Plains streams representing a gradient of watershed areas. Fish assemblages and abiotic conditions varied more spatially than temporally. The most important variables explaining fish assemblage structure were longitudinal position and the proportion of fine substrates. The proportion of fine substrates increased proceeding upstream, approaching 100% in all five streams, and species richness declined upstream with increasing fine substrates. High levels of fine substrate in the upper reaches appeared to limit the distribution of obligate lithophilic fish species to reaches further downstream. Species richness and substrates were similar among all five streams at the lowermost and uppermost sites. However, in the middle reaches, species richness increased, the amount of fine substrate decreased, and connectivity increased as watershed area increased. Season and some dimensions of habitat (including thalweg depth, absolute distance to the main-stem river, and watershed size) were not essential in explaining the variation in fish assemblages. Fish species richness varied more temporally than overall fish assemblage structure did because common species were consistently abundant across seasons, whereas rare species were sometimes absent or perhaps not detected by sampling. The similarity in our results among five streams varying in watershed size and those from other studies supports the generalization that spatial variation exceeds temporal variation in the fish assemblages of prairie and warmwater streams. Furthermore, given longitudinal position, substrate, and stream size, general predictions regarding fish assemblage structure and function in prairie streams are possible. ?? American Fisheries Society 2011.

  1. Centrifugal techniques for measuring saturated hydraulic conductivity

    USGS Publications Warehouse

    Nimmo, John R.; Mello, Karen A.

    1991-01-01

    Centrifugal force is an alternative to large pressure gradients for the measurement of low values of saturated hydraulic conductivity (Ksat). With a head of water above a porous medium in a centrifuge bucket, both constant-head and falling-head measurements are practical at forces up to at least 1800 times normal gravity. Darcy's law applied to the known centrifugal potential leads to simple formulas for Ksat that are analogous to those used in the standard gravity-driven constant- and falling-head methods. Both centrifugal methods were tested on several fine-textured samples of soil and ceramic with Ksat between about 10−10 and 10−9 m/s. The results were compared to falling-head gravity measurements. The comparison shows most measurements agreeing to within 20% for a given sample, much of the variation probably resulting from run-to-run changes in sample structure. The falling-head centrifuge method proved to be especially simple in design and operation and was more accurate than the constant-head method. With modified apparatus, Ksat measurements less than 10−10 m/s should be attainable.

  2. Fine- and hyperfine structure investigations of the even-parity configuration system of the atomic holmium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.

    2018-04-01

    In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.

  3. Circular Dichroism reveals evidence of coupling between immunoglobulin constant and variable region secondary structure.

    PubMed

    Janda, Alena; Casadevall, Arturo

    2010-04-01

    Antibodies (Ab) are bifunctional molecules with two domains, a constant region (C) that confers effector properties and a variable (V) region responsible of antigen (Ag) binding. Historically the C and V regions were considered to be functionally independent, with Ag specificity being solely determined by the V region. However, recent studies suggest that the C region can affect Ab fine specificity. This has led to the proposal that the C(H) domain influences the structure of the V region, thus affecting Ab affinity and fine specificity. An inference from this proposal is that V region identical monoclonal Abs (mAbs) differing in C region (eg isotype) would manifest different secondary structures arising from isotype-induced variation in the V-C regions after Ag binding. We hypothesized that such effects could translate into differences in Circular Dichroism (CD) upon Ag-Ab complexes formation. Consequently we studied the interaction of a set of V region identical IgG(1), IgG(2a), IgG(2b) and IgG(3) mAbs with glucuronoxylomannan (GXM). The native CD spectra of the pairs IgG(1)/IgG(2a) and IgG(3)/IgG(2b) were strikingly similar, implying similar secondary structure content. GXM binding by IgG(1), IgG(2a), IgG(2b) and IgG(3) produced different CD changes, with the pairs IgG(1)/IgG(2a) and IgG(3)/IgG(2b) again manifesting qualitatively similar trends in secondary structure changes. The magnitude of the changes differed among the isotypes with IgG(2a)>IgG(3)>IgG(2b)>IgG(1). These differences in CD changes were interpreted to reflect differences in V-C secondary structures. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Inbreeding Avoidance Drives Consistent Variation of Fine-Scale Genetic Structure Caused by Dispersal in the Seasonal Mating System of Brandt’s Voles

    PubMed Central

    Liu, Xiao Hui; Yue, Ling Fen; Wang, Da Wei; Li, Ning; Cong, Lin

    2013-01-01

    Inbreeding depression is a major evolutionary and ecological force influencing population dynamics and the evolution of inbreeding-avoidance traits such as mating systems and dispersal. Mating systems and dispersal are fundamental determinants of population genetic structure. Resolving the relationships among genetic structure, seasonal breeding-related mating systems and dispersal will facilitate our understanding of the evolution of inbreeding avoidance. The goals of this study were as follows: (i) to determine whether females actively avoided mating with relatives in a group-living rodent species, Brandt’s voles (Lasiopodomys brandtii), by combined analysis of their mating system, dispersal and genetic structure; and (ii) to analyze the relationships among the variation in fine-genetic structure, inbreeding avoidance, season-dependent mating strategies and individual dispersal. Using both individual- and population-level analyses, we found that the majority of Brandt’s vole groups consisted of close relatives. However, both group-specific FISs, an inbreeding coefficient that expresses the expected percentage rate of homozygosity arising from a given breeding system, and relatedness of mates showed no sign of inbreeding. Using group pedigrees and paternity analysis, we show that the mating system of Brandt’s voles consists of a type of polygyny for males and extra-group polyandry for females, which may decrease inbreeding by increasing the frequency of mating among distantly-related individuals. The consistent variation in within-group relatedness, among-group relatedness and fine-scale genetic structures was mostly due to dispersal, which primarily occurred during the breeding season. Biologically relevant variation in the fine-scale genetic structure suggests that dispersal during the mating season may be a strategy to avoid inbreeding and drive the polygynous and extra-group polyandrous mating system of this species. PMID:23516435

  5. Methods for constraining fine structure constant evolution with OH microwave transitions.

    PubMed

    Darling, Jeremy

    2003-07-04

    We investigate the constraints that OH microwave transitions in megamasers and molecular absorbers at cosmological distances may place on the evolution of the fine structure constant alpha=e(2)/ variant Planck's over 2pi c. The centimeter OH transitions are a combination of hyperfine splitting and lambda doubling that can constrain the cosmic evolution of alpha from a single species, avoiding systematic errors in alpha measurements from multiple species which may have relative velocity offsets. The most promising method compares the 18 and 6 cm OH lines, includes a calibration of systematic errors, and offers multiple determinations of alpha in a single object. Comparisons of OH lines to the HI 21 cm line and CO rotational transitions also show promise.

  6. Tenth-order QED contribution to the electron g-2 and an improved value of the fine structure constant.

    PubMed

    Aoyama, Tatsumi; Hayakawa, Masashi; Kinoshita, Toichiro; Nio, Makiko

    2012-09-14

    This letter presents the complete QED contribution to the electron g-2 up to the tenth order. With the help of the automatic code generator, we evaluate all 12,672 diagrams of the tenth-order diagrams and obtain 9.16 (58)(α/π)(5). We also improve the eighth-order contribution obtaining -1.9097 (20)(α/π)(4), which includes the mass-dependent contributions. These results lead to a(e)(theory)=1,159,652,181.78(77)×10(-12). The improved value of the fine-structure constant α(-1)=137.035999173 (35) [0.25 ppb] is also derived from the theory and measurement of a(e).

  7. Manifestations of Dark matter and variation of the fundamental constants in atomic and astrophysical phenomena

    NASA Astrophysics Data System (ADS)

    Flambaum, Victor

    2016-05-01

    Low-mass boson dark matter particles produced after Big Bang form classical field and/or topological defects. In contrast to traditional dark matter searches, effects produced by interaction of an ordinary matter with this field and defects may be first power in the underlying interaction strength rather than the second or fourth power (which appears in a traditional search for the dark matter). This may give a huge advantage since the dark matter interaction constant is extremely small. Interaction between the density of the dark matter particles and ordinary matter produces both `slow' cosmological evolution and oscillating variations of the fundamental constants including the fine structure constant alpha and particle masses. Recent atomic dysprosium spectroscopy measurements and the primordial helium abundance data allowed us to improve on existing constraints on the quadratic interactions of the scalar dark matter with the photon, electron and light quarks by up to 15 orders of magnitude. Limits on the linear and quadratic interactions of the dark matter with W and Z bosons have been obtained for the first time. In addition to traditional methods to search for the variation of the fundamental constants (atomic clocks, quasar spectra, Big Bang Nucleosynthesis, etc) we discuss variations in phase shifts produced in laser/maser interferometers (such as giant LIGO, Virgo, GEO600 and TAMA300, and the table-top silicon cavity and sapphire interferometers), changes in pulsar rotational frequencies (which may have been observed already in pulsar glitches), non-gravitational lensing of cosmic radiation and the time-delay of pulsar signals. Other effects of dark matter and dark energy include apparent violation of the fundamental symmetries: oscillating or transient atomic electric dipole moments, precession of electron and nuclear spins about the direction of Earth's motion through an axion condensate, and axion-mediated spin-gravity couplings, violation of Lorentz symmetry and Einstein equivalence principle. Finally, we explore a possibility to explain the DAMA collaboration claim of dark matter detection by the dark matter scattering on electrons. We have shown that the electron relativistic effects increase the ionization differential cross section up to 3 orders of magnitude [9].

  8. Fine Aerosol Associated Non-Polar Organics in Jammu, AN Urban Location in the Foothill Region of North Western Himalayas

    NASA Astrophysics Data System (ADS)

    Yadav, S.; Bamotra, S.

    2017-12-01

    A comprehensive study was done on the mass, composition and sources of fine aerosol associated non-polar organics in Jammu, an urban location in the foothill region of North - Western Himalayas. Systematic multi-scale sampling was done from October, 2015 to February, 2017 to collect fine aerosol (PM2.5) samples every week using a Fine Particulate Sampler (Envirotech, APM 550 MFC) which operates at a constant flow rate of 16.7 L/minute. The Non- polar organic compounds comprising of n-alkanes, PAHs, isoprenoid hydrocarbons and nicotine were analyzed using Thermal desorption Gas Chromatography Mass Spectrometry (TD-GC-MS) method. The n-alkane associated diagnostic parameters include—mass weighted Averaged Chain Length (ACL); Carbon number with maximum concentration (Cmax); Petroleum derived n-alkanes (PNA%), Carbon Preference Index (CPI) and the percentage contribution of Wax n-alkanes from plants (WNA%). These diagnostic parameters along with PAH based molecular ratios were used to understand the diurnal and seasonal variations in different biogenic and petrogenic source contributions in this part of Himalayas. The presence of source specific tracers like Levoglucosan, Retene, Isoquinoline and nicotine also corroborated our findings. Further Fine aerosols associated Black Carbon, an important marker for burning was determined using Optical Transmissometer. Significant multiscale variations were found in the Fine aerosol load, associated Non-polar organics, source tracers/contributions and Black Carbon.

  9. Limits on the dependence of the fine-structure constant on gravitational potential from white-dwarf spectra.

    PubMed

    Berengut, J C; Flambaum, V V; Ong, A; Webb, J K; Barrow, John D; Barstow, M A; Preval, S P; Holberg, J B

    2013-07-05

    We propose a new probe of the dependence of the fine-structure constant α on a strong gravitational field using metal lines in the spectra of white-dwarf stars. Comparison of laboratory spectra with far-UV astronomical spectra from the white-dwarf star G191-B2B recorded by the Hubble Space Telescope Imaging Spectrograph gives limits of Δα/α=(4.2±1.6)×10(-5) and (-6.1±5.8)×10(-5) from FeV and NiV spectra, respectively, at a dimensionless gravitational potential relative to Earth of Δφ≈5×10(-5). With better determinations of the laboratory wavelengths of the lines employed these results could be improved by up to 2 orders of magnitude.

  10. Limits on the Dependence of the Fine-Structure Constant on Gravitational Potential from White-Dwarf Spectra

    NASA Astrophysics Data System (ADS)

    Berengut, J. C.; Flambaum, V. V.; Ong, A.; Webb, J. K.; Barrow, John D.; Barstow, M. A.; Preval, S. P.; Holberg, J. B.

    2013-07-01

    We propose a new probe of the dependence of the fine-structure constant α on a strong gravitational field using metal lines in the spectra of white-dwarf stars. Comparison of laboratory spectra with far-UV astronomical spectra from the white-dwarf star G191-B2B recorded by the Hubble Space Telescope Imaging Spectrograph gives limits of Δα/α=(4.2±1.6)×10-5 and (-6.1±5.8)×10-5 from FeV and NiV spectra, respectively, at a dimensionless gravitational potential relative to Earth of Δϕ≈5×10-5. With better determinations of the laboratory wavelengths of the lines employed these results could be improved by up to 2 orders of magnitude.

  11. Further evidence for cosmological evolution of the fine structure constant.

    PubMed

    Webb, J K; Murphy, M T; Flambaum, V V; Dzuba, V A; Barrow, J D; Churchill, C W; Prochaska, J X; Wolfe, A M

    2001-08-27

    We describe the results of a search for time variability of the fine structure constant alpha using absorption systems in the spectra of distant quasars. Three large optical data sets and two 21 cm and mm absorption systems provide four independent samples, spanning approximately 23% to 87% of the age of the universe. Each sample yields a smaller alpha in the past and the optical sample shows a 4 sigma deviation: Delta alpha/alpha = -0.72+/-0.18 x 10(-5) over the redshift range 0.5

  12. Cosmological constant and quantum gravitational corrections to the running fine structure constant.

    PubMed

    Toms, David J

    2008-09-26

    The quantum gravitational contribution to the renormalization group behavior of the electric charge in Einstein-Maxwell theory with a cosmological constant is considered. Quantum gravity is shown to lead to a contribution to the running charge not present when the cosmological constant vanishes. This reopens the possibility, suggested by Robinson and Wilczek, of altering the scaling behavior of gauge theories at high energies although our result differs. We show the possibility of an ultraviolet fixed point that is linked directly to the cosmological constant.

  13. Precise Measurements of the Masses of Cs, Rb and Na A New Route to the Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Rainville, Simon; Bradley, Michael P.; Porto, James V.; Thompson, James K.; Pritchard, David E.

    2001-01-01

    We report new values for the atomic masses of the alkali 133Cs, 87Rb, 85Rb, and 23Na with uncertainties ≤ 0.2 ppb. These results, obtained using Penning trap single ion mass spectrometry, are typically two orders of magnitude more accurate than previously measured values. Combined with values of h/m atom from atom interferometry measurements and accurate wavelength measurements for different atoms, these values will lead to new ppb-level determinations of the molar Planck constant N A h and the fine structure constant α. This route to α is based on simple physics. It can potentially achieve the several ppb level of accuracy needed to test the QED determination of α extracted from measurements of the electron g factor. We also demonstrate an electronic cooling technique that cools our detector and ion below the 4 K ambient temperature. This technique improves by about a factor of three our ability to measure the ion's axial motion.

  14. Contrasting patterns of fine-scale herb layer species composition in temperate forests

    NASA Astrophysics Data System (ADS)

    Chudomelová, Markéta; Zelený, David; Li, Ching-Feng

    2017-04-01

    Although being well described at the landscape level, patterns in species composition of forest herb layer are rarely studied at smaller scales. Here, we examined fine-scale environmental determinants and spatial structures of herb layer communities in thermophilous oak- and hornbeam dominated forests of the south-eastern part of the Czech Republic. Species composition of herb layer vegetation and environmental variables were recorded within a fixed grid of 2 × 2 m subplots regularly distributed within 1-ha quadrate plots in three forest stands. For each site, environmental models best explaining species composition were constructed using constrained ordination analysis. Spatial eigenvector mapping was used to model and account for spatial structures in community variation. Mean Ellenberg indicator values calculated for each subplot were used for ecological interpretation of spatially structured residual variation. The amount of variation explained by environmental and spatial models as well as the selection of variables with the best explanatory power differed among sites. As an important environmental factor, relative elevation was common to all three sites, while pH and canopy openness were shared by two sites. Both environmental and community variation was mostly coarse-scaled, as was the spatially structured portion of residual variation. When corrected for bias due to spatial autocorrelation, those environmental factors with already weak explanatory power lost their significance. Only a weak evidence of possibly omitted environmental predictor was found for autocorrelated residuals of site models using mean Ellenberg indicator values. Community structure was determined by different factors at different sites. The relative importance of environmental filtering vs. spatial processes was also site specific, implying that results of fine-scale studies tend to be shaped by local conditions. Contrary to expectations based on other studies, overall dominance of spatial processes at fine scale has not been detected. Ecologists should keep this in mind when making generalizations about community dynamics.

  15. The fine-structure intervals of (N-14)+ by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Varberg, Thomas D.; Evenson, Kenneth M.; Cooksy, Andrew L.

    1994-01-01

    The far-infrared laser magnetic resonance spectra associated with both fine-structure transitions in (N-14)+ in its ground P-3 state have been recorded. This is the first laboratory observation of the J = 1 left arrow 0 transition and its frequency has been determined two orders of magnitude more accurately than previously. The remeasurement of the J = 2 left arrow 1 spectrum revealed a small error in the previous laboratory measurements. The fine-structure splittings (free of hyperfine interactions) determined in this work are (delta)E(sub 10) = 1461.13190 (61) GHz, (delta)E(sub 21) = 2459.38006 (37) GHz. Zero-field transition frequencies which include the effects of hyperfine structure have also been calculated. Refined values for the hyperfine constants and the g(sub J) factors have been obtained.

  16. Fine structure of striations observed in barium plasma injections in the magnetospheric cleft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simons, D.J.; Eastman, T.E.; Pongratz, M.B.

    1976-01-01

    In January and November of 1975, the Los Alamos Scientific Laboratory sponsored four high altitude shaped charge barium plasma injections in the magnetospheric cleft region. These experiments were TORDO UNO (January 6), TORDO DOS (January 11), PERIQUITO UNO (November 25), and PERIQUITO DOS (November 28). All four injections took place near 500 km altitude, and optical data were taken from two aircraft and a ground station. The TORDO DOS and the PERIQUITO experiments showed rapid formation of striations (within one minute after injection), and fast horizontal spreading in contrast with TORDO UNO. In PERIQUITO DOS, the debris cloud spread magneticallymore » east-west with a small net northerly motion. TORDO UNO shows very rapid poleward motion, and the remaining two events resulted in magnetically east-west horizontal spreading, with no noticeable poleward motion. Striations observed in the PERIQUITO DOS experiment separate in opposite directions with relative velocities of up to 3 km/sec. These field-aligned structures appear to form in sheets of approximately constant magnetic latitude. Significant spatial variations occur on a scale of less than 200 meters. Spatial frequency power spectra across these striations have been determined at various times. Observations of the debris cloud and the fast barium streak show strong field-aligned coherency of striation fine structure, indicating a field line mapping of transverse electric fields and gradients.« less

  17. Fine Structure of Anomalously Intense Pulses of PSR J0814+7429 Radio Emission in the Decameter Range

    NASA Astrophysics Data System (ADS)

    Skoryk, A. O.; Ulyanov, O. M.; Zakharenko, V. V.; Shevtsova, A. I.; Vasylieva, I. Y.; Plakhov, M. S.; Kravtsov, I. M.

    2017-06-01

    Purpose: The fine structure of the anomalously intense pulses of PSR J0814+7429 (B0809+74) has been studied. The pulsar radio emission fine structure is investigated to determine its parameters in the lowest part of spectrum available for groundbased observations. Design/methodology/approach: The scattering measure in the interstellar plasma have been estimated using the spectral and correlation analyses of pulsar data recorded by the UTR-2 radio telescope. Results: Two characteristic time scales of the anomalously intense pulses fine structure of the PSR J0814+7429 radio emission have been found. The strongest pulses of this pulsar in the decameter range can have a duration of about t 2÷3 ms. These pulses are emitted in short series. In some cases, they are emitted over the low-intensity plateau consisting of the “long” subpulse component. Conclusions: The narrowest correlation scale of pulsar J0814+7429 radio emission corresponds to the doubled scattering time constant of the interstellar medium impulse response. Broader scale of the fine structure of its radio emission can be explained by the radiation of a short series of narrow pulses or relatively broad pulses inside this pulsar magnetosphere.

  18. Anthropics of aluminum-26 decay and biological homochirality

    NASA Astrophysics Data System (ADS)

    Sandora, McCullen

    2017-11-01

    Results of recent experiment reinstate feasibility to the hypothesis that biomolecular homochirality originates from beta decay. Coupled with hints that this process occurred extraterrestrially suggests aluminum-26 as the most likely source. If true, then its appropriateness is highly dependent on the half-life and energy of this decay. Demanding that this mechanism hold places new constraints on the anthropically allowed range for multiple parameters, including the electron mass, difference between up and down quark masses, the fine structure constant, and the electroweak scale. These new constraints on particle masses are tighter than those previously found. However, one edge of the allowed region is nearly degenerate with an existing bound, which, using what is termed here as `the principle of noncoincident peril', is argued to be a strong indicator that the fine structure constant must be an environmental parameter in the multiverse.

  19. Astronomical constraints on the cosmic evolution of the fine structure constant and possible quantum dimensions.

    PubMed

    Carilli, C L; Menten, K M; Stocke, J T; Perlman, E; Vermeulen, R; Briggs, F; de Bruyn , A G; Conway, J; Moore, C P

    2000-12-25

    We present measurements of absorption by the 21 cm hyperfine transition of neutral hydrogen toward radio sources at substantial look-back times. These data are used in combination with observations of rotational transitions of common interstellar molecules to set limits on the evolution of the fine structure constant: alpha/ alpha<3.5x10(-15) yr(-1), to a look-back time of 4.8 Gyr. In the context of string theory, the limit on the secular evolution of the scale factor of the compact dimensions, R, is &Rdot/ R<10(-15) yr(-1). Including terrestrial and other astronomical measurements places 2sigma limits on slow oscillations of R from the present to the epoch of cosmic nucleosynthesis, just seconds after the big bang, of DeltaR /R<10(-5).

  20. Polygamy and an absence of fine-scale structure in Dendroctonus ponderosae (Hopk.) (Coleoptera: Curcilionidae) confirmed using molecular markers

    PubMed Central

    Janes, J K; Roe, A D; Rice, A V; Gorrell, J C; Coltman, D W; Langor, D W; Sperling, F A H

    2016-01-01

    An understanding of mating systems and fine-scale spatial genetic structure is required to effectively manage forest pest species such as Dendroctonus ponderosae (mountain pine beetle). Here we used genome-wide single-nucleotide polymorphisms to assess the fine-scale genetic structure and mating system of D. ponderosae collected from a single stand in Alberta, Canada. Fine-scale spatial genetic structure was absent within the stand and the majority of genetic variation was best explained at the individual level. Relatedness estimates support previous reports of pre-emergence mating. Parentage assignment tests indicate that a polygamous mating system better explains the relationships among individuals within a gallery than the previously reported female monogamous/male polygynous system. Furthermore, there is some evidence to suggest that females may exploit the galleries of other females, at least under epidemic conditions. Our results suggest that current management models are likely to be effective across large geographic areas based on the absence of fine-scale genetic structure. PMID:26286666

  1. Fine-scale genetic population structure in a mobile marine mammal: inshore bottlenose dolphins in Moreton Bay, Australia.

    PubMed

    Ansmann, Ina C; Parra, Guido J; Lanyon, Janet M; Seddon, Jennifer M

    2012-09-01

    Highly mobile marine species in areas with no obvious geographic barriers are expected to show low levels of genetic differentiation. However, small-scale variation in habitat may lead to resource polymorphisms and drive local differentiation by adaptive divergence. Using nuclear microsatellite genotyping at 20 loci, and mitochondrial control region sequencing, we investigated fine-scale population structuring of inshore bottlenose dolphins (Tursiops aduncus) inhabiting a range of habitats in and around Moreton Bay, Australia. Bayesian structure analysis identified two genetic clusters within Moreton Bay, with evidence of admixture between them (F(ST) = 0.05, P = 0.001). There was only weak isolation by distance but one cluster of dolphins was more likely to be found in shallow southern areas and the other in the deeper waters of the central northern bay. In further analysis removing admixed individuals, southern dolphins appeared genetically restricted with lower levels of variation (AR = 3.252, π = 0.003) and high mean relatedness (r = 0.239) between individuals. In contrast, northern dolphins were more diverse (AR = 4.850, π = 0.009) and were mixing with a group of dolphins outside the bay (microsatellite-based STRUCTURE analysis), which appears to have historically been distinct from the bay dolphins (mtDNA Φ(ST) = 0.272, P < 0.001). This study demonstrates the ability of genetic techniques to expose fine-scale patterns of population structure and explore their origins and mechanisms. A complex variety of inter-related factors including local habitat variation, differential resource use, social behaviour and learning, and anthropogenic disturbances are likely to have played a role in driving fine-scale population structure among bottlenose dolphins in Moreton Bay. © 2012 Blackwell Publishing Ltd.

  2. Distribution of fine-scale mantle heterogeneity from observations of Pdiff coda

    USGS Publications Warehouse

    Earle, P.S.; Shearer, P.M.

    2001-01-01

    We present stacked record sections of Global Seismic Network data that image the average amplitude and polarization of the high-frequency Pdiff coda and investigate their implications on the depth extent of fine-scale (~10 km) mantle heterogeneity. The extended 1-Hz coda lasts for at least 150 sec and is observed to a distance of 130??. The coda's polarization angle is about the same as the main Pdiff arrival (4.4 sec/deg) and is nearly constant with time. Previous studies show that multiple scattering from heterogeneity restricted to the lowermost mantle generates an extended Pdiff coda with a constant polarization. Here we present an alternative model that satisfies our Pdiff observations. The model consists of single scattering from weak (~1%) fine-scale (~2 km) structures distributed throughout the mantle. Although this model is nonunique, it demonstrates that Pdiff coda observations do not preclude the existence of scattering contributions from the entire mantle.

  3. Fine structure of 25 extragalactic radio sources. [interferometric observations of quasars

    NASA Technical Reports Server (NTRS)

    Wittels, J. J.; Knight, C. A.; Shapiro, I. I.; Hinteregger, H. F.; Rogers, A. E. E.; Whitney, A. R.; Clark, T. A.; Hutton, L. K.; Marandino, G. E.; Niell, A. E.

    1975-01-01

    Interferometric observations taken at 7.8 GHz (gamma approximately = 3.8 cm) with five pairings of antennae of 25 extragalactic radio sources between April, 1972 and May, 1973 are reported. These sources exhibit a broad variety of fine structure from very simple to complex. The total flux and the correlated flux of some of the sources underwent large changes in a few weeks, while the structure and total power of others remained constant during the entire period of observation. Some aspects of the data processing and a discussion of errors are presented. Numerous figures are provided and explained. The individual radio sources are described in detail.

  4. Rotational and Fine Structure of Pseudo-Jahn Molecules with C_1 Symmetry

    NASA Astrophysics Data System (ADS)

    Liu, Jinjun

    2016-06-01

    It has been found in our previous works that rotational and fine-structure analysis of spectra involving nearly degenerate electronic states may aid in interpretation and analysis of the vibronic structure, specifically in the case of pseudo-Jahn-Teller (pJT) molecules with C_s symmetry. The spectral analysis of pJT derivatives (isopropoxy and cyclohexoxy of a prototypical JT molecule (the methoxy radical) allowed for quantitative determination of various contributions to the energy separation between the nearly degenerate electronic states, including the relativistic spin-orbit (SO) effect, the electrostatic interaction, and their zero-point energy difference. These states are coupled by SO and Coriolis interactions, which can also be determined accurately in rotational and fine structure analysis. Most recently, the spectroscopic model for rotational analysis of pJT molecules has been extended for analysis of molecules with C_1 symmetry, i.e., no symmetry. This model includes the six independently determinable components of the spin-rotation (SR) tensor and the three components of the SO and Coriolis interactions. It has been employed to simulate and fit high-resolution laser-induced fluorescence (LIF) spectra of jet-cooled alkoxy radicals with C_1 symmetry, including the 2-hexoxy and the 2-pentoxy radicals, as well as previously recorded LIF spectrum of the trans-conformer (defined by its OCCC dihedral angle) of the 2-butoxy radical. Although the LIF spectra can be reproduced by using either the SR constants or SO and Coriolis constants, the latter simulation offers results that are physically more meaningful whereas the SR constants have to be regarded as effective constants. Furthermore, we will review the SO and Coriolis constants of alkoxy radicals that have been investigated, starting from the well-studied methoxy radical (CH_3O). J. Liu, D. Melnik, and T. A. Miller, J. Chem. Phys. 139, 094308 (2013) J. Liu and T. A. Miller, J. Phys. Chem. A 118, 11871-11890 (2014) L. Stakhursky, L. Zu, J. Liu, and T. A. Miller, J. Chem. Phys. 125, 094316 (2006)

  5. The effective fine-structure constant of freestanding graphene measured in graphite.

    PubMed

    Reed, James P; Uchoa, Bruno; Joe, Young Il; Gan, Yu; Casa, Diego; Fradkin, Eduardo; Abbamonte, Peter

    2010-11-05

    Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, α(g)* (k,ω), the value of which approaches 0.14 ± 0.092 ~ 1/7 at low energy and large distances. This value is substantially smaller than the nominal α(g) = 2.2, suggesting that, on the whole, graphene is more weakly interacting than previously believed.

  6. Fundamental constants and high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Rahmani, H.; Whitmore, J. B.; Wendt, M.; Centurion, M.; Molaro, P.; Srianand, R.; Murphy, M. T.; Petitjean, P.; Agafonova, I. I.; D'Odorico, S.; Evans, T. M.; Levshakov, S. A.; Lopez, S.; Martins, C. J. A. P.; Reimers, D.; Vladilo, G.

    2014-01-01

    Absorption-line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine-structure constant, α, and the proton-to-electron mass ratio, μ = m_p/m_e, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in α on cosmological scales which may reach a fractional level of ≈ 10 ppm (parts per million). We are conducting a Large Programme of observations with the Very Large Telescope's Ultraviolet and Visual Echelle Spectrograph (UVES), and are obtaining high-resolution ({R ≈ 60 000}) and high signal-to-noise ratio (S/N ≈ 100) spectra calibrated specifically to study the variations of the fundamental constants. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. (2013) and Rahmani et al. (2013). A stringent bound for Δα/α is obtained for the absorber at z_abs = 1.6919 towards HE 2217-2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in α in this system is +1.3± 2.4_stat ± 1.0_sys ppm if Al II λ 1670 Å and three Fe II transitions are used, and +1.1 ± 2.6_stat ppm in a slightly different analysis with only Fe II transitions used. This is one of the tightest bounds on α-variation from an individual absorber and reveals no evidence for variation in α at the 3-ppm precision level (1σ confidence). The expectation at this sky position of the recently-reported dipolar variation of α is (3.2-5.4)±1.7 ppm depending on dipole model used and this constraint of Δα/α at face value is not supporting this expectation but not inconsistent with it at the 3σ level. For the proton-to-electron mass ratio the analysis of the H_2 absorption lines of the z_abs ≈ 2.4018 damped Lyα system towards HE 0027-1836 provides Δμ/μ = (-7.6 ± 8.1_stat ± 6.3_sys) ppm which is also consistent with a null variation. The cross-correlation analysis between individual exposures taken over three years and comparison with almost simultaneous asteroid observations revealed the presence of a possible wavelength dependent velocity drift as well as of inter-order distortions which probably dominate the systematic error and are a significant obstacle to achieve more accurate measurements. Based on observations obtained with UVES at the the 8.2 m Kueyen ESO telescope programme L185.A-0745.

  7. The NaK 1 1,3delta states: theoretical and experimental studies of fine and hyperfine structure of rovibrational levels near the dissociation limit.

    PubMed

    Wilkins, A D; Morgus, L; Hernandez-Guzman, J; Huennekens, J; Hickman, A P

    2005-09-22

    Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational levels of the 1 3delta state of NaK have been extended to include high lying rovibrational levels with v < or = 59, of which the highest levels lie within approximately 4 cm(-1) of the dissociation limit. A potential curve is determined using the inverted perturbation approximation method that reproduces these levels to an accuracy of approximately 0.026 cm(-1). For the largest values of v, the outer turning points occur near R approximately 12.7 angstroms, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The fine and hyperfine structure of the 1 3delta rovibrational levels has been fit using the matrix diagonalization method that has been applied to other states of NaK, leading to values of the spin-orbit coupling constant A(v) and the Fermi contact constant b(F). New values determined for v < or = 33 are consistent with values determined by a simpler method and reported earlier. The measured fine and hyperfine structure for v in the range 44 < or = v < or = 49 exhibits anomalous behavior whose origin is believed to be the mixing between the 1 3delta and 1 1delta states. The matrix diagonalization method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. The analysis leads to accurate values for A(v) and b(F) for all values of v < or = 49. For higher v (50 < or = v < or = 59), several rovibrational levels have been assigned, but the pattern of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from effects not included in the current model.

  8. A preliminary investigation of projectile shape effects in hypervelocity impact of a double-sheet structure

    NASA Technical Reports Server (NTRS)

    Morrison, R. H.

    1972-01-01

    Impact tests of a sphere and several cylinders of various masses and fineness ratios, all of aluminum, fired into an aluminum double-sheet structure at velocities near 7 km/sec, show that a cylinder, impacting in the direction of its axis, is considerably more effective as a penetrator than a sphere. Impacts of three cylinders of equal mass, but different fineness ratios, produced holes through the structures' rear sheet, whereas impact of a sphere of the same mass did not. Moreover, it was found that to prevent rear-sheet penetration, the mass of the 1/2-fineness-ratio cylinder had to be reduced by a factor greater than three. Further tests wherein the cylinder diameter was held constant while the cylinder length was systematically reduced showed that a cylinder with a fineness ratio of 0.07 and a mass of only 1/7 that of the sphere was still capable of producing a hole in the rear sheet.

  9. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    NASA Technical Reports Server (NTRS)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-01-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced at NASA's Kepler observatory.

  10. Energy, fine structure, hyperfine structure, and radiative transition rates of the high-lying multi-excited states for B-like neon

    NASA Astrophysics Data System (ADS)

    Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin

    2015-04-01

    The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.

  11. Solar Cycle Fine Structure and Surface Rotation from Ca II K-Line Time Series Data

    NASA Astrophysics Data System (ADS)

    Scargle, Jeff; Keil, Steve; Worden, Pete

    2011-10-01

    Analysis of three and a half decades of data from the NSO/AFRL/Sac Peak K-line monitoring program yields evidence for four components to the variation: (a) the solar cycle, with considerable fine structure and a quasi-periodicity of 122.4 days; (b) a stochastic process, faster than (a) and largely independent of it, (c) a quasi-periodic signal due to rotational modulation, and of course (d) observational errors (shown to be quite small). Correlation and power spectrum analyses elucidate periodic and aperiodic variation of these chromospheric parameters. Time-frequency analysis is especially useful for extracting information about differential rotation, and in particular elucidates the connection between its behavior and fine structure of the solar cycle on approximately one-year time scales. These results further suggest that similar analyses will be useful at detecting and characterizing differential rotation in stars from stellar light-curves such as those being produced by NASA's Kepler observatory. Component (b) consists of variations over a range of timescales, in the manner of a "1/f" random process. A time-dependent Wilson-Bappu effect appears to be present in the solar cycle variations (a), but not in the stochastic process (b). The data can be found at the National Solar Observatory web site http://nsosp.nso.edu/data/cak_mon.html, or by file transfer protocol at ftp://ftp.nso.edu/idl/cak.parameters.

  12. Fold-and-thrust belt evolution influenced by along and across strike thickness variations: new insights from brittle-ductile centrifuge analogue models

    NASA Astrophysics Data System (ADS)

    Santolaria Otin, Pablo; Harris, Lyal; Casas, Antonio; Soto, Ruth

    2014-05-01

    Using a new centrifuge analogue modelling approach, 38 models were performed to study the influence of along and across strike thickness variations of a ductile-brittle layered sequence on the kinematics and deformation style of fold-and-thrust belts. Four different series, changing the brittle-ductile thickness ratio in models with i) constant thickness, ii) across strike varying thickness, iii) along strike varying thickness and iv) along and across-strike varying thickness, were performed. The brittle sedimentary cover was simulated by "Moon Sand™", regular fine-grained quartz sand coated by polymer and synthetic rubber binders, allowing layers to be placed vertically in the centrifuge (impossible with normal sand). The ductile décollement (evaporites) was simulated by silicone putty (Crazy Aaron Enterprise's Thinking Putty™). Models were run step by step in a high-acceleration centrifuge attaining 900 g, what allows to drastically reduce the experimental time. In addition to surface observation and serial cross-sections at the end of the models, CT scans portray the progressive 3- and 4-dimensional evolution of several models. With constant thickness, the increase of the brittle-ductile ratio results in the decrease of the number of structures where shortening is accommodated and the development of structures does not follow a linear sequence. Across-strike thickness variations trigger the location of deformation towards the wedge front, precluding the emplacement of structures in the hinterland. Along-strike thickness changes result in the lateral variation of the number of structure and a differential displacement of the deformation front. The occurrence of oblique structures is enhanced in wedges with across and along strike thickness variations where, in addition, rotational domains are observed. Comparison with the South Pyrenean Central Unit, in the Southern Pyrenees, characterized by a west- and southward thinning of the pretectonic Mesozoic series, supports the experimental results. The structure of the South Pyrenean Central Unit, that thrusted over the molasse deposits of the Ebro Basin during the Eocene-Oligocene is strongly conditioned by the existence of a basal detachment in the Upper Triassic evaporites. During Pyrenean orogeny, from Late Cretaceous to Oligocene times, the Bóixols, Montsec and the Sierras Marginales thrust sheets were emplaced in piggy-back sequence. Its emplacement was accompanied with the lateral and southward migration of the Upper Triassic evaporites defining a salt province at the Sierras Marginales realm, where diapiric structures crop out. Contemporaneously with the Sierras Marginales emplacement, differential displacement triggered up to 70° of clockwise rotation of structures and sedimentaty cover in the westernmost edge of the SPCU.

  13. Fine- and hyperfine structure investigations of even configuration system of atomic terbium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.

    2017-03-01

    In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).

  14. Variation Principles and Applications in the Study of Cell Structure and Aging

    NASA Technical Reports Server (NTRS)

    Economos, Angelos C.; Miquel, Jaime; Ballard, Ralph C.; Johnson, John E., Jr.

    1981-01-01

    In this report we have attempted to show that "some reality lies concealed in biological variation". This "reality" has its principles, laws, mechanisms, and rules, only a few of which we have sketched. A related idea we pursued was that important information may be lost in the process of ignoring frequency distributions of physiological variables (as is customary in experimental physiology and gerontology). We suggested that it may be advantageous to expand one's "statistical field of vision" beyond simple averages +/- standard deviations. Indeed, frequency distribution analysis may make visible some hidden information not evident from a simple qualitative analysis, particularly when the effect of some external factor or condition (e.g., aging, dietary chemicals) is being investigated. This was clearly illustrated by the application of distribution analysis in the study of variation in mouse liver cellular and fine structure, and may be true of fine structural studies in general. In living systems, structure and function interact in a dynamic way; they are "inseparable," unlike in technological systems or machines. Changes in fine structure therefore reflect changes in function. If such changes do not exceed a certain physiologic range, a quantitative analysis of structure will provide valuable information on quantitative changes in function that may not be possible or easy to measure directly. Because there is a large inherent variation in fine structure of cells in a given organ of an individual and among individuals, changes in fine structure can be analyzed only by studying frequency distribution curves of various structural characteristics (dimensions). Simple averages +/- S.D. do not in general reveal all information on the effect of a certain factor, because often this effect is not uniform; on the contrary, this will be apparent from distribution analysis because the form of the curves will be affected. We have also attempted to show in this chapter that similar general statistical principles and mechanisms may be operative in biological and technological systems. Despite the common belief that most biological and technological characteristics of interest have a symmetric bell-shaped (normal or Gaussian) distribution, we have shown that more often than not, distributions tend to be asymmetric and often resemble a so-called log-normal distribution. We saw that at least three general mechanisms may be operative, i.e., nonadditivity of influencing factors, competition among individuals for a common resource, and existence of an "optimum" value for a studied characteristic; more such mechanisms could exist.

  15. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: Statistical distribution and height-dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldmann, Elias, E-mail: goldmann@itp.uni-bremen.de; Barthel, Stefan; Florian, Matthias

    The variation of the excitonic fine-structure splitting is studied for semiconductor quantum dots under the influence of a strain-reducing layer, utilized to shift the emission wavelength of the excitonic transition into the telecom-wavelength regime of 1.3–1.5 μm. By means of a sp{sup 3}s{sup *}-tight-binding model and configuration interaction, we calculate wavelength shifts and fine-structure splittings for various quantum dot geometries. We find the splittings remaining small and even decreasing with strain-reducing layer composition for quantum dots with large height. Combined with an observed increased emission efficiency, the applicability for generation of entanglement photons is persistent.

  16. Capturing local structure modulations of photoexcited BiVO4 by ultrafast transient XAFS.

    PubMed

    Uemura, Yohei; Kido, Daiki; Koide, Akihiro; Wakisaka, Yuki; Niwa, Yasuhiro; Nozawa, Shunsuke; Ichiyanagi, Kohei; Fukaya, Ryo; Adachi, Shin-Ichi; Katayama, Tetsuo; Togashi, Tadashi; Owada, Shigeki; Yabashi, Makina; Hatada, Keisuke; Iwase, Akihide; Kudo, Akihiko; Takakusagi, Satoru; Yokoyama, Toshihiko; Asakura, Kiyotaka

    2017-06-29

    Ultrafast excitation of photocatalytically active BiVO 4 was characterized by femto- and picosecond transient X-ray absorption fine structure spectroscopy. An initial photoexcited state (≪500 fs) changed to a metastable state accompanied by a structural change with a time constant of ∼14 ps. The structural change might stabilize holes on oxygen atoms since the interaction between Bi and O increases.

  17. The impact of cochlear fine structure on hearing thresholds and DPOAE levels

    NASA Astrophysics Data System (ADS)

    Lee, Jungmee; Long, Glenis; Talmadge, Carrick L.

    2004-05-01

    Although otoacoustic emissions (OAE) are used as clinical and research tools, the correlation between OAE behavioral estimates of hearing status is not large. In normal-hearing individuals, the level of OAEs can vary as much as 30 dB when the frequency is changed less than 5%. These pseudoperiodic variations of OAE level with frequency are known as fine structure. Hearing thresholds measured with high-frequency resolution reveals a similar (up to 15 dB) fine structure. We examine the impact of OAE and threshold fine structures on the prediction of auditory thresholds from OAE levels. Distortion product otoacoustic emissions (DPOAEs) were measured with sweeping primary tones. Psychoacoustic detection thresholds were measured using pure tones, sweep tones, FM tones, and narrow-band noise. Sweep DPOAE and narrow-band threshold estimates provide estimates that are less influenced by cochlear fine structure and should lead to a higher correlation between OAE levels and psychoacoustic thresholds. [Research supported by PSC CUNY, NIDCD, National Institute on Disability and Rehabilitation Research in U.S. Department of Education, and The Ministry of Education in Korea.

  18. Climatological Aspects of the Optical Properties of Fine/Coarse Mode Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Sinyuk, A.; Pinker, R. T.; Goloub, P.; Chen, H.; Chatenet, B.; Li, Z.; Singh, R. P.; Tripathi, S.N.; hide

    2010-01-01

    Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD.

  19. Decomposing risk: landscape structure and wolf behavior generate different predation patterns in two sympatric ungulates.

    PubMed

    Gervasi, Vincenzo; Sand, Hakan; Zimmermann, Barbara; Mattisson, Jenny; Wabakken, Petter; Linnell, John D C

    2013-10-01

    Recolonizing carnivores can have a large impact on the status of wild ungulates, which have often modified their behavior in the absence of predation. Therefore, understanding the dynamics of reestablished predator-prey systems is crucial to predict their potential ecosystem effects. We decomposed the spatial structure of predation by recolonizing wolves (Canis lupus) on two sympatric ungulates, moose (Alces alces) and roe deer (Capreolus capreolus), in Scandinavia during a 10-year study. We monitored 18 wolves with GPS collars, distributed over 12 territories, and collected records from predation events. By using conditional logistic regression, we assessed the contributions of three main factors, the utilization patterns of each wolf territory, the spatial distribution of both prey species, and fine-scale landscape structure, in determining the spatial structure of moose and roe deer predation risk. The reestablished predator-prey system showed a remarkable spatial variation in kill occurrence at the intra-territorial level, with kill probabilities varying by several orders of magnitude inside the same territory. Variation in predation risk was evident also when a spatially homogeneous probability for a wolf to encounter a prey was simulated. Even inside the same territory, with the same landscape structure, and when exposed to predation by the same wolves, the two prey species experienced an opposite spatial distribution of predation risk. In particular, increased predation risk for moose was associated with open areas, especially clearcuts and young forest stands, whereas risk was lowered for roe deer in the same habitat types. Thus, fine-scale landscape structure can generate contrasting predation risk patterns in sympatric ungulates, so that they can experience large differences in the spatial distribution of risk and refuge areas when exposed to predation by a recolonizing predator. Territories with an earlier recolonization were not associated with a lower hunting success for wolves. Such constant efficiency in wolf predation during the recolonization process is in line with previous findings about the naive nature of Scandinavian moose to wolf predation. This, together with the human-dominated nature of the Scandinavian ecosystem, seems to limit the possibility for wolves to have large ecosystem effects and to establish a behaviorally mediated trophic cascade in Scandinavia.

  20. Jet-cooled laser-induced fluorescence spectroscopy of cyclohexoxy: rotational and fine structure of molecules in nearly degenerate electronic States.

    PubMed

    Liu, Jinjun; Miller, Terry A

    2014-12-26

    The rotational structure of the previously observed B̃(2)A' ← X̃(2)A″ and B̃(2)A' ← Ã(2)A' laser-induced fluorescence spectra of jet-cooled cyclohexoxy radical (c-C6H11O) [ Zu, L.; Liu, J.; Tarczay, G.; Dupré, P; Miller, T. A. Jet-cooled laser spectroscopy of the cyclohexoxy radical. J. Chem. Phys. 2004 , 120 , 10579 ] has been analyzed and simulated using a spectroscopic model that includes the coupling between the nearly degenerate X̃ and à states separated by ΔE. The rotational and fine structure of these two states is reproduced by a 2-fold model using one set of molecular constants including rotational constants, spin-rotation constants (ε's), the Coriolis constant (Aζt), the quenched spin-orbit constant (aζed), and the vibronic energy separation between the two states (ΔE0). The energy level structure of both states can also be reproduced using an isolated-state asymmetric top model with rotational constants and effective spin-rotation constants (ε's) and without involving Coriolis and spin-orbit constants. However, the spin-orbit interaction introduces transitions that have no intensity using the isolated-state model but appear in the observed spectra. The line intensities are well simulated using the 2-fold model with an out-of-plane (b-) transition dipole moment for the B̃ ← X̃ transitions and in-plane (a and c) transition dipole moment for the B̃ ← à transitions, requiring the symmetry for the X̃ (Ã) state to be A″ (A'), which is consistent with a previous determination and opposite to that of isopropoxy, the smallest secondary alkoxy radical. The experimentally determined Ã-X̃ separation and the energy level ordering of these two states with different (A' and A″) symmetries are consistent with quantum chemical calculations. The 2-fold model also enables the independent determination of the two contributions to the Ã-X̃ separation: the relativistic spin-orbit interaction (magnetic effect) and the nonrelativistic vibronic separation between the lowest vibrational energy levels of these two states due to both electrostatic interaction (Coulombic effect) and difference in zero-point energies (kinetic effect).

  1. Testing local Lorentz and position invariance and variation of fundamental constants by searching the derivative of the comparison frequency between a cryogenic sapphire oscillator and hydrogen maser

    NASA Astrophysics Data System (ADS)

    Tobar, Michael Edmund; Wolf, Peter; Bize, Sébastien; Santarelli, Giorgio; Flambaum, Victor

    2010-01-01

    The cryogenic sapphire oscillator at the Paris Observatory has been continuously compared to various hydrogen masers since 2001. The early data sets were used to test local Lorentz invariance in the Robertson-Mansouri-Sexl (RMS) framework by searching for sidereal modulations with respect to the cosmic microwave background, and represent the best Kennedy-Thorndike experiment to date. In this work, we present continuous operation over a period of greater than six years from September 2002 to December 2008 and present a more precise way to analyze the data by searching the time derivative of the comparison frequency. Because of the long-term operation we are able to search both sidereal and annual modulations. The results give PKT=βRMS-αRMS-1=-1.7(4.0)×10-8 for the sidereal and -23(10)×10-8 for the annual term, with a weighted mean of -4.8(3.7)×10-8, a factor of 8 better than previous. Also, we analyze the data with respect to a change in gravitational potential for both diurnal and annual variations. The result gives βH-Maser-βCSO=-2.7(1.4)×10-4 for the annual and -6.9(4.0)×10-4 for the diurnal terms, with a weighted mean of -3.2(1.3)×10-4. This result is 2 orders of magnitude better than other tests that use electromagnetic resonators. With respect to fundamental constants a limit can be provided on the variation with ambient gravitational potential and boost of a combination of the fine structure constant (α), the normalized quark mass (mq), and the electron to proton mass ratio (me/mp), setting the first limit on boost dependence of order 10-10.

  2. A New Contribution for WYP 2005: The Golden Ratio, Bohr Radius, Planck's Constant, Fine-Structure Constant and g-Factors

    NASA Astrophysics Data System (ADS)

    Heyrovska, R.; Narayan, S.

    2005-10-01

    Recently, the ground state Bohr radius (aB) of hydrogen was shown to be divided into two Golden sections, aB,p = aB/ø2 and aB,e = aB/ø at the point of electrical neutrality, where ø = 1.618 is the Golden ratio (R. Heyrovska, Molecular Physics 103: 877-882, and the literature cited therein). The origin of the difference of two energy terms in the Rydberg equation was thus shown to be in the ground state energy itself, as shown below: EH = (1/2)e2/(κaB) = (1/2)(e2/κ) [(1/aB,p - (1/aB,e)] (1). This work brings some new results that 1) a unit charge in vacuum has a magnetic moment, 2) (e2/2κ) in eq. (1) is an electromagnetic condenser constant, 3) the de Broglie wavelengths of the proton and electron correspond to the Golden arcs of a circle with the Bohr radius, 4) the fine structure constant (α) is the ratio of the Planck's constants without and with the interaction of light with matter, 5) the g-factors of the electron and proton, ge/2 and gp/2 divide the Bohr radius at the magnetic center and 6) the ``mysterious'' value (137.036) of α -1 = (360/ø2) - (2/ø3), where (2/ø3) arises from the difference, (gp - ge).

  3. The microwave spectrum of a triplet carbene: HCCN in the X 3Sigma - state

    NASA Astrophysics Data System (ADS)

    Saito, Shuji; Endo, Yasuki; Hirota, Eizi

    1984-02-01

    A simple carbene, the HCCN radical, has been identified in the gas phase using a microwave spectroscopic method. The HCCN molecule was generated in a free space absorption cell by the reaction of CH3CN with the microwave discharge products of CF4. Five rotational transitions, each split into three fine structure components, were observed in the region of 110 to 198 GHz. No hyperfine structure was resolved, although some of the observed lines showed broadening. The rotational constant, the centrifugal distortion constant, the spin-spin coupling constant, and the spin-rotation coupling constant were determined with good precision. The observed spectrum is completely consistent with that expected for a linear molecule in a 3Σ state, in agreement with an earlier matrix EPR study of Bernheim et al. [J. Chem. Phys. 43, 196 (1965)].

  4. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants.

    PubMed

    Valverde-Barrantes, Oscar J; Freschet, Grégoire T; Roumet, Catherine; Blackwood, Christopher B

    2017-09-01

    Fine-root traits play key roles in ecosystem processes, but the drivers of fine-root trait diversity remain poorly understood. The plant economic spectrum (PES) hypothesis predicts that leaf and root traits evolved in coordination. Mycorrhizal association type, plant growth form and climate may also affect root traits. However, the extent to which these controls are confounded with phylogenetic structuring remains unclear. Here we compiled information about root and leaf traits for > 600 species. Using phylogenetic relatedness, climatic ranges, growth form and mycorrhizal associations, we quantified the importance of these factors in the global distribution of fine-root traits. Phylogenetic structuring accounts for most of the variation for all traits excepting root tissue density, with root diameter and nitrogen concentration showing the strongest phylogenetic signal and specific root length showing intermediate values. Climate was the second most important factor, whereas mycorrhizal type had little effect. Substantial trait coordination occurred between leaves and roots, but the strength varied between growth forms and clades. Our analyses provide evidence that the integration of roots and leaves in the PES requires better accounting of the variation in traits across phylogenetic clades. Inclusion of phylogenetic information provides a powerful framework for predictions of belowground functional traits at global scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Theoretical study of some experimentally relevant states of dysprosium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzuba, V. A.; Flambaum, V. V.

    2010-05-15

    Configuration interaction method is used to calculate transition amplitudes and other properties of the low states of dysprosium which are used in cooling and in the study of the time variation of the fine structure constant and violation of fundamental symmetries. The branching ratio for the cooling state to decay to states other than ground states is found to be smaller than 10{sup -4}. The matrix element of the weak interaction between degenerate states at E=19797.96 cm{sup -1} is about 4 Hz which is consistent with the experimental limit |H{sub W}|=|2.3{+-}2.9(stat.){+-}0.7(syst.)| Hz [A. T. Nguyen, D. Budker, D. DeMille, andmore » M. Zolotorev, Phys. Rev. A 56, 3453 (1997)] and points to feasibility of its experimental measurement. Applications include the search for physics beyond the standard model using the parity nonconservation (PNC) isotopic chain approach.« less

  6. Constraining chameleon field theories using the GammeV afterglow experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhye, A.; Steffen, J. H.; Weltman, A.

    2010-01-01

    The GammeV experiment has constrained the couplings of chameleon scalar fields to matter and photons. Here, we present a detailed calculation of the chameleon afterglow rate underlying these constraints. The dependence of GammeV constraints on various assumptions in the calculation is studied. We discuss the GammeV-CHameleon Afterglow SEarch, a second-generation GammeV experiment, which will improve upon GammeV in several major ways. Using our calculation of the chameleon afterglow rate, we forecast model-independent constraints achievable by GammeV-CHameleon Afterglow SEarch. We then apply these constraints to a variety of chameleon models, including quartic chameleons and chameleon dark energy models. The new experimentmore » will be able to probe a large region of parameter space that is beyond the reach of current tests, such as fifth force searches, constraints on the dimming of distant astrophysical objects, and bounds on the variation of the fine structure constant.« less

  7. Constraining chameleon field theories using the GammeV afterglow experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhye, A.; /Chicago U., EFI /KICP, Chicago; Steffen, J.H.

    2009-11-01

    The GammeV experiment has constrained the couplings of chameleon scalar fields to matter and photons. Here we present a detailed calculation of the chameleon afterglow rate underlying these constraints. The dependence of GammeV constraints on various assumptions in the calculation is studied. We discuss GammeV-CHASE, a second-generation GammeV experiment, which will improve upon GammeV in several major ways. Using our calculation of the chameleon afterglow rate, we forecast model-independent constraints achievable by GammeV-CHASE. We then apply these constraints to a variety of chameleon models, including quartic chameleons and chameleon dark energy models. The new experiment will be able to probemore » a large region of parameter space that is beyond the reach of current tests, such as fifth force searches, constraints on the dimming of distant astrophysical objects, and bounds on the variation of the fine structure constant.« less

  8. Negative Entropy of Life

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2015-10-01

    We modify Newtonian gravity to probabilistic quantum mechanical gravity to derive strong coupling. If this approach is valid, we should be able to extend it to the physical body (life) as follows. Using Boltzmann equation, we get the entropy of the universe (137) as if its reciprocal, the fine structure constant (ALPHA), is the hidden candidate representing the negative entropy of the universe which is indicative of the binary information as its basis (http://www.arXiv.org/pdf/physics0210040v5). Since ALPHA relates to cosmology, it must relate to molecular biology too, with the binary system as the fundamental source of information for the nucleotides of the DNA as implicit in the book by the author: ``Quantum Consciousness - The Road to Reality.'' We debate claims of anthropic principle based on the negligible variation of ALPHA and throw light on thermodynamics. We question constancy of G in multiple ways.

  9. Deceleration, precooling, and multi-pass stopping of highly charged ions in Be{sup +} Coulomb crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmöger, L., E-mail: lisa.schmoeger@mpi-hd.mpg.de; Schwarz, M.; Versolato, O. O.

    2015-10-15

    Preparing highly charged ions (HCIs) in a cold and strongly localized state is of particular interest for frequency metrology and tests of possible spatial and temporal variations of the fine structure constant. Our versatile preparation technique is based on the generic modular combination of a pulsed ion source with a cryogenic linear Paul trap. Both instruments are connected by a compact beamline with deceleration and precooling properties. We present its design and commissioning experiments regarding these two functionalities. A pulsed buncher tube allows for the deceleration and longitudinal phase-space compression of the ion pulses. External injection of slow HCIs, specificallymore » Ar{sup 13+}, into the linear Paul trap and their subsequent retrapping in the absence of sympathetic cooling is demonstrated. The latter proved to be a necessary prerequisite for the multi-pass stopping of HCIs in continuously laser-cooled Be{sup +} Coulomb crystals.« less

  10. Current and future constraints on extended Bekenstein-type models for a varying fine-structure constant

    NASA Astrophysics Data System (ADS)

    Alves, C. S.; Leite, A. C. O.; Martins, C. J. A. P.; Silva, T. A.; Berge, S. A.; Silva, B. S. A.

    2018-01-01

    There is a growing interest in astrophysical tests of the stability of dimensionless fundamental couplings, such as the fine-structure constant α , as an optimal probe of new physics. The imminent arrival of the ESPRESSO spectrograph will soon enable significant gains in the precision and accuracy of these tests and widen the range of theoretical models that can be tightly constrained. Here we illustrate this by studying proposed extensions of the Bekenstein-type models for the evolution of α that allow different couplings of the scalar field to both dark matter and dark energy. We use a combination of current astrophysical and local laboratory data (from tests with atomic clocks) to show that these couplings are constrained to parts per million level, with the constraints being dominated by the atomic clocks. We also quantify the expected improvements from ESPRESSO and other future spectrographs, and briefly discuss possible observational strategies, showing that these facilities can improve current constraints by more than an order of magnitude.

  11. Knotting fingerprints resolve knot complexity and knotting pathways in ideal knots.

    PubMed

    Hyde, David A B; Henrich, Joshua; Rawdon, Eric J; Millett, Kenneth C

    2015-09-09

    We use disk matrices to define knotting fingerprints that provide fine-grained insights into the local knotting structure of ideal knots. These knots have been found to have spatial properties that highly correlate with those of interesting macromolecules. From this fine structure and an analysis of the associated planar graph, one can define a measure of knot complexity using the number of independent unknotting pathways from the global knot type as the knot is trimmed progressively to a short arc unknot. A specialization of the Cheeger constant provides a measure of constraint on these independent unknotting pathways. Furthermore, the structure of the knotting fingerprint supports a comparison of the tight knot pathways to the unconstrained unknotting pathways of comparable length.

  12. Searching for dilaton dark matter with atomic clocks

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Huang, Junwu; Van Tilburg, Ken

    2015-01-01

    We propose an experiment to search for ultralight scalar dark matter (DM) with dilatonic interactions. Such couplings can arise for the dilaton as well as for moduli and axion-like particles in the presence of C P violation. Ultralight dilaton DM acts as a background field that can cause tiny but coherent oscillations in Standard Model parameters such as the fine-structure constant and the proton-electron mass ratio. These minute variations can be detected through precise frequency comparisons of atomic clocks. Our experiment extends current searches for drifts in fundamental constants to the well-motivated high-frequency regime. Our proposed setups can probe scalars lighter than 1 0-15 eV with a discovery potential of dilatonic couplings as weak as 1 0-11 times the strength of gravity, improving current equivalence principle bounds by up to 8 orders of magnitude. We point out potential 1 04 sensitivity enhancements with future optical and nuclear clocks, as well as possible signatures in gravitational-wave detectors. Finally, we discuss cosmological constraints and astrophysical hints of ultralight scalar DM, and show they are complimentary to and compatible with the parameter range accessible to our proposed laboratory experiments.

  13. Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests

    PubMed Central

    Fu, Xiaoli; Wang, Jianlei; Di, Yuebao; Wang, Huimin

    2015-01-01

    Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer. PMID:26047358

  14. Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests.

    PubMed

    Fu, Xiaoli; Wang, Jianlei; Di, Yuebao; Wang, Huimin

    2015-01-01

    Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yiyu; Kannan, Rangasayee; Li, Leijun, E-mail

    Non-equilibrium microstructure of the heat-affected zone (HAZ) in the as-welded modified 9Cr–1Mo–V–Nb pipe steel (P91) weldment deposited by gas tungsten arc welding (GTAW) and flux core arc welding (FCAW) has been characterized by field-emission scanning electron microscope (FESEM) and electron backscatter diffraction (EBSD). The heterogeneous structures in the sub-layers of the as-welded HAZ are attributable to phase transformations caused by the welding thermal cycles and the local structure variations in the as-received base metal. Coarse-grained heat-affected zone (CGHAZ) has a prior austenite grain (PAG) size of 20 μm. Fine uniformly-distributed precipitates and a higher fraction of MX carbonitrides are observedmore » in the CGHAZ. Fine-grained heat-affected zone (FGHAZ) consists of the finest grains (1.22 μm measured by EBSD, 5 μm PAG size), coarse undissolved M{sub 23}C{sub 6} carbides within the PAG boundaries and fine nucleated M{sub 23}C{sub 6} particles within the martensite laths. Inter-critical heat-affected zone (ICHAZ) consists of partially austenitized grains and over-tempered martensite laths. EBSD kernel average misorientation (KAM) map in the FGHAZ close to the ICHAZ illustrates the greatest local strain variations with a moderate normalized KAM value of 0.92°. The majority (88.1%) of the matrix grains in the CGHAZ are classified as deformed grains by EBSD grain average misorientation (GAM) evaluation. The FGHAZ close to the ICHAZ has the most recrystallized grains with an area fraction of 14.4%. The highest density variation of precipitates within grains in the FGHAZ originates from the inhomogeneous chemistry in the base metal. - Highlights: •A comprehensive characterization of the as-welded HAZ of P91 weldment is conducted. •Structural features in the each layer of the HAZ are quantified by EBSD. •Structural heterogenities in HAZ are due to welding cycle and base metal structure. •FGHAZ contains the finest grain structure and largest precipitate density variation.« less

  16. Hall effect and fine structures in magnetic reconnection with high plasma {beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, S.P.; Yang, H.A.; Wang, X.G.

    2005-04-15

    Magnetic reconnection with various plasma {beta} (the ratio of plasma pressure to the magnetic pressure) is studied numerically using a 2.5 dimensional Hall magnetohydrodynamics (MHD) code developed from a multistep implicit scheme. The initial state of the Hall MHD simulation is an equilibrium Harris sheet with L{sub c}=0.5d{sub i} (where L{sub c} is the half-width of the equilibrium current layer and d{sub i} is the ion inertial length) and a zero guide field (i.e., B{sub y0}=0 at t=0). Driven by a constant boundary inflow a quasisteady fast reconnection occurs in the plasma with a low uniform resistivity. The out-of-plane magneticmore » field component B{sub y} is then spontaneously generated and its quadrupolar structure is shown around the X point. It is demonstrated by the comparing studies that the reconnection dynamics is controlled by the Hall effect and the effect of scalar electron pressure gradient is negligible in the generalized Ohm's law. It is also found that the openness of the magnetic separatrix angle and associated quadrupolar B{sub y} structure is enlarged as {beta} increases. When {beta}>2.0 fine structures of B{sub y} contours with reversed sign emerge. The numerical results indicate that the variations in electron velocity V{sub e} are greater than those in ion velocity V{sub i} and the decoupling of electron and ion occurs in larger scale lengths than d{sub i} as {beta} increases. Clearly, the reserve current, which is associated with the relative motion between electrons and ions, generates the fine structures of B{sub y} contours in the outflow region. Then the corresponding profile of B{sub y} component exhibits a static whistler wave signature. Enhanced wave activities observed during a Cluster crossing of the high-{beta} exterior cusp region [Y. Khotyaintsev, A. Vaivads, Y. Ogawa, B. Popielawska, M. Andre, S. Buchert, P. Decreau, B. Lavraud, and H. Reme, Ann. Geophys. 22, 2403 (2004)] might be related to the Hall effects of magnetic reconnection shown in the present simulation.« less

  17. Fine Structure Analysis of 4702 oA Band of the Molecule

    NASA Astrophysics Data System (ADS)

    Sureshkumar, M. B.; Srikant, S. R.

    1998-01-01

    The emission spectrum of the cobalt monochloride molecule has been excited in a high frequency discharge tube source and the (0,0) band of H-system at 4702 Å was photo-graphed at an inverse dispersion of 0.973 Å/mm in the 5th order of a two meter plane grating spectrograph (Carl-Zeiss). The fine structure analysis of the band has been carried out and the molecular constants are reported for the first time. Rotational isotopic shift due to 37Cl support the analysis. The electronic transition involved is of the type 0---- 0- of case (c) which is equivalent of 3sum+---3sum+ or 5sum+---5sum+.

  18. Process-based quality for thermal spray via feedback control

    NASA Astrophysics Data System (ADS)

    Dykhuizen, R. C.; Neiser, R. A.

    2006-09-01

    Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.

  19. Scrutinizing Al-like 10+51V, 11+53Cr, 12+55Mn, 13+57Fe, 14+59Co, 15+61Ni, and 16+63Cu 1ions for atomic clocks with uncertainties below the 10-19 level

    NASA Astrophysics Data System (ADS)

    Yu, Yan-mei; Sahoo, B. K.

    2016-12-01

    We investigate the transition between the fine structure levels of the ground state, 3 p 2P1 /2→3 p 2P3 /2 , of the highly charged Al-like 10+51V, 11+53Cr, 12+55Mn, 13+57Fe, 14+59Co, 15+61Ni, and 16+63Cu ions for frequency standards. To comprehend them as prospective atomic clocks, we determine their transition wavelengths, quality factors, and various plausible systematics during the measurements. Since most of these ions have nuclear spin I =3 /2 , uncertainties due to dominant quadrupole shifts can be evaded in the F =0 hyperfine level of the 3 p 2P3 /2 state. Other dominant systematics such as quadratic Stark and black-body radiation shifts have been evaluated precisely demonstrating the feasibility of achieving high accuracy, below 10-19 fractional uncertainty, atomic clocks using the above transitions. Moreover, relativistic sensitivity coefficients are determined to find out the aptness of these proposed clocks to investigate possible temporal variation of the fine structure constant. To carry out these analysis, a relativistic coupled-cluster method considering Dirac-Coulomb-Breit Hamiltonian along with lower-order quantum electrodynamics interactions is employed and many spectroscopic properties are evaluated. These properties are also of immense interest for astrophysical studies.

  20. Variations in grain-scale sediment structure and entrainment force in a gravel-bed channel as a function of fine sediment content and morphological location

    NASA Astrophysics Data System (ADS)

    Voepel, Hal; Ahmed, Sharif; Hodge, Rebecca; Leyland, Julian; Sear, David

    2017-04-01

    One of the major causes of uncertainty in estimates of bedload transport rates in gravel-bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on the force required to entrain sediment. There are at least two factors that standard entrainment models do not consider. The first is the way in which the spatial arrangement and orientation of grains and the resultant forces varies throughout a channel and over time, ways that have yet to be fully quantified. The second is that sediment entrainment is a 3D process, yet calculations of entrainment thresholds for sediment grains are typically based on 2D diagrams where we calculate static moments of force vectors about a pivot angle, represented as a single point rather than as a more realistic axis of rotation. Our research addresses these limitations by quantifying variations in 3D sediment structure and entrainment force requirements across two key parameters: morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel-bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel-bed with a riffle-pool morphology containing varying amounts of fine sediment. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure and entrainment force requirements through measurement of 3D metrics including grain pivot angles, grain exposure and protrusion. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure and entrainment force requirement. These results have implications for the development of sediment entrainment models for gravel-bed rivers. Keywords: fluvial sediment, geomorphology, entrainment models, X-ray computed tomography, 3D imaging, vector mechanics

  1. A general strategy to fabricate photonic crystal heterostructure with Programmed photonic stopband.

    PubMed

    Zhang, Lijing; Liu, Bofan; Wang, Jie; Tao, Shengyang; Yan, Qingfeng

    2018-01-01

    In this paper, we present a general fabrication strategy to achieve the structure control and the flexible photonic stop band regulation of (2+1) D photonic crystal heterostructures (PCHs) by layer-by-layer depositing the annealed colloidal crystal monolayers of different sphere size. The optical properties of the resulting (2+1) DPCHs with different lattice constants were systematically studied and a universal photonic stopband variation rule was proposed, which makes it possible to program any kind of stopband structure as required, such as dual- or multi-stopbands PCH and ultra-wide stopband PCH. Furthermore, PCH with dual-stopbands overlapping the excitation wavelength (E) and emission wavelength(F) of Ru complex was fabricated by finely manipulating the spheres' diameter of colloidal monolayers. And an additional 2-fold fluorescence enhancement in comparison to that on the single stopband sample was achieved. This strategy affords new opportunities for delicate engineering the photonic behaviour of PCH, and also is of great significance for the practical application based on their bandgap property. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Stellar occultation spikes as probes of atmospheric structure and composition. [for Jupiter

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Veverka, J.

    1976-01-01

    The characteristics of spikes observed in occultation light curves of Beta Scorpii by Jupiter are discussed in terms of the gravity-gradient model. The occultation of Beta Sco by Jupiter on May 13, 1971, is reviewed, and the gravity-gradient model is defined as an isothermal atmosphere of constant composition in which the refractivity is a function only of the radial coordinate from the center of refraction, which is assumed to lie parallel to the local gravity gradient. The derivation of the occultation light curve in terms of the atmosphere, the angular diameter of the occulted star, and the occultation geometry is outlined. It is shown that analysis of the light-curve spikes can yield the He/H2 concentration ratio in a well-mixed atmosphere, information on fine-scale atmospheric structure, high-resolution images of the occulted star, and information on ray crossing. Observational limits are placed on the magnitude of horizontal refractivity gradients, and it is concluded that the spikes are the result of local atmospheric density variations: atmospheric layers, density waves, or turbulence.

  3. Calculated Effects of Body Shape on the Bow-Shock Overpressures in the Far Field of Bodies in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Lansing, Donald L.

    1960-01-01

    A theory for the supersonic flow about bodies in uniform flight in a homogeneous medium is reviewed and an integral which expresses the effect of body shape upon the flow parameters in the far field is reduced to a form which may be readily evaluated for arbitrary body shapes. This expression is then used to investigate the effect of nose angle, fineness ratio, and location of maximum body cross section upon the far-field pressure jump across the bow-shock of slender bodies. Curves are presented showing the variation of the shock strength with each of these parameters. It is found that, for a wide variety of shapes having equal fineness ratios, the integral has nearly a constant value.

  4. Linking complex forest fuel structure and fire behavior at fine scales

    Treesearch

    EL Loudermilk; Joseph O' Brien; RJ Mitchell; JK Hiers; WP Cropper; S Grunwald; J Grego; J Fernandez

    2012-01-01

    Improved fire management of savannas and open woodlands requires better understanding of the fundamental connection between fuel heterogeneity, variation in fire behaviour and the influence of fire variation on vegetation feedbacks. In this study, we introduce a novel approach to predicting fire behaviour at the submetre scale, including measurements of forest...

  5. [Diurnal variations in the alpha-particles flux as a possible evidence for changes in the movement velocity vector of an experimental set-up relative to a relic system].

    PubMed

    Liapidevskiĭ, V K

    2001-01-01

    The variations in the fine structure of distributions of the results of alpha-radioactivity measurements are explained by changes in the velocity of Earth's movement relative to some selected frame of reference.

  6. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant: A First Application of a One-Electron Quantum Cyclotron

    ScienceCinema

    Gabrielse, Gerald

    2018-05-22

    Remarkably, the famous UW measurement of the electron magnetic moment has stood since 1987. With QED theory, this measurement has determined the accepted value of the fine structure constant. This colloquium is about a new Harvard measurement of these fundamental constants. The new measurement has an uncertainty that is about six times smaller, and it shifts the values by 1.7 standard deviations. One electron suspended in a Penning trap is used for the new measurement, like in the old measurement. What is different is that the lowest quantum levels of the spin and cyclotron motion are resolved, and the cyclotron as well as spin frequencies are determined using quantum jump spectroscopy. In addition, a 0.1 mK Penning trap that is also a cylindrical microwave cavity is used to control the radiation field, to suppress spontaneous emission by more than a factor of 100, to control cavity shifts, and to eliminate the blackbody photons that otherwise stimulate excitations from the cyclotron ground state. Finally, great signal-to-noise for one-quantum transitions is obtained using electronic feedback to realize the first one-particle self-excited oscillator. The new methods may also allow a million times improved measurement of the 500 times small antiproton magnetic moment.

  7. Determinants of echolocation call frequency variation in the Formosan lesser horseshoe bat (Rhinolophus monoceros)

    PubMed Central

    Chen, Shiang-Fan; Jones, Gareth; Rossiter, Stephen J.

    2009-01-01

    The origin and maintenance of intraspecific variation in vocal signals is important for population divergence and speciation. Where vocalizations are transmitted by vertical cultural inheritance, similarity will reflect co-ancestry, and thus vocal divergence should reflect genetic structure. Horseshoe bats are characterized by echolocation calls dominated by a constant frequency component that is partly determined by maternal imprinting. Although previous studies showed that constant frequency calls are also influenced by some non-genetic factors, it is not known how frequency relates to genetic structure. To test this, we related constant frequency variation to genetic and non-genetic variables in the Formosan lesser horseshoe bat (Rhinolophus monoceros). Recordings of bats from across Taiwan revealed that females called at higher frequencies than males; however, we found no effect of environmental or morphological factors on call frequency. By comparison, variation showed clear population structure, with frequencies lower in the centre and east, and higher in the north and south. Within these regions, frequency divergence was directional and correlated with geographical distance, suggesting that call frequencies are subject to cultural drift. However, microsatellite clustering analysis showed that broad differences in constant frequency among populations corresponded to discontinuities in allele frequencies resulting from vicariant events. Our results provide evidence that the processes shaping genetic subdivision have concomitant consequences for divergence in echolocation call frequency. PMID:19692399

  8. Fine structure in solar microwave bursts

    NASA Astrophysics Data System (ADS)

    Allaart, M. A. F.; van Nieuwkoop, J.; Slottje, C.; Sondaar, L. H.

    1990-12-01

    A new multichannel radio spectrograph has been constructed for the study of short-lived structures in solar microwave bursts. It measured the integrated flux over the whole solar disk in two circular polarizations at 36 frequencies between 4 and 8 GHz, with a time constant of 0.5 ms. All 119 recorded bursts observed in 1981 and 1983 are analyzed. Attention is focused on events with a lifetime of less than 1 s.

  9. Heisenberg Uncertainty and the Allowable Masses of the Up Quark and Down Quark

    NASA Astrophysics Data System (ADS)

    Orr, Brian

    2004-05-01

    A possible explanation for the inability to attain deterministic measurements of an elementary particle's energy, as given by the Heisenberg Uncertainty Principle, manifests itself in an interesting anthropic consequent of Andrei Linde's Self-reproducing Inflationary Multiverse model. In Linde's model, the physical laws and constants that govern our universe adopt other values in other universes, due to variable Higgs fields. While the physics in our universe allow for the advent of life and consciousness, the physics necessary for life are not likely to exist in other universes -- Linde demonstrates this through a kind of Darwinism for universes. Our universe, then, is unique. But what are the physical laws and constants that make our universe what it is? Craig Hogan identifies five physical constants that are not bound by symmetry. Fine-tuning these constants gives rise to the basic behavior and structures of the universe. Three of the non-symmetric constants are fermion masses: the up quark mass, the down quark mass, and the electron mass. I will explore Linde's and Hogan's works by comparing the amount of uncertainty in quark masses, as calculated from the Heisenberg Uncertainty Principle, to the range of quark mass values consistent with our observed universe. Should the fine-tuning of the up quark and down quark masses be greater than the range of Heisenberg uncertainties in their respective masses (as I predict, due to quantum tunneling), then perhaps there is a correlation between the measured Heisenberg uncertainty in quark masses and the fine-tuning of masses required for our universe to be as it is. Hogan; "Why the Universe is Just So;" Reviews of Modern Physics; Issue 4; Vol. 72; pg. 1149-1161; Oct. 2000 Linde, "The Self-Reproducing Inflationary Universe;" Scientific American; No. 5; Vol. 271; pg. 48-55; Nov. 1994

  10. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability.

    PubMed

    Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre

    2014-12-05

    Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.

  11. Spectroscopic Constants of the Known Electronic States of Lead Monofluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRaven, C.P.; Sivakumar, P.; Shafer-Ray, N.E.

    2010-08-01

    Based on measurements made by mass-resolved 1 + 1{prime} + 1{double_prime} resonance-enhanced multiphoton ionization spectroscopy, we have determined new molecular constants describing the rotational and fine structure levels of the B, D, E, and F states of the most abundant isotopic variant {sup 208}Pb{sup 19}F, and we summarize the spectroscopic constants for all the know electronic states of the radical. Many spectroscopic constants for the isotopologues {sup 206}Pb{sup 19}F and {sup 207}Pb{sup 19}F have also been determined. The symmetry of the D-state is found to be {sup 2}{pi}{sub 1/2}, and the F-state is found to be an {Omega} = 3/2more » state.« less

  12. A novel pressure variation study on electronic structure, mechanical stability and thermodynamic properties of potassium based fluoroperovskite

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-09-01

    The effect of pressure variation on stability, structural parameters, elastic constants, mechanical, electronic and thermodynamic properties of cubic SrKF3 fluoroperovskite have been investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method combined with Quasi-harmonic Debye model in which the phonon effects are considered. The calculated lattice parameters show a prominent decrease in lattice constant and bonds length with the increase in pressure. The application of pressure from 0 to 25 GPa reveals a predominant characteristic associated with widening of bandgap with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The influence of pressure on elastic constants and their related mechanical parameters have been discussed in detail. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is also observed at elevated pressure ranges. We have successfully computed variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities at pressure and temperature in the range of 0-25 GPa and 0-600 K.

  13. Bond-strength inversion in (In,Ga)As semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Eckner, Stefanie; Ritter, Konrad; Schöppe, Philipp; Haubold, Erik; Eckner, Erich; Rensberg, Jura; Röder, Robert; Ridgway, Mark C.; Schnohr, Claudia S.

    2018-05-01

    The atomic-scale structure and vibrational properties of semiconductor alloys are determined by the energy required for stretching and bending the individual bonds. Using temperature-dependent extended x-ray absorption fine-structure spectroscopy, we have determined the element-specific In-As and Ga-As effective bond-stretching force constants in (In,Ga)As as a function of the alloy composition. The results reveal a striking inversion of the bond strength where the originally stiffer bond in the parent materials becomes the softer bond in the alloy and vice versa. Our findings clearly demonstrate that changes of both the individual bond length and the surrounding matrix affect the bond-stretching force constants. We thus show that the previously used common assumptions about the element-specific force constants in semiconductor alloys do not reproduce the composition dependence determined experimentally for (In,Ga)As.

  14. High resolution telescope and spectrograph observations of solar fine structure in the 1600 A region

    NASA Technical Reports Server (NTRS)

    Cook, J. W.; Brueckner, G. E.; Bartoe, J.-D. F.

    1983-01-01

    High spatial resolution spectroheliograms of the 1600 A region obtained during the HRTS rocket flight of 1978 February 13 are presented. The morphology, fine structure, and temporal behavior of emission bright points (BPs) in active and quiet regions are illustrated. In quiet regions, network elements persist as morphological units, although individual BPs may vary in intensity while usually lasting the flight duration. In cell centers, the BPs are highly variable on a 1 minute time scale. BPs in plages remain more constant in brightness over the observing sequence. BPs cover less than 4 percent of the quiet surface. The lifetime and degree of packing of BPs vary with the local strength of the magnetic field.

  15. The Sun-Earth connect 2: Modelling patterns of a fractal Sun in time and space using the fine structure constant

    NASA Astrophysics Data System (ADS)

    Baker, Robert G. V.

    2017-02-01

    Self-similar matrices of the fine structure constant of solar electromagnetic force and its inverse, multiplied by the Carrington synodic rotation, have been previously shown to account for at least 98% of the top one hundred significant frequencies and periodicities observed in the ACRIM composite irradiance satellite measurement and the terrestrial 10.7cm Penticton Adjusted Daily Flux data sets. This self-similarity allows for the development of a time-space differential equation (DE) where the solutions define a solar model for transmissions through the core, radiative, tachocline, convective and coronal zones with some encouraging empirical and theoretical results. The DE assumes a fundamental complex oscillation in the solar core and that time at the tachocline is smeared with real and imaginary constructs. The resulting solutions simulate for tachocline transmission, the solar cycle where time-line trajectories either 'loop' as Hermite polynomials for an active Sun or 'tail' as complementary error functions for a passive Sun. Further, a mechanism that allows for the stable energy transmission through the tachocline is explored and the model predicts the initial exponential coronal heating from nanoflare supercharging. The twisting of the field at the tachocline is then described as a quaternion within which neutrinos can oscillate. The resulting fractal bubbles are simulated as a Julia Set which can then aggregate from nanoflares into solar flares and prominences. Empirical examples demonstrate that time and space fractals are important constructs in understanding the behaviour of the Sun, from the impact on climate and biological histories on Earth, to the fractal influence on the spatial distributions of the solar system. The research suggests that there is a fractal clock underpinning solar frequencies in packages defined by the fine structure constant, where magnetic flipping and irradiance fluctuations at phase changes, have periodically impacted on the Earth and the rest of the solar system since time immemorial.

  16. Microstructural indicators of convection: insights from the Little Minch Sill Complex, Scotland

    NASA Astrophysics Data System (ADS)

    Nicoli, Gautier; Holness, Marian; Neufeld, Jerome; Farr, Robert

    2017-04-01

    The fluid dynamic behaviour of crystal-bearing magmas is a key parameter to understand the formation of magmatic bodies. There are two opposite views on the subject: Some argue that solidification in intrusive bodies is affected by convection whereas others claim solidification happens in a static environment. A consensus on the question may be reached by carefully studying the grain size distribution in the settled accumulations of cargo crystals. In the absence of significant crystal growth or particle coarsening by agglomeration, settling of a polydisperse crystal load will always result in a fining-upwards sequence in static magmas as well as in convecting environments. If we assume the particle concentration is always sufficiently low to prevent hindered settling, gravitational settling in a static magma leads to the settling of individual crystals at a constant rate determined by their Stokes' velocity. Each size class is deposited at a constant rate, until all the grains of that size class have fallen out of suspension, leading to a well-stratified sequence and the complete disappearance of progressively smaller size classes upwards in the accumulation. In contrast, in a vigorously convecting magma crystals settle when they enter the stagnant basal boundary layer. In a system containing a polydisperse crystal population most of the bigger particles are removed rapidly from the bulk magma, leading to the creation of a fining-upwards sequence on the floor. However, in detail the structure of this fining-upwards sequence is critically different from that created by settling from a stagnant magma, with the gradual phasing out of each size class instead of the abrupt termination of size classes seen in static systems. This provides us with the opportunity to distinguish between settling from static or convecting magma using the spatial variation of grain size in settled accumulations. We focus on the Little Minch Sill Complex in Scotland, which formed from olivine-phyric magma and is characterised by both composite and single-injection bodies with significant accumulation of olivine on their lower margins. Comparison of the fining-upwards sequences in the picrodolerite/crinanite unit of the composite Shiant Isles Main Sill,and related single-injection sills on the Trotternish Peninsula, Skye, illustrate the ability of this method to distinguish between convecting and non-convecting magma bodies.

  17. Vibrational and rotational energy transfers involving the CH B 2Σ- v=1 vibrational level in collisions with Ar, CO, and N2O

    NASA Astrophysics Data System (ADS)

    Huang, Hong-Yi; Tsai, Ming-Tsang; Lin, King-Chuen

    2006-04-01

    With photolysis-probe technique, we have studied vibrational and rotational energy transfers of CH involving the B Σ-2 (v =1, 0⩽N⩽6, F) state by collisions with Ar, CO, and N2O. For the vibrational energy transfer (VET) measurements, the time-resolved fluorescence of the B-X(0,0) band is monitored following the (1,0) band excitation. For the rotational energy transfer (RET) measurements, the laser-induced fluorescence of the initially populated state is dispersed using a step-scan Fourier transform spectrometer. The time-resolved spectra obtained in the nanosecond regime may yield the RET information under a single pressure of the collider. The rate constants of intramolecular energy transfers are evaluated with simulation of kinetic models. The VET lies in the range of 4×10-12to4×10-11cm3molecule-1s-1, with efficiency following the order of Ar

  18. The constant region affects antigen binding of antibodies to DNA by altering secondary structure.

    PubMed

    Xia, Yumin; Janda, Alena; Eryilmaz, Ertan; Casadevall, Arturo; Putterman, Chaim

    2013-11-01

    We previously demonstrated an important role of the constant region in the pathogenicity of anti-DNA antibodies. To determine the mechanisms by which the constant region affects autoantibody binding, a panel of isotype-switch variants (IgG1, IgG2a, IgG2b) was generated from the murine PL9-11 IgG3 autoantibody. The affinity of the PL9-11 antibody panel for histone was measured by surface plasmon resonance (SPR). Tryptophan fluorescence was used to determine wavelength shifts of the antibody panel upon binding to DNA and histone. Finally, circular dichroism spectroscopy was used to measure changes in secondary structure. SPR analysis revealed significant differences in histone binding affinity between members of the PL9-11 panel. The wavelength shifts of tryptophan fluorescence emission were found to be dependent on the antibody isotype, while circular dichroism analysis determined that changes in antibody secondary structure content differed between isotypes upon antigen binding. Thus, the antigen binding affinity is dependent on the particular constant region expressed. Moreover, the effects of antibody binding to antigen were also constant region dependent. Alteration of secondary structures influenced by constant regions may explain differences in fine specificity of anti-DNA antibodies between antibodies with similar variable regions, as well as cross-reactivity of anti-DNA antibodies with non-DNA antigens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Self-ordered, controlled structure nanoporous membranes using constant current anodization.

    PubMed

    Lee, Kwan; Tang, Yun; Ouyang, Min

    2008-12-01

    We report a constant current (CC) based anodization technique to fabricate and control structure of mechanically stable anodic aluminum oxide (AAO) membranes with a long-range ordered hexagonal nanopore pattern. For the first time we show that interpore distance (Dint) of a self-ordered nanopore feature can be continuously tuned over a broad range with CC anodization and is uniquely defined by the conductivity of sulfuric acid as electrolyte. We further demonstrate that this technique can offer new degrees of freedom for engineering planar nanopore structures by fine tailoring the CC based anodization process. Our results not only facilitate further understanding of self-ordering mechanism of alumina membranes but also provide a fast, simple (without requirement of prepatterning or preoxide layer), and flexible methodology for controlling complex nanoporous structures, thus offering promising practical applications in nanotechnology.

  20. Atoms and Molecules Interacting with Light

    NASA Astrophysics Data System (ADS)

    van der Straten, Peter; Metcalf, Harold

    2016-02-01

    Part I. Atom-Light Interaction: 1. The classical physics pathway; Appendix 1.A. Damping force on an accelerating charge; Appendix 1.B. Hanle effect; Appendix 1.C. Optical tweezers; 2. Interaction of two-level atoms and light; Appendix 2.A. Pauli matrices for motion of the bloch vector; Appendix 2.B. The Ramsey method; Appendix 2.C. Echoes and interferometry; Appendix 2.D. Adiabatic rapid passage; Appendix 2.E Superposition and entanglement; 3. The atom-light interaction; Appendix 3.A. Proof of the oscillator strength theorem; Appendix 3.B. Electromagnetic fields; Appendix 3.C. The dipole approximation; Appendix 3.D. Time resolved fluorescence from multi-level atoms; 4. 'Forbidden' transitions; Appendix 4.A. Higher order approximations; 5. Spontaneous emission; Appendix 5.A. The quantum mechanical harmonic oscillator; Appendix 5.B. Field quantization; Appendix 5.C. Alternative theories to QED; 6. The density matrix; Appendix 6.A. The Liouville-von Neumann equation; Part II. Internal Structure: 7. The hydrogen atom; Appendix 7.A. Center-of-mass motion; Appendix 7.B. Coordinate systems; Appendix 7.C. Commuting operators; Appendix 7.D. Matrix elements of the radial wavefunctions; 8. Fine structure; Appendix 8.A. The Sommerfeld fine-structure constant; Appendix 8.B. Measurements of the fine structure 9. Effects of the nucleus; Appendix 9.A. Interacting magnetic dipoles; Appendix 9.B. Hyperfine structure for two spin =2 particles; Appendix 9.C. The hydrogen maser; 10. The alkali-metal atoms; Appendix 10.A. Quantum defects for the alkalis; Appendix 10.B. Numerov method; 11. Atoms in magnetic fields; Appendix 11.A. The ground state of atomic hydrogen; Appendix 11.B. Positronium; Appendix 11.C. The non-crossing theorem; Appendix 11.D. Passage through an anticrossing: Landau-Zener transitions; 12. Atoms in electric fields; 13. Rydberg atoms; 14. The helium atom; Appendix 14.A. Variational calculations; Appendix 14.B. Detail on the variational calculations of the ground state; 15. The periodic system of the elements; Appendix 15. A paramagnetism; Appendix 15.B. The color of gold; 16. Molecules; Appendix 16.A. Morse potential; 17. Binding in the hydrogen molecule; Appendix 17.A. Confocal elliptical coordinates; Appendix 17.B. One-electron two-center integrals; Appendix 17.C. Electron-electron interaction in molecular hydrogen; 18. Ultra-cold chemistry; Part III. Applications: 19. Optical forces and laser cooling; 20. Confinement of neutral atoms; 21. Bose-Einstein condensation; Appendix 21.A. Distribution functions; Appendix 21.B. Density of states; 22. Cold molecules; 23. Three level systems; Appendix 23.A. General Case for _1 , _2; 24. Fundamental physics; Part IV. Appendices: Appendix A. Notation and definitions; Appendix B. Units and notation; Appendix C. Angular momentum in quantum mechanics; Appendix D. Transition strengths; References; Index.

  1. The control of the controller: molecular mechanisms for robust perfect adaptation and temperature compensation.

    PubMed

    Ni, Xiao Yu; Drengstig, Tormod; Ruoff, Peter

    2009-09-02

    Organisms have the property to adapt to a changing environment and keep certain components within a cell regulated at the same level (homeostasis). "Perfect adaptation" describes an organism's response to an external stepwise perturbation by regulating some of its variables/components precisely to their original preperturbation values. Numerous examples of perfect adaptation/homeostasis have been found, as for example, in bacterial chemotaxis, photoreceptor responses, MAP kinase activities, or in metal-ion homeostasis. Two concepts have evolved to explain how perfect adaptation may be understood: In one approach (robust perfect adaptation), the adaptation is a network property, which is mostly, but not entirely, independent of rate constant values; in the other approach (nonrobust perfect adaptation), a fine-tuning of rate constant values is needed. Here we identify two classes of robust molecular homeostatic mechanisms, which compensate for environmental variations in a controlled variable's inflow or outflow fluxes, and allow for the presence of robust temperature compensation. These two classes of homeostatic mechanisms arise due to the fact that concentrations must have positive values. We show that the concept of integral control (or integral feedback), which leads to robust homeostasis, is associated with a control species that has to work under zero-order flux conditions and does not necessarily require the presence of a physico-chemical feedback structure. There are interesting links between the two identified classes of homeostatic mechanisms and molecular mechanisms found in mammalian iron and calcium homeostasis, indicating that homeostatic mechanisms may underlie similar molecular control structures.

  2. Stable exponential cosmological solutions with 3- and l-dimensional factor spaces in the Einstein-Gauss-Bonnet model with a Λ -term

    NASA Astrophysics Data System (ADS)

    Ivashchuk, V. D.; Kobtsev, A. A.

    2018-02-01

    A D-dimensional gravitational model with a Gauss-Bonnet term and the cosmological term Λ is studied. We assume the metrics to be diagonal cosmological ones. For certain fine-tuned Λ , we find a class of solutions with exponential time dependence of two scale factors, governed by two Hubble-like parameters H >0 and h, corresponding to factor spaces of dimensions 3 and l > 2, respectively and D = 1 + 3 + l. The fine-tuned Λ = Λ (x, l, α ) depends upon the ratio h/H = x, l and the ratio α = α _2/α _1 of two constants (α _2 and α _1) of the model. For fixed Λ , α and l > 2 the equation Λ (x,l,α ) = Λ is equivalent to a polynomial equation of either fourth or third order and may be solved in radicals (the example l =3 is presented). For certain restrictions on x we prove the stability of the solutions in a class of cosmological solutions with diagonal metrics. A subclass of solutions with small enough variation of the effective gravitational constant G is considered. It is shown that all solutions from this subclass are stable.

  3. Dark energy coupling with electromagnetism as seen from future low-medium redshift probes

    NASA Astrophysics Data System (ADS)

    Calabrese, E.; Martinelli, M.; Pandolfi, S.; Cardone, V. F.; Martins, C. J. A. P.; Spiro, S.; Vielzeuf, P. E.

    2014-04-01

    Beyond the standard cosmological model the late-time accelerated expansion of the Universe can be reproduced by the introduction of an additional dynamical scalar field. In this case, the field is expected to be naturally coupled to the rest of the theory's fields, unless a (still unknown) symmetry suppresses this coupling. Therefore, this would possibly lead to some observational consequences, such as space-time variations of nature's fundamental constants. In this paper we investigate the coupling between a dynamical dark energy model and the electromagnetic field, and the corresponding evolution of the fine structure constant (α) with respect to the standard local value α0. In particular, we derive joint constraints on two dynamical dark energy model parametrizations (the Chevallier-Polarski-Linder and early dark energy model) and on the coupling with electromagnetism ζ, forecasting future low-medium redshift observations. We combine supernovae and weak lensing measurements from the Euclid experiment with high-resolution spectroscopy measurements of fundamental couplings and the redshift drift from the European Extremely Large Telescope, highlighting the contribution of each probe. Moreover, we also consider the case where the field driving the α evolution is not the one responsible for cosmic acceleration and investigate how future observations can constrain this scenario.

  4. 4D Sommerfeld quantization of the complex extended charge

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, Igor E.

    2017-12-01

    Gravitational fields and accelerations cannot change quantized magnetic flux in closed line contours due to flat 3D section of curved 4D space-time-matter. The relativistic Bohr-Sommerfeld quantization of the imaginary charge reveals an electric analog of the Compton length, which can introduce quantitatively the fine structure constant and the Plank length.

  5. Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.

    PubMed

    Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai

    2016-07-20

    Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.

  6. Collisional perturbation of radio-frequency E1 transitions in an atomic beam of dysprosium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cingoez, A.; Lapierre, Alain; Nguyen, A.-T.

    2005-12-15

    We have studied collisional perturbations of radio-frequency (rf) electric-dipole (E1) transitions between the nearly degenerate opposite-parity levels in atomic dysprosium (Dy) in the presence of 10 to 80 {mu}Torr of H{sub 2}, N{sub 2}, He, Ar, Ne, Kr, and Xe. Collisional broadening and shift of the resonance, as well as the attenuation of the signal amplitude are observed to be proportional to the foreign-gas density with the exception of H{sub 2} and Ne, for which no shifts were observed. Corresponding rates and cross sections are presented. In addition, rates and cross sections for O{sub 2} are extracted from measurements usingmore » air as foreign gas. The primary motivation for this study is the need for accurate determination of the shift rates, which are needed in a laboratory search for the temporal variation of the fine-structure constant [A. T. Nguyen, D. Budker, S. K. Lamoreaux, and J. R. Torgerson, Phys. Rev. A 69, 22105 (2004)].« less

  7. First-principles studies of Te line-ordered alloys in a MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Andriambelaza, N. F.; Mapasha, R. E.; Chetty, N.

    2018-04-01

    The thermodynamic stability, structural and electronic properties of Te line-ordered alloys are investigated using density functional theory (DFT) methods. Thirty four possible Te line-ordered alloy configurations are found in a 5×5 supercell of a MoS2 monolayer. The calculated formation energies show that the Te line-ordered alloy configurations are thermodynamically stable at 0 K and agree very well with the random alloys. The lowest energy configurations at each concentration correspond to the configuration where the Te atom rows are far apart from each other (avoiding clustering) within the supercell. The variation of the lattice constant at different concentrations obey Vegard's law. The Te line-ordered alloys fine tune the band gap of a MoS2 monolayer although deviating from linearity behavior. Our results suggest that the Te line-ordered alloys can be an effective way to modulate the band gap of a MoS2 monolayer for nanoelectronic, optoelectronic and nanophotonic applications.

  8. Fourier transform millimeter-wave spectroscopy of the ethyl radical in the electronic ground state.

    PubMed

    Kim, Eunsook; Yamamoto, Satoshi

    2004-02-15

    The pure rotational spectrum of the ethyl radical (C2H5) has been detected for the first time with the Fourier transform millimeter-wave spectrometer. The ethyl radical is produced by discharging the C2H5I gas diluted in Ar. The 1(01)-0(00) rotational transition of the ethyl radical is observed in the frequency range from 43,680 to 43,780 MHz. The observed spectrum shows a very complicated pattern of the fine and hyperfine structures of a doublet radical with the nuclear spins of five protons. The fine and hyperfine components are assigned with the aid of measurements of the Zeeman splittings. As a result, the 22 lines are ascribed to the transitions in the ground vibronic state (A2"). The rotational constant, the spin-rotation interaction constant, and hyperfine interaction constants are determined by the least-squares fit. The Fermi contact term of the alpha-proton is determined to be -64.1654 MHz in the gas phase, indicating that the structure of the -CH2 is essentially planar. The present rotational spectroscopic study further supports that the methyl group of the ethyl radical can be regarded as a nearly free internal rotor with a low energy barrier. A few unassigned lines still remain, which may be vibrational satellites of the internal rotation mode. Copyright 2004 American Institute of Physics

  9. A New Physical Meaning of Sommerfeld Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Sohrab, Siavash

    2015-04-01

    Identifying physical space or Casimir vacuum as a compressible tachyon fluid, Planck compressible ether, leads to stochastic definitions of Planck h = mk <λk > c and Boltzmann k = mk <νk > c constants, finite photon mass mk = (hk/c3)1/2 , amu = mk c2 = (hkc)1/2 , and modified Avogadro-Loschmidt number No = 1/(hkc)1/2 = 6.03766 x1023 mole-1 . Thus, Lorentz-FitzGerald contractions now result from compressibility of physical space and become causal (Pauli) in accordance with Poincaré-Lorentz dynamic theory of relativity as opposed to Einstein kinematic theory of relativity. At thermodynamic equilibrium he = me <λe > ve = hk = mk <λk > c = h, Compton wavelength can be expressed as λc = h/me c = (ve /c)h <λe > /(me <λe > ve) = αλe . Hence, Sommerfeld fine structure constant α is identified as the ratio of electron to photon speeds α = e2/(2ɛo hc) = ve/c = 1/137.036. The mean thermal speed of electron at equilibrium with photon gas is ve = 2.187640x106 m/s and its de Broglie wavelength is λe = 3.3250x10-10 m. Also, electron kinetic energy for oscillations in two directions < x + > and < x- > or ɛe = hνe = me ve2= kTe results in electron temperature Te = 3.15690x105 K.

  10. Variation in Pockels constants of silicate glass-ceramics prepared by perfect surface crystallization

    NASA Astrophysics Data System (ADS)

    Takano, Kazuya; Takahashi, Yoshihiro; Miyazaki, Takamichi; Terakado, Nobuaki; Fujiwara, Takumi

    2018-01-01

    We investigated the Pockels effect in polycrystalline materials consisting of highly oriented polar fresnoite-type Sr2TiSi2O8 fabricated using perfectly surface-crystallized glass-ceramics (PSC-GCs). The chemical composition of the precursor glass was shown to significantly affect the crystallized texture, e.g., the crystal orientation and appearance of amorphous nanoparasites in the domains, resulting in variations in the Pockels constants. Single crystals exhibiting spontaneous polarization possessed large structural anisotropy, leading to a strong dependence of the nonlinear-optical properties on the direction of polarized light. This study suggests that variations in the Pockels constants (r13 and r33) and tuning of the r13/r33 ratio can be realized in PSC-GC materials.

  11. Fine Structure of a Laser-Plasma Filament in Air

    NASA Astrophysics Data System (ADS)

    Eisenmann, Shmuel; Pukhov, Anatoly; Zigler, Arie

    2007-04-01

    The ability to select and stabilize a single filament during propagation of an ultrashort high-intensity laser pulse in air makes it possible to examine the longitudinal structure of the plasma channel left in its wake. We present detailed measurements of plasma density variations along laser propagation. Over the length of the filament, electron density variations of 3 orders of magnitude are measured. They display evidence of a meter-long postionization range, along which a self-guided structure is observed coupled with a low plasma density, corresponding to ˜3 orders of magnitude decrease from the peak density level.

  12. Shifts due to quantum-mechanical interference from distant neighboring resonances for saturated fluorescence spectroscopy of the 23S to 23P intervals of helium

    NASA Astrophysics Data System (ADS)

    Marsman, A.; Hessels, E. A.; Horbatsch, M.

    2014-04-01

    Quantum-mechanical interference with distant neighboring resonances is found to cause shifts for precision saturated fluorescence spectroscopy of the atomic helium 23S-to-23P transitions. The shifts are significant (larger than the experimental uncertainties for measurements of the intervals) despite the fact that the neighboring resonances are separated from the measured resonances by 1400 and 20000 natural widths. The shifts depend strongly on experimental parameters such as the angular position of the fluorescence detector, the intensity and size of laser beams, and the properties of the atomic beam. These shifts must be considered for the ongoing program of determining the fine-structure constant from the helium 23P fine structure.

  13. Constraining cosmologies with fundamental constants - I. Quintessence and K-essence

    NASA Astrophysics Data System (ADS)

    Thompson, Rodger I.; Martins, C. J. A. P.; Vielzeuf, P. E.

    2013-01-01

    Many cosmological models invoke rolling scalar fields to account for the observed acceleration of the expansion of the Universe. These theories generally include a potential V(φ) which is a function of the scalar field φ. Although V(φ) can be represented by a very diverse set of functions, recent work has shown that under some conditions, such as the slow-roll conditions, the equation of state parameter w is either independent of the form of V(φ) or part of family of solutions with only a few parameters. In realistic models of this type the scalar field couples to other sectors of the model leading to possibly observable changes in the fundamental constants such as the fine structure constant α and the proton to electron mass ratio μ. Although the current situation on a possible variance of α is complicated, there are firm limitations on the variance of μ in the early universe. This paper explores the limits this puts on the validity of various cosmologies that invoke rolling scalar fields. We find that the limit on the variation of μ puts significant constraints on the product of a cosmological parameter w + 1 and a new physics parameter ζ2μ, the coupling constant between μ and the rolling scalar field. Even when the cosmologies are restricted to very slow roll conditions either the value of ζμ must be at the lower end of or less than its expected values or the value of w + 1 must be restricted to values vanishingly close to 0. This implies that either the rolling scalar field is very weakly coupled to the electromagnetic field, small ζμ, very weakly coupled to gravity, (w + 1) ≈ 0 or both. These results stress that adherence to the measured invariance in μ is a very significant test of the validity of any proposed cosmology and any new physics it requires. The limits on the variation of μ also produces a significant tension with the reported changes in the value of α.

  14. R-Matrix Analysis of Structures in Economic Indices: from Nuclear Reactions to High-Frequency Trading

    NASA Astrophysics Data System (ADS)

    Firk, Frank W. K.

    2014-03-01

    It is shown that the R-matrix theory of nuclear reactions is a viable mathematical theory for the description of the fine, intermediate and gross structure observed in the time-dependence of economic indices in general, and the daily Dow Jones Industrial Average in particular. A Lorentzian approximation to R-matrix theory is used to analyze the complex structures observed in the Dow Jones Industrial Average on a typical trading day. Resonant structures in excited nuclei are characterized by the values of their fundamental strength function, (average total width of the states)/(average spacing between adjacent states). Here, values of the ratios (average lifetime of individual states of a given component of the daily Dow Jones Industrial Average)/(average interval between the adjacent states) are determined. The ratios for the observed fine and intermediate structure of the index are found to be essentially constant throughout the trading day. These quantitative findings are characteristic of the highly statistical nature of many-body, strongly interacting systems, typified by daily trading. It is therefore proposed that the values of these ratios, determined in the first hour-or-so of trading, be used to provide valuable information concerning the likely performance of the fine and intermediate components of the index for the remainder of the trading day.

  15. Separated oscillatory field microwave measurement of the n=2 3P1 to n=2 3P2 fine-structure interval of helium

    NASA Astrophysics Data System (ADS)

    Borbely, Joseph S.

    2009-11-01

    The fine-structure constant is a fundamental constant of nature that represents the strength of the coupling interaction between charged particles. Comparison of high-precision theory and high-precision experiment of the n=2 3PJ fine-structure intervals of helium will allow for a determination of the fine-structure constant. The 23P1(mJ=0)-to-23P 2(mJ=0) magnetic-dipole transition in helium is measured to be 2 291 177.53(35) kHz using Ramsey separated oscillatory fields. A thermal beam of 23S1 metastable helium atoms is produced in a DC discharge source and enters a chamber where a vertical DC magnetic field lifts the degeneracy of the mJ states. Initially, the 2 3S1(mJ=-1, 0, 1) states are equally populated. A linearly polarized 1083-nm diode laser drives the 23S 1(mJ=0) atoms up to the 23P0(m J=0) state, emptying the 23S1(mJ=0) state. A 15-ns laser pulse drives the 23S1(m J=+1)-to-23P1(mJ=0) transitions and this laser pulse is followed by two microwave pulses that drive the 2.29-GHz 23P1(mJ=0)-to-23P 2(mJ=0) transition. The atoms which undergo this microwave transition can spontaneously decay to the previously-emptied 23S 1(mJ=0) state. The 23P1(m J=0) state is forbidden to decay to the 23S1(m J=0) state since the transition has a zero electric-dipole matrix element. Therefore, any re-population of the 23S1(m J=0) state is a direct indication that the 2.29-GHz microwave transition has been driven. A linearly polarized 1083-nm diode laser detects the 2 3S1(mJ=0) atoms by exciting them up to the 2 3P0(mJ=0) state and the radiation from the resulting spontaneous decay is observed by focusing it onto a liquid-nitrogen-cooled InGaAs photodiode. The two microwave pulses are alternatively in phase or 180°out of phase and the difference of these signals versus microwave frequency leads to a Ramsey separated oscillatory field interference pattern.

  16. Atom Interferometry: A Matter Wave Clock and a Measurement of α

    NASA Astrophysics Data System (ADS)

    Estey, Brian; Lan, Shau-Yu; Kuan, Pei-Chen; Hohensee, Michael; Haslinger, Philipp; Kehayias, Pauli; English, Damon; Müller, Holger

    2012-06-01

    Developments in large-momentum transfer beamsplitters (eg. Bragg diffraction) and conjugate Ramsey-Bord'e interferometers have enabled atom interferometers with unparalleled size and sensitivity. The atomic wave packet separation is large enough that the Coriolis force due to the earth's rotation reduces interferometer contrast. We compensate for this effect using a tip-tilt mirror, improving our contrast by up to a factor of 3.5, allowing pulse separations of up to 250 ms with 10k beamsplitters. This interferometer can be used to make a precise measurement of the recoil frequency (h/m) and thus the fine structure constant. The interferometer also gives us indirect access to the Compton frequency (νC≡mc^2/h) oscillations of the matter wave, since h/m is simply c^2/νC. Using an optical frequency comb we reference the interferometer's laser frequency to a multiple of a cesium atom's recoil frequency. This self-referenced interferometer thus locks a local oscillator to a specified fraction of the cesium Compton frequency, with a fractional stability of 2 pbb over several hours. This has potential application in redefining the kilogram in terms of the second. We also present a preliminary measurement of the fine structure constant.

  17. Structures of dynamic particle accumulation in Marangoni convection in half-zone liquid bridge

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Ueno, I.; Kawamura, H.

    Thermocapillary convection is induced by the temperature difference T between two cylindrical rods sustaining liquid bridge. It is well known that the induced flow exhibits a transition from 2-D steady to 3-D time-dependent oscillatory flows with the increasing T. These convections can be visualized by using fine particles as tracers. In a certain flow condition, the particles were found to get accumulated. This is called PAS, particle accumulation structure, after Schwabe et al. (Microgravity, sci. technol. 1996). The authors group (Ueno et al, Proc. TSFP-2, 2001) categorized the induced flow fields into several regimes by the particle motion, structures and the surface temperature variation. Two sets of pulsating and rotating flows appeared. It was observed clearly that the particle gathered along a closed single path. This kind of structure was named as TL-PAS, Twisted-loop particle accumulation structure, (Tanaka et al, J. Japan Soc. Microgravity Appl, 2000). Special attention was paid for this kind of PAS in this study. The TL-PAS exhibited several types of closed path lines. Its detailed structure changed even in the same regime with a slight change of T and aspect ratio. The experimental setup consisted of the transparent crystal top and aluminum bottom rods. Flow fields were observed from top and side through two CCD cameras. A laser-light-sheet was employed in order to grasp the 3-D structures of TL-PAS. The liquid bridge of Silicone oil of 2 cSt was formed between rods of 5mm in diameter. Several kinds of particles were tested as tracer. The surface temperature variation was measured simultaneously by use of a 25μm thermocouple up to 50Hz, or 2.5μm CCT probe (constant current thermometry) up to 100Hz. By use of this apparatus, 3-D structure of TL-PAS and motions of individual particles were captured.

  18. Fine-scale genetic structure of bull trout at the southern limit of their distribution

    Treesearch

    A. Whiteley; P. Spruell; B. Rieman; F. Allendorf

    2006-01-01

    We used six polymorphic microsatellite loci to analyze the population genetic structure of bull trout Salvelinus confluentus in the Boise River, Idaho, and we compared our results with previous data from similarly sized river systems in western North America. Within the Boise River, we found low genetic variation within and significant...

  19. Effects of Solar Heating by Aerosols and Trace Gases on the Temperature Structure Constant

    DTIC Science & Technology

    1990-08-09

    stratosphere. Thermosonde measurements taken in Hawaii at a time when the Kilauea volcano was active are consistent with larger diurnal variations beginning...instabilities. Again, this is consistent with the larger diurnal variations of C7n as measured by the thermosonde in Hawaii where the variations were larger and

  20. Reanalysis and extension of the MnH A7Π- X7Σ + (0, 0) band: Fine structure and hyperfine-induced rotational branches

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Gray, Jeffrey A.; Field, Robert W.; Merer, Anthony J.

    1992-12-01

    The A7Π- X7Σ + (0, 0) band of MnH at 568 nm has been recorded by laser fluorescence excitation spectroscopy. The original rotational analysis of Nevin [ Proc. R. Irish Acad.48A, 1-45 (1942); 50A, 123-137 (1945)] has been extended with some corrections at low J. Systematic internal hyperfine perturbations in the X7Σ + state, caused by the Δ N = 0, Δ J = ±1 matrix elements of the 55Mn hyperfine term in the Hamiltonian, have been observed in all seven electron spin components over the entire range of N″ studied. These perturbations destroy the "goodness" of J″ as a quantum number, giving rise to hyperfine-induced Δ J = ±2 rotational branches and to observable energy shifts of the most severely affected levels. The A7Π state, with A = 40.5 cm -1 and B = 6.35 cm -1, evolves rapidly from Hund's case ( a) to case ( b) coupling, which produces anomalous branch patterns at low J. A total of 156 rotational branches have been identified and fitted by least squares to an effective Hamiltonian, providing precise values for the rotational and fine structure constants. Values of the principal constants determined in the fit are (1σ errors in units of the last digit are listed in parentheses): The fine structures of the A7Π and X7Σ + states confirm the assignment of the A ← X transition as Mn 4 pπ ← 4 sσ in the presence of a spectator, nonbonding Mn 3 d5 ( 6S) open core.

  1. Velocity modulation spectroscopy of molecular ions II: The millimeter/submillimeter-wave spectrum of TiF + ( X3Φr)

    NASA Astrophysics Data System (ADS)

    Halfen, D. T.; Ziurys, L. M.

    2006-11-01

    The pure rotational spectrum of the molecular ion TiF + in its 3Φr ground state has been measured in the range 327-542 GHz using millimeter-wave direct absorption techniques combined with velocity modulation spectroscopy. TiF + was made in an AC discharge from a mixture of TiCl 4, F 2 in He, and argon. Ten transitions of this ion were recorded. In every transition, fluorine hyperfine interactions, as well as the fine structure splittings, were resolved. The fine structure pattern was found to be regular with almost equal spacing in frequency between the three spin components, in contrast to TiCl +, which is perturbed in the ground state. The data were fit with a case ( a) Hamiltonian and rotational, fine structure, and hyperfine constants were determined. The bond length established for TiF +, r0 = 1.7775 Å, was found to be shorter than that of TiF, r0 = 1.8342 Å—also established from mm-wave data. The hyperfine parameters determined are consistent with a δ1π1 electron configuration with the electrons primarily located on the titanium nucleus. The nuclear spin-orbit constant a indicates that the unpaired electrons are closer to the fluorine nucleus in TiF + relative to TiF, as expected with the decrease in bond length for the ion. The shorter bond distance is thought to arise from increased charge on the titanium nucleus as a result of a Ti 2+F - configuration. A similar decrease in bond length was found for TiCl + relative to TiCl.

  2. Insights into molecular structure and digestion rate of oat starch.

    PubMed

    Xu, Jinchuan; Kuang, Qirong; Wang, Kai; Zhou, Sumei; Wang, Shuo; Liu, Xingxun; Wang, Shujun

    2017-04-01

    The in vitro digestibility of oat starch and its relationship with starch molecular structure was investigated. The in vitro digestion results showed that the first-order kinetic constant (k) of oat starches (OS-1 and OS-2) was lower than that of rice starch. The size of amylose chains, amylose content and degree of branching (DB) of amylopectin in oat starch were significantly higher than the corresponding parameters in rice starch. The larger molecular size of oat starch may account for its lower digestion rate. The fine structure of amylopectin showed that oat starch had less chains of DP 6-12 and DP>36, which may explain the small difference in digestion rate between oat and rice starch. The biosynthesis model from oat amylopectin fine structure data suggested a lower starch branching enzyme (SBE) activity and/or a higher starch synthase (SS) activity, which may decrease the DB of oat starch and increase its digestion rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Thermal stability analysis of the fine structure of solar prominences

    NASA Technical Reports Server (NTRS)

    Demoulin, Pascal; Malherbe, Jean-Marie; Schmieder, Brigitte; Raadu, Mickael A.

    1986-01-01

    The linear thermal stability of a 2D periodic structure (alternatively hot and cold) in a uniform magnetic field is analyzed. The energy equation includes wave heating (assumed proportional to density), radiative cooling and both conduction parallel and orthogonal to magnetic lines. The equilibrium is perturbed at constant gas pressure. With parallel conduction only, it is found to be unstable when the length scale 1// is greater than 45 Mn. In that case, orthogonal conduction becomes important and stabilizes the structure when the length scale is smaller than 5 km. On the other hand, when the length scale is greater than 5 km, the thermal equilibrium is unstable, and the corresponding time scale is about 10,000 s: this result may be compared to observations showing that the lifetime of the fine structure of solar prominences is about one hour; consequently, our computations suggest that the size of the unresolved threads could be of the order of 10 km only.

  4. Landscape genetics of Schistocephalus solidus parasites in threespine stickleback (Gasterosteus aculeatus) from Alaska.

    PubMed

    Sprehn, C Grace; Blum, Michael J; Quinn, Thomas P; Heins, David C

    2015-01-01

    The nature of gene flow in parasites with complex life cycles is poorly understood, particularly when intermediate and definitive hosts have contrasting movement potential. We examined whether the fine-scale population genetic structure of the diphyllobothriidean cestode Schistocephalus solidus reflects the habits of intermediate threespine stickleback hosts or those of its definitive hosts, semi-aquatic piscivorous birds, to better understand complex host-parasite interactions. Seventeen lakes in the Cook Inlet region of south-central Alaska were sampled, including ten in the Matanuska-Susitna Valley, five on the Kenai Peninsula, and two in the Bristol Bay drainage. We analyzed sequence variation across a 759 bp region of the mitochondrial DNA (mtDNA) cytochrome oxidase I region for 1,026 S. solidus individuals sampled from 2009-2012. We also analyzed allelic variation at 8 microsatellite loci for 1,243 individuals. Analysis of mtDNA haplotype and microsatellite genotype variation recovered evidence of significant population genetic structure within S. solidus. Host, location, and year were factors in structuring observed genetic variation. Pairwise measures revealed significant differentiation among lakes, including a pattern of isolation-by-distance. Bayesian analysis identified three distinct genotypic clusters in the study region, little admixture within hosts and lakes, and a shift in genotype frequencies over time. Evidence of fine-scale population structure in S. solidus indicates that movement of its vagile, definitive avian hosts has less influence on gene flow than expected based solely on movement potential. Observed patterns of genetic variation may reflect genetic drift, behaviors of definitive hosts that constrain dispersal, life history of intermediate hosts, and adaptive specificity of S. solidus to intermediate host genotype.

  5. Climate, soil and plant functional types as drivers of global fine-root trait variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.

    Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.« less

  6. Climate, soil and plant functional types as drivers of global fine-root trait variation

    DOE PAGES

    Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.; ...

    2017-03-08

    Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and environmental variation. We compiled a world-wide fine-root trait dataset, featuring 1115 species from contrasting climatic areas, phylogeny and growth forms to test a series of hypotheses pertaining to the influence of plant functional types, soil and climate variables, and the degree of manipulation of plant growing conditions on species fine-root trait variation. Most particularly, we tested the competing hypothesesmore » that fine-root traits typical of faster return on investment would be most strongly associated with conditions of limiting versus favourable soil resource availability. We accounted for both data source and species phylogenetic relatedness. We demonstrate that: (i) Climate conditions promoting soil fertility relate negatively to fine-root traits favouring fast soil resource acquisition, with a particularly strong positive effect of temperature on fine-root diameter and negative effect on specific root length (SRL), and a negative effect of rainfall on root nitrogen concentration; (ii) Soil bulk density strongly influences species fine-root morphology, by favouring thicker, denser fine-roots; (iii) Fine-roots from herbaceous species are on average finer and have higher SRL than those of woody species, and N 2-fixing capacity positively relates to root nitrogen; and (iv) Plants growing in pots have higher SRL than those grown in the field. Synthesis. This study reveals both the large variation in fine-root traits encountered globally and the relevance of several key plant functional types and soil and climate variables for explaining a substantial part of this variation. Climate, particularly temperature, and plant functional types were the two strongest predictors of fine-root trait variation. High trait variation occurred at local scales, suggesting that wide-ranging below-ground resource economics strategies are viable within most climatic areas and soil conditions.« less

  7. A novel approach for the fine tuning of resonance frequency of patch antenna

    NASA Astrophysics Data System (ADS)

    Mathur, Monika; Singh, Ghanshyam; Bhatnagar, S. K.

    2013-01-01

    When a patch antenna is fabricated, dimensions of the patch may be slightly different from the designed values due to tolerances in the fabrication process. This alters the resonance frequency of the antenna. To overcome this problem this paper presents a new design approach for fine tuning the resonance frequency by dielectric constant engineering. This approach is especially suited to low temperature co-fired ceramic (LTCC) and similar processes where the antenna dielectric is composed of several layers. Composite dielectric constant of this multilayer structure is altered in such a way that the resonant frequency is set back to the designed value. It has been verified that for proposed micro strip antenna (MSA) design, the frequency-area curve follows a quadratic relation with a variable R (Ratio of cavity area to the patch area). This mathematical model is true up to R 1.27. After this saturation effects set in and the curve follows a straight line behavior.≡

  8. Preliminary results for a higher-precision measurement of the helium n=2 triplet P fine structure

    NASA Astrophysics Data System (ADS)

    Kato, K.; Skinner, T. D. G.; George, M. C.; Fitzakerley, D. W.; Vutha, A. C.; Storry, C. H.; Bezginov, N.; Valdez, T.; Hessels, E. A.

    2017-04-01

    Preliminary results for a higher-precision measurement of the n=2 triplet P J=1 to J=2 fine-structure interval in atomic helium are presented. A beam of metastable helium atoms is created in a liquid-nitrogen-cooled dc-discharge source, and is intensified using a 2D-MOT. These atoms are excited to the 2 triplet P state, and undergo a frequency-offset separated-oscillatory-field (FOSOF) microwave experiment. Only atoms which undergo a microwave transition, in the time-separated microwave fields are laser-excited to a Rydberg state and then Stark ionized and counted. Our new experimental design has eliminated the major systematic effects of previous experiments, and has led to a substantial improvement in the signal-to-noise ratio of the collected data. Our final improved measurement (with an expected uncertainty of less than 100 Hz) will allow for a test of 2-electron QED-theory in the helium n=2 triplet P system, and will be an important step towards obtaining a precise determination of the fine-structure constant. This research is supported by NSERC, CRC, CFI and NIST.

  9. Calibration of the fine-structure constant of graphene by time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Sindona, A.; Pisarra, M.; Vacacela Gomez, C.; Riccardi, P.; Falcone, G.; Bellucci, S.

    2017-11-01

    One of the amazing properties of graphene is the ultrarelativistic behavior of its loosely bound electrons, mimicking massless fermions that move with a constant velocity, inversely proportional to a fine-structure constant αg of the order of unity. The effective interaction between these quasiparticles is, however, better controlled by the coupling parameter αg*=αg/ɛ , which accounts for the dynamic screening due to the complex permittivity ɛ of the many-valence electron system. This concept was introduced in a couple of previous studies [Reed et al., Science 330, 805 (2010) and Gan et al., Phys. Rev. B 93, 195150 (2016)], where inelastic x-ray scattering measurements on crystal graphite were converted into an experimentally derived form of αg* for graphene, over an energy-momentum region on the eV Å -1 scale. Here, an accurate theoretical framework is provided for αg*, using time-dependent density-functional theory in the random-phase approximation, with a cutoff in the interaction between excited electrons in graphene, which translates to an effective interlayer interaction in graphite. The predictions of the approach are in excellent agreement with the above-mentioned measurements, suggesting a calibration method to substantially improve the experimental derivation of αg*, which tends to a static limiting value of ˜0.14 . Thus, the ab initio calibration procedure outlined demonstrates the accuracy of perturbation expansion treatments for the two-dimensional gas of massless Dirac fermions in graphene, in parallel with quantum electrodynamics.

  10. Time dependent density functional theory study of the near-edge x-ray absorption fine structure of benzene in gas phase and on metal surfaces.

    PubMed

    Asmuruf, Frans A; Besley, Nicholas A

    2008-08-14

    The near-edge x-ray absorption fine structure of benzene in the gas phase and adsorbed on the Au(111) and Pt(111) surfaces is studied with time dependent density functional theory. Excitation energies computed with hybrid exchange-correlation functionals are too low compared to experiment. However, after applying a constant shift the spectra are in good agreement with experiment. For benzene on the Au(111) surface, two bands arising from excitation to the e(2u)(pi(*)) and b(2g)(pi(*)) orbitals of benzene are observed for photon incidence parallel to the surface. On Pt(111) surface, a broader band arises from excitation to benzene orbitals that are mixed with the surface and have both sigma(*)(Pt-C) and pi(*) characters.

  11. Genetic variation among interconnected populations of Catostomus occidentalis: Implications for distinguishing impacts of contaminants from biogeographical structuring

    USGS Publications Warehouse

    Whitehead, A.; Anderson, S.L.; Kuivila, K.M.; Roach, J.L.; May, B.

    2003-01-01

    Exposure to contaminants can affect survivorship, recruitment, reproductive success, mutation rates and migration, and may play a significant role in the partitioning of genetic variation among exposed and nonexposed populations. However, the application of molecular population genetic data to evaluate such influences has been uncommon and often flawed. We tested whether patterns of genetic variation among native fish populations (Sacramento sucker, Catostomus occidentalis) in the Central Valley of California were consistent with long-term pesticide exposure history, or primarily with expectations based on biogeography. Field sampling was designed to rigorously test for both geographical and contamination influences. Fine-scale structure of these interconnected populations was detected with both amplified fragment length polymorphisms (AFLP) and microsatellite markers, and patterns of variation elucidated by the two marker systems were highly concordant. Analyses indicated that biogeographical hypotheses described the data set better than hypotheses relating to common historical pesticide exposure. Downstream populations had higher genetic diversity than upstream populations, regardless of exposure history, and genetic distances showed that populations from the same river system tended to cluster together. Relatedness among populations reflected primarily directions of gene flow, rather than convergence among contaminant-exposed populations. Watershed geography accounted for significant partitioning of genetic variation among populations, whereas contaminant exposure history did not. Genetic patterns indicating contaminant-induced selection, increased mutation rates or recent bottlenecks were weak or absent. We stress the importance of testing contaminant-induced genetic change hypotheses within a biogeographical context. Strategic application of molecular markers for analysis of fine-scale structure, and for evaluating contaminant impacts on gene pools, is discussed.

  12. The nature of dark matter

    NASA Astrophysics Data System (ADS)

    Kirillov, A. A.

    2006-01-01

    The observed strong dark-to-luminous matter coupling [F. Donato, et al., astro-ph/0403206, Mon. Not. R. Astron. Soc., submitted for publication; G. Gentile, et al., Mon. Not. R. Astron. Soc. 351 (2004) 903; D.T.F. Weldrake, et al., Mon. Not. R. Astron. Soc. 340 (2003) 12; W.J.G. de Blok, A. Bosma, Astron. Astrophys. 385 (2002) 816; O. Gerhard, et al., Astrophys. J. 121 (2001) 1936; A. Borriello, et al., Mon. Not. R. Astron. Soc. 341 (2003) 1109] suggests the existence of a some functional relation between visible and DM sources which leads to biased Einstein equations. We show that such a bias appears in the case when the topological structure of the actual Universe at very large distances does not match properly that of the Friedman space. We introduce a bias operator ρ=Bˆρ and show that the simple bias function b=1/(4πrr)θ(r-r) (the kernel of Bˆ) allows to account for all the variety of observed DM halos in astrophysical systems. In galaxies such a bias forms the cored DM distribution with the radius R˜R (which explains the recently observed strong correlation between R and R [F. Donato, et al., astro-ph/0403206, Mon. Not. R. Astron. Soc., submitted for publication]), while for a point source it produces the logarithmic correction to the Newton's potential (which explains the observed flat rotation curves in spirals). Finally, we show that in the theory suggested the galaxy formation process leads to a specific variation with time of all interaction constants and, in particular, of the fine structure constant.

  13. Interactions of multi-scale heterogeneity in the lithosphere: Australia

    NASA Astrophysics Data System (ADS)

    Kennett, B. L. N.; Yoshizawa, K.; Furumura, T.

    2017-10-01

    Understanding the complex heterogeneity of the continental lithosphere involves a wide variety of spatial scales and the synthesis of multiple classes of information. Seismic surface waves and multiply reflected body waves provide the main constraints on broad-scale structure, and bounds on the extent of the lithosphere-asthenosphere transition (LAT) can be found from the vertical gradients of S wavespeed. Information on finer-scale structures comes through body wave studies, including detailed seismic tomography and P-wave reflectivity extracted from stacked autocorrelograms of continuous component records. With the inclusion of deterministic large-scale structure and realistic medium-scale stochastic features fine-scale variations are subdued. The resulting multi-scale heterogeneity model for the Australian region gives a good representation of the character of observed seismograms and their geographic variations and matches the observations of P-wave reflectivity. P reflections in the 0.5-3.0 Hz band in the uppermost mantle suggest variations on vertical scales of a few hundred metres with amplitudes of the order of 1%. Interference of waves reflected or converted at sequences of such modest variations in physical properties produce relatively simple behaviour for lower frequencies, which can suggest simpler structures than are actually present. Vertical changes in the character of fine-scale heterogeneity can produce apparent discontinuities. In Central Australia a 'mid-lithospheric discontinuity' can be tracked via changes in frequency content of station reflectivity, with links to the broad-scale pattern of wavespeed gradients and, in particular, the gradients of radial anisotropy. Comparisons with xenolith results from southeastern Australia indicate a strong tie between geochemical stratification and P-wave reflectivity.

  14. Estimation of fine-scale recombination intensity variation in the white-echinus interval of D. melanogaster

    PubMed Central

    Singh, Nadia D.; Aquadro, Charles F.; Clark, Andrew G.

    2009-01-01

    Accurate assessment of local recombination rate variation is crucial for understanding the recombination process and for determining the impact of natural selection on linked sites. In Drosophila, local recombination intensity has been estimated primarily by statistical approaches, estimating the local slope of the relationship between the physical and genetic maps. However, these estimates are limited in resolution, and as a result, the physical scale at which recombination intensity varies in Drosophila is largely unknown. While there is some evidence suggesting as much as a 40-fold variation in crossover rate at a local scale in D. pseudoobscura, little is known about the fine-scale structure of recombination rate variation in D. melanogaster. Here, we experimentally examine the fine-scale distribution of crossover events in a 1.2 Mb region on the D. melanogaster X chromosome using a classic genetic mapping approach. Our results show that crossover frequency is significantly heterogeneous within this region, varying ~ 3.5 fold. Simulations suggest that this degree of heterogeneity is sufficient to affect levels of standing nucleotide diversity, although the magnitude of this effect is small. We recover no statistical association between empirical estimates of nucleotide diversity and recombination intensity, which is likely due to the limited number of loci sampled in our population genetic dataset. However, codon bias is significantly negatively correlated with fine-scale recombination intensity estimates, as expected. Our results shed light on the relevant physical scale to consider in evolutionary analyses relating to recombination rate, and highlight the motivations to increase the resolution of the recombination map in Drosophila. PMID:19504037

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz Cruz, J. Lorenzo

    The standard Higgs mechanism employed in the Standard Model (SM) for electroweak symmetry breaking, relies on a homogenous Higgs vacuum expectation value (v.e.v.), i.e. a vacuum that does not depend on the position or the time coordinates. However, other non-homogeneous structures could also be considered, either at long or short distances. For instance, spatial variations of the Higgs v.e.v. on cosmological scales, would induce variations of the fundamental constants, and are severely constrained. Other possibilities, such as a discrete microscopic structure of the Higgs vacuum, or a confined Higgs mechanism associated with a strongly interacting Higgs sector, could be testedmore » and give some light on the electroweak-scale contributions to the cosmological constant.« less

  16. Moire interferometry patterns for rotational alignment of structures

    NASA Astrophysics Data System (ADS)

    Heidari, Esmaeil; Harding, Kevin

    2016-08-01

    In some manufacturing applications the alignment of fine structures formed on the surface of a part such as micro-scribed patterns on solar panels can be critical to the panel performance. Variations in pattern uniformity may degrade the efficiency of the solar panel if the pattern deviates significantly from designed parameters. This paper will explore the use of moire patterns to interpret the angular alignment of such structures on 3 dimensional non-planar shapes. The moire interferometry pattern creates a beat between the scribed pattern and a reference pattern that is a function of both the shape of the part as well as the shape of the scribed pattern. Both the part shape variations and the patterns of interest are typically much smaller than can be seen visually. Similar challenges exist when inspecting specular models or testing low quality optics. The moire effect allows small displacements to be measured from patterns that are well below the resolution of the camera systems that are used to view the patterns. Issues such as the separation of the shape of the part from the alignment of the fine structure as well as resolution and robustness of the technique will be explored in this paper.

  17. Probing of the pseudogap via thermoelectric properties in the Au-Al-Gd quasicrystal approximant

    NASA Astrophysics Data System (ADS)

    Ishikawa, Asuka; Takagiwa, Yoshiki; Kimura, Kaoru; Tamura, Ryuji

    2017-03-01

    The pseudogap of the recently discovered Au-Al-Gd quasicrystal approximant crystal (AC) is investigated over a wide electron-per-atom (e /a ) ratio of ˜0.5 using thermoelectric properties as an experimental probe. This Au-Al-Gd AC provides an ideal platform for fine probing of the pseudogap among a number of known ACs because the Au-Al-Gd AC possesses an extraordinarily wide single-phase region with respect to the variation in the electron concentration [A. Ishikawa, T. Hiroto, K. Tokiwa, T. Fujii, and R. Tamura, Phys. Rev. B 93, 024416 (2016), 10.1103/PhysRevB.93.024416], in striking contrast to, for instance, binary stoichiometric C d6R ACs. As a result, a salient peak structure is observed in the Seebeck coefficient, S , with the composition as well as that of the power factor S2σ , in addition to a gradual variation in the conductivity, σ , and S . These two features are directly associated with rapid and slow variations, respectively, of spectral conductivity σ (E ) , and hence the fine structure inside the pseudogap, in the vicinity of the Fermi level EF. Based on the observed continuous variation of the Fermi wave vector reported in the previous experimental work, fine tuning of EF toward an optimal position was attempted, which led to the successful observation of a sharp peak in S2σ with a value of ˜270 μ W /m .K2 at 873 K. This is the highest value ever reported among both Tsai-type and Bergman-type compounds. The dimensionless figure of merit was determined as 0.026 at 873 K, which is also the highest reported among both Tsai-type and Bergman-type compounds.

  18. Terahertz laser vibration-rotation-tunneling spectrum of the water pentamer-d 10. . Constraints on the bifurcation tunneling dynamics

    NASA Astrophysics Data System (ADS)

    Cruzan, Jeff D.; Viant, Mark R.; Brown, Mac G.; Lucas, Don D.; Liu, Kun; Saykally, Richard J.

    1998-08-01

    The vibration-rotation-tunneling (VRT) spectrum of a low-frequency intermolecular vibration of (D 2O) 5 was recorded near 0.9 THz (30.2 cm -1). From an analysis of the relative intensities in the compact Q-branch region, the ground-state C-rotational constant is estimated to be 975±60 MHz, consistent with ab initio structural predictions. The precisely determined B-rotational constant ( B=1750.96±0.20 MHz) agrees well with previous results. Efforts to resolve possible bifurcation tunneling fine structure, such as that observed in VRT spectra of (D 2O) 3, revealed no such effects. This constrains the splittings to be less than 450 kHz, or roughly 3 times smaller than required by previous results.

  19. Recovery and fine structure variability of RGII sub-domains in wine (Vitis vinifera Merlot)

    PubMed Central

    Buffetto, F.; Ropartz, D.; Zhang, X. J.; Gilbert, H. J.; Guillon, F.; Ralet, M.-C.

    2014-01-01

    Background and Aims Rhamnogalacturonan II (RGII) is a structurally complex pectic sub-domain composed of more than 12 different sugars and 20 different linkages distributed in five side chains along a homogalacturonan backbone. Although RGII has long been described as highly conserved over plant evolution, recent studies have revealed variations in the structure of the polysaccharide. This study examines the fine structure variability of RGII in wine, focusing on the side chains A and B obtained after sequential mild acid hydrolysis. Specifically, this study aims to differentiate intrinsic structural variations in these RGII side chains from structural variations due to acid hydrolysis. Methods RGII from wine (Vitis vinifera Merlot) was sequentially hydrolysed with trifluoroacetic acid (TFA) and the hydrolysis products were separated by anion-exchange chromatography (AEC). AEC fractions or total hydrolysates were analysed by MALDI-TOF mass spectrometry. Key Results The optimal conditions to recover non-degraded side chain B, side chain A and RGII backbone were 0·1 m TFA at 40 °C for 16 h, 0·48 m TFA at 40 °C for 16 h (or 0·1 m TFA at 60 °C for 8 h) and 0·1 m TFA at 60 °C for 16 h, respectively. Side chain B was particularly prone to acid degradation. Side chain A and the RGII GalA backbone were partly degraded by 0·1 m TFA at 80 °C for 1–4 h. AEC allowed separation of side chain B, methyl-esterified side chain A and non-methyl-esterified side chain A. The structure of side chain A and the GalA backbone were highly variable. Conclusions Several modifications to the RGII structure of wine were identified. The observed dearabinosylation and deacetylation were primarily the consequence of acidic treatment, while variation in methyl-esterification, methyl-ether linkages and oxidation reflect natural diversity. The physiological significance of this variability, however, remains to be determined. PMID:24908680

  20. Acoustic structure and propagation in highly porous, layered, fibrous materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.; Tesar, J. S.

    1984-01-01

    The acoustic structure and propagation of sound in highly porous, layered, fine fiber materials is examined. Of particular interest is the utilization of the Kozeny number for determining the static flow resistance and the static structure factor based on flow permeability measurements. In this formulation the Kozeny number is a numerical constant independent of volume porosity at high porosities. The other essential parameters are then evaluated employing techniques developed earlier for open cell foams. The attenuation and progressive phase characteristics in bulk samples are measured and compared with predicted values. The agreements on the whole are very satisfactory.

  1. Multiverse understanding of cosmological coincidences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bousso, Raphael; Hall, Lawrence J.; Nomura, Yasunori

    2009-09-15

    There is a deep cosmological mystery: although dependent on very different underlying physics, the time scales of structure formation, of galaxy cooling (both radiatively and against the CMB), and of vacuum domination do not differ by many orders of magnitude, but are all comparable to the present age of the universe. By scanning four landscape parameters simultaneously, we show that this quadruple coincidence is resolved. We assume only that the statistical distribution of parameter values in the multiverse grows towards certain catastrophic boundaries we identify, across which there are drastic regime changes. We find order-of-magnitude predictions for the cosmological constant,more » the primordial density contrast, the temperature at matter-radiation equality, the typical galaxy mass, and the age of the universe, in terms of the fine structure constant and the electron, proton and Planck masses. Our approach permits a systematic evaluation of measure proposals; with the causal patch measure, we find no runaway of the primordial density contrast and the cosmological constant to large values.« less

  2. Resonance rotational level crossing in the fluorosulfate radical FSO3rad and experimental determination of the rotational A and the centrifugal distortion DK constants

    NASA Astrophysics Data System (ADS)

    Kolesniková, Lucie; Koucký, Jan; Kania, Patrik; Uhlíková, Tereza; Beckers, Helmut; Urban, Štěpán

    2018-01-01

    The resonance crossing of rotational levels with different fine-structure components and different k rotational quantum numbers was observed in the rotational spectra of the symmetric top fluorosulfate radical FSO3rad. Detailed measurements were performed to analyze these weak resonances as well as the A1-A2 splittings of the K = 3 and K = 6 transitions. The resonance level crossing enabled the experimental determination of "forbidden" parameters, the rotational A and the centrifugal distortion DK constants as well as the corresponding resonance off-diagonal matrix element.

  3. Systematic harmonic power laws inter-relating multiple fundamental constants

    NASA Astrophysics Data System (ADS)

    Chakeres, Donald; Buckhanan, Wayne; Andrianarijaona, Vola

    2017-01-01

    Power laws and harmonic systems are ubiquitous in physics. We hypothesize that 2, π, the electron, Bohr radius, Rydberg constant, neutron, fine structure constant, Higgs boson, top quark, kaons, pions, muon, Tau, W, and Z when scaled in a common single unit are all inter-related by systematic harmonic powers laws. This implies that if the power law is known it is possible to derive a fundamental constant's scale in the absence of any direct experimental data of that constant. This is true for the case of the hydrogen constants. We created a power law search engine computer program that randomly generated possible positive or negative powers searching when the product of logical groups of constants equals 1, confirming they are physically valid. For 2, π, and the hydrogen constants the search engine found Planck's constant, Coulomb's energy law, and the kinetic energy law. The product of ratios defined by two constants each was the standard general format. The search engine found systematic resonant power laws based on partial harmonic fraction powers of the neutron for all of the constants with products near 1, within their known experimental precision, when utilized with appropriate hydrogen constants. We conclude that multiple fundamental constants are inter-related within a harmonic power law system.

  4. Quantum Consciousness - The Road to Reality

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    Per Einstein's theory mass tells space how to curve and space tells mass how to move. How do they tell\\x9D? The question boils down to information created by quantum particles blinking ON and OFF analogous to 'Ying and Yang' or some more complex ways that may include dark matter. Consciousness, dark matter, quantum physics, uncertainty principle, constants of nature like strong coupling, fine structure constant, cosmological constant introduced by Einstein, information, gravitation etc. are fundamentally consequences of that ONE TOE. Vedic philosophers, who impressed Schrodinger so much, called it ATMA split in the categories of AnuAtma (particle soul), JivAtma (life soul) and ParamAtma (Omnipresent soul) which we relate to quantum physics, biology and cosmology. There is no separate TOE (Theory of Everything) for any one thing.

  5. Laboratory detection of the rotational-tunnelling spectrum of the hydroxymethyl radical, CH2OH

    NASA Astrophysics Data System (ADS)

    Bermudez, C.; Bailleux, S.; Cernicharo, J.

    2017-02-01

    Context. Of the two structural isomers of CH3O, methoxy is the only radical whose astronomical detection has been reported through the observation of several rotational lines at 2 and 3 mm wavelengths. Although the hydroxymethyl radical, CH2OH, is known to be thermodynamically the most stable (by 3300 cm-1), it has so far eluded rotational spectroscopy presumably because of its high chemical reactivity. Aims: Recent high-resolution ( 10 MHz) sub-Doppler rovibrationally resolved infrared spectra of CH2OH (symmetric CH stretching a-type band) provided accurate ground vibrational state rotational constants, thus reviving the quest for its millimeter-wave spectrum in laboratory and subsequently in space. Methods: The search and assignment of the rotational spectrum of this fundamental species were guided by our quantum chemical calculations and by using rotational constants derived from high-resolution IR data. The hydroxymethyl radical was produced by hydrogen abstraction from methanol by atomic chlorine. Results: Ninety-six b-type rotational transitions between the v = 0 and v = 1 tunnelling sublevels involving 25 fine-structure components of Q branches (with Ka = 1 ← 0) and 4 fine-structure components of R branches (assigned to Ka = 0 ← 1) were measured below 402 GHz. Hyperfine structure alternations due to the two identical methylenic hydrogens were observed and analysed based on the symmetry and parity of the rotational levels. A global fit including infrared and millimeter-wave lines has been conducted using Pickett's reduced axis system Hamiltonian. The recorded transitions (odd ΔKa) did not allow us to evaluate the Coriolis tunnelling interaction term. The comparison of the experimentally determined constants for both tunnelling levels with their computed values secures the long-awaited first detection of the rotational-tunnelling spectrum of this radical. In particular, a tunnelling rate of 139.73 ± 0.10 MHz (4.6609(32) × 10-3 cm-1) was obtained along with the rotational constants, electron spin-rotation interaction parameters and several hyperfine coupling terms. Conclusions: The laboratory characterization of CH2OH by millimeter-wave spectroscopy now offers the possibility for its astronomical detection for the first time.

  6. Stability of half-metallic behavior with lattice variation for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloy

    NASA Astrophysics Data System (ADS)

    Jain, Vivek Kumar; Lakshmi, N.; Jain, Rakesh

    2018-05-01

    The electronic structure and magnetic properties with variation of lattice constant for Fe2MnZ (Z = Si, Ge, Sn) Heusler alloys have been studied. Optimized lattice constant are found to be 5.59, 5.69, 6.00 Å for Z= Si, Ge and Sn respectively. Total magnetic moments of the alloys are ˜3 µB as predicted by the Slater Pauling rule and is maintained over a wide range of lattice variation for all three alloys. Half metallic ferromagnetic nature with 100% spin polarization is observed for Fe2MnSi for a lattice range from 5.40-5.70 Å. Fe2MnGe and Fe2MnSn show ferromagnetic and metallic natures with more than 90% spin polarization over a wide range of lattice constant. Due to the stability of half metallic character of these alloys with respect to variation in the lattice parameters, they are promising robust materials suitable for spintronics device applications.

  7. Coumaraz-2-on-4-ylidene: Ambiphilic N-heterocyclic Carbenes with a Fine-Tunable Electronic Structure.

    PubMed

    Song, Hayoung; Kim, Hyunho; Lee, Eunsung

    2018-05-16

    Herein, a coumaraz-2-on-4-ylidene (1) as a new example of ambiphilic N-heterocyclic carbenes with fine tunable electronic properties is reported. The N-carbamic and aryl groups on carbene carbon provide exceptionally high electrophilicity and nucleophilicity simultaneously to the carbene center, as evidenced by the 77Se NMR chemical shifts of their selenoketone derivatives and the CO stretching strengths of their rhodium carbonyl complexes. Since the precursors of 1 could be synthesized from various functionalized Schiff bases in a practical and scalable manner, the electronic properties of 1 can be fine-tuned in quantitative and predictable way using the Hammett σ constant of the functional groups on aryl ring. The facile electronic tuning capability of 1 may be further applicable to eliciting novel properties in main-group and transition metal chemistry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Revisiting the Bohr Atom 100 Years Later

    NASA Astrophysics Data System (ADS)

    Wall, Ernst

    2013-03-01

    We use a novel electron model wherein the electron is modeled as a point charge behaving as a trapped photon revolving in a Compton wavelength orbit at light speed. The revolving point charge gives rise to spiraling Compton wavelets around the electron, which give rise to de Broglie waves. When applied to the Bohr model, the orbital radius of the electron scales to the first Bohr orbit's radius via the fine structure constant. The orbiting electron's orbital velocity, Vb, scales to that of the electron's charge's internal velocity (the velocity of light, c) via the fine structure constant. The Compton wavelets, if they reflect off the nucleus, have a round trip time just long enough to allow the electron to move one of its diameters in distance in the first Bohr orbit. The ratio of the electron's rotational frequency, fe, to its rotational frequency in the Bohr orbit fb, is fe/fb = 1/α2, which is also the number of electron rotations in single orbit. If we scale the electron's rotational energy (h*fe) to that of the orbit using this, the orbital energy value (h*fb) would be 27.2114 eV. However, the virial theorem reduces it to 13.6057, the ground state energy of the first Bohr orbit. Ref: www.tachyonmodel.com.

  9. Fine structure of microwave spike bursts and associated cross-field energy transport

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Dulk, G. A.; Pritchett, P. L.

    1988-01-01

    The characteristics of the maser emission from a driven system where energetic electrons continue to flow through the source region is investigated using electronic particle simulations. It is shown that, under appropriate conditions, the maser can efficiently radiate a significant portion of the energy of the fast electrons in a very short time. The radiation is emitted in pulses even though the flow of electrons through the system is at a constant rate. The mission of these pulses is proposed as the source of the fine structure. Under other conditions the dominant maser emission changes from fundamental x-mode to either fundamental z-mode or to electrostatic upper hybrid or Bernstein modes. The bulk of the emission from the maser instability cannot propagate across field lines in this regime, and hence strong local plasma heating is expected, with little energy transport across the magnetic field lines.

  10. Shifts due to quantum-mechanical interference from distant neighboring resonances for saturated fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Marsman, Alain; Horbatsch, Marko; Hessels, Eric A.

    2014-05-01

    Quantum-mechanical interference with distant neighboring resonances is found to cause shifts for precision saturated fluorescence spectroscopy of the atomic helium 23 S -to- 23 P transitions. The shifts are significant (larger than the experimental uncertainties for measurements of the intervals) despite the fact that the neighboring resonances are separated from the measured resonances by 1400 and 20 000 natural widths. The shifts depend strongly on experimental parameters such as the angular position of the fluorescence detector and the intensity and size of laser beams. These shifts must be considered for the ongoing program of determining the fine-structure constant from the helium 23 P fine structure. The work represents the first study of such interference shifts for saturated fluorescence spectroscopy and follows up on our previous study of similar shifts for laser spectroscopy. This work is supported by NSERC, CRC, ORF, CFI, NIST and SHARCNET.

  11. Theoretical analysis of the structural phase transformation from B3 to B1 in BeO under high pressure

    NASA Astrophysics Data System (ADS)

    Jain, Arvind; Verma, Saligram; Nagarch, R. K.; Shah, S.; Kaurav, Netram

    2018-05-01

    We have performed the phase transformation and elastic properties of BeO at high pressure by formulating effective interionic interaction potential. The elastic constants, including the long-range Coulomb and van der Waals (vdW) interactions and the short-range repulsive interaction of up to second-neighbor ions within the Hafemeister and Flygare approach, are derived. Assuming that both the ions are polarizable, we employed the Slater-Kirkwood variational method to estimate the vdW coefficients, a structural phase transition (Pt) from ZnS structure (B3) to NaCl structure (B1) at 108 GPa has been predicted for BeO. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the theoretical data. The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of ZnS type structure family.

  12. A comparative study of new and current methods for dental micro-CT image denoising

    PubMed Central

    Lashgari, Mojtaba; Qin, Jie; Swain, Michael

    2016-01-01

    Objectives: The aim of the current study was to evaluate the application of two advanced noise-reduction algorithms for dental micro-CT images and to implement a comparative analysis of the performance of new and current denoising algorithms. Methods: Denoising was performed using gaussian and median filters as the current filtering approaches and the block-matching and three-dimensional (BM3D) method and total variation method as the proposed new filtering techniques. The performance of the denoising methods was evaluated quantitatively using contrast-to-noise ratio (CNR), edge preserving index (EPI) and blurring indexes, as well as qualitatively using the double-stimulus continuous quality scale procedure. Results: The BM3D method had the best performance with regard to preservation of fine textural features (CNREdge), non-blurring of the whole image (blurring index), the clinical visual score in images with very fine features and the overall visual score for all types of images. On the other hand, the total variation method provided the best results with regard to smoothing of images in texture-free areas (CNRTex-free) and in preserving the edges and borders of image features (EPI). Conclusions: The BM3D method is the most reliable technique for denoising dental micro-CT images with very fine textural details, such as shallow enamel lesions, in which the preservation of the texture and fine features is of the greatest importance. On the other hand, the total variation method is the technique of choice for denoising images without very fine textural details in which the clinician or researcher is interested mainly in anatomical features and structural measurements. PMID:26764583

  13. Local topography shapes fine-scale spatial genetic structure in the Arkansas Valley evening primrose, Oenothera harringtonii (Onagraceae).

    PubMed

    Rhodes, Matthew K; Fant, Jeremie B; Skogen, Krissa A

    2014-01-01

    Identifying factors that shape the spatial distribution of genetic variation is crucial to understanding many population- and landscape-level processes. In this study, we explore fine-scale spatial genetic structure in Oenothera harringtonii (Onagraceae), an insect-pollinated, gravity-dispersed herb endemic to the grasslands of south-central and southeastern Colorado, USA. We genotyped 315 individuals with 11 microsatellite markers and utilized a combination of spatial autocorrelation analyses and landscape genetic models to relate life history traits and landscape features to dispersal processes. Spatial genetic structure was consistent with theoretical expectations of isolation by distance, but this pattern was weak (Sp = 0.00374). Anisotropic analyses indicated that spatial genetic structure was markedly directional, in this case consistent with increased dispersal along prominent slopes. Landscape genetic models subsequently confirmed that spatial genetic variation was significantly influenced by local topographic heterogeneity, specifically that geographic distance, elevation and aspect were important predictors of spatial genetic structure. Among these variables, geographic distance was ~68% more important than elevation in describing spatial genetic variation, and elevation was ~42% more important than aspect after removing the effect of geographic distance. From these results, we infer a mechanism of hydrochorous seed dispersal along major drainages aided by seasonal monsoon rains. Our findings suggest that landscape features may shape microevolutionary processes at much finer spatial scales than typically considered, and stress the importance of considering how particular dispersal vectors are influenced by their environmental context. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Enhanced dielectric properties of Fe-substituted TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, T.; Ahmed, Ateeq; Naseem siddique, M.; Tripathi, P.

    2018-04-01

    We report the structural and dielectric properties Ti1-xFexO2 (0.00 < x < 0.10) nanoparticles (NPs) synthesized by sol-gel method. The synthesized material has been characterized by soft X-ray absorption spectroscopy (SXAS) in order to investigate the fine structure and electronic valence state. SXAS analysis reveals that Fe-ions exist only in 3+ valance state in all the samples. The dielectric properties were studied by the use of LCR impedance spectroscopy. The dielectric constants, dielectric loss and A.C. conductivity have been determined as a function of frequency and composition of iron. At higher frequencies, the materials exhibited high AC Conductivity and low dielectric constant. The above theory could be explained by 'Maxwell Wagner Model' and may provide a new insight to fabricate nanomaterials having possible electrical application.

  15. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Salehi, M.; Koirala, N.; Moon, J.; Oh, S.; Armitage, N. P.

    2016-12-01

    Topological insulators have been proposed to be best characterized as bulk magnetoelectric materials that show response functions quantized in terms of fundamental physical constants. Here, we lower the chemical potential of three-dimensional (3D) Bi2Se3 films to ~30 meV above the Dirac point and probe their low-energy electrodynamic response in the presence of magnetic fields with high-precision time-domain terahertz polarimetry. For fields higher than 5 tesla, we observed quantized Faraday and Kerr rotations, whereas the dc transport is still semiclassical. A nontrivial Berry’s phase offset to these values gives evidence for axion electrodynamics and the topological magnetoelectric effect. The time structure used in these measurements allows a direct measure of the fine-structure constant based on a topological invariant of a solid-state system.

  16. Effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Olona, Timothy

    1987-01-01

    The effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter was investigated. Several structural performance and resizing (SPAR) thermal models and NASA structural analysis (NASTRAN) structural models were set up for the orbiter wing midspan bay 3. The thermal model was found to be the one that determines the limit of finite-element fineness because of the limitation of computational core space required for the radiation view factor calculations. The thermal stresses were found to be extremely sensitive to a slight variation of structural temperature distributions. The minimum degree of element fineness required for the thermal model to yield reasonably accurate solutions was established. The radiation view factor computation time was found to be insignificant compared with the total computer time required for the SPAR transient heat transfer analysis.

  17. Structural, magnetic and dielectric properties of polyaniline/MnCoFe2O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Chitra, Palanisamy; Muthusamy, Athianna; Jayaprakash, Rajan

    2015-12-01

    Ferromagnetic PANI containing MnCoFe2O4 nanocomposites were synthesized by in-situ chemical polymerization of aniline incorporated MnCoFe2O4 nanoparticles (20%, 10% w/w of fine powders) with and without ultrasonic treatment. The MnCoFe2O4 nanoparticles were synthesized by auto combustion method. The PANI/MnCoFe2O4 nanocomposites were characterized with Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The average particle size of the resulting PANI/MnCoFe2O4 nanocomposites was confirmed from the TEM and XRD analysis. The structure and morphology of the composites were confirmed by FT-IR spectroscopy, XRD and SEM. In addition, the electrical and magnetic properties of the nanocomposites were investigated. The PANI/MnCoFe2O4 nanocomposites under applied magnetic field exhibited the hysteresis loops of ferromagnetic nature at room temperature. The variation of Dielectric constant, Dielectric loss, and AC conductivity of PANI/MnCoFe2O4 nanocomposites at room temperature as a function of frequency in the range 50 Hz-5 MHz has been studied. Effect of ultrasonication on the PANI/MnCoFe2O4 nanocomposites was also investigated.

  18. Microstructured Polymer Blend Surfaces Produced by Spraying Functional Copolymers and Their Blends

    PubMed Central

    Vargas-Alfredo, Nelson; Rodríguez Hernández, Juan

    2016-01-01

    We described the fabrication of functional and microstructured surfaces from polymer blends by spray deposition. This simple technique offers the possibility to simultaneously finely tune the microstructure as well as the surface chemical composition. Whereas at lower polymer concentration, randomly distributed surface micropatterns were observed, an increase of the concentration leads to significant changes on these structures. On the one hand, using pure homopolystyrene fiber-like structures were observed when the polymer concentration exceeded 30 mg/mL. Interestingly, the incorporation of 2,3,4,5,6-pentafluorostyrene changed the morphology, and, instead of fibers, micrometer size particles were identified at the surface. These fluorinated microparticles provide superhydrophobic properties leading to surfaces with contact angles above 165°. Equally, in addition to the microstructures provided by the spray deposition, the use of thermoresponsive polymers to fabricate interfaces with responsive properties is also described. Contact angle measurements revealed variations on the surface wettability upon heating when blends of polystyrene and polystyrene-b-poly(dimethylaminoethyl methacrylate) are employed. Finally, the use of spraying techniques to fabricate gradient surfaces is proposed. Maintaining a constant orientation, the surface topography and thus the contact angle varies gradually from the center to the edge of the film depending on the spray angle. PMID:28773555

  19. Revised energy levels of singly ionized lanthanum

    NASA Astrophysics Data System (ADS)

    Güzelçimen, Feyza; Tonka, Mehdi; Uddin, Zaheer; Bhatti, Naveed Anjum; Windholz, Laurentius; Kröger, Sophie; Başar, Gönül

    2018-05-01

    Based on the experimental wavenumbers of 344 spectral lines from calibrated Fourier transform (FT) spectra as well as wavenumbers of 81 lines from the wavelength tables from literature, the energy of 115 fine structure levels of singly ionized lanthanum has been revised by weighted global fits. The classifications of the lines are provided by numerous previous investigations of lanthanum by different spectroscopic methods and authors. For the high accurate determination of the center of gravity wavenumbers from the experimental spectrum, the hyperfine constants of the involved levels have been taken into account, if possible. For the 94 levels with known hyperfine constants the accuracy of energy values is better than 0.01 cm-1. For 34 levels the magnetic dipole hyperfine constants A have been determined from FT spectra as part of this work. For four of these 34 levels even electric quadrupole hyperfine constants B could be estimated. For levels, which have experimentally unknown hyperfine constants and which are connected only by lines not found in the FT spectra but taken from literature, the uncertainties of energy values are about a factor of 10 higher. A list of all revised level energies together with a compilation of hyperfine structure data is given as well as a list of all lines used.

  20. Fine-structural changes in the midgut of old Drosophila melanogaster

    NASA Technical Reports Server (NTRS)

    Anton-Erxleben, F.; Miquel, J.; Philpott, D. E.

    1983-01-01

    Senescent fine-structural changes in the midgut of Drosophila melanogaster are investigated. A large number of midgut mitochondria in old flies exhibit nodular cristae and a tubular system located perpendicular to the normal cristae orientation. Anterior intestinal cells show a senescent accumulation of age pigment, either with a surrounding two-unit membrane or without any membrane. The predominant localization of enlarged mitochondria and pigment in the luminal gut region may be related to the polarized metabolism of the intestinal cells. Findings concur with previous observations of dense-body accumulations and support the theory that mitochondria are involved in the aging of fixed post-mitotic cells. Demonstrated by statistical analyses is that mitochondrial size increase is related to mitochondrial variation increase.

  1. Discerning some Tylenol brands using attenuated total reflection Fourier transform infrared data and multivariate analysis techniques.

    PubMed

    Msimanga, Huggins Z; Ollis, Robert J

    2010-06-01

    Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to classify acetaminophen-containing medicines using their attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectra. Four formulations of Tylenol (Arthritis Pain Relief, Extra Strength Pain Relief, 8 Hour Pain Relief, and Extra Strength Pain Relief Rapid Release) along with 98% pure acetaminophen were selected for this study because of the similarity of their spectral features, with correlation coefficients ranging from 0.9857 to 0.9988. Before acquiring spectra for the predictor matrix, the effects on spectral precision with respect to sample particle size (determined by sieve size opening), force gauge of the ATR accessory, sample reloading, and between-tablet variation were examined. Spectra were baseline corrected and normalized to unity before multivariate analysis. Analysis of variance (ANOVA) was used to study spectral precision. The large particles (35 mesh) showed large variance between spectra, while fine particles (120 mesh) indicated good spectral precision based on the F-test. Force gauge setting did not significantly affect precision. Sample reloading using the fine particle size and a constant force gauge setting of 50 units also did not compromise precision. Based on these observations, data acquisition for the predictor matrix was carried out with the fine particles (sieve size opening of 120 mesh) at a constant force gauge setting of 50 units. After removing outliers, PCA successfully classified the five samples in the first and second components, accounting for 45.0% and 24.5% of the variances, respectively. The four-component PLS-DA model (R(2)=0.925 and Q(2)=0.906) gave good test spectra predictions with an overall average of 0.961 +/- 7.1% RSD versus the expected 1.0 prediction for the 20 test spectra used.

  2. The impact of mating systems and dispersal on fine-scale genetic structure at maternally, paternally and biparentally inherited markers.

    PubMed

    Shaw, Robyn E; Banks, Sam C; Peakall, Rod

    2018-01-01

    For decades, studies have focused on how dispersal and mating systems influence genetic structure across populations or social groups. However, we still lack a thorough understanding of how these processes and their interaction shape spatial genetic patterns over a finer scale (tens-hundreds of metres). Using uniparentally inherited markers may help answer these questions, yet their potential has not been fully explored. Here, we use individual-level simulations to investigate the effects of dispersal and mating system on fine-scale genetic structure at autosomal, mitochondrial and Y chromosome markers. Using genetic spatial autocorrelation analysis, we found that dispersal was the major driver of fine-scale genetic structure across maternally, paternally and biparentally inherited markers. However, when dispersal was restricted (mean distance = 100 m), variation in mating behaviour created strong differences in the comparative level of structure detected at maternally and paternally inherited markers. Promiscuity reduced spatial genetic structure at Y chromosome loci (relative to monogamy), whereas structure increased under polygyny. In contrast, mitochondrial and autosomal markers were robust to differences in the specific mating system, although genetic structure increased across all markers when reproductive success was skewed towards fewer individuals. Comparing males and females at Y chromosome vs. mitochondrial markers, respectively, revealed that some mating systems can generate similar patterns to those expected under sex-biased dispersal. This demonstrates the need for caution when inferring ecological and behavioural processes from genetic results. Comparing patterns between the sexes, across a range of marker types, may help us tease apart the processes shaping fine-scale genetic structure. © 2017 John Wiley & Sons Ltd.

  3. Frequency Combs in the XUV by Intra-Laser High Harmonic Generation for Ultra-Precise Measurements of the Fine Structure Constant

    DTIC Science & Technology

    2015-06-03

    example, all atomic clocks for the European satellite -based global positioning system GALLILEO were manufactured in Neuchatel. With the integration...realization of numerous other exciting devices in various areas like advancement of sensors and nano- technological devices. Summary of Project...losses of the resonator . Achieving passive femtosecond pulse formation at these record-high power levels will require eliminating any destabilizing

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Fred C., E-mail: fca@umich.edu

    This paper develops constraints on the values of the fundamental constants that allow universes to be habitable. We focus on the fine structure constant α and the gravitational structure constant α{sub G}, and find the region in the α-α{sub G} plane that supports working stars and habitable planets. This work is motivated, in part, by the possibility that different versions of the laws of physics could be realized within other universes. The following constraints are enforced: [A] long-lived stable nuclear burning stars exist, [B] planetary surface temperatures are hot enough to support chemical reactions, [C] stellar lifetimes are long enoughmore » to allow biological evolution, [D] planets are massive enough to maintain atmospheres, [E] planets are small enough in mass to remain non-degenerate, [F] planets are massive enough to support sufficiently complex biospheres, [G] planets are smaller in mass than their host stars, and [H] stars are smaller in mass than their host galaxies. This paper delineates the portion of the α-α{sub G} plane that satisfies all of these constraints. The results indicate that viable universes—with working stars and habitable planets—can exist within a parameter space where the structure constants α and α{sub G} vary by several orders of magnitude. These constraints also provide upper bounds on the structure constants (α,α{sub G}) and their ratio. We find the limit α{sub G}/α ∼< 10{sup −34}, which shows that habitable universes must have a large hierarchy between the strengths of the gravitational force and the electromagnetic force.« less

  5. Infrared laser spectroscopy of jet-cooled carbon clusters: structure of triplet C6

    NASA Technical Reports Server (NTRS)

    Hwang, H. J.; Van Orden, A.; Tanaka, K.; Kuo, E. W.; Heath, J. R.; Saykally, R. J.

    1993-01-01

    We report the first structural characterization of the triplet isomer of C6. Forty-one rovibrational/fine structure transitions in the nu 4(sigma u) antisymmetric stretch fundamental of the C6 cluster have been measured by diode laser absorption spectroscopy of a supersonic carbon cluster beam. The observed spectrum is characteristic of a centrosymmetric linear triplet state with cumulene-type bonding. The measured ground state rotational constant B0 = 0.048 479 (10)cm-1 and the effective bond length r(eff) = 1.2868 (1) angstroms are in good agreement with ab initio predictions for the linear triplet (3 sigma g-) state of C6.

  6. Highly Tunable Hollow Gold Nanospheres: Gaining Size Control and Uniform Galvanic Exchange of Sacrificial Cobalt Boride Scaffolds.

    PubMed

    Lindley, Sarah A; Cooper, Jason K; Rojas-Andrade, Mauricio D; Fung, Victoria; Leahy, Conor J; Chen, Shaowei; Zhang, Jin Z

    2018-04-18

    In principle, the diameter and surface plasmon resonance (SPR) frequency of hollow metal nanostructures can be independently adjusted, allowing the formation of targeted photoactivated structures of specific size and optical functionality. Although tunable SPRs have been reported for various systems, the shift in SPR is usually concomitant with a change in particle size. As such, more advanced tunability, including constant diameter with varying SPR or constant SPR with varying diameter, has not been properly achieved experimentally. Herein, we demonstrate this advanced tunability with hollow gold nanospheres (HGNs). HGNs were synthesized through galvanic exchange using cobalt-based nanoparticles (NPs) as sacrificial scaffolds. Co 2 B NP scaffolds were prepared by sodium borohydride nucleation of aqueous cobalt chloride and characterized using UV-vis, dynamic light scattering, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Careful control over the size of the Co 2 B scaffold and its galvanic conversion is essential to realize fine control of the resultant HGN diameter and shell thickness. In pursuit of size control, we introduce B(OH) 4 - (the final product of NaBH 4 hydrolysis) as a growth agent to obtain hydrodynamic diameters ranging from ∼17-85 nm with relative standard deviation <3%. The highly monodisperse Co 2 B NPs were then used as scaffolds for the formation of HGNs. In controlling HGN shell thickness and uniformity, environmental oxygen was shown to affect both the structural and optical properties of the resultant gold shells. With careful control of these key factors, we demonstrate an HGN synthesis that enables independent variation of diameter and shell thickness, and thereby SPR, with unprecedented uniformity. The new synthesis method creates a truly tunable plasmonic nanostructure platform highly desirable for a wide range of applications, including sensing, catalysis, and photothermal therapy.

  7. Radiation Hardened Structured ASIC Platform with Compensation of Delay for Temperature and Voltage Variations for Multiple Redundant Temporal Voting Latch Technology

    NASA Technical Reports Server (NTRS)

    Ardalan, Sasan (Inventor)

    2018-01-01

    The invention relates to devices and methods of maintaining the current starved delay at a constant value across variations in voltage and temperature to increase the speed of operation of the sequential logic in the radiation hardened ASIC design.

  8. A TEM Investigation of the Fine-Grained Matrix of the Martian Basaltic Breccia NWA 7034

    NASA Technical Reports Server (NTRS)

    Muttik, N.; Keller, L. P.; Agee, C. B.; McCubbin, F. M.; Santos, A. R.; Rahman, Z.

    2014-01-01

    The martian basaltic breccia NWA 7034 is characterized by fine-grained groundmass containing several different types of mineral grains and lithologic clasts. The matrix composition closely resembles Martian crustal rock and soil composition measured by recent rover and orbiter missions. The first results of NWA 7034 suggest that the brecciation of this martian meteorite may have formed due to eruptive volcanic processes; however, impact related brecciation processes have been proposed for paired meteorites NWA 7533 and NWA 7475]. Due to the very fine grain size of matrix, its textural details are difficult to resolve by optical and microprobe observations. In order to examine the potential nature of brecciation, transmission electron microscopy (TEM) studies combined with focused ion-beam technique (FIB) has been undertaken. Here we present the preliminary observations of fine-grained groundmass of NWA 7034 from different matrix areas by describing its textural and mineralogical variations and micro-structural characteristics.

  9. Crossed-Beam Spectroscopy of Hydrogen: A New Value for the Rydberg Constant

    NASA Astrophysics Data System (ADS)

    Amin, S. R.; Caldwell, C. D.; Lichten, W.

    1981-11-01

    In a crossed laser-atomic beam experiment the wavelengths of the 2s-3p transitions are measured in H and D to a precision of one part in 109. Our value for the Rydberg constant is R∞=109 737.315 21(11) cm-1. The fine-structure splittings of the 3p states in H and D are 3249.8(8) and 3251.7(7) MHz, respectively; the isotope shifts for the 2s-3p12 and 2s-3p32 transitions are 124 260.7(7) and 124 262.6(7) MHz, respectively. Our results largely agree with previous, less precise experiments and with theory.

  10. Do we live in the best of all possible worlds? The fine-tuning of the constants of nature

    NASA Astrophysics Data System (ADS)

    Naumann, Thomas

    2017-12-01

    Our existence depends on a variety of constants which appear to be extremely fine-tuned to allow for the existence of life. These include the number of spatial dimensions, the strengths of the forces, the masses of the particles, the composition of the Universe and others. On the occasion of the 300th anniversary of the death of G.W. Leibniz we discuss the question of whether we live in the "Best of all Worlds". The hypothesis of a multiverse could explain the mysterious fine tuning of so many fundamental quantities. Anthropic arguments are critically reviewed.

  11. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  12. T-RMSD: a web server for automated fine-grained protein structural classification.

    PubMed

    Magis, Cedrik; Di Tommaso, Paolo; Notredame, Cedric

    2013-07-01

    This article introduces the T-RMSD web server (tree-based on root-mean-square deviation), a service allowing the online computation of structure-based protein classification. It has been developed to address the relation between structural and functional similarity in proteins, and it allows a fine-grained structural clustering of a given protein family or group of structurally related proteins using distance RMSD (dRMSD) variations. These distances are computed between all pairs of equivalent residues, as defined by the ungapped columns within a given multiple sequence alignment. Using these generated distance matrices (one per equivalent position), T-RMSD produces a structural tree with support values for each cluster node, reminiscent of bootstrap values. These values, associated with the tree topology, allow a quantitative estimate of structural distances between proteins or group of proteins defined by the tree topology. The clusters thus defined have been shown to be structurally and functionally informative. The T-RMSD web server is a free website open to all users and available at http://tcoffee.crg.cat/apps/tcoffee/do:trmsd.

  13. T-RMSD: a web server for automated fine-grained protein structural classification

    PubMed Central

    Magis, Cedrik; Di Tommaso, Paolo; Notredame, Cedric

    2013-01-01

    This article introduces the T-RMSD web server (tree-based on root-mean-square deviation), a service allowing the online computation of structure-based protein classification. It has been developed to address the relation between structural and functional similarity in proteins, and it allows a fine-grained structural clustering of a given protein family or group of structurally related proteins using distance RMSD (dRMSD) variations. These distances are computed between all pairs of equivalent residues, as defined by the ungapped columns within a given multiple sequence alignment. Using these generated distance matrices (one per equivalent position), T-RMSD produces a structural tree with support values for each cluster node, reminiscent of bootstrap values. These values, associated with the tree topology, allow a quantitative estimate of structural distances between proteins or group of proteins defined by the tree topology. The clusters thus defined have been shown to be structurally and functionally informative. The T-RMSD web server is a free website open to all users and available at http://tcoffee.crg.cat/apps/tcoffee/do:trmsd. PMID:23716642

  14. Fine scale variations of surface water chemistry in an ephemeral to perennial drainage network

    Treesearch

    Margaret A. Zimmer; Scott W. Bailey; Kevin J. McGuire; Thomas D. Bullen

    2013-01-01

    Although temporal variation in headwater stream chemistry has long been used to document baseline conditions and response to environmental drivers, less attention is paid to fine scale spatial variations that could yield clues to processes controlling stream water sources. We documented spatial and temporal variation in water composition in a headwater catchment (41 ha...

  15. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology

    DOE PAGES

    Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer; ...

    2017-02-28

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less

  16. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iversen, Colleen M.; McCormack, M. Luke; Powell, A. Shafer

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. And while fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of rootmore » traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. There has been a continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time.« less

  17. Total variation iterative constraint algorithm for limited-angle tomographic reconstruction of non-piecewise-constant structures

    NASA Astrophysics Data System (ADS)

    Krauze, W.; Makowski, P.; Kujawińska, M.

    2015-06-01

    Standard tomographic algorithms applied to optical limited-angle tomography result in the reconstructions that have highly anisotropic resolution and thus special algorithms are developed. State of the art approaches utilize the Total Variation (TV) minimization technique. These methods give very good results but are applicable to piecewise constant structures only. In this paper, we propose a novel algorithm for 3D limited-angle tomography - Total Variation Iterative Constraint method (TVIC) which enhances the applicability of the TV regularization to non-piecewise constant samples, like biological cells. This approach consists of two parts. First, the TV minimization is used as a strong regularizer to create a sharp-edged image converted to a 3D binary mask which is then iteratively applied in the tomographic reconstruction as a constraint in the object domain. In the present work we test the method on a synthetic object designed to mimic basic structures of a living cell. For simplicity, the test reconstructions were performed within the straight-line propagation model (SIRT3D solver from the ASTRA Tomography Toolbox), but the strategy is general enough to supplement any algorithm for tomographic reconstruction that supports arbitrary geometries of plane-wave projection acquisition. This includes optical diffraction tomography solvers. The obtained reconstructions present resolution uniformity and general shape accuracy expected from the TV regularization based solvers, but keeping the smooth internal structures of the object at the same time. Comparison between three different patterns of object illumination arrangement show very small impact of the projection acquisition geometry on the image quality.

  18. Lamb Shift of n = 1 and n = 2 States of Hydrogen-like Atoms, 1 ≤ Z ≤ 110

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yerokhin, V. A.; Shabaev, V. M.

    2015-09-15

    Theoretical energy levels of the n = 1 and n = 2 states of hydrogen-like atoms with the nuclear charge numbers 1 ≤ Z ≤ 110 are tabulated. The tabulation is based on ab initio quantum electrodynamics calculations performed to all orders in the nuclear binding strength parameter Zα, where α is the fine structure constant. Theoretical errors due to various effects are critically examined and estimated.

  19. Recent Results from KLOE-2

    NASA Astrophysics Data System (ADS)

    Krzemien, Wojciech

    The most recent results from the KLOE experiment are presented, covering: the measurement of the running fine-structure constant αem, the Dalitz plot measurement of η → π+π‑π0, the search of a U boson, tests of discrete symmetries and quantum coherence. The KLOE-2 Collaboration will take data until mid 2018 aiming to collect 5 fb1 increasing the data set, in order to produce new precision measurements and continue studies of fundamental symmetries and New Physics.

  20. Reexamination of the effective fine structure constant of graphene as measured in graphite

    DOE PAGES

    Gan, Yu; de la Pena Munoz, Gilberto; Kogar, Anshul; ...

    2016-05-24

    Here we present a refined and improved study of the influence of screening on the effective fine structure constant of graphene, α*, as measured in graphite using inelastic x-ray scattering. This followup to our previous study [J. P. Reed et al., Science 330, 805 (2010)] was carried out with two times better energy resolution, five times better momentum resolution, and an improved experimental setup with lower background. We compare our results to random-phase approximation (RPA) calculations and evaluate the relative importance of interlayer hopping, excitonic corrections, and screening from high energy excitations involving the sigma bands. We find that themore » static, limiting value of α* falls in the range 0.25-0.35, which is higher than our previous result of 0.14, but still below the value expected from RPA. We show the reduced value is not a consequence of interlayer hopping effects, which were ignored in our previous analysis, but of a combination of excitonic effects in the π→ π* particle-hole continuum, and background screening from the σ-bonded electrons. We find that σ-band screening is extremely strong at distances of less than a few nanometers, and should be highly effective at screening out short-distance, Hubbard-like interactions in graphene as well as other carbon allotropes.« less

  1. Temporal variation in bat-fruit interactions: Foraging strategies influence network structure over time

    NASA Astrophysics Data System (ADS)

    Zapata-Mesa, Natalya; Montoya-Bustamante, Sebastián; Murillo-García, Oscar E.

    2017-11-01

    Mutualistic interactions, such as seed dispersal, are important for the maintenance of structure and stability of tropical communities. However, there is a lack of information about spatial and temporal variation in plant-animal interaction networks. Thus, our goal was to assess the effect of bat's foraging strategies on temporal variation in the structure and robustness of bat-fruit networks in both a dry and a rain tropical forest. We evaluated monthly variation in bat-fruit networks by using seven structure metrics: network size, average path length, nestedness, modularity, complementary specialization, normalized degree and betweenness centrality. Seed dispersal networks showed variations in size, species composition and modularity; did not present nested structures and their complementary specialization was high compared to other studies. Both networks presented short path lengths, and a constantly high robustness, despite their monthly variations. Sedentary bat species were recorded during all the study periods and occupied more central positions than nomadic species. We conclude that foraging strategies are important structuring factors that affect the dynamic of networks by determining the functional roles of frugivorous bats over time; thus sedentary bats are more important than nomadic species for the maintenance of the network structure, and their conservation is a must.

  2. Intraurban Variation of Fine Particle Elemental Concentrations in New York City.

    PubMed

    Ito, Kazuhiko; Johnson, Sarah; Kheirbek, Iyad; Clougherty, Jane; Pezeshki, Grant; Ross, Zev; Eisl, Holger; Matte, Thomas D

    2016-07-19

    Few past studies have collected and analyzed within-city variation of fine particulate matter (PM2.5) elements. We developed land-use regression (LUR) models to characterize spatial variation of 15 PM2.5 elements collected at 150 street-level locations in New York City during December 2008-November 2009: aluminum, bromine, calcium, copper, iron, potassium, manganese, sodium, nickel, lead, sulfur, silicon, titanium, vanadium, and zinc. Summer- and winter-only data available at 99 locations in the subsequent 3 years, up to November 2012, were analyzed to examine variation of LUR results across years. Spatial variation of each element was modeled in LUR including six major emission indicators: boilers burning residual oil; traffic density; industrial structures; construction/demolition (these four indicators in buffers of 50 to 1000 m), commercial cooking based on a dispersion model; and ship traffic based on inverse distance to navigation path weighted by associated port berth volume. All the elements except sodium were associated with at least one source, with R(2) ranging from 0.2 to 0.8. Strong source-element associations, persistent across years, were found for residual oil burning (nickel, zinc), near-road traffic (copper, iron, and titanium), and ship traffic (vanadium). These emission source indicators were also significant and consistent predictors of PM2.5 concentrations across years.

  3. Defect propagation in one-, two-, and three-dimensional compounds doped by magnetic atoms

    DOE PAGES

    Furrer, A.; Podlesnyak, A.; Krämer, K. W.; ...

    2014-10-29

    Inelastic neutron scattering experiments were performed to study manganese(II) dimer excitations in the diluted one-, two-, and three-dimensional compounds CsMn xMg 1-xBr 3, K 2Mn xZn 1-xF 4, and KMn xZn 1-xF 3 (x≤0.10), respectively. The transitions from the ground-state singlet to the excited triplet, split into a doublet and a singlet due to the single-ion anisotropy, exhibit remarkable fine structures. These unusual features are attributed to local structural inhomogeneities induced by the dopant Mn atoms which act like lattice defects. Statistical models support the theoretically predicted decay of atomic displacements according to 1/r 2, 1/r, and constant (for three-,more » two-, and one-dimensional compounds, respectively) where r denotes the distance of the displaced atoms from the defect. In conclusion, the observed fine structures allow a direct determination of the local exchange interactions J, and the local intradimer distances R can be derived through the linear law dJ/dR.« less

  4. Generalized rules for the optimization of elastic network models

    NASA Astrophysics Data System (ADS)

    Lezon, Timothy; Eyal, Eran; Bahar, Ivet

    2009-03-01

    Elastic network models (ENMs) are widely employed for approximating the coarse-grained equilibrium dynamics of proteins using only a few parameters. An area of current focus is improving the predictive accuracy of ENMs by fine-tuning their force constants to fit specific systems. Here we introduce a set of general rules for assigning ENM force constants to residue pairs. Using a novel method, we construct ENMs that optimally reproduce experimental residue covariances from NMR models of 68 proteins. We analyze the optimal interactions in terms of amino acid types, pair distances and local protein structures to identify key factors in determining the effective spring constants. When applied to several unrelated globular proteins, our method shows an improved correlation with experiment over a standard ENM. We discuss the physical interpretation of our findings as well as its implications in the fields of protein folding and dynamics.

  5. Seismic imaging of Q structures by a trans-dimensional coda-wave analysis

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsutomu

    2017-04-01

    Wave scattering and intrinsic attenuation are important processes to describe incoherent and complex wave trains of high frequency seismic wave (>1Hz). The multiple lapse time window analysis (MLTWA) has been used to estimate scattering and intrinsic Q values by assuming constant Q in a study area (e.g., Hoshiba 1993). This study generalizes this MLTWA to estimate lateral variations of Q values under the Bayesian framework in dimension variable space. Study area is partitioned into small areas by means of the Voronoi tessellation. Scattering and intrinsic Q in each small area are constant. We define a misfit function for spatiotemporal variations of wave energy as with the original MLTWA, and maximize the posterior probability with changing not only Q values but the number and spatial layout of the Voronoi cells. This maximization is conducted by means of the reversible jump Markov chain Monte Carlo (rjMCMC) (Green 1995) since the number of unknown parameters (i.e., dimension of posterior probability) is variable. After a convergence to the maximum posterior, we estimate Q structures from the ensemble averages of MCMC samples around the maximum posterior probability. Synthetic tests showed stable reconstructions of input structures with reasonable error distributions. We applied this method for seismic waveform data recorded by ocean bottom seismograms at the outer-rise area off Tohoku, and estimated Q values at 4-8Hz, 8-16Hz and 16-32Hz. Intrinsic Q are nearly constant at all frequency bands, and scattering Q shows two distinct strong scattering regions at petit spot area and high seismicity area. These strong scattering are probably related to magma inclusions and fractured structure, respectively. Difference between these two areas becomes clear at high frequencies. It means that scale dependences of inhomogeneities or smaller scale inhomogeneity is important to discuss medium property and origins of structural variations. While the generalized MLTWA is based on a classical waveform modeling in constant Q medium, this method can be a fundamental basis for Q structure imaging in the crust.

  6. Evaluating community–environment relationships along fine to broad taxonomic resolutions reveals evolutionary forces underlying community assembly

    PubMed Central

    Lu, Hsiao-Pei; Yeh, Yi-Chun; Sastri, Akash R; Shiah, Fuh-Kwo; Gong, Gwo-Ching; Hsieh, Chih-hao

    2016-01-01

    We propose a method for detecting evolutionary forces underlying community assembly by quantifying the strength of community–environment relationships hierarchically along taxonomic ranks. This approach explores the potential role of phylogenetic conservatism on habitat preferences: wherein, phylogenetically related taxa are expected to exhibit similar environmental responses. Thus, when niches are conserved, broader taxonomic classification should not diminish the strength of community–environment relationships and may even yield stronger associations by summarizing occurrences and abundances of ecologically equivalent finely resolved taxa. In contrast, broader taxonomic classification should weaken community–environment relationships when niches are under great divergence (that is, by combining finer taxa with distinct environmental responses). Here, we quantified the strength of community–environment relationships using distance-based redundancy analysis, focusing on soil and seawater prokaryotic communities. We considered eight case studies (covering a variety of sampling scales and sequencing strategies) and found that the variation in community composition explained by environmental factors either increased or remained constant with broadening taxonomic resolution from species to order or even phylum level. These results support the niche conservatism hypothesis and indicate that broadening taxonomic resolution may strengthen niche-related signals by removing uncertainty in quantifying spatiotemporal distributions of finely resolved taxa, reinforcing the current notion of ecological coherence in deep prokaryotic branches. PMID:27177191

  7. Recommended Values of the Fundamental Physical Constants: A Status Report

    PubMed Central

    Taylor, Barry N.; Cohen, E. Richard

    1990-01-01

    We summarize the principal advances made in the fundamental physical constants field since the completion of the 1986 CODATA least-squares adjustment of the constants and discuss their implications for both the 1986 set of recommended values and the next least-squares adjustment. In general, the new results lead to values of the constants with uncertainties 5 to 7 times smaller than the uncertainties assigned the 1986 values. However, the changes in the values themselves are less than twice the 1986 assigned one-standard-deviation uncertainties and thus are not highly significant. Although much new data has become available since 1986, three new results dominate the analysis: a value of the Planck constant obtained from a realization of the watt; a value of the fine-structure constant obtained from the magnetic moment anomaly of the electron; and a value of the molar gas constant obtained from the speed of sound in argon. Because of their dominant role in determining the values and uncertainties of many of the constants, it is highly desirable that additional results of comparable uncertainty that corroborate these three data items be obtained before the next adjustment is carried out. Until then, the 1986 CODATA set of recommended values will remain the set of choice. PMID:28179787

  8. Multichannel calculation of the very narrow Ds0 *(2317) and the very broad D0 *(2300-2400)

    NASA Astrophysics Data System (ADS)

    Rupp, G.; van Beveren, E.

    2007-03-01

    The narrow D s0 * (2317) and broad D 0 * (2300-2400) charmed scalar mesons and their radial excitations are described in a coupled-channel quark model that also reproduces the properties of the light scalar nonet. All two-meson channels containing ground-state pseudoscalars and vectors are included. The parameters are chosen fixed at published values, except for the overall coupling constant λ, which is fine-tuned to reproduce the D s0 * (2317) mass, and a damping constant α for subthreshold contributions. Variations of λ and D 0 * (2300-2400) pole postions are studied for different α values. Calculated cross-sections for S-wave DK and Dπ scattering, as well as resonance pole positions, are given for the value of α that fits the light scalars. The thus predicted radially excited state D s0 *‧(2850), with a width of about 50MeV, seems to have been observed already.

  9. Millimeter-wave spectroscopy of CrC (X(3)Σ(-)) and CrCCH (X̃ (6)Σ(+)): Examining the chromium-carbon bond.

    PubMed

    Min, J; Ziurys, L M

    2016-05-14

    Pure rotational spectroscopy of the CrC (X(3)Σ(-)) and CrCCH (X̃ (6)Σ(+)) radicals has been conducted using millimeter/sub-millimeter direct absorption methods in the frequency range 225-585 GHz. These species were created in an AC discharge of Cr(CO)6 and either methane or acetylene, diluted in argon. Spectra of the CrCCD were also recorded for the first time using deuterated acetylene as the carbon precursor. Seven rotational transitions of CrC were measured, each consisting of three widely spaced, fine structure components, arising from spin-spin and spin-rotation interactions. Eleven rotational transitions were recorded for CrCCH and five for CrCCD; each transition in these cases was composed of a distinct fine structure sextet. These measurements confirm the respective (3)Σ(-) and (6)Σ(+) ground electronic states of these radicals, as indicated from optical studies. The data were analyzed using a Hund's case (b) Hamiltonian, and rotational, spin-spin, and spin-rotation constants have been accurately determined for all three species. The spectroscopic parameters for CrC were significantly revised from previous optical work, while those for CrCCH are in excellent agreement; completely new constants were established for CrCCD. The chromium-carbon bond length for CrC was calculated to be 1.631 Å, while that in CrCCH was found to be rCr-C = 1.993 Å - significantly longer. This result suggests that a single Cr-C bond is present in CrCCH, preserving the acetylenic structure of the ligand, while a triple bond exists in CrC. Analysis of the spin constants suggests that CrC has a nearby excited (1)Σ(+) state lying ∼16 900 cm(-1) higher in energy, and CrCCH has a (6)Π excited state with E ∼ 4800 cm(-1).

  10. Fine-scale spatial climate variation and drought mediate the likelihood of reburning

    Treesearch

    Sean A. Parks; Marc‐Andre Parisien; Carol Miller; Lisa M. Holsinger; Larry Scott Baggett

    2018-01-01

    In many forested ecosystems, it is increasingly recognized that the probability of burning is substantially reduced within the footprint of previously burned areas. This self‐limiting effect of wildland fire is considered a fundamental emergent property of ecosystems and is partly responsible for structuring landscape heterogeneity (i.e., mosaics of different age...

  11. Bond-length relaxation in crystalline Si1-xGex alloys: An extended x-ray-absorption fine-structure study

    NASA Astrophysics Data System (ADS)

    Kajiyama, Hiroshi; Muramatsu, Shin-Ichi; Shimada, Toshikazu; Nishino, Yoichi

    1992-06-01

    Extended x-ray-absorption fine-structure spectra for crystalline Si1-xGex alloys, measured at the K edge of Ge at room temperature, are analyzed with a curve-fitting method based on the spherical-wave approximation. The Ge-Ge and Ge-Si bond lengths, coordination numbers of Ge and Si atoms around a Ge atom, and Debye-Waller factors of Ge and Si atoms are obtained. It is shown that Ge-Ge and Ge-Si bonds relax completely, for all Ge concentrations of their study, while the lattice constant varies monotonically, following Vegard's law. As noted by Bragg and later by Pauling and Huggins, the Ge-Ge and Ge-Si bond lengths are close to the sum of their constituent-element atomic radii: nearly 2.45 Å for Ge-Ge bonds and 2.40 Å for Ge-Si bonds. A study on the coordination around a Ge atom in the alloys revealed that Ge and Si atoms mix randomly throughout the compositional range studied.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissa, Shivangi; Naruka, Preeti; Bishnoi, Nidhi

    In the present study the dielectric optical response of various nanostructures of ZnO deposited on silica substrate has been studied using Maxwell-Garnett Effective Medium Theory. Using the volume filling factors for different nanostructures of ZnO the effective dielectric constant has been evaluated. The variation of this effective dielectric constant with the frequency of applied signal has been investigated. Moreover, the reflectance of the film, power absorption and variation of refractive index with frequency has been studied. The results obtained show that the quantum confinement effects in ZnO nano-structural films deposited on silica substrate give rise to distinct optical properties makingmore » it an ideal choice for high power THz generation.« less

  13. Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering.

    PubMed

    Jang, C; Adam, S; Chen, J-H; Williams, E D; Das Sarma, S; Fuhrer, M S

    2008-10-03

    We reduce the dimensionless interaction strength alpha in graphene by adding a water overlayer in ultrahigh vacuum, thereby increasing dielectric screening. The mobility limited by long-range impurity scattering is increased over 30%, due to the background dielectric constant enhancement leading to a reduced interaction of electrons with charged impurities. However, the carrier-density-independent conductivity due to short-range impurities is decreased by almost 40%, due to reduced screening of the impurity potential by conduction electrons. The minimum conductivity is nearly unchanged, due to canceling contributions from the electron-hole puddle density and long-range impurity mobility. Experimental data are compared with theoretical predictions with excellent agreement.

  14. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state.

    PubMed

    Okada, Ken N; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-07-20

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit.

  15. Fine-scale population structure and the era of next-generation sequencing.

    PubMed

    Henn, Brenna M; Gravel, Simon; Moreno-Estrada, Andres; Acevedo-Acevedo, Suehelay; Bustamante, Carlos D

    2010-10-15

    Fine-scale population structure characterizes most continents and is especially pronounced in non-cosmopolitan populations. Roughly half of the world's population remains non-cosmopolitan and even populations within cities often assort along ethnic and linguistic categories. Barriers to random mating can be ecologically extreme, such as the Sahara Desert, or cultural, such as the Indian caste system. In either case, subpopulations accumulate genetic differences if the barrier is maintained over multiple generations. Genome-wide polymorphism data, initially with only a few hundred autosomal microsatellites, have clearly established differences in allele frequency not only among continental regions, but also within continents and within countries. We review recent evidence from the analysis of genome-wide polymorphism data for genetic boundaries delineating human population structure and the main demographic and genomic processes shaping variation, and discuss the implications of population structure for the distribution and discovery of disease-causing genetic variants, in the light of the imminent availability of sequencing data for a multitude of diverse human genomes.

  16. Three Types of Earth's Inner Core Boundary

    NASA Astrophysics Data System (ADS)

    Tian, D.; Wen, L.

    2017-12-01

    The Earth's inner core boundary (ICB) is the site where the liquid outer core solidifies and the solid inner core grows. Thus, the fine-scale structure of the ICB is important for our understanding of the thermo-compositional state of the Earth's core. In this study, we collect a large set of seismic records with high-quality pre-critical PKiKP and PcP phase pairs, recorded by two dense seismic arrays, Hi-net in Japan and USArray in US. This dataset samples the ICB regions beneath East Asia, Mexico and the Bering Sea. We use differential travel times, amplitude ratios and waveform differences between PKiKP and PcP phases to constrain fine-scale structure of the ICB. The sampled ICB can be grouped into three types based on their seismic characteristics: (1) a simple ICB with a flat and sharp boundary, (2) a bumpy ICB with topographic height changes of 10 km, and (3) a localized mushy ICB with laterally varying thicknesses of 4-8 km. The laterally varying fine-scale structure of the ICB indicates existence of complex small-scale forces at the surface and a laterally varying solidification process of the inner core due to lateral variation of thermo-compositional condition near the ICB.

  17. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology.

    PubMed

    Iversen, Colleen M; McCormack, M Luke; Powell, A Shafer; Blackwood, Christopher B; Freschet, Grégoire T; Kattge, Jens; Roumet, Catherine; Stover, Daniel B; Soudzilovskaia, Nadejda A; Valverde-Barrantes, Oscar J; van Bodegom, Peter M; Violle, Cyrille

    2017-07-01

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.

  18. Variation of Strontium (Sr) in the Ferroelectric Material Barium Strontium Titanate (Ba1-xSrxTiO3) by Co precipitation Method

    NASA Astrophysics Data System (ADS)

    Subarwanti, Y.; Safitri, R. D.; Supriyanto, A.; Iriani, Y.; Jamaludin, A.

    2017-02-01

    Barium Strontium Titanate (BST) have been made with variation strontium (Sr) 10%, 30% and 50% by co-precipitation method. This study aims to determine influence addition Sr against the crystal structure, crystallite size, lattice parameter, grain size and dielectric constant. Samples have been made by co-precipitation method and then the samples were sintered by furnace at 1100°C with holding time 4 hours. Characterization of BST use X-Ray Diffraction instrument, Scanning Electron Microscopy and Resistance Capacitance Inductance (RCL meter). Based on result obtained, the larger Sr content cause the diffraction angle shift to the right (the greater) and crystallinity increasing. But, the value of dielectric constant, crystallite size and grain size decreasing with additional Sr content. Measurement of dielectric constant (K) performed in the frequency range 1 kHz to 100 kHz and the highest value at Sr content 0.1 i.e. 258.35. The addition of Sr content 30% and 50% change the crystal structure from tetragonal to cubic which has paraelectric phase.

  19. Fine structure and optical properties of biological polarizers in crustaceans and cephalopods

    NASA Astrophysics Data System (ADS)

    Chiou, Tsyr-Huei; Caldwell, Roy L.; Hanlon, Roger T.; Cronin, Thomas W.

    2008-04-01

    The lighting of the underwater environment is constantly changing due to attenuation by water, scattering by suspended particles, as well as the refraction and reflection caused by the surface waves. These factors pose a great challenge for marine animals which communicate through visual signals, especially those based on color. To escape this problem, certain cephalopod mollusks and stomatopod crustaceans utilize the polarization properties of light. While the mechanisms behind the polarization vision of these two animal groups are similar, several distinctive types of polarizers (i.e. the structure producing the signal) have been found in these animals. To gain a better knowledge of how these polarizers function, we studied the relationships between fine structures and optical properties of four types of polarizers found in cephalopods and stomatopods. Although all the polarizers share a somewhat similar spectral range, around 450- 550 nm, the reflectance properties of the signals and the mechanisms used to produce them have dramatic differences. In cephalopods, stack-plates polarizers produce the polarization patterns found on the arms and around their eyes. In stomatopods, we have found one type of beam-splitting polarizer based on photonic structures and two absorptive polarizer types based on dichroic molecules. These stomatopod polarizers may be found on various appendages, and on the cuticle covering dorsal or lateral sides of the animal. Since the efficiencies of all these polarizer types are somewhat sensitive to the change of illumination and viewing angle, how these animals compensate with different behaviors or fine structural features of the polarizer also varies.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehm, Celine; Ascasibar, Yago

    In a previous work, it was found that the light dark matter scenario could be a possible explanation to the 511 keV emission line detected at the center of our galaxy. Here, we show that hints of this scenario may also have been discovered in particle physics experiments. This could explain the discrepancy between the measurement of the fine structure constant and the value referenced in the CODATA. Finally, our results indicate that some of the light dark matter features could be tested in accelerators. Their discovery might favor N=2 supersymmetry.

  1. Naturalness of unknown physics: Theoretical models and experimental signatures

    NASA Astrophysics Data System (ADS)

    Kilic, Can

    In the last few decades collider experiments have not only spectacularly confirmed the predictions of the Standard Model but also have not revealed any direct evidence for new physics beyond the SM, which has led theorists to devise numerous models where the new physics couples weakly to the SM or is simply beyond the reach of past experiments. While phenomenologically viable, many such models appear finely tuned, even contrived. This work illustrates three attempts at coming up with explanations to fine-tunings we observe in the world around us, such as the gauge hierarchy problem or the cosmological constant problem, emphasizing both the theoretical aspects of model building as well as possible experimental signatures. First we investigate the "Little Higgs" mechanism and work on a specifical model, the "Minimal Moose" to highlight its impact on precision observables in the SM, and illustrate that it does not require implausible fine-tuning. Next we build a supersymmetric model, the "Fat Higgs", with an extended gauge structure which becomes confining. This model, aside from naturally preserving the unification of the SM gauge couplings at high energies, also makes it possible to evade the bounds on the lightest Higgs boson mass which are quite restrictive in minimal SUSY scenarios. Lastly we take a look at a possible resolution of the cosmological constant problem through the mechanism of "Ghost Condensation" and dwell on astrophysical observables from the Lorentz Violating sector in this model. We use current experimental data to constrain the coupling of this sector to the SM.

  2. The ISO View of Star Forming Galaxies

    NASA Technical Reports Server (NTRS)

    Helou, George

    1999-01-01

    ISO studies of normal galaxies in the local Universe have revealed basic new properties whose significant implications for the star formation process and cosmology are only starting to be understood. This review will touch on the general results of a statistical nature, and provide a quick summary of the profusion of exciting results on individual objects. In the mid-infrared, PHT-S has established that the spectra of star forming galaxies between 6 and-13microns are dominated by the Aromatic Features in Emission (AFE), and show little variation as a function of the heating intensity. The Carriers of the AFE (CAFE) are thus a universal component of dust with standard properties, and contribute between 10 and 25% of the total dust luminosity. In addition to AFE, the spectra show a low-level continuum detectable at wavelengths longer than 3.5microns whose origin is still under investigation. The mid-infrared colors formed as the ratio of flux densities in the 6.75micron and the 15micron bands of ISO-CAM remain essentially constant and near unity for quiescent and mildly active galaxies. As dust heating increases further, the 15micron flux increases steeply compared to 6.75microns, indicating that dust heated to 100K

  3. Application of the FUN3D Unstructured-Grid Navier-Stokes Solver to the 4th AIAA Drag Prediction Workshop Cases

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, Elizabeth M.; Hammond, Dana P.; Nielsen, Eric J.; Pirzadeh, S. Z.; Rumsey, Christopher L.

    2010-01-01

    FUN3D Navier-Stokes solutions were computed for the 4th AIAA Drag Prediction Workshop grid convergence study, downwash study, and Reynolds number study on a set of node-based mixed-element grids. All of the baseline tetrahedral grids were generated with the VGRID (developmental) advancing-layer and advancing-front grid generation software package following the gridding guidelines developed for the workshop. With maximum grid sizes exceeding 100 million nodes, the grid convergence study was particularly challenging for the node-based unstructured grid generators and flow solvers. At the time of the workshop, the super-fine grid with 105 million nodes and 600 million elements was the largest grid known to have been generated using VGRID. FUN3D Version 11.0 has a completely new pre- and post-processing paradigm that has been incorporated directly into the solver and functions entirely in a parallel, distributed memory environment. This feature allowed for practical pre-processing and solution times on the largest unstructured-grid size requested for the workshop. For the constant-lift grid convergence case, the convergence of total drag is approximately second-order on the finest three grids. The variation in total drag between the finest two grids is only 2 counts. At the finest grid levels, only small variations in wing and tail pressure distributions are seen with grid refinement. Similarly, a small wing side-of-body separation also shows little variation at the finest grid levels. Overall, the FUN3D results compare well with the structured-grid code CFL3D. The FUN3D downwash study and Reynolds number study results compare well with the range of results shown in the workshop presentations.

  4. Fine structure of the landers fault zone: Segmentation and the rupture process

    USGS Publications Warehouse

    Li, Y.-G.; Vidale, J.E.; Aki, K.; Marone, C.J.; Lee, W.H.K.

    1994-01-01

    Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.

  5. Positive ion densities and mobilities in the upper stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Leiden, S.

    1976-01-01

    A brief sketch of the theory concerning the use of the Gerdien condenser as a mobility spectrometer is presented. Data reduction of three parachute borne Gerdien condenser probes is given, as well as that of one blunt conductivity probe. Comparisons of concentrations calculated by two different methods indicate consistency of results. Mobility profiles demonstrating remarkable fine structure are discussed in detail. Finally, theoretical implications of the results on ionospheric structure, including possible night-day differences and latitudinal variations, are considered.

  6. Fundamental quantum noise mapping with tunnelling microscopes tested at surface structures of subatomic lateral size.

    PubMed

    Herz, Markus; Bouvron, Samuel; Ćavar, Elizabeta; Fonin, Mikhail; Belzig, Wolfgang; Scheer, Elke

    2013-10-21

    We present a measurement scheme that enables quantitative detection of the shot noise in a scanning tunnelling microscope while scanning the sample. As test objects we study defect structures produced on an iridium single crystal at low temperatures. The defect structures appear in the constant current images as protrusions with curvature radii well below the atomic diameter. The measured power spectral density of the noise is very near to the quantum limit with Fano factor F = 1. While the constant current images show detailed structures expected for tunnelling involving d-atomic orbitals of Ir, we find the current noise to be without pronounced spatial variation as expected for shot noise arising from statistically independent events.

  7. Climatic factors contributing to long-term variations in surface fine dust concentration in the United States

    NASA Astrophysics Data System (ADS)

    Pu, Bing; Ginoux, Paul

    2018-03-01

    High concentrations of dust particles can cause respiratory problems and increase non-accidental mortality. Studies found fine dust (with an aerodynamic diameter of less than 2.5 µm) is an important component of the total PM2.5 mass in the western and central US in spring and summer and has positive trends. This work examines climatic factors influencing long-term variations in surface fine dust concentration in the US using station data from the Interagency Monitoring Protected Visual Environments (IMPROVE) network during 1990-2015. The variations in the fine dust concentration can be largely explained by the variations in precipitation, surface bareness, and 10 m wind speed. Moreover, including convective parameters such as convective inhibition (CIN) and convective available potential energy (CAPE) that reveal the stability of the atmosphere better explains the variations and trends over the Great Plains from spring to fall.While the positive trend of fine dust concentration in the southwestern US in spring is associated with precipitation deficit, the increase in fine dust over the central Great Plains in summer is largely associated with enhanced CIN and weakened CAPE, which are caused by increased atmospheric stability due to surface drying and lower-troposphere warming. The strengthening of the Great Plains low-level jet also contributes to the increase in fine dust concentration in the central Great Plains in summer via its positive correlation with surface winds and negative correlation with CIN.Summer dusty days in the central Great Plains are usually associated with a westward extension of the North Atlantic subtropical high that intensifies the Great Plains low-level jet and also results in a stable atmosphere with subsidence and reduced precipitation.

  8. Seafloor Tectonic Fabric from Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Smith, Walter H. F.

    Ocean floor structures with horizontal scales of 10 to a few hundred kilometers and vertical scales of 100 m or more generate sea surface gravity anomalies observable with satellite altimetry. Prior to 1990, altimeter data resolved only tectonic lineaments, some seamounts, and some aspects of mid-ocean ridge structure. New altimeter data available since mid-1995 resolve 10-km--scale structures over nearly all the world's oceans. These data are the basis of new global bathymetric maps and have been interpreted as exhibiting complexities in the sea floor spreading process including ridge jumps, propagating rifts, and variations in magma supply. This chapter reviews the satellite altimetry technique and its resolution of tectonic structures, gives examples of intriguing tectonic phenomena, and shows that structures as small as abyssal hills are partially resolved. A new result obtained here is that the amplitude of the fine-scale (10--80 km) roughness of old ocean floor is spreading-rate dependent in the same that it is at mid-ocean ridges, suggesting that fine-scale tectonic fabric is generated nearly exclusively by ridge-axis processes.

  9. 4f fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides.

    PubMed

    Huang, Bolong

    2016-04-05

    The ground-state 4f fine-structure levels in the intrinsic optical transition gaps between the 2p and 5d orbitals of lanthanide sesquioxides (Ln2 O3 , Ln = La…Lu) were calculated by a two-way crossover search for the U parameters for DFT + U calculations. The original 4f-shell potential perturbation in the linear response method were reformulated within the constraint volume of the given solids. The band structures were also calculated. This method yields nearly constant optical transition gaps between Ln-5d and O-2p orbitals, with magnitudes of 5.3 to 5.5 eV. This result verifies that the error in the band structure calculations for Ln2 O3 is dominated by the inaccuracies in the predicted 4f levels in the 2p-5d transition gaps, which strongly and non-linearly depend on the on-site Hubbard U. The relationship between the 4f occupancies and Hubbard U is non-monotonic and is entirely different from that for materials with 3d or 4d orbitals, such as transition metal oxides. This new linear response DFT + U method can provide a simpler understanding of the electronic structure of Ln2 O3 and enables a quick examination of the electronic structures of lanthanide solids before hybrid functional or GW calculations. © 2015 Wiley Periodicals, Inc.

  10. Dielectric and thermal modeling of Vesta's surface

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Capria, M. T.; Tosi, F.; Russell, C. T.

    2013-09-01

    We generate a dielectric model for the surface of Vesta from thermal observations by Dawn's Visible and Infrared (VIR) mapping spectrometer. After retrieving surface temperatures from VIR data, we model thermal inertia, and derive a theoretical temperature map of Vesta's surface at a given UTC. To calculate the real part of the dielectric constant (ɛ') and the loss tangent (tg δ) we use the dielectric properties of basaltic lunar regolith as a first-order analog, assuming surface density and composition consistent with fine basaltic lunar dust. First results indicate that for the majority of the surface, ɛ' ranges from 2.0 to 2.1 from the night to day side respectively, and tg δ ranges from 1.05E-2 to 1.40E-2. While these regions are consistent with a basaltic, desiccated ~55% porous surface, we also find anomalies in the thermal inertia that may correspond to a variation in local surface density relative to the global average, and a consequent variation in the local dielectric properties.

  11. Connecting Fundamental Constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Mario, D.

    2008-05-29

    A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension willmore » appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a {pi}{radical}(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment.« less

  12. Hyperfine Structure in the Pure Rotational Spectrum of 208Pb35Cl

    NASA Astrophysics Data System (ADS)

    Dewberry, Christopher T.; Grubbs, Garry S., II; Etchison, Kerry C.; Cooke, Stephen A.

    2010-06-01

    Initially in our laboratory the pure rotational spectrum of the title molecule was studied using a Balle-Flygare Fourier transform microwave spectrometer. Analysis was troublesome and so the spectrum was remeasured using a chirped pulse Fourier transform microwave (CP-FTMW) spectrometer. The correct intensity aspect of the CP-FTMW experiment allowed successful quantum number assignments for the hyperfine structure for the correct isotopologue. Spectroscopic constants have been obtained from a fit to a data set consisting of our measurements combined with those of a prior study on the X_2^2Π3/2 → X_1^2Π_{1/2 fine structure transitions. K. Ziebarth, K. D. Setzer, O. Shestakov and E. H. Fink J. Mol. Spectrosc., 191 108, 1998.

  13. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state

    PubMed Central

    Okada, Ken N.; Takahashi, Youtarou; Mogi, Masataka; Yoshimi, Ryutaro; Tsukazaki, Atsushi; Takahashi, Kei S.; Ogawa, Naoki; Kawasaki, Masashi; Tokura, Yoshinori

    2016-01-01

    Electrodynamic responses from three-dimensional topological insulators are characterized by the universal magnetoelectric term constituent of the Lagrangian formalism. The quantized magnetoelectric coupling, which is generally referred to as topological magnetoelectric effect, has been predicted to induce exotic phenomena including the universal low-energy magneto-optical effects. Here we report the experimental indication of the topological magnetoelectric effect, which is exemplified by magneto-optical Faraday and Kerr rotations in the quantum anomalous Hall states of magnetic topological insulator surfaces by terahertz magneto-optics. The universal relation composed of the observed Faraday and Kerr rotation angles but not of any material parameters (for example, dielectric constant and magnetic susceptibility) well exhibits the trajectory towards the fine structure constant in the quantized limit. PMID:27436710

  14. Evolving cell models for systems and synthetic biology.

    PubMed

    Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio

    2010-03-01

    This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.

  15. Persistent fine-scale fault structures control rupture development in Parkfield, CA.

    NASA Astrophysics Data System (ADS)

    Perrin, C.; Waldhauser, F.; Scholz, C. H.

    2016-12-01

    We investigate the fine-scale geometry and structure of the San Andreas Fault (SAF) near Parkfield, CA, and their role in the development of the 1966 and 2004 M6 earthquakes. Both events broke the fault mainly unilaterally with similar length ( 30 km) but in opposite directions. Seismic slip occurred in a narrow zone between 5 and 10 km depth, as outlined by the concentration of aftershocks along the edge of the slip area. Across fault distribution of the 2004 aftershocks show a rapid decrease of event density away from the fault core. The damage zone is narrower in the Parkfield section (few 100 meters) than in the creeping section ( 1 km). We observe a similar but broader distribution during the interseismic periods. This implies that stress accumulates in a volume around the fault during interseismic periods, whereas coseismic deformation is more localized on the mature SAF. Large aftershocks are concentrated at both rupture tips, characterized by strong heterogeneities in the fault structure at the surface and at depth: i) in the south near Gold Hill-Cholame, a large releasing bend (>25°) separates the Parkfield section from the southern section of the SAF; ii) in the north at Middle Mountain, the surface fault trace goes through an ancient restraining step-over connecting the Parkfield and creeping sections. Fine-scale analysis of the 2004 aftershocks reveals a change in the fault dip and local variations of the fault strike (up to 25°) beneath Middle Mountain, in good agreement with focal mechanisms, which show oblique normal and reverse faulting. We observe these variations during the interseismic periods before and after the 2004 event, suggesting that the structural heterogeneities persisted through at least two earthquake cycles. These heterogeneities act as barriers to rupture propagation of moderate size earthquakes at Parkfield, but also as stress concentrations where rupture initiates.

  16. Zeeman-hyperfine structures and isotope effect in the spectrum of Tl I

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa; Sobolewski, Łukasz Marek; Kwela, Jerzy

    2018-01-01

    The Zeeman structures of seventeen lines of 205Tl I (Z = 81) covering the UV-NIR spectral range (351.92-1151.28) nm were investigated. Landé gJ-factors for eighteen levels were determined for the first time. Furthermore, we have performed fine structure studies for both even- and odd-configuration levels and determined the relevant parameters. For the 6 s 6p2 configuration we have refined the suggested level energies and predicted positions for missing levels. With regard to hyperfine structure (hfs), we have justified the surprisingly huge value of the magnetic hfs constant A(6s2 10 s) . Moreover, we have extracted the single-electron hfs constant parameter values for the lowest even-parity configurations of 205Tl I; for instance a10s10 (6s2 10 s) = 1015(9) MHz and a6s10 (6 s 6p2) = 217306(205) MHz. Regarding isotope shift analysis we have observed that Dirac-Fock calculations, preferably chosen to take into account the contribution of the p1/2 contact-electron, are in good agreement with experimental data for low-lying levels of each configuration under study.

  17. Novel laboratory methods for determining the fine scale electrical resistivity structure of core

    NASA Astrophysics Data System (ADS)

    Haslam, E. P.; Gunn, D. A.; Jackson, P. D.; Lovell, M. A.; Aydin, A.; Prance, R. J.; Watson, P.

    2014-12-01

    High-resolution electrical resistivity measurements are made on saturated rocks using novel laboratory instrumentation and multiple electrical voltage measurements involving in principle a four-point electrode measurement but with a single, moving electrode. Flat, rectangular core samples are scanned by varying the electrode position over a range of hundreds of millimetres with an accuracy of a tenth of a millimetre. Two approaches are tested involving a contact electrode and a non-contact electrode arrangement. The first galvanic method uses balanced cycle switching of a floating direct current (DC) source to minimise charge polarisation effects masking the resistivity distribution related to fine scale structure. These contacting electrode measurements are made with high common mode noise rejection via differential amplification with respect to a reference point within the current flow path. A computer based multifunction data acquisition system logs the current through the sample and voltages along equipotentials from which the resistivity measurements are derived. Multiple measurements are combined to create images of the surface resistivity structure, with variable spatial resolution controlled by the electrode spacing. Fine scale sedimentary features and open fractures in saturated rocks are interpreted from the measurements with reference to established relationships between electrical resistivity and porosity. Our results successfully characterise grainfall lamination and sandflow cross-stratification in a brine saturated, dune bedded core sample representative of a southern North Sea reservoir sandstone, studied using the system in constant current, variable voltage mode. In contrast, in a low porosity marble, identification of open fracture porosity against a background very low matrix porosity is achieved using the constant voltage, variable current mode. This new system is limited by the diameter of the electrode that for practical reasons can only be reduced to between 0.5 and 0.75 mm. Improvements to this resolution may be achieved by further reducing the electrode footprint to 0.1 mm × 0.1 mm using a novel high-impedance, non-contact potential probe. Initial results with this non-contact electric potential sensor indicate the possibility for generating images with grain-scale resolution.

  18. The performance of fine-grained and coarse-grained elastic network models and its dependence on various factors.

    PubMed

    Na, Hyuntae; Song, Guang

    2015-07-01

    In a recent work we developed a method for deriving accurate simplified models that capture the essentials of conventional all-atom NMA and identified two best simplified models: ssNMA and eANM, both of which have a significantly higher correlation with NMA in mean square fluctuation calculations than existing elastic network models such as ANM and ANMr2, a variant of ANM that uses the inverse of the squared separation distances as spring constants. Here, we examine closely how the performance of these elastic network models depends on various factors, namely, the presence of hydrogen atoms in the model, the quality of input structures, and the effect of crystal packing. The study reveals the strengths and limitations of these models. Our results indicate that ssNMA and eANM are the best fine-grained elastic network models but their performance is sensitive to the quality of input structures. When the quality of input structures is poor, ANMr2 is a good alternative for computing mean-square fluctuations while ANM model is a good alternative for obtaining normal modes. © 2015 Wiley Periodicals, Inc.

  19. Large local disorder in superconducting K(0.8)Fe(1.6)Se2 studied by extended x-ray absorption fine structure.

    PubMed

    Iadecola, A; Joseph, B; Simonelli, L; Puri, A; Mizuguchi, Y; Takeya, H; Takano, Y; Saini, N L

    2012-03-21

    We have measured the local structure of superconducting K(0.8)Fe(1.6)Se(2) chalcogenide (T(c) = 31.8 K) by temperature dependent polarized extended x-ray absorption fine structure (EXAFS) at the Fe and Se K-edges. We find that the system is characterized by a large local disorder. The Fe-Se and Fe-Fe distances are found to be shorter than the distances measured by diffraction, while the corresponding mean square relative displacements reveal large Fe-site disorder and relatively large c-axis disorder. The local force constant for the Fe-Se bondlength (k ~ 5.8 eV Å(-2)) is similar to the one found in the binary FeSe superconductor, however, the Fe-Fe bondlength appears to be flexible (k ~ 2.1 eV Å(-2)) in comparison to the binary FeSe (k ~ 3.5 eV Å(-2)), an indication of partly relaxed Fe-Fe networks in K(0.8)Fe(1.6)Se(2). The results suggest a glassy nature for the title system, with the superconductivity being similar to that in the granular materials. © 2012 IOP Publishing Ltd

  20. T-RMSD: a fine-grained, structure-based classification method and its application to the functional characterization of TNF receptors.

    PubMed

    Magis, Cedrik; Stricher, François; van der Sloot, Almer M; Serrano, Luis; Notredame, Cedric

    2010-07-16

    This study addresses the relation between structural and functional similarity in proteins. We introduce a novel method named tree based on root mean square deviation (T-RMSD), which uses distance RMSD (dRMSD) variations to build fine-grained structure-based classifications of proteins. The main improvement of the T-RMSD over similar methods, such as Dali, is its capacity to produce the equivalent of a bootstrap value for each cluster node. We validated our approach on two domain families studied extensively for their role in many biological and pathological pathways: the small GTPase RAS superfamily and the cysteine-rich domains (CRDs) associated with the tumor necrosis factor receptors (TNFRs) family. Our analysis showed that T-RMSD is able to automatically recover and refine existing classifications. In the case of the small GTPase ARF subfamily, T-RMSD can distinguish GTP- from GDP-bound states, while in the case of CRDs it can identify two new subgroups associated with well defined functional features (ligand binding and formation of ligand pre-assembly complex). We show how hidden Markov models (HMMs) can be built on these new groups and propose a methodology to use these models simultaneously in order to do fine-grained functional genomic annotation without known 3D structures. T-RMSD, an open source freeware incorporated in the T-Coffee package, is available online. 2010 Elsevier Ltd. All rights reserved.

  1. Vibrational Spectroscopy of the CCI[subscript 4]?[subscript 1] Mode: Effect of Thermally Populated Vibrational States

    ERIC Educational Resources Information Center

    Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G.

    2015-01-01

    In our previous article on CCl[subscript 4] in this "Journal," we presented an investigation of the fine structure of the symmetric stretch of carbon tetrachloride (CCl[subscript 4]) due to isotopic variations of chlorine in C[superscript 35]Cl[subscript x][superscript 37]Cl[subscript 4-x]. In this paper, we present an investigation of…

  2. Regularization by Functions of Bounded Variation and Applications to Image Enhancement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casas, E.; Kunisch, K.; Pola, C.

    1999-09-15

    Optimization problems regularized by bounded variation seminorms are analyzed. The optimality system is obtained and finite-dimensional approximations of bounded variation function spaces as well as of the optimization problems are studied. It is demonstrated that the choice of the vector norm in the definition of the bounded variation seminorm is of special importance for approximating subspaces consisting of piecewise constant functions. Algorithms based on a primal-dual framework that exploit the structure of these nondifferentiable optimization problems are proposed. Numerical examples are given for denoising of blocky images with very high noise.

  3. Multilayer manipulated diffraction in flower beetles Torynorrhina flammea: intraspecific structural colouration variation

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Liu, F.; Hao, Y. H.; Hu, X. H.; Zhang, Y. F.; Liu, X. H.

    2014-10-01

    We report that the intraspecific structural colouration variation of the beetle Torynorrhina flammea is a result of diffraction shifting manipulated by a multilayer sub-structure contained in a three-dimensional (3D) photonic architecture. With a perpendicularly 2D quasiperiodic diffraction grating inserted into the multilayer, the 3D photonic structure gives rise to anticrossing bandgaps of diffraction from the coupling of grating and multilayer bands. The angular dispersion of diffraction induced by the multilayer band shift behaves normally, in contrast to the ‘ultranegative’ behaviour controlled by the quasiperiodic grating. In addition, the diffraction wavelength is more sensitive to the multilayer periodicity than the diffraction grating constant, which explains the ‘smart’ biological selection of T. flammea in its intraspecific colouration variation from red to green to blue. The elucidated mechanism could be advantageous for the potential exploration of novel dispersive optical elements.

  4. Quantum Cause of Gravity Waves and Dark Matter

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal; Goradia Team

    2016-09-01

    Per Einstein's theory mass tells space how to curve and space tells mass how to move. How do they tell''? The question boils down to information created by quantum particles blinking ON and OFF analogous to `Ying and Yang' or some more complex ways that may include dark matter. If not, what creates curvature of space-time? Consciousness, dark matter, quantum physics, uncertainty principle, constants of nature like strong coupling, fine structure constant, cosmological constant introduced by Einstein, information, gravitation etc. are fundamentally consequences of that ONE TOE. Vedic philosophers, who impressed Schrodinger so much, called it ATMA split in the categories of AnuAtma (particle soul), JivAtma (life soul) and ParamAtma (Omnipresent soul) which we relate to quantum physics, biology and cosmology. There is no separate TOE for any one thing. The long range relativistic propagations of the strong and weak couplings of the microscopic black holes in are just gravity waves. What else could they be?

  5. Many-body instabilities and mass generation in slow Dirac materials

    NASA Astrophysics Data System (ADS)

    Triola, Christopher; Zhu, Jian-Xin; Migliori, Albert; Balatsky, Alexander V.

    2015-07-01

    Some Kondo insulators are expected to possess topologically protected surface states with linear Dirac spectrum: the topological Kondo insulators. Because the bulk states of these systems typically have heavy effective electron masses, the surface states may exhibit extraordinarily small Fermi velocities that could force the effective fine structure constant of the surface states into the strong coupling regime. Using a tight-binding model, we study the many-body instabilities of these systems and identify regions of parameter space in which the system exhibits spin density wave and charge density wave order.

  6. Fine particulate air pollution and all-cause mortality within the Harvard Six-Cities Study: variations in risk by period of exposure.

    PubMed

    Villeneuve, Paul J; Goldberg, Mark S; Krewski, Daniel; Burnett, Richard T; Chen, Yue

    2002-11-01

    We used Poisson regression methods to examine the relation between temporal changes in the levels of fine particulate air pollution (PM(2.5)) and the risk of mortality among participants of the Harvard Six Cities longitudinal study. Our analyses were based on 1430 deaths that occurred between 1974 and 1991 in a cohort that accumulated 105,714 person-years of follow-up. For each city, indices of PM(2.5) were derived using daily samples. Individual level data were collected on several risk factors including: smoking, education, body mass index (BMI), and occupational exposure to dusts. Time-dependent indices of PM(2.5) were created across 13 calendar periods (< 1979, 1979, 1980, em leader, 1989, >/= 1990) to explore whether recent or chronic exposures were more important predictors of mortality. The relative risk (RR) of mortality calculated using Poisson regression based on average city-specific exposures that remained constant during follow-up was 1.31 [95% confidence interval (CI) = 1.12-1.52] per 18.6 microg/m(3) of PM(2.5). This result was similar to the risk calculated using the Cox model (RR = 1.26, 95% CI = 1.08-1.46). The RR of mortality was attenuated when the Poisson regression model included a time-dependent estimate of exposure (RR = 1.19, 95% CI = 1.04-1.36). There was little variation in RR across time-dependent indices of PM(2.5). The attenuated risk of mortality that was observed with a time-dependent index of PM(2.5) is due to the combined influence of city-specific variations in mortality rates and decreasing levels of air pollution that occurred during follow-up. The RR of mortality associated with PM(2.5) did not depend on when exposure occurred in relation to death, possibly because of little variation between the time-dependent city-specific exposure indices.

  7. On the balance of envelope and temporal fine structure in the encoding of speech in the early auditory system.

    PubMed

    Shamma, Shihab; Lorenzi, Christian

    2013-05-01

    There is much debate on how the spectrotemporal modulations of speech (or its spectrogram) are encoded in the responses of the auditory nerve, and whether speech intelligibility is best conveyed via the "envelope" (E) or "temporal fine-structure" (TFS) of the neural responses. Wide use of vocoders to resolve this question has commonly assumed that manipulating the amplitude-modulation and frequency-modulation components of the vocoded signal alters the relative importance of E or TFS encoding on the nerve, thus facilitating assessment of their relative importance to intelligibility. Here we argue that this assumption is incorrect, and that the vocoder approach is ineffective in differentially altering the neural E and TFS. In fact, we demonstrate using a simplified model of early auditory processing that both neural E and TFS encode the speech spectrogram with constant and comparable relative effectiveness regardless of the vocoder manipulations. However, we also show that neural TFS cues are less vulnerable than their E counterparts under severe noisy conditions, and hence should play a more prominent role in cochlear stimulation strategies.

  8. Classification Order of Surface-Confined Intermixing at Epitaxial Interface

    NASA Astrophysics Data System (ADS)

    Michailov, M.

    The self-organization phenomena at epitaxial interface hold special attention in contemporary material science. Being relevant to the fundamental physical problem of competing, long-range and short-range atomic interactions in systems with reduced dimensionality, these phenomena have found exacting academic interest. They are also of great technological importance for their ability to bring spontaneous formation of regular nanoscale surface patterns and superlattices with exotic properties. The basic phenomenon involved in this process is surface diffusion. That is the motivation behind the present study which deals with important details of diffusion scenarios that control the fine atomic structure of epitaxial interface. Consisting surface imperfections (terraces, steps, kinks, and vacancies), the interface offers variety of barriers for surface diffusion. Therefore, the adatoms and clusters need a certain critical energy to overcome the corresponding diffusion barriers. In the most general case the critical energies can be attained by variation of the system temperature. Hence, their values define temperature limits of system energy gaps associated with different diffusion scenarios. This systematization imply classification order of surface alloying: blocked, incomplete, and complete. On that background, two diffusion problems, related to the atomic-scale surface morphology, will be discussed. The first problem deals with diffusion of atomic clusters on atomically smooth interface. On flat domains, far from terraces and steps, we analyzed the impact of size, shape, and cluster/substrate lattice misfit on the diffusion behavior of atomic clusters (islands). We found that the lattice constant of small clusters depends on the number N of building atoms at 1 < N ≤ 10. In heteroepitaxy, this effect of variable lattice constant originates from the enhanced charge transfer and the strong influence of the surface potential on cluster atomic arrangement. At constant temperature, the variation of the lattice constant leads to variable misfit which affects the island migration. The cluster/substrate commensurability influences the oscillation behavior of the diffusion coefficient caused by variation in the cluster shape. We discuss the results in a physical model that implies cluster diffusion with size-dependent cluster/substrate misfit. The second problem is devoted to diffusion phenomena in the vicinity of atomic terraces on stepped or vicinal surfaces. Here, we develop a computational model that refines important details of diffusion behavior of adatoms accounting for the energy barriers at specific atomic sites (smooth domains, terraces, and steps) located on the crystal surface. The dynamic competition between energy gained by mixing and substrate strain energy results in diffusion scenario where adatoms form alloyed islands and alloyed stripes in the vicinity of terrace edges. Being in agreement with recent experimental findings, the observed effect of stripe and island alloy formation opens up a way regular surface patterns to be configured at different atomic levels on the crystal surface. The complete surface alloying of the entire interface layer is also briefly discussed with critical analysis and classification of experimental findings and simulation data.

  9. Fining of Red Wine Monitored by Multiple Light Scattering.

    PubMed

    Ferrentino, Giovanna; Ramezani, Mohsen; Morozova, Ksenia; Hafner, Daniela; Pedri, Ulrich; Pixner, Konrad; Scampicchio, Matteo

    2017-07-12

    This work describes a new approach based on multiple light scattering to study red wine clarification processes. The whole spectral signal (1933 backscattering points along the length of each sample vial) were fitted by a multivariate kinetic model that was built with a three-step mechanism, implying (1) adsorption of wine colloids to fining agents, (2) aggregation into larger particles, and (3) sedimentation. Each step is characterized by a reaction rate constant. According to the first reaction, the results showed that gelatin was the most efficient fining agent, concerning the main objective, which was the clarification of the wine, and consequently the increase in its limpidity. Such a trend was also discussed in relation to the results achieved by nephelometry, total phenols, ζ-potential, color, sensory, and electronic nose analyses. Also, higher concentrations of the fining agent (from 5 to 30 g/100 L) or higher temperatures (from 10 to 20 °C) sped up the process. Finally, the advantage of using the whole spectral signal vs classical univariate approaches was demonstrated by comparing the uncertainty associated with the rate constants of the proposed kinetic model. Overall, multiple light scattering technique showed a great potential for studying fining processes compared to classical univariate approaches.

  10. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography.

    PubMed

    Burgess, Ian B; Abedzadeh, Navid; Kay, Theresa M; Shneidman, Anna V; Cranshaw, Derek J; Lončar, Marko; Aizenberg, Joanna

    2016-01-21

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids.

  11. Contrasting effects of landscape features on genetic structure in different geographic regions in the ornate dragon lizard, Ctenophorus ornatus.

    PubMed

    Levy, Esther; Tomkins, Joseph L; Lebas, Natasha R; Kennington, W Jason

    2013-08-01

    Habitat fragmentation can have profound effects on the distribution of genetic variation within and between populations. Previously, we showed that in the ornate dragon lizard, Ctenophorus ornatus, lizards residing on outcrops that are separated by cleared agricultural land are significantly more isolated and hold less genetic variation than lizards residing on neighbouring outcrops connected by undisturbed native vegetation. Here, we extend the fine-scale study to examine the pattern of genetic variation and population structure across the species' range. Using a landscape genetics approach, we test whether land clearing for agricultural purposes has affected the population structure of the ornate dragon lizard. We found significant genetic differentiation between outcrop populations (FST  = 0.12), as well as isolation by distance within each geographic region. In support of our previous study, land clearing was associated with higher genetic divergences between outcrops and lower genetic variation within outcrops, but only in the region that had been exposed to intense agriculture for the longest period of time. No other landscape features influenced population structure in any geographic region. These results show that the effects of landscape features can vary across species' ranges and suggest there may be a temporal lag in response to contemporary changes in land use. These findings therefore highlight the need for caution when assessing the impact of contemporary land use practices on genetic variation and population structure. © 2013 John Wiley & Sons Ltd.

  12. Kinetics of the hydrogen atom abstraction reactions from 1-butanol by hydroxyl radical: theory matches experiment and more.

    PubMed

    Seal, Prasenjit; Oyedepo, Gbenga; Truhlar, Donald G

    2013-01-17

    In the present work, we study the H atom abstraction reactions by hydroxyl radical at all five sites of 1-butanol. Multistructural variational transition state theory (MS-VTST) was employed to estimate the five thermal rate constants. MS-VTST utilizes a multifaceted dividing surface that accounts for the multiple conformational structures of the transition state, and we also include all the structures of the reactant molecule. The vibrational frequencies and minimum energy paths (MEPs) were computed using the M08-HX/MG3S electronic structure method. The required potential energy surfaces were obtained implicitly by direct dynamics employing interpolated variational transition state theory with mapping (IVTST-M) using a variational reaction path algorithm. The M08-HX/MG3S electronic model chemistry was then used to calculate multistructural torsional anharmonicity factors to complete the MS-VTST rate constant calculations. The results indicate that torsional anharmonicity is very important at higher temperatures, and neglecting it would lead to errors of 26 and 32 at 1000 and 1500 K, respectively. Our results for the sums of the site-specific rate constants agree very well with the experimental values of Hanson and co-workers at 896-1269 K and with the experimental results of Campbell et al. at 292 K, but slightly less well with the experiments of Wallington et al., Nelson et al., and Yujing and Mellouki at 253-372 K; nevertheless, the calculated rates are within a factor of 1.61 of all experimental values at all temperatures. This gives us confidence in the site-specific values, which are currently inaccessible to experiment.

  13. A nuclear magnetic double resonance study of N-beta-bis-(beta'-chloroethyl) phosphonylethyl-DL-phenylalanine.

    PubMed

    Friedman, M; Boyd, W A

    1977-01-01

    Studies were carried out on the effect of decoupling, deuterium labeling, concentration, temperature, and solvent media on the NMR parameters of the vinyl phosphonate adduct of phenylalanine, C6H5CH2CH(COO-)NH2+CH2CH2PO(OCH2CH2C1)2. The results permit assignments of chemical shifts and coupling constants to the various protons of this molecule which contains unique structural features. The NH2+-CH2-protons are deshielded by more than 1 ppm than the CH2-PO-protons. The -OCH2-protons are nonequivalent exhibiting a fine split. Possible sources of the fine split include NH...O=P hydrogen bonding. The deuterium-labeling method should be applicable for synthesizing deuterium-and tritium-labeled crosslinked amino acids such as lysinoalanine and lanthionine and demonstrating analgous dehydroalanine-alpha-amino group-crosslinking.

  14. Internal Fine Structure of Ellerman Bombs

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yuki; Kitai, Reizaburo; Ichimoto, Kiyoshi; Ueno, Satoru; Nagata, Shin'ichi; Ishii, Takako T.; Hagino, Masaoki; Komori, Hiroyuki; Nishida, Keisuke; Matsumoto, Takuma; Otsuji, Kenichi; Nakamura, Tahei; Kawate, Tomoko; Watanabe, Hiroko; Shibata, Kazunari

    2010-08-01

    We conducted coordinated observations of Ellerman bombs (EBs) between Hinode Satellite and Hida Observatory (HOP12). CaII H broad-band filter images of NOAA 10966 on 2007 August 9 and 10 were obtained with the Solar Optical Telescope (SOT) aboard the Hinode Satellite, and many bright points were observed. We identified a total of 4 bright points as EBs, and studied the temporal variation of their morphological fine structures and spectroscopic characteristics. With high-resolution CaII H images of SOT, we found that the EBs, thus far thought of as single bright features, are composed of a few of fine subcomponents. Also, by using Stokes I/V filtergrams with Hinode/SOT, and CaII H spectroheliograms with Hida/Domeless Solar Telescope (DST), our observation showed: (1) The mean duration, the mean width, the mean length, and the mean aspect ratio of the subcomponents were 390 s, 170 km, 450 km, and 2.7, respectively. (2) Subcomponents started to appear on the magnetic neutral lines, and extended their lengths from the original locations. (3) When the CaII H line of EBs showed the characteristic blue asymmetry, they are associated with the appearance or re-brightening of subcomponents. Summarizing our results, we obtained an observational view that elementary magnetic reconnections take place one by one successively and intermittently in EBs, and that their manifestation is the fine subcomponents of the EB phenomena.

  15. Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cristea, D.; Crisan, A.; Cretu, N.; Borges, J.; Lopes, C.; Cunha, L.; Ion, V.; Dinescu, M.; Barradas, N. P.; Alves, E.; Apreutesei, M.; Munteanu, D.

    2015-11-01

    The main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOz thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N2 and O2, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, -50 V or -100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance TaxNyOz films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric TaxNyOz films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.

  16. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ohtsuki, T.; Kojima, T.; Kotsugi, M.; Ohkochi, T.; Mizuguchi, M.; Takanashi, K.

    2014-01-01

    FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu3Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along ⟨110⟩ direction, and that the magnetic domain structure is composed only of 90∘ wall.

  17. Laminar Flow in the Ocean Ekman Layer

    NASA Astrophysics Data System (ADS)

    Woods, J. T. H.

    INTRODUCTION THE EFFECT OF A STABLE DENSITY GRADIENT THE FATAL FLAW FLOW VISUALIZATION THE DISCOVERY OF LAMINAR FLOW FINE STRUCTURE WAVE-INDUCED SHEAR INSTABILITY BILLOW TURBULENCE REVERSE TRANSITION REVISED PARADIGM ONE-DIMENSIONAL MODELLING OF THE UPPER OCEAN DIURNAL VARIATION BUOYANT CONVECTION BILLOW TURBULENCE IN THE DIURNAL THERMOCLINE CONSEQUENCES FOR THE EKMAN CURRENT PROFILE SOLAR RADIATION APPLICATIONS Slippery Seas of Acapulco Pollution Afternoon Effect in Sonar Patchiness Fisheries Climate DISCUSSION CONCLUSION REFERENCES

  18. Guide for Visual Inspection of Structural Concrete Building Components.

    DTIC Science & Technology

    1991-07-01

    Formalin Aqueous solution of formaldehyde disintegrates concrete Fruit juices Most fruit juices have little, if any, effect as tartaric acid and citric ...corrected. Cracks in concrete can be either passive or active. Passive cracks can be caused by construction ei-ors, material shrinkage, variations in...commonly in heavily trafficked areas. Too much water in the mix causes excessive bleeding, which brings fines and cements to the surface, weakening the

  19. Development of a force sensor using atom interferometry to constrain theories on dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Schlupf, Chandler; Niederriter, Robert; Bohr, Eliot; Khamis, Sami; Park, Youna; Szwed, Erik; Hamilton, Paul

    2017-04-01

    Atom interferometry has been used in many precision measurements such as Newton's gravitational constant, the fine structure constant, and tests of the equivalence principle. We will perform atom interferometry in an optical lattice to measure the force felt by an atom due to a test mass in search of new forces suggested by dark matter and dark energy theories. We will be developing a new apparatus using laser-cooled ytterbium to continuously measure this force by observing their Bloch oscillations. Interfering atoms in an optical lattice allows continuous measurements in a small volume over a long period of time, enabling our device to be sensitive to time-varying forces while minimizing vibrational noise. We present the details of this experiment and the progress on it thus far.

  20. Identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome

    PubMed Central

    2013-01-01

    Background Copy number variation (CNV), an important source of diversity in genomic structure, is frequently found in clusters called CNV regions (CNVRs). CNVRs are strongly associated with segmental duplications (SDs), but the composition of these complex repetitive structures remains unclear. Results We conducted self-comparative-plot analysis of all mouse chromosomes using the high-speed and large-scale-homology search algorithm SHEAP. For eight chromosomes, we identified various types of large SD as tartan-checked patterns within the self-comparative plots. A complex arrangement of diagonal split lines in the self-comparative-plots indicated the presence of large homologous repetitive sequences. We focused on one SD on chromosome 13 (SD13M), and developed SHEPHERD, a stepwise ab initio method, to extract longer repetitive elements and to characterize repetitive structures in this region. Analysis using SHEPHERD showed the existence of 60 core elements, which were expected to be the basic units that form SDs within the repetitive structure of SD13M. The demonstration that sequences homologous to the core elements (>70% homology) covered approximately 90% of the SD13M region indicated that our method can characterize the repetitive structure of SD13M effectively. Core elements were composed largely of fragmented repeats of a previously identified type, such as long interspersed nuclear elements (LINEs), together with partial genic regions. Comparative genome hybridization array analysis showed that whereas 42 core elements were components of CNVR that varied among mouse strains, 8 did not vary among strains (constant type), and the status of the others could not be determined. The CNV-type core elements contained significantly larger proportions of long terminal repeat (LTR) types of retrotransposon than the constant-type core elements, which had no CNV. The higher divergence rates observed in the CNV-type core elements than in the constant type indicate that the CNV-type core elements have a longer evolutionary history than constant-type core elements in SD13M. Conclusions Our methodology for the identification of repetitive core sequences simplifies characterization of the structures of large SDs and detailed analysis of CNV. The results of detailed structural and quantitative analyses in this study might help to elucidate the biological role of one of the SDs on chromosome 13. PMID:23834397

  1. [Variations in the diagnostic confirmation process between breast cancer mass screening units].

    PubMed

    Natal, Carmen; Fernández-Somoano, Ana; Torá-Rocamora, Isabel; Tardón, Adonina; Castells, Xavier

    2016-01-01

    To analyse variations in the diagnostic confirmation process between screening units, variations in the outcome of each episode and the relationship between the use of the different diagnostic confirmation tests and the lesion detection rate. Observational study of variability of the standardised use of diagnostic and lesion detection tests in 34 breast cancer mass screening units participating in early-detection programmes in three Spanish regions from 2002-2011. The diagnostic test variation ratio in percentiles 25-75 ranged from 1.68 (further appointments) to 3.39 (fine-needle aspiration). The variation ratio in detection rates of benign lesions, ductal carcinoma in situ and invasive cancer were 2.79, 1.99 and 1.36, respectively. A positive relationship between rates of testing and detection rates was found with fine-needle aspiration-benign lesions (R(2): 0.53), fine-needle aspiration-invasive carcinoma (R(2): 0 28), core biopsy-benign lesions (R(2): 0.64), core biopsy-ductal carcinoma in situ (R(2): 0.61) and core biopsy-invasive carcinoma (R(2): 0.48). Variation in the use of invasive tests between the breast cancer screening units participating in early-detection programmes was found to be significantly higher than variations in lesion detection. Units which conducted more fine-needle aspiration tests had higher benign lesion detection rates, while units that conducted more core biopsies detected more benign lesions and cancer. Copyright © 2016 SESPAS. Published by Elsevier Espana. All rights reserved.

  2. Cations Form Sequence Selective Motifs within DNA Grooves via a Combination of Cation-Pi and Ion-Dipole/Hydrogen Bond Interactions

    PubMed Central

    Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori

    2013-01-01

    The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl+) and the polarized first hydration shell waters of divalent cations (Mg2+, Ca2+) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves. PMID:23940752

  3. Cations form sequence selective motifs within DNA grooves via a combination of cation-pi and ion-dipole/hydrogen bond interactions.

    PubMed

    Stewart, Mikaela; Dunlap, Tori; Dourlain, Elizabeth; Grant, Bryce; McFail-Isom, Lori

    2013-01-01

    The fine conformational subtleties of DNA structure modulate many fundamental cellular processes including gene activation/repression, cellular division, and DNA repair. Most of these cellular processes rely on the conformational heterogeneity of specific DNA sequences. Factors including those structural characteristics inherent in the particular base sequence as well as those induced through interaction with solvent components combine to produce fine DNA structural variation including helical flexibility and conformation. Cation-pi interactions between solvent cations or their first hydration shell waters and the faces of DNA bases form sequence selectively and contribute to DNA structural heterogeneity. In this paper, we detect and characterize the binding patterns found in cation-pi interactions between solvent cations and DNA bases in a set of high resolution x-ray crystal structures. Specifically, we found that monovalent cations (Tl⁺) and the polarized first hydration shell waters of divalent cations (Mg²⁺, Ca²⁺) form cation-pi interactions with DNA bases stabilizing unstacked conformations. When these cation-pi interactions are combined with electrostatic interactions a pattern of specific binding motifs is formed within the grooves.

  4. ADVANCING FINE ROOT RESEARCH WITH MINIRHIZOTRONS

    EPA Science Inventory

    Minirhizotrons provide a nondestructive, in situ method for directly viewing and studying fine roots. Although many insights into fine roots have been gained using minirhizotrons, it is clear from the literature that there is still wide variation in how minirhizotrons and minirhi...

  5. Effect of baghouse fines on compaction of bituminous concrete.

    DOT National Transportation Integrated Search

    1981-01-01

    Four bituminous mixes were tested in the laboratory to determine the effect of variations in the concentration of baghouse fines on the density and tenderness of bituminous mixes. On the basis of results indicating that the gradation of baghouse fine...

  6. The Mouse Genomes Project: a repository of inbred laboratory mouse strain genomes.

    PubMed

    Adams, David J; Doran, Anthony G; Lilue, Jingtao; Keane, Thomas M

    2015-10-01

    The Mouse Genomes Project was initiated in 2009 with the goal of using next-generation sequencing technologies to catalogue molecular variation in the common laboratory mouse strains, and a selected set of wild-derived inbred strains. The initial sequencing and survey of sequence variation in 17 inbred strains was completed in 2011 and included comprehensive catalogue of single nucleotide polymorphisms, short insertion/deletions, larger structural variants including their fine scale architecture and landscape of transposable element variation, and genomic sites subject to post-transcriptional alteration of RNA. From this beginning, the resource has expanded significantly to include 36 fully sequenced inbred laboratory mouse strains, a refined and updated data processing pipeline, and new variation querying and data visualisation tools which are available on the project's website ( http://www.sanger.ac.uk/resources/mouse/genomes/ ). The focus of the project is now the completion of de novo assembled chromosome sequences and strain-specific gene structures for the core strains. We discuss how the assembled chromosomes will power comparative analysis, data access tools and future directions of mouse genetics.

  7. Modeling the formation of methane hydrate-bearing intervals in fine-grained sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinverno, Alberto; Cook, Ann; Daigle, Hugh

    Sediment grain size exerts a fundamental control on how methane hydrates are distributed within the pore space. Fine-grained muds are the predominant sediments in continental margins, and hydrates in these sediments have often been observed in semi-vertical veins and fractures. In several instances, these hydrate veins/fractures are found in discrete depth intervals a few tens meters thick within the gas hydrate stability zone (GHSZ) surrounded by hydrate-free sediments above and below. As they are not obviously connected with free gas occurring beneath the base of the GHSZ, these isolated hydrate-bearing intervals have been interpreted as formed by microbial methane generatedmore » in situ. To investigate further the formation of these hydrate deposits, we applied a time-dependent advection-diffusion-reaction model that includes the effects of sedimentation, solute diffusion, and microbial methane generation. The microbial methane generation term depends on the amount of metabolizable organic carbon deposited at the seafloor, which is degraded at a prescribed rate resulting in methane formation beneath the sulfate reduction zone. In the model, methane hydrate precipitates once the dissolved methane concentration is greater than solubility, or hydrate dissolves if concentration goes below solubility. If the deposition of organic carbon at the seafloor is kept constant in time, we found that the predicted amounts of hydrate formed in discrete intervals within the GHSZ are much less than those estimated from observations. We then investigated the effect of temporal variations in the deposition of organic carbon. If greater amounts of organic carbon are deposited during some time interval, methane generation is enhanced during burial in the corresponding sediment interval. With variations in organic carbon deposition that are consistent with observations in continental margin sediments, we were able to reproduce the methane hydrate contents estimated in discrete depth intervals. Our results support the suggestion that in situ microbial methane generation is the source for hydrates within fine-grained sediments.« less

  8. A Universe without Weak Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harnik, Roni; Kribs, Graham D.; Perez, Gilad

    2006-04-07

    A universe without weak interactions is constructed that undergoes big-bang nucleosynthesis, matter domination, structure formation, and star formation. The stars in this universe are able to burn for billions of years, synthesize elements up to iron, and undergo supernova explosions, dispersing heavy elements into the interstellar medium. These definitive claims are supported by a detailed analysis where this hypothetical ''Weakless Universe'' is matched to our Universe by simultaneously adjusting Standard Model and cosmological parameters. For instance, chemistry and nuclear physics are essentially unchanged. The apparent habitability of the Weakless Universe suggests that the anthropic principle does not determine the scalemore » of electroweak breaking, or even require that it be smaller than the Planck scale, so long as technically natural parameters may be suitably adjusted. Whether the multi-parameter adjustment is realized or probable is dependent on the ultraviolet completion, such as the string landscape. Considering a similar analysis for the cosmological constant, however, we argue that no adjustments of other parameters are able to allow the cosmological constant to raise up even remotely close to the Planck scale while obtaining macroscopic structure. The fine-tuning problems associated with the electroweak breaking scale and the cosmological constant therefore appear to be qualitatively different from the perspective of obtaining a habitable universe.« less

  9. Barrierless association of CF2 and dissociation of C2F4 by variational transition-state theory and system-specific quantum Rice–Ramsperger–Kassel theory

    PubMed Central

    Bao, Junwei Lucas; Zhang, Xin

    2016-01-01

    Bond dissociation is a fundamental chemical reaction, and the first principles modeling of the kinetics of dissociation reactions with a monotonically increasing potential energy along the dissociation coordinate presents a challenge not only for modern electronic structure methods but also for kinetics theory. In this work, we use multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) to compute the high-pressure limit dissociation rate constant of tetrafluoroethylene (C2F4), in which the potential energies are computed by direct dynamics with the M08-HX exchange correlation functional. To treat the pressure dependence of the unimolecular rate constants, we use the recently developed system-specific quantum Rice–Ramsperger–Kassel theory. The calculations are carried out by direct dynamics using an exchange correlation functional validated against calculations that go beyond coupled-cluster theory with single, double, and triple excitations. Our computed dissociation rate constants agree well with the recent experimental measurements. PMID:27834727

  10. Barrierless association of CF2 and dissociation of C2F4 by variational transition-state theory and system-specific quantum Rice-Ramsperger-Kassel theory.

    PubMed

    Bao, Junwei Lucas; Zhang, Xin; Truhlar, Donald G

    2016-11-29

    Bond dissociation is a fundamental chemical reaction, and the first principles modeling of the kinetics of dissociation reactions with a monotonically increasing potential energy along the dissociation coordinate presents a challenge not only for modern electronic structure methods but also for kinetics theory. In this work, we use multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) to compute the high-pressure limit dissociation rate constant of tetrafluoroethylene (C 2 F 4 ), in which the potential energies are computed by direct dynamics with the M08-HX exchange correlation functional. To treat the pressure dependence of the unimolecular rate constants, we use the recently developed system-specific quantum Rice-Ramsperger-Kassel theory. The calculations are carried out by direct dynamics using an exchange correlation functional validated against calculations that go beyond coupled-cluster theory with single, double, and triple excitations. Our computed dissociation rate constants agree well with the recent experimental measurements.

  11. Unexpectedly large difference of the electron density at the nucleus in the 4p ^2{P}_{{1}/{2},{3}/{2}} fine-structure doublet of Ca^+

    NASA Astrophysics Data System (ADS)

    Shi, C.; Gebert, F.; Gorges, C.; Kaufmann, S.; Nörtershäuser, W.; Sahoo, B. K.; Surzhykov, A.; Yerokhin, V. A.; Berengut, J. C.; Wolf, F.; Heip, J. C.; Schmidt, P. O.

    2017-01-01

    We measured the isotope shift in the ^2{S}_{{1}/{2}} → ^2{P}_{{3}/{2}} (D2) transition in singly ionized calcium ions using photon recoil spectroscopy. The high accuracy of the technique enables us to compare the difference between the isotope shifts of this transition to the previously measured isotopic shifts of the ^2{S}_{{1}/{2}} → ^2{P}_{{1}/{2}} (D1) line. This so-called splitting isotope shift is extracted and exhibits a clear signature of field shift contributions. From the data, we were able to extract the small difference of the field shift coefficient and mass shifts between the two transitions with high accuracy. This J-dependence is of relativistic origin and can be used to benchmark atomic structure calculations. As a first step, we use several ab initio atomic structure calculation methods to provide more accurate values for the field shift constants and their ratio. Remarkably, the high-accuracy value for the ratio of the field shift constants extracted from the experimental data is larger than all available theoretical predictions.

  12. Quantum vacuum energy in general relativity

    NASA Astrophysics Data System (ADS)

    Henke, Christian

    2018-02-01

    The paper deals with the scale discrepancy between the observed vacuum energy in cosmology and the theoretical quantum vacuum energy (cosmological constant problem). Here, we demonstrate that Einstein's equation and an analogy to particle physics leads to the first physical justification of the so-called fine-tuning problem. This fine-tuning could be automatically satisfied with the variable cosmological term Λ (a)=Λ_0+Λ_1 a^{-(4-ɛ)}, 0 < ɛ ≪ 1, where a is the scale factor. As a side effect of our solution of the cosmological constant problem, the dynamical part of the cosmological term generates an attractive force and solves the missing mass problem of dark matter.

  13. Universality of Planck's constant and a constraint from the absence of ℏ-induced neutrino mixing

    NASA Astrophysics Data System (ADS)

    Llanes-Estrada, Felipe J.

    2014-03-01

    You have probably often set ℏ = 1 but for what particle? I revisit here the possibility of a non-universal Planck-constant. Anomaly cancellation suggests that all particles in the same family perceive the same ℏ at fixed charges e, gw, gs; the difference between the muon's and the electron's (and thus the first and second families) can be tightly constrained by the muon's anomalous magnetic moment, but constraints are weaker for the third family. Neutrino mixing could have proceeded a priori not only by the Lagrangian neutrino mass-term, but also by the kinetic term if Planck's constant was not equal for all three species. An experimental constraint follows as such contributions, characterized by oscillations proportional to the energy, as opposed to the inverse energy, have been generically analyzed in the past. This provides at the same time support for gauge invariance. On the other hand if ℏ differs among particles while fixing the fine structure constants αem, αs, etc. instead of the charges, it affects the muonic atom puzzle without much constrain from g - 2 . Based on arXiv:1312.3566. Supported by spanish grants FPA2011-27853-C02-01 and CPAN.

  14. A novel diamond micro-/nano-machining process for the generation of hierarchical micro-/nano-structures

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; To, Suet; Ehmann, Kornel F.; Xiao, Gaobo; Zhu, Wule

    2016-03-01

    A new mechanical micro-/nano-machining process that combines rotary spatial vibrations (RSV) of a diamond tool and the servo motions of the workpiece is proposed and applied for the generation of multi-tier hierarchical micro-/nano-structures. In the proposed micro-/nano-machining system, the servo motion, as the primary cutting motion generated by a slow-tool-servo, is adopted for the fine generation of the primary surfaces with complex shapes. The RSV, as the tertiary cutting operation, is superimposed on the secondary fundamental rotary cutting motion to construct secondary nano-structures on the primary surface. Since the RSV system generally works at much higher frequencies and motion resolution than the primary and secondary motions, it leads to an inherent hierarchical cutting architecture. To investigate the machining performance, complex micro-/nano-structures were generated and explored by both numerical simulations and actual cutting tests. Rotary vibrations of the diamond tool at a constant rotational distance offer an inherent constant cutting velocity, leading to the ability for the generation of homogeneous micro-/nano-structures with fixed amplitudes and frequencies of the vibrations, even over large-scale surfaces. Furthermore, by deliberately combining the non-resonant three-axial vibrations and the servo motion, the generation of a variety of micro-/nano-structures with complex shapes and with flexibly tunable feature sizes can be achieved.

  15. Up, Down, and All Around: Scale-Dependent Spatial Variation in Rocky-Shore Communities of Fildes Peninsula, King George Island, Antarctica

    PubMed Central

    Valdivia, Nelson; Díaz, María J.; Holtheuer, Jorge; Garrido, Ignacio; Huovinen, Pirjo; Gómez, Iván

    2014-01-01

    Understanding the variation of biodiversity along environmental gradients and multiple spatial scales is relevant for theoretical and management purposes. Hereby, we analysed the spatial variability in diversity and structure of intertidal and subtidal macrobenthic Antarctic communities along vertical environmental stress gradients and across multiple horizontal spatial scales. Since biotic interactions and local topographic features are likely major factors for coastal assemblages, we tested the hypothesis that fine-scale processes influence the effects of the vertical environmental stress gradients on the macrobenthic diversity and structure. We used nested sampling designs in the intertidal and subtidal habitats, including horizontal spatial scales ranging from few centimetres to 1000s of metres along the rocky shore of Fildes Peninsula, King George Island. In both intertidal and subtidal habitats, univariate and multivariate analyses showed a marked vertical zonation in taxon richness and community structure. These patterns depended on the horizontal spatial scale of observation, as all analyses showed a significant interaction between height (or depth) and the finer spatial scale analysed. Variance and pseudo-variance components supported our prediction for taxon richness, community structure, and the abundance of dominant species such as the filamentous green alga Urospora penicilliformis (intertidal), the herbivore Nacella concinna (intertidal), the large kelp-like Himantothallus grandifolius (subtidal), and the red crustose red alga Lithothamnion spp. (subtidal). We suggest that in coastal ecosystems strongly governed by physical factors, fine-scale processes (e.g. biotic interactions and refugia availability) are still relevant for the structuring and maintenance of the local communities. The spatial patterns found in this study serve as a necessary benchmark to understand the dynamics and adaptation of natural assemblages in response to observed and predicted environmental changes in Antarctica. PMID:24956114

  16. The underlying processes of a soil mite metacommunity on a small scale.

    PubMed

    Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.

  17. The underlying processes of a soil mite metacommunity on a small scale

    PubMed Central

    Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906

  18. Impacts of geochemical and environmental factors on seasonal variation of heavy metals in a coastal lagoon Yucatan, Mexico.

    PubMed

    Arcega-Cabrera, F; Garza-Pérez, R; Noreña-Barroso, E; Oceguera-Vargas, I

    2015-01-01

    This study investigated the influence of geochemical and environmental factors on seasonal variation in metals in Yucatan's Chelem lagoon. Anthropogenic activities discharge non-treated wastewater directly into it with detrimental environmental consequences. Accordingly, this study established the spatial and temporal patterns of fine grain sediments and concentrations of heavy metals. Multivariate analyses showed fine grain facies deposition, transition sites dominated by fine grain transport, and fine grain erosion sites. Spatial and temporal variations of heavy metals concentration were significant for Cd, Cu, Cr, and Pb. As, Cd, and Sn were as much as 12 times higher than SQuiRTs standards (Buchman 2008). The results indicate that aquifer water is bringing metals from relatively far inland and releasing them into the lagoon. Thus, it appears that the contamination of this lagoon is highly complex and must take into account systemic connections with inland anthropogenic activates and pollution, as well as local factors.

  19. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T.

    2014-01-28

    FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that themore » FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.« less

  20. Heterogeneity and anisotropy in the lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Tommasi, Andréa; Vauchez, Alain

    2015-10-01

    The lithospheric mantle is intrinsically heterogeneous and anisotropic. These two properties govern the repartition of deformation, controlling intraplate strain localization and development of new plate boundaries. Geophysical and geological observations provide clues on the types, ranges, and characteristic length scales of heterogeneity and anisotropy in the lithospheric mantle. Seismic tomography points to variations in geothermal gradient and hence in rheological behavior at scales of hundreds of km. Seismic anisotropy data substantiate anisotropic physical properties consistent at scales of tens to hundreds of km. Receiver functions imply lateral and vertical heterogeneity at scales < 10 km, which might record gradients in composition or anisotropy. Observations on naturally deformed peridotites establish that compositional heterogeneity and Crystal Preferred Orientations (CPOs) are ubiquitous from the mm to the km scales. These data allow discussing the processes that produce/destroy heterogeneity and anisotropy and constraining the time scales over which they are active. This analysis highlights: (i) the role of deformation and reactive percolation of melts and fluids in producing compositional and structural heterogeneity and the feedbacks between these processes, (ii) the weak mechanical effect of mineralogical variations, and (iii) the low volumes of fine-grained microstructures and difficulty to preserve them. In contrast, olivine CPO and the resulting anisotropy of mechanical and thermal properties are only modified by deformation. Based on this analysis, we propose that strain localization at the plate scale is, at first order, controlled by large-scale variations in thermal structure and in CPO-induced anisotropy. In cold parts of the lithospheric mantle, grain size reduction may contribute to strain localization, but the low volume of fine-grained domains limits this effect.

  1. Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study.

    PubMed

    Popescu, Mihai; Otsuka, Asuka; Ioannides, Andreas A

    2004-04-01

    There are formidable problems in studying how 'real' music engages the brain over wide ranges of temporal scales extending from milliseconds to a lifetime. In this work, we recorded the magnetoencephalographic signal while subjects listened to music as it unfolded over long periods of time (seconds), and we developed and applied methods to correlate the time course of the regional brain activations with the dynamic aspects of the musical sound. We showed that frontal areas generally respond with slow time constants to the music, reflecting their more integrative mode; motor-related areas showed transient-mode responses to fine temporal scale structures of the sound. The study combined novel analysis techniques designed to capture and quantify fine temporal sequencing from the authentic musical piece (characterized by a clearly defined rhythm and melodic structure) with the extraction of relevant features from the dynamics of the regional brain activations. The results demonstrated that activity in motor-related structures, specifically in lateral premotor areas, supplementary motor areas, and somatomotor areas, correlated with measures of rhythmicity derived from the music. These correlations showed distinct laterality depending on how the musical performance deviated from the strict tempo of the music score, that is, depending on the musical expression.

  2. [CuCl(n)](2-n) ion-pair species in 1-ethyl-3-methylimidazolium chloride ionic liquid-water mixtures: ultraviolet-visible, X-ray absorption fine structure, and density functional theory characterization.

    PubMed

    Li, Guosheng; Camaioni, Donald M; Amonette, James E; Zhang, Z Conrad; Johnson, Timothy J; Fulton, John L

    2010-10-07

    We studied the coordination environment about Cu(II) in a pure ionic liquid, 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl), and in binary mixtures of this compound with water across the entire range of compositions, using a combination of X-ray absorption fine structure (XAFS), ultraviolet-visible (UV-vis) spectroscopy, and electronic structure calculations. Our results show a series of stages in the ion pairing of the divalent cation, Cu(II), including the contact ion pairing of Cu(2+) with multiple Cl(-) ligands to form various CuCl(n)((2-n)) polyanions, as well as the subsequent solvation and ion pairing of the polychlorometallate anion with the EMIM(+) cation. Ion-pair formation is strongly promoted in [EMIM]Cl by the low dielectric constant and by the extensive breakdown of the water hydrogen-bond network in [EMIM]Cl-water mixtures. The CuCl(4)(2-) species dominates in the [EMIM]Cl solvent, and calculations along with spectroscopy show that its geometry distorts to C(2) symmetry compared to D(2d) in the gas phase. These results are important in understanding catalysis and separation processes involving transition metals in ionic liquid systems.

  3. Sub-Doppler infrared spectroscopy of propargyl radical (H{sub 2}CCCH) in a slit supersonic expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chih-Hsuan; Nesbitt, David J.

    The acetylenic CH stretch mode (ν{sub 1}) of propargyl (H{sub 2}CCCH) radical has been studied at sub-Doppler resolution (∼60 MHz) via infrared laser absorption spectroscopy in a supersonic slit-jet discharge expansion, where low rotational temperatures (T{sub rot} = 13.5(4) K) and lack of spectral congestion permit improved determination of band origin and rotational constants for the excited state. For the lowest J states primarily populated in the slit jet cooled expansion, fine structure due to the unpaired electron spin is resolved completely, which permits accurate analysis of electron spin-rotation interactions in the vibrationally excited states (ε{sub aa} = − 518.1(1.8),more » ε{sub bb} = − 13.0(3), ε{sub cc} = − 1.8(3) MHz). In addition, hyperfine broadening in substantial excess of the sub-Doppler experimental linewidths is observed due to nuclear spin–electron spin contributions at the methylenic (—CH{sub 2}) and acetylenic (—CH) positions, which permits detailed modeling of the fine/hyperfine structure line contours. The results are consistent with a delocalized radical spin density extending over both methylenic and acetylenic C atoms, in excellent agreement with simple resonance structures as well as ab initio theoretical calculations.« less

  4. An MHD variational principle that admits reconnection

    NASA Technical Reports Server (NTRS)

    Rilee, M. L.; Sudan, R. N.; Pfirsch, D.

    1997-01-01

    The variational approach of Pfirsch and Sudan's averaged magnetohydrodynamics (MHD) to the stability of a line-tied current layer is summarized. The effect of line-tying on current sheets that might arise in line-tied magnetic flux tubes by estimating the growth rates of a resistive instability using a variational method. The results show that this method provides a potentially new technique to gauge the stability of nearly ideal magnetohydrodynamic systems. The primary implication for the stability of solar coronal structures is that tearing modes are probably constant at work removing magnetic shear from the solar corona.

  5. The Fine Art of Using a Laserdisc in the Art Classroom.

    ERIC Educational Resources Information Center

    Porter, Sharon

    1998-01-01

    Laserdiscs are an efficient and flexible medium for art presentations in schools. This article discusses laserdiscs, also called videodiscs; distinguishes between constant linear velocity (CLV) and constant angular velocity (CAV) which allows more flexible access; describes the use of bar coding for access; and lists selected visual art…

  6. Real-time tree foliage density estimation with laser scanning sensor for variable-rate tree sprayer development

    USDA-ARS?s Scientific Manuscript database

    Trees, even in the same orchard or nursery, can have considerably different structures and foliage densities. Conventional chemical applications often spray the entire field at a constant rate without considering field variations, resulting in excessive chemical waste and spray drift. To address thi...

  7. Proximate environmental drivers of coral communities at Palmyra Atoll: establishing baselines prior to removing a WWII military causeway.

    PubMed

    Williams, Gareth J; Knapp, Ingrid S; Maragos, James E; Davy, Simon K

    2011-08-01

    A management proposal aims to partly remove a WWII military causeway at Palmyra Atoll to improve lagoon water circulation and alleviate sedimentation stress on the southeast backreef, an area of high coral cover and diversity. This action could result in a shift in sedimentation across reef sites. To provide management advice, we quantified the proximate environmental factors driving scleractinian coral cover and community patterns at Palmyra. The proportion of fine sedimentation was the optimal predictor of coral cover and changes in community structure, explaining 23.7% and 24.7% of the variation between sites, respectively. Scleractinian coral cover was negatively correlated with increases in fine sedimentation. Removing the causeway could negatively affect the Montipora corals that dominate the western reef terrace, as this genus was negatively correlated with levels of fine sedimentation. The tolerance limits of corals, and sediment re-distribution patterns, should be determined prior to complete removal of the causeway. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Relativistic Coulomb Problem for Z Larger than 137

    NASA Astrophysics Data System (ADS)

    Alhaidari, A. D.

    We propose a relativistic one-parameter Hermitian theory for the Coulomb problem with an electric charge greater than 137. In the nonrelativistic limit, the theory becomes identical to the Schrödinger-Coulomb problem for all Z. Moreover, it agrees with the Dirac-Coulomb problem to order (αZ)2, where α is the fine structure constant. The vacuum in the theory is stable and does not suffer from the "charged vacuum" problem for all Z. Moreover, transition between positive and negative energy states could be eliminated. The relativistic bound states energy spectrum and corresponding spinor wave functions are obtained.

  9. RETRACTION: Publishers' Note

    NASA Astrophysics Data System (ADS)

    post="(Executive Editor">Graeme Watt,

    2010-06-01

    Withdrawal of the paper "Was the fine-structure constant variable over cosmological time?" by L. D. Thong, N. M. Giao, N. T. Hung and T. V. Hung (EPL, 87 (2009) 69002) This paper has been formally withdrawn on ethical grounds because the article contains extensive and repeated instances of plagiarism. EPL treats all identified evidence of plagiarism in the published articles most seriously. Such unethical behaviour will not be tolerated under any circumstance. It is unfortunate that this misconduct was not detected before going to press. My thanks to Editor colleagues from other journals for bringing this fact to my attention.

  10. Vacuum Decay via Lorentzian Wormholes

    NASA Astrophysics Data System (ADS)

    Rosales, J. L.

    We speculate about the space-time description due to the presence of Lorentzian worm-holes (handles in space-time joining two distant regions or other universes) in quantum gravity. The semiclassical rate of production of these Lorentzian wormholes in Reissner-Nordström space-times is calculated as a result of the spontaneous decay of vacuum due to a real tunneling configuration. In the magnetic case it only depends on the value of the field theoretical fine structure constant. We predict that the quantum probability corresponding to the nucleation of such geodesically complete space-times should be acutally negligible in our physical Universe.

  11. METHOD OF MAKING METAL BONDED CARBON BODIES

    DOEpatents

    Goeddel, W.V.; Simnad, M.T.

    1961-09-26

    A method of producing carbon bodies having high structural strength and low permeability is described. The method comprises mixing less than 10 wt.% of a diffusional bonding material selected from the group consisting of zirconium, niobium, molybdenum, titanium, nickel, chromium, silicon, and decomposable compounds thereof with finely divided particles of carbon or graphite. While being maintained at a mechanical pressure over 3,000 psi, the mixture is then heated uniformly to a temperature of 1500 deg C or higher, usually for less than one hour. The resulting carbon bodies have a low diffusion constant, high dimensional stability, and high mechanical strength.

  12. Cold molecule spectroscopy for constraining the evolution of the fine structure constant.

    PubMed

    Hudson, Eric R; Lewandowski, H J; Sawyer, Brian C; Ye, Jun

    2006-04-14

    We report precise measurements of ground-state, Lambda-doublet microwave transitions in the hydroxyl radical molecule (OH). Utilizing slow, cold molecules produced by a Stark decelerator we have improved over the precision of the previous best measurement 25-fold for the F'=2-->F=2 transition, yielding (1 667 358 996 +/- 4)Hz, and by tenfold for the F'=1-->F=1 transition, yielding (1 665 401 803 +/-12)Hz. Comparing these laboratory frequencies to those from OH megamasers in interstellar space will allow a sensitivity of 1 ppm for Delta(alpha/alpha) over approximately 10(10) yr.

  13. Many-body instabilities and mass generation in slow Dirac materials

    NASA Astrophysics Data System (ADS)

    Triola, Christopher; Zhu, Jianxin; Migliori, Albert; Balatsky, Alexander

    2015-03-01

    Some Kondo insulators are expected to possess topologically protected surface states with linear Dirac spectrum, the topological Kondo insulators. Because the bulk states of these systems typically have heavy effective electron masses, the surface states may exhibit extraordinarily small Fermi velocities that could force the effective fine structure constant of the surface states into the strong coupling regime. Using a tight-binding model we study the many-body instabilities of these systems and identify regions of parameter space for which antiferromagnetic, ferromagnetic and charge density wave instabilities occur. Work Supported by USDOE BES E304.

  14. Experimental and theoretical investigation of the temperature dependent electronic quenching of O(1D) atoms in collisions with Kr

    NASA Astrophysics Data System (ADS)

    Nuñez-Reyes, Dianailys; Kłos, Jacek; Alexander, Millard H.; Dagdigian, Paul J.; Hickson, Kevin M.

    2018-03-01

    The kinetics and dynamics of the collisional electronic quenching of O(1D) atoms by Kr have been investigated in a joint experimental and theoretical study. The kinetics of quenching were measured over the temperature range 50-296 K using the Laval nozzle method. O(1D) atoms were prepared by 266 nm photolysis of ozone, and the decay of the O(1D) concentration was monitored through vacuum ultraviolet fluorescence at 115.215 nm, from which the rate constant was determined. To interpret the experiments, a quantum close-coupling treatment of the quenching transition from the 1D state to the 3Pj fine-structure levels in collisions with Kr, and also Ar and Xe, was carried out. The relevant potential energy curves and spin-orbit coupling matrix elements were obtained in electronic structure calculations. We find reasonable agreement between computed temperature-dependent O(1D)-Rg (Rg = Ar, Kr, Xe) quenching rate constants and the present measurements for Kr and earlier measurements. In particular, the temperature dependence is well described.

  15. Coupling fine-scale root and canopy structure using ground-based remote sensing

    DOE PAGES

    Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.; ...

    2017-02-21

    Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less

  16. Coupling fine-scale root and canopy structure using ground-based remote sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardiman, Brady S.; Gough, Christopher M.; Butnor, John R.

    Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in functionally meaningful ways. To test this possibility, we employed ground-based portable canopy LiDAR (PCL) and ground penetrating radar (GPR) along co-located transects in forested sites spanning multiple stages of ecosystem development and, consequently, of structural complexity. We examined canopy and root structural data for coherence (i.e., correlation in the frequency of spatial variation) at multiple spatialmore » scales 10 m within each site using wavelet analysis. Forest sites varied substantially in vertical canopy and root structure, with leaf area index and root mass more becoming even vertically as forests aged. In all sites, above- and belowground structure, characterized as mean maximum canopy height and root mass, exhibited significant coherence at a scale of 3.5–4 m, and results suggest that the scale of coherence may increase with stand age. Our findings demonstrate that canopy and root structure are linked at characteristic spatial scales, which provides the basis to optimize scales of observation. Lastly, our study highlights the potential, and limitations, for fusing LiDAR and radar technologies to quantitatively couple above- and belowground ecosystem structure.« less

  17. Fine-scale spatial genetic dynamics over the life cycle of the tropical tree Prunus africana.

    PubMed

    Berens, D G; Braun, C; González-Martínez, S C; Griebeler, E M; Nathan, R; Böhning-Gaese, K

    2014-11-01

    Studying fine-scale spatial genetic patterns across life stages is a powerful approach to identify ecological processes acting within tree populations. We investigated spatial genetic dynamics across five life stages in the insect-pollinated and vertebrate-dispersed tropical tree Prunus africana in Kakamega Forest, Kenya. Using six highly polymorphic microsatellite loci, we assessed genetic diversity and spatial genetic structure (SGS) from seed rain and seedlings, and different sapling stages to adult trees. We found significant SGS in all stages, potentially caused by limited seed dispersal and high recruitment rates in areas with high light availability. SGS decreased from seed and early seedling stages to older juvenile stages. Interestingly, SGS was stronger in adults than in late juveniles. The initial decrease in SGS was probably driven by both random and non-random thinning of offspring clusters during recruitment. Intergenerational variation in SGS could have been driven by variation in gene flow processes, overlapping generations in the adult stage or local selection. Our study shows that complex sequential processes during recruitment contribute to SGS of tree populations.

  18. Multi-path variational transition state theory for chemical reaction rates of complex polyatomic species: ethanol + OH reactions.

    PubMed

    Zheng, Jingjing; Truhlar, Donald G

    2012-01-01

    Complex molecules often have many structures (conformations) of the reactants and the transition states, and these structures may be connected by coupled-mode torsions and pseudorotations; some but not all structures may have hydrogen bonds in the transition state or reagents. A quantitative theory of the reaction rates of complex molecules must take account of these structures, their coupled-mode nature, their qualitatively different character, and the possibility of merging reaction paths at high temperature. We have recently developed a coupled-mode theory called multi-structural variational transition state theory (MS-VTST) and an extension, called multi-path variational transition state theory (MP-VTST), that includes a treatment of the differences in the multi-dimensional tunneling paths and their contributions to the reaction rate. The MP-VTST method was presented for unimolecular reactions in the original paper and has now been extended to bimolecular reactions. The MS-VTST and MP-VTST formulations of variational transition state theory include multi-faceted configuration-space dividing surfaces to define the variational transition state. They occupy an intermediate position between single-conformation variational transition state theory (VTST), which has been used successfully for small molecules, and ensemble-averaged variational transition state theory (EA-VTST), which has been used successfully for enzyme kinetics. The theories are illustrated and compared here by application to three thermal rate constants for reactions of ethanol with hydroxyl radical--reactions with 4, 6, and 14 saddle points.

  19. Temperature dependencies of Henry’s law constants for different plant sesquiterpenes

    PubMed Central

    Copolovici, Lucian; Niinemets, Ülo

    2018-01-01

    Sesquiterpenes are plant-produced hydrocarbons with important ecological functions in plant-to-plant and plant-to-insect communication, but due to their high reactivity they can also play a significant role in atmospheric chemistry. So far, there is little information of gas/liquid phase partition coefficients (Henry’s law constants) and their temperature dependencies for sesquiterpenes, but this information is needed for quantitative simulation of the release of sesquiterpenes from plants and modeling atmospheric reactions in different phases. In this study, we estimated Henry’s law constants (Hpc) and their temperature responses for 12 key plant sesquiterpenes with varying structure (aliphatic, mono-, bi- and tricyclic sesquiterpenes). At 25 °C, Henry’s law constants varied 1.4-fold among different sesquiterpenes, and the values were within the range previously observed for monocyclic monoterpenes. Hpc of sesquiterpenes exhibited a high rate of increase, on average ca. 1.5-fold with a 10 °C increase in temperature (Q10). The values of Q10 varied 1.2-fold among different sesquiterpenes. Overall, these data demonstrate moderately high variation in Hpc values and Hpc temperature responses among different sesquiterpenes. We argue that these variations can importantly alter the emission kinetics of sesquiterpenes from plants. PMID:26291755

  20. Anti-anthropic solutions to the cosmic coincidence problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedrow, Joseph M.; Griest, Kim, E-mail: j.m.fedrow@gmail.com, E-mail: kgriest@ucsd.edu

    2014-01-01

    A cosmological constant fits all current dark energy data, but requires two extreme fine tunings, both of which are currently explained by anthropic arguments. Here we discuss anti-anthropic solutions to one of these problems: the cosmic coincidence problem- that today the dark energy density is nearly equal to the matter density. We replace the ensemble of Universes used in the anthropic solution with an ensemble of tracking scalar fields that do not require fine-tuning. This not only does away with the coincidence problem, but also allows for a Universe that has a very different future than the one currently predictedmore » by a cosmological constant. These models also allow for transient periods of significant scalar field energy (SSFE) over the history of the Universe that can give very different observational signatures as compared with a cosmological constant, and so can be confirmed or disproved in current and upcoming experiments.« less

  1. Determining the value of the fine-structure constant from a current balance: Getting acquainted with some upcoming changes to the SI

    NASA Astrophysics Data System (ADS)

    Davis, Richard S.

    2017-05-01

    The revised International System of Units (SI), expected to be approved late in 2018, has implications for physics pedagogy. The ampere definition, which dates from 1948, will be replaced by a definition that fixes the numerical value of the elementary charge e in coulombs. The kilogram definition, which dates from 1889, will be replaced by a definition that fixes the numerical value of the Planck constant h in joule seconds. Existing SI equations will be completely unaffected. However, there will be a largely negligible, but nevertheless necessary, change to published numerical factors relating SI electrical units to their corresponding units in the Gaussian and other CGS systems of units. The implications of the revised SI for electrical metrology are neatly illustrated by considering the interpretation of results obtained from a current balance in the present SI and in the revised SI.

  2. 8 MeV electron beam induced modifications in the thermal, structural and electrical properties of nanophase CeO2 for potential electronics applications

    NASA Astrophysics Data System (ADS)

    Babitha, K. K.; Sreedevi, A.; Priyanka, K. P.; Ganesh, S.; Varghese, Thomas

    2018-06-01

    The effect of 8 MeV electron beam irradiation on the thermal, structural and electrical properties of CeO2 nanoparticles synthesized by chemical precipitation route was investigated. The dose dependent effect of electron irradiation was studied using various characterization techniques such as, thermogravimetric and differential thermal analyses, X-ray diffraction, Fourier transformed infrared spectroscopy and impedance spectroscopy. Systematic investigation based on the results of structural studies confirm that electron beam irradiation induces defects and particle size variation on CeO2 nanoparticles, which in turn results improvements in AC conductivity, dielectric constant and loss tangent. Structural modifications and high value of dielectric constant for CeO2 nanoparticles due to electron beam irradiation make it as a promising material for the fabrication of gate dielectric in metal oxide semiconductor devices.

  3. A global exploration of fine-root trait variation: opening the black box

    USDA-ARS?s Scientific Manuscript database

    A major part of ecosystem functioning relies on processes below ground, which are governed by fine root traits. This study synthesizes published and unpublished fine-root trait data available worldwide (>9000 observations from >1100 species on 14 traits) and examines their ecological value and globa...

  4. Understanding the masses of elementary particles: a step towards understanding the massless photon?

    NASA Astrophysics Data System (ADS)

    Greulich, K. O.

    2011-09-01

    A so far unnoticed simple explanation of elementary particle masses is given by m = N * melectron/α, where alpha (=1/137) is the fine structure constant. On the other hand photons can be described by two oppositely oscillating clouds of e / √α elementary charges. Such a model describes a number of features of the photon in a quantitatively correct manner. For example, the energy of the oscillating clouds is E = h ν, the spin is 1 and the spatial dimension is λ / 2 π. When the charge e / √α is assigned to the Planck mass mPl, the resulting charge density is e / (mPl√α) = 8,62 * 10-11 Cb / kg. This is identical to √ (G / ko) where G is the gravitational constant and ko the Coulomb constant. When one assigns this very small charge density to any matter, gravitation can be completely described as Coulomb interaction between such charges of the corresponding masses. Thus, there is a tight quantitative connection between the photon, nonzero rest masses and gravitation / Coulomb interaction.

  5. Constant Communities in Complex Networks

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tanmoy; Srinivasan, Sriram; Ganguly, Niloy; Bhowmick, Sanjukta; Mukherjee, Animesh

    2013-05-01

    Identifying community structure is a fundamental problem in network analysis. Most community detection algorithms are based on optimizing a combinatorial parameter, for example modularity. This optimization is generally NP-hard, thus merely changing the vertex order can alter their assignments to the community. However, there has been less study on how vertex ordering influences the results of the community detection algorithms. Here we identify and study the properties of invariant groups of vertices (constant communities) whose assignment to communities are, quite remarkably, not affected by vertex ordering. The percentage of constant communities can vary across different applications and based on empirical results we propose metrics to evaluate these communities. Using constant communities as a pre-processing step, one can significantly reduce the variation of the results. Finally, we present a case study on phoneme network and illustrate that constant communities, quite strikingly, form the core functional units of the larger communities.

  6. Reproductive phenology of coastal plain Atlantic forest vegetation: comparisons from seashore to foothills.

    PubMed

    Staggemeier, Vanessa Graziele; Morellato, Leonor Patrícia Cerdeira

    2011-11-01

    The diversity of tropical forest plant phenology has called the attention of researchers for a long time. We continue investigating the factors that drive phenological diversity on a wide scale, but we are unaware of the variation of plant reproductive phenology at a fine spatial scale despite the high spatial variation in species composition and abundance in tropical rainforests. We addressed fine scale variability by investigating the reproductive phenology of three contiguous vegetations across the Atlantic rainforest coastal plain in Southeastern Brazil. We asked whether the vegetations differed in composition and abundance of species, the microenvironmental conditions and the reproductive phenology, and how their phenology is related to regional and local microenvironmental factors. The study was conducted from September 2007 to August 2009 at three contiguous sites: (1) seashore dominated by scrub vegetation, (2) intermediary covered by restinga forest and (3) foothills covered by restinga pre-montane transitional forest. We conducted the microenvironmental, plant and phenological survey within 30 transects of 25 m × 4 m (10 per site). We detected significant differences in floristic, microenvironment and reproductive phenology among the three vegetations. The microenvironment determines the spatial diversity observed in the structure and composition of the flora, which in turn determines the distinctive flowering and fruiting peaks of each vegetation (phenological diversity). There was an exchange of species providing flowers and fruits across the vegetation complex. We conclude that plant reproductive patterns as described in most phenological studies (without concern about the microenvironmental variation) may conceal the fine scale temporal phenological diversity of highly diverse tropical vegetation. This phenological diversity should be taken into account when generating sensor-derived phenologies and when trying to understand tropical vegetation responses to environmental changes.

  7. Substitution behavior of x(Na0.5K0.5)NbO3-(1 - x)BaTiO3 ceramics for multilayer ceramic capacitors by a near edge x-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    Ha, Jooyeon; Ryu, Jiseung; Lee, Heesoo

    2014-06-01

    The doping effect of (Na0.5K0.5)NbO3 (NKN) as alternatives for rare-earth elements on the electrical properties of BaTiO3 has been investigated, in terms of their substitution behavior. The dielectric constant of a specimen with x = 0.05 was about 79% higher than that of pure BaTiO3, and the temperature coefficient of capacitance was satisfied by the X7R specification. The specimen with x = 0.05 showed the lowest tetragonality among the four compositions and had a fine grain size of <2 μm. Although the addition of NKN decreased the specimen's tetragonality, the electrical properties were enhanced by the formation of defect dipoles and conduction electrons, which resulted from an acceptor and donor substitution behavior. Through O K-edge near edge x-ray absorption fine structure spectroscopy, the practical substitution behavior was defined by the change in Ti 3d orbital states. The energy separation of the Ti 3d orbitals was more apparent with the specimen of x = 0.05, which is related to the donor level from the donor substitution of Nb5+ ion for Ti-sites. Therefore, the simultaneous substitution of Na+/K+ and Nb5+ ions into BaTiO3 can improve dielectric properties, based on the charge-transfer process.

  8. Matériaux diélectriques à base de K_2Sr4Nb{10}O_{30} présentant des courbes \\varepsilon'_r = f (T) plates avec de hautes constantes diélectriques

    NASA Astrophysics Data System (ADS)

    Tribotté, B.; Desgardin, G.

    1997-06-01

    Type II ferroelectric ceramics are used in multilayers capacitors with high volume capacitance. Among different specifications concerning the variation of the dielectric constant versus temperature, one of the most restrictive class, the X7R one, allows only a variation of ±15 percent of the 25 ^{circ}C value of the permittivity in the wide range, -55 ^{circ}C to +125 ^{circ}C. Previous investigations have proved the interest to mix the niobate K2Sr4Nb{10}O{30}, with a Tetragonal Tungsten Bronze (TTB) structure, with perovskites as minor agents like Pb(Mg{1/3}Nb{2/3})O3, to obtain flat curves \\varepsilon'_r = f (T) with dielectric constant above 6000. To point out the mechanism leading to such curves, the influence of the introduction of different cations like Mg^{2+} or Pb^{2+} in the TTB structure has been studied. In the present work, we show that K2Sr{4}Nb{10}O{30}-based materials, without the presence of perovskite phase from XRD, can also exhibit \\varepsilon'_r= f (T) curves with a flat profile. Les céramiques ferroélectriques de type II sont couramment utilisées dans les condensateurs multicouches à forte capacité volumique. Parmi différentes classes concernant la variation de la constante diélectrique en fonction de la température, une des plus sévères, la X7R, autorise seulement une variation de ±15% de la capacité par rapport à celle à 25 ^{circ}C dans un large domaine de température, de -55 ^{circ}C à +125 ^{circ}C. Des études récentes ont prouvé l'intérêt de mélanger le niobate K2Sr4Nb{10}O{30}, de structure de type Bronze Quadratique de Tungstène (BQT), avec des pérovskites en faible proportion comme Pb(Mg{1/3}Nb{2/3})O3, pour obtenir des courbes plates \\varepsilon'_r = f (T), correspondant à des constantes moyennes superieures à 6000. Pour mettre en évidence le mécanisme conduisant à de telles courbes, nous avons étudié l'influence de l'introduction de différents cations comme Mg^{2+} ou Pb^{2+} dans la structure BQT. Dans ce travail, nous montrons que des matériaux à base de K2Sr4Nb{10}O{30}, sans présence simultanée de phase pérovskite d'après la diffraction des rayons X, peuvent conduire à des courbes \\varepsilon'_r= f (T) à caractère plat.

  9. Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster

    PubMed Central

    Song, Yun S.

    2012-01-01

    Estimating fine-scale recombination maps of Drosophila from population genomic data is a challenging problem, in particular because of the high background recombination rate. In this paper, a new computational method is developed to address this challenge. Through an extensive simulation study, it is demonstrated that the method allows more accurate inference, and exhibits greater robustness to the effects of natural selection and noise, compared to a well-used previous method developed for studying fine-scale recombination rate variation in the human genome. As an application, a genome-wide analysis of genetic variation data is performed for two Drosophila melanogaster populations, one from North America (Raleigh, USA) and the other from Africa (Gikongoro, Rwanda). It is shown that fine-scale recombination rate variation is widespread throughout the D. melanogaster genome, across all chromosomes and in both populations. At the fine-scale, a conservative, systematic search for evidence of recombination hotspots suggests the existence of a handful of putative hotspots each with at least a tenfold increase in intensity over the background rate. A wavelet analysis is carried out to compare the estimated recombination maps in the two populations and to quantify the extent to which recombination rates are conserved. In general, similarity is observed at very broad scales, but substantial differences are seen at fine scales. The average recombination rate of the X chromosome appears to be higher than that of the autosomes in both populations, and this pattern is much more pronounced in the African population than the North American population. The correlation between various genomic features—including recombination rates, diversity, divergence, GC content, gene content, and sequence quality—is examined using the wavelet analysis, and it is shown that the most notable difference between D. melanogaster and humans is in the correlation between recombination and diversity. PMID:23284288

  10. Ada (Trademark) Compiler Validation Summary Report: Certificate Number: 880714N1,09135, GEC Software Ltd, VADS Version 5.5, SUN 3/50 Workstation X GEC 4195 Minicomputer

    DTIC Science & Technology

    1988-07-15

    floating-point accuracy that exceeds the maximum of 15 digits supported by this implementation: C24113L..Y (14 tests) C35705L..Y (14 tests) C35706L...declarative part or package specification, or after a libary unit in a compilation, but before any subsequent compilation unit. When the first argument is a...INT constant :=2147483647; MAX- DIGITS :constant :~15; MAX-MANTISSA constant 31; FINE-DELTA constant :=2.0’*(-31); TICK :constant :=0.01; -- Other

  11. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners.

    PubMed

    Churchill, Tyler H; Kan, Alan; Goupell, Matthew J; Litovsky, Ruth Y

    2014-09-01

    Most contemporary cochlear implant (CI) processing strategies discard acoustic temporal fine structure (TFS) information, and this may contribute to the observed deficits in bilateral CI listeners' ability to localize sounds when compared to normal hearing listeners. Additionally, for best speech envelope representation, most contemporary speech processing strategies use high-rate carriers (≥900 Hz) that exceed the limit for interaural pulse timing to provide useful binaural information. Many bilateral CI listeners are sensitive to interaural time differences (ITDs) in low-rate (<300 Hz) constant-amplitude pulse trains. This study explored the trade-off between superior speech temporal envelope representation with high-rate carriers and binaural pulse timing sensitivity with low-rate carriers. The effects of carrier pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition in quiet were examined in eight bilateral CI listeners. Stimuli consisted of speech tokens processed at different electrical stimulation rates, and pulse timings that either preserved or did not preserve acoustic TFS cues. Results showed that CI listeners were able to use low-rate pulse timing cues derived from acoustic TFS when presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli.

  12. On the spottedness, magnetism and internal structure of stars

    NASA Astrophysics Data System (ADS)

    Gershberg, R. E.

    Kinematical structures within stellar interiors that are the result of a self-organization of these interiors as thermodynamically open nonlinear systems are proposed as the physical basis for stellar magnetism. It is noted that the ubiquitousness of stellar magnetism that follows from the hypothesis is not in contradiction with observations. These kinematical structures may be energy reservoirs, and changes in these structures may be connected with variations of an energy flux emergent from a stellar surface, while its internal energy sources remain constant, explaining the radiation deficit from sunspots and starspots.

  13. Chameleonic dilaton, nonequivalent frames, and the cosmological constant problem in quantum string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanzi, Andrea

    2010-08-15

    The chameleonic behavior of the string theory dilaton is suggested. Some of the possible consequences of the chameleonic string dilaton are analyzed in detail. In particular, (1) we suggest a new stringy solution to the cosmological constant problem and (2) we point out the nonequivalence of different conformal frames at the quantum level. In order to obtain these results, we start taking into account the (strong coupling) string loop expansion in the string frame (S-frame), therefore the so-called form factors are present in the effective action. The correct dark energy scale is recovered in the Einstein frame (E-frame) without unnaturalmore » fine-tunings and this result is robust against all quantum corrections, granted that we assume a proper structure of the S-frame form factors in the strong coupling regime. At this stage, the possibility still exists that a certain amount of fine-tuning may be required to satisfy some phenomenological constraints. Moreover in the E-frame, in our proposal, all the interactions are switched off on cosmological length scales (i.e., the theory is IR-free), while higher derivative gravitational terms might be present locally (on short distances) and it remains to be seen whether these facts clash with phenomenology. A detailed phenomenological analysis is definitely necessary to clarify these points.« less

  14. Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.

    PubMed

    Marsh, M C David

    2017-01-06

    Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.

  15. A feature refinement approach for statistical interior CT reconstruction

    NASA Astrophysics Data System (ADS)

    Hu, Zhanli; Zhang, Yunwan; Liu, Jianbo; Ma, Jianhua; Zheng, Hairong; Liang, Dong

    2016-07-01

    Interior tomography is clinically desired to reduce the radiation dose rendered to patients. In this work, a new statistical interior tomography approach for computed tomography is proposed. The developed design focuses on taking into account the statistical nature of local projection data and recovering fine structures which are lost in the conventional total-variation (TV)—minimization reconstruction. The proposed method falls within the compressed sensing framework of TV minimization, which only assumes that the interior ROI is piecewise constant or polynomial and does not need any additional prior knowledge. To integrate the statistical distribution property of projection data, the objective function is built under the criteria of penalized weighed least-square (PWLS-TV). In the implementation of the proposed method, the interior projection extrapolation based FBP reconstruction is first used as the initial guess to mitigate truncation artifacts and also provide an extended field-of-view. Moreover, an interior feature refinement step, as an important processing operation is performed after each iteration of PWLS-TV to recover the desired structure information which is lost during the TV minimization. Here, a feature descriptor is specifically designed and employed to distinguish structure from noise and noise-like artifacts. A modified steepest descent algorithm is adopted to minimize the associated objective function. The proposed method is applied to both digital phantom and in vivo Micro-CT datasets, and compared to FBP, ART-TV and PWLS-TV. The reconstruction results demonstrate that the proposed method performs better than other conventional methods in suppressing noise, reducing truncated and streak artifacts, and preserving features. The proposed approach demonstrates its potential usefulness for feature preservation of interior tomography under truncated projection measurements.

  16. A feature refinement approach for statistical interior CT reconstruction.

    PubMed

    Hu, Zhanli; Zhang, Yunwan; Liu, Jianbo; Ma, Jianhua; Zheng, Hairong; Liang, Dong

    2016-07-21

    Interior tomography is clinically desired to reduce the radiation dose rendered to patients. In this work, a new statistical interior tomography approach for computed tomography is proposed. The developed design focuses on taking into account the statistical nature of local projection data and recovering fine structures which are lost in the conventional total-variation (TV)-minimization reconstruction. The proposed method falls within the compressed sensing framework of TV minimization, which only assumes that the interior ROI is piecewise constant or polynomial and does not need any additional prior knowledge. To integrate the statistical distribution property of projection data, the objective function is built under the criteria of penalized weighed least-square (PWLS-TV). In the implementation of the proposed method, the interior projection extrapolation based FBP reconstruction is first used as the initial guess to mitigate truncation artifacts and also provide an extended field-of-view. Moreover, an interior feature refinement step, as an important processing operation is performed after each iteration of PWLS-TV to recover the desired structure information which is lost during the TV minimization. Here, a feature descriptor is specifically designed and employed to distinguish structure from noise and noise-like artifacts. A modified steepest descent algorithm is adopted to minimize the associated objective function. The proposed method is applied to both digital phantom and in vivo Micro-CT datasets, and compared to FBP, ART-TV and PWLS-TV. The reconstruction results demonstrate that the proposed method performs better than other conventional methods in suppressing noise, reducing truncated and streak artifacts, and preserving features. The proposed approach demonstrates its potential usefulness for feature preservation of interior tomography under truncated projection measurements.

  17. Buckling of Thermoviscoelastic Structures Under Temporal and Spatial Temperature Variations

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Richard; Knauss, Wolfgang G.

    1992-01-01

    The problem of lateral instability of a viscoelastic in-plane loaded structure is considered in terms of thermorheolgically simple materials. As an example of a generally in-plane loaded structure, we examine the simple column under axial load: Both cyclic loading is considered (with constant or in-phase variable temperature excursions) as well as the case of constant load in the presence of thermal gradients through the thickness of the structure. The latter case involves a continuous movement of the neutral axis from the center to the colder side and then back to the center. In both cases, temperature has a very strong effect on the instability evolution, and under in-phase thermal cycling the critical loads are reduced compared to those at constant temperatures. The primary effect of thermal gradients beyond that of thermally-induced rate accelerations is occasioned by the generation of an "initial imperfection" or "structural bowing." Because the coefficient of thermal expansion tends to be large for many polymeric materials, it it may be necessary to take special care in lay-up design of composite structures intended for use under compressive loads in high-temperature applications. Finally, the implications for the temperature sensitivities of composites to micro-instability (fiber crimping) are also apparent from the results delineated here.

  18. Near-infrared Fourier-transform and millimeterwave spectra of the BiS radical

    NASA Astrophysics Data System (ADS)

    Izumi, K.; Cohen, E. A.; Setzer, K. D.; Fink, E. H.; Kawaguchi, K.

    2008-12-01

    This paper reports the 6400-7400 cm -1 Fourier-transform (FT) near-infrared (NIR) emission spectrum of the BiS X22Π 3/2 → X12Π 1/2 fine structure bands as well as the millimeterwave rotational spectrum of the X12Π 1/2 state. For the FTNIR observations, BiS was produced by reaction of bismuth with sulfur vapor and excited by energy transfer from metastable oxygen, O 2( a1Δ g), in a fast-flow system. As was the case for BiO [O. Shestakov, R. Breidohr, H. Demes, K.D. Setzer, E.H. Fink, J. Mol. Spectrosc. 190 (1998) 28-77], the 0.5 cm -1resolution spectrum revealed a number of strong bands in the Δv = 0 and ±1 sequences which showed perturbed band spacings, band shapes, and intensities due to avoided crossing of the X22Π 3/2 and A14Π 3/2 potential curves for v' ⩾ 4 of X22Π 3/2. The millimeterwave rotational spectrum of BiS in its X12Π 1/2 state was observed when BiS was produced in a high-temperature oven by a discharge in a mixture of Bi vapor and CS 2. The signal to noise ratio was markedly improved by using a White-type multipath cell. Ninety seven features from J' = 23.5 to J' = 41.5 were measured between 150 and 300 GHz. Analysis of the 0.5 cm -1 resolution FT spectrum yielded the fine structure splitting and vibrational constants of the states. A simultaneous analysis of millimeterwave and a 0.005 cm -1 FT spectrum of the 0-0 band of the NIR system was carried out to give precise rotational, fine, and hyperfine constants for the X12Π 1/2 and X22Π 3/2 states. The results are consistent with those reported earlier for BiO and indicate only a slight decrease in the unpaired electron density in the 6p(π ∗) orbital on the Bi atom.

  19. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography

    PubMed Central

    Burgess, Ian B.; Abedzadeh, Navid; Kay, Theresa M.; Shneidman, Anna V.; Cranshaw, Derek J.; Lončar, Marko; Aizenberg, Joanna

    2016-01-01

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids. PMID:26790372

  20. Chemical Speciation and Bond Lengths of Organic Solutes by Core-Level Spectroscopy: pH and Solvent Influence on p-Aminobenzoic Acid.

    PubMed

    Stevens, Joanna S; Gainar, Adrian; Suljoti, Edlira; Xiao, Jie; Golnak, Ronny; Aziz, Emad F; Schroeder, Sven L M

    2015-05-04

    Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO-LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs and σ* shape resonances in the NEXAFS spectra. This provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute-solvent interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Chemical Speciation and Bond Lengths of Organic Solutes by Core-Level Spectroscopy: pH and Solvent Influence on p -Aminobenzoic Acid

    DOE PAGES

    Stevens, Joanna S.; Gainar, Adrian; Suljoti, Edlira; ...

    2015-03-18

    Through X-ray absorption and emission spectroscopies, the chemical, electronic and structural properties of organic species in solution can be observed. Near-edge X-ray absorption fine structure (NEXAFS) and resonant inelastic X-ray scattering (RIXS) measurements at the nitrogen K-edge of para-aminobenzoic acid reveal both pH- and solvent-dependent variations in the ionisation potential (IP), 1s→π* resonances and HOMO–LUMO gap. These changes unequivocally identify the chemical species (neutral, cationic or anionic) present in solution. It is shown how this incisive chemical state sensitivity is further enhanced by the possibility of quantitative bond length determination, based on the analysis of chemical shifts in IPs andmore » σ* shape resonances in the NEXAFS spectra. Finally, this provides experimental access to detecting even minor variations in the molecular structure of solutes in solution, thereby providing an avenue to examining computational predictions of solute properties and solute–solvent interactions.« less

  2. Thermo-Active Behavior of Ethylene-Vinyl Acetate | Multiwall Carbon Nanotube Composites Examined by in Situ near-Edge X-ray Absorption Fine-Structure Spectroscopy

    PubMed Central

    2015-01-01

    NEXAFS spectroscopy was used to investigate the temperature dependence of thermally active ethylene-vinyl acetate | multiwall carbon nanotube (EVA|MWCNT) films. The data shows systematic variations of intensities with increasing temperature. Molecular orbital assignment of interplaying intensities identified the 1s → π*C=C and 1s → π*C=O transitions as the main actors during temperature variation. Furthermore, enhanced near-edge interplay was observed in prestrained composites. Because macroscopic observations confirmed enhanced thermal-mechanical actuation in prestrained composites, our findings suggest that the interplay of C=C and C=O π orbitals may be instrumental to actuation. PMID:24803975

  3. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    PubMed

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  4. Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises

    PubMed Central

    Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately. PMID:22132143

  5. Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.

    PubMed

    Latch, Emily K; Boarman, William I; Walde, Andrew; Fleischer, Robert C

    2011-01-01

    Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately.

  6. Studying the Fine Structure and Temporal Variations of the Zodiacal Cloud and Asteroidal Dust Bands Using the 3-Year Near-IR COBE-DIRBE Data

    NASA Technical Reports Server (NTRS)

    Jayaraman, Sumita

    1999-01-01

    The report presents the results of the data analyses of the DIRBE-COBE data set to study the structure of the zodiacal cloud in the near-infrared wavebands at 1.2, 2.2, and 3.4 microns. The cloud has been divided into two components which have been analyzed and studied separately. The annual variation of the flux in the smooth or low frequency component has been measured in all three bands and the presence of any asymmetries due to the Earth's resonant ring have been studied. The high frequency component which primarily consisted of the asteroidal dust bands. Extensive and careful co-addition was done to extract the central bands in all three wavebands. The ten-degree bands are present in the 1.2 and 2.2 microns but not in the 3.4 micron waveband.

  7. Engineering of routes to heparin and related polysaccharides.

    PubMed

    Bhaskar, Ujjwal; Sterner, Eric; Hickey, Anne Marie; Onishi, Akihiro; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J

    2012-01-01

    Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines, including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry.

  8. Ab initio structural and spectroscopic study of HPS{sup x} and HSP{sup x} (x = 0,+1,−1) in the gas phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaghlane, Saida Ben; Cotton, C. Eric; Francisco, Joseph S., E-mail: francisc@purdue.edu, E-mail: hochlaf@univ-mlv.fr

    2013-11-07

    Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality.more » By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.« less

  9. Fine root respiration in the mangrove Rhizophora mangle over variation in forest stature and nutrient availability.

    PubMed

    Lovelock, Catherine E; Ruess, Roger W; Feller, Ilka C

    2006-12-01

    Root respiration uses a significant proportion of photosynthetically fixed carbon (C) and is a globally important source of C liberated from soils. Mangroves, which are an important and productive forest resource in many tropical and subtropical countries, sustain a high ratio of root to shoot biomass which may indicate that root respiration is a particularly important component in mangrove forest carbon budgets. Mangroves are often exposed to nutrient pollution from coastal waters. Here we assessed the magnitude of fine root respiration in mangrove forests in Belize and investigated how root respiration is influenced by nutrient additions. Respiration rates of excised fine roots of the mangrove, Rhizophora mangle L., were low (4.01 +/- 0.16 nmol CO(2) g(-1) s(-1)) compared to those measured in temperate tree species at similar temperatures. In an experiment where trees where fertilized with nitrogen (N) or phosphorus (P) in low productivity dwarf forests (1-2 m height) and more productive, taller (4- 7 m height) seaward fringing forests, respiration of fine roots did not vary consistently with fertilization treatments or with forest stature. Fine roots of taller fringe trees had higher concentrations of both N and P compared to dwarf trees. Fertilization with P enhanced fine root P concentrations in both dwarf and fringe trees, but reduced root N concentrations compared to controls. Fertilization with N had no effect on root N or P concentrations. Unlike photosynthetic C gain and growth, which is strongly limited by P availability in dwarf forests at this site, fine root respiration (expressed on a mass basis) was variable, but showed no significant enhancements with nutrient additions. Variation in fine root production and standing biomass are, therefore, likely to be more important factors determining C efflux from mangrove sediments than variations in fine root respiration per unit mass.

  10. Methylmercury production and accumulation in urban stormwater ponds and habitat wetlands.

    PubMed

    Strickman, R J; Mitchell, C P J

    2017-02-01

    Stormwater management ponds and created habitat wetlands effectively manage erosion, flooding, and pollutant loadings while providing biodiversity and aesthetic benefits, but these structures are also potential sources of methylmercury (MeHg), a bioaccumulative neurotoxin. While MeHg accumulation has been confirmed in habitat wetlands, the extent of MeHg production and accumulation in stormwater ponds is unknown. Additionally, the fine-scale spatial variation in MeHg in these wetlands has never been explored despite the possibility that cycles of wetting and drying, and the presence of aquatic plants may stimulate methylation at their margins. To address these knowledge gaps, we compared MeHg and inorganic mercury concentrations, the percent of total mercury present as MeHg (%MeHg), and potential mercury methylation rate constants (K meth ) in the sediments of terrestrial-aquatic transects through several stormwater and habitat wetlands. We present novel evidence confirming the in situ production of MeHg in both stormwater ponds and habitat wetlands, but observe no systematic differences across the terrestrial-aquatic gradient, suggesting that routine variations in water level do not alter MeHg production and accumulation. Stormwater ponds effectively trap mercury while converting relatively little to MeHg, as evidenced by lower MeHg concentrations, %-MeHg, and K meth values than habitat wetlands, but often greater inorganic Hg concentrations. The relationship of aquatic vegetation to MeHg accumulation is weak and ambiguous, suggesting plants are not strong drivers of MeHg biogeochemistry in these systems. Although the MeHg hazard associated with individual artificial wetlands is low, they may be important sources of MeHg at the landscape level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Reaction and Aggregation Dynamics of Cell Surface Receptors

    NASA Astrophysics Data System (ADS)

    Wang, Michelle Dong

    This dissertation is composed of both theoretical and experimental studies of cell surface receptor reaction and aggregation. Project I studies the reaction rate enhancement due to surface diffusion of a bulk dissolved ligand with its membrane embedded target, using numerical calculations. The results show that the reaction rate enhancement is determined by ligand surface adsorption and desorption kinetic rates, surface and bulk diffusion coefficients, and geometry. In particular, we demonstrate that the ligand surface adsorption and desorption kinetic rates, rather than their ratio (the equilibrium constant), are important in rate enhancement. The second and third projects are studies of acetylcholine receptor clusters on cultured rat myotubes using fluorescence techniques after labeling the receptors with tetramethylrhodamine -alpha-bungarotoxin. The second project studies when and where the clusters form by making time-lapse movies. The movies are made from overlay of the pseudocolored total internal reflection fluorescence (TIRF) images of the cluster, and the schlieren images of the cell cultures. These movies are the first movies made using TIRF, and they clearly show the cluster formation from the myoblast fusion, the first appearance of clusters, and the eventual disappearance of clusters. The third project studies the fine structural features of individual clusters observed under TIRF. The features were characterized with six parameters by developing a novel fluorescence technique: spatial fluorescence autocorrelation. These parameters were then used to study the feature variations with age, and with treatments of drugs (oligomycin and carbachol). The results show little variation with age. However, drug treatment induced significant changes in some parameters. These changes were different for oligomycin and carbachol, which indicates that the two drugs may eliminate clusters through different mechanisms.

  12. Frog tongue surface microstructures: functional and evolutionary patterns

    PubMed Central

    Gorb, Stanislav N

    2016-01-01

    Summary Frogs (Lissamphibia: Anura) use adhesive tongues to capture fast moving, elusive prey. For this, the tongues are moved quickly and adhere instantaneously to various prey surfaces. Recently, the functional morphology of frog tongues was discussed in context of their adhesive performance. It was suggested that the interaction between the tongue surface and the mucus coating is important for generating strong pull-off forces. However, despite the general notions about its importance for a successful contact with the prey, little is known about the surface structure of frog tongues. Previous studies focused almost exclusively on species within the Ranidae and Bufonidae, neglecting the wide diversity of frogs. Here we examined the tongue surface in nine different frog species, comprising eight different taxa, i.e., the Alytidae, Bombinatoridae, Megophryidae, Hylidae, Ceratophryidae, Ranidae, Bufonidae, and Dendrobatidae. In all species examined herein, we found fungiform and filiform papillae on the tongue surface. Further, we observed a high degree of variation among tongues in different frogs. These differences can be seen in the size and shape of the papillae, in the fine-structures on the papillae, as well as in the three-dimensional organization of subsurface tissues. Notably, the fine-structures on the filiform papillae in frogs comprise hair-like protrusions (Megophryidae and Ranidae), microridges (Bufonidae and Dendrobatidae), or can be irregularly shaped or absent as observed in the remaining taxa examined herein. Some of this variation might be related to different degrees of adhesive performance and may point to differences in the spectra of prey items between frog taxa. PMID:27547606

  13. Spatial structure of morphological and neutral genetic variation in Brook Trout

    USGS Publications Warehouse

    Kazyak, David C.; Hilderbrand, Robert H.; Keller, Stephen R.; Colaw, Mark C.; Holloway, Amanda E.; Morgan, Raymond P.; King, Timothy L.

    2015-01-01

    Brook Trout Salvelinus fontinalis exhibit exceptional levels of life history variation, remarkable genetic variability, and fine-scale population structure. In many cases, neighboring populations may be highly differentiated from one another to an extent that is comparable with species-level distinctions in other taxa. Although genetic samples have been collected from hundreds of populations and tens of thousands of individuals, little is known about whether differentiation at neutral markers reflects phenotypic differences among Brook Trout populations. We compared differentiation in morphology and neutral molecular markers among populations from four geographically proximate locations (all within 24 km) to examine how genetic diversity covaries with morphology. We found significant differences among and/or within streams for all three morphological axes examined and identified the source stream of many individuals based on morphology (52.3% classification efficiency). Although molecular and morphological differentiation among streams ranged considerably (mean pairwise FST: 0.023–0.264; pairwise PST: 0.000–0.339), the two measures were not significantly correlated. While in some cases morphological characters appear to have diverged to a greater extent than expected by neutral genetic drift, many traits were conserved to a greater extent than were neutral genetic markers. Thus, while Brook Trout exhibit fine-scale spatial patterns in both morphology and neutral genetic diversity, these types of biological variabilities are being structured by different ecological and evolutionary processes. The relative influences of genetic drift versus selection and phenotypic plasticity in shaping morphology appear to vary among populations occupying nearby streams.

  14. Microstructural and petrophysical characterization of a "structurally oversimplified" fault zone in poorly lithified sands: evidence for a coseismic rupture?

    NASA Astrophysics Data System (ADS)

    Balsamo, Fabrizio; Storti, Fabrizio

    2010-05-01

    We studied an extensional fault zone developed in poorly lithified, quartz-rich high porosity sandy sediments of the seismically active Crotone basin (southern Italy). The fault zone cuts across interlayered fine- to coarse-grained sands and consists of a cm-thick, discrete fault core embedded in virtually undeformed wall sediments. Consequently, it can be described as "structurally oversimplified" due to the lack of footwall and hanging wall damage zones. We acquired microstructural, grain size, grain shape, porosity, mineralogical and permeability data to investigate the influence of initial sedimentological characteristics of sands on the final faulted granular products and related hydrologic properties. Faulting evolves by a general grain size and porosity reduction with a combination of intragranular fracturing, spalling, and flaking of grain edges, irrespective of grain mineralogy. The dominance of cataclasis, also confirmed by fractal dimensions >2.6, is generally not expected at a deformation depth <1 km. Coarse-grained sand shows a much higher comminution intensity, grain shape variations and permeability drop than fine-grained sands. This is because coarser aggregates have (i) fewer grain-to-grain contacts for a given area, which results in higher stress concentration at contact points, and (ii) a higher probability of pre-existing intragranular microstructural defects that result in a lower grain strength. The peculiar structural architecture, the dominance of cataclasis over non-destructive particulate flow, and the compositional variations of clay minerals in the fault core, strongly suggest that the studied fault zone developed by a coseismic rupture.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orfield, Noah J.; McBride, James R.; Wang, Feng

    Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. In this paper, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking “giant” CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging,more » rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive “dark” fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be “dark”. Finally and therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs.« less

  16. Cr/B 4C multilayer mirrors: Study of interfaces and X-ray reflectance

    DOE PAGES

    Burcklen, C.; Soufli, R.; Gullikson, E.; ...

    2016-03-24

    Here, we present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B 4C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B 4C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L 2,3 absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulatedmore » refractive index (optical constants) values for Cr.« less

  17. Weak-guidance-theory review of dispersion and birefringence management by laser inscription

    NASA Astrophysics Data System (ADS)

    Zheltikov, A. M.; Reid, D. T.

    2008-01-01

    A brief review of laser inscription of micro- and nanophotonic structures in transparent materials is provided in terms of a compact and convenient formalism based on the theory of weak optical waveguides. We derive physically instructive approximate expressions allowing propagation constants of laser-inscribed micro- and nanowaveguides to be calculated as functions of the transverse waveguide size, refractive index step, and dielectric properties of the host material. Based on this analysis, we demonstrate that dispersion engineering capabilities of laser micromachining techniques are limited by the smallness of the refractive index step typical of laser-inscribed structures. However, a laser inscription of waveguides in pre-formed micro- and nanostructures suggests a variety of interesting options for a fine dispersion and birefringence tuning of small-size waveguides and photonic wires.

  18. Fine motor skills predict performance in the Jebsen Taylor Hand Function Test after stroke.

    PubMed

    Allgöwer, Kathrin; Hermsdörfer, Joachim

    2017-10-01

    To determine factors characterizing the differences in fine motor performance between stroke patients and controls. To confirm the relevance of the factors by analyzing their predictive power with regard to the Jebsen Taylor Hand Function Test (JTHFT), a common clinical test of fine motor control. Twenty-two people with slight paresis in an early chronic phase following stroke and twenty-two healthy controls were examined. Performance on the JTHFT, Nine-Hole Peg Test and 2-point discrimination was evaluated. To analyze object manipulation skills, grip forces and temporal measures were examined during (1) lifting actions with variations of weight and surface (2) cyclic movements (3) predictive/reactive catching tasks. Three other aspects of force control included (4) visuomotor tracking (5) fast force changes and (6) grip strength. Based on 9 parameters which significantly distinguished fine motor performance in the two groups, we identified three principal components (factors): grip force scaling, motor coordination and speed of movement. The three factors are shown to predict JTHFT scores via linear regression (R 2 =0.687, p<0.001). We revealed a factor structure behind fine motor impairments following stroke and showed that it explains JTHFT results to a large extend. This result can serve as a basis for improving diagnostics and enabling more targeted therapy. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. Search for a Variation of Fundamental Constants

    NASA Astrophysics Data System (ADS)

    Ubachs, W.

    2013-06-01

    Since the days of Dirac scientists have speculated about the possibility that the laws of nature, and the fundamental constants appearing in those laws, are not rock-solid and eternal but may be subject to change in time or space. Such a scenario of evolving constants might provide an answer to the deepest puzzle of contemporary science, namely why the conditions in our local Universe allow for extreme complexity: the fine-tuning problem. In the past decade it has been established that spectral lines of atoms and molecules, which can currently be measured at ever-higher accuracies, form an ideal test ground for probing drifting constants. This has brought this subject from the realm of metaphysics to that of experimental science. In particular the spectra of molecules are sensitive for probing a variation of the proton-electron mass ratio μ, either on a cosmological time scale, or on a laboratory time scale. A comparison can be made between spectra of molecular hydrogen observed in the laboratory and at a high redshift (z=2-3), using the Very Large Telescope (Paranal, Chile) and the Keck telescope (Hawaii). This puts a constraint on a varying mass ratio Δμ/μ at the 10^{-5} level. The optical work can also be extended to include CO molecules. Further a novel direction will be discussed: it was discovered that molecules exhibiting hindered internal rotation have spectral lines in the radio-spectrum that are extremely sensitive to a varying proton-electron mass ratio. Such lines in the spectrum of methanol were recently observed with the radio-telescope in Effelsberg (Germany). F. van Weerdenburg, M.T. Murphy, A.L. Malec, L. Kaper, W. Ubachs, Phys. Rev. Lett. 106, 180802 (2011). A. Malec, R. Buning, M.T. Murphy, N. Milutinovic, S.L. Ellison, J.X. Prochaska, L. Kaper, J. Tumlinson, R.F. Carswell, W. Ubachs, Mon. Not. Roy. Astron. Soc. 403, 1541 (2010). E.J. Salumbides, M.L. Niu, J. Bagdonaite, N. de Oliveira, D. Joyeux, L. Nahon, W. Ubachs, Phys. Rev. A 86, 022510 (2012). J. Bagdonaite, P. Jansen, C. Henkel, H.L. Bethlem, K. Menten, W. Ubachs, Science 339, 46 (2013).

  20. The complex roles of space and environment in structuring functional, taxonomic and phylogenetic beta diversity of frogs in the Atlantic Forest

    PubMed Central

    Luiz, Amom Mendes; Sawaya, Ricardo J.

    2018-01-01

    Ecological communities are complex entities that can be maintained and structured by niche-based processes such as environmental conditions, and spatial processes such as dispersal. Thus, diversity patterns may be shaped simultaneously at different spatial scales by very distinct processes. Herein we assess whether and how functional, taxonomic, and phylogenetic beta diversities of frog tadpoles are explained by environmental and/or spatial predictors. We implemented a distance–based redundancy analysis to explore variation in components of beta diversity explained by pure environmental and pure spatial predictors, as well as their interactions, at both fine and broad spatial scales. Our results indicated important but complex roles of spatial and environmental predictors in structuring phylogenetic, taxonomic and functional beta diversities. The pure fine-scales spatial fraction was more important in structuring all beta diversity components, especially to functional and taxonomical spatial turnover. Environmental variables such as canopy cover and vegetation structure were important predictors of all components, but especially to functional and taxonomic beta diversity. We emphasize that distinct factors related to environment and space are affecting distinct components of beta diversity in different ways. Although weaker, phylogenetic beta diversity, which is structured more on biogeographical scales, and thus can be represented by spatially structured processes, was more related to broad spatial processes than other components. However, selected fine-scale spatial predictors denoted negative autocorrelation, which may be revealing the existence of differences in unmeasured habitat variables among samples. Although overall important, local environmental-based processes explained better functional and taxonomic beta diversity, as these diversity components carry an important ecological value. We highlight the importance of assessing different components of diversity patterns at different scales by spatially explicit models in order to improve our understanding of community structure and help to unravel the complex nature of biodiversity. PMID:29672575

  1. Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański

    NASA Astrophysics Data System (ADS)

    Sheftel, Mikhail; Yazıcı, Devrim

    2016-09-01

    We present first heavenly equation of Plebański in a two-component evolutionary form and obtain Lagrangian and Hamiltonian representations of this system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We derive two linearly independent recursion operators for symmetries of this system related by a discrete symmetry of both the two-component system and its symmetry condition. Acting by these operators on the first Hamiltonian operator J_0 we obtain second and third Hamiltonian operators. However, we were not able to find Hamiltonian densities corresponding to the latter two operators. Therefore, we construct two recursion operators, which are either even or odd, respectively, under the above-mentioned discrete symmetry. Acting with them on J_0, we generate another two Hamiltonian operators J_+ and J_- and find the corresponding Hamiltonian densities, thus obtaining second and third Hamiltonian representations for the first heavenly equation in a two-component form. Using P. Olver's theory of the functional multi-vectors, we check that the linear combination of J_0, J_+ and J_- with arbitrary constant coefficients satisfies Jacobi identities. Since their skew symmetry is obvious, these three operators are compatible Hamiltonian operators and hence we obtain a tri-Hamiltonian representation of the first heavenly equation. Our well-founded conjecture applied here is that P. Olver's method works fine for nonlocal operators and our proof of the Jacobi identities and bi-Hamiltonian structures crucially depends on the validity of this conjecture.

  2. Tuning of Exchange Coupling and Switchable Magnetization Dynamics by Displacing the Bridging Ligands Observed in Two Dimeric Manganese(III) Compounds

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-Yu; Cen, Pei-Pei; Wu, Li-Zhou; Li, Fei-Fei; Song, Wei-Ming; Xie, Gang; Chen, San-Ping

    2017-03-01

    Two Mn(III)-based dimers, [Mn2(bpad)2(CH3O)4]n (1) and [Mn2(bpad)2(pa)2]n·2H2O (2) (Hbpad = N3-benzoylpyridine-2-carboxamidrazone, H2pa = phthalic acid), have been assembled from a tridentate Schiff-base chelator and various anionic coligands. Noteworthily, compound 1 could be identified as a reaction precursor to transform to 2 in the presence of phthalic acid, resulting in a rarely structural conversion process in which the bridges between intradimer Mn(III) ions alter from methanol oxygen atom with μ2-O mode in 1 (Mn Mn distance of 3.046 Å) to syn-anti carboxylate in 2 (Mn Mn distance of 4.043 Å), while the Mn(III) centers retain hexa-coordinated geometries with independently distorted octahedrons in two compounds. The dc magnetic determinations reveal that ferromagnetic coupling between two metal centers with J = 1.31 cm-1 exists in 1, whereas 2 displays weak antiferromagnetic interactions with the coupling constant J of -0.56 cm-1. Frequency-dependent ac susceptibilities in the absence of dc field for 1 suggest slow relaxation of the magnetization with an energy barrier of 13.9 K, signifying that 1 features single-molecule magnet (SMM) behavior. This work presents a rational strategy to fine-tune the magnetic interactions and further magnetization dynamics of the Mn(III)-containing dinuclear units through small structural variations driven by the ingenious chemistry.

  3. Analysis and interpretation of Viking inorganic chemistry data (Mars data analysis program)

    NASA Technical Reports Server (NTRS)

    Clark, B. C.

    1982-01-01

    Soil samples gathered by the Viking Lander from the surface of Mars were analyzed. The Martian fines were lower in aluminum, iron, sulfur, and chlorine than typical terrestrial continental soils or lunar mare fines. Sample variabilities were as great within a few meters as between lander locations (4500 km apart) implying the existence of a universal Martian regolith component of constant average composition.

  4. Variability of Marine Aerosol Fine-Mode Fraction and Estimates of Anthropogenic Aerosol Component Over Cloud-Free Oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; Remer, Lorraine A.; Kleidman, Richard G.; Bellouin, Nicolas; Bian, Huisheng; Diehl, Thomas

    2009-01-01

    In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction (f(sub m)) and its impacts on deriving the anthropogenic component of aerosol optical depth (tau(sub a)) and direct radiative forcing from multispectral satellite measurements. A proxy of f(sub m), empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying f(sub m) is then implemented into a method of estimating tau(sub a) and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated Ta by about 20% over global ocean, with the overestimation up to 45% in some regions and seasons. The 7-year (2001-2007) global ocean average tau(sub a) is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.

  5. Constitutive Model Constants for Al7075-T651 and Al7075-T6

    NASA Astrophysics Data System (ADS)

    Brar, N. S.; Joshi, V. S.; Harris, B. W.

    2009-12-01

    Aluminum 7075-T651 and 7075-T6 are characterized at quasi-static and high strain rates to determine Johnson-Cook (J-C) strength and fracture model constants. Constitutive model constants are required as input to computer codes to simulate projectile (fragment) impact or similar impact events on structural components made of these materials. Although the two tempers show similar elongation at breakage, the ultimate tensile strength of T651 temper is generally lower than the T6 temper. Johnson-Cook strength model constants (A, B, n, C, and m) for the two alloys are determined from high strain rate tension stress-strain data at room and high temperature to 250°C. The Johnson-Cook fracture model constants are determined from quasi-static and medium strain rate as well as high temperature tests on notched and smooth tension specimens. Although the J-C strength model constants are similar, the fracture model constants show wide variations. Details of the experimental method used and the results for the two alloys are presented.

  6. Optical analysis of the fine crystalline structure of artificial opal films.

    PubMed

    Lozano, G; Dorado, L A; Schinca, D; Depine, R A; Míguez, H

    2009-11-17

    Herein, we present a detailed analysis of the structure of artificial opal films. We demonstrate that, rather than the generally assumed face centered cubic lattice of spheres, opal films are better approximated by rhombohedral assemblies of distorted colloids. Detailed analysis of the optical response in a very wide spectral range (0.4 < or = a/lambda < or = 2, where a is the conventional lattice constant), as well as at perpendicular and off-normal directions, unambiguously shows that the interparticle distance coincides very approximately with the expected diameter only along directions contained in the same close-packed plane but differs significantly in directions oblique to the [111] one. A full description of the real and reciprocal lattices of actual opal films is provided, as well as of the photonic band structure of the proposed arrangement. The implications of this distortion in the optical response of the lattice are discussed.

  7. Common substructure in otoacoustic emission spectra of land vertebrates

    NASA Astrophysics Data System (ADS)

    Manley, Geoffrey A.; Köppl, Christine; Bergevin, Christopher

    2015-12-01

    In humans, a similar spectral periodicity is found in all otoacoustic emission types and in threshold fine structure. This may reflect travelling wave phase and reflectance from "structural roughness" in the organ of Corti, or entrainment and suppressive interactions between emissions. To further understand these phenomena, we have examined spontaneous otoacoustic emission (SOAE) spectra in 9 lizard species and the barn owl and find a comparable periodicity. Importantly, the frequency spacing between SOAE peaks was independent of the physical spacing and of the frequency space constants in hearing organs. In 9 lizard species, median spectral gaps lay between 219 and 461 Hz, with no correlation to papillar length (0.3 to 2.1 mm). Similarly in much longer organs: In humans (35 mm), SOAE spectral gaps vary up to 220 Hz at 4 kHz; in the barn owl (11 mm), the median SOAE peak spacing was 395Hz. In the barn owl, a very large space constant between 5 and 10 kHz (5 mm/octave) contrasts with stable SOAE spacing between 1 and 11 kHz. Similar SOAE spectral gaps across all species suggests they represent a basic frequency grating revealing local phase-dependent interactions between active hair cells, a feature not determined by macro-structural anatomy. Emission spectral spacing is independent of cochlear length, of the frequency space constant, of the existence of travelling waves or of a tectorial membrane. Our data suggest that there are greater similarities between frequency selectivity reflected at the level of the hair cells' spontaneous mechanical output (OAEs) than there are at the level of the auditory nerve, where macro-structural anatomy links hair-cell activity differentially to the neural output. Apparently, all hair-cell arrays show a similar frequency substructure not directly replicated in neural tuning.

  8. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air,more » the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.« less

  9. The influence of fine-scale habitat features on regional variation in population performance of alpine White-tailed Ptarmigan

    USGS Publications Warehouse

    Fedy, B.; Martin, K.

    2011-01-01

    It is often assumed (explicitly or implicitly) that animals select habitat features to maximize fitness. However, there is often a mismatch between preferred habitats and indices of individual and population measures of performance. We examined the influence of fine-scale habitat selection on the overall population performance of the White-tailed Ptarmigan (Lagopus leucura), an alpine specialist, in two subdivided populations whose habitat patches are configured differently. The central region of Vancouver Island, Canada, has more continuous and larger habitat patches than the southern region. In 2003 and 2004, using paired logistic regression between used (n = 176) and available (n = 324) sites, we identified food availability, distance to standing water, and predator cover as preferred habitat components . We then quantified variation in population performance in the two regions in terms of sex ratio, age structure (n = 182 adults and yearlings), and reproductive success (n = 98 females) on the basis of 8 years of data (1995-1999, 2002-2004). Region strongly influenced females' breeding success, which, unsuccessful hens included, was consistently higher in the central region (n = 77 females) of the island than in the south (n = 21 females, P = 0.01). The central region also had a much higher proportion of successful hens (87%) than did the south (55%, P < 0.001). In light of our findings, we suggest that population performance is influenced by a combination of fine-scale habitat features and coarse-scale habitat configuration. ?? The Cooper Ornithological Society 2011.

  10. Varying electric charge in multiscale spacetimes

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Magueijo, João; Fernández, David Rodríguez

    2014-01-01

    We derive the covariant equations of motion for Maxwell field theory and electrodynamics in multiscale spacetimes with weighted Laplacian. An effective spacetime-dependent electric charge of geometric origin naturally emerges from the theory, thus giving rise to a varying fine-structure constant. The theory is compared with other varying-coupling models, such as those with a varying electric charge or varying speed of light. The theory is also confronted with cosmological observations, which can place constraints on the characteristic scales in the multifractional measure. We note that the model considered here is fundamentally different from those previously proposed in the literature, either of the varying-e or varying-c persuasion.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandora, McCullen, E-mail: sandora@cp3.dias.sdu.dk

    We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, α. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product of stellar fusion is iron and not one of its neighboring elements, restricts α{sup -1} to be 145± 50. The second, that radiogenic heat in the Earth's interior remains adequately productive for billions of years, restricts it to be 145±9. A connection with the grand unified theory window is discussed, effectively providing a route to probe ultra-high energy physicsmore » with upcoming advances in planetary science.« less

  12. Optically probing the fine structure of a single Mn atom in an InAs quantum dot.

    PubMed

    Kudelski, A; Lemaître, A; Miard, A; Voisin, P; Graham, T C M; Warburton, R J; Krebs, O

    2007-12-14

    We report on the optical spectroscopy of a single InAs/GaAs quantum dot doped with a single Mn atom in a longitudinal magnetic field of a few Tesla. Our findings show that the Mn impurity is a neutral acceptor state A0 whose effective spin J=1 is significantly perturbed by the quantum dot potential and its associated strain field. The spin interaction with photocarriers injected in the quantum dot is shown to be ferromagnetic for holes, with an effective coupling constant of a few hundreds of mueV, but vanishingly small for electrons.

  13. The separation between the 5'-3' ends in long RNA molecules is short and nearly constant.

    PubMed

    Leija-Martínez, Nehemías; Casas-Flores, Sergio; Cadena-Nava, Rubén D; Roca, Joan A; Mendez-Cabañas, José A; Gomez, Eduardo; Ruiz-Garcia, Jaime

    2014-12-16

    RNA molecules play different roles in coding, decoding and gene expression regulation. Such roles are often associated to the RNA secondary or tertiary structures. The folding dynamics lead to multiple secondary structures of long RNA molecules, since an RNA molecule might fold into multiple distinct native states. Despite an ensemble of different structures, it has been theoretically proposed that the separation between the 5' and 3' ends of long single-stranded RNA molecules (ssRNA) remains constant, independent of their base content and length. Here, we present the first experimental measurements of the end-to-end separation in long ssRNA molecules. To determine this separation, we use single molecule Fluorescence Resonance Energy Transfer of fluorescently end-labeled ssRNA molecules ranging from 500 to 5500 nucleotides in length, obtained from two viruses and a fungus. We found that the end-to-end separation is indeed short, within 5-9 nm. It is remarkable that the separation of the ends of all RNA molecules studied remains small and similar, despite the origin, length and differences in their secondary structure. This implies that the ssRNA molecules are 'effectively circularized' something that might be a general feature of RNAs, and could result in fine-tuning for translation and gene expression regulation. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Seasonal and spatial trends in the sources of fine particle organic carbon in Israel, Jordan, and Palestine

    NASA Astrophysics Data System (ADS)

    von Schneidemesser, Erika; Zhou, Jiabin; Stone, Elizabeth A.; Schauer, James J.; Qasrawi, Radwan; Abdeen, Ziad; Shpund, Jacob; Vanger, Arye; Sharf, Geula; Moise, Tamar; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Al-Mahasneh, Qusai M.; Sarnat, Jeremy A.

    2010-09-01

    A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM 2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM 2.5 mass. The lowest concentrations of PM 2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM 2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM 2.5 mass concentrations ranging from 21 to 25 ug m -3. These sites were also observed to have the highest OC to EC ratios (4.1-5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%-55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m -3 to 4.9 μgC m -3; 30%-74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.

  15. Global properties of the plasma in the outer heliosphere. I - Large-scale structure and evolution

    NASA Technical Reports Server (NTRS)

    Barnes, A.; Mihalov, J. D.; Gazis, P. R.; Lazarus, A. J.; Belcher, J. W.; Gordon, G. S., Jr.; Mcnutt, R. L., Jr.

    1992-01-01

    Pioneers 10 and 11, and Voyager 2, have active plasma analyzers as they proceed through heliocentric distances of the order of 30-50 AU, facilitating comparative studies of the global character of the outer solar wind and its variation over the solar cycle. Careful study of these data show that wind ion temperature remains constant beyond 15 AU, and that there may be large-scale variations of temperature with celestial longitude and heliographic latitude. There has thus far been no indication of a heliospheric terminal shock.

  16. Molecules in high spin states: The millimeter and submillimeter spectrum of the MnS radical (X 6Sigma+)

    NASA Astrophysics Data System (ADS)

    Thompsen, J. M.; Brewster, M. A.; Ziurys, L. M.

    2002-06-01

    The pure rotational spectrum of MnS (v=0) in its X 6Sigma+ ground state has been recorded using millimeter and submillimeter direct absorption techniques in the range 160-502 GHz. MnS was synthesized in the gas phase by the reaction of manganese vapor and CS2 in a high-temperature Broida-type oven. Fourteen rotational transitions for this radical were measured, each consisting of six fine-structure components. In the lower rotational lines, hyperfine structure, arising from the 55Mn nuclear spin of 5/2, was also resolved in each spin component. These data were analyzed using a case (b) Hamiltonian, and rotational, fine structure, and hyperfine parameters determined for MnS. In the analysis, the third-order correction to the spin-rotation interaction, gammaS, and the fourth-order spin-spin coupling term, theta, were found necessary for an acceptable fit. The hyperfine constants determined suggest that MnS is more covalent than MnO, but more ionic than MnH. There additionally appears to be considerable sdsigma hybridization in molecular orbital formation for this molecule. Bond lengths of the 3d transition-metal sulfides were compared as well, and those of MnS, CuS, and TiS do not follow the trend of their oxide analogs. This result indicates that there are significant bonding differences between transition-metal sulfides and transition-metal oxides.

  17. Spatial Evolution of the Thickness Variations over a CFRP Laminated Structure

    NASA Astrophysics Data System (ADS)

    Davila, Yves; Crouzeix, Laurent; Douchin, Bernard; Collombet, Francis; Grunevald, Yves-Henri

    2017-10-01

    Ply thickness is one of the main drivers of the structural performance of a composite part. For stress analysis calculations (e.g., finite element analysis), composite plies are commonly considered to have a constant thickness compared to the reality (coefficients of variation up to 9% of the mean ply thickness). Unless this variability is taken into account reliable property predictions cannot be made. A modelling approach of such variations is proposed using parameters obtained from a 16-ply quasi-isotropic CFRP plate cured in an autoclave. A discrete Fourier transform algorithm is used to analyse the frequency response of the observed ply and plate thickness profiles. The model inputs, obtained by a mathematical representation of the ply thickness profiles, permit the generation of a representative stratification considering the spatial continuity of the thickness variations that are in good agreement with the real ply profiles spread over the composite part. A residual deformation FE model of the composite plate is used to illustrate the feasibility of the approach.

  18. Near-Edge X-ray Absorption Fine Structure Studies of Electrospun Poly(dimethylsiloxane)/Poly (methyl methacrylate)/Multiwall Carbon Nanotube Composites

    PubMed Central

    Winter, A. Douglas; Larios, Eduardo; Alamgir, Faisal M.; Jaye, Cherno; Fischer, Daniel; Campo, Eva M.

    2014-01-01

    This work describes the near conduction band edge structure of electrospun mats of MWCNT-PDMS-PMMA by near edge X-Ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra; which may evidence phase separation within the bulk of the micron-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C=O and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent, and are promoted upon room temperature mixing and shear flow during electrospinning. CH-π bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown CNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation. PMID:24308286

  19. Fine resolution mapping of population age-structures for health and development applications.

    PubMed

    Alegana, V A; Atkinson, P M; Pezzulo, C; Sorichetta, A; Weiss, D; Bird, T; Erbach-Schoenberg, E; Tatem, A J

    2015-04-06

    The age-group composition of populations varies considerably across the world, and obtaining accurate, spatially detailed estimates of numbers of children under 5 years is important in designing vaccination strategies, educational planning or maternal healthcare delivery. Traditionally, such estimates are derived from population censuses, but these can often be unreliable, outdated and of coarse resolution for resource-poor settings. Focusing on Nigeria, we use nationally representative household surveys and their cluster locations to predict the proportion of the under-five population in 1 × 1 km using a Bayesian hierarchical spatio-temporal model. Results showed that land cover, travel time to major settlements, night-time lights and vegetation index were good predictors and that accounting for fine-scale variation, rather than assuming a uniform proportion of under 5 year olds can result in significant differences in health metrics. The largest gaps in estimated bednet and vaccination coverage were in Kano, Katsina and Jigawa. Geolocated household surveys are a valuable resource for providing detailed, contemporary and regularly updated population age-structure data in the absence of recent census data. By combining these with covariate layers, age-structure maps of unprecedented detail can be produced to guide the targeting of interventions in resource-poor settings.

  20. A study of the structure of the ν1(HF) absorption band of the СH3СN…HF complex

    NASA Astrophysics Data System (ADS)

    Gromova, E. I.; Glazachev, E. V.; Bulychev, V. P.; Koshevarnikov, A. M.; Tokhadze, K. G.

    2015-09-01

    The ν1(HF) absorption band shape of the CH3CN…HF complex is studied in the gas phase at a temperature of 293 K. The spectra of gas mixtures CH3CN/HF are recorded in the region of 4000-3400 cm-1 at a resolution from 0.1 to 0.005 cm-1 with a Bruker IFS-120 HR vacuum Fourier spectrometer in a cell 10 cm in length with wedge-shaped sapphire windows. The procedure used to separate the residual water absorption allows more than ten fine-structure bands to be recorded on the low-frequency wing of the ν1(HF) band. It is shown that the fine structure of the band is formed primarily due to hot transitions from excited states of the low-frequency ν7 librational vibration. Geometrical parameters of the equilibrium nuclear configuration, the binding energy, and the dipole moment of the complex are determined from a sufficiently accurate quantum-chemical calculation. The frequencies and intensities for a number of spectral transitions of this complex are obtained in the harmonic approximation and from variational solutions of anharmonic vibrational problems.

  1. Insights on dramatic radial fluctuations in track formation by energetic ions

    DOE PAGES

    Sachan, Ritesh; Lang, Maik; Trautmann, Christina; ...

    2016-06-02

    We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd 2TiZrO 7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd 2Ti xZr (1-x)O 7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study showsmore » the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less

  2. Insights on dramatic radial fluctuations in track formation by energetic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachan, Ritesh; Lang, Maik; Trautmann, Christina

    We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd 2TiZrO 7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd 2Ti xZr (1-x)O 7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study showsmore » the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less

  3. How fields vary.

    PubMed

    Krause, Monika

    2018-03-01

    Field theorists have long insisted that research needs to pay attention to the particular properties of each field studied. But while much field-theoretical research is comparative, either explicitly or implicitly, scholars have only begun to develop the language for describing the dimensions along which fields can be similar to and different from each other. In this context, this paper articulates an agenda for the analysis of variable properties of fields. It discusses variation in the degree but also in the kind of field autonomy. It discusses different dimensions of variation in field structure: fields can be more or less contested, and more or less hierarchical. The structure of symbolic oppositions in a field may take different forms. Lastly, it analyses the dimensions of variation highlighted by research on fields on the sub- and transnational scale. Post-national analysis allows us to ask how fields relate to fields of the same kind on different scales, and how fields relate to fields on the same scale in other national contexts. It allows us to ask about the role resources from other scales play in structuring symbolic oppositions within fields. A more fine-tuned vocabulary for field variation can help us better describe particular fields and it is a precondition for generating hypotheses about the conditions under which we can expect to observe fields with specified characteristics. © London School of Economics and Political Science 2017.

  4. Analysing the magnetopause internal structure: new possibilities offered by MMS

    NASA Astrophysics Data System (ADS)

    Belmont, G.; Rezeau, L.; Manuzzo, R.; Aunai, N.; Dargent, J.

    2017-12-01

    We explore the structure of the magnetopause using a crossing observed by the MMS spacecraft on October 16th, 2015. Several methods (MVA, BV, CVA) are first applied to compute the normal to the magnetopause considered as a whole. The different results obtained are not identical and we show that the whole boundary is not stationary and not planar, so that basic assumptions of these methods are not well satisfied. We then analyse more finely the internal structure for investigating the departures from planarity. Using the basic mathematical definition of what is a one-dimensional physical problem, we introduce a new method, called LNA (Local Normal Analysis) for determining the varying normal, and we compare the results so obtained with those coming from the MDD tool developed by [Shi et al., 2005]. This method gives the dimensionality of the magnetic variations from multi-point measurements and allows estimating the direction of the local normal using the magnetic field. On the other hand, LNA is a single-spacecraft method which gives the local normal from the magnetic field and particle data. This study shows that the magnetopause does include approximate one-dimensional sub-structures but also two and three dimensional intervals. It also shows that the dimensionality of the magnetic variations can differ from the variations of the other fields so that, at some places, the magnetic field can have a 1D structure although all the plasma variations do not verify the properties of a global one-dimensional problem. Finally a generalisation and a systematic application of the MDD method to the physical quantities of interest is shown.

  5. Large local lattice expansion in graphene adlayers grown on copper

    NASA Astrophysics Data System (ADS)

    Chen, Chaoyu; Avila, José; Arezki, Hakim; Nguyen, Van Luan; Shen, Jiahong; Mucha-Kruczyński, Marcin; Yao, Fei; Boutchich, Mohamed; Chen, Yue; Lee, Young Hee; Asensio, Maria C.

    2018-05-01

    Variations of the lattice parameter can significantly change the properties of a material, and, in particular, its electronic behaviour. In the case of graphene, however, variations of the lattice constant with respect to graphite have been limited to less than 2.5% due to its well-established high in-plane stiffness. Here, through systematic electronic and lattice structure studies, we report regions where the lattice constant of graphene monolayers grown on copper by chemical vapour deposition increases up to 7.5% of its relaxed value. Density functional theory calculations confirm that this expanded phase is energetically metastable and driven by the enhanced interaction between the substrate and the graphene adlayer. We also prove that this phase possesses distinctive chemical and electronic properties. The inherent phase complexity of graphene grown on copper foils revealed in this study may inspire the investigation of possible metastable phases in other seemingly simple heterostructure systems.

  6. Denitrification in a large river: consideration of geomorphic controls on microbial activity and community structure.

    PubMed

    Tatariw, Corianne; Chapman, Elise L; Sponseller, Ryan A; Mortazavi, Behzad; Edmonds, Jennifer W

    2013-10-01

    Ecological theory argues that the controls over ecosystem processes are structured hierarchically, with broader-scale drivers acting as constraints over the interactions and dynamics at nested levels of organization. In river ecosystems, these interactions may arise from broadscale variation in channel form that directly shapes benthic habitat structure and indirectly constrains resource supply and biological activity within individual reaches. To evaluate these interactions, we identified sediment characteristics, water chemistry, and denitrifier community structure as factors influencing benthic denitrification rates in a sixth-order river that flows through two physiographic provinces and the transitional zone between them, each with distinct geomorphological properties. We found that denitrification rates tracked spatial changes in sediment characteristics and varied seasonally with expected trends in stream primary production. Highest rates were observed during the spring and summer seasons in the physiographic province dominated by fine-grained sediments, illustrating how large-scale changes in river structure can constrain the location of denitrification hotspots. In addition, nirS and nirK community structure each responded differently to variation in channel form, possibly due to changes in dissolved oxygen and organic matter supply. This shift in denitrifier community structure coincident with higher rates of N removal via denitrification suggests that microbial community structure may influence biogeochemical processes.

  7. Revisiting the decoupling effects in the running of the Cosmological Constant

    NASA Astrophysics Data System (ADS)

    Antipin, Oleg; Melić, Blaženka

    2017-09-01

    We revisit the decoupling effects associated with heavy particles in the renormalization group running of the vacuum energy in a mass-dependent renormalization scheme. We find the running of the vacuum energy stemming from the Higgs condensate in the entire energy range and show that it behaves as expected from the simple dimensional arguments meaning that it exhibits the quadratic sensitivity to the mass of the heavy particles in the infrared regime. The consequence of such a running to the fine-tuning problem with the measured value of the Cosmological Constant is analyzed and the constraint on the mass spectrum of a given model is derived. We show that in the Standard Model (SM) this fine-tuning constraint is not satisfied while in the massless theories this constraint formally coincides with the well known Veltman condition. We also provide a remarkably simple extension of the SM where saturation of this constraint enables us to predict the radiative Higgs mass correctly. Generalization to constant curvature spaces is also given.

  8. Iron monocyanide (FeCN): Spin-orbit and vibronic interactions in low-lying electronic states

    NASA Astrophysics Data System (ADS)

    Jerosimić, Stanka V.; Milovanović, Milan Z.

    2018-04-01

    The spin-orbit eigenvalues of low-energy quartet and sextet spatially degenerate electronic states of FeCN are reported, together with the combined effect of vibronic and spin-orbit interaction in the lowest-lying 14Δ and 16Δ states of FeCN, by using perturbational and variational method. Spin-orbit constants (ASO) have been calculated in the basis of: (a) two components of each degenerate state, (b) four components of 14Δ and 14Π (16Δ and 16Π) states, and (c) ten components of 16Δ, 16Π, 16Σ+, 14Δ, 14Π, and 14Σ+ states. The present calculations predict the values of ASO= -77 cm-1 for 16Δ and ASO= -108 cm-1 for 14Δ state in the lowest-energy spin-orbit manifolds of each state. The major perturbing state for the 14Δ state is the 14Π state (16Π for the sextet 16Δ). As expected, based on extremely small splitting and shallowness of the bending potential energy curves for the lowest-lying 4,6Δ states, the present study indicate that the vibronic coupling does not create significant splitting of the bending levels, but the influence of anharmonicity in the bending mode is more pronounced. However, the spin-orbit fine structure dominantly influences the spectra of this species.

  9. M553 sphere forming experiment: Pure nickel specimen evaluation

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Peters, E. T.

    1973-01-01

    A region or cap of very fine two-dimensional surface growth structure was observed at the top of three of the six pure nickel flight specimens. Such two-dimensional surface growth structures have been observed both on the ground-based specimens and on other surface areas of the flight specimens. However, the fine structures observed on the three flight samples are at least an order of magnitude finer than those previously observed, and resemble similar localized, fine, two-dimensional surface structures observed in both ground and flight specimens for the nickel alloys. The two-dimensional growth areas consist primarily of fine equiaxed grains, specimen SL-2.6, fine dendrites, specimen SL-2.5, or a core of fine equiaxed grains surrounded by a ring of fine dendrites, specimen SL-1.9.

  10. Near-degeneracy in Excited Vibrational States of 207PbF

    NASA Astrophysics Data System (ADS)

    Mawhorter, Richard; Nguyen, Alexander; Kim, Yongrak; Biekert, Andreas; Sears, Trevor; Grabow, Jens-Uwe; Kudashov, A. D.; Skripnikov, L. V.; Titov, A. V.; Petrov, A. N.

    2017-04-01

    High-resolution Fourier transform microwave (FTMW) spectroscopy studies of 207PbF have demonstrated the near-degeneracy of two levels of opposite parity. These have attracted attention for the study of parity violation effects and the variation of fundamental constants using 207PbF. Further theoretical work has improved our detailed understanding of both 207PbF and 208PbF, and furthermore recently indicated that the finely split +/- parity levels grow monotonically closer for higher vibrational states. Our experimental results for v = 0-3 confirm this, and are in excellent agreement with our extended theoretical calculations up to v = 4; both will be presented. TJS acknowledges support from Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences., as do RM, AB, YK, & AN from Pomona College & J-UG from the Deutsche Forschungsgemeinschaft (DFG).

  11. Seasonal variations in the chemical composition of particulate matter: a case study in the Po Valley. Part I: macro-components and mass closure.

    PubMed

    Perrino, C; Catrambone, M; Dalla Torre, S; Rantica, E; Sargolini, T; Canepari, S

    2014-03-01

    The seasonal variability in the mass concentration and chemical composition of atmospheric particulate matter (PM10 and PM2.5) was studied during a 2-year field study carried out between 2010 and 2012. The site of the study was the area of Ferrara (Po Valley, Northern Italy), which is characterized by frequent episodes of very stable atmospheric conditions in winter. Chemical analyses carried out during the study allowed the determination of the main components of atmospheric PM (macro-elements, ions, elemental carbon, organic matter) and a satisfactory mass closure was obtained. Accordingly, chemical components could be grouped into the main macro-sources of PM: soil, sea spray, inorganic compounds from secondary reactions, vehicular emission, organics from domestic heating, organics from secondary formation, and other sources. The more significant seasonal variations were observed for secondary inorganic species in the fine fraction of PM; these species were very sensitive to air mass age and thus to the frequency of stable atmospheric conditions. During the winter ammonium nitrate, the single species with the highest concentration, reached concentrations as high as 30 μg/m(3). The intensity of natural sources was fairly constant during the year; increases in natural aerosols were linked to medium and long-range transport episodes. The ratio of winter to summer concentrations was roughly 2 for combustion product, close to 3 for secondary inorganic species, and between 2 and 3 for organics. The winter increase of organics was due to poorer atmospheric dispersion and to the addition of the emission from domestic heating. A similar winter to summer ratio (around 3) was observed for the fine fraction of PM.

  12. Dispersibility of lactose fines as compared to API in dry powders for inhalation.

    PubMed

    Thalberg, Kyrre; Åslund, Simon; Skogevall, Marcus; Andersson, Patrik

    2016-05-17

    This work investigates the dispersion performance of fine lactose particles as function of processing time, and compares it to the API, using Beclomethasone Dipropionate (BDP) as model API. The total load of fine particles is kept constant in the formulations while the proportions of API and lactose fines are varied. Fine particle assessment demonstrates that the lactose fines have higher dispersibility than the API. For standard formulations, processing time has a limited effect on the Fine Particle Fraction (FPF). For formulations containing magnesium stearate (MgSt), FPF of BDP is heavily influenced by processing time, with an initial increase, followed by a decrease at longer mixing times. An equation modeling the observed behavior is presented. Surprisingly, the dispersibility of the lactose fines present in the same formulation remains unaffected by mixing time. Magnesium analysis demonstrates that MgSt is transferred to the fine particles during the mixing process, thus lubrication both BDP and lactose fines, which leads to an increased FPF. Dry particle sizing of the formulations reveals a loss of fine particles at longer mixing times. Incorporation of fine particles into the carrier surfaces is believed to be behind this, and is hence a mechanism of importance as regards the dispersion performance of dry powders for inhalation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Aberration in the palatal root of the maxillary first molar

    PubMed Central

    Rajalbandi, Sandeep; Shingte, Sandhya Narayan; Sundaresh, K J; Mallikarjuna, Rachappa

    2013-01-01

    Thorough knowledge of root canal morphology is essential for the endodontic therapy. Variations in the root and root canal morphology, especially in multirooted teeth, are a constant challenge for diagnosis and management. The dentist needs to be familiar with the various root canal configurations and their variations for successful endodontic therapy. There are rare variations in canal number and configuration in maxillary molars, which could affect treatment outcome. Two lingual root structures are occasionally found on human permanent maxillary molars. One of these is the normal lingual root, which is always present, the other is a supernumerary structure which can be located either mesiolingually (radix mesiolingualis) or distolingually (radix distolingualis). The purpose of this paper is to review the literature and to demonstrate a case report which describes the successful non-surgical endodontic management of an unusual maxillary first molar with four separate roots and four canals. PMID:23632609

  14. On the penetration of a hot diapir through a strongly temperature-dependent viscosity medium

    NASA Technical Reports Server (NTRS)

    Daly, S. F.; Raefsky, A.

    1985-01-01

    The ascent of a hot spherical body through a fluid with a strongly temperature-dependent viscosity has been studied using an axisymmetric finite element method. Numerical solutions range over Peclet numbers of 0.1 - 1000 from constant viscosity up to viscosity variations of 100,000. Both rigid and stress-free boundary conditions were applied at the surface of the sphere. The dependence of drag on viscosity variation was shown to have no dependence on the stress boundary condition except for a Stokes flow scaling factor. A Nusselt number parameterization based on the stress-free constant viscosity functional dependence on the Peclet number scaled by a parameter depending on the viscosity structure fits both stress-free and rigid boundary condition data above viscosity variations of 100. The temperature scale height was determined as a function of sphere radius. For the simple physical model studied in this paper pre-heating is required to reduce the ambient viscosity of the country rock to less than 10 to the 22nd sq cm/s in order for a 10 km diapir to penetrate a distance of several radii.

  15. Iterative generalized time-frequency reassignment for planetary gearbox fault diagnosis under nonstationary conditions

    NASA Astrophysics Data System (ADS)

    Chen, Xiaowang; Feng, Zhipeng

    2016-12-01

    Planetary gearboxes are widely used in many sorts of machinery, for its large transmission ratio and high load bearing capacity in a compact structure. Their fault diagnosis relies on effective identification of fault characteristic frequencies. However, in addition to the vibration complexity caused by intricate mechanical kinematics, volatile external conditions result in time-varying running speed and/or load, and therefore nonstationary vibration signals. This usually leads to time-varying complex fault characteristics, and adds difficulty to planetary gearbox fault diagnosis. Time-frequency analysis is an effective approach to extracting the frequency components and their time variation of nonstationary signals. Nevertheless, the commonly used time-frequency analysis methods suffer from poor time-frequency resolution as well as outer and inner interferences, which hinder accurate identification of time-varying fault characteristic frequencies. Although time-frequency reassignment improves the time-frequency readability, it is essentially subject to the constraints of mono-component and symmetric time-frequency distribution about true instantaneous frequency. Hence, it is still susceptible to erroneous energy reallocation or even generates pseudo interferences, particularly for multi-component signals of highly nonlinear instantaneous frequency. In this paper, to overcome the limitations of time-frequency reassignment, we propose an improvement with fine time-frequency resolution and free from interferences for highly nonstationary multi-component signals, by exploiting the merits of iterative generalized demodulation. The signal is firstly decomposed into mono-components of constant frequency by iterative generalized demodulation. Time-frequency reassignment is then applied to each generalized demodulated mono-component, obtaining a fine time-frequency distribution. Finally, the time-frequency distribution of each signal component is restored and superposed to get the time-frequency distribution of original signal. The proposed method is validated using both numerical simulated and lab experimental planetary gearbox vibration signals. The time-varying gear fault symptoms are successfully extracted, showing effectiveness of the proposed iterative generalized time-frequency reassignment method in planetary gearbox fault diagnosis under nonstationary conditions.

  16. Quantum Yield Heterogeneity among Single Nonblinking Quantum Dots Revealed by Atomic Structure-Quantum Optics Correlation

    DOE PAGES

    Orfield, Noah J.; McBride, James R.; Wang, Feng; ...

    2016-02-05

    Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. In this paper, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking “giant” CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging,more » rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive “dark” fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be “dark”. Finally and therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs.« less

  17. Multiscale 3-D shape representation and segmentation using spherical wavelets.

    PubMed

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2007-04-01

    This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details.

  18. Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets

    PubMed Central

    Nain, Delphine; Haker, Steven; Bobick, Aaron

    2013-01-01

    This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of our multiscale prior and 2) a segmentation task. In the reconstruction task, our results show that for a given training set size, our algorithm significantly improves the approximation of shapes in a testing set over the Point Distribution Model, which tends to oversmooth data. In the segmentation task, our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm, by capturing finer shape details. PMID:17427745

  19. Regional-scale drivers of marine nematode distribution in Southern Ocean continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Hauquier, Freija; Verleyen, Elie; Tytgat, Bjorn; Vanreusel, Ann

    2018-07-01

    Many marine meiofauna taxa seem to possess cosmopolitan species distributions, despite their endobenthic lifestyle and restricted long-distance dispersal capacities. In light of this paradox we used a metacommunity framework to study spatial turnover in free-living nematode distribution and assess the importance of local environmental conditions in explaining differences between communities in surface and subsurface sediments of the Southern Ocean continental shelf. We analysed nematode community structure in two sediment layers (0-3 cm and 3-5 cm) of locations maximum 2400 km apart. We first focused on a subset of locations to evaluate whether the genus level is sufficiently taxonomically fine-grained to study large-scale patterns in nematode community structure. We subsequently used redundancy and variation partitioning analyses to quantify the unique and combined effects of local environmental conditions and spatial descriptors on genus-level community composition. Macroecological patterns in community structure were highly congruent at the genus and species level. Nematode community composition was highly divergent between both depth strata, likely as a result of local abiotic conditions. Variation in community structure between the different regions largely stemmed from turnover (i.e. genus/species replacement) rather than nestedness (i.e. genus/species loss). The level of turnover among communities increased with geographic distance and was more pronounced in subsurface layers compared to surface sediments. Variation partitioning analysis revealed that both environmental and spatial predictors significantly explained variation in community structure. Moreover, the shared fraction of both sets of variables was high, which suggested a substantial amount of spatially structured environmental variation. Additionally, the effect of space independent of environment was much higher than the effect of environment independent of space, which shows the importance of including spatial descriptors in meiofauna and nematode community ecology. Large-scale assessment of free-living nematode diversity and abundance in the Southern Ocean shelf zone revealed strong horizontal and vertical spatial structuring in response to local environmental conditions, in combination with (most likely) dispersal limitation.

  20. Fine-scale variation of historical fire regimes in sagebrush-steppe and juniper woodland: An example from California, USA

    Treesearch

    Richard F. Miller; Emily K. Heyerdahl

    2008-01-01

    Coarse-scale estimates of fire intervals across the mountain big sagebrush (Artemisia tridentata spp. vaseyana (Rydb.) Beetle) alliance range from decades to centuries. However, soil depth and texture can affect the abundance and continuity of fine fuels and vary at fine spatial scales, suggesting fire regimes may vary at similar scales. We explored...

  1. Atomic and electronic structure of Mo6S9-xIx nanowires

    NASA Astrophysics Data System (ADS)

    Meden, A.; Kodre, A.; Padeznik Gomilsek, J.; Arcon, I.; Vilfan, I.; Vrbanic, D.; Mrzel, A.; Mihailovic, D.

    2005-09-01

    Moybdenum-based subnanometre diameter nanowires are easy to synthesize and disperse, and they exhibit a variety of functional properties in which they are superior to other one-dimensional materials. However, further progress in the understanding of physical properties and the development of new and specific applications have so far been impeded by the fact that their structure was not accurately known. Here we report on a combination of systematic x-ray diffraction and extended x-ray absorption fine structure experiments, and first-principles theoretical structure calculations, which are used to determine the atomic skeletal structure of individual Mo6S9-xIx (MoSIx) nanowires, their packing arrangement within bundles and their electronic band structure. From this work we conclude that the variations in functional properties appear to arise from different stoichiometry, not skeletal structure. A supplementary data file is available from http://stacks.iop.org/0957-4484/16/1578

  2. Structural, mechanical and myothermic properties of rabbit rectococcygeus muscle.

    PubMed Central

    Davey, D F; Gibbs, C L; McKirdy, H C

    1975-01-01

    1. The fine structure of rabbit rectococcygeus muscle has been studied with the electron microscope. 2. The mechanical performance and the heat production of this muscle has been investigated during tetanic contractions at 27 degrees C. 3. In isometric contractions a force of 164 +/- 27 mN/mm2 (mean +/- S.D., n = 17) is developed and the heat production is linearly related to the force. 4. There is a relationship between the duration of stimulation (t) and the total heat production (H) of the type H = A plus bt, where A and b are constants. 5. After-loaded isotonic experiments show that the relationship between force and velocity can be fitted by the 'characteristic equation' of Hill (1938). 6. The value of a/P0 (0-302 +/- 0-093, mean +/- S.D.) is slightly higher than in frog skeletal muscle but the constant b is about 50 times smaller. 7. The ratio of work/total energy production, for the stimulus conditions employed, was maximally 0-185. 8. The ratio of total enthalpy to initial enthalpy is difficult to measure accurately but is probably about 2. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Plate 2 PMID:1151809

  3. Facile synthesis of Ni/NiO@GO nanocomposites and its enhanced dielectric constant

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Giri, N.; Mondal, A.; Ray, R.

    2018-05-01

    Ni/NiO embedded Graphene Oxide (GO): Ni/NiO@GO is synthesized by citric acid assisted Pechini-type method. Structural and morphological characterizations are performed by X-ray powdered diffraction (XRD), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Defects in GO sheets are probed by RAMAN spectroscopy. The temperature variation of dielectric constant (ɛR) and dielectric loss (tan δ) are investigated in the temperature range 300 - 400 K. Decoration of GO with Ni/NiO nanoparticles enhances its ɛR by˜55 times. Moreover, its dielectric constant measured at 5 MHz is found to be˜430 times to that of Ni/NiO along with the reduction of dielectric loss by a factor˜0.5. The enhanced dielectric constant makes the composite Ni/NiO@GO a potential candidate for using in ecologically friendly energy storage devices.

  4. Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes

    DOE PAGES

    McCormack, M. Luke; Guo, Dali; Iversen, Colleen M.; ...

    2017-03-13

    Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual rootsmore » to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.« less

  5. Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormack, M. Luke; Guo, Dali; Iversen, Colleen M.

    Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual rootsmore » to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales.« less

  6. Base units of the SI, fundamental constants and modern quantum physics.

    PubMed

    Bordé, Christian J

    2005-09-15

    Over the past 40 years, a number of discoveries in quantum physics have completely transformed our vision of fundamental metrology. This revolution starts with the frequency stabilization of lasers using saturation spectroscopy and the redefinition of the metre by fixing the velocity of light c. Today, the trend is to redefine all SI base units from fundamental constants and we discuss strategies to achieve this goal. We first consider a kinematical frame, in which fundamental constants with a dimension, such as the speed of light c, the Planck constant h, the Boltzmann constant k(B) or the electron mass m(e) can be used to connect and redefine base units. The various interaction forces of nature are then introduced in a dynamical frame, where they are completely characterized by dimensionless coupling constants such as the fine structure constant alpha or its gravitational analogue alpha(G). This point is discussed by rewriting the Maxwell and Dirac equations with new force fields and these coupling constants. We describe and stress the importance of various quantum effects leading to the advent of this new quantum metrology. In the second part of the paper, we present the status of the seven base units and the prospects of their possible redefinitions from fundamental constants in an experimental perspective. The two parts can be read independently and they point to these same conclusions concerning the redefinitions of base units. The concept of rest mass is directly related to the Compton frequency of a body, which is precisely what is measured by the watt balance. The conversion factor between mass and frequency is the Planck constant, which could therefore be fixed in a realistic and consistent new definition of the kilogram based on its Compton frequency. We discuss also how the Boltzmann constant could be better determined and fixed to replace the present definition of the kelvin.

  7. Repeated crossing of two concentric spherical thin-shells with charge

    NASA Astrophysics Data System (ADS)

    Mazharimousavi, S. Habib; Halilsoy, M.

    Interaction/collision of two concentric spherical thin-shells of linear fluid resulting in collapse has been considered recently. We show that addition of finely tuned electric charges on the shells apart from the cosmological constant serves to delay the collapse indefinitely, yielding an ever colliding system of two concentric fluid shells. Given the finely tuned charges, this provides an example of a perpetual two-body motion in general relativity.

  8. Measurements of small-scale statistics and probability density functions in passively heated shear flow

    NASA Astrophysics Data System (ADS)

    Ferchichi, Mohsen

    This study is an experimental investigation consisting of two parts. In the first part, the fine structure of uniformly sheared turbulence was investigated within the framework of Kolmogorov's (1941) similarity hypotheses. The second part, consisted of the study of the scalar mixing in uniformly sheared turbulence with an imposed mean scalar gradient, with the emphasis on measurements relevant to the probability density function formulation and on scalar derivative statistics. The velocity fine structure was invoked from statistics of the streamwise and transverse derivatives of the streamwise velocity as well as velocity differences and structure functions, measured with hot wire anemometry for turbulence Reynolds numbers, Relambda, in the range between 140 and 660. The streamwise derivative skewness and flatness agreed with previously reported results in that they increased with increasing Relambda with the flatness increasing at a higher rate. The skewness of the transverse derivative decreased with increasing Relambda, and the flatness of this derivative increased with Relambda but a lower rate than the streamwise derivative flatness. The high order (up to sixth) transverse structure functions of the streamwise velocity showed the same trends as the corresponding streamwise structure functions. In the second pan of tins experimental study, an army of heated ribbons was introduced into the flow to produce a constant mean temperature gradient, such that the temperature acted as a passive scalar. The Re lambda in this study varied from 184 to 253. Cold wire thermometry and hot wire anemometry were used for simultaneous measurements of temperature and velocity. The scalar pdf was found to be nearly Gaussian. Various tests of joint statistics of the scalar and its rate of destruction revealed that the scalar dissipation rate was essentially independent of the scalar value. The measured joint statistics of the scalar and the velocity suggested that they were nearly jointly normal and that the normalized conditioned expectations varied linearly with the scalar with slopes corresponding to the scalar-velocity correlation coefficients. Finally, the measured streamwise and transverse scalar derivatives and differences revealed that the scalar fine structure was intermittent not only in the dissipative range, but in the inertial range as well.

  9. A continuum of admixture in the Western Hemisphere revealed by the African Diaspora genome

    PubMed Central

    Mathias, Rasika Ann; Taub, Margaret A.; Gignoux, Christopher R.; Fu, Wenqing; Musharoff, Shaila; O'Connor, Timothy D.; Vergara, Candelaria; Torgerson, Dara G.; Pino-Yanes, Maria; Shringarpure, Suyash S.; Huang, Lili; Rafaels, Nicholas; Boorgula, Meher Preethi; Johnston, Henry Richard; Ortega, Victor E.; Levin, Albert M.; Song, Wei; Torres, Raul; Padhukasahasram, Badri; Eng, Celeste; Mejia-Mejia, Delmy-Aracely; Ferguson, Trevor; Qin, Zhaohui S.; Scott, Alan F.; Yazdanbakhsh, Maria; Wilson, James G.; Marrugo, Javier; Lange, Leslie A.; Kumar, Rajesh; Avila, Pedro C.; Williams, L. Keoki; Watson, Harold; Ware, Lorraine B.; Olopade, Christopher; Olopade, Olufunmilayo; Oliveira, Ricardo; Ober, Carole; Nicolae, Dan L.; Meyers, Deborah; Mayorga, Alvaro; Knight-Madden, Jennifer; Hartert, Tina; Hansel, Nadia N.; Foreman, Marilyn G.; Ford, Jean G.; Faruque, Mezbah U.; Dunston, Georgia M.; Caraballo, Luis; Burchard, Esteban G.; Bleecker, Eugene; Araujo, Maria Ilma; Herrera-Paz, Edwin Francisco; Gietzen, Kimberly; Grus, Wendy E.; Bamshad, Michael; Bustamante, Carlos D.; Kenny, Eimear E.; Hernandez, Ryan D.; Beaty, Terri H.; Ruczinski, Ingo; Akey, Joshua; Campbell, Monica; Chavan, Sameer; Foster, Cassandra; Gao, Li; Horowitz, Edward; Ortiz, Romina; Potee, Joseph; Gao, Jingjing; Hu, Yijuan; Hansen, Mark; Deshpande, Aniket; Locke, Devin P.; Grammer, Leslie; Kim, Kwang-YounA; Schleimer, Robert; De La Vega, Francisco M.; Szpiech, Zachary A.; Oluwole, Oluwafemi; Arinola, Ganiyu; Correa, Adolfo; Musani, Solomon; Chong, Jessica; Nickerson, Deborah; Reiner, Alexander; Maul, Pissamai; Maul, Trevor; Martinez, Beatriz; Meza, Catherine; Ayestas, Gerardo; Landaverde-Torres, Pamela; Erazo, Said Omar Leiva; Martinez, Rosella; Mayorga, Luis F.; Ramos, Hector; Saenz, Allan; Varela, Gloria; Vasquez, Olga Marina; Samms-Vaughan, Maureen; Wilks, Rainford J.; Adegnika, Akim; Ateba-Ngoa, Ulysse; Barnes, Kathleen C.

    2016-01-01

    The African Diaspora in the Western Hemisphere represents one of the largest forced migrations in history and had a profound impact on genetic diversity in modern populations. To date, the fine-scale population structure of descendants of the African Diaspora remains largely uncharacterized. Here we present genetic variation from deeply sequenced genomes of 642 individuals from North and South American, Caribbean and West African populations, substantially increasing the lexicon of human genomic variation and suggesting much variation remains to be discovered in African-admixed populations in the Americas. We summarize genetic variation in these populations, quantifying the postcolonial sex-biased European gene flow across multiple regions. Moreover, we refine estimates on the burden of deleterious variants carried across populations and how this varies with African ancestry. Our data are an important resource for empowering disease mapping studies in African-admixed individuals and will facilitate gene discovery for diseases disproportionately affecting individuals of African ancestry. PMID:27725671

  10. 1H NMR study of the complexation of aromatic drugs with dimethylxanthine derivatives

    NASA Astrophysics Data System (ADS)

    Hernandez Santiago, A. A.; Gonzalez Flores, M.; Rosas Castilla, S. A.; Cervantes Tavera, A. M.; Gutierrez Perez, R.; Khomich, V. V.; Ovchinnikov, D. V.; Parkes, H. G.; Evstigneev, M. P.

    2012-02-01

    With an aim of searching efficient interceptors of aromatic drugs, the self- and hetero-association of dimethylxanthine derivatives with different structures, selected according to Strategy 1 (variation of the position of methyl groups) and Strategy 2 (variation of the length of sbnd (CH2)nsbnd COOH group), with aromatic drug molecules: Ethidium Bromide, Proflavine and Daunomycin, were studied using 1H NMR spectroscopy. It was found that the association proceeds in a form of stacking-type complexation and its energetics is relatively independent on the structure of the dimethylxanthines. However, on average, the dimethylxanthines possess higher hetero-association constant and, hence, higher interceptor ability as compared to the trimethylxanthine, Caffeine, used during the past two decades as a typical interceptor molecule.

  11. Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping.

    PubMed

    Mitchell, Matthew G E; Johansen, Kasper; Maron, Martine; McAlpine, Clive A; Wu, Dan; Rhodes, Jonathan R

    2018-05-01

    Urban areas are sources of land use change and CO 2 emissions that contribute to global climate change. Despite this, assessments of urban vegetation carbon stocks often fail to identify important landscape-scale drivers of variation in urban carbon, especially the potential effects of landscape structure variables at different spatial scales. We combined field measurements with Light Detection And Ranging (LiDAR) data to build high-resolution models of woody plant aboveground carbon across the urban portion of Brisbane, Australia, and then identified landscape scale drivers of these carbon stocks. First, we used LiDAR data to quantify the extent and vertical structure of vegetation across the city at high resolution (5×5m). Next, we paired this data with aboveground carbon measurements at 219 sites to create boosted regression tree models and map aboveground carbon across the city. We then used these maps to determine how spatial variation in land cover/land use and landscape structure affects these carbon stocks. Foliage densities above 5m height, tree canopy height, and the presence of ground openings had the strongest relationships with aboveground carbon. Using these fine-scale relationships, we estimate that 2.2±0.4 TgC are stored aboveground in the urban portion of Brisbane, with mean densities of 32.6±5.8MgCha -1 calculated across the entire urban land area, and 110.9±19.7MgCha -1 calculated within treed areas. Predicted carbon densities within treed areas showed strong positive relationships with the proportion of surrounding tree cover and how clumped that tree cover was at both 1km 2 and 1ha resolutions. Our models predict that even dense urban areas with low tree cover can have high carbon densities at fine scales. We conclude that actions and policies aimed at increasing urban carbon should focus on those areas where urban tree cover is most fragmented. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Detection of Propagating Fast Sausage Waves through a Detailed Analysis of a Zebra Pattern Fine Structure in a Solar Radio Burst

    NASA Astrophysics Data System (ADS)

    Kaneda, K.; Misawa, H.; Iwai, K.; Masuda, S.; Tsuchiya, F.; Katoh, Y.; Obara, T.

    2017-12-01

    Recent observations have revealed that various modes of magnetohydrodynamic (MHD) waves are ubiquitous in the corona. In imaging observations in EUV, propagating fast magnetoacoustic waves are difficult to observe due to the lack of time resolution. Quasi-periodic modulation of radio fine structures is an important source of information on these MHD waves. Zebra patterns (ZPs) are one of such fine structures in type IV bursts, which consist of several parallel stripes superimposed on the background continuum. Although the generation mechanism of ZPs has been discussed still, the most favorable model of ZPs is so-called double plasma resonance (DPR) model. In the DPR model, the frequency separation between the adjacent stripes (Δf) is determined by the plasma density and magnetic field in their source. Hence, the variation of Δf in time and frequency represents the disturbance in their source region in the corona. We report the detection of propagating fast sausage waves through the analysis of a ZP event on 2011 June 21. The variation of Δf in time and frequency was obtained using highly resolved spectral data from the Assembly of Metric-band Aperture Telescope and Real-time Analysis System (AMATERAS). We found that Δf increases with the increase of emission frequency as a whole, which is consistent with the DPR model. Furthermore, we also found that irregularities in Δf are repetitively drifting from the high frequency side to the low frequency side. Their frequency drift rate was 3 - 8 MHz/s and the repetitive frequency was several seconds. Assuming the ZP generation by the DPR model, the drifting irregularities in Δf correspond to propagating disturbances in plasma density and magnetic field with speeds of 3000 - 8000 km/s. Taking account of these facts, the observed modulations in Δf can be explained by fast sausage waves propagating through the corona. We will also discuss the plasma conditions in the corona estimated from the observational results.

  13. Effects of spatiotemporal variation of soil salinity on fine root distribution in different plant configuration modes in new reclamation coastal saline field.

    PubMed

    Jiang, Hong; Du, Hongyu; Bai, Yingying; Hu, Yue; Rao, Yingfu; Chen, Chong; Cai, Yongli

    2016-04-01

    In order to study the effects of salinity on plant fine roots, we considered three different plant configuration modes (tree stand model (TSM), shrub stand model (SSM), and tree-shrub stand model (TSSM)). Soil samples were collected with the method of soil drilling. Significant differences of electrical conductivity (EC) in the soil depth of 0-60 cm were observed among the three modes (p < 0.05). In the above three modes, the variation of soil salinity among various soil layers and monthly variation of soil salinity were the highest in SSM and reached 2.30 and 2.23 mS/cm (EC1:5), respectively. Due to the effect of salinity, fine root biomass (FRB) showed significant differences in different soil depths (p < 0.05). More than 60% of FRB was concentrated in the soil depth above 30 cm. FRB showed exponential decline with soil depth (p < 0.05). FRB showed spatial heterogeneity in the 40-cm soil depth. In the above three modes, compared with FRB, specific root length (SRL) and fine root length density (FRLD) showed the similar changing trend. Fine roots showed significant seasonal differences among different modes (p < 0.05). FRB showed the bimodal variation and was the highest in July. However, we found that the high content of salts had obvious inhibitory effect on the distribution of FRB. Therefore, the salinity should be below 1.5 mS/cm, which was suitable for the growth of plant roots. Among the three modes, TSSM had the highest FRB, SRL, and FRLD and no obvious soil salt accumulation was observed. The results indicated that fine root biomass was affected by high salt and that TSSM had the strong effects of salt suppression and control. In our study, TSSM may be the optimal configuration mode for salt suppression and control in saline soil.

  14. Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy.

    PubMed

    Roumet, Catherine; Birouste, Marine; Picon-Cochard, Catherine; Ghestem, Murielle; Osman, Normaniza; Vrignon-Brenas, Sylvain; Cao, Kun-Fang; Stokes, Alexia

    2016-05-01

    Although fine roots are important components of the global carbon cycle, there is limited understanding of root structure-function relationships among species. We determined whether root respiration rate and decomposability, two key processes driving carbon cycling but always studied separately, varied with root morphological and chemical traits, in a coordinated way that would demonstrate the existence of a root economics spectrum (RES). Twelve traits were measured on fine roots (diameter ≤ 2 mm) of 74 species (31 graminoids and 43 herbaceous and dwarf shrub eudicots) collected in three biomes. The findings of this study support the existence of a RES representing an axis of trait variation in which root respiration was positively correlated to nitrogen concentration and specific root length and negatively correlated to the root dry matter content, lignin : nitrogen ratio and the remaining mass after decomposition. This pattern of traits was highly consistent within graminoids but less consistent within eudicots, as a result of an uncoupling between decomposability and morphology, and of heterogeneity of individual roots of eudicots within the fine-root pool. The positive relationship found between root respiration and decomposability is essential for a better understanding of vegetation-soil feedbacks and for improving terrestrial biosphere models predicting the consequences of plant community changes for carbon cycling. © 2016 CNRS. New Phytologist © 2016 New Phytologist Trust.

  15. Fine structure of the absorbed dose rate monitored in Zagreb, Croatia, in the period 1985-2011.

    PubMed

    Babić, D; Senčar, J; Petrinec, B; Marović, G; Bituh, T; Skoko, B

    2013-04-01

    We report on the fine structure of the absorbed dose rate D which was measured and recorded on a daily basis at the Institute for Medical Research and Occupational Health in Zagreb, Croatia, throughout the period 1985-2011. After the Chernobyl accident, D increased steeply by a factor of 3.5, but this is the only prominent feature in the D versus time (t) curve. In the absence of accidental conditions, the D(t) is flat and amounts to 30-35 pGy/s. Despite the apparent plainness of D(t), its Fourier transform reveals several periodic modulations hidden in the noise. Some of the corresponding periods (6 and 12 months) can be related to seasonal atmospheric changes but this is not the case with the other periods identified (9.3, 13.7, 15.7, 20, 31, and 39 months). These are found to agree well with literature data on periodicities in solar activity, which implies that they are most probably linked to variations in the atmospheric production of (7)Be by cosmic rays. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Characteristics of the starch fine structure and pasting properties of waxy rice during storage.

    PubMed

    Huang, Yu-Chan; Lai, Hsi-Mei

    2014-01-01

    Two waxy rice (TNW1 and TCSW1, exhibiting high and low amylase activity, respectively), were stored at 4 and 17 °C (polished rice) and at room temperature (paddy rice) for 15 months. The fine structure of starch isolated from the aged rice and the pasting properties of starch and rice flour were studied. After storage, the percentage of short amylopectin (AP) chains increased in TNW1, and no uniform changing pattern was observed in the chain-length (CL) distribution of TCSW1. The viscosity of starch isolated from the aged rice increased as the storage temperature and duration increased. We hypothesised that this increase was due to the hydrolysis of AP by endogenous amylase and the generation of small clusters during storage, which caused the simple dissociation of AP and a high swelling degree of starch granules during gelatinisation. Factor analysis of the first two factors associated with the characteristics of viscograms and the CL of AP explained 72% of the total variation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Ab-initio study of pressure evolution of structural, mechanical and magnetic properties of cementite (Fe3C) phase

    NASA Astrophysics Data System (ADS)

    Gorai, S.; Ghosh, P. S.; Bhattacharya, C.; Arya, A.

    2018-04-01

    The pressure evolution of phase stability, structural and mechanical properties of Fe3C in ferro-magnetic (FM) and high pressure non magnetic (NM) phase is investigated from first principle calculations. The 2nd order FM to NM phase transition of Fe3C is identified around 60 GPa. Pressure (or density) variation of sound velocities from our ab-initio calculated single crystal elastic constants are determined to predict these parameters at Earth's outer core pressure.

  18. Significant demographic and fine-scale genetic structure in expanding and senescing populations of the terrestrial orchid Cymbidium goeringii (Orchidaceae).

    PubMed

    Chung, Mi Yoon; Nason, John D; Chung, Myong Gi

    2011-12-01

    Fine-scale genetic structure (FSGS) in plants is influenced by variation in spatial and temporal demographic processes. To determine how demographic structure and FSGS change with stages of population succession, we studied replicate expanding and senescing populations of the Asian terrestrial orchid Cymbidium goeringii. We used spatial autocorrelation methods (O-ring and kinship statistics) to quantify spatial demographic structure and FSGS in two expanding and two senescing populations, also measuring genetic diversity and inbreeding in each. All populations exhibited significant aggregation of individuals and FSGS at short spatial scales. In expanding populations, this finding was associated with high recruitment rates, suggesting restricted seed dispersal. In senescing populations, recruitment was minimal, suggesting alternative mechanisms of aggregation, perhaps including spatial associations with mycorrhizal fungi. All populations had significant evidence of genetic bottlenecks, and inbreeding levels were consistently high. Our results indicate that different successional stages can generate similar patterns of spatial demographic and genetic structure, but as a consequence of different processes. These results contrast with the only other study of senescence effects on population genetic structure in an herbaceous perennial, which found little to no FSGS in senescing populations. With the exception of populations subject to mass collection by orchid sellers, significant FSGS is characteristic of the 16 terrestrial orchid species examined to date. From a conservation perspective, this result suggests that inference of orchid population history will benefit from analyses of both FSGS and demographic structure in combination with other ecological field data.

  19. Improved wavelengths for Fe V and Ni V for analysis of spectra of white dwarf stellar stars

    NASA Astrophysics Data System (ADS)

    Ward, Jacob; Nave, Gillian

    2015-08-01

    A recent paper by J.C. Berengut et al. tests for a potential variation in the fine-structure constant, α, in the presence of a high gravitational field through spectral analysis of white-dwarf stars. The spectrum of G191-B2B has prominent Fe V and Ni V lines in the vacuum ultraviolet (VUV) region that were used to determine any variation in α via observed shifts in their wavelengths. Although no strong evidence for a variation was found, the authors did find a difference between values obtained for Fe V and Ni V that were indicative of a problem with the laboratory wavelengths. The laboratory wavelengths dominate the uncertainty of the measured variation, so improved values would tighten the constraints on the variation of α.We have re-measured the spectra of Fe V and Ni V spectra in the VUV in order to reduce the wavelength uncertainties and put the two spectra on a consistent wavelength scale. The spectra were produced by a sliding spark light source with electrodes made of invar, an iron nickel alloy. Spectra of Fe V and Ni V were obtained using peak currents of 750-2000 A. The spectra were recorded using the NIST Normal Incidence Vacuum Spectrograph with phosphor image plates and photographic plates as detectors. Wavelengths from 1100 Å to 1800 Å were covered in a single exposure. A spectrum of a Pt/Ne hollow cathode lamp was also recorded for wavelength calibration.The spectra recorded on photographic plates are better resolved than the phosphor image plate spectra and are being measured in two ways. The first measures the positions of the spectral lines on a comparator, traditionally used to measure many archival spectra at NIST. The second uses a commercial image scanner to obtain a digital image of the plate that can be analyzed using line fitting software. Preliminary analysis of these spectra indicates that the literature values of the Fe V and Ni V wavelengths are not on the same scale and differ from our new measurements by up to 0.02 Å in some wavelength regions. We shall present improved analyses of the spectra using both methods and summarize their advantages and disadvantages.

  20. Preliminary three-dimensional geohydrologic framework of the San Antonio Creek Groundwater Basin, Santa Barbara County, California

    NASA Astrophysics Data System (ADS)

    Cromwell, G.; Sweetkind, D. S.; O'leary, D. R.

    2017-12-01

    The San Antonio Creek Groundwater Basin is a rural agricultural area that is heavily dependent on groundwater to meet local water demands. The U.S. Geological Survey (USGS) is working cooperatively with Santa Barbara County and Vandenberg Air Force Base to assess the quantity and quality of the groundwater resources within the basin. As part of this assessment, an integrated hydrologic model that will help stakeholders to effectively manage the water resources in the basin is being developed. The integrated hydrologic model includes a conceptual model of the subsurface geology consisting of stratigraphy and variations in lithology throughout the basin. The San Antonio Creek Groundwater Basin is a relatively narrow, east-west oriented valley that is structurally controlled by an eastward-plunging syncline. Basin-fill material beneath the valley floor consists of relatively coarse-grained, permeable, marine and non-marine sedimentary deposits, which are underlain by fine-grained, low-permeability, marine sedimentary rocks. To characterize the system, surficial and subsurface geohydrologic data were compiled from geologic maps, existing regional geologic models, and lithology and geophysical logs from boreholes, including two USGS multiple-well sites drilled as part of this study. Geohydrologic unit picks and lithologic variations are incorporated into a three-dimensional framework model of the basin. This basin (model) includes six geohydrologic units that follow the structure and stratigraphy of the area: 1) Bedrock - low-permeability marine sedimentary rocks; 2) Careaga Formation - fine to coarse grained near-shore sandstone; 3) Paso Robles Formation, lower portion - sandy-gravely deposits with clay and limestone; 4) Paso Robles Formation, middle portion - clayey-silty deposits; 5) Paso Robles Formation, upper portion - sandy-gravely deposits; and 6) recent Quaternary deposits. Hydrologic data show that the upper and lower portions of the Paso Robles Formation are the primary grou­ndwater-bearing units within the basin, and that the fine-grained layer within this Formation locally restricts vertical groundwater flow.

  1. Mantle viscosity structure constrained by joint inversions of seismic velocities and density

    NASA Astrophysics Data System (ADS)

    Rudolph, M. L.; Moulik, P.; Lekic, V.

    2017-12-01

    The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle upwellings, sinking of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Modeling the long-wavelength dynamic geoid allows us to constrain the radial viscosity profile of the mantle. Typically, in inversions for the mantle viscosity structure, wavespeed variations are mapped into density variations using a constant- or depth-dependent scaling factor. Here, we use a newly developed joint model of anisotropic Vs, Vp, density and transition zone topographies to generate a suite of solutions for the mantle viscosity structure directly from the seismologically constrained density structure. The density structure used to drive our forward models includes contributions from both thermal and compositional variations, including important contributions from compositionally dense material in the Large Low Velocity Provinces at the base of the mantle. These compositional variations have been neglected in the forward models used in most previous inversions and have the potential to significantly affect large-scale flow and thus the inferred viscosity structure. We use a transdimensional, hierarchical, Bayesian approach to solve the inverse problem, and our solutions for viscosity structure include an increase in viscosity below the base of the transition zone, in the shallow lower mantle. Using geoid dynamic response functions and an analysis of the correlation between the observed geoid and mantle structure, we demonstrate the underlying reason for this inference. Finally, we present a new family of solutions in which the data uncertainty is accounted for using covariance matrices associated with the mantle structure models.

  2. Describing Temperature-Dependent Self-Diffusion Coefficients and Fluidity of 1- and 3-Alcohols with the Compensated Arrhenius Formalism.

    PubMed

    Fleshman, Allison M; Forsythe, Grant E; Petrowsky, Matt; Frech, Roger

    2016-09-22

    The location of the hydroxyl group in monohydroxy alcohols greatly affects the temperature dependence of the liquid structure due to hydrogen bonding. Temperature-dependent self-diffusion coefficients, fluidity (the inverse of viscosity), dielectric constant, and density have been measured for several 1-alcohols and 3-alcohols with varying alkyl chain lengths. The data are modeled using the compensated Arrhenius formalism (CAF). The CAF follows a modified transition state theory using an Arrhenius-like expression to describe the transport property, which consists of a Boltzmann factor containing an energy of activation, Ea, and an exponential prefactor containing the temperature-dependent solution dielectric constant, εs(T). Both 1- and 3-alcohols show the Ea of diffusion coefficients (approximately 43 kJ mol(-1)) is higher than the Ea of fluidity (approximately 35 kJ mol(-1)). The temperature dependence of the exponential prefactor in these associated liquids is explained using the dielectric constant and the Kirkwood-Frölich correlation factor, gk. It is argued that the dielectric constant must be used to account for the additional temperature dependence due to variations in the liquid structure (e.g., hydrogen bonding) for the CAF to accurately model the transport property.

  3. Correlation between the fine structure of spin-coated PEDOT:PSS and the photovoltaic performance of organic/crystalline-silicon heterojunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funda, Shuji; Ohki, Tatsuya; Liu, Qiming

    2016-07-21

    We investigated the relationship between the fine structure of spin-coated conductive polymer poly(3,4-ethylenedioxythiphene):poly(styrene sulfonate) (PEDOT:PSS) films and the photovoltaic performance of PEDOT:PSS crystalline-Si (PEDOT:PSS/c-Si) heterojunction solar cells. Real-time spectroscopic ellipsometry revealed that there were two different time constants for the formation of the PEDOT:PSS network. Upon removal of the polar solvent, the PEDOT:PSS film became optically anisotropic, indicating a conformational change in the PEDOT and PSS chain. Polarized Fourier transform infrared attenuated total reflection absorption spectroscopy and Raman spectroscopy measurements also indicated that thermal annealing promoted an in-plane π-conjugated C{sub α} = C{sub β} configuration attributed to a thiophene ring in PEDOTmore » and an out-of-plane configuration of -SO{sub 3} groups in the PSS chain with increasing composition ratio of oxidized (benzoid) to neutral (quinoid) PEDOT, I{sub qui}/I{sub ben}. The highest power conversion efficiency for the spin-coated PEDOT:PSS/c-Si heterojunction solar cells was 13.3% for I{sub qui}/I{sub ben} = 9–10 without employing any light harvesting methods.« less

  4. Measurement of the running of the fine structure constant below 1 GeV with the KLOE detector

    NASA Astrophysics Data System (ADS)

    Anastasi, A.; Babusci, D.; Bencivenni, G.; Berlowski, M.; Bloise, C.; Bossi, F.; Branchini, P.; Budano, A.; Caldeira Balkeståhl, L.; Cao, B.; Ceradini, F.; Ciambrone, P.; Curciarello, F.; Czerwiński, E.; D'Agostini, G.; Dané, E.; De Leo, V.; De Lucia, E.; De Santis, A.; De Simone, P.; Di Cicco, A.; Di Domenico, A.; Di Salvo, R.; Domenici, D.; D'Uffizi, A.; Fantini, A.; Felici, G.; Fiore, S.; Gajos, A.; Gauzzi, P.; Giardina, G.; Giovannella, S.; Graziani, E.; Happacher, F.; Heijkenskjöld, L.; Johansson, T.; Kamińska, D.; Krzemien, W.; Kupsc, A.; Loffredo, S.; Lukin, P. A.; Mandaglio, G.; Martini, M.; Mascolo, M.; Messi, R.; Miscetti, S.; Morello, G.; Moricciani, D.; Moskal, P.; Papenbrock, M.; Passeri, A.; Patera, V.; Perez del Rio, E.; Ranieri, A.; Santangelo, P.; Sarra, I.; Schioppa, M.; Selce, A.; Silarski, M.; Sirghi, F.; Tortora, L.; Venanzoni, G.; Wiślicki, W.; Wolke, M.; Jegerlehner, F.; KLOE-2 Collaboration

    2017-04-01

    We have measured the running of the effective QED coupling constant α (s) in the time-like region 0.6 <√{ s} < 0.975 GeV with the KLOE detector at DAΦNE using the Initial-State Radiation process e+e- →μ+μ- γ. It represents the first measurement of the running of α (s) in this energy region. Our results show a more than 5σ significance of the hadronic contribution to the running of α (s), which is the strongest direct evidence both in time- and space-like regions achieved in a single measurement. By using the e+e- →π+π- cross section measured by KLOE, the real and imaginary parts of the shift Δα (s) have been extracted. From a fit of the real part of Δα (s) and assuming the lepton universality the branching ratio BR (ω →μ+μ-) = (6.6 ±1.4stat ±1.7syst) ṡ10-5 has been determined.

  5. Dirac Hamiltonian and Reissner-Nordström metric: Coulomb interaction in curved space-time

    NASA Astrophysics Data System (ADS)

    Noble, J. H.; Jentschura, U. D.

    2016-03-01

    We investigate the spin-1 /2 relativistic quantum dynamics in the curved space-time generated by a central massive charged object (black hole). This necessitates a study of the coupling of a Dirac particle to the Reissner-Nordström space-time geometry and the simultaneous covariant coupling to the central electrostatic field. The relativistic Dirac Hamiltonian for the Reissner-Nordström geometry is derived. A Foldy-Wouthuysen transformation reveals the presence of gravitational and electrogravitational spin-orbit coupling terms which generalize the Fokker precession terms found for the Dirac-Schwarzschild Hamiltonian, and other electrogravitational correction terms to the potential proportional to αnG , where α is the fine-structure constant and G is the gravitational coupling constant. The particle-antiparticle symmetry found for the Dirac-Schwarzschild geometry (and for other geometries which do not include electromagnetic interactions) is shown to be explicitly broken due to the electrostatic coupling. The resulting spectrum of radially symmetric, electrostatically bound systems (with gravitational corrections) is evaluated for example cases.

  6. Leading isospin-breaking corrections to meson masses on the lattice

    NASA Astrophysics Data System (ADS)

    Giusti, Davide; Lubicz, Vittorio; Martinelli, Guido; Sanfilippo, Francesco; Simula, Silvano; Tantalo, Nazario; Tarantino, Cecilia

    2018-03-01

    We present a study of the isospin-breaking (IB) corrections to pseudoscalar (PS) meson masses using the gauge configurations produced by the ETM Collaboration with Nf = 2+1+1 dynamical quarks at three lattice spacings varying from 0.089 to 0.062 fm. Our method is based on a combined expansion of the path integral in powers of the small parameters (m⌢d-m⌢u)/ΛQCD and αem, where m⌢f is the renormalized quark mass and αem the renormalized fine structure constant. We obtain results for the pion, kaon and Dmeson mass splitting; for the Dashen's theorem violation parameters εγ(MM, 2 GeV), επ0 εK0(MS, 2 GeV) for the light quark masses (m⌢d-m⌢u)(MS¯,2 GeV),(m⌢u/m⌢d)(MS¯,2 GeV); for the flavour symmetry breaking parameters R(MS, 2 GeV) and Q(MS, 2 GeV) and for the strong IB effects on the kaon decay constants.

  7. Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones

    NASA Astrophysics Data System (ADS)

    Nguyen, H. S.; Dubois, F.; Deschamps, T.; Cueff, S.; Pardon, A.; Leclercq, J.-L.; Seassal, C.; Letartre, X.; Viktorovitch, P.

    2018-02-01

    We demonstrate that symmetry breaking opens a new degree of freedom to tailor energy-momentum dispersion in photonic crystals. Using a general theoretical framework in two illustrative practical structures, we show that breaking symmetry enables an on-demand tuning of the local density of states of the same photonic band from zero (Dirac cone dispersion) to infinity (flatband dispersion), as well as any constant density over an adjustable spectral range. As a proof of concept, we demonstrate experimentally the transformation of the very same photonic band from a conventional quadratic shape to a Dirac dispersion, a flatband dispersion, and a multivalley one. This transition is achieved by finely tuning the vertical symmetry breaking of the photonic structures. Our results provide an unprecedented degree of freedom for optical dispersion engineering in planar integrated photonic devices.

  8. Atomic force microscopy based nanoassay: a new method to study α-Synuclein-dopamine bioaffinity interactions

    NASA Astrophysics Data System (ADS)

    Corvaglia, Stefania; Sanavio, Barbara; Sorce, Barbara; Bosco, Alessandro; Sabella, Stefania; Pompa, Pierpaolo; Scoles, Giacinto; Casalis, Loredana

    2015-03-01

    Intrinsically Disordered Proteins (IDPs) are characterized by the lack of well-defined 3-D structure and show high conformational plasticity. For this reason, they are a strong challenge for the traditional characterization of structure, supramolecular assembly and biorecognition phenomena. We show here how the fine tuning of protein orientation on a surface turns useful in the reliable testing of biorecognition interactions of IDPs, in particular α-Synuclein. We exploited atomic force microscopy (AFM) for the selective, nanoscale confinement of α-Synuclein on gold to study the early stages of α-Synuclein aggregation and the effect of small molecules, like dopamine, on the aggregation process. Capitalizing on the high sensitivity of AFM topographic height measurements we determined, for the first time in the literature, the dissociation constant of dopamine- α-Synuclein adducts.

  9. Atomic force microscopy based nanoassay: a new method to study α-Synuclein-dopamine bioaffinity interactions

    NASA Astrophysics Data System (ADS)

    Corvaglia, Stefania; Sanavio, Barbara; Hong Enriquez, Rolando P.; Sorce, Barbara; Bosco, Alessandro; Scaini, Denis; Sabella, Stefania; Pompa, Pier Paolo; Scoles, Giacinto; Casalis, Loredana

    2014-06-01

    Intrinsically Disordered Proteins (IDPs) are characterized by the lack of well-defined 3-D structure and show high conformational plasticity. For this reason, they are a strong challenge for the traditional characterization of structure, supramolecular assembly and biorecognition phenomena. We show here how the fine tuning of protein orientation on a surface turns useful in the reliable testing of biorecognition interactions of IDPs, in particular α-Synuclein. We exploited atomic force microscopy (AFM) for the selective, nanoscale confinement of α-Synuclein on gold to study the early stages of α-Synuclein aggregation and the effect of small molecules, like dopamine, on the aggregation process. Capitalizing on the high sensitivity of AFM topographic height measurements we determined, for the first time in the literature, the dissociation constant of dopamine-α-Synuclein adducts.

  10. Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones.

    PubMed

    Nguyen, H S; Dubois, F; Deschamps, T; Cueff, S; Pardon, A; Leclercq, J-L; Seassal, C; Letartre, X; Viktorovitch, P

    2018-02-09

    We demonstrate that symmetry breaking opens a new degree of freedom to tailor energy-momentum dispersion in photonic crystals. Using a general theoretical framework in two illustrative practical structures, we show that breaking symmetry enables an on-demand tuning of the local density of states of the same photonic band from zero (Dirac cone dispersion) to infinity (flatband dispersion), as well as any constant density over an adjustable spectral range. As a proof of concept, we demonstrate experimentally the transformation of the very same photonic band from a conventional quadratic shape to a Dirac dispersion, a flatband dispersion, and a multivalley one. This transition is achieved by finely tuning the vertical symmetry breaking of the photonic structures. Our results provide an unprecedented degree of freedom for optical dispersion engineering in planar integrated photonic devices.

  11. Fine-tuning with brane-localized flux in 6D supergravity

    NASA Astrophysics Data System (ADS)

    Niedermann, Florian; Schneider, Robert

    2016-02-01

    There are claims in the literature that the cosmological constant problem could be solved in a braneworld model with two large (micron-sized) supersymmetric extra dimensions. The mechanism relies on two basic ingredients: first, the cosmological constant only curves the compact bulk geometry into a rugby shape while the 4D curvature stays flat. Second, a brane-localized flux term is introduced in order to circumvent Weinberg's fine-tuning argument, which otherwise enters here through a backdoor via the flux quantization condition. In this paper, we show that the latter mechanism does not work in the way it was designed: the only localized flux coupling that guarantees a flat on-brane geometry is one which preserves the scale invariance of the bulk theory. Consequently, Weinberg's argument applies, making a fine-tuning necessary again. The only remaining window of opportunity lies within scale invariance breaking brane couplings, for which the tuning could be avoided. Whether the corresponding 4D curvature could be kept under control and in agreement with the observed value will be answered in our companion paper [1].

  12. The wildland fuel cell concept: an approach to characterize fine-scale variation in fuels and fire in frequently burned longleaf pine forests

    Treesearch

    J. Kevin Hiers; Joseph J. O’Brien; R. J. Mitchell; John M. Grego; E. Louise Loudermilk

    2009-01-01

    In ecosystems with frequent surface fire regimes, fire and fuel heterogeneity has been largely overlookedowing to the lack of unburned patches and the difficulty in measuring fire behavior at fine scales (0.1–10 m). The diversevegetation in these ecosystems varies at these fine scales. This diversity could be...

  13. From broadscale patterns to fine-scale processes: habitat structure influences genetic differentiation in the pitcher plant midge across multiple spatial scales.

    PubMed

    Rasic, Gordana; Keyghobadi, Nusha

    2012-01-01

    The spatial scale at which samples are collected and analysed influences the inferences that can be drawn from landscape genetic studies. We examined genetic structure and its landscape correlates in the pitcher plant midge, Metriocnemus knabi, an inhabitant of the purple pitcher plant, Sarracenia purpurea, across several spatial scales that are naturally delimited by the midge's habitat (leaf, plant, cluster of plants, bog and system of bogs). We analysed 11 microsatellite loci in 710 M. knabi larvae from two systems of bogs in Algonquin Provincial Park (Canada) and tested the hypotheses that variables related to habitat structure are associated with genetic differentiation in this midge. Up to 54% of variation in individual-based genetic distances at several scales was explained by broadscale landscape variables of bog size, pitcher plant density within bogs and connectivity of pitcher plant clusters. Our results indicate that oviposition behaviour of females at fine scales, as inferred from the spatial locations of full-sib larvae, and spatially limited gene flow at broad scales represent the important processes underlying observed genetic patterns in M. knabi. Broadscale landscape features (bog size and plant density) appear to influence oviposition behaviour of midges, which in turn influences the patterns of genetic differentiation observed at both fine and broad scales. Thus, we inferred linkages among genetic patterns, landscape patterns and ecological processes across spatial scales in M. knabi. Our results reinforce the value of exploring such links simultaneously across multiple spatial scales and landscapes when investigating genetic diversity within a species. © 2011 Blackwell Publishing Ltd.

  14. Study on the solid solution of YMn{sub 1-x}Fe{sub x}O{sub 3}: Structural, magnetic and dielectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, S.L.; Green, W.; Lofland, S.E.

    The solid solution of YMn{sub 1-x}Fe{sub x}O{sub 3} (x=0.0, 0.1, 0.2, 0.3, 0.5, 1.0) was synthesized from the citrate precursor route. The hexagonal crystal structure related to YMnO{sub 3} was stable for x{<=}0.3. Rietveld refinement was carried out on the composition for x=0.3 and was refined to a major hexagonal phase ({approx}97%) with 3% of orthorhombic Y(Fe/Mn)O{sub 3} phase. The a-axis lattice constant increases and the c-axis lattice constant decreases with x for x{<=}0.2. The increase in the c-axis lattice constant at x=0.3 could be due to the doping of significant amount of d{sup 5} ion (high spin Fe{sup 3+}more » ion) in a trigonal bipyramidal crystal field. The detailed structural, magnetic and dielectric properties are discussed. - Graphical abstract: Temperature dependence of {epsilon} of YMn{sub 1-x}Fe{sub x}O{sub 3} (0.0{<=}x{<=}0.3) at 100 kHz. Inset shows the temperature variation of inverse magnetic susceptibility.« less

  15. Relative contributions of neutral and non-neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes

    PubMed Central

    Matala, Andrew P; Ackerman, Michael W; Campbell, Matthew R; Narum, Shawn R

    2014-01-01

    Mounting evidence of climatic effects on riverine environments and adaptive responses of fishes have elicited growing conservation concerns. Measures to rectify population declines include assessment of local extinction risk, population ecology, viability, and genetic differentiation. While conservation planning has been largely informed by neutral genetic structure, there has been a dearth of critical information regarding the role of non-neutral or functional genetic variation. We evaluated genetic variation among steelhead trout of the Columbia River Basin, which supports diverse populations distributed among dynamic landscapes. We categorized 188 SNP loci as either putatively neutral or candidates for divergent selection (non-neutral) using a multitest association approach. Neutral variation distinguished lineages and defined broad-scale population structure consistent with previous studies, but fine-scale resolution was also detected at levels not previously observed. Within distinct coastal and inland lineages, we identified nine and 22 candidate loci commonly associated with precipitation or temperature variables and putatively under divergent selection. Observed patterns of non-neutral variation suggest overall climate is likely to shape local adaptation (e.g., potential rapid evolution) of steelhead trout in the Columbia River region. Broad geographic patterns of neutral and non-neutral variation demonstrated here can be used to accommodate priorities for regional management and inform long-term conservation of this species. PMID:25067950

  16. Melt- rock reaction at oceanic peridotite-gabbro transition, through combined EBSD and in-situ mineral geochemistry on the Erro Tobbio peridotitic body (Ligurian ophiolites, Italy).

    NASA Astrophysics Data System (ADS)

    Basch, Valentin; Rampone, Elisabetta; Ildefonse, Benoit; Godard, Marguerite; Crispini, Laura

    2017-04-01

    Several lines of evidence have stressed that melt-rock reactions acting at the oceanic mantle-crust boundary play an important role in the chemical evolution of MORBs and the formation of the primitive (olivine-rich) lower oceanic crust. To address this issue, we performed detailed structural analyses and in-situ mineral geochemistry on the Erro-Tobbio (ET) ultramafic unit (Ligurian Alps, Italy), where impregnated mantle peridotites are primarily associated to a hectometre-size mafic body composed of troctolite to plagioclase-bearing wehrlite. The troctolitic body exhibits high complexity, with a host troctolite (Troctolite A) crosscut by troctolitic decametre-size pseudo-tabular bodies (Troctolite B). These different generations of troctolites show distinct modal compositions and textures. The host troctolite A displays a dominant millimetre-size corroded granular texture of olivine associated with dunite pods and a layering defined by poikilitic plagioclase enrichment. The contact between the mafic body and the host mantle peridotites is irregular, and defined by troctolite to wehrlite apophyses. The troctolite A shows microstructures and Crystallographic Preferred Orientation (CPO) indicative of a formation after impregnation of a mantle dunite by an olivine-undersaturated melt. This impregnation leads to olivine dissolution, associated with poikilitic plagioclase and clinopyroxene crystallization. This is indicated by a progressive randoming of the Axial-[100] CPO with olivine disaggregation and increasing melt input in the troctolite. The crosscutting troctolite B exhibits significant olivine textural variation, from fine-grained granular to deformed coarse-grained skeletal olivine. Olivine in the troctolite B shows CPO indicative of crystallization after magmatic flow, intrusive into the host troctolite A. Both troctolite types display large major and trace element variations in minerals, e.g. variation of Anorthite content (An = 54-67) in plagioclase at rather constant Forsterite content in olivine, and significant Zr, Ti, HREE heterogeneity in olivine, systematically correlated with the textural variability (e.g. corroded deformed vs. undeformed granular olivine). These features indicate that reactive crystallization had an important role in the origin of the ET troctolites. We infer that the textural heterogeneity of olivine in the troctolite B is related to variations in the degree of undercooling and cooling rate of the melt (Faure et al, 2003). The skeletal olivine crystallization could correspond to the influx of a more primitive melt into a colder host troctolite, followed by evolution of the melt leading to formation of fine-grained euhedral crystals. Overall, the results of this study suggest a poly-phase formation of this hectometre-scale gabbroic body, involving impregnation of a mantle-derived dunitic body followed by intrusion of undercooled primitive melts. Faure, F., Trolliard, G., Nicollet, C. & Montel, J.M. (2003), A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib. Miner. Petrol. 145:251-263.

  17. Design of high-linear CMOS circuit using a constant transconductance method for gamma-ray spectroscopy system

    NASA Astrophysics Data System (ADS)

    Jung, I. I.; Lee, J. H.; Lee, C. S.; Choi, Y.-W.

    2011-02-01

    We propose a novel circuit to be applied to the front-end integrated circuits of gamma-ray spectroscopy systems. Our circuit is designed as a type of current conveyor (ICON) employing a constant- gm (transconductance) method which can significantly improve the linearity in the amplified signals by using a large time constant and the time-invariant characteristics of an amplifier. The constant- gm method is obtained by a feedback control which keeps the transconductance of the input transistor constant. To verify the performance of the propose circuit, the time constant variations for the channel resistances are simulated with the TSMC 0.18 μm transistor parameters using HSPICE, and then compared with those of a conventional ICON. As a result, the proposed ICON shows only 0.02% output linearity variation and 0.19% time constant variation for the input amplitude up to 100 mV. These are significantly small values compared to a conventional ICON's 1.39% and 19.43%, respectively, for the same conditions.

  18. Hydration effects on the electrostatic potential around tuftsin.

    PubMed

    Valdeavella, C V; Blatt, H D; Yang, L; Pettitt, B M

    1999-08-01

    The electrostatic potential and component dielectric constants from molecular dynamics (MD) trajectories of tuftsin, a tetrapeptide with the amino acid sequence Thr-Lys-Pro-Arg in water and in saline solution are presented. The results obtained from the analysis of the MD trajectories for the total electrostatic potential at points on a grid using the Ewald technique are compared with the solution to the Poisson-Boltzmann (PB) equation. The latter was solved using several sets of dielectric constant parameters. The effects of structural averaging on the PB results were also considered. Solute conformational mobility in simulations gives rise to an electrostatic potential map around the solute dominated by the solute monopole (or lowest order multipole). The detailed spatial variation of the electrostatic potential on the molecular surface brought about by the compounded effects of the distribution of water and ions close to the peptide, solvent mobility, and solute conformational mobility are not qualitatively reproducible from a reparametrization of the input solute and solvent dielectric constants to the PB equation for a single structure or for structurally averaged PB calculations. Nevertheless, by fitting the PB to the MD electrostatic potential surfaces with the dielectric constants as fitting parameters, we found that the values that give the best fit are the values calculated from the MD trajectories. Implications of using such field calculations on the design of tuftsin peptide analogues are discussed.

  19. Structural, electronic, elastic, and thermal properties of CaNiH3 perovskite obtained from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Benlamari, S.; Bendjeddou, H.; Boulechfar, R.; Amara Korba, S.; Meradji, H.; Ahmed, R.; Ghemid, S.; Khenata, R.; Omran, S. Bin

    2018-03-01

    A theoretical study of the structural, elastic, electronic, mechanical, and thermal properties of the perovskite-type hydride CaNiH3 is presented. This study is carried out via first-principles full potential (FP) linearized augmented plane wave plus local orbital (LAPW+lo) method designed within the density functional theory (DFT). To treat the exchange–correlation energy/potential for the total energy calculations, the local density approximation (LDA) of Perdew–Wang (PW) and the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) are used. The three independent elastic constants (C 11, C 12, and C 44) are calculated from the direct computation of the stresses generated by small strains. Besides, we report the variation of the elastic constants as a function of pressure as well. From the calculated elastic constants, the mechanical character of CaNiH3 is predicted. Pertaining to the thermal properties, the Debye temperature is estimated from the average sound velocity. To further comprehend this compound, the quasi-harmonic Debye model is used to analyze the thermal properties. From the calculations, we find that the obtained results of the lattice constant (a 0), bulk modulus (B 0), and its pressure derivative ({B}0^{\\prime }) are in good agreement with the available theoretical as well as experimental results. Similarly, the obtained electronic band structure demonstrates the metallic character of this perovskite-type hydride.

  20. Three-dimensional, thermo-mechanical and dynamical analogue experiments of subduction: first results

    NASA Astrophysics Data System (ADS)

    Boutelier, D.; Oncken, O.

    2008-12-01

    We present a new analogue modeling technique developed to investigate the mechanics of the subduction process and the build-up of subduction orogenies. The model consists of a tank filled with water representing the asthenosphere and two lithospheric plates made of temperature-sensitive hydrocarbon compositional systems. These materials possess elasto-plastic properties allowing the scaling of thermal and mechanical processes. A conductive thermal gradient is imposed in the lithosphere prior to deformation. The temperature of the asthenosphere and model surface are imposed and controlled with an electric heater, two infrared ceramic heat emitters, two thermocouples and a thermo-regulator. This system allows an unobstructed view of the model surface, which is monitored using a stereoscopic particle image technique. This monitoring technique provides a precise quantification of the horizontal deformation and variations of elevation in the three-dimensional model. Convergence is imposed with a piston moving at a constant rate or pushing at a constant stress. The velocity is scaled using the dimensionless ratio of thermal conduction over advection. The experiments are first produced at a constant rate and the stress in the horizontal direction of the convergence is recorded. Then the experiment is reproduced with a constant stress boundary condition where the stress value is set to the averaged value obtained in the previous experiment. Therefore, an initial velocity allowing proper scaling of heat exchanges is obtained, but deformation in the model and spatial variations of parameters such as density or friction coefficient can produce variations of plate convergence velocity. This in turn impacts the strength of the model lithosphere because it changes the model thermal structure. In the first presented experiments the model lithosphere is one layer and the plate boundary is linear. The effects of variations of the subducting plate thickness, density and the lubrication of the interface between the plates are investigated.

  1. Origin of accretionary lapilli from the Pompeii and Avellino deposits of Vesuvius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheridan, M.F.; Wohletz, K.H.

    1983-01-01

    Accretionary lapilli from the Pompeii and Avellino Plinian ash deposits of Vesuvius consist of centimeter-sized spheroids composed of glass, crystal, and lithic fragments of submillimeter size. The typical structure of the lapilli consists of a central massive core surrounded by concentric layers of fine ash with concentrations of larger clasts and vesicles and a thin outer layer of dust. Clasts within the lapilli larger than 125 ..mu..m are extremely rare. The median grain-size of the fine ash is about 50 ..mu..m and the size-distribution is well sorted. Most constituent particles of accretionary lapilli display blocky shapes characteristic of grains producedmore » by phreatomagmatic hydroexplosions. We have used the scanning electron microscope (SEM) in conjunction with energy dispersive spectral analysis (EDS) to investigate the textural and chemical variation along traverses from the core to the rim of lapilli from Vesuvius.« less

  2. Dielectric studies on PEG-LTMS based polymer composites

    NASA Astrophysics Data System (ADS)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-02-01

    PEG LTMS based polymer composites were prepared and studied for dielectric constant variation with frequency and temperature as a potential candidate with better dielectric properties. Solution cast technique is used for the preparation of polymer composite with five different compositions. Samples show variation in dielectric constant with frequency and temperature. Dielectric constant is large at low frequencies and higher temperatures. Samples with larger space charges have shown larger dielectric constant. The highest dielectric constant observed was about 29244 for PEG25LTMS sample at 100Hz and 312 K.

  3. Fabrication of barium titanate doped strontium using co-precipitation method

    NASA Astrophysics Data System (ADS)

    Iriani, Y.; Yasin, M. A.; Suryana, R.

    2018-03-01

    Fabrication of barium titanate (BaTiO3/BT) doped strontium (Sr) using co-precipitation method has been successfully conducted. The research aim is to get the best of mole variation of Sr doping to ferroelectric material properties. Doping Sr was varied at 1%, 2%, 3%, 4% and 5% in BaTiO3. Each sample was sintered at temperature of 1100°C with holding time for 6 h and temperature rate at 10°C/min. They were then characterized by XRD instrument to investigate the crystal structure, LCR meter to measure the dielectric constant, and Sawyer Tower circuit to reveal the hysteresis curve. The peaks of XRD shift towards larger angle when mole doping Sr increase. The crystallinity of all samples is above 90% and the crystallite size is in the range of 27 nm to 34 nm. Hysteresis curve from Sawyer Tower testing confirms that all samples are ferroelectric material. The RLC measurement results reveal that the less frequency leads to the higher dielectric constant while the highest dielectric constant belongs to the BT doped 3% of Sr. Therefore, it is the best variation obtained in this research.

  4. Experimental Report: ORNL Proposal ID IPTS 8937

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirmelstein, A.

    2014-02-03

    Neutron scattering experiment was performed using fine-resolution Fermi chopper spectrometer “SEQUOIA” installed at the Spallation Neutron Source, ORNL. Although this spectrometer is designed to measure inelastic neutron scattering spectra, during experiments a signal of elastic scattering is also recorded. The coherent nuclear component of this elastic scattering provides Bragg diffraction pattern of a sample, i.e., CeNi single crystal in our case. Therefore, it is possible to follow the CeNi structural variations as a function of pressure and to register structural phase transition. Measurements were performed at the temperature of 15 K under pressure of zero (ambient pressure at 15 K),more » 400, 800, and 2200 bars.« less

  5. Local Structure Analysis and Interface Layer Effect of Phase-Change Recording Material Using Actual Media

    NASA Astrophysics Data System (ADS)

    Nakai, Tsukasa; Yoshiki, Masahiko; Satoh, Yasuhiro; Ashida, Sumio

    2008-07-01

    The influences of the interface layer on crystal structure, the local atomic arrangement, and the electronic and chemical structure of a GeBiTe (GBT) phase-change recording material have been investigated using X-ray diffraction (XRD), X-ray absorption fine structure (XAFS), and hard X-ray photoelectron spectroscopy (HX-PES) methods using actual rewritable high-speed HD DVD media without special sample processing. XRD results showed that the crystal structure of laser-crystallized GBT alloy in the actual HD DVD media is the same as that of GeSbTe (GST) alloy, which has a NaCl-type structure. No differences between samples with and without interface layers were found. The lattice constant of GBT is larger than that of GST. Bi increases the lattice constant of GST with respect to the Bi substitution ratio of Sb. According to HX-PES, the DOS of in the recording film amorphous state with an interface layer is closer to that of the crystalline state than the recording film without an interface layer. From XAFS results, clear differences between amorphous (Amo.) and crystalline states (Cry.) were observed. The interatomic distance of amorphous recording material is independent of the existence of an interface layer. On the other hand, the coordination number varied slightly due to the presence of the interface layer. Therefore, the electronic state of the recording layer changes because of the interface layer, although the local structure changes only slightly except for the coordination number. Combining these results, we conclude that the interface layer changes the electronic state of the recording layer and promotes crystallization, but only affects the local structure of the atomic arrangement slightly.

  6. Quantifying stream thermal regimes at management-pertinent scales: combining thermal infrared and stationary stream temperature data in a novel modeling framework.

    USGS Publications Warehouse

    Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.

    2015-01-01

    Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.

  7. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery.

    PubMed

    De Benedetti, Pier G; Fanelli, Francesca

    2018-03-21

    Simple comparative correlation analyses and quantitative structure-kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug-target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Temperature-Dependent Second Shell Interference in the First Shell Analysis of Crystalline InP X-ray Absorption Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Schnohr, Claudia S.; Araujo, Leandro L.; Ridgway, Mark C.

    2014-09-01

    Analysing only the first nearest neighbour (NN) scattering signal is a commonly used and often successful way to treat extended X-ray absorption fine structure data. However, using temperature-dependent measurements of InP as an example, we demonstrate how this approach can lead to erroneous first NN structural parameters in systems with a weak first but strong second NN scatterer. In such cases, particularly low temperature data may suffer from an overlap of first and second NN scattering signals caused by the Fourier transformation (FT) even if the dominant peaks appear to be well separated. The first NN structural parameters then vary as a function of the FT settings if only the first NN scattering contribution is considered in the analysis. Although this variation is small, it can also lead to significant differences in other calculated properties such as the Einstein temperature. We demonstrate that these variations can be avoided either by choosing an appropriate FT window or by including the scattering contributions of higher shells in the analysis. The latter is achieved by a path fitting approach and yields structural parameters independent of the FT settings used.

  9. Sound of Dark Matter: Searching for Light Scalars with Resonant-Mass Detectors.

    PubMed

    Arvanitaki, Asimina; Dimopoulos, Savas; Van Tilburg, Ken

    2016-01-22

    The fine-structure constant and the electron mass in string theory are determined by the values of scalar fields called moduli. If the dark matter takes on the form of such a light modulus, it oscillates with a frequency equal to its mass and an amplitude determined by the local dark-matter density. This translates into an oscillation of the size of a solid that can be observed by resonant-mass antennas. Existing and planned experiments, combined with a dedicated resonant-mass detector proposed in this Letter, can probe dark-matter moduli with frequencies between 1 kHz and 1 GHz, with much better sensitivity than searches for fifth forces.

  10. Optical Sensing of the Fatigue Damage State of CFRP under Realistic Aeronautical Load Sequences

    PubMed Central

    Zuluaga-Ramírez, Pablo; Arconada, Álvaro; Frövel, Malte; Belenguer, Tomás; Salazar, Félix

    2015-01-01

    We present an optical sensing methodology to estimate the fatigue damage state of structures made of carbon fiber reinforced polymer (CFRP), by measuring variations on the surface roughness. Variable amplitude loads (VAL), which represent realistic loads during aeronautical missions of fighter aircraft (FALSTAFF) have been applied to coupons until failure. Stiffness degradation and surface roughness variations have been measured during the life of the coupons obtaining a Pearson correlation of 0.75 between both variables. The data were compared with a previous study for Constant Amplitude Load (CAL) obtaining similar results. Conclusions suggest that the surface roughness measured in strategic zones is a useful technique for structural health monitoring of CFRP structures, and that it is independent of the type of load applied. Surface roughness can be measured in the field by optical techniques such as speckle, confocal perfilometers and interferometry, among others. PMID:25760056

  11. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2018-02-01

    Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.

  12. Intrahaplotypic Variants Differentiate Complex Linkage Disequilibrium within Human MHC Haplotypes

    PubMed Central

    Lam, Tze Hau; Tay, Matthew Zirui; Wang, Bei; Xiao, Ziwei; Ren, Ee Chee

    2015-01-01

    Distinct regions of long-range genetic fixation in the human MHC region, known as conserved extended haplotypes (CEHs), possess unique genomic characteristics and are strongly associated with numerous diseases. While CEHs appear to be homogeneous by SNP analysis, the nature of fine variations within their genomic structure is unknown. Using multiple, MHC-homozygous cell lines, we demonstrate extensive sequence conservation in two common Asian MHC haplotypes: A33-B58-DR3 and A2-B46-DR9. However, characterization of phase-resolved MHC haplotypes revealed unique intra-CEH patterns of variation and uncovered 127 single nucleotide variants (SNVs) which are missing from public databases. We further show that the strong linkage disequilibrium structure within the human MHC that typically confounds precise identification of genetic features can be resolved using intra-CEH variants, as evidenced by rs3129063 and rs448489, which affect expression of ZFP57, a gene important in methylation and epigenetic regulation. This study demonstrates an improved strategy that can be used towards genetic dissection of diseases. PMID:26593880

  13. Fine-tuning free paradigm of two-measures theory: k-essence, absence of initial singularity of the curvature, and inflation with graceful exit to the zero cosmological constant state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guendelman, E. I.; Kaganovich, A. B.

    2007-04-15

    The dilaton-gravity sector of the two-measures field theory (TMT) is explored in detail in the context of spatially flat Friedman-Robertson-Walker (FRW) cosmology. The model possesses scale invariance which is spontaneously broken due to the intrinsic features of the TMT dynamics. The dilaton {phi} dependence of the effective Lagrangian appears only as a result of the spontaneous breakdown of the scale invariance. If no fine-tuning is made, the effective {phi}-Lagrangian p({phi},X) depends quadratically upon the kinetic term X. Hence TMT represents an explicit example of the effective k-essence resulting from first principles without any exotic term in the underlying action intendedmore » for obtaining this result. Depending of the choice of regions in the parameter space (but without fine-tuning), TMT exhibits different possible outputs for cosmological dynamics: (a) Absence of initial singularity of the curvature while its time derivative is singular. This is a sort of sudden singularities studied by Barrow on purely kinematic grounds. (b) Power law inflation in the subsequent stage of evolution. Depending on the region in the parameter space the inflation ends with a graceful exit either into the state with zero cosmological constant (CC) or into the state driven by both a small CC and the field {phi} with a quintessencelike potential. (c) Possibility of resolution of the old CC problem. From the point of view of TMT, it becomes clear why the old CC problem cannot be solved (without fine-tuning) in conventional field theories. (d) TMT enables two ways for achieving small CC without fine-tuning of dimensionful parameters: either by a seesaw type mechanism or due to a correspondence principle between TMT and conventional field theories (i.e. theories with only the measure of integration {radical}(-g) in the action). (e) There is a wide range of the parameters such that in the late time universe: the equation of state w=p/{rho}<-1; w asymptotically (as t{yields}{infinity}) approaches -1 from below; {rho} approaches a constant, the smallness of which does not require fine-tuning of dimensionful parameters.« less

  14. Synthesis of TiO2 Nanoparticle and its phase Transition

    NASA Astrophysics Data System (ADS)

    Mangrola, M. H.; Joshi, V. G.; Parmar, B. H.

    2011-12-01

    Here we report the synthesis of titanium dioxide (TiO2) nanoparticles and study of its phase transition from anataze to rutile. Titanium dioxide (TiO2) nanoparticles have been prepared by hydrolysis of Titanium isopropoxide an aqueous solution with constant value of pH 2 and peptizing the resultant suspension gel(white-Blue) and calcinate gel at different temperature. Structures of synthetic samples of TiO2 have been examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The anatase-rutile transition has been a popular topic due to its interest to scientific and engineering fields. . Here we have seen that the 100 °C calcinate powder consist of anatase fine crystalline phase with a particle size 14 to 15 nm. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks. The phase transform occurred from anatase to rutile at calcinate temperature up to 600 °C. A very fine network texture made from uniform nanoparticles was revealed by scanning electron microscopy (SEM) analyses.

  15. Modeling the Formation of Hydrate-Filled Veins in Fine-Grained Sediments from in Situ Microbial Methane

    NASA Astrophysics Data System (ADS)

    Malinverno, A.; Cook, A.; Daigle, H.

    2016-12-01

    Continental margin sediments are dominantly fine-grained silt and clay, and methane hydrates in these sediments are often found in semi-vertical veins and fractures. In several instances, these hydrate veins occupy discrete depth intervals that are a few tens of meters thick and are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the gas hydrate stability zone (GHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. To investigate the formation of these hydrate deposits, we applied a time-dependent advection-diffusion-reaction model that includes the effects of sedimentation, compaction, solute diffusion, and microbial methane generation. Microbial methane generation depends on the amount of metabolizable organic carbon deposited at the seafloor, whose progressive degradation produces methane beneath the sulfate reduction zone. If the amount of organic carbon entering the methanogenic zone is kept constant in time, we found that the computed amounts of hydrate formed in discrete intervals within the GHSZ are well below those estimated from observations. On the other hand, if the deposition of organic carbon is higher in a given time interval, methane generation during burial is more intense in the corresponding sediment interval, resulting in enhanced hydrate formation. With variations in organic carbon deposition comparable to those generally observed in continental margins, our model was able to reproduce the methane hydrate contents that were estimated from drilling. These results support the suggestion that in situ microbial generation associated with transient organic carbon deposition is the source of methane that forms isolated intervals of hydrate-filled veins in fine-grained sediments.

  16. Modeling the Formation of Hydrate-Filled Veins in Fine-Grained Sediments from in Situ Microbial Methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinverno, Alberto; Cook, Ann; Daigle, Hugh

    Continental margin sediments are dominantly fine-grained silt and clay, and methane hydrates in these sediments are often found in semi-vertical veins and fractures. In several instances, these hydrate veins occupy discrete depth intervals that are a few tens of meters thick and are surrounded by hydrate-free sediments. As they are not connected with gas sources beneath the base of the gas hydrate stability zone (GHSZ), these isolated hydrate-bearing intervals have been interpreted as formed by in situ microbial methane. To investigate the formation of these hydrate deposits, we applied a time-dependent advection-diffusion-reaction model that includes the effects of sedimentation, compaction,more » solute diffusion, and microbial methane generation. Microbial methane generation depends on the amount of metabolizable organic carbon deposited at the seafloor, whose progressive degradation produces methane beneath the sulfate reduction zone. If the amount of organic carbon entering the methanogenic zone is kept constant in time, we found that the computed amounts of hydrate formed in discrete intervals within the GHSZ are well below those estimated from observations. On the other hand, if the deposition of organic carbon is higher in a given time interval, methane generation during burial is more intense in the corresponding sediment interval, resulting in enhanced hydrate formation. With variations in organic carbon deposition comparable to those generally observed in continental margins, our model was able to reproduce the methane hydrate contents that were estimated from drilling. These results support the suggestion that in situ microbial generation associated with transient organic carbon deposition is the source of methane that forms isolated intervals of hydrate-filled veins in fine-grained sediments.« less

  17. 2D Fast Vessel Visualization Using a Vessel Wall Mask Guiding Fine Vessel Detection

    PubMed Central

    Raptis, Sotirios; Koutsouris, Dimitris

    2010-01-01

    The paper addresses the fine retinal-vessel's detection issue that is faced in diagnostic applications and aims at assisting in better recognizing fine vessel anomalies in 2D. Our innovation relies in separating key visual features vessels exhibit in order to make the diagnosis of eventual retinopathologies easier to detect. This allows focusing on vessel segments which present fine changes detectable at different sampling scales. We advocate that these changes can be addressed as subsequent stages of the same vessel detection procedure. We first carry out an initial estimate of the basic vessel-wall's network, define the main wall-body, and then try to approach the ridges and branches of the vasculature's using fine detection. Fine vessel screening looks into local structural inconsistencies in vessels properties, into noise, or into not expected intensity variations observed inside pre-known vessel-body areas. The vessels are first modelled sufficiently but not precisely by their walls with a tubular model-structure that is the result of an initial segmentation. This provides a chart of likely Vessel Wall Pixels (VWPs) yielding a form of a likelihood vessel map mainly based on gradient filter's intensity and spatial arrangement parameters (e.g., linear consistency). Specific vessel parameters (centerline, width, location, fall-away rate, main orientation) are post-computed by convolving the image with a set of pre-tuned spatial filters called Matched Filters (MFs). These are easily computed as Gaussian-like 2D forms that use a limited range sub-optimal parameters adjusted to the dominant vessel characteristics obtained by Spatial Grey Level Difference statistics limiting the range of search into vessel widths of 16, 32, and 64 pixels. Sparse pixels are effectively eliminated by applying a limited range Hough Transform (HT) or region growing. Major benefits are limiting the range of parameters, reducing the search-space for post-convolution to only masked regions, representing almost 2% of the 2D volume, good speed versus accuracy/time trade-off. Results show the potentials of our approach in terms of time for detection ROC analysis and accuracy of vessel pixel (VP) detection. PMID:20706682

  18. Impact of structure and morphology of nanostructured ceria coating on AISI 304 oxidation kinetics

    NASA Astrophysics Data System (ADS)

    Aadhavan, R.; Suresh Babu, K.

    2017-07-01

    Nanostructured ceria-based coatings are shown to be protective against high-temperature oxidation of AISI 304 due to the dynamics of oxidation state and associated defects. However, the processing parameters of deposition have a strong influence in determining the structural and morphological aspects of ceria. The present work focuses on the effect of variation in substrate temperature (50-300 °C) and deposition rate (0.1-50 Å/s) of ceria in electron beam physical vapour evaporation method and correlates the changes in structure and morphology to high-temperature oxidation protection. Unlike deposition rate, substrate temperature exhibited a profound influence on crystallite size (7-18 nm) and oxygen vacancy concentration. Upon isothermal oxidation at 1243 K for 24 h, bare AISI 304 exhibited a linear mass gain with a rate constant of 3.0 ± 0.03 × 10-3 kg2 m-4 s-1 while ceria coating lowered the kinetics by 3-4 orders. Though the thickness of the coating was kept constant at 2 μm, higher deposition rate offered one order lower protection due to the porous nature of the coating. Variation in the substrate temperature modulated the porosity as well as oxygen vacancy concentration and displayed the best protection for coatings deposited at moderate substrate temperature. The present work demonstrates the significance of selecting appropriate processing parameters to obtain the required morphology for efficient high-temperature oxidation protection.

  19. Effect of species structure and dielectric constant on C-band forest backscatter

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Landry, R.; Kilic, O.; Chauhan, N.; Khadr, N.; Leckie, D.

    1993-01-01

    A joint experiment between Canadian and USA research teams was conducted early in Oct. 1992 to determine the effect of species structure and dielectric variations on forest backscatter. Two stands, one red pine and one jack pine, in the Petawawa National Forestry Institute (PNFI) were utilized for the experiment. Extensive tree architecture measurements had been taken by the Canada Centre for Remote Sensing (CCRS) several months earlier by employing a Total Station surveying instrument which provides detailed information on branch structure. A second part of the experiment consisted of cutting down several trees and using dielectric probes to measure branch and needle permittivity values at both sites. The dielectric and the tree geometry data were used in the George Washington University (GWU) Vegetation Model to determine the C band backscattering coefficients of the individual stands for VV polarization. The model results show that backscatter at C band comes mainly from the needles and small branches and the upper portion of the trunks acts only as an attenuator. A discussion of variation of backscatter with specie structure and how dielectric variations in needles for both species may affect the total backscatter returns is provided.

  20. Fine-scale structure in the far-infrared Milky-Way

    NASA Technical Reports Server (NTRS)

    Waller, William H.; Wall, William F.; Reach, William T.; Varosi, Frank; Ebert, Rick; Laughlin, Gaylin; Boulanger, Francois

    1995-01-01

    This final report summarizes the work performed and which falls into five broad categories: (1) generation of a new data product (mosaics of the far-infrared emission in the Milky Way); (2) acquisition of associated data products at other wavelengths; (3) spatial filtering of the far-infrared mosaics and resulting images of the FIR fine-scale structure; (4) evaluation of the spatially filtered data; (5) characterization of the FIR fine-scale structure in terms of its spatial statistics; and (6) identification of interstellar counterparts to the FIR fine-scale structure.

Top